
 

 

 

 

 

 

 

 
 

Improving Emergency Medical Services Through Vehicle 

Location Optimization 

 
 

 
Guilherme Costa Antunes Ferreira dos Santos 

 

 
 

 
Dissertation to obtain the Master of Science Degree in 

 

Industrial Engineering and Management  

 
 

Supervisors: Prof. Inês Marques Proença 
Prof. Ana Paula Ferreira Dias Barbosa Póvoa  

 
 

Examination Committee 
 
 

Chairperson: Prof. Carlos António Bana e Costa 
Supervisor: Prof. Inês Marques Proença 

Member of the Committee: Prof. Miguel Jorge Vieira 
 
 
 
 
 
 

December 2019 



 ii 

 

 
 

 
“All models are wrong; some models are useful.” 

- George E.P. Box  
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Declaration 
I declare that this document is an original work of my own authorship and that it fulfils all the 
requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa. 
 
Declaração 
Declaro que o presente documento é um trabalho original da minha autoria e que cumpre todos os 
requisitos do Código de Conduta e Boas Práticas da Universidade de Lisboa.  



 iii 

ABSTRACT 
Emergency Medical Services (EMS) are paramount in saving lives and their importance has long been 

recognized. The Portuguese EMS, SIEM, has evolved since the 1960’s into a complex system, 

comprising several stages and entities. The National Institute for Medical Emergencies (INEM) is 

responsible for managing the SIEM. Among other decisions, it is responsible for locating emergency 

vehicles, which directly impacts the medical outcomes of the population. Nonetheless, current vehicle 

locations are a result of incremental modifications guided by experience. In this context, more 

sophisticated decision-support methods could be beneficial. 

A Multi-Objective Dynamic Mixed-Integer Programming model is developed to support decisions 

concerning the station selection, the allocation of vehicles to stations and the assignment of demand to 

vehicles. In general, the model considers multiple vehicles and call priorities, as well as micro and 

macro time periods, to determine how the existing system can be gradually improved. Three objectives 

are considered: coverage, cost and equity. Besides, a hybrid heuristic based on problem decomposition 

is proposed to streamline model solution for the first objective. 

Application of the model to two regions suggests that, under the current restrictions, only slight 

improvements are possible. The model is further explored to study fleet expansion and seasonal vehicle 

allocation decisions, aligned with current planning practices. Alternative operating scenarios show that, 

with the current resources, improvements of up to 13.3% in coverage could be attained by relocating 

stations and vehicles simultaneously. Finally, computational tests of the heuristic prove it to be an 

effective solution procedure for large instances. 

 

Keywords: Emergency Medical Services; Ambulance Location; Optimization; Hybrid Heuristic; Mixed-

Integer Programming.  
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RESUMO 
Os serviços de emergência médica (EMS) são fulcrais para garantir o bem-estar da população e a sua 

importância é reconhecida há vários anos. O Sistema Integrado de Emergência Médica (SIEM), 

estabelecido na década de 1960, evoluiu para um sistema complexo, operando múltiplos veículos e 

diferentes estágios de intervenção. O Instituto Nacional de Emergência Médica (INEM) é responsável 

por gerir o SIEM. Entre outras decisões, compete-lhe posicionar os meios de emergência, com um 

impacto direto na saúde da população. Ainda assim, a configuração atual do sistema resulta de 

decisões incrementais nunca sujeitas a uma avaliação holística. Neste contexto, o INEM beneficiaria 

de métodos científicos que permitissem informar os processos de decisão. 

Por este motivo, um modelo Dinâmico Multiobjectivo de Programação Inteira Mista é desenvolvido para 

apoiar decisões relativas à seleção de estações, à afetação de veículos e à satisfação da procura. Em 

geral, o modelo considera múltiplos veículos e prioridades de emergência, bem como diversos 

períodos temporais e três objetivos: cobertura, custo e equidade. Uma heurística híbrida é proposta 

para acelerar a resolução do modelo para o primeiro objetivo. 

Aplicação do modelo a duas regiões sugere que, cumprindo as restrições atuais, pequenas melhorias 

são possíveis. O modelo também é utilizado para testar decisões sobre a expansão da frota e veículos 

sazonais. Cenários alternativos sugerem que, com os recursos atuais, melhorias de cobertura até 

13.3% podem ser obtidos. Finalmente, resultados computacionais da heurística mostram que é um 

método de solução eficaz para instâncias grandes. 

 

Palavras-chave: Serviços de Emergência Médica; Localização de Ambulâncias; Otimização; 

Heurística Híbrida; Programação Matemática 
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1. INTRODUCTION 
The aim of this chapter is to introduce this dissertation, motivating the problem to be addressed and the 

goals of this research. Additionally, the research methodology and the structure of the dissertation are 

outlined. This chapter is divided into three sections: section 1.1 provides context regarding the problem 

under study, section 1.2 outlines the main goals of the dissertation and section 1.3 presents the structure 

of the remaining chapters. 

1.1 PROBLEM BACKGROUND AND MOTIVATION 
Emergency Medical Services (EMS) systems are designed to save lives and they are a vital component 

of pre-hospital medical care (World Health Organization, 2005). Since the 1960’s, they have been 

recognized as an important system with a direct impact on the medical outcomes of emergency patients 

(Krafft et al., 2003). Therefore, they have a significant influence on the overall welfare of the population.  

These systems are usually complex, operating multiple tiers of vehicles, which interact with dispatching 

centres and hospitals (Jagtenberg, 2016). Even though there are different EMS typologies around the 

world, a common objective for EMS planners is to provide quality health care while keeping costs low 

(Reuter-Oppermann, Van Den Berg and Vile, 2017). In particular, ensuring short response times has 

long been recognized as a critical factor guiding decision-making (Li et al., 2011). In order to provide 

quality care, planners must make multiple planning decisions regarding resources, such as staff, the 

structure of the emergency fleet and emergency station locations (Bélanger, Ruiz and Soriano, 2018).  

The Portuguese integrated EMS system, Sistema Integrado de Emergência Médica (SIEM), is no 

exception. The SIEM is managed by the National Institute for Medical Emergency, Instituto Nacional de 

Emergência Médica (INEM). Its main goal is to provide prompt and appropriate medical care to victims 

and patients in continental Portugal. The SIEM has evolved since the 1960’s, and nowadays comprises 

multiple entities with varying levels of responsibility, several types of emergency vehicles and 

emergency priorities, answering more than 1.300.000 calls per year, around 90% of which require direct 

medical intervention. Nevertheless, despite having to manage such a challenging system, INEM 

planners must often rely on experience and intuition to make difficult planning decisions under 

uncertainty, limited by budget constraints and balancing multiple stakeholders and objectives.  

One of these decisions concerns the selection of long-term positions of emergency vehicles while they 

are idle. This decision actually comprises two related issues: selecting bases to be used and allocating 

existing vehicles to those bases. Current vehicle positions have been progressively developed as the 

system was expanded and new vehicles acquired. These decisions have been mostly supported by 

intuition and experience. Therefore, there is no guarantee that the implemented solution makes the best 

use of available resources to meet the goals of the SIEM and maximize population welfare. Furthermore, 

changing the existing configuration of vehicles can have costs, both financial and in human lives, 

meaning that INEM planners are naturally reluctant to make experiments without a solid reason to 

believe that these will be effective.  

In this context, the use of more sophisticated methods to support decision-making could potentially lead 

to more effective and efficient solutions and contribute to enhance the overall performance of the SIEM. 
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In fact, the limitations of the current planning methods and need for a scientific model-based approach 

have been recognized in 2010 by the Portuguese Audit Office (Tribunal de Contas, 2010). 

1.2 DISSERTATION GOALS 
This setting motivates the present study, whose ultimate goal is to develop and apply Operations 

Research (OR) techniques to improve INEM’s emergency vehicle location planning processes. This 

project is part of a series of collaborative projects between INEM and the Centre of Management Studies 

(CEG) of Instituto Superior Técnico which focus on different EMS planning problems. 

Ultimately, the objective is to develop an optimization model that is able to produce recommendations 

regarding vehicle location at INEM. This model should be flexible, integrating multiple objectives while 

providing a realistic representation of the SIEM. Furthermore, and despite being inspired by INEM’s 

case study, the proposed model should be general enough to allow modelling different EMS systems 

within a single framework, providing insights into the impact of alternative policies in the system’s 

performance. Secondary research goals include: 

• Characterizing EMS systems, particularly the SIEM, focusing on the most important 

components of EMS operation, highlighting their complex nature; 

• Surveying current planning practices used by EMS practitioners; 

• Reviewing previous research on the field, centred around specific modelling approaches and 

their consequences, leveraging these studies to support the development of the model; 

• Identifying potential gaps in the literature related to the needs of the case-study and proposing 

alternative modelling approaches; 

• Contributing to the existing literature by modelling, formulating and implementing an 

optimization model in a real EMS context; 

• Producing recommendations to support INEM in their vehicle location planning decisions. 

1.3 RESEARCH METHODOLOGY  
To achieve the above, the proposed research methodology includes five fundamental steps, as outlined 

in Figure 1.  

 

• Step 1 – Case-Study Description and Problem Definition 

This step seeks to introduce the EMS system which serves as a case-study for this dissertation: 

the SIEM. By highlighting its main objectives and features, and describing existing planning 

processes and performance indicators, an overview of the main challenges of vehicle planning 

at INEM is provided and the problem statement can be refined. 

Figure 1 - Proposed methodology. 
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• Step 2 – Literature Review 

The goal of the literature review is to survey the state-of-the-art of Location Science concerning 

emergency vehicle positioning. A brief overview of the typical response process, associated 

metrics and planning problems provides the theoretical foundation to present the wide range of 

optimization models available in the literature, focusing on coverage, discrete models for 

strategic planning, while also mentioning relevant solution techniques and applications. 

• Step 3 – Model Formulation and Solution Approach 

Considering the problem definition and relevant models in the literature, assumptions are stated, 

and a model is formulated. The Mathematical Programming model is developed under 

collaboration with INEM, to ensure that it adequately addresses the needs of EMS systems. For 

this purpose, interviews are required to capture different aspects of the decision-making model. 

Preliminary tests are conducted using a general-purpose solver. Furthermore, a solution 

approach exploring model structure is developed to streamline model solution. 

• Step 4 – Data Collection and Model Validation 

Relevant data for the model is collected with INEM and treated. The model is then tested on 

real data to ensure its validity. Here, the impact of each major assumption should be tested. 

Again, this step requires strict collaboration with INEM and, likely, iteration with the previous 

step to refine the model until it accurately describes EMS systems. This step is paramount to 

promote acceptance of the model by INEM. 

• Step 5 – Model Application and Result Analysis 

The model is applied to the case-study of SIEM to produce recommendations. Results are then 

analysed and discussed, and experiments are made to understand the impact of different 

constraints and scenarios on the performance of the system.  

1.4 STRUCTURE OF THE DISSERTATION  
This dissertation is structured in 8 chapters:  

• Chapter 1 – Introduction 

Corresponding to the present chapter, it introduces and motivates the topic of this study, 

highlights the main goals to be achieved and outlines the proposed research methodology and 

structure of the document. 

• Chapter 2 – What is an EMS system? 

Provides an overview of EMS systems, their purpose and structure. Key concepts are 

introduced, which help grasp the complex nature of these systems. A typical response process 

is detailed, and planning decisions are outlined at all levels of decision-making: strategic, tactical 

and operational. 
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• Chapter 3 – The Portuguese EMS system: SIEM 

The third chapter seeks to describe the case-study addressed in this dissertation. INEM is 

introduced and the SIEM is described, including existing emergency vehicles. The planning 

process for emergency vehicle location is also presented. 

• Chapter 4 –Literature Review 

The objective of chapter 4 is to survey the existing literature on OR methods, specifically 

optimization models, which can be applied to support EMS vehicle location planning. Several 

types of models are reviewed, focusing on how specific components of operation are modelled. 

• Chapter 5 – Model Formulation 

In chapter 5, insights gathered from the literature review and the description of the case study 

are leveraged to refine the problem statement and develop an optimization model aimed at 

supporting the emergency vehicle location planning process at INEM. The main modelling 

approaches and assumptions are detailed. Additionally, a solution process is proposed to 

enable the application of the model to large instances considering the primary model objective. 

• Chapter 6 – Data Collection and Treatment 

This chapter details the data collection and treatment procedures required to apply the model 

to the case study. Underlying limitations and necessary assumptions in the data are described. 

Summary tables are presented with the input parameters resulting from these procedures. 

• Chapter 7 – Case-Study Results 

Describes the implementation and computational experiments performed with the proposed 

model and solution approach. The main conclusions and findings of these experiments are 

described and recommendations for INEM are presented. 

• Chapter 8 – Final Conclusions and Future Work 

The last chapter summarises the most relevant features and conclusions of this study, 

highlighting opportunities for future research. 
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2. WHAT IS AN EMS SYSTEM? 
The aim of this chapter is to introduce EMS systems by presenting the main features of a standard EMS 

system and introduce terminology and concepts which are useful for the remainder chapters. Section 

2.1 defines the purpose of EMS systems and describes two basic categories, section 2.2 typifies a 

typical response process and relevant performance metrics, section 2.3 reviews planning decisions for 

EMS planners and, finally, section 2.4 presents the chapter’s conclusions. 

2.1 PURPOSE AND STRUCTURE OF EMS SYSTEMS 
Prompt and effective pre-hospital medical care is essential in saving lives. Therefore, most countries 

have established EMS over the years (World Health Organization, 2005). EMS are provided via EMS 

systems. Starting from simple structures dedicated to military conflicts, they have developed into 

complex systems with interacting vehicles (ambulances, motorcycles, helicopters, cars, etc.), 

dispatching centres and health care facilities (hospitals, health centres) (Jagtenberg, 2016). 

All EMS systems exist to save lives by providing quality medical assistance to injured people in the 

shortest possible time. However, each country organises EMS activities differently, and there is no 

common standard for EMS systems (Fischer et al., 2011; Totten and Bellou, 2013). This diversity results 

from the fact that EMS systems were only recognized as such – that is, systems – very recently (Krafft 

et al., 2003).  

Nevertheless, two main EMS system categories can be identified (Dick, 2003): 

• Anglo-American System: the patient is brought to the doctor. The goal is to respond to calls 

quickly: trained paramedics provide minimal intervention at the scene and transport victims 

directly to an appropriate medical facility; 

• Franco-German System: the doctor is brought to the patient. Specialized paramedics and 

emergency physicians are deployed so that life-threatening emergencies are treated on scene 

and during transportation. Complex treatment can be administered, including defibrillation, 

intubation and life-saving drugs. In this model, transportation speed is less crucial. 

However, nowadays most EMS systems do not fall into a single category, instead mixing features of 

both philosophies (Al-Shaqsi, 2010). 

2.2 A TYPICAL EMS RESPONSE PROCESS AND PERFORMANCE METRICS 
Although systems vary significantly, a “typical EMS system”, as described by Reuter-Oppermann, Van 

den Berg and Vile (2017), employs different types of vehicles to respond to emergencies with different 

priorities. The typical response process is shown in Figure 2.  

The system is activated through a call to an emergency number (e.g. 112 in Europe, 911 in the USA) 

and is answered by a dispatching centre. Here, several models exist as to how the call is redirected to 

the competent service (EENA, 2018). A triage process follows, in which the location and severity of the 

emergency is assessed. Depending on this stage, the dispatcher decides whether it is necessary to 

deploy emergency resources. If emergency vehicles are required, they are dispatched from their 

stations following some dispatching rule (usually, the closest idle vehicle). The vehicle travels to the 

scene, provides varying degrees of emergency care and, if necessary, transports the patient to an 
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appropriate health unit. After transferring the patient, and potentially restocking medical supplies, the 

vehicle becomes idle and returns to its base or, if relocation is allowed, to another base. In some cases, 

if no vehicle is available, a call can be queued – this is, however, very rare (Jagtenberg, 2016). 

Emergency vehicles can be staffed and equipped differently, thus providing variable care levels. There 

is considerable debate regarding the most effective vehicle mix of EMS systems, with some authors 

supporting tiered systems (i.e. with multiple vehicles), while others preferring single vehicle systems. 

Either way, it is typical to consider two vehicle categories, according to the care level provided (Chong, 

Henderson and Lewis, 2016): 

• Advanced Life-Support (ALS) vehicles: operated by specialized staffed (physician, nurses, 

paramedics) and equipped with advanced medical devices, they are more expensive but 

provide a higher level of care; 

• Basic Life-Support (BLS) vehicles: staffed by technicians (e.g. Emergency Medical 

Technicians), providing a lower range of treatments at a lower cost. 

Measuring the performance of an EMS system is also an important topic. Typically, EMS systems are 

evaluated on time interval metrics, being Response Time the most popular (Reuter-Oppermann, Van 

Den Berg and Vile, 2017). Some of these metrics are represented in Figure 2. In many cases, EMS 

legislation sets Response Time targets: in the UK, life-threatening emergencies should be answered in 

8 minutes (NHS England, 2017), while the Response Time limit in the Netherlands is 15 minutes for all 

emergencies (Wulterkens, 2005). Portuguese legislation does not establish such standards. Still, INEM 

uses a less demanding time interval metric, called Rescue Time, as a performance indicator. 

These metrics are attractive because they are simple to understand, easily measurable, comparable 

and objective, but they may lead to unintended consequences and be inadequate to modern reality. 

Another problem is the lack of commonly accepted descriptions for each of these time intervals, leading 

to different EMS systems using the same name for different metrics (Myers et al., 2008). 

Nevertheless, additional performance measures have been proposed. For instance, outcome-based 

measures, depending on the patient’s clinical situation, have been developed (Myers et al., 2008). 

Furthermore, the European Emergency Data Project tried to identify common indicators and establish 

an evaluation framework of European EMS systems. The resulting metrics include: Available unit hours 

per 100.000 habitants; Response Time (% under 8 minutes) of critical calls; Rate of high priority 

Figure 2 - Typical response process of an EMS system. Source: Adapted from Reuter-Oppermann, Van den Berg 
and Vile (2017) 
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responses per 100.000 habitants; Rate of First Hour Quintet1 incidents per 100.000 habitants; ALS 

interventions per 100.000 habitants per year (Fischer et al., 2011). 

2.3 PLANNING ISSUES FOR EMS SYSTEMS 
To run effective EMS systems, planners must make a series of complex decisions, involving multiple 

resources, such as emergency vehicles, emergency stations, crews and dispatchers. They usually seek 

to provide quality health care at a bearable cost, leading to a natural trade-off (Jagtenberg, 2016). These 

planning decisions are traditionally classified into three levels (Reuter-Oppermann, Van Den Berg and 

Vile, 2017; Bélanger, Ruiz and Soriano, 2018): 

• Strategic decisions: long-term, holding for at least one year, but eventually spanning for several 

decades; 

• Tactical decisions: medium-term, valid for periods ranging from one month to one year; 

• Operational decisions: made for a daily basis, or even in real time. 

Figure 3 summarizes some of the decisions that EMS planner face at each decision level. 

EMS planners face challenges regarding vehicle location across all levels of decision-making: the size 

of the emergency fleet, its structure and which emergency stations to open (strategic); assignment of 

vehicles to stations (tactical); vehicle dispatching and relocation (operational) (Bélanger, Ruiz and 

Soriano, 2018). As discussed in the next chapter, this dissertation concerns strategic and tactical 

decisions. Besides, vehicle-related decisions often require other important tasks, such as demand 

forecasting or travel time analysis (Reuter-Oppermann, Van Den Berg and Vile, 2017). Fortunately, the 

combined use of modern information systems, mathematical optimization models, solution methods and 

software can help make better decisions, supported by a priori testing of different solutions (Beraldi, 

Bruni and Conforti, 2004).  

2.4 CHAPTER CONCLUSIONS 
EMS systems are very important components of emergency care, contributing to the population’s 

welfare. They are usually complex, with significant variations across countries, meaning that EMS 

planners face difficult decisions regarding resource management which must account for the 

particularities of each region. Now that general concepts of EMS systems have been defined, the case-

study addressed by this dissertation is described in Chapter 3. Existing literature on strategic and tactical 

emergency vehicle location planning in then reviewed Chapter 4. 

 
1 First Hour Quintet incidents include cardiac arrest, severe respiratory failure, severe trauma, stroke and chest 
pain. 

Figure 3 - Planning levels and examples of problems for EMS systems. Adapted from: Reuter-Oppermann, van 
den Berg and Vile (2017) and Bélanger, Ruiz and Soriano (2018). 
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3. THE PORTUGUESE EMS SYSTEM: SIEM 
The aim of this chapter is to describe the case study addressed in this dissertation. Section 3.1. 

describes INEM, the entity responsible for the Portuguese EMS. Section 3.2. describes how the 

Portuguese EMS system, SIEM, operates and presents the existing types of vehicles. Section 3.3. 

discusses vehicle location planning at INEM, leading to a refined statement of the research problem in 

section 3.4. Finally, section 3.5 presents the chapter’s conclusions. 

3.1 THE NATIONAL INSTITUTE FOR MEDICAL EMERGENCY (INEM) 

3.1.1 MISSION AND VISION 
INEM is the public entity under the Ministry of Health responsible for managing the Portuguese EMS. 

INEM’s mission was lastly updated in Decree-Law 34 of 2012, which formally defined it as “guaranteeing 

the operation, in continental Portugal, of an Integrated Emergency Medical System (SIEM), ensuring 

prompt and correct provision of medical care to victims and patients (…)”. To fulfil its purpose, INEM 

must define, organize, participate in, coordinate and evaluate SIEM’s activities and guarantee their 

articulation. INEM’s responsibilities include (Instituto Nacional de Emergência Médica, 2017a):  

• Call reception, triage, counselling and vehicle dispatching; 

• Providing pre-hospital emergency care (medicalized and non-medicalized) and coordinating all 

entities to offer an integrated response (e.g. hospitals, police officers, firefighters, …); 

• Patient transportation, referral, reception and treatment at the hospital; 

• Defining, planning, providing and certifying medical emergency training activities; 

• Civil planning, prevention and raising awareness towards medical emergency; 

• Establishing and maintaining a medical telecommunication network. 

INEM’s vision is “to be innovative, sustainable, motivating and the reference organization in emergency 

medical care”. The organization seeks to develop new processes, technologies and skills, while 

constantly monitoring its performance and continuously improving its operations to deliver better aid 

(Instituto Nacional de Emergência Médica, 2017a). 

3.1.2 ORGANIZATIONAL STRUCTURE  
INEM is organized around three decentralized Regional Delegations (North, Centre, South) which 

articulate with centralized Organic Units, as presented in Figure 4. Both centralized and decentralized 

units report to the Executive Board. Decentralized units are responsible for operations management and 

coordination within their geographical area. Centralized units provide services for the whole territory on 

three areas of activity: operational, logistics support and management support.  

Vehicle planning, which is the focus of this study, is under the supervision of the Planning and 

Management Control Office (Gabinete de Planeamento e Controlo de Gestão, GPCG). This office 

produces studies and recommendations regarding vehicle location and delivers them to the board. The 

final decision is always left to the board, which often needs to balance political goals as well as the 

recommendations produced by the GPCG. 
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3.1.3 MILESTONES OF PORTUGAL’S EMS SYSTEM 
Portugal’s EMS system dates back to 1965, when the first emergency number – 115 – was established 

in Lisbon. In this system, an ambulance, operated by two police officers, transported the victims of 

emergencies to the nearest hospital. In subsequent years, this service was extended to other regions 

of Portugal, such as Faro, Oporto and Coimbra (Instituto Nacional de Emergência Médica, 2013). 

Around 1980, Portugal started building its integrated EMS system, called SIEM. INEM was later 

established, in 1981, as the public body “responsible for coordinating the activities of Medical 

Emergency to be executed by the several entities” (Ministérios da Defesa Nacional, das Finanças e do 

Plano, dos Assuntos Sociais e da Reforma Administrativa, 1981). The existing National Ambulance 

System was integrated into INEM. In the following years, the SIEM expanded rapidly and deals were 

signed with public entities, including firefighters, police and the Red Cross (Gomes et al., 2004). The 

goal was to define responsibilities and promote coordination, thus achieving an integrated response. In 

1987, the first Dispatching Centre, Centro de Orientação de Doentes Urgentes (CODU), was created.  

From 1990 to 2006, four new CODUs were opened, becoming responsible for all medical calls from the 

European Emergency Number – 112. New types of vehicles were acquired: Helicopters, VIC (Viatura 

de Intervenção em Catástrofe) and VMER (Viatura Médica de Emergência e Reanimação). During this 

period, INEM started training emergency technicians required by the SIEM (Instituto Nacional de 

Emergência Médica, 2013). Between 2007 and 2017, Immediate Life Support (ILS) ambulances (SIV) 

were implemented and additional BLS vehicles were acquired. By 2017, INEM had accomplished its 

goal of locating an ambulance in every municipality of Portugal. Several training initiatives were carried 

out, and an effort was made to modernize INEM’s information systems. During this period, INEM’s 

processes and responsibilities (as well as its partners) have been progressively redefined (INEM, 2017). 

3.2 THE INTEGRATED EMERGENCY MEDICAL SYSTEM: SIEM 
The SIEM comprises several coordinated activities performed by different bodies within the scope of 

medical emergency. These activities include pre-hospital medical care, transportation, hospital 

reception, patient referral and treatment at receiving health unit. The main entities involved in delivering 

emergency medical care include INEM, firefighters, police officers, the Red Cross, doctors, nurses and 

hospitals. Consequently, coordination is crucial to ensure an effective and resource-efficient 

intervention, which is the main goal of the SIEM.  

Firstly, an overview of SIEM’s philosophy and stages is provided, before describing the most crucial 

stages, call reception and triage, emergency vehicles, dispatching rules and system coordination.  

Figure 4 - INEM's organisational structure. 
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3.2.1 OVERVIEW: SIEM’S PHILOSOPHY AND STAGES  
The SIEM follows the Franco-German model. It works as an extension of emergency departments of 

National Health Service (NHS) hospitals. The goal is to perform as many diagnostic and treatment 

procedures as possible in the shortest time. This enables the victim’s stabilization and early treatment. 

Pre-hospital diagnosis is important since it contributes to select the most appropriate health unit to 

receive the patient (Instituto Nacional de Emergência Médica, 2013, 2015).  

There are several stages of SIEM’s intervention, similar to the ones identified in the previous chapter. 

Firstly, the emergency situation is detected, usually by civilians, and reported by calling 112. After 

screening and evaluating the call’s priority, the appropriate vehicle is dispatched. While the emergency 

vehicle is travelling to the scene, basic first-aid care can be applied by the caller. Once the vehicle 

arrives, medical care is provided to stabilize the victim and start treatment. If necessary, the patient is 

transported to an appropriate health unit, while care continues in-transit. Finally, the patient is 

transferred to the receiving health unit so that treatment can be finalized. The vehicle and its crew are 

then released. These stages are represented by the INEM’s Star of Life symbol (Instituto Nacional de 

Emergência Médica, 2013). Alongside INEM, firefighters are major EMS providers, especially in rural 

areas. The Red Cross is also an important provider, complementing both INEM and the firefighters.  

Non-urgent patient transportation is not part of INEM’s responsibilities and, hence, is not addressed in 

this study. This service is provided by firefighters, the Red Cross, municipalities or private companies 

(IPSS), dully authorized by INEM (República Portuguesa, 2014; INEM, 2015). 

3.2.2 CALL RECEPTION AND TRIAGE 
112-calls are answered in two Operational Centres managed by Polícia de Segurança Pública (PSP). 

PSP operators evaluate the call and forward it to the competent authority. If they face a health-related 

emergency, the call is redirected to one of INEM’s CODU. INEM operates four CODUs – Porto (North), 

Coimbra (Centre), Lisbon (South) and Faro – but only the first three answer calls. They ensure 24/7 

coverage of emergency calls in Portugal. Their job is to establish a connection between the emergency 

and SIEM, deploying the necessary resources and entities to ensure an adequate response (Instituto 

Nacional de Emergência Médica, 2017b). Besides 112 calls, the CODUs also answer two other 

requests: calls transferred from Linha Saúde 24 (24 Health Line, which provides medical advice to the 

population through the telephone) and inter-hospital emergency transportation requests, both of which 

are treated as 112 calls. In 2017, the CODUs answered about 1 368 141 calls, around 3 748 per day. 

Emergency calls are answered by technicians trained by INEM, Técnicos de Emergência Pré-Hospitalar 

(TEPH), supported by a team of doctors and psychologists. A call is answered by the TEPH who has 

been idle for the longest, regardless of the caller’s location or the TEPH’s CODU. Although 

georeferencing information is already given by the 112 Operational Centers, the location of the 

emergency is always confirmed. The TEPH then proceeds to the triage stage, by asking questions to 

the caller, in order to assess the severity of the emergency and whether the victim’s life is at risk. Since 

2012, these questions are supported by a triage software developed by INEM, called TETRICOSY 

(Telephonic TRIage and COunseling SYstem) (Gerardo, 2017). As the TEPH records the caller’s 

answers in the software, the priority level changes, and new questions are suggested. TETRICOSY 

employs different triage algorithms, depending on the emergency type, to suggest new questions. This 
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procedure eases the TEPH’s job, ensuring a standardized triage procedure. Based on the caller’s 

responses, one of four priority levels can be assigned, as described in Figure 5. 
 

Figure 6 shows the evolution of monthly calls since 2013. It shows that SIEM’s activity is driven primarily 

by P3 occurrences. In fact, the majority of medical emergencies - around 70-75% - are classified as P3, 

while only 10-15% are P1, 7-12% are P5 and the remaining have other priorities. It also exposes a trend 

of increasing P3 calls throughout the years and demand peaks during the summer and new year.  

After triage, if the situation is non-urgent, the call is transferred to Linha Saúde 24. If immediate 

assistance is required, the information collected during triage is made available to another team of 

TEPHs responsible for dispatching the appropriate emergency vehicles, following INEM’s protocols. 

3.2.3 EMERGENCY VEHICLES 
The SIEM operates multiple types of emergency vehicles. Some are owned and operated by INEM, 

while others are financed by INEM but are the responsibility of a SIEM partner. Most vehicles work by 

shifts, since emergency calls are not evenly distributed through the day. All vehicles are described in 

Appendix A, including their name, description and number of vehicles from 2011 to 2018 (Instituto 

Nacional de Emergência Médica, 2017c). Since the location of emergency vehicles is the primary focus 

of this dissertation, this issue is discussed separately in section 3.3. 

The basis of the system is a network of BLS ambulances, staffed by specialized technicians and capable 

of providing basic care and defibrillation. There are four types of BLS ambulances - AEM, PEM, RES 

and NINEM - complemented by BLS motorcycles (MEM). PEM and RES are operated by 

firefighters/Red Cross crews but financed by INEM, while NINEMs are owned and operated by a partner 
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and AEMs are operated by INEM. BLS vehicles can respond to non-critical situations, but when the 

victim is emergent, differentiated care is required. For this purpose, two types of ALS vehicles exist: 

VMER and Helicopters. They have advanced equipment and are staffed by trained doctors and nurses. 

It is important to highlight that a VMER’s crew is always part of a hospital’s staff, which is responsible 

for crew scheduling and compensation. Another category of differentiated vehicle, the Immediate Life 

Support (SIV) ambulance, is staffed by a technician and a nurse, and can provide ILS. Additionally, 

there are other types of vehicles for special situations, such as psychological support (UMIPE) or 

situations involving children (TIP).  

Although the overall size of the fleet has remained constant (from 644 vehicles in 2011 to 657 in 2018), 

its composition has changed. The number of PEMs has increased, while the number of RES and NINEM 

has decreased. This is due to the on-going conversion of RES into PEM and the establishment of new 

PEMs (Instituto Nacional de Emergência Médica, 2016b). This trend reflects INEM’s effort to establish 

closer collaborations with its partners. INEM’s vehicles have remained constant during this period.  

It is also important to highlight the significative role played by vehicles owned and/or operated by 

firefighters and the Red Cross. In fact, PEM, RES and NINEM vehicles correspond to 75-77% of the 

emergency vehicle fleet, which is why coordinating with these stakeholders is fundamental for SIEM’s 

effectiveness. Finally, INEM is currently under the process of renewing and expanding its fleet to 

improve coverage (Instituto Nacional de Emergência Médica, 2017b). This may be achieved by 

increasing the vehicle’s availability but also through enhanced positioning. 

3.2.4 VEHICLE SELECTION AND DISPATCHING 
Depending on the priority, location and accessibility of the emergency, the TEPHs responsible for 

dispatching decide which vehicles are most appropriate. This decision is validated by a regulating 

doctor. Dispatching decisions can be made at any of the four CODUs. 

Critical situations always require both a BLS vehicle and a differentiated vehicle, namely ILS/ALS 

vehicles, while less urgent situations require only BLS vehicles. Some emergency situations require 

pediatric care or a psychologist, in which case a TIP or an UMIPE is dispatched, respectively. Table 1 

summarizes vehicle requirements for different priorities. 

Table 1 - Vehicle types dispatched based on call priority. 

Priority Level Vehicle Types Possible Combinations of Vehicles 

P1 – Emergent Situations BLS + ALS/ILS 

AEM/PEM/RES/NINEM + VMER/SIV 

VMER + SIV 

SHEM* 

P3 – Urgent Situations BLS 
AEM or PEM or RES or NINEM or SIV** 

MEM*** 

P5 – Non-urgent Situations No vehicle 

Other Priorities (CIAV, P4 

autoridade, P4 CDOS …) 
UMIPE or other Variable 

*Only in exceptional situations. 
**Although SIVs can be dispatched to P3 emergencies, this corresponds to only 4-6% of the total number of dispatches of SIVs 
(Instituto Nacional de Emergência Médica, 2018).  

***MEMs are dispatched to P3 occurrences to quickly reach the occurrence and rule out false alarms. If the MEM determines that 
the call is valid, and transportation is required, another vehicle must be dispatched.  
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Figure 7 shows the number of dispatches for each vehicle type, per unit per year. It becomes clear that 

an AEM ambulance is dispatched more often than any other BLS ambulance (6-8 times per ambulance 

per day), followed by PEM, RES and NINEM ambulances, in line with the dispatching rule described 

previously. It is also clear that VMERs are more often dispatched than SIVs. UMIPEs, TIPs and SHEMs 

are seldom used. 

However, by considering Figure 8, which displays total number of dispatches per day (PEMs are plotted 

on the right axis), it is concluded that PEMs are the most requested vehicle, followed by RES and AEM, 

which are identical. This result could be expected given that, as mentioned, 75% of the fleet is PEMs.  

After selecting the required vehicle type(s), the TEPH must dispatch actual vehicles on the field. For this 

purpose, a software displaying the locations of the emergency and nearby vehicles (whether stationed 

or in-transit, made available by a system called SIADEM) is used. The software presents a list of vehicles 

according to their proximity to the scene and a priority rule defined by INEM. Whenever possible, the 

TEPH dispatches INEM’s vehicles first. If no INEM vehicle is available, a partner’s vehicle is selected 

(i.e. a PEM or RES). Non-INEM vehicles (NINEM) are usually dispatched only when other ambulances 

(AEMs, PEMs or RESs) are unavailable/inexistent. Since there is no formal protocol establishing 

cooperation between INEM and the owner/operator of a NINEM, INEM pays a higher price when these 

vehicles are dispatched. Therefore, the software first presents AEM ambulances ordered by proximity, 

Figure 7 - Vehicle dispatches per day per vehicle. Source: Ministério da Saúde, 2018. 

 

Figure 8 - Vehicle dispatches per day. Source: Ministério da Saúde, 2018. 
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then PEM, RES and finally NINEM. A 15-kilometer isochrone around the emergency location is also 

presented. The TEPH dispatches the closest available vehicle – thus following the closest-available 

vehicle policy common in many EMS systems (Reuter-Oppermann, Van Den Berg and Vile, 2017; 

Bélanger, Ruiz and Soriano, 2018) – while also taking into account the priority order of vehicles. A 

vehicle is said to be idle if it is stationed at or traveling to a base or leaving a hospital after transferring 

a patient. In severe cases, a vehicle may be diverted from another less-urgent call. 

Vehicles are typically dispatched to occurrences within their usual area of activity, which may be a 

municipality or a parish. This is especially true for PEM and RES ambulances, which are operated by 

local firefighters that are better acquainted with the territory. In exceptional situations, they may be 

dispatched to other zones if the severity of the emergency and the location of other vehicles justify it. 

RES ambulances provide a second level of resources, and they are intended to complement AEM and 

PEM ambulances (Instituto Nacional de Emergência Médica, 2017c).  

The communication channel used for dispatching depends on the vehicle itself. For vehicles owned and 

operated by INEM, an integrated software called iCARE is used, conveying information about the call 

automatically to the crew. Nevertheless, telephonic confirmation is always required to ensure proper 

understanding of the occurrence. For other vehicles, the telephone or radio (including SIRESP, the 

national emergency communication network) are used. Having numerous communication channels 

introduces redundancy, allowing communication even when some of these systems are down. 

3.2.5 ARTICULATION AND COORDINATION 
A separate team of TEHPs at the CODU is responsible for coordinating all entities which respond to an 

emergency and for counselling emergency teams. They provide information about the victim’s condition, 

ensure that adequate decision algorithms are followed and articulate the patient’s arrival to the hospital. 

This team of TEHPs performs a major role at the CODU (Gomes et al., 2004). Additionally, a team of 

regulating doctors is essential to provide fully integrated care (Instituto Nacional de Emergência Médica, 

2015). Figure 9 summarizes the preceding sections about the SIEM.  

 

3.3 VEHICLE LOCATION PLANNING AT INEM 
Response times are a critical factor in any EMS system. As such, selecting the location of emergency 

vehicles is an important decision. Although these decisions are taken in a dynamic environment, 

effective a priori planning can be beneficial (Goldberg, 2004).  

Figure 9 - SIEM's process 
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Vehicle location planning is under the supervision of the GPCG and is the focus of this study. In this 

section, suitable vehicle bases, according to Portuguese Legislation and INEM’s criteria, are introduced. 

Subsequently, the current short and long-term vehicle planning processes are detailed. Finally, the 

performance indicators used by INEM to evaluate vehicle positions are presented. 

The GPCG is responsible for supporting several other planning decisions at INEM. For instance, it is 

responsible for scheduling TEPHs working at the CODU and operating INEM’s vehicles. This task 

involves a time-consuming process, partially supported by a software called “Gestão de Horários”, which 

fails to meet several requirements, such as legal constraints, TEPHs preferences and demand 

constraints (Rosa, 2017). It is also responsible for sizing the workforce of TEPHs, at the CODUs. 

Currently, this planning process is based on experience. The GPCG empirically forecasts demand 

based on past values and, subsequently, the historical ratio of calls answered by each TEPH at the 

CODU is used to estimate the necessary TEPHs. In locating emergency vehicles, the GPCP also follows 

an empirical procedure, described in the following sections. 

3.3.1 VEHICLE STATION  
A vehicle station is an infrastructure where an emergency vehicle begins and ends service and, in the 

case of INEM, is stationed while waiting calls. Although an ambulance is usually assigned to a single 

base, it is possible to reposition ambulances throughout the day in order to improve coverage, a practice 

called ambulance relocation. Therefore, although the position of an ambulance base is fixed, 

ambulances themselves are not. In the case of INEM, however, ambulance relocation is not performed. 

Whenever a vehicle finishes responding to an emergency, it returns to its original base station, where it 

replenishes its stock of medical supplies. 

For most vehicles, the Portuguese legislation establishes rules for potential base locations, with the 

main goal of articulating the system with the network of emergency departments of NHS hospitals:  

• VMERs and SIVs require differentiated staff and equipment, so they have to be located at 

emergency departments of NHS hospitals. These vehicles’ crews are required, by law, to be 

integrated in the emergency teams of these hospitals. In Portugal, there are three types of 

emergency departments: Multipurpose Urgency Services (SUP, which handle basic 

emergencies), Medical-Surgical Urgency Services (SUMC, which attend emergencies requiring 

medical treatment or surgery) and Basic Urgency Services (SUB, which handle emergencies 

requiring differentiated treatment). All SUP and SUMC hospitals should theoretically be 

assigned a VMER, while SUB hospitals should have a SIV (Despacho 5561/2014); 

• TIP ambulances must be located in all hospitals operating pediatric or neonatal intensive care 

units (Despacho 1393/2013); 

• AEMs and MEMs must be located in regions where SUP or SUMCS hospitals exist (Despacho 

10109/2014). Potential bases for these vehicles include hospitals, health centres, firefighters or 

police stations as long as they fulfil certain conditions. For this reason, the location of these 

vehicles is more flexible. Nevertheless, INEM must establish collaboration protocols to use 

these facilities as stations, since it is necessary to pay overhead costs. Additionally, since there 

are few MEMs, their location usually remains unchanged; 
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• PEMs are located, by definition, in firefighters or Red Cross facilities. The Ministry of Health has 

established that there should be at least one PEM in each municipality of the country (Despacho 

10109/2014), in an attempt to promote equity and ensure territorial coverage;  

• UMIPEs are located at the headquarters of INEM’s Regional Delegations.   

Therefore, INEM does not build dedicated ambulance stations. Instead, it uses existing facilities as 

bases, provided that they have enough space and conditions to be used.   

3.3.2 VEHICLE LOCATION PLANNING PROCESS 
Vehicle location planning at INEM comprises two processes: long-term and short-term planning. Long-

term planning concerns choosing stations and assigning vehicles to those stations for everyday 

operation. This is an incremental process: whenever a new vehicle is to be added to the fleet, the GPCG 

helps the board decide where it should be positioned. Sometimes, CODU supervisors identify critical 

regions, where TEPHs consistently face difficulties in finding an appropriate vehicle. In that case, they 

suggest that region as a good candidate for a new vehicle, which is further analysed by the GPCG. 

Therefore, location planning is not approached holistically, as INEM does not change the location of 

already positioned vehicles in the long run. For example, although it would be legally possible to reassign 

a PEM ambulance to a different firefighter base, this option is not well-viewed by the GPCG. 

In urban areas, INEM divides the territory into parishes, while municipalities are used in rural areas. In 

order to choose the area for a new vehicle, the GPCG evaluates demographics (population density) and 

emergency history. It also considers the region’s existing vehicles. After empirically gauging this 

demand/supply balance, the GPCG uses experience to choose where the vehicle is more beneficial.  

Subsequently, a station within that area must be selected. Obviously, the constraints mentioned above 

should be respected. In practice, this is not an easy task, as the unavailability of suitable locations 

(according to the Portuguese legislation) may require a certain area to be less covered than desirable. 

For example, as of 2016, 8 out of 39 SIV ambulances were not integrated in the SUB emergency 

departments of hospitals because it was impossible to find a suitable location that covered the territory 

appropriately. VMERs, however, were fully integrated (Instituto Nacional de Emergência Médica, 2018). 

Figure 10 shows the location of existing vehicles. AEM ambulances and MEMs are located mainly on 

the coast, near urban areas, whereas PEM ambulances cover the rest of the territory, but also tend to 

be more concentrated on urban areas. 

Figure 10 - Locations of AEM (left), PEM (middle) and MEM (right) vehicles 
in Portugal. Source: Instituto Nacional de Emergência Médica, 2017c 
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Short-term planning concerns temporarily repositioning vehicles in face of disruptive events. In this 

situation, INEM looks at existing vehicles and decides which adjustments are required to increase the 

number of vehicles in the target area while ensuring that the remaining territory is not uncovered. The 

disruptive event can be expected or unexpected. If it is expected, vehicles must be positioned in stand-

by locations closer to critical areas. Here, forecasting based on experience is used to determine where 

the likelihood of an emergency is higher. INEM can use back-up vehicles or reposition active ones. For 

instance, in Lisbon, back-up vehicles are kept in Lumiar. In practice, activating back-up vehicles is rare 

due to crew unavailability, high activation costs and bureaucratic approvals. Hence, it is common to 

relocate active vehicles, specifically AEMs, since PEMs require special authorizations. For example, 

during the 2014 Champions League Final in Lisbon, an AEM from Sacavém was repositioned closer to 

the stadium. If there is an unexpected event, the GPCG relocates nearby vehicles to the area first and 

then decides on how to reposition the remaining vehicles to cover areas exposed by the first relocation.  

3.3.3 PERFORMANCE MEASURES FOR VEHICLE LOCATION PLANNING 
To evaluate the system’s performance regarding vehicle location, identify improvement opportunities 

and support location decisions, the GPCG uses three main performance indicators: 

• Rescue Time: time between vehicle dispatch and arrival, measures the proximity of vehicles to 

the emergency. This is different from Response Time, which is the time between the call being 

received and arrival on scene. INEM targets rescue times of less than 15 minutes in urban areas 

and 30 minutes in rural areas. Rescue time data are available for AEM and SIV ambulances 

(Figure 11), showing that these targets are not always met. For the remaining INEM vehicles, 

this data is can be retrieved from emergency logs. For RES and NINEMs, there are no data; 

• External Dependency: fraction of emergency calls which are answered by vehicles from 

neighbouring regions. If this proportion is significative, the region is not self-sufficient, meaning 

that additional vehicles are required, or existing ones must be repositioned; 

• Dispatch Time: time between defining the priority of an emergency and the TEPH dispatching 

the appropriate vehicle. This is an indicator of the closeness of vehicles to the emergency. If a 

vehicle is nearby, the TEPH automatically dispatches it. Otherwise, the TEPH needs to search 

further away, taking more time. The main advantage of this indicator is that it is easily 

measurable, but it is only a proxy for the proximity of available vehicles to the emergency scene. 
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Figure 11 - Rescue times of AEM and SIV ambulances since 2016. Source: Instituto Nacional de 
Emergência Médica, 2018a. 
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As stated, the Response Time is the most common performance measure of EMS systems, and some 

countries’ legislation establishes specific targets (Reuter-Oppermann, Van Den Berg and Vile, 2017). 

For instance, UK’s EMS must reach 90% of Category 1 (similar to P1) calls in under 8 minutes. 

Portuguese legislation, however, does not set any target regarding response time nor rescue time. 

3.4 PROBLEM DEFINITION 
The aim of this dissertation is to develop and apply a mathematical model to support vehicle location 

planning at INEM. The model should aid INEM in positioning the emergency fleet, identify weak spots 

in the territory, test the impact of different legal and self-imposed constraints and set goals on the 

performance of the existing system. The model must take into account some restrictions, such as limited 

resources, multiple types of vehicles, legal restrictions on suitable bases and multiple care providers 

with different levels of expertise. The model will be applied to the cities of Lisbon and Setúbal, focusing 

on P1 and P3 calls, which account for the majority of emergencies, and corresponding response 

vehicles: SIV, VMER, AEM, PEM, RES and NINEM. 

Lisbon and Setúbal are two different, yet some of the most challenging, urban areas in what concerns 

emergency vehicle location planning. For this reason, they have been selected, in articulation with the 

GPCG, as case-study areas for this dissertation.  

Lisbon is the capital and the mostly populated municipality in the country. Emergency care is provided 

mainly through AEM vehicles, complemented by few PEM and RES ambulances, three VMERs and one 

SIV. Therefore, it is a region where vehicle location planning is more flexible and, simultaneously, more 

pressured. Setúbal, on the other hand, relies more on PEM ambulances to cover the territory. 

Furthermore, it is frequently necessary to dispatch vehicles from neighbouring regions due to the 

unavailability of its own vehicles. Since its External Dependency is high, the GPCG believes that there 

are not enough vehicles in the region or, alternatively, that their positioning could be improved. Besides, 

this region has never been explored in previous studies of the same nature.  

3.5 CHAPTER CONCLUSIONS 
INEM plays a fundamental role in delivering emergency care in Portugal. It coordinates and operates a 

complex EMS system comprising multiple stages, entities, types of emergencies and vehicles. Naturally, 

planning such a system becomes challenging and although it is recognized that proper vehicle planning 

is paramount for EMS effectiveness (Goldberg, 2004), INEM relies mostly on experience and intuition 

to make key decisions, including the location of emergency vehicles. 

The goal of dissertation is to create a mathematical model to assist INEM and, specifically, the GPCG, 

in locating emergency vehicles and, subsequently, achieving a better service level with the available 

resources. This model should give solid insight into the impact of different vehicle configurations and 

contribute to the development of vehicle location plans. At this stage, it is important to review the existing 

literature on EMS vehicle location planning, in order to understand what approaches can be used to 

address this problem. This information is useful to support the development of a methodology to tackle 

the problem and is the focus of Chapter 4.   
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4. LITERATURE REVIEW 
This chapter reviews existing literature concerning the EMS vehicle location problem. After a general 

overview of the facility location problem and the EMS location literature, selected models are reviewed. 

Solution techniques are presented alongside each model. Sections 4.1 and 4.2 introduce the facility 

location problem and present an overview of EMS location models. Sections 4.3 to 4.9 present selected 

optimization models. Section 4.10 addresses other issues, including the role of Simulation. Finally, 

section 4.11 presents the chapter’s conclusions. A summary table is provided in Appendix B. 

4.1 THE FACILITY LOCATION PROBLEM 
Location decisions arise in public and private sectors and are usually long-term investment decisions 

(Daskin, 1995; Owen and Daskin, 1998). Therefore, building location models has been a topic of OR 

research for many years, under the field of Location Science (ReVelle, Eiselt and Daskin, 2008).  

A facility can be a warehouse, a school, a factory or an ambulance station. It is built to meet demand, 

which for EMS is emergency requests (ReVelle et al., 1977; ReVelle, Eiselt and Daskin, 2008). Location 

models seek to answer questions as how many facilities to operate, where to locate them and how to 

use them to meet demand (Daskin, 1995). As any Mathematical Programming model, they include 

decision variables, input parameters, objective function(s) and constraints.  

ReVelle et al. (2005) highlight four key components of all location models: 

• Customers generating demand, whose locations are known. These locations are often 

aggregated in discrete points, for computational simplicity (Li, et al., 2011); 

• Facilities to be located, usually consisting of a set of existing facilities and potential new facility 

sites (Melo, Nickel and Saldanha-da-Gama, 2009); 

• A space where facilities and customers are located. Most models consider a discrete space but 

continuous models also exist (Farahani et al., 2012). This review concerns discrete models; 

• A metric measuring time, distance or cost between facilities and clients. 

Solving these models yields an optimal location plan, which maximizes (or minimizes) an objective 

function. Naturally, the location plan proposed by the model is only “optimal” as long as its assumptions 

are valid (Goldberg, 2004). Additionally, if there are multiple conflicting objectives, no optimal location 

plan may exist.  

Location models therefore require a quantifiable description of the decision-maker’s objectives (Daskin, 

1995). It is generally recognized that private-sector objectives are easier to state than public-sector 

ones. In particular, the goal of EMS is usually expressed as the maximization of public benefits or, 

conversely, the minimization of losses (Indriasari et al., 2010).  

Naturally, there are many different types of location models. Nevertheless, these can be classified into 

5 basic categories, according to the problem they address and their objective (Laporte and Nickel, 2015):  

• P-median models: locating p facilities to minimize the weighted distance between customers 

and the nearest facility;  

• P-centre models: locating p facilities to minimize the maximum distance between any customer 

and its closest facility; 
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• Covering models: locating facilities to maximize covered customers, i.e. those within a certain 

distance/time standard of the closest facility; 

• Anti-covering models: locating repulsive facilities, seeking to minimize population coverage; 

• Fixed-charge models: locating facilities and allocating them to demand to minimize fixed-

charged opening costs and assignment costs while respecting capacity constraints. 

4.2 THE EMS LOCATION LITERATURE 
EMS facility location is one of the most exciting areas within facility location since the 1960s (Goldberg, 

2004). In fact, many models were developed to address EMS location problems and only latter used in 

different settings, perhaps due to the high social impact of these systems (Aringhieri et al., 2017).  

Consequently, the EMS location literature is rich, and many types of location models have been 

proposed to address this issue (Başar, Çatay and Ünlüyurt, 2012). Nevertheless, covering models are 

prevalent because EMS are usually evaluated on coverage metrics (Reuter-Oppermann, Van Den Berg 

and Vile, 2017).  

Location models are usually Integer (IP), Binary Integer (BIP), Mixed Integer (MIP) or even Non-Linear 

(NLP) Programming models. Since solving real-sized instances can be challenging, different solution 

approaches have been proposed, including heuristics, metaheuristics and exact techniques, and this is 

a topic drawing substantial research (Owen, et al., 1998). These heuristics seek to find good solutions 

in short computational times by exploring the underlying formulations (Daskin, 1995).  

This chapter focuses on discrete location models for strategic and tactical planning. Much recent 

research has focused on operational decisions of relocation and dispatching (Bélanger, Ruiz and 

Soriano, 2018). Since operational issues are not the focus of this study, these models are excluded.  

Besides optimization models, two other classes of OR models are popular in the EMS literature: 

Simulation and Queueing Theory. This review focuses only on analytical optimization models, because 

their prescriptive nature allows us to produce recommendations regarding the location of emergency 

vehicles. Therefore, the use of Queueing Theory and Simulation with optimization models is mentioned, 

but not reviewed in detail herein. 

A particularly important queueing model is the Hypercube Queueing Model (Larson, 1975), which 

models a spatially-distributed system in which the state of each vehicle is tracked. This model is suited 

for server-to-customer queueing systems and it allows many important performance metrics to be 

derived from the state probabilities (that is, the probability that different combinations of vehicles are 

busy) including average response times, fractions of dispatches and server workload. 

The following sections proceed as follows. After presenting two seminal covering models, key aspects 

of EMS operation which have been added to the original formulations, including vehicle unavailability, 

demand and travel time uncertainty, multiple vehicle types and call priorities, decision-making 

objectives, time-dependency and integrating multiple decision levels are introduced. A brief review of 

simulation-optimization and other issues, such as forecasting, demand aggregation and model 

validation, is also presented. 
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4.3 EARLY WORKS: STATIC DETERMINISTIC COVERING MODELS 
Covering models explore the notion of demand coverage: a demand node is covered if it can be reached 

by at least one facility within a certain distance/time limit, called coverage radius (Toregas et al., 1971).  

The first covering model was the Location Set Covering Problem (LSCP), introduced by Toregas et al. 

(1971). The LSCP determines the minimum number and location of facilities that guarantee coverage 

of all demand nodes. The authors propose solving the Linear Relaxation (LR) and employing a single 

cut to remove fractional results as solution techniques. Branch-and-Bound (BB) and Reduction 

Techniques were also proposed (Church and Meadows, 1979).  

The LSCP is attractive due to its simplicity and accuracy in capturing real EMS needs (ReVelle et al., 

1977). Unfortunately, a major drawback is that covering all demand nodes may require a number of 

facilities that are not available. In reality, decision-makers may be more interested in knowing what can 

be achieved with the available limited resources (Bélanger, Ruiz and Soriano, 2018).  

Therefore, Church and ReVelle (1974) introduced the Maximum Covering Location Problem (MCLP), 

which maximizes demand coverage by locating a limited number of facilities. The MCLP can be used to 

select among optimal solutions of the LSCP and to derive cost-effectiveness curves by varying the 

number of available vehicles. To solve real-sized instances, two greedy heuristic procedures, solving 

the LR with inspection and BB are proposed. This model was used by Eaton et al. (1985) in a study in 

Austin, Texas, demonstrating how the MCLP can be used to study multiple objectives, stakeholder 

opinions and vehicles only by changing input parameters. 

Both these models were very influential and have inspired most recent approaches (Farahani et al., 

2012). However, they relied on strong assumptions, such as unlimited vehicle availability, a single 

vehicle type, deterministic demand, travel time and service time (Goldberg, 2004). They also employed 

a simple coverage definition – a demand node is either fully covered or not – although, in reality, service 

quality degrades as distance increases (Murray, 2016). Since incorporating uncertainty provides more 

realistic solutions (Erkut et al., 2009), researchers have been extending the original formulations to get 

accurate representations of EMS systems. In the sections bellow, approaches to add key EMS 

components to the original works, starting with vehicle unavailability, are presented. 

4.4 DEALING WITH VEHICLE UNAVAILABILITY 
Initially, researchers focused on the assumption of unlimited vehicle availability. Obviously, when a 

vehicle is dispatched, its designated regions are no longer covered. Thus, the solutions proposed by 

the LSCP and MCLP may not perform well enough for real-world applications (Bélanger, Ruiz and 

Soriano, 2018). To deal with this issue, three alternatives have been explored: multiple coverage 

models, probabilistic models and capacitated models (Li et al., 2011).  

4.4.1 MULTIPLE COVERAGE MODELS 
Multiple coverage models cope with the unavailability of vehicles by ensuring that more than one vehicle 

is capable of covering a demand node. Daskin and Stern (1981) were the first using this approach, 

extending the LSCP by adding the secondary objective of maximizing nodes with back-up coverage. 

Later, Hogan and ReVelle (1986) proposed two Backup Coverage Models (BACOP 1 and 2), 

maximizing the population covered twice while ensuring basic coverage and studying the trade-off 



 22 

between these two goals, respectively. The same trade-off was also studied by Storbeck (1982) using 

Goal Programming.  

Recognizing that double coverage may not be appropriate for all nodes, Batta and Mannur (1990), 

Church and Gerrard (2003) and Degel et al. (2015) provided different coverage levels to each node. 

These can be set by analysing the probability distribution of concurrent demands (Degel et al., 2015) 

Yet, the most influential multiple coverage model was the Double Standard Model (DSM). The DSM 

maximizes back-up coverage, while ensuring basic coverage of a fraction of demand and full coverage 

within a larger coverage radius (Gendreau, Laporte and Semet, 1997).  

The DSM has been frequently applied to real problems (Laporte et al., 2010): in Vienna, Austria, 

(Doerner et al., 2005); in Shanghai, China (Su, Luo and Huang, 2015) and in Chicago, USA (Liu et al., 

2016). Solution techniques for the DSM include Tabu Search (Gendreau, Laporte and Semet, 1997), 

Ant Colony (Doerner et al., 2005) and Genetic Algorithm (GA) (Liu et al., 2016). 

Multiple coverage models have the advantage of being easy to understand, but do not explicitly ensure 

that a vehicle is available. Besides, double coverage may not actually be required for all nodes. 

4.4.2 PROBABILISTIC MODELS 
A different approach is to consider explicitly the unavailability of emergency vehicles through a 

probabilistic parameter called busy fraction. A vehicle’s busy fraction is the probability or fraction of time 

that it is unavailable to serve demand (Bélanger, Ruiz and Soriano, 2018). By using this parameter, it is 

possible to account only for the real availability of a vehicle. These models differ on three main areas: 

the scope of the busy fraction, the approach used to calculate it and how it is used in the model. 

Regarding the busy fraction’s scope, an alternative is to use a system-wide busy fraction (i.e. equal for 

all vehicles), independent of their locations (Daskin, 1983). By dividing the region in independent 

demand subareas, area-specific busy fractions can be calculated, being equal for all vehicles in that 

subarea (ReVelle and Hogan, 1988). Closer to reality, server-specific busy fractions require treating this 

parameter as endogenous, leading to computationally difficult formulations (Goldberg and Paz, 1991). 

To calculate the busy fraction, the initial approach was to use historical data to calculate a system-wide 

busy fraction by dividing total time spent serving calls and total vehicle availability time. To obtain more 

accurate estimates, Simulation (e.g. (Davis, 1981)) and the Hypercube Queueing Model (HQM) 

proposed by Larson (1974) have been frequently used within optimization models. The advantage of 

HQM-based models is that they are analytical and, hence, usually quicker to solve (Ingolfsson, 2013). 

Finally, models differ on the way they explore the busy fraction. Three approaches can be identified: 

reliability models, expected coverage models and hybrid models. Reliability models establish that a node 

is covered if the probability that one vehicle is available within the coverage radius is greater than a pre-

specified level (ReVelle and Hogan, 1988). Expected coverage models maximize the expected 

population receiving appropriate service by emergency vehicles, given by the probability that each 

vehicle is available times the demand it covers (Daskin, 1983). Hybrid models mix both approaches. 

Selected probabilistic models are presented next, starting with reliability and expected coverage models. 

Subsequently, hybrid approaches are discussed. Queuing-based versions of both classes of models 

are considered next, followed by models with server-specific busy fractions. 
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Reliability Models 

Chapman and White (1974) were among the first to formulate a reliability model with their Probabilistic 

LSCP (PLSCP). The PLSCP assumes a known uniform busy fraction, although Simulation is proposed 

to obtain better estimates. Later, ReVelle and Hogan (1988) extended this model to include area-specific 

busy fractions and reformulated the reliability constraint to derive the minimum number of vehicles 

required to cover each area with the desired reliability. In subsequent papers, the authors introduce 

variations: the -Reliable p-Center Problem, the Maximum Reliability Location Problem and, more 

important, the Maximum Availability Location Problem (MALP). The MALP locates facilities to maximize 

covered population with -reliability, using either system-wide (MALP1) or area-specific (MALP2) busy 

fractions (ReVelle and Hogan, 1989b, 1989a). Application of MALP models shows that using area-

specific instead of system-wide busy fractions leads to more distributed solutions. It is recognized, 

however, that server-specific busy fractions would be more desirable. 

The REL-P model, formulated by Ball and Lin (1993), finds the minimum cost vehicle configuration that 

ensures coverage of all nodes with a given reliability, using area-specific busy fractions and dependent 

servers. ReVelle and Marianov (1991) also applied chance-constraints to create the probabilistic FLEET 

(PROFLEET), maximizing the population covered by two vehicle types with the same reliability level.  

Most of these models, however, assume server independence – i.e. the probability of one vehicle being 

busy does not affect the probability of other vehicles being busy (Marianov and ReVelle, 1996). 

Additionally, Erkut (2008) argued that the objective function of reliability models does not reflect the 

performance measures used by EMS practitioners. Reliability models can have unintended 

consequences, because a node that is covered with a given reliability contributes fully to the objective 

function, while a node covered with a slightly lower reliability does not (Sorensen and Church, 2010). In 

this sense, expected coverage models may be more appropriate (Erkut, 2008). 

Expected Coverage Models 

The first expected coverage model was the Maximum Expected Coverage Location Model (MEXCLP), 

introduced by Daskin (1983). The model assumed a known system-wide busy fraction. Each additional 

ambulance within the coverage radius marginally increases the expected coverage of a node, as it is 

useful when others are busy. Thus, locating more than one ambulance at the same base can be 

beneficial. To obtain the increment in expected coverage provided by an ambulance, one must multiply 

demand by the probabilities that the remaining vehicles are busy, and that particular vehicle is not. Since 

the MEXCL is a large IP model, a single-node substitution heuristic was originally proposed.  

Several variations of the MEXCLP have been subsequently proposed: combinations with the DSM 

(Chuang and Lin, 2007); multiple facilities and equipment with different busy fractions (Bianchi and 

Church, 1988; Jayaraman and Srivastava, 1995); time-dependent versions (Repede and Bernardo, 

1994) and a multi-vehicle version - the MOFLEET model (Bianchi and Church, 1988).  

The MEXCLP and its variants provide a suited objective for EMS location. However, they mostly rely on 

the unrealistic assumption that vehicles operate independently, with the same known busy fraction 

regardless of their locations (Batta, June M Dolan and Krishnamurthy, 1989). This assumption does not 

necessarily hold in practice, as vehicles in different regions may have significantly different workloads. 
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Hybrid Approaches 

Some authors have successively combined reliability with expected coverage. Alsalloum and Rand 

(2006) proposed a Goal Programming model: the first goal was to locate stations to maximize coverage 

probability, while the second is to allocate ambulances to each station to minimize spare workload while 

ensuring a busy fraction bellow 5% (in essence, a reliability constraint). An analysis to each demand 

area is conducted using Erlang’s Loss Formula to ensure that the adequate number of ambulances are 

located. By disaggregating the model into two stages (one for each goal), optimal solutions are efficiently 

obtained. Sorensen and Church (2010) combined the local reliability and area-specific busy fractions of 

the MALP with the MEXCLP’s objective. Optimal solutions based on data from Washington, D.C., are 

obtained using CPLEX. Simulation shows that the original reliability models have unsuited objectives 

but confirm that local busy fractions provide more accurate descriptions of the system. 

Queueing-based Models 

To overcome the assumptions of previous models in calculating busy fractions, queueing models have 

been embedded in optimization models. Here, the HQM (Larson, 1974, 1975) and the Approximate 

Hypercube Queueing Model (AHQM) (Jarvis, 1985) are typical choices.  

Marianov and ReVelle (1994, 1996) proposed the Queueing PLSCP (Q-PLSCP) and Queuing MALP. 

Both models conceptualize each subarea as an isolated 𝑀/𝐺/𝑠 − 𝑙𝑜𝑠𝑠 queuing system. Consequently, 

they calculate area-specific busy fractions and arrive at the number of vehicles required to cover each 

area. In turn, Marianov and Serra (1998) and Amiri (1998, 2001) conceptualized each facility as a 

queueing system and developed models including limits or penalties on customer waiting time.  

Batta, Dolan and Krishnamurthy (1989) formulated the Adjusted MEXCLP (AMEXCLP) and a 

Hypercube Optimization Procedure. The AMEXCLP introduced corrective factors coming from the HQM 

in the MEXCLP’s objective function which relax the server independence assumption. Correction factors 

have since been extensively used (e.g. (Ingolfsson, Budge and Erkut, 2008; Rajagopalan, Saydam and 

Xiao, 2008; McLay, 2009)). The Hypercube Optimization Procedure used expected coverage calculated 

from the AHQM to guide a single-node substitution heuristic. An analogous approach was proposed by 

Saydam and Aytuǧ (2003), who embed an AHQM into a GA, and Galvão, Chiyoshi and Morabito (2005), 

who use correction factors from the AHQM to calculate busy fractions and apply a Simulated Annealing 

(SA) algorithm, based on a single node substitution heuristic.  

Site-Specific Busy Fractions 

Most models so far treat the busy fraction as an exogenous parameter, although, in reality, it is 

consequence of the chosen location pattern (Aringhieri et al., 2017). This simplification is mainly due to 

the size and nonlinearity of models using endogenous busy fractions, resulting from their multiplication 

in the objective function or in chance-constraints (Cho et al., 2014).  

One approach to calculate site-specific busy fractions is to use iterative procedures that calculate the 

busy-fraction for each potential solution. Knight, Harper and Smith (2012) and ReVelle and Hogan 

(1988) both tested this approach, but failed to reach a stable solution. Inversely, Ingolfsson, Budge and 

Erkut (2008) successfully iterated between the optimization model and the HQM. 
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Other authors calculate site-specific busy fractions directly inside the optimization model. To do so, 

standard Queueing Theory or the HQM can be used. For instance, Borras and Pastor (2002) adjusted 

the REL-P and PLSCP to include server-specific busy fractions using the queueing system of Marianov 

and ReVelle (1994, 1996). Toro-Díaz et al. (2013) included the balance equations of the HQM directly 

into the constraints of their model. However, this formulation is too challenging to be solved exactly. 

Alternatively, the busy fraction can be estimated by dividing the expected worktime for each vehicle by 

its availability time, according to the chosen location. Goldberg and Paz (1991) calculated server-

specific busy fractions by establishing ordered rankings of dispatching preference and formulating non-

linear equations. The resulting model is a NLP model, leading to a single and double-node interchange 

heuristics to generate solutions in reasonable time. Cho et al. (2014) explicitly assigned patients to 

rescue helicopters to derive the busy fraction, while Shariat-Mohaymany et al. (2012) developed a linear 

model which calculated ambulance workload by assuming that emergency requests are distributed 

evenly among ambulances within the coverage radius. 

Finally, Leknes et al. (2017) implicitly determined busy fractions by allocating demand to primary and 

secondary stations and calculating the resulting arrival and service rates. Queuing Theory results are 

used and linearized using Special Ordered Sets. The model was applied using commercial solvers.  

4.4.3 CAPACITATED MODELS 
Another approach to deal with vehicle unavailability consists in limiting the demand that each vehicle 

can cover, i.e. establishing capacity constraints. These models are called Capacitated Models.  

Initially, Current and Storbeck (1988) formulated a capacitated MCLP considering only demand within 

the coverage radius for capacity constraints. This model was expanded by Pirkul and Schilling (1991) 

to include demand inside and outside the coverage radius, resulting in a challenging formulation and 

subsequent development of an heuristic. Capacity constraints are also used by Shiah and Chen (2007) 

and Schmid and Doerner (2010). All these models use a uniform capacity limit on all facilities. To 

overcome this limitation, Yin and Mu (2012) formulated a model with varying capacity levels for each 

base according to its number of vehicles.  

Capacitated models are simpler to understand than probabilistic versions and may be suited for high-

level planning (strategic). Nevertheless, determining the appropriate capacity limits may be difficult and 

the congestion effects on the system may be overlooked. 

4.5 MODELLING STOCHASTIC DEMAND AND TRAVEL TIME 
Demand and travel time are important sources of uncertainty in EMS systems and have naturally gained 

the attention of many researches. Demand is uncertain since it can arise at any time and at any location. 

Travel time depends on the caller’s location and on traffic conditions (Bélanger, Ruiz and Soriano, 2018). 

In this section, approaches to model these factors are covered, starting with demand followed by travel 

time, while Fuzzy Programming, which can be used to model both, is discussed at the end. 

4.5.1 DEMAND  
There are several methods for modelling uncertain EMS demand. Models using Queueing Theory 

usually assume that demand follows a Poisson process so that standard Queueing Theory results can 

be used (Batta, June M. Dolan and Krishnamurthy, 1989; Marianov and ReVelle, 1994, 1996; Marianov 



 26 

and Serra, 1998; Borras and Pastor, 2002; Saydam and Aytuǧ, 2003; Galvão, Chiyoshi and Morabito, 

2005; Cho et al., 2014; Leknes et al., 2017). Similarly, the REL-P models demand as a Poisson process.  

Demand can also be treated as a random variable with general probability distributions, which can be 

used to write chance-constraints. For instance, Beraldi, Bruni and Conforti (2004) developed a 

stochastic model (and its deterministic counterpart) which minimized costs subject to global reliability 

demand satisfaction constraints. Zhang and Li (2015) presented a chance-constrained model to ensure 

that the existing vehicles can handle the maximum simultaneous demands with a given probability. 

These approaches require demand to be described by a known probability distribution. In practice, this 

may not be possible due to data unavailability. For this reason, Chu et al. (2018) proposed a distribution-

free chance-constrained model, in which reliability is guaranteed for all possible probability distributions 

with the estimated parameters (mean and covariance).  

An alternative approach is to use demand scenarios. Beraldi and Bruni (2009) presented a two-stage 

Stochastic Programming model in which the first-stage decision selected bases and their capacities. 

After uncertainty is resolved, vehicles are assigned to bases and demand requests are assigned to 

vehicles. Zhang and Jiang (2014) developed a bi-objective robust location-allocation model which 

minimizes costs and unsatisfied demand while ensuring minimum levels of demand satisfaction for a 

range of demand realizations (number of calls and number of concurrent calls). The same approach is 

used by Nickel, Reuter-Oppermann and Saldanha-da-Gama (2016) who, realizing the intractability for 

larger instances, proposed a demand sampling approach. The idea is to sample a subset of scenarios 

which allow the model to be solved. Using the optimal solutions of each sampling iteration, the optimal 

solution of the whole problem can be approximated. Sung and Lee (2018) formulated a Stochastic 

Programming model using sampled demand scenarios considering the temporal order of calls. In the 

first stage, the model locates ambulances to maximize expected coverage over all scenarios. In the 

recourse decision, ambulances are assigned to calls depending the dispatching rule, provide service 

and return base, becoming available. This approach allows the availability of ambulances to be explicitly 

considered. Given the difficulty in solving Integer Stochastic Programming models, a Benders 

decomposition algorithm is proposed. Berman, Hajizadeh and Krass (2013) developed three models 

which consider different demand and travel time scenarios. A Greedy heuristic and a Lagrangian 

Relaxation heuristic are proposed to solve the model efficiently. Finally, Bertsimas and Ng (2019) use 

structured uncertainty sets to model demand interactions across heterogeneous regions and use 

constraint-generation to solve the corresponding stochastic and robust two-stage models. 

4.5.2 TRAVEL TIMES 
Similar approaches can be used to model travel time uncertainty. Scenarios were used, for instance, by 

Berman, Hajizadeh and Krass (2013). Differently, Aly and White (1978) treated the location of an 

emergency as a random variable uniformly distributed over a region. In the equivalent deterministic 

model, a facility can cover a node only if the probability that travel time is lower than the coverage radius 

is above a threshold. Marianov and ReVelle (1996) modelled travel times as normal variables and 

recalculate the coverage areas of each facility using this information. 

A different approach is to use the probability that a vehicle can reach a demand area within the coverage 

radius to determine the expected coverage (Daskin, 1987; Goldberg and Paz, 1991). The tail of an 
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Exponential Distribution is used to approximate the probability distribution, although the authors indicate 

that other distributions may be more suited. This implies that the probability of a vehicle covering a 

demand node depends on its availability and on the probability that the travel time is bellow a threshold. 

Ingolfsson, Budge and Erkut (2008) expanded this approach by accounting for the pre-travel delay, 

while Drezner, Marianov and Wesolowsky (2016) added the acceleration-deceleration effect. 

4.5.3 FUZZY MODELS  
Fuzzy programming is useful when quantitative data regarding uncertain parameters cannot be 

obtained, since it requires only qualitative judgements from the decision-maker. Therefore, they have 

been used to model demand uncertainty (Wen and Iwamura, 2008), travel time uncertainty (Davari, 

Fazel Zarandi and Hemmati, 2011; Lahijanian, Zarandi and Farahani, 2017) or both (Torres, Trujillo and 

Maldonado, 2018). These models introduce fuzzy triangular variables on traditional formulations, such 

as the MCLP (Davari, Fazel Zarandi and Hemmati, 2011) or the DSM (Lahijanian, Zarandi and Farahani, 

2017). Usually, hybrid algorithms combining exact (e.g. BB, Goal Programming) and metaheuristic 

methods (e.g. SA, GA, Fuzzy Simulation) are used to solve these models efficiently.  

4.6 TIME-DEPENDENT MODELS  
The performance of EMS can change throughout the day (Matteson et al., 2011), since traffic and 

demand conditions may leave some emergencies uncovered. Therefore, considering time-dependency 

can have a significant impact in the quality of a proposed location solution (Degel et al., 2015) 

Thus, many researchers transformed classical formulations into time-dependent models, including 

MEXCLP (Repede and Bernardo, 1994; Van Den Berg and Aardal, 2015), PLSCP (Rajagopalan, 

Saydam and Xiao, 2008; Setzler, Saydam and Park, 2009), MALP2 (Cheu, Lei and Aldouri, 2010), DSM 

(Schmid and Doerner, 2010; Dibene et al., 2017) and BACOP1 (Başar, Çatay and Ünlüyurt, 2011).  

In these models, travel time, demand, fleet size and station capacity can be used as dynamic parameters 

(Cheu, Lei and Aldouri, 2010). However, some authors do not take into account the cost of relocating 

vehicles and stations, thus leading to very volatile EMS systems with associated costs. This problem 

has been addressed in recent extensions (Van Den Berg and Aardal, 2015). 

Additionally, Degel et al. (2015) provide a different coverage level for each time period and demand 

node, calculated by analysing the probability distribution of concurrent demands. Their model also 

includes travel times variations, relocation penalties and flexible fleet sizing. Tests show that considering 

time-dependency has a significant impact on the quality of the solution. 

Since time-dependent formulations are more complex, alternative solution procedures have been 

proposed: Tabu Search (Saydam et al., 2013); Variable Neighbourhood Search (VNS) (Schmid and 

Doerner, 2010) or commercial solvers (Dibene et al., 2017).  

These models usually split the day into time-periods. Thus, they are suited for operational decisions. 

However, studies considering multiple periods in the long-term planning horizon (i.e. months, years) are 

rarer. These approaches have been used in Supply Chain Network Design an existing network is 

transformed throughout the planning horizon (Melo, Nickel and Saldanha Da Gama, 2006, 2009). A 

possible approach is to modify location decision variables to account for different time periods and 
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allowing capacity relocation at a cost, considering existing, selectable (i.e. those that can be relocated) 

and non-selectable facilities (i.e. those that cannot) (Melo, Nickel and Saldanha Da Gama, 2006).  

4.7 MULTIPLE VEHICLES AND CALL PRIORITIES 
Although early models include only one vehicle and emergency type, real systems have distinct vehicles 

and call priorities (Goldberg, 2004). In this section, approaches to model this feature are reviewed.  

When dealing with multiple vehicles, a call can be covered if it is covered by any vehicle (Jayaraman 

and Srivastava, 1995; Coskun and Erol, 2010), by different vehicles simultaneously (David A. Schilling 

et al., 1979) or even by multiple vehicles of each type. In some cases, different emergency types may 

require different vehicle combinations (Revelle and Snyder, 1995), with some vehicles being able to 

answer multiple call types (e.g. (Amiri, 1998)). The latter is the case of the SIEM, for instance. 

Early multiple vehicle models include the TEAM (Tandem Equipment Allocation Model), FLEET (Facility-

Location Equipment-Emplacement Technique) (Schilling et al., 1979) and the FAST (Fire and 

Ambulance Service Technique) (Revelle and Snyder, 1995). These models maximized basic coverage 

of multiple types of calls, which required different vehicle types to be available within coverage radius.  

Other researchers focus on the hierarchical nature of health systems. For example, Charnes and 

Storbeck (1980) proposed a Goal Programming model with three goals: critical call coverage with ALS, 

critical call back-up coverage with BLS and BLS coverage of non-critical calls. Serra (1996) formulated 

a model with two types of hierarchical facilities, ensuring that nodes covered by the same lower-level 

facility are also covered by the same higher-level facility.  

Some models use variable coverage radius for different call priorities or place higher weights on covering 

critical calls. For instance, Liu et al. (2016) located ALS and BLS vehicles with different coverage radii 

according to the call’s severity, while Van den Berg, Legemaate and Van Der Mei (2017) applied specific 

coverage radii for different vehicles, demand node and crew type combinations. Weights were also used 

by Colombo, Cordone and Lulli (2016), who presented a MCLP for multiple facilities and calls, alongside 

two Greedy Algorithms and a Heuristic Concentration Algorithm. 

Other approaches to model differentiated call priorities use Queueing Theory. Silva and Serra (2008) 

proposed the Priority Q-LSCP in which each call priority has a different limit on waiting time. The model’s 

complexity leads to the implementation of a Greedy Randomized Adaptive Search Procedure. McLay 

(2009) considered three call types in their two-vehicle MEXCLP. The goal is to maximize expected 

coverage of Priority 1 calls and the HQM is used to calculate busy fractions taking into account server 

interactions and lower priority calls. Similarly, Davoudpour, Mortaz and Hosseinijou (2014) considered 

different combinations of ALS and BLS vehicles that can be requested and use the HQM to estimate 

busy fractions, assuming a fixed-preference priority rule. Chong, Henderson and Lewis (2016) locate 

ALS and BLS vehicles to answer two types of calls, modelling interactions via a Markov Decision 

Process. They show that tiered EMS systems can be as good as ALS-only systems, and cheaper. 

Although the problem of locating a heterogeneous emergency fleet has been addressed, a general 

framework for modelling multiple vehicles has not yet been achieved. Most of the existing models are 

designed specifically for the application at hand, having “hard-coded” constraints for the exact number 

and type of vehicles. As the SIEM operates multiple vehicles, a general framework would be desirable. 
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4.8 ALTERNATIVE PERFORMANCE MEASURES  
Capturing the decision-maker’s objectives is especially difficult in public decision-making. Many models 

so far consider a single coverage objective. However, combining various performance measures into 

location models may be beneficial (Knight, Harper and Smith, 2012). In this section, three alternative 

classes of performance measures are presented, as well as multi-objective approaches. 

4.8.1 EXPANDING THE CONCEPT OF DEMAND COVERAGE  
The original notion of coverage has three shortcomings: either a facility totally covers a demand node 

or not (all-or-nothing coverage); the coverage radius is an input, not a decision-variable; coverage 

depends only on the closest available facility (Berman, Drezner and Krass, 2010b). 

To overcome the first limitation, gradual coverage models were introduced. Here, coverage decays from 

1 to 0 between a minimum and maximum threshold coverage radius. As Drezner, Wesolowsky and 

Drezner (2004) pointed out, this is suited for EMS systems, where patient outcomes decay with the 

coverage radius. Multiple coverage functions have been proposed: stepwise functions (Church and 

Roberts, 1983; Berman and Krass, 2002), linear functions (Berman and Wang, 2011) and S-shaped 

functions (Drezner, Drezner and Goldstein, 2010). This approach is flexible and can be used to study 

several objectives, such as minimizing the maximum regret (Berman and Wang, 2011) or maximizing 

the probability of covered population being above a threshold (Berman, Krass and Wang, 2011). Yet, 

some authors prefer to use the coverage probability, defined as the probability that a demand node is 

covered by a facility, to overcome this limitation (Van Den Berg, Kommer and Zuzáková, 2016). 

Overcoming the second limitation requires treating the coverage radius as an endogenous parameter: 

that is, the decision maker can control the coverage radius of a facility that is built (Berman et al., 2009; 

Davaria et al., 2010). Finally, cooperation is achieved when multiple facilities contribute to coverage by 

sending a “signal” that decays with distance. A demand node receives multiple signals which are 

aggregated (e.g. by summation) to provide the overall service (Berman, Drezner and Krass, 2010a). 

Thus, the original notion of coverage presents several limitations. In particular, the first and third 

limitations are particularly important in the EMS context. Unfortunately, the coverage radius of vehicles 

is not under control of the decision-maker in an EMS system. 

4.8.2 PATIENT SURVIVAL 
The underlying belief behind coverage models is that quick response times can improve the medical 

outcomes of patients. Thus, coverage is a proxy for the real goal of EMS: maximize patient survival 

(Bélanger, Ruiz and Soriano, 2018). Recently, researchers have modelled this objective more explicitly.  

Erkut, Erdogan and Ingolfsson (2008) developed a model maximizing the expected number of cardiac 

arrest survivors. Their model is based on a survival function, describing the survival probability as a 

function of response time. Comparison with the MCLP and P-Median models provides proof that 

maximizing survival is more adequate. Later, Knight, Harper and Smith (2012) extended this model to 

include patients with several medical conditions and, hence, survival functions, while Leknes et al. 

(2017) mixed cardiac arrest survival with coverage, depending on the call’s priority. Recently, a 

simulation study suggested that survival models are superior on coverage and survival metrics when 
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compared to traditional models (Zaffar et al., 2016). However, McLay and Mayorga (2010) concluded 

that adequately selecting the coverage radius can result in optimal solutions from a survival perspective. 

Although survival is a direct description of EMS goals, survival functions may be difficult to obtain. 

Additionally, maximizing survival can conflict with another goal: equity (Felder and Brinkmann, 2002).  

4.8.3 EQUITY 
The public expects EMS to provide fair service. Yet, this issue had not received attention until recently 

(Aringhieri et al., 2017), mainly because there is not yet a consensual measure of equity, and using 

equity measures alone may lead to inefficient solutions (Smith, Harper and Potts, 2013). However, some 

authors have acknowledged the importance of equity and formulated different equity objectives. 

McLay and Mayorga (2010) provided equity by maximizing coverage in rural areas. Smith, Harper and 

Potts (2013) combined efficiency and equity, minimizing weighted deviations bellow and above the 

desired service standard for each region. Chanta, Mayorga and McLay (2014a) studied three equity 

objectives: minimize the maximum distance from uncovered nodes to their closest facility (P-centre 

model), minimize uncovered rural areas and minimize total uncovered areas, while Chanta, Mayorga 

and McLay (2014b) measured equity comparing the survival of patients in different regions. 

The Gini-Coefficient, a classical equity measure in Economic and Social systems, has also been used. 

Drezner, Drezner and Guyse (2009) minimized the Gini-Coefficient based on the Lorenz Curve, where 

the “good” being distributed is the distance to the closest facility. Equity is achieved when this distance 

is the same for all nodes. It is concluded that an equitable system may lead to poor overall service. 

Later, Toro-Díaz et al. (2015) considered two equity perspectives: customers and workers. Customer 

equity was measured using the Gini-Coefficient and the Squared Coefficient of Variation of response 

times. The Squared Coefficient of Variation of server workload was used to measure server equity. 

Another equity measure is the concept of envy, introduced by Chanta et al. (2011) in the Minimum P-

Envy Location Problem. Envy is a function of the node’s distance to its closest and back-up ambulances 

when compared to other nodes. Each node feels envy regarding any other demand node, at any level 

of coverage (primary, back-up, …). The model locates p ambulances to minimize total envy. Given the 

model’s complexity, a Tabu Search is developed. Later, Chanta, Mayorga and McLay (2014b) modified 

this model to use a survival function instead of distance as the driver of envy.  

It is also possible to combine several types of equity. For instance, Cardoso et al. (2015) considered 

four equity areas: equity of access, equity of utilization, socio-economic equity and geographical equity. 

Hence, it is possible to conclude that several equity measures have been proposed and that, in absence 

of a generally accepted metric, this objective must be adapted to the decision-maker’s specific opinion. 

4.8.4 MULTI-OBJECTIVE APPROACHES 
Recognizing that EMS planners may wish to consider multiple objectives, Multi-Objective models have 

also been proposed. Sets of conflicting objectives which have been studied include: system costs and 

demand satisfaction (Harewood, 2002; Zhang and Jiang, 2014); efficiency and equity (Smith, Harper 

and Potts, 2013; Chanta, Mayorga and McLay, 2014a); primary and back-up coverage (Daskin and 

Stern, 1981; Storbeck, 1982); population and property coverage (Schilling et al., 1980); population 
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coverage and server back-up coverage (Revelle, Schweitzer and Snyder, 1996); expected coverage 

and spare server workload (Alsalloum and Rand, 2006). 

When dealing with conflicting objectives, there is not an optimal solution. Therefore, several techniques 

can be applied to study trade-offs between objectives. Some studies aggregate objectives into a single 

measure using weights (Daskin and Stern, 1981; Hogan and ReVelle, 1986; Zhang and Jiang, 2014), 

while others derive the Pareto-optimal frontier by varying weights or using the -constraint method 

(Schilling et al., 1980; Revelle and Snyder, 1995; Chanta, Mayorga and McLay, 2014a). A Fuzzy Multi-

Objective approach, based on maximising the achievement level of constraints concerning different 

objectives, can also be used (Tzeng and Chen, 1999; Yang, Jones and Yang, 2007). Finally, Goal 

Programming is another option: targets are set for each objective and deviations from these targets are 

minimized (Alsalloum and Rand, 2006; Kanoun, Chabchoub and Aouni, 2010).  

4.9 JOINT STRATEGIC, TACTICAL AND OPERATIONAL DECISIONS 
Although the distinction between strategic, tactical and operational issues is common, all planning 

decisions are interrelated and can be made simultaneously (Sung and Lee, 2018). Some authors have 

attempted to combine them in a single model. One option is to include the dispatching policy in location 

models by using a fixed preference list (Goldberg and Paz, 1991; Borras and Pastor, 2002; Ingolfsson, 

Budge and Erkut, 2008; Davoudpour, Mortaz and Hosseinijou, 2014). A preference list is an ordered list 

of vehicles to serve a demand node, where the first available vehicle on the list will be dispatched. 

Alternatively, primary and back-up bases can be assigned to each area (Leknes et al., 2017). 

Another option is to employ two models, one to capture the dispatching policy and another for the 

location decision. For instance, Chong, Henderson and Lewis (2016) used a Markovian Decision 

Process to model dispatching, which is to calculate busy fractions for an optimization model. Toro-Díaz 

et al. (2013), Grannan, Bastian and McLay (2014) and Ansari, McLay and Mayorga (2015) modelled 

dispatching as fixed preference lists, and use a queueing model to calculate busy and dispatching 

fractions. Later, Toro-Díaz et al. (2015) studied co-location of vehicles and developed a Tabu Search 

using the model of Budge, Ingolfsson and Erkut (2009) to calculate the queuing aspects of the model. 

Iannoni, Morabito and Saydam (2009, 2011) developed a Hybrid GA and two Greedy Heuristics to locate 

ambulances and determine their districts, using an AHQM to capture the dispatching policy. A recent 

approach is Stochastic Programming. For instance, Sung and Lee (2018) developed a two-stage model 

in which the location decision is “here-and-now” and dispatching is a “recourse” decision. 

It can be concluded that integrating multiple decision-levels has gained traction in the literature, although 

evidence of the advantage of this approach is still missing. 

4.10 OTHER ISSUES FOR EMS VEHICLE LOCATION PLANNING 
Besides modelling and developing solution methods, EMS location models often require additional 

tasks, such as forecasting, demand aggregation and, potentially, the use of simulation, which are briefly 

discussed next. 

Demand and service time forecasting provide inputs to optimization models. Unfortunately, long-term 

demand forecasting has received little attention, and most studies use historical data or simple averages 

(Goldberg, 2004). Still, some forecasting approaches have been used, such as statistical inference (Hall, 
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1971); regression models, using variables as age (McConnel and Wilson, 1998) or demographic, social 

or geographic factors (Kvalseth and Deems, 1979); time-series models with trends (Channouf et al., 

2007) and Winters Exponential Smoothing (Baker and Fitzpatrick, 1986); Single Spectrum Analysis (Vile 

et al., 2012); and more complex methods, as neural networks (Setzler, Saydam and Park, 2009) or 

space-time marked point processes (Micheletti et al., 2010). 

Forecasting travel times is also important. Kolesar, Walker and Hausner (1975) proposed equations 

describing mean travel time as a function of distance, concluding that daily fluctuations have a minor 

impact in travel time. Later, Budge, Ingolfsson and Zerom (2010) proved the validity of these equations 

for travel time median estimation and use them to develop a model for the probability distribution of 

travel times, which has been employed by other authors (Alanis, Ingolfsson and Kolfal, 2013).  

Another important issue is demand aggregation, which is used to reduce the computational burden of 

real-sized instances, but can introduce errors (Aringhieri et al., 2017). For instance, Goodchild (1979) 

showed the significance of this error via simulation. Francis et al. (2009) developed a framework for 

aggregation methods in different classes of location problems and study different error measures. 

Finally, the role of simulation is important. Simulation can be used in simulation-optimization, providing 

estimates of the objective function (Fu, Glover and April, 2005). Here, simulation is an alternative to 

model stochasticity: a deterministic optimization model suggests vehicle sites, which are refined by 

simulation in a iterative algorithm (Aringhieri, Carello and Morale, 2016). Alternatively, simulation can 

be embedded in GA to evaluate the solution’s fitness (Zhen et al., 2014). Additionally, simulation is a 

common tool for model validation (Goldberg et al., 1990). Validation is essential, since modelling 

requires simplifying assumptions which must be checked. Here, the performance predicted by 

simulation is usually compared to that of analytical models. Discrete-Event Simulation is more popular, 

though Agent-Based Simulation can be used  as well (Aringhieri, Carello and Morale, 2016). A major 

difficulty is that simulation requires probability distributions of external parameters (Current and 

Storbeck, 1988; Pirkul and Schilling, 1991; Shiah and Chen, 2007; Schmid and Doerner, 2010; Yin and 

Mu, 2012). Alternatively, a set of parameter realizations can be used as scenarios (Aringhieri, Carello 

and Morale, 2016). An important advantage of simulation regards easy data visualization, thus 

promoting acceptance by the decision-maker (Henderson and Mason, 2006).  

It can be concluded that the impact of these additional issues is paramount to obtain realistic solutions, 

and care should be taken when performing both preparatory and validation steps. 

4.11 CHAPTER CONCLUSIONS 
Vehicle location decisions arise at all levels of EMS planning: strategic, tactical and operational. Given 

their importance in the effectiveness of EMS systems in saving lives, it comes as no surprise that a 

variety of models have been proposed to address this issue over the last 50 years.  

In this chapter, the EMS vehicle location literature is reviewed. It is possible to conclude that a variety 

of methods exist to model different components of EMS systems, some of which closely resemble the 

SIEM. Furthermore, the complexity of these models has led to a vast array of solution techniques – 

exact procedures, heuristics and metaheuristics. The next chapter presents the proposed optimization 

model, leveraging the approaches presenter in this chapter with the case-study features of chapter 3.  
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5. MODEL FORMULATION 
The goal of this chapter is to propose a Multi-Objective Dynamic MIP Model to address vehicle location 

planning of EMS systems and, in particular, at the SIEM. This model should leverage the previous 

knowledge regarding the case-study with the wide range of modelling methodologies which have been 

covered in the literature review. Additionally, a solution technique is proposed. 

Section 5.1 restates the problem statement. Section 5.2 presents the mathematical formulation of the 

model. After establishing the required notation and sets, subsets, indexed sets and parameters, the 

objective functions and constraints are presented and explained. Section 5.3 proposes a solution 

methodology considering one of the model’s objectives. Section 5.4 presents the chapter’s conclusions. 

5.1 PROBLEM STATEMENT 

5.1.1 PROBLEM FEATURES AND ASSUMPTIONS 
Before presenting the proposed model, it is important to restate the general problem to be addressed. 

The problem consists of locating EMS stations on a region and assigning emergency vehicles to these 

stations. Conversely, areas of responsibility of each station/vehicle pair should also be outlined.  

The goal is to formulate a strategic plan to allow EMS planners to make decisions by considering both 

present and future consequences, as well as the changing needs of the population. This enables 

planners to have a view on how the existing system should evolve. This is also important because 

choices about deployment of emergency resources are related with many other tasks (e.g. staff 

planning, financial planning) which must be planned in advance.  

It is assumed that the region of interest can be represented by a graph 𝐺 = (𝑁, 𝐸), with nodes (𝑁) and 

edges (𝐸) connecting them. Customers are grouped into demand nodes, denoted by 𝑑 ∈ 𝐷, which 

generate emergency requests. It is presumed that these demand nodes have been defined a priori. 

Depending on the emergency’s severity, a given priority, denoted by 𝑝 ∈ 𝑃, is assigned during triage.  

Sites for emergency stations are denoted by 𝑓 ∈ 𝐹. Stations can be existing (in place at the beginning 

of the planning horizon), denoted by 𝑓 ∈ 𝐹𝑒𝑥𝑖, or potential new stations, denoted by 𝑓 ∈ 𝐹𝑛𝑒𝑤. 

Additionally, some stations (existing or potential new) can be changed throughout the planning horizon 

– these are called selectable, denoted by 𝑓 ∈ 𝐹𝑠𝑒𝑙 – while others cannot – non-selectable stations.   

It is also assumed that different emergency vehicles, denoted by 𝑣 ∈ 𝑉, are available. These vehicles 

are housed at emergency stations. Multiple vehicles of different types can be located at the same station 

(there is co-location of vehicles). It is assumed that some types of vehicles can be relocated – selectable 

vehicles, 𝑣 ∈ 𝑉𝑠𝑒𝑙, while others cannot. A vehicle type may refer not only to the equipment itself, but 

also to the entity operating it. Therefore, for instance, if a fire department and EMS operate similar 

vehicles, they can be treated as two separate vehicle types, if such a distinction is required. This can 

be necessary if they can only be located at different stations, or if the emergencies they can treat are 

different. Therefore, the model allows considering different entities, with corresponding costs, resource 

and staff limitations. This can be useful when central planners need to manage both public and private 

EMS systems or, at least, consider existing private EMS systems in their decisions. 
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Emergency vehicles are dispatched to emergencies at demand nodes. It is explicitly considered that 

different emergency vehicles are capable of providing different care levels, 𝑙 ∈ 𝐿. It is assumed that, 

according to the priority 𝑝 ∈ 𝑃 of an emergency, different care levels, 𝑙 ∈ 𝐿𝑝 , must be provided. For 

instance, a given priority 𝑝 may require two BLS vehicles, in which case two care levels are considered, 

𝐿𝑝 = {𝐵𝐿𝑆1, 𝐵𝐿𝑆2}, representing, respectively, the first and second layers of BLS. Another priority may 

require one BLS and one ALS vehicle, thus 𝐿𝑝 = {𝐵𝐿𝑆1, 𝐴𝐿𝑆1}. Additionally, a vehicle 𝑣 may be capable 

of providing more than one care level, 𝑙 ∈ 𝐿𝑣. For example, a BLS ambulance may be capable of 

providing all layers of BLS, so  𝐿𝑝 = {𝐵𝐿𝑆1, 𝐵𝐿𝑆2, 𝐵𝐿𝑆3, … }. 

Using Queueing Theory terminology, vehicles 𝑣 at station 𝑓 can be conceptualized as servers, which 

are identified by the combination (𝑓, 𝑣). Customers, on the other hand, are emergency requests, which 

“arrive” to these servers after the dispatching operations. Emergency requests result from an emergency 

originating on demand node 𝑑, with priority 𝑝, requiring a vehicle to provide care level 𝑙. As such, any 

emergency request can be identified by the combination (𝑑, 𝑝, 𝑙). 

Furthermore, several planning periods, 𝑡 ∈ 𝑇, are considered. These can be years or months, according 

to the specific planning purposes. There is an existing EMS system in operation at the beginning of the 

planning horizon. The model will inform planners on how to gradually reconfigure this system over the 

planning horizon to provide the best possible service. This is important because, in most cases, an 

existing EMS system is already operating, and it would not be realistic to reconfigure the system in one 

year. Additionally, this allows predictable fluctuations of demand or travel time (e.g. growing urban 

areas, road improvements) to be considered for current and future decisions.  

Furthermore, time-dependency regarding periods of the day is also included – in other words, working 

shifts, 𝑠 ∈ 𝑆, are considered. This is because (1) the performance of EMS systems can vary greatly 

throughout the day and (2) staff is required to operate emergency vehicles, usually working 8-hour shifts. 

In less active shifts, it may be possible to reduce operating staff without compromising service. For 

instance, shifts at INEM include morning (00 AM – 08 AM), afternoon (08 AM – 16 PM) and night (16 

PM – 24 PM) shifts. 

Operating vehicles during these shifts can have different costs, due to crew compensations, and 

assigning calls during these shifts can also have different costs.  

The decisions to be made include the location of stations (binary variables 𝑦𝑓
𝑡), the allocation of available 

emergency vehicles among these stations (integer variables 𝑥𝑓𝑣
𝑡  and 𝑠ℎ𝑓𝑣

𝑡𝑠 ) and the definition of areas of 

responsibility of each vehicle/station pair (continuous variables 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ).  

The capacity of these facilities (i.e. number of vehicles they can house) is assumed to be given in 

advance and not a decision variable. This approach is suited when EMS planners use existing facilities 

to house vehicles, as is the case of the SIEM. Alternatively, this assumption could be lifted by adding 

an integer station capacity decision variable to the model. Similarly, the number of vehicles of each type 

available at each period is assumed to be known, although the number of vehicles to acquire could be 

added as a decision variable and thus include fleet sizing into the model, subject to budget constraints. 

The goal is to provide the best possible service to the population, while maintaining an equitable system 

with the lowest costs. Since these goals are conflicting, a multi-objective model is appropriate. In 
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particular, three objectives have been included, combining classical and emergent goals aligned with 

the concerns expressed by INEM practitioners during interviews: 

• Demand coverage: maximizing the demand which is successfully serviced by the EMS;  

• Cost: minimizing start-up, capacity, operating, relocation and assignment costs; 

• Equity: seeking to provide fair service to the population. 

5.1.2 RELATIONSHIP TO THE LITERATURE 
The model’s aim is to combine several aspects of EMS operation into a single framework, flexible 

enough to accommodate different applications without extensive changes. Many approaches focus only 

on a particular component of EMS systems, and the literature is still far from a comprehensive and 

complete model (Beraldi and Bruni, 2009). The proposed model should be viewed as an initial step 

towards this goal.  

Additionally, as mentioned by Church (2002), “(…) there appears to be a lack of handling temporal 

issues (…). Planning over a number of finite time periods has been the subject of few articles but is 

more of the norm in actual public application. (…) Most algorithms and heuristics have been tested 

under the assumption that all facilities are new, i.e., a so-called ‘green-field case’. Few heuristics have 

been designed or tested to optimally add to or modify an existing system, i.e. a ‘brown-field case’”. 

Although this gap has been identified over 17 years ago for the general field of location decisions, it 

remains largely unexplored in the EMS context. 

The main contributions of the proposed model can therefore be summarized as:  

1. The formulation of a tri-objective model capturing the main concerns – coverage, equity and 

cost – that drive EMS location decisions, allowing the study of trade-offs between emergent and 

classical goals; 

2. Considering flexibly the possibility of having several types of emergency requests and vehicles 

which may be dispatched together to a call (multi-dispatch). Most multi-vehicle models in the 

literature are “hard-coded” to fit a particular application, thus being less flexible.  

3. Allowing strategic and tactical relocations (as opposed to operational) by combining micro 

(shifts) and macro (planning periods) time-dependency. This approach has been applied in 

other fields, including health-care (e.g. Cardoso et al. (2015)), but seldom in EMS literature; 

4. Considering an existing EMS system already in operation at the beginning of the planning 

horizon. Most approaches in the literature assume a “green-field” scenario. Although these 

models provide information about the ideal vehicle configuration, they do not provide any insight 

on how the system should progress towards the prescribed solution. 

Furthermore, the following features are important: 

• Vehicle unavailability is accounted for by using the concept of busy fraction as an endogenous 

parameter, calculated from the location of stations and vehicles, and limiting the allocation of 

customers to them accordingly, as in previous studies (Goldberg and Paz, 1991; Shariat-

Mohaymany et al., 2012; Leknes et al., 2017).  

• The HQM is not used. Since each EMS system is different, a new HQM needs to be developed 

to fit each particular application (Chiyoshi, Iannoni and Morabito, 2011). This goes against the 
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desire to have a flexible model. Additionally, such models are complex and usually become of 

little practical application (Beraldi and Bruni, 2009). In particular, a multi-dispatch, partial back-

up HQM with non-homogeneous and co-located servers would be required to model the SIEM. 

This would be a challenging HQM given the size of the state space. 

• Instead of all-or-nothing coverage, the probability that a vehicle at a station can provide 

coverage to a demand node is used, as in previous studies (Daskin, 1987; Goldberg and Paz, 

1991). Thus, the effects of vehicle proximity in patient outcomes are accounted for more 

explicitly, together with travel time variability. Also, these probabilities can depend on the type 

of emergency request and care level being provided, because quick response may be more 

crucial for certain care levels (e.g. speedy response by an ALS first responder might be more 

important than for a BLS transportation unit). This can easily be translated into the classical 

notion of coverage by using binary variables instead, taking the value 1 if the vehicle can arrive 

within the given threshold. 

5.2 MATHEMATICAL FORMULATION 
In this section, the mathematical formulation of the model is presented, in light of the previous 

considerations. Before presenting the proposed model, the notation is formally introduced, including 

sets, subsets, indexed sets and parameters. Then, the objective functions are presented and, finally, 

the constraints are introduced. A more compact formulation can be found in Appendix C. 

5.2.1 SET, SUBSETS AND INDEXED SETS 
The following sets are defined: 

• 𝑠 ∈ 𝑆: working shifts (e.g. 𝑆 =  {𝑀𝑜𝑟𝑛𝑖𝑛𝑔, 𝐸𝑣𝑒𝑛𝑖𝑛𝑔, 𝑁𝑖𝑔ℎ𝑡}). 

• 𝑡 ∈ 𝑇: periods in the planning horizon (e.g. 𝑇 =  {𝑀𝑜𝑛𝑡ℎ 1, 𝑀𝑜𝑛𝑡ℎ 2, … }), |𝑇|: number of periods 

in the planning horizon. 𝑇 = 0 corresponds to the beginning of the planning horizon. 

• 𝑑 ∈ 𝐷: demand nodes. 

• 𝑝 ∈ 𝑃: emergency priorities (e.g. 𝑆 =  {𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 1, 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 2, … }). 

• 𝑣 ∈ 𝑉: vehicle types. 

• 𝑙 ∈ 𝐿: care levels (e.g. 𝐿 =  {𝐴𝐿𝑆, 𝐵𝐿𝑆}). 

• 𝑓 ∈ 𝐹: emergency station locations. 

Together with the following subsets: 

• 𝑓 ∈ 𝐹𝑒𝑥𝑖: existing emergency station locations. 

• 𝑓 ∈ 𝐹𝑛𝑒𝑤: potential new emergency station locations. 

• 𝑓 ∈ 𝐹𝑠𝑒𝑙: selectable emergency station locations. 

• 𝑣 ∈ 𝑉𝑠𝑒𝑙 : selectable emergency vehicles. 

And, finally, the following indexed sets: 

• 𝑣 ∈ 𝑉𝑓: vehicles that can be located at station 𝑓. 

• 𝑣 ∈ 𝑉𝑙: vehicles capable of providing care level 𝑙. 

• 𝑓 ∈ 𝐹𝑣: stations where vehicles of type 𝑣 may be located. 

• 𝑙 ∈ 𝐿𝑝 : care levels 𝑙 required by a call of priority type 𝑝. 



 37 

5.2.2 PARAMETERS 
The model requires several parameters, which represent input data. These are presented in groups. 

Cost Parameters 

• 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑓
𝑡 : cost of opening a station at site 𝑓 at the beginning of period 𝑡. 

• 𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑓
𝑡 : cost of closing a station at site 𝑓 at the beginning of period 𝑡. 

• 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑓𝑣
𝑡 : average cost per vehicle of type 𝑣 of operating station 𝑓 during period 𝑡. 

• 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑣
𝑡𝑠: average cost of operating a vehicle of type 𝑣 during shift 𝑠 on period 𝑡. 

• 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡𝑑𝑝𝑓𝑣𝑙
𝑡𝑠 : average cost per call from demand node 𝑑 of priority 𝑝 for providing care 

level 𝑙 from a station at site 𝑓 with a vehicle of type 𝑣 during period 𝑡 and shift 𝑠. 

Demand Parameters 

• 𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 : emergency requests from demand node 𝑑 of priority 𝑝 during period 𝑡 and shift 𝑠. 

Time Parameters 

• 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒𝑑𝑝𝑙
𝑡𝑠 : average time required to provide to a call from demand node 𝑑, of priority 𝑝, 

care level 𝑙 during period 𝑡 on shift 𝑠, excluding travel time. 

• 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑓𝑣𝑑
𝑡𝑠 : average travel time required for a vehicle departing from a station at site 𝑓 of 

type 𝑣 to arrive at demand node 𝑑 on period 𝑡 and shift 𝑠.  

• 𝜃: maximum travel time in the system. 

Coverage Parameters 

• ∅𝑓𝑣𝑑𝑝𝑙
𝑡𝑠 : probability that a vehicle departing from a station at site 𝑓of type 𝑣 can cover a call from 

demand node 𝑑 of priority 𝑝 at care level 𝑙 during planning period 𝑡 on shift 𝑠. 

• 𝛾𝑣𝑝𝑙 = {
1, if a vehicle of type 𝑣 can provide to a call of priority 𝑝 care level 𝑙
0, otherwise.

 

• 𝛿𝑓𝑑 = {
1, if a station at site 𝑓 can be assigned to call on demand node 𝑑.

0, otherwise.
 

• 𝜀: minimum fraction of coverage that must be provided by a vehicle/station pair to be considered 

as actively cooperating to serve a demand node’s emergency requests.  

Resource Parameters 

• 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡 : maximum number of vehicles that can be housed at a station at site 𝑓 during 

planning period 𝑡. 

• 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑣
𝑡 : total number of vehicles of type 𝑣 available during planning period 𝑡. 

• 𝑀𝑖𝑛𝑉𝑒𝑖𝑐𝑣𝑓: minimum number of vehicles of type 𝑣 that must be located at a station on site 𝑓 due 

to legal requirements. 

• 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑣𝑓 : number of vehicles of type 𝑣 located at a station on site 𝑓 at the beginning of the 

planning horizon. 

• 𝑀𝑎𝑥𝑉𝑒𝑖𝑐𝑆ℎ𝑖𝑓𝑡𝑣
𝑡𝑠: maximum number of vehicles of type 𝑣 that are available to operate during 

planning period 𝑡 on shift 𝑠. 

• 𝑆ℎ𝑖𝑓𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑠: number of time units in shift 𝑠. 

• 𝐷𝑎𝑦𝑠𝑡: number of days in planning period 𝑡; 
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• 𝑀𝑎𝑥𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑡: maximum number of stations that can operate on time period 𝑡. 

Relocation Parameters 

• 𝑀𝑎𝑥𝑂𝑝𝑒𝑛𝑡: maximum number of stations that can be opened during planning period 𝑡. 

• 𝑀𝑎𝑥𝐶𝑙𝑜𝑠𝑒𝑑𝑡: maximum number of stations that can be closed during planning period 𝑡. 

• 𝜏𝑓: minimum amount of time that a station at 𝑓 must remain open if it is opened during the 

planning horizon. 

• 𝑖𝑡: inflation rate on period t. 

Expected Coverage Weights  

• 𝑊𝑝𝑙
1 : weight of covering an emergency of priority 𝑝 with care level 𝑙. 

• 𝑊𝑡
2: weight of covering demand during time period 𝑡. 

• 𝑊𝑠
3: weight of covering demand during working shift 𝑠. 

5.2.3 DECISION VARIABLES 
The model includes primary and auxiliary decision variables, which are presented along their domain. 

Primary Decision Variables 

The primary decision variables are concerned with the location of emergency stations, the number of 

vehicles that are allocated to each station and the determination of areas of responsibility for each 

station/vehicle pair. 

• 𝑦𝑓
𝑡 =  {

1, if an emergency station is opened on site 𝑓  during planning period 𝑡.

0, otherwise.
  

• 𝑥𝑓𝑣
𝑡 ∈ ℕ𝟎: number of vehicles assigned to a station at site 𝑓 of type 𝑣 during planning period 𝑡. 

• 𝑠ℎ𝑓𝑣
𝑡𝑠 ∈ ℕ𝟎: number of vehicles assigned to a station at site 𝑓 of type 𝑣 during planning period 𝑡 

that are active on working shift 𝑠. 

• 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ∈ [0; 1]: proportion of demand from node 𝑑 of priority 𝑝 for care level 𝑙 allocated to 

vehicles positioned at a station at site 𝑓 of type 𝑣 during planning period 𝑡 and working shift 𝑠.  

Notice that variables 𝑥𝑓𝑣
𝑡  and 𝑠ℎ𝑓𝑣

𝑡𝑠  are defined only for possible combinations of station locations and 

vehicles (𝑓, 𝑣), thus reducing the number of variables in the model and ensuring that invalid vehicle 

allocations are not allowed. Also, both variables 𝑥𝑓𝑣
𝑡  and  𝑠ℎ𝑓𝑣

𝑡𝑠  are required because the relocation of 

emergency vehicles among shifts is not allowed, due to the INEM’s requirements. However, this 

assumption can be easily lifted by replacing variable 𝑥𝑓𝑣
𝑡  by  𝑠ℎ𝑓𝑣

𝑡𝑠  and making the necessary changes in 

the objective functions and constraints. 

Additionally, the model allocates demand to vehicles through variables 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 .This approach is inspired 

by Leknes et al. (2017) and Shariat-Mohaymany et al. (2012). The difference is that Leknes et al. (2017) 

only consider two responders per demand node, while Shariat-Mohaymany et al. (2012) assume that 

emergency requests are evenly distributed among stations within the coverage radius. Neither considers 

multiple emergency priorities and vehicles. Note that variables 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠  are not binary. Therefore, vehicles 

are allowed to share the workload of a demand node and prevent a static assignment of emergencies 

to vehicles, aligned with the real operation of EMS systems. This factor is usually considered in the EMS 

location literature by using the HQM and its variants. In these models, the fraction of dispatches 
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(equivalent to variable 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ) are determined from the fixed-preference dispatching list and ambulance 

positions. By letting the model decide these variables endogenously, areas of responsibility are implicitly 

defined (the greater the variable 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 , the higher the responsibility). This choice is motivated by the 

dispatching policy of SIEM, which does not strictly obey a fixed-preference list, since INEM vehicles are 

dispatched more frequently than outside vehicles. 

Auxiliary Decision Variables 

These variables are used to control the stability of the EMS system and support the calculation of the 

equity objective. 

• 𝑐𝑙𝑜𝑠𝑒𝑑𝑓
𝑡  =  {

1, if a station at site 𝑓 is closed at the beginning of planning period 𝑡.

0, otherwise.
 

• 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡  =  {

1, if a station at site 𝑓 is opened at the beginning of planning period 𝑡.

0, otherwise.
 

• 𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 =  {

1,
 

if calls from demand node 𝑑 of type 𝑝 at care level 𝑙 are assigned to vehicles   

 of type 𝑣 at site 𝑓 during planning period 𝑡 and shift 𝑠.

0, otherwise.

 

• 𝐴𝑇𝑇̅̅ ̅̅ ̅̅ ∈ ℝ0
+: maximum average travel time for the first responding vehicle over the entire region 

and planning periods. 

• 𝐴𝑇𝑇𝑑𝑝𝑙
𝑡𝑠 ∈ ℝ0

+: average travel time for calls from demand node 𝑑 of type 𝑝 for providing care level 

𝑙 during planning period 𝑡 and working shift 𝑠.  

• 𝑀𝑖𝑛𝐴𝑇𝑇𝑑𝑝
𝑡𝑠 ∈ ℝ0

+: average travel time for the first responding vehicle to calls from demand node 

𝑑 of type 𝑝 during planning period 𝑡 and working shift 𝑠.  

• 𝐸𝑓𝑣
𝑡+/𝐸𝑓𝑣

𝑡− ∈ ℕ𝟎: number of vehicles added to/removed from facility 𝑓 of type 𝑣 at the beginning of 

time period 𝑡; 

• 𝐻𝑣
𝑡+/𝐻𝑣

𝑡− ∈ ℕ𝟎: total number of vehicles of type 𝑣 added to/removed from the fleet at the 

beginning of time period 𝑡; 

• 𝑏𝑓𝑣
𝑡 =  {

1, if vehicles of type 𝑣 are added to site 𝑓 at the beginning of planning period 𝑡.   

0, otherwise.
 

• 𝑐𝑣
𝑡 =  {

1, if vehicles of type 𝑣 are added to the fleet at the beginning of planning period 𝑡.   
0, otherwise.

 

• 𝛽𝑑𝑝𝑙
𝑡𝑠 =  {

0,
 

if for calls from node 𝑑 of type 𝑝, care level 𝑙 has the shortest average response  

time during planning period 𝑡 and shift 𝑠. 

1, otherwise.

 

5.2.4 OBJECTIVE FUNCTIONS 
As stated, three conflicting objectives have emerged from the interviews with INEM and the literature 

analysis: demand coverage (𝑍1), cost (𝑍2) and equity (𝑍3).  

Objective 1: Demand Coverage 

As mentioned, coverage is a traditional measure of service level in EMS systems and is also employed 

by INEM. Therefore, the model seeks to maximize the demand covered across all care levels, demand 

nodes, emergency priorities, time periods and working shifts. The expression is given by equation (1). 
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𝑍1  = max ∑ ∑ 𝑊𝑝𝑙
1

𝑙∈𝐿𝑝∈𝑃

× ∑ 𝑊𝑡
2 ×

𝑡∈𝑇

∑ 𝑊𝑠
3 ×

𝑠∈𝑆

∑ ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ×

𝑣∈𝑉𝑓𝑓∈𝐹𝑑∈𝐷

𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × ∅𝑓𝑣𝑑𝑝𝑙

𝑡𝑠  (1) 

The objective function expressed by (1) maximizes coverage weighted by three parameters – 𝑊𝑝𝑙
1 , 𝑊𝑡

2 

and 𝑊𝑠
3. The expected coverage provided to emergency requests (𝑑, 𝑝, 𝑙) is the sum of the fractional 

coverages provided by all the servers (𝑓, 𝑣) which have been allocated to those requests (i.e. those for 

which 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 > 0). This fractional coverage is obtained by multiplying the amount of demand allocated 

to each server (given by 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 × 𝐷𝑒𝑚𝑑𝑝

𝑡𝑠 ) by the corresponding value of the coverage probability, ∅𝑓𝑣𝑑𝑝𝑙
𝑡𝑠 . 

Notice that different coverage probabilities can be used, according to the emergency’s priority 𝑝 and the 

care level 𝑙 to be provided, thus being able to capture the decision-maker’s opinions regarding the 

importance of vehicle proximity depending on the emergency request.  

The busy fraction is not included, since a hybrid model is used, mixing expected coverage and reliability. 

As will be shown, an upper bound on the unavailability of each vehicle is set instead of including it into 

the objective function. This way, server equity is promoted alongside coverage with a given reliability.  

Weights 𝑊1, 𝑊2 and 𝑊3 are used to control the importance of maximizing coverage along several 

dimensions, allowing the decision-maker to let the model prioritize certain emergency requests (given 

that, in the literature, there is no consensus regarding which call priorities to account for in the model) 

and certain time periods (as Lei, Cheu and Aldouri (2010)) 

• 𝑊1𝑝𝑙: gives the importance of providing care level 𝑙 to an emergency of priority 𝑝. For instance, 

the decision-maker may feel that providing ALS to an emergent call is of the utmost importance 

(𝑊1 = 1) while providing BLS to the same call is half as important (𝑊1 = 0.5); 

• 𝑊2𝑡: related with the importance of providing coverage during the planning period 𝑡. In this 

case, the decision-maker may consider more important to focus on closer time periods, as 

optimizing for distant time periods may be less important given that the circumstances are likely 

to change (but should be taken into account). In this case, 𝑊21 > 𝑊22 > 𝑊23 >…  

• 𝑊3𝑠: controls the importance of providing coverage during the working shift 𝑠. 

Objective 2: Cost 

Additionally, the model minimizes the present value of the total system cost. As shown in previous 

chapters, cost was not traditionally considered in EMS systems, being usually replaced by a proxy (e.g. 

resources). However, recent approaches have considered cost explicitly. This is even more important 

in the SIEM, given that there are multiple entities which are compensated for their services in different 

ways. Since the model is intended to be used at a strategic level, future costs are discounted. If the 

planning horizon is shorter, inflation can be ignored. This objective is represented by equation (2). 

𝑍2  = 𝑚𝑖𝑛 ∑
1

(1 + 𝑖𝑡)𝑡
× ( ∑ 𝐶𝑙𝑜𝑠𝑒𝑑𝑓

𝑡 × 𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑓
𝑡

𝑓∈(𝐹𝑒𝑥𝑖∩𝐹𝑠𝑒𝑙)

+ ∑ 𝑂𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 × 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑓

𝑡

𝑓∈(𝐹𝑛𝑒𝑤∩𝐹𝑠𝑒𝑙)

)

𝑡∈𝑇\{0}

+ ∑
1

(1 + 𝑖𝑡)𝑡
× ∑ ∑ 𝑥𝑓𝑣

𝑡 × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑓𝑣
𝑡  

𝑣∈𝑉𝑓𝑓∈𝐹

+ ∑ 𝑠ℎ𝑓𝑣
𝑡𝑠 × 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑣

𝑡𝑠  
𝑠∈𝑆𝑡∈𝑇

+ ∑
1

(1 + 𝑖𝑡)𝑡
× ∑ ∑ ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠 × 𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡𝑑𝑝𝑙𝑓𝑣

𝑡𝑠

𝑠∈𝑆𝑙∈𝐿𝑝𝑝∈𝑃𝑑∈𝐷𝑡∈𝑇

 

 

 
(2) 
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The cost of the system comprises three components: the fixed capital costs of opening and closing 

stations during the planning horizon with associated capacity cost for each vehicle; the operating cost 

of vehicles allocated to each station due to staff requirements; and assignment costs for providing 

assistance to demand calls. The fleet is assumed to be already in place and, as such, vehicle acquisition 

costs are not accounted for. 

Objective 3: Equity 

Finally, the third objective seeks to provide equity, preventing some users to be well served while others 

are poorly attended. To do so, the worst performance of the system is minimized. From the user’s 

perspective, the time of the first arriving vehicle is usually the most critical, since once this vehicle 

arrives, emergency care can start. The arrival times of subsequent vehicles are important, but less 

obvious to the customer. Therefore, to ensure equity, the maximum average travel time of the care level 

that is provided first, across all shifts and time periods, is minimized, which is simply given by: 

𝑍3  = 𝑚𝑖𝑛 𝐴𝑇𝑇̅̅ ̅̅ ̅̅  
 

(3) 

5.2.5 CONSTRAINTS 
Finally, it is necessary to present the model’s constraints. These constraints are presented in groups: 

resource constraints, initial system constraints, stability constraints, coverage constraints, utilization 

constraints, and equity constraints. 

Resource Constraints 

The first group of constraints is related with the availability of emergency vehicles and limitations to their 

assignment to stations. 

 𝑠ℎ𝑓𝑣
𝑡𝑠 ≤ 𝑥𝑓𝑣

𝑡  , ∀𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆  (4)   

 ∑ 𝑥𝑓𝑣
𝑡

𝑓∈𝐹𝑣

≤ 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑣
𝑡  , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇  (5)   

 𝑥𝑓𝑣
𝑡 ≥ 𝑀𝑖𝑛𝑉𝑒𝑖𝑐𝑓𝑣 , ∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} (6) 

 ∑ 𝑥𝑓𝑣
𝑡

𝑣∈𝑉𝑓

≤ 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡 × 𝑦𝑓

𝑡  , ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (7) 

 ∑ 𝑥𝑓𝑣
𝑡

𝑣∈𝑉𝑓

≥ 𝑦𝑓
𝑡  , ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 (8) 

 ∑ 𝑠ℎ𝑓𝑣
𝑡𝑠

𝑓∈𝐹

≤ 𝑀𝑎𝑥𝑉𝑒𝑖𝑐𝑆ℎ𝑖𝑓𝑡𝑣
𝑡𝑠  , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆  (9) 

Constraints (4) state that the number of vehicles of type 𝑣 on station 𝑓 that are available during shift 𝑠 

and time period 𝑡 must be smaller than the total number of vehicles of that type allocated to that station. 

These constraints mean that, once vehicles have been allocated to a given station, they can either be 

active or inactive during a shift, but they cannot be relocated from one shift to the next.  

Constraints (5) limit the total number of vehicles of each type deployed during each period to the number 

of available vehicles on that period. Constraints (6), on the other hand, impose a minimum number of 

vehicles to be allocated to certain stations at all times. These constraints are mostly related with legal 

requirements, which, for instance, require hospital’s emergency departments to have certain types of 

vehicles available. This requirement may not be met by the existing system. Constraints (7) state that, 

if a station is opened, then the number of vehicles that can be assigned to it is limited by its capacity 
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(e.g. due to space unavailability). Constraints (8) force at least one vehicle to be assigned to each open 

station. Otherwise, the model could allow stations to remain open without any vehicle assigned to them. 

Finally, constraints (9) limit the number of vehicles in operation at each shift, given that, due to crew 

unavailability, it may not be possible to have all vehicles operating in night shifts. 

Initial System Constraints 

This set of constraints initializes the decision variables at the beginning of the planning horizon (𝑡 =  0), 

thus defining the initial state of the EMS system. 

 𝑥𝑓𝑣
0 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣 , ∀ 𝑓 ∈ 𝐹𝑒𝑥𝑖 , 𝑣 ∈ 𝑉𝑓  (10)   

 𝑦𝑓
0 = 1 , ∀ 𝑓 ∈ 𝐹𝑒𝑥𝑖 (11) 

Constraints (10) define the number of vehicles of each type allocated to existing stations, while 

constraints (11) define the open stations. The number of vehicles working at each shift is not initialized 

since it is assumed that these decisions can be changed from the beginning of the planning horizon. 

Stability Constraints 

This group of constraints controls the relocation of emergency stations and vehicles throughout the 

planning horizon, ensuring that the EMS does not oscillate excessively. 

 𝑥𝑓𝑣
𝑡 ≥ 𝑥𝑓𝑣

𝑡−1 , ∀ 𝑣 ∈ 𝑉𝑠𝑒𝑙̅̅ ̅̅ ̅, 𝑓 ∈ 𝐹𝑣 , 𝑡 ∈ 𝑇\{0} (12)   

 𝑦𝑓
𝑡 ≥ 𝑦𝑓

𝑡−1 , ∀ 𝑓 ∈ 𝐹𝑠𝑒𝑙̅̅ ̅̅ ̅, 𝑡 ∈ 𝑇\{0} (13) 

Constraints (12) and (13) are very similar. They state that, for non-selectable vehicles (𝑉𝑠𝑒𝑙̅̅ ̅̅ ̅), assigned 

vehicles cannot be removed (although additional vehicles may be added). Similarly, non-selectable 

facilities (𝐹𝑠𝑒𝑙̅̅ ̅̅ ̅), once opened, must remain in operation until the end of the planning horizon. Remaining 

facilities and vehicles can be relocated, closed or opened from scratch.   

 𝑦𝑓
𝑡 − 𝑦𝑓

𝑡−1 = 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 − 𝑐𝑙𝑜𝑠𝑒𝑑𝑓

𝑡  , ∀ 𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇\{0} (14)   

 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 + 𝑐𝑙𝑜𝑠𝑒𝑑𝑓

𝑡  ≤ 1 , ∀ 𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇\{0} (15) 

 𝑥𝑓𝑣
𝑡 −𝑥𝑓𝑣

(𝑡−1)
= 𝐸𝑓𝑣

𝑡+ − 𝐸𝑓𝑣
𝑡−  , ∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} (16) 

 ∑ (𝑥𝑓𝑣
𝑡 − 𝑥𝑓𝑣

(𝑡−1)
)

𝑓∈𝐹𝑣

= 𝐻𝑣
𝑡+ − 𝐻𝑣

𝑡−, ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇\{0}  (17) 

Constraints (14) and (15) keep track of which stations are opened and closed at each time period and 

constraints (16) and (17) keep track of the vehicles added and removed from each station and the overall 

emergency fleet. Note that there are infinite possibilities for the differences 𝐸𝑓𝑣
𝑡+ − 𝐸𝑓𝑣

𝑡− and 𝐻𝑣
𝑡+ − 𝐻𝑣

𝑡−.  

Since these deviations are not minimized in the objective function, it must be ensured that only one of 

the 𝐸𝑓𝑣
𝑡   and one of the 𝐻𝑣

𝑡  variables are positive. This is accomplished in constraints (18) to (23). 

 𝐸𝑓𝑣
𝑡+ ≤ 𝑏𝑓𝑣

𝑡 × 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡  , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} (18)   

 𝐸𝑓𝑣
𝑡− ≤ (1 − 𝑏𝑓𝑣

𝑡 ) × 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡−1 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0,1} (19) 

 𝐸𝑓𝑣
1− ≤ (1 − 𝑏𝑓𝑣

1 ) × 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 (20) 

 𝐻𝑣
𝑡+ ≤ 𝑐𝑣

𝑡 × 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑣
𝑡  , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇\{0} (21)   

 𝐻𝑣
𝑡− ≤ (1 − 𝑐𝑣

𝑡 ) × 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑓
𝑡−1 , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇\{0,1} (22) 

 𝐻𝑣
1− ≤ (1 − 𝑐𝑣

1) × ∑ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣

𝑓∈𝐹𝑣

 , ∀ 𝑣 ∈ 𝑉 (23) 
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In these constraints, instead of using a Big-M approach, bounds related with capacity and vehicle 

availability parameters are used in order to tighten the formulation. With these variables properly 

defined, stability constraints on the relocation of resources can be imposed.  

 ∑ 𝑦𝑓
𝑏

𝑡+𝜏𝑓
𝑡 −1

𝑏=𝑡

≥ 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 × 𝜏𝑓

𝑡  , ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇\{0} (24)   

 ∑ 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡

𝑓∈𝐹

 ≤ 𝑀𝑎𝑥𝑂𝑝𝑒𝑛𝑡 , ∀ 𝑡 ∈ 𝑇\{0} (25)   

 ∑ 𝑐𝑙𝑜𝑠𝑒𝑑𝑓
𝑡

𝑓∈𝐹

 ≤ 𝑀𝑎𝑥𝐶𝑙𝑜𝑠𝑒𝑑𝑡  , ∀ 𝑡 ∈ 𝑇\{0} (26) 

 ∑ 𝑦𝑓
𝑡

𝑓∈𝐹

≤ 𝑀𝑎𝑥𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑡  , ∀ 𝑡 ∈ 𝑇\{0} (27) 

 (∑ 𝐸𝑓𝑣
𝑡+

𝑓∈𝐹

) − 𝐻𝑣
𝑡+ ≤ 𝑀𝑎𝑥𝑅𝑒𝑎𝑙𝑣

𝑡 , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 (28) 

Constraints (24) state that, once a station 𝑓 is opened, it must remain open for the following 𝜏𝑓 time 

periods. However, at any given time period 𝑡,  if 𝑡 + 𝜏𝑓 is greater that the length of the planning horizon, 

than 𝑡 + 𝜏𝑓 must be replaced by |𝑇|. Therefore, 𝜏𝑓
𝑡 can be precomputed as 𝜏𝑓

𝑡 = min (𝜏𝑓; |𝑇| − 𝑡 + 1) .  

For instance, in Figure 12, stations A and B should remain opened for 4 periods once opened. Station 

B starts operating at the beginning of period 2, and remains open in the following 4 periods, until the 

end of period 5. Afterwards, it can remain open or be closed. On the other hand, station A only starts 

operating on period 4 and, since there are only 3 time periods remaining, it will operate until the end. 

In this case, it results that: 

𝜏𝑓=𝐴
𝑡=4 = min(𝜏𝑓; |𝑇| − 𝑡 + 1) = min(4; 6 − 4 + 1) = min(4; 3) = 3 

Constraints (25) and (26) place a limit on the amount of stations that can be opened and closed at each 

time period, while constraints (27) limit the total number of stations, all according to the decision-maker’s 

wishes. Finally, constraints (28) place a limit on the total number of vehicles of each type that can be 

relocated during each time period. Not all these constraints need to be implemented simultaneously. 

The appropriate constraints must be chosen according the decision-maker’s wishes. 

Coverage Constraints 

Coverage constraints deal with the assignment of emergency requests to vehicles at stations, ensuring 

those assignments are possible. 

 ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑣∈𝑉𝑓𝑓∈𝐹

≤ 1, ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (29) 

Figure 12 - Example for constraint (24). 
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 ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑙∈𝐿𝑝

≤ 𝑠ℎ𝑓𝑣
𝑡𝑠 , ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (30) 

 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ≤ 𝛾𝑣𝑝𝑙 ×  𝛿𝑓𝑑 , ∀∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑡 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (31) 

 𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ≥ 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠  ,         ∀∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑡 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (32) 

 𝜀 × 𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ≤ 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠  ,         ∀∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑡 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (33) 
 

Constraints (29) state that the total fraction of (𝑑, 𝑝, 𝑙) requests assigned to station/vehicle pairs cannot 

exceed 1, that is, it is not possible to assign more than the existing demand. Constraints (30) prevent 

any station/vehicle pair (𝑓, 𝑣) from being responsible for providing more care levels to the same call 

than the number of existing vehicles. Suppose that there is only one vehicle in a given station. If a call 

of type 𝑝 requires two care levels, ALS and BLS, then it is not possible to have 𝑎𝑑𝑝,ALS,𝑓𝑣
𝑡𝑠 + 𝑎𝑑𝑝,BLS,𝑓𝑣

𝑡𝑠 =

0.5 + 1 ≥ 1. If that were the case, then the single vehicle would have to provide two different care levels 

to the same call: BLS care to all calls and ALS to half of them. 

Constraints (31) only allow requests (𝑑, 𝑝, 𝑙) to be assigned to a vehicle of type 𝑣 if two conditions are 

met simultaneously: that vehicle type is capable of providing care level 𝑙 to a call of priority 𝑝 (𝛾𝑣𝑝𝑙 = 1) 

and vehicles at station 𝑓 are allowed to respond to calls on demand node 𝑑 (𝛿𝑓𝑑 = 1). The first condition 

may not be met if the vehicle does not have the necessary medical resources, while the second condition 

may not be met if, for instance, firefighter operators do not respond to calls outside their area. 

Constraints (32) assign the proper value to variables 𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠  (linking constraints), while constraints (33) 

force a station to cover a minimum amount of demand, if it cooperates to serve a demand node. 

The previous constraints assign emergency requests to station/vehicle pairs. However, an assignment 

of which guarantees coverage with a given reliability is desirable, as described next. 

Utilization Constraints 

This group of constraints calculates the expected utilization of vehicles and guarantees that enough 

vehicles are assigned to emergency requests of a given priority to ensure coverage. The utilization of 

vehicles of type 𝑣 on station 𝑓 during planning period 𝑡 and working shift 𝑠 (𝜌𝑓𝑣
𝑡𝑠 ) is calculated by dividing 

the total amount of time the vehicle is expected to be busy serving calls (determined by the assignment 

variables 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ) by the total availability time. In doing so, it is assumed that the workload arriving for 

vehicles of type 𝑣 on station 𝑓 is distributed evenly among vehicles of that type at that station. 

 
𝜌𝑓𝑣

𝑡𝑠 =
∑ ∑ ∑ 𝐷𝑒𝑚𝑑𝑝

𝑡𝑠 × 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 × (𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑓𝑣𝑑

𝑡𝑠 + 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒𝑑𝑝𝑙
𝑡𝑠 )𝑙∈𝐿𝑝∈𝑃𝑑∈𝐷

𝑠ℎ𝑓𝑣
𝑡𝑠 × 𝑆ℎ𝑖𝑓𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑠

,

∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

(34) 

   

Having defined 𝜌𝑓𝑣
𝑡𝑠 , constraints to guarantee coverage reliability can be developed. An idea similar to 

Shariat-Mohaymany et al. (2012) is used. However, instead of assuming server independence, it is 

assumed that, from the perspective of an emergency, servers operate as a M/M/N/ queueing system, 

where N is the number of servers assigned to that customer. This implies assuming that requests 

happen according to a Poisson process, service time is exponentially distributed (which is an important 

assumption) and that requests will wait if all servers are busy (which is reasonable, since there is no 

secondary system to which they can be transferred). Consequently, the Erlang-C Formula is applied, 
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which gives the blocking probability (𝑃𝐵) of the system, that is, the probability that an emergency request 

finds all of its 𝑁 assigned vehicles busy, given that these vehicles have a busy fraction equal to 𝜌: 

 𝑃𝐵 =

𝜌𝑁𝑁𝑁

𝑁! (1 − 𝜌)

[∑
(𝑁𝜌)𝑛

𝑛! +
𝜌𝑁𝑁𝑁

𝑁! (1 − 𝜌)
𝑁−1
𝑛=0 ]

 (35) 

 

Therefore, if coverage with reliability 𝛼 is to be ensured, it must be guaranteed that 𝑃𝐵  ≤ 1 −  𝛼 by 

choosing values of 𝜌𝑚𝑎𝑥 and 𝑁 according to (35). The parameter 𝑁 should be the number of vehicles 

that dispatchers analyse before dispatching a vehicle, thus effectively representing the number of 

vehicles responsible for that request, and 𝜌𝑚𝑎𝑥 follows from (35) and the chosen reliability level. 

Table 2 - Maximum workload per server for different numbers of servers and reliability levels. 

 Reliability (𝜶) 

Servers (𝑵) 80% 85% 90% 95% 99% 

1 0.20000 0.15000 0.10000 0.05000 0.01000 
2 0.37015 0.31390 0.25000 0.17110 0.07325 
3 0.46433 0.41033 0.34667 0.26253 0.14303 
4 0.52550 0.47475 0.41325 0.32975 0.20250 
5 0.56940 0.52140 0.46260 0.38100 0.25180 

Then, an upper bound on the unavailability probability of each vehicle (constraints (36)) is imposed and 

a lower bound on the number of vehicles that must share the responsibility of attending to an emergency 

request (constraints (37)). If required, these values can be different for each shift and time period 

combinations because, for instance, the decision-maker may wish to provide higher coverage reliability 

in busier periods. 

 
∑ ∑ ∑ 𝐷𝑒𝑚𝑑𝑝

𝑡𝑠 × 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 × (𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑓𝑣𝑑

𝑡𝑠 + 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒𝑑𝑝𝑙
𝑡𝑠 )

𝑙∈𝐿𝑝∈𝑃𝑑∈𝐷

≤ 𝜌𝑚𝑎𝑥 × 𝑠ℎ𝑓𝑣
𝑡𝑠 × 𝑆ℎ𝑖𝑓𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑠 , ∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

(36) 

 ∑ ∑ ∑ 𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑙∈𝐿𝑝𝑣∈𝑉𝑓

 ≥ 𝑁 
𝑓∈𝐹

, ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (37) 

Equity Constraints 

Finally, this group of constraints calculates the required values for the equity objective function. 

 
𝐴𝑇𝑇𝑑𝑝𝑙

𝑡𝑠 = (∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑣∈𝑉𝑓

 × 𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑓𝑣𝑑
𝑡𝑠

𝑓∈𝐹

) + (1 − ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑣∈𝑉𝑓𝑓∈𝐹

) × 𝜃,

∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

(38) 

 𝑀𝑖𝑛𝐴𝑇𝑇𝑑𝑝
𝑡𝑠 ≥  𝐴𝑇𝑇𝑑𝑝𝑙

𝑡𝑠  − 𝜃 × 𝛽𝑑𝑝𝑙
𝑡𝑠 , ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (39) 

 ∑ 𝛽𝑑𝑝𝑙
𝑡𝑠

𝑙∈𝐿𝑝

=  |𝐿𝑝| − 1 , ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (40) 

 𝐴𝑇𝑇̅̅ ̅̅ ̅̅  ≥ 𝑀𝑖𝑛𝐴𝑇𝑇𝑑𝑝
𝑡𝑠  , ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 (41) 

 

 

Constraints (38) calculate the average travel time for each emergency request at each time period. 

Similarly to Cardoso et al. (2015), unassigned requests (i.e. those not assigned to any station/vehicle 

pair) are penalized to a maximum value of travel time. Constraints (39) and (40) calculate, for each call 

priority of each region, the minimum average travel time across all care levels (that is, the fastest 

responder). Finally, constraints (41) assign the largest of these travel times to 𝐴𝑇𝑇̅̅ ̅̅ ̅̅ . 
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5.3 SOLUTION APPROACH 
Given the model’s complexity and expected size of real instances, traditional solvers, such as CPLEX, 

employing optimal solution methods may consume significant time. Even though the model is intended 

for strategic/tactical planning, which is performed less frequently and therefore where computational 

speed is less crucial, it is still important to seek alternative solution procedures which streamline model 

solution. For instance, this is necessary if the model is to be integrated in a decision-support system. 

As shown in the previous chapter, multiple heuristic approaches have been developed to address EMS 

location problems. These heuristics seek to explore underlying structure of the model. In this section, a 

hybrid heuristic which iterates between two sub-problems resulting from decomposing the original model 

is proposed to solve the model for the expected coverage (Z1) objective. 

5.3.1 MODEL DECOMPOSITION 
Note that the model integrates three decisions: station selection, allocation of vehicles to stations and 

assignments of nodes to vehicles. Although taking these decisions simultaneously is expected to yield 

better solutions, they can be made sequentially. In particular, stations can be selected, and vehicles 

allocated to these sites before assigning demand. This observation motivates the proposed heuristic, 

which consists of decomposing the original model in two sub-models and iterate between them.  

The first sub-model (SP1) decides the location of facilities and allocation of vehicles. This model is, in 

fact, a traditional gradual coverage model with multiple customer and server types. For this purpose, 

instead of maximizing expected coverage (which takes into account demand assignment variables), 

potential expected coverage is maximized. This is achieved by replacing the variables 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠  with 𝑠ℎ𝑓𝑣

𝑡𝑠  

in the expression of the objective function. Furthermore, all constraints related with demand assignment 

are lifted. Accordingly, the formulation of this model is as follows: 

SP1: 

𝑍1  = max ∑ ∑ 𝑊𝑝𝑙
1

𝑙∈𝐿𝑝∈𝑃

× ∑ 𝑊𝑡
2 ×

𝑡∈𝑇

∑ 𝑊𝑠
3 ×

𝑠∈𝑆

∑ ∑ ∑ 𝑠ℎ𝑓𝑣
𝑡𝑠 ×

𝑣∈𝑉𝑓𝑓∈𝐹𝑑∈𝐷

𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × ∅𝑓𝑣𝑑𝑝𝑙

𝑡𝑠  

        Subject to constraints (4) to (28). 
 

Once the 𝑠ℎ𝑓𝑣
𝑡𝑠  variables are fixed, they can be inputted into a second sub-problem, which assigns 

demand to these vehicles without exceeding vehicle utilization constraints, considering the remaining 

constraints and the original objective function. The second sub-model (SP2) is as follows: 

SP2: 

𝑍1  = max ∑ ∑ 𝑊𝑝𝑙
1

𝑙∈𝐿𝑝∈𝑃

× ∑ 𝑊𝑡
2 ×

𝑡∈𝑇

∑ 𝑊𝑠
3 ×

𝑠∈𝑆

∑ ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ×

𝑣∈𝑉𝑓𝑓∈𝐹𝑑∈𝐷

𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × ∅𝑓𝑣𝑑𝑝𝑙

𝑡𝑠  

      Subject to constraints (29) to (33) and (36) to (37). 
 

5.3.2 PROPOSED HEURISTIC 
Instead of solving SP1 and SP2 sequentially, one can iterate between these two models, adding 

constraints to SP1 which account for the results of inputting the 𝑠ℎ𝑓𝑣
𝑡𝑠  of the previous iteration into SP2, 

approximating this solution to the optimal solution. For this purpose, note that the optimal solutions of 

SP1 consider nodes covered multiple times similarly to multiple nodes covered once. As such, this 

model tends to add more vehicles in regions where the demand is high, regardless of the number of 
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vehicles already positioned at those sites. However, after a certain point, adding more vehicles to a 

region may not provide any actual benefit in the original model, since the existing vehicles are sufficient 

to cover all requests reliably. Therefore, adding constraints to the SP1 which prevent this situation 

should lead to better, more distributed solutions. The heuristic procedure is outlined in Table 3. 

Table 3 - Pseudo-code of the proposed two-stage hybrid heuristic. 

 

The proposed heuristic starts by solving SP1 and SP2 in sequence. Comparing both solutions, the 

heuristic accesses which station/vehicle pairs have been most overestimated in the objective function 

of SP1 by comparing the terms of both objective functions. For the N most overestimated pairs, a cut is 

added to SP1 in order to promote more diluted solutions. Furthermore, the value of N is updated in order 

to improve the speed of the heuristic. The key insight is that, in the beginning of the optimization, many 

station/vehicle pairs are overestimated by SP1. However, as cuts are introduced, the solution starts 

converging towards the optimal solution, and smaller adjustments are required. Therefore, the number 

of constraints added to SP1 decays as the heuristic progresses. 

5.4 CHAPTER CONCLUSIONSS 
In this chapter, the problem is restated, and a Multi-Objective Dynamic Mixed-Integer Programming 

model is developed. This model is proposed to aid vehicle planning by considering three levels of 

decision: selection of stations, assignment of vehicles to stations and allocation of demand to 

vehicle/station pairs. Therefore, it encompasses both strategic and tactical decisions. Furthermore, 

three objectives – coverage, cost and equity – are included, alongside different constraints capturing 

restrictions to the desired plan. Different vehicles and call priorities, as well as multiple time periods and 

shifts, are accounted for, thus allowing for the gradual reconfiguration of the existing system. A two-

stage hybrid heuristic procedure is also proposed, seeking to iterate between two subproblems of the 

original formulation to derive good feasible solutions considering only the first objective (coverage).  

The following chapter describes the data collection and treatment procedures required to apply the 

proposed model to the case study. 

Algorithm Hybrid Heuristic 

1:  Initialize: 𝐵𝐹𝑆 ← 0, 𝑖𝑡𝑒𝑟 ← 1, 𝑐𝑜𝑛𝑠 ← 0 
2: Set  𝑁, 𝜀,    
3: While (𝑖𝑡𝑒𝑟 ≤ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) and (cons ≤ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡) do: 
4: Solve  𝑆𝑃1 and retrieve optimal decision-variable 𝑠ℎ𝑖𝑡𝑒𝑟 
5: Solve  𝑆𝑃2 and retrieve optimal solution value 𝑍∗ 
6: If (𝑍∗ ≥ 𝐵𝐹𝑆)) then: 
7: Set  𝐵𝐹𝑆 ← 𝑍∗  
8: Set  𝑐𝑜𝑛𝑠 ← 0 
9: Else: 

10: Set  𝑐𝑜𝑛𝑠 ← 𝑐𝑜𝑛𝑠 + 1 

11: For Each (𝑠ℎ𝑓𝑣
𝑡𝑠 𝑖𝑡𝑒𝑟

) do: 

12: 
Compute:  𝑟𝑎𝑛𝑘𝑓𝑣

𝑡𝑠 𝑖𝑡𝑒𝑟
←  ∑ ∑ 𝑊𝑝𝑙

1
𝑙∈𝐿𝑝∈𝑃 × ∑ 𝑊𝑡

2 ×𝑡∈𝑇 ∑ 𝑊𝑠
3 ×𝑠∈𝑆 ∑ ∑ ∑ 𝑠ℎ𝑓𝑣

𝑡𝑠 ×𝑣∈𝑉𝑓𝑓∈𝐹𝑑∈𝐷 𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × ∅𝑓𝑣𝑑𝑝𝑙

𝑡𝑠 −

   ∑ ∑ 𝑊𝑝𝑙
1

𝑙∈𝐿𝑝∈𝑃 × ∑ 𝑊𝑡
2 ×𝑡∈𝑇 ∑ 𝑊𝑠

3 ×𝑠∈𝑆 ∑ ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ×𝑣∈𝑉𝑓𝑓∈𝐹𝑑∈𝐷 𝐷𝑒𝑚𝑑𝑝

𝑡𝑠 × ∅𝑓𝑣𝑑𝑝𝑙
𝑡𝑠  

13: Sort 𝑠ℎ𝑓𝑣
𝑡𝑠 𝑖𝑡𝑒𝑟

 according to 𝑟𝑎𝑛𝑘𝑓𝑣
𝑡𝑠 𝑖𝑡𝑒𝑟

 

14: For the first 𝑁 𝑠ℎ𝑓𝑣
𝑡𝑠 𝑖𝑡𝑒𝑟

 do: 

15: Add constraint 𝑠ℎ𝑓𝑣
𝑡𝑠  ≤  max (1, 𝑠ℎ𝑓𝑣

𝑡𝑠 𝑖𝑡𝑒𝑟
− 1) 

16: Update 𝑁 ← 𝑟𝑜𝑢𝑛𝑑 (
𝑁

𝜀
) 

17: Set 𝑖𝑡𝑒𝑟 ← 𝑖𝑡𝑒𝑟 + 1 



 48 

6. DATA COLLECTION AND ANALYSIS 
This chapter introduces the data collection and analysis procedures required to apply the model to the 

case study. Since not all necessary data could be made available by INEM, section 6.1 lists all the 

assumptions required to estimate model inputs from available data. Section 6.2 describes data collection 

procedures, while section 6.3 describes the required methods to transform the data into parameters. 

Finally, section 6.4 presents the chapter’s conclusions. 

6.1 ASSUMPTIONS AND LIMITATIONS 
This section summarizes the assumptions required to estimate model inputs from the available real-

world data. Firstly, due to privacy concerns, historical records identify each emergency’s location by its 

postal code. Although it is possible to geo-reference each postal code, this approximation may introduce 

errors. Moreover, for some emergencies, only a shorter (four digit) postal code is available, 

corresponding to larger regions within each city. Since the number of entries in the records without the 

complete postal code is significant (around 40%), these cannot be discarded. Given that the number 7-

digit postal code emergencies is significant in all regions – above 60% – it is assumed that 4-digit 

emergencies are distributed similarly to 7-digit emergencies of the same region. This assumption is 

possible because there is no pattern regarding which areas are identified with a 4-digit code. 

Another limitation is that INEM cannot provide travel time data. With this information, it would be possible 

to extrapolate travel times to feed the model, compute different coverage probabilities and derive 

indicators to assess the quality of the current system and compare it to the proposed solution. To 

overcome this limitation, Google Maps is used to calculate the distance between the emergency stations 

and the centroid of each demand region, and an empirical model for emergency vehicle travel time 

(Budge, Ingolfsson and Zerom, 2010) is applied to compute the travel time distribution. Furthermore, it 

is also assumed that:  

• Euclidean distances can be used to approximate travel times for demand aggregation purposes, 

given that the road networks are dense in urban areas, such as Lisbon and Setúbal; 

• Emergency vehicles always use the shortest-time route; 

• Since all considered vehicles have 4 wheels, travel times and coverage probabilities are 

independent of the vehicle type; 

• Given that Lisbon and Setúbal are not expected to undergo structural changes in their road 

infrastructures, travel times are also assumed to be independent of the month of the year;  

• Station capacities are also presumed to remain equal throughout the planning horizon; 

Finally, cost information is not available since the GPCG is not responsible for cost analysis at INEM. 

As such, costs are estimated from public reports. It is assumed that costs remain constant throughout 

the planning horizon, that opening and closing stations bears no cost and that NINEM costs are similar 

to RES. Furthermore, average fuel and medical supplies consumptions are used to estimate the 

assignment costs of INEM vehicles. The potential impact of uncertainty regarding these parameters is 

studied in Chapter 7.  
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6.2 DATA COLLECTION PROCEDURES  
To apply the proposed model to INEM’s case-study, relevant data needs to be collected and treated to 

generate model inputs. Employed data collection procedures include: 

1. Interviews with INEM practitioner: during six interviews with a planning technician of the 

GPCG, the SIEM is characterized and several inputs are defined, such as resource availability, 

coverage targets, objective function weights and system reconfiguration parameters; 

2. Analysis of historical emergency request records: historical records from 2017 and half 

2018 (the most recent available records) are collected and analysed to develop emergency 

request forecasts for the planning period; 

3. Public platforms: such as Google Maps, are used to estimate parameters for which historical 

data is not available. 

6.3 PLANNING PERIOD AND REGION CHARACTERIZATION 
In line with the current practice, and in order to support the formulation of INEM’s yearly vehicle location 

plan, a 12-month planning horizon is analysed (the year of 2020). Additionally, three 8-hour shifts are 

considered: morning (00:00 AM – 08:00 AM), evening (08:00 AM – 04:00 PM) and night (04:00 PM – 

12:00 PM). Therefore, an average day within each month is considered, and three shifts are studied. 

Since the model conceptualizes the region of interest as a discrete space, emergency requests must be 

aggregated in demand areas and station locations must be known in advance. This section 

characterizes Lisbon and Setúbal, identifying demand areas and station locations. Geographic analysis, 

including demand aggregation, is conducted using a Geographic Information System (GIS) software 

called QGIS. Georeferencing is accomplished using the Google Geocoding API in a Python script. 

6.3.1 DEMAND AREAS 
The demand point aggregation problem consists of aggregating Demand Points (DP) into Aggregate 

Demand Points (ADP). Besides minimizing the computational cost, demand aggregation eases data 

collection and modelling, as well as reduces statistical uncertainty. However, demand aggregation 

introduces errors into the model. Therefore, a trade-off must be considered: using more demand points 

reduces the aggregation error but creates more difficult models (Francis et al., 2009).  

It is important to highlight that, since the formulation of the coverage (𝑍1) and cost objectives (𝑍2) use 

an additive structure, aggregation errors may cancel out. However, this is not the case for equity (𝑍3). 

In order to aggregate demand requests, emergency records from 2017 and half of 2018 are analysed. 

As mentioned, emergency records identify each emergency’s location through its postal code. 

Portuguese postal codes are composed of 7 digits. The first 4 digits identify a region within a city, while 

the remaining 3 identify street segments or collections of streets. Figure 13 shows Lisbon’s 4-digit and 

7-digit postal code areas (Voronoi Polygons2). A limitation in the available records is that some 

emergencies are identified only by the 4-digit postal code. To overcome this limitation, a first possibility 

would be to use the centroids of the 4-digit postal code areas as ADPs. However, as Figure 13 shows, 

these areas are excessively large and non-uniform, and would likely introduce large aggregation errors. 
 

 
2 Voronoi polygons partition a plane based on points such that the region associated with each point contains all 
locations closer to that point than any other. In this case, each postal code’s georeferenced location is used. 
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Another option is to discard the 4-digit observations. However, these account for 44.52% of the entries 

in Lisbon’s records, and 37.15% in Setubal’s, meaning that these observations are significant and 

should not be discarded. Consequently, the 4-digit postal codes are converted into 7-digit postal codes 

by assuming that 4-digit emergencies are distributed similarly to the 7-digit emergencies of the same 4-

digit region. A third possibility is to use 7-digit areas as ADPs. However, as Figure 13 also illustrates, 

there is a significant number of 7-digit postal code areas, which would likely lead to an intractable model.  

Therefore, alternative aggregation schemes had to be considered. Unfortunately, the literature has 

concentrated more on aggregation errors of P-median than covering models (Francis et al., 2009). 

Nevertheless, the following five aggregation algorithms are identified: K-Means (KM) (MacQueen, 

1967), Pick the Farthest (PTF) (Daskin et al., 1989), Independent Projection Algorithm (IPA) (Emir-

Farinas and Francis, 2005), Approximate Common Reachability Set (ACRS) method (Jang and Lee, 

2015) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996). 

Jang and Lee (2015) provide a comparison of the IPA, PTS, K-Means and the ACRS for covering 

problems and conclude that the IPA and PTS present the highest aggregation errors. Therefore, these 

methods are excluded. On the other hand, the ACRS requires an explicit unique gradual coverage 

function. Although the proposed model uses a gradual coverage objective, it is based on travel time 

probability estimation and not on a single explicit gradual coverage function. This excludes the ACRS. 

As such, only the DBSCAN and the KM methods are tested. In both cases, Euclidean distances among 

georeferenced postal codes are used. Since the road network in both areas is dense, it is assumed that 

the path followed between any two points is approximately linear. In rural areas, this assumption may 

not hold. Regarding parameter definition for the DBSCAN, the minimum number of points in a cluster is 

set to 1, so that all DPs are assigned to one ADP. The maximum distance between DPs of one cluster 

is adjusted to achieve the same number of clusters as the KM. The algorithms are applied using the 

corresponding plugin in QGIS. The number of ADPs is set to 1%, 2% and 5% of the number of DPs, in 

order to allow testing the proposed model for different instance sizes. Therefore, three demand 

aggregation possibilities are developed for each city, as presented in Table 4.  

Table 4 - Cluster partition possibilities and corresponding number of aggregate demand points. 

Cluster Partition Lisbon Setúbal 

1% 33 27 

2% 66 55 

5% 165 137 
 

Figure 13 - Postal code areas in Lisbon (Right: 4-digit postal code areas; Left: 7-digit postal code 
areas). 
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The results are presented in Figure 14 for 165 (5%) ADPs in Lisbon. 

Due to the high density of postal codes in the centre of Lisbon, the DBSCAN results in very 

heterogeneous demand regions. In order to achieve smaller regions near the city centre, a short 

distance between points of the same cluster would have to be used, resulting in a prohibitively large 

number of ADPs. The same problem is encountered in Setúbal. The KM, on the other hand, provides a 

more appealing partitioning, with identically sized clusters evenly spread throughout the region. 

Therefore, given that the results of the DBSCAN are unsuitable, the ADPs resulting from KM are used 

as demand areas for the case-study regions. The final clusters using KM for 1%, 2% and 5% of the 

number of DPs are displayed in Figure 15.  

6.3.2 EMERGENCY STATIONS 
Station locations can be divided into two sets: existing stations and potential new stations. Existing 

stations in Lisbon and Setúbal are presented in Figure 16. 

Unfortunately, the GPCG does not have a list of potential sites for new stations. Therefore, these stations 

had to be surveyed. For this purpose, a set of criteria is defined, based on interviews, to establish rules 

for identifying potential new stations. 
 

Figure 14 - Demand aggregation areas for Lisbon using the DBSCAN (left) and KM (right) methods. 

Figure 15 - Final cluster partitions and corresponding centroids for Lisbon and Setúbal using KM (Above: 1% (33), 2% (66) and 
5% (165) clusters in Lisbon; Bellow: 1% (27), 2% (54) and 5% (135) clusters in Setúbal). 
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Currently, INEM seeks to explore public facilities as 

stations, mainly due to their increased flexibility and 

lower costs. Facilities which belong to the Ministry 

of Health are preferred. Given these preferences, 

two levels of potential stations are defined: 

• Level 1: hospitals and primary health 

centres as well as INEM, firefighter and Red 

Cross facilities; 

• Level 2: schools and police stations 

meeting certain infrastructure conditions. 

Using Google Maps to survey the regions of interest 

and validating with INEM, a set of potential stations 

is collected and georeferenced using the Google 

Geocoding API. This resulted in a total of 95 

potential new sites for Lisbon and 11 in Setúbal, 

which are presented in Figure 17. 

The capacity of each existing station is available 

from INEM. On the other hand, the capacity of new 

stations is estimated as two vehicles per station, 

except for some stations in which space constraints 

limit the capacity to only one vehicle. 
 

Besides determining the location of existing and 

potential stations, the maximum number of stations 

on each period are set to 20 in Lisbon and 5 in 

Setúbal, across all months except June – 

September, in which 23 stations are allowed in 

Lisbon and 6 in Setúbal. Additionally, the number of 

stations which can be opened and closed in each 

month are presented in Table 27 of Appendix E. 

6.4 EMERGENCY VEHICLES 
Only vehicles capable of answering P1 and P3 calls are considered (NINEM, RES, PEM, AEM, SIV and 

VMER). MEMs are excluded because only one of these vehicles operates in Lisbon and none in Setúbal, 

and their positions have to remain unchanged due to external factors. NINEM, RES and PEM are non-

selectable, which means that they cannot be moved once they are assigned to a given region. AEMs, 

VMERs and SIVs are selectable. The initial system state is characterized by the number of vehicles 

housed in each station. This is the solution currently in place and is presented in Table 5. Seasonal 

PEMs, which are positioned during the summer, have not been included because their position is 

variable. 

Figure 16 - Existing emergency stations in Lisbon (above) 
and Setúbal (bellow). 

Figure 17 - Surveyed potential new emergency stations 
(Green: level 1; Orange: level 2). 
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Table 5 - Current distribution of vehicles among emergency stations. 

 

The availability of emergency vehicles on each month and each shift is presented in Table 28 and Table 

29 of Appendix E. Note that seasonal vehicles are introduced in the summer months. Additionally, 

NINEMs, VMERs and SIVs are available on all shifts, while no RESs are available on any city. AEMs 

and PEMs are partially available in the evening and night shifts. 

Vehicles are capable of providing BLS and ALS. BLS is provided by all vehicles except VMERs. ALS is 

provided by VMERs and SIVs. Additional information regarding the stations in which each vehicle can 

be positioned is necessary. For this purpose, stations are classified in 4 categories, as in the legislation: 

health units, INEM, Firefighters/RC, police/schools. Table 6 describes the possible allocations of 

vehicles to stations. 

Table 6 - Allowed allocations of emergency vehicles to emergency stations. 

 Health Units INEM HQ Police/Schools Firefighters/RC  

VMER Yes Yes No No 
SIV Yes Yes No No 
AEM Yes Yes Yes Yes 
PEM No No No Yes 
RES No No No Yes 
NINEM No No No Yes 

 

6.5 EMERGENCY REQUESTS  
In order to derive the demand parameters, the most recent information on historical emergency records 

of Lisbon and Setúbal is used. 115.951 records are available for Lisbon and 18.675 for Setúbal. These 

STATIONS VMER SIV AEM PEM NINEM TOTAL 

LISBON 3 1 14 2 6 26 

1 INEM Headquarters  1    1 
2 GNR Reg. Cavalaria - Ajuda   1   1 
3 Esquadra PSP - Bairro Boavista   1   1 
4 Centro Saúde Lóios - Olivais   3   3 
5 Hospital Curry Cabral   2   2 
6 Escola S.D. Benfica   1   1 
7 GNR Brigada Fiscal - Beato   1   1 
8 GNR Brigada Trânsito - Alcântara   1   1 
9 Hospital Egas Moniz   1   1 
10 Hospital São Francisco Xavier 1     1 
11 Hospital São José 1     1 
12 Hospital Santa Maria 1     1 
13 INEM - R. Infante D. Pedro   3   3 
14 Reg. Sapadores Bomb. - Av D. Carlos I    2  2 
15 Volunteer Firefighters Ajuda     1 1 
16 Volunteer Firefighters Beato     1 1 
17 Volunteer Firefighters Campo De Ourique     1 1 
18 Volunteer Firefighters Cabo Ruívo     1 1 
19 Volunteer Firefighters Lisboa     1 1 
20 Volunteer Firefighters Lisbonenses     1 1 

SETÚBAL 1  2 5  8 

1 Hospital de Setúbal 1     1 
2 Hospital Psiquiátrico Setúbal   2   2 
3 Volunteer Firefighters Setúbal - Sede    2  2 
4 Volunteer Firefighters Setúbal - Azeitão    1  1 
5 Cruz Vermelha Setúbal    2  2 

TOTAL 4 1 16 7 6 34 
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records describe, for every emergency, the corresponding date and time, postal code, priority, 

dispatched vehicles and the time these vehicles became available (“Base Time”).  

In a preliminary step, duplicate records are removed, and the remaining records are filtered to include 

P1 and P3 calls. Auxiliary fields are also calculated, including shift, month, total service time (difference 

between start and base time), time between successive calls (measured at the first dispatch) and the 

care level for P1 calls. A two-step approach is proposed: 

1. Exploratory analysis: analysing emergency requests in order to verify previous assumptions 

regarding the underlying patterns. Data plots and statistical tests are used. 

2. Model fitting and forecasting: an appropriate model should be chosen and applied to predict 

the emergency requests over the planning horizon.  

The following two sections describe the results of the two-stage approach, which is performed using the 

statistical software R (R Core Team, 2017). Distribution fitting and statistical tests use the fitdistrplus 

package (Delignette-Muller et al., 2019) 

6.5.1 EXPLORATORY ANALYSIS 
Firstly, the initial assumption that the demand depends both on the time of the day and month is 

validated. Since the goal is to forecast call volumes, and in order to remove the effect of variable month 

length, the analysis focuses on the daily volume of calls. Boxplots of daily volume of calls, grouped by 

month (example in Figure 18) and shift, as well as the evolution of the arrival rate during the day (Figure 

19), suggest that the demand pattern is not stationary with month nor time of the day.  

The call arrival rate is usually greater in during the day (approx. 8 AM to 10 PM) and considerably lower 

during the night periods. Additionally, there tend to be more calls during the winter and less in the 

summer. This suggests that the call generating process is not stationary. 

Figure 18 - Boxplots of the daily volume of calls for each month in Lisbon (Left: P1 calls; Right: P3 calls). 
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Figure 19 - Evolution of the average call arrival rate during the day for Lisbon (left) and Setúbal (right). 
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In order to statistically verify this assumption, data is aggregated by month and shift, the mean and 

standard deviation (SD) of the daily volume of calls are calculated (Appendix D). Preliminary analysis of 

the histograms of the number of emergencies per day suggest that these variables follow a Poisson 

process (Appendix D). Therefore, non-parametric tests are appropriate. For this reason, a Kruskal-

Wallis test is conducted. The results are presented in Table 7. Since all p-values are smaller than the 

standard 0.05 threshold (corresponding to a 5% significance level), it is possible to conclude that there 

is a statistically significant difference between the demand in different months and shifts. 

Table 7 - Results of Kruskal-Wallis tests to the average daily volume of calls grouped by month and shift. 

City Priority p-value City Priority p-value 

Lisbon 
P1 < 2.2e-16 

Setúbal 
P1 0.008062 

P3 4.907e-10 P3 8.634e-06 
 

6.5.2 MODEL FITTING AND FORECASTING 
As mentioned in Chapter 4, methods to model EMS demand include probability distributions, time-series 

models, spectral analysis or neural networks. Using neural networks is not possible due to data scarcity, 

which would be insufficient to develop the training sets required by machine learning algorithms. 

Similarly, time-series models require longer series and demographic and economic factors for 

regressive models are not available at the required aggregation level. 

Besides, by analysing the elapsed time between consecutive calls, it is possible to conclude that they 

closely resemble an Exponential distribution, as exemplified in Figure 20.  

To verify this hypothesis, a Chi-Squared Goodness-of-Fit test is conducted to the inter-call times of P1 

and P3 calls in Lisbon and Setúbal. The results are presented in Table 8. 

Table 8 - Results of a Chi-Squared Goodness-of-Fit test to the fit of an exponential distribution to inter-call times. 

City Priority p-value City Priority p-value 

Lisbon 
P1 0.5616801 

Setúbal 
P1 0.4028691 

P3 0.6892617 P3 0.2540842 
 

Given that all p-values are above the 0.05 significance level, the hypothesis that the inter-call times are 

consistent with an exponential distribution cannot be statistically rejected. In light of these results, 

emergency requests are modelled as a non-stationary Poisson process, since the arrival rate fluctuates 

during the day. To simplify the analysis, the Poisson process is assumed to be decomposable in three 

shifts and twelve months. In each of these periods, calls occur at a fixed rate, determined by fitting an 

Figure 20 - Histogram and fitted exponential distribution to the elapsed time between consecutive emergency 
requests (Right: P1 emergencies, Lisbon; Left: P3 emergencies, Lisbon). 
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Exponential distribution to the inter-call times. As such, there are 36 different arrival rates for each call 

priority and region. The corresponding rates (calls/hour) are presented in Table 30 of Appendix E. 

Subsequently, the fraction of emergencies coming from each region is calculated. Finally, the number 

of emergencies calls on each shift is calculated by using a Poisson distribution with the fitted rate 

parameter. Also, upper and lower bound estimates by calculating the 95% confidence intervals can be 

computed. As an example, the final estimates of daily call volumes for two clusters of the 1% cluster 

partition of Lisbon are presented in Table 9.  
 

Table 9 - Example of the estimates of expected daily call volumes for the 1% cluster partition of Lisbon. 

 

6.6 SERVICE AND TRAVEL PARAMETERS 
As mentioned, historical records do not include travel time information. However, these records reflect 

the total service time, defined as the sum of travel and service time. In order to estimate the travel time, 

the empirical model of Budge, Ingolfsson and Zerom (2010) is used. In this model, the probability 

distribution of travel times for emergency vehicles travelling under “lights and sirens” (as Portuguese 

emergency vehicles) as a function of the travel distance is described by: 

𝑇 = 𝑚(𝑑)𝑒𝑐(𝑑)×𝜀 

Where 𝑑 is the travel distance, 𝑚(𝑑) is the median travel time for distance 𝑑, 𝑐(𝑑) is the centile-based 

coefficient of variation and 𝜀 follows a centred t-student distribution with 𝜏 = 4 degrees of freedom. In 

order to estimate 𝑚(𝑑), the KWH function developed by Kolesar, Walker and Hausner (1975) is used:  

𝑚(𝑑) =  {
2√𝑑/𝑎 𝑑 ≤ 2𝑑𝑐

𝑣𝑐/𝑎 + 𝑑/𝑣𝑐 𝑑 > 2𝑑𝑐

 

This function assumes that the vehicle accelerates at a rate 𝑎 until it reaches cruising speed 𝑣𝑐 after a 

distance of 𝑑𝑐. Furthermore, 𝑐(𝑑) is estimated as: 

𝑐(𝑑) =  
√𝑏0(𝑏2 + 1) + 𝑏1(𝑏2 + 1)𝑚(𝑑) + 𝑏2 × 𝑚(𝑑)2

𝑚(𝑑)
 

Where 𝑏0 represents the variability at the start and end of the trip, 𝑏1 represents short-term speed 

variation within a trip and 𝑏2 measures variability from external factors. The authors use data from the 

city of Calgary, Alberta, to find maximum likelihood estimators for the above parameters.  

In the absence of data from the case study, this empirical model is used with the original parameters. 

However, some modifications are implemented. The cruising speed, 𝑣𝑐, is estimated as 50 𝐾𝑚/ℎ during 

   Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

C
L

U
S

T
E

R
 9

 

P
1
 Morning 1.07 1.10 0.99 0.64 0.83 0.97 1.02 1.11 1.36 0.67 0.83 1.45 

Evening 0.81 0.93 0.62 0.61 0.50 0.71 0.60 0.36 0.67 0.85 0.68 0.82 
Night 0.38 0.45 0.33 0.47 0.49 0.25 0.64 0.24 0.55 0.36 0.07 0.27 

P
3
 Morning 7.78 6.74 8.28 7.65 7.69 8.28 7.76 6.86 6.00 7.87 7.46 6.42 

Evening 5.72 6.08 6.35 4.88 6.04 4.92 4.69 4.19 5.52 5.62 6.42 6.26 
Night 2.59 2.68 2.84 2.37 2.53 2.28 1.89 3.80 3.28 2.43 2.51 2.64 

C
L

U
S

T
E

R
 

1
7
 

P
1
 Morning 0.77 1.56 1.44 0.67 0.96 1.02 1.09 1.03 1.23 1.08 1.35 1.56 

Evening 0.89 0.90 0.88 0.90 1.15 1.04 0.95 0.43 0.75 0.86 0.57 1.74 
Night 0.46 0.82 0.49 0.47 0.27 0.69 0.25 0.52 0.61 0.26 0.36 0.28 

P
3
 Morning 9.64 9.71 8.98 8.76 9.03 9.20 9.31 7.43 8.67 9.39 10.0 9.53 

Evening 7.82 7.81 7.37 6.11 6.64 7.12 7.19 5.50 5.52 7.38 7.80 7.64 
Night 3.32 3.07 3.03 3.20 2.80 3.47 2.85 3.63 2.86 3.45 3.71 3.18 
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the morning, 60 𝐾𝑚/ℎ during the evening and 70 𝐾𝑚/ℎ for the night. This value is different from the 

𝑣𝑐 = 100.7 𝑘𝑚/ℎ used by the authors in their case study, which is unreasonable for Lisbon and Setúbal 

where the speed limit is 50 Km/h. Nevertheless, it has been recognized that emergency vehicles travel 

at a faster speed, especially in less congested shifts. Furthermore, the average acceleration and 

deceleration, 𝑎, is estimated at 20 𝐾𝑚/ℎ/𝑚𝑖𝑛, about half of the 𝑎 = 41.0 𝑘𝑚/ℎ/𝑚𝑖𝑛 of the original study. 

In order to obtain estimates of travel time, the road distance between each station and postal code is 

determined using Google Distance Matrix API. This procedure implies that emergency vehicles are 

assumed follow the shortest path, since this is the distance returned by the API. The travel mode is set 

to “driving” and no restrictions are imposed on the route. Subsequently, the empirical model can be 

applied by running a Monte Carlo simulation with 4000 replications (which enables an estimate of 

±0.1 𝑚𝑖𝑛. with 95% confidence), implemented 

in a R. Depending on the trip’s shift, different 

parameters are used to capture fluctuating 

traffic dynamics during the day. As an 

illustration, Figure 21 shows the estimated 

mean travel times as a function of distance for 

different cruising speeds, 𝑣𝑐. The maximum 

travel time, which is also a model parameter, 

is determined for different cluster partitions, as 

presented in Table 31 of Appendix E. 

It is important to highlight that, given that all 

considered vehicles are 4-wheel vehicles, it is 

assumed that they have similar travel times and coverage probabilities. If MEMs had been considered, 

then their shorter travel time (and higher coverage probabilities) could have been accounted for by 

increasing their cruising speed and average acceleration in the travel time model of section 6.7. 

Finally, service time is calculated by subtracting the estimated travel time from the total service time and 

calculating the sample mean for each demand zone, priority, care level, month and shift, using R’s 

package dplyr (Wickham et al., 2019). For some demand areas, no emergencies are recorded. In these 

cases, the service time is estimated as the global average service time for that priority, care level, month 

and shift.  A sample of estimated service times for Setúbal is presented in Table 32 of Appendix E. 

6.7 LEGISLATION RESTRICTIONS 
As mentioned in Chapter 3, Portuguese legislation sets rules regarding the minimum number of vehicles 

that must be positioned in hospitals, depending on their emergency department category. In particular, 

all SUP (Multipurpose Urgency Services) and SUMC (Medical-Surgical Urgency Services) hospitals 

should be assigned a VMER, while SUB (Basic Urgency Services) should have a SIV. 

Data from the Portuguese NHS shows that all hospitals with emergency departments in Lisbon are SUP, 

while Setúbal has one hospital with SUMC. Therefore, a VMER should be assigned to all these 

hospitals. However, one hospital in Lisbon - Maternidade. Alfredo da Costa - has been excluded by 

INEM due to lack of space for an emergency vehicle. Additionally, two other hospitals in Lisbon are not 

Figure 21 - Average travel time for different cruising 
speeds as a function of travel distance. 
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equipped with a VMER, as the legislation requires, due to insufficient vehicles. Consequently, the 

minimum number of vehicles and the current situation can be summarised as in Table 10. 

The legislation also defines which vehicles can be positioned in each type of station. These requirements 

are already reflected on the allowed allocations of Table 6. Additionally, the legislation also states that 

one PEM must be located in each municipality and that AEMs must be located in regions where SUP 

or SUMC hospitals exist. However, this is not an issue in any of the study areas since these 

requirements are already met with the available vehicles.  

Table 10 - Minimum and current number of vehicles in emergency stations. 

 

Stations 

Required Vehicles  Current Vehicles 

 VMER  VMER AEM 

L
IS

B
O

N
 

Hospital São José - Lisboa 1  1 0 

Hospital Santa Maria 1  1 0 

Hospital São Francisco Xavier 1  1 0 

Maternidade Dr. Alfredo da Costa 1  No conditions 

Hospital D. Estefânia 1  0 0 

Hospital Egas Moniz 1  0 1 

SETÚBAL Hospital São Bernardo 1  1 0 
 

6.8 OBJECTIVE FUNCTION DATA 

6.8.1 COVERAGE PROBABILITIES 
In order to estimate the coverage probabilities, in the absence of travel time data, the empirical model 

described in section 6.7 is employed. As mentioned, INEM sets a coverage target of 15 minutes for all 

call priorities and all care levels in an urban setting. Therefore, the probability that a vehicle can cover 

a given emergency corresponds to the probability that it can reach the scene in 15 minutes or less. This 

probability is estimated by the same 

procedure described in section 6.7. Firstly, 

the distance between stations and the 

centroid of each area is determined using 

the Google Distance Matrix API. A Monte 

Carlo simulation is used to get a numerical 

estimate of the probability 𝑃(𝑇 ≤ 15 𝑚𝑖𝑛. ).  

Figure 22 shows the coverage probability 

as a function of distance for different 

cruising speeds. In practice, the empirical 

model is used to develop a gradual 

coverage function which depends on distance 

and speed (which, in turns, depends on the time of the day). As an example, Table 33 of Appendix E 

shows the coverage probabilities for Setúbal for 3 regions of the 1% partition and 3 stations during the 

morning. As in section 6.7, it is assumed that the coverage probability is independent of vehicle type. 

6.8.2 COVERAGE WEIGHTS 
Objective function weights are determined in collaboration with INEM using a Swing Weighting 

Procedure (Von Winterfeldt and Edwards, 1993). This method is chosen for its simplicity. Since these 

Figure 22 - Probability of travel time bellow 15 minutes for 
different cruising speeds as a function of distance.   
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weights are related with covering different emergencies in different periods and shifts, a lower reference 

level is defined as a solution that does not cover emergencies of a given priority with a given care level, 

while an upper reference level is defined as a solution providing full coverage to those calls.  

To assess the W1 weights, the decision-maker is asked to consider the improvements from the lower 

reference level (no coverage) to the upper reference level (full coverage) on each priority/care-level 

combination. The most important swings are set as providing ALS and BLS to P1 calls, which the 

decision-maker considers to be equally attractive. The remaining swing is ranked as the less preferred 

swing. Subsequently, the decision-maker is asked to compare the other swings to the most preferred 

swings, for which a value of 100 is established, by comparing the improvement in the attractiveness of 

the solution. After quantifying the swings, the weights are obtained via normalization (Table 11).  
. 

Table 11 - Objective function weights (W1). 

 

 

 

Repeating this procedure for W2 and W3 weights, lower and upper reference levels are set as no 

coverage and full coverage of all emergencies on each month and shift, respectively. The decision-

maker considers all to be equally attractive. As such, all W2 and W3 weights are set to 1. 

6.8.3 SYSTEM COSTS 
As mentioned, the GPCG is not responsible for cost analysis at INEM. Therefore, cost information 

cannot be made available. Nonetheless, given the importance of considering costs, these are estimated 

based on public information. In particular, the 2016 Accounting Report (Instituto Nacional de 

Emergência Médica, 2016a) is used, since it is more detailed that subsequent versions. In order to 

simplify the analysis, cost categories are developed. These categories are developed by adapting the 

cost framework proposed by Lerner et al. (2007) to INEM’s reality. Only costs which are directly or 

indirectly affected by the vehicle location decisions are considered. A summary of considered cost 

categories together with the model parameter to which they belong is presented in Table 12. 

Table 12 - Considered cost categories from Lerner et al. (2007) and corresponding model inputs. 

Cost category Description Parameter 

Human 
Resources 

Salaries Compensation paid to TEPHs. 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 

Overtime Shift bonus. 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 

Physical 
Station 

Acquisition Station installation (e.g. administrative costs). 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡 

Operation Rent for AEM. PEM and VMER subsidies. 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡 

Replacement Station decommissioning. 𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡 

Vehicles 

Operation Fuel (AEM, VMER and SIV) and exit prizes (PEM, RES 
and NINEM). 

𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 

Maintenance Repairs and others for AEM, VMER, SIV. Included in 
exit prizes/subsidies for PEM, RES, NINEM. 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡 

Consumables Acquisition  Only for AEM. Other vehicles are resupplied by partner. 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 
 

Although the model allows for costs to depend on both period and shift, it is assumed that all cost 

categories are independent of time and shift considered. While base salaries and exit prizes are not 

expected to fluctuate during the planning horizon, additional benefits may depend on the working shifts. 

Additionally, cost for RES are excluded because neither of the two regions uses these vehicles. 

 

 P1 P3 
 ALS BLS BLS 

𝑾𝟏 1 1 0.75 
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Opening and Closing Costs 

Since INEM uses existing public facilities as stations, there are no construction or decommissioning 

costs. Nevertheless, there are administrative costs related with opening and closing facilities. As public 

reports do not include information to estimate these costs, they are assumed to be negligible. 

Capacity Costs 

Capacity costs are monthly or quarterly fixed costs paid for each vehicle housed at a station. For VMER, 

the legislation establishes an allowance of 6.800 €/𝑚𝑜𝑛𝑡ℎ to the base hospital. For PEM, a quarterly 

allowance is provided depending on the total number of dispatches per month. In both Lisbon and 

Setúbal, since PEMs are not dispatched on average more than 100 times per month (which is the limit 

for the lowest category of subsidies), the allowance is 6.400 €/𝑞𝑢𝑎𝑟𝑡𝑒𝑟. Additionally, for AEM and SIV, 

capacity costs are related with the rent required by the receiving public institution. Unfortunately, these 

rent values are not available, so these are assumed to be negligible. For NINEM, there are no capacity 

costs, as these are covered by higher exit prizes.  

Table 13 - Capacity cost per vehicle per day (€). 

Capacity Cost AEM SIV VMER PEM NINEM 

Health Units 0 0 226.67 — — 
INEM HQ 0 0 — — — 
Firefighters/RC  0 — — 71.11 0 
Police/Schools 0 — — — — 

 

Operating Costs 

Operating costs include crew salaries and vehicle repairs. It is assumed that salaries are independent 

of shift. Salaries are paid only for AEM and SIV crews, which are staffed by INEM employees. NINEM, 

RES, PEM and VMER crews are paid by other entities. A TEPH’s salary is 738.05 €/𝑚𝑜𝑛𝑡ℎ while an 

INEM nurse receives 1201.48 €/𝑚𝑜𝑛𝑡ℎ, with an additional 25% bonus due to shift work, and work 35 

hours per week (República Portuguesa, 2016, 2019). Two TEPHs operate an AEM, and one TEPH and 

one nurse operate a SIV. Therefore, computing hourly salaries, the cost of operating each vehicle can 

be computed. Additionally, repair cost can be estimated by taking into account that, in 2016, INEM spent 

4.442.616 € in fleet repair and maintenance. Dividing this amount by the total number of vehicles, 611 

(excluding outsourced Helicopters and NINEMs), the days in the year and the number of shifts, the 

average repair cost per vehicle per shift can be estimated. It is assumed that all vehicles have similar 

maintenance costs and that these are distributed evenly throughout the year and shifts. The final cost 

estimates per vehicle per shift are presented in Table 14. NINEMs are omitted since their cost is 0. 

Table 14 - Estimated cost for INEM per vehicle per shift (€). 

 

 

 

 

Assignment Costs 

Finally, assignment costs depend on the emergencies assigned to a vehicle. For INEM vehicles, this 

cost comprises fuel and medical consumables. For RES, PEM and NINEM, INEM pays an exit prize, 

which depends also on the location of the emergency. VMER’s assignment costs are supported through 

the monthly subsidy. For simplicity, average fuel costs per dispatch are assumed to be equal for all 

Vehicle Salaries Shift Repairs Total 

PEM 0.00 0.00 6.64 6.64 
AEM 74.98 18.74 6.64 100.36 
VMER 0.00 0.00 6.64 6.64 
SIV 98.52 24.63 6.64 129.78 
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vehicles. These can be estimated by dividing total fuel costs in 2016, 1.167.927 €, by the number of 

INEM vehicles dispatches, 218.743. A similar procedure is applied to determine average costs of 

medical consumables per dispatch, which amount to a total cost of 570.865 €. Furthermore, Table 15 

presents the three first distance classes and corresponding exit prizes for PEM/RES (Associação 

Bombeiros para Sempre, 2015). It is assumed that both ambulances are always manned by at least one 

TAS (Tripulante de Ambulância de Socorro)3, as required by the legislation. 

Table 15 - Exit prizes paid to PEM and RES (€/dispatch) (Associação Bombeiros para Sempre, 2015). 

Distance PEM RES 

0 – 15 Km 5.8 11.33 

16 – 40 Km 11.0 18.54 

41 – 65 Km 21.6 31.93 

Using this information and the estimated distances between stations and each demand areas, 

assignment costs of PEMs can be calculated. Regarding NINEMs, since there are no formal 

agreements, exit prizes are not regulated nor publicly available. Therefore, it is assumed that these 

costs are similar to RES ambulances. The estimated assignment costs are presented in Table 16. 

Table 16 - Estimated assignment costs (€/dispatch). 

Vehicle Fuel Consumables Exit Prize Total 

AEM 5.34 2.61 0 7.949 
SIV 5.34 2.61 0 7.949 
PEM 0.00 0.00 5.8/11 5.8/11 
RES 0.00 0.00 11.33/18.54 11.33/18.54 

6.9 OTHER PARAMETERS 
Additional model parameters are also estimated from interviews: 

• A station/vehicle pair is responsible for a region if it covers at least 15% of its calls (𝜀 = 15%); 

• There must be 2 vehicles responsible for providing each care-level to each call (𝑁 = 2).  

• A reliability level for vehicle availability is set at 80%. Therefore, 𝜌𝑚𝑎𝑥  ≤  0.37015. 

• There are no restrictions on the assignment of stations to calls, thus 𝛿𝑓𝑑 = 0,   ∀ 𝑓 ∈ 𝐹, 𝑑 ∈ 𝐷. 

• All stations, if opened and selectable, must remain in operation for at least one month; 

• Since the model is applied to a year, the effects of inflation are neglected (𝑖𝑡 = 0, ∀ 𝑡 ∈ 𝑇. 

• All vehicles capable of providing BLS can provide it to P1 or P3 calls, which defines parameter 

𝛾𝑣𝑝𝑙 (recall that 𝛾𝑣𝑝𝑙 = 1 if a vehicle of type 𝑣 can provide care level 𝑙 to a call of priority 𝑝). 

6.10 CHAPTER CONCLUSIONS 
The present chapter describes the data collection and treatment procedures required to estimate model 

parameters from real data. Different sources of information include interviews with INEM practitioners, 

historical records and public data. Applied techniques include GIS, point-aggregation algorithms, 

Google’s Geocoding and Distance Matrix APIs and statistical analysis in R. It Is possible to conclude 

that accurately collecting and treating the real data is challenging given the large number of parameters 

required, which may not be readily available. Nevertheless, this step paramount for a successful 

application of the model. The next chapter describes the results of model application to the case-study.  

 
3 This assumption is required because PEM and RES ambulances without a TAS receive a lower exit prize. 
Nonetheless, in theory, all PEM and RES should have at least one TAS in their crew. 
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7. CASE STUDY RESULTS  
This chapter presents the application of the proposed model to INEM’s case study. Besides presenting 

computational results, the chapter focuses on discussing recommendations for INEM. It is divided in 

eight sections. Section 7.1 describes model implementation and validation. Section 7.2 focuses on a 

preliminary scalability analysis of the model, while section 7.3 introduces the computational experiments 

to be conducted. Section 7.4 presents an analysis of the current system and sections 7.5 and 7.6 

describe the results of the experiments, leading to a set of recommendations for the CPCG in Section 

7.7. Section 7.8 presents a sensitivity analysis to several model parameters. Finally, section 7.9 

presents the computational results of the proposed heuristic. Conclusions are postponed to Chapter 8. 

7.1 MODEL IMPLEMENTATION  
In order to apply the model to INEM’s vehicle location problem, the model is implemented in IBM ILOG 

CPLEX Optimization Studio 12.8.0.0, using the IDE and Optimization Programming Language (OPL). 

Data from the case study is initialized externally, being inputted through Excel. Slicing is used to reduce 

the computational burden by determining the valid combinations of parameters a priori (IBM 

Corporation, 2010). Furthermore, Visual Basic for Applications (VBA) in Excel is used to generate the 

allowed combinations of indices. The heuristic approach is implemented in OPL script, a Java extension 

developed specifically to control CPLEX models, which is available in the CPLEX Optimization Studio 

IDE (IBM Knowledge Center, 2019a). 

A Lexicographic Ordering approach is used to handle multiple objectives. Objectives are ranked 

according to their priority for INEM in decreasing order of importance: Z1, Z2 and Z3. Three runs are 

conducted for each experiment. Firstly, coverage is maximized (run 0). Subsequently, this objective is 

bounded by a constraint (lower bound) and costs are minimized (run 1). In the third run, an upper bound 

on costs and a lower bound on coverage are set and equity is maximized by minimizing 𝑍3 (run 2). The 

solution of the previous run is used as a MIP start in CPLEX, given that it is always a feasible solution. 

All experiments are conducted on a 2.40 GHz Intel Core i7-4700MQ processor and 12.0 GB of RAM 

laptop running Windows 10. Hereafter, the exact parameters presented in the previous chapter are 

referred to as “base line scenario”. In these scenarios, level 1 potential stations are considered, since 

they are preferential for INEM. Level 2 stations are included only when stated. 

7.2 MODEL VALIDATION AND SCALABILITY ANALYSIS  

7.2.1 MODEL VALIDATION 
Validating the proposed model before carrying out further analyses is paramount to ensure its accuracy 

in representing the real system, guaranteeing that any simplifying assumptions and corresponding 

mathematical formulations developed during the modelling stages adhere to reality (Williams, 2013).  

In order to validate the proposed model, two small instances are firstly analysed. The first instance 

includes three emergency stations, demand nodes, shifts and vehicles, and two planning periods. The 

second instance consists of five emergency stations, demand nodes and time periods, and four vehicles. 

On both instances, extreme conditions are introduced by varying several parameters and testing the 

model’s response to such changes, in order to ensure that the formulated constraints generate the 
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expected behaviour. For instance, by setting the number of available vehicles to zero, total coverage 

drops to zero. On the other hand, if facility relocations are not allowed (the maximum number of 

closed/opened stations is set to zero), the station configuration remains unchanged, but vehicles are 

reallocated to improve coverage. Furthermore, by varying coverage probabilities, the configuration of 

stations is adjusted, favouring stations with higher coverage probabilities, and by allowing more station 

relocations, total coverage increases.  

7.2.2 SCALABILITY ANALYSIS 
Before proceeding to apply the model, it is important to assess how it behaves when the instance size 

increases, so that the experiments can be conducted in a cost-effective manner. In order to assess the 

scalability of the model, several instances of different sizes (corresponding to different cluster partitions) 

are analysed. Details on instance size and scalability analysis results are presented in Appendix F. 

From the results, it can be concluded that the computational effort increases exponentially with the 

instance size. This is mainly due to the fact that, being a dynamic model, the number of variables and 

constraints increases significantly even for small networks. In fact, by considering 12 time periods and 

three shifts, the number of variables (indexed by these parameters) increases 36 times when compared 

to a static model. The results also show that proving optimality is challenging even though the solution 

becomes near-optimal quickly. Furthermore, the best bound is close to the optimal solution, suggesting 

that the linear relaxation is relatively tight. Furthermore, the computational burden increases 

considerably in the second and, mostly, third run of the Lexicographic method. This is because additional 

constraints related with the previous objectives render the model much more difficult, Nevertheless, 

given that speed is not crucial in this study, CPLEX is used except when stated otherwise. 

The results also suggest that the chosen cluster partition only slightly influences the results. In the tested 

instances, using larger aggregation areas results in an overestimation of coverage of 2.38% in Lisbon 

and 5.86% in Setúbal. The equity objective presents an underestimation of 4.78% in Lisbon and 2.07% 

in Setúbal. Regarding costs, the results are not conclusive. In Lisbon, they are underestimated by 1.40% 

in Lisbon, while in Setúbal they are overestimated by 8.37%. 

In light of these results, and in order to reduce the computational cost and allow for more experiments 

to be carried out, the remaining experiences are conducted using the smallest instances for Lisbon. For 

Setúbal, the largest instances are used since the computational cost is still acceptable. A relative gap 

of 0.5% is used when maximizing coverage, while a gap of 5% is applied for the remaining objectives. 

Additionally, a time limit of 24 hours is set for each run. The following sections focus on exploring the 

model to assess the impact of alternative policies in the SIEM’s expected performance. Computational 

times for all the experiments are detailed in Appendix H.  

7.3 CURRENT SOLUTION PERFORMANCE 
Before proceeding to study alternative system configurations, it is important to assess the current 

system performance. For this purpose, a heat map of P1 and P3 emergencies in Lisbon and Setúbal 

from 2017 and the first semester of 2018 is presented in Figure 23, together with the positions of existing 

stations classified as having ALS or BLS vehicles. 
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A qualitative analysis of Figure 23 suggests a higher emergency density in the centres of both cities, 

where population density is higher due to residents, commuters and tourists. As would be expected, 

more stations are located in these areas. Nevertheless, the north of Lisbon and a large part of Setúbal 

are apparently less covered. It is also useful to analyse heatmaps of the activity areas of each 

emergency station  and the distribution of emergency requests for the morning shift (Table 17 and Table 

18), the only where the entire fleet operates and, as such, can be used for comparison. 

Table 17 - Distribution of emergency requests per vehicle during the morning shift for Setúbal. 
 

Table 18 - Distribution of emergency requests per vehicle during the morning shift for Lisbon. 

 

Regarding Setúbal, most emergencies are concentrated on the city centre and, as such, vehicle activity 

patterns are more balanced. Workload is approximately distributed, except for CVP Setúbal, that 

receives significantly less calls, which could indicate that these vehicles could be located elsewhere. 

External dependency is high (close to 15%). Regarding Lisbon, external vehicles operate mainly on the 

northern part of the city. Additionally, vehicles with higher dispatching fractions are located closer to the 

city centre and the eastern part of the city, suggesting that providing additional vehicles to these regions 

Vehicle P1 P3 Aggregate Vehicle P1 P3 Aggregate 

BV Setúbal 16.24% 27.87% 25.71% Outside Vehicle 10.53% 15.96% 14.96% 
AEM Setúbal 1 14.25% 24.44% 22.55% VMER Setúbal 40.69% 0.04% 7.59% 
AEM Setúbal 2 14.18% 23.57% 21.83% CVP Setúbal 4.11% 8.11% 7.37% 

Vehicle P1 P3 Aggregate Vehicle P1 P3 Aggregate 

BV Beato e Olivais 4.06% 12.00% 10.61% BV Ajuda 1.37% 4.11% 3.63% 
Outside Vehicle 6.24% 10.55% 9.79% AEM Lisboa 13 2.38% 3.88% 3.62% 
BV Lisbonenses 2.52% 6.32% 5.66% AEM Lisboa 5 2.41% 3.71% 3.48% 
BV Lisboa 1.60% 5.84% 5.10% VMER S. José 18.68% 0.03% 3.28% 
BV Cabo Ruivo 1.80% 5.40% 4.77% AEM Lisboa 7 1.81% 3.53% 3.23% 
AEM Lisboa 1 2.85% 4.72% 4.40% AEM Lisboa 6 1.97% 3.49% 3.23% 
AEM Lisboa 10 2.89% 4.69% 4.38% AEM Lisboa 12 1.61% 3.49% 3.16% 
AEM Lisboa 2 2.54% 4.57% 4.22% SIV Lisboa 15.03% 0.06% 2.67% 
AEM Lisboa 9 2.53% 4.50% 4.16% VMER Sta. Maria 13.02% 0.01% 2.28% 

BV Campo de Ourique 1.64% 4.64% 4.12% RSB Lisboa 0.48% 1.09% 0.98% 
AEM Lisboa 11 2.35% 4.43% 4.07% VMER SF Xavier 5.16% 0.01% 0.91% 
AEM Lisboa 4 2.46% 3.99% 3.72% AEM Lisboa 14 0.37% 0.62% 0.58% 
AEM Lisboa 3 2.10% 4.06% 3.72% AEM Lisboa 15 0.13% 0.25% 0.23% 

Figure 23 - Heatmaps of the current system and current emergency stations (Top: Lisbon; 
Bottom: Setúbal; Left: P1 calls, BLS and ALS stations; Right: P3 calls and BLS stations). 
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(or relocating vehicles from other regions) may be beneficial. NINEMs present the highest dispatch 

fractions, which is surprising given that INEM favours their own vehicles and those with which protocols 

exist (PEMs). Some AEMs present low dispatch fractions, which suggests that their positions can be 

improved. Furthermore, the external dependency is also significant, reaching close to 10%.  

To assess the performance of the current system under the proposed model, the current solution is 

inputted (through the 𝑠ℎ variables) and the value of different objectives are retrieved. This requires 

assuming that the allocation of requests to vehicles is optimal. The solutions are presented in Table 19. 

These values are used for comparison with alternative policies. 

Table 19 - Estimated performance of the current system using the optimization model. 

 

 

Note that, under the demand parameters of the previous chapter, the theoretical maximum expected 

coverage (accounting for the objective function weights) is 2032.20 in Lisbon and 333.79 for Setúbal. 

Therefore, the current system can cover around 83% and 96% of the calls, respectively.  

7.4 BASE SCENARIO OPTIMIZATION 
In this section, improvements for the current system under the full set of restrictions presented in 

previous chapters are studied. For this purpose, the base-line optimization instances are used again 

and solved in CPLEX. The resulting objective function values are presented in Figure 24, as well as the 

corresponding variations with respect to the current system. Recall that a negative variation in the equity 

indicator is desirable, as it means a reduction in the maximum average travel time. In this experiment, 

only seasonal stations are considered. The effect of seasonal PEMs is analysed separately, given 

INEMs interest in studying the impact of this policy. 

The results highlight that, under the current restrictions imposed by INEM and the legislation, the present 

vehicle configuration can only be slightly improved in what concerns the primary objective, expected 

coverage. In fact, by analysing the resulting solutions (and comparing them with the existing 

configuration), it is possible to verify that only limited changes are possible. 

This is mainly because all stations are classified as non-selectable, meaning that they cannot be 

relocated. Since the maximum number of stations in most months is also fixed to the current number of 

stations (20 in Lisbon and 5 in Setúbal), the underlying structure of the emergency system network 

cannot be modified. As a result, only seasonal stations can be opened during the summer months. 

Instance Coverage (Z1) Gap (%) Cost (Z2) Gap (%) Equity (Z3) Gap (%) 

L0.1 1686.135 0.10% 66494.661 0.01% 17.856 4.86% 

S2.1 320.430 0.00% 17119.534 0.00% 18.321 0.48% 

Figure 24 - Comparison of objective function values of the base-line optimization scenarios against the current 
system performance (Left: Lisbon; Right: Setúbal). 
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In Lisbon, seasonal stations include Centro de Saúde de Alvalade (June), Centro de Saúde de Benfica 

(July), Centro de Saúde da Graça (July, August), Centro de Saúde de Marvila (August) and Hospital de 

Cruz Vermelha (September). In Setúbal, one seasonal station is allowed,: Centro de Saúde de São 

Sebastião (June) and Centro de Saúde do 

Bonfim (July). 

Figure 25 displays the proposed seasonal 

stations in Lisbon, showing that these sites 

are mainly located in areas where there is a 

considerable density of emergencies without 

stations nearby or, alternatively, near high 

emergency density areas. These results 

agree with what would be expected from the 

analysis of the previous section. 

Additionally, emergency vehicles are 

relocated to improve the system’s performance. Yet, some vehicle types (NINEM and PEMs) cannot be 

relocated as they are non-selectable. This is particularly limiting in Setúbal, where only three vehicles 

are selectable (VMER and two AEMs), and, as such, are the only whose position can be adjusted. As a 

consequence, the only proposed modification is the relocation of one AEM to the seasonal station during 

the summer and to Hospital de Setúbal during the remaining months. The other AEM is forced to remain 

at its original station, which is non-selectable and, therefore, must remain open with, at least, one 

vehicle. The VMER cannot be moved due to legislation. 

On the other hand, in Lisbon, a significant proportion of vehicles are relocated, since a large part of the 

fleet is composed of selectable vehicles. In particular, AEMs are relocated to improve the system’s 

performance. For instance, by May, two AEMs are moved to INEM Sede, while the SIV is moved to 

INEM – Rua Infante D. Pedro, which also keeps one AEM. Conversely, two AEMs from Centro de Saúde 

Olivais are allocated to Hospital Santa Maria, Hospital de São José and, finally, one AEM from Hospital 

Curry Cabral is located at BV Beato. These relocations are in line with what would be expected given 

the considerations of the previous chapter. Hospital Santa Maria is the closest station to the Northern 

part of the city, which is considerably uncovered. BV Beato, which is the vehicle with highest fraction of 

dispatches, is reinforced with one AEM. Hospital de São José lies at the heart of the city centre, where 

the density of emergency calls is higher. The SIV is moved to INEM – Rua Infante D. Pedro, which is 

slightly closer to the centre of the city as well. When seasonal stations are enabled, AEMs are 

repositioned to these stations. VMERs are maintained at Hospital de Santa Maria, Hospital de São José 

and Hospital São Francisco de Xavier, because, again due to legislation, these stations must keep at 

least one VMER and there are only three available.  

It is interesting to note that although the improvement in expected coverage is modest, the reduction in 

cost is more significative: around 9.13% for Lisbon and 25.58% for Setúbal. The same result is valid for 

the equity objective, where the results show a reduction in the maximum average travel time in the 

system of 15.41% in Lisbon and 2.87% in Setúbal. Therefore, it is possible to conclude that, although 

the current restrictions are considerably tight and do not allow many modifications of the system, 

Figure 25 - Proposed seasonal stations in Lisbon. 
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attractive improvements can be attained in what concerns cost and the equity, together with a modest 

improvement in the SIEM’s ability to cover emergencies. These improvements are mainly due to the 

possibility of relocating some vehicles (mostly AEMs) and opening seasonal stations during the summer. 

As an example, Appendix G shows the proposed solution for Lisbon. As expected, the model outputs 

the number of vehicles which are to be located on each station and on each shift. The main difference 

between the solution of Table 36 and the current solution is that, besides indicating which stations are 

good candidates to be seasonal stations, AEMs are progressively adjusted to better fit the demand 

requirements. However, these adjustments are not abrupt and, from one month to the next, only slight 

changes are introduced. Conversely, the model also suggests varying the working shifts (even without 

relocating vehicles) as a means of improving coverage. Although this would require more flexibility from 

INEM, it could be an effective approach to increase performance without structural changes to the 

system. In Setúbal, the solution is practically identical to the current system because, as explained, the 

imposed constraints do not enable many modifications to be carried out. 

7.5 ALTERNATIVE POLICY TESTS 
Given that the current restrictions prevent the attainment of a more effective solution, it becomes 

important to analyse alternative policies which might improve the SIEM’s performance. The following 

sections discuss several experiments that seek to identify promising courses of action. Firstly, current 

practices are assessed, namely the use of summer-seasonal PEMs. Subsequently, several fleet 

expansion scenarios are tested in order to understand how INEM should proceed if the current practice 

of incremental changes is to be continued. The following section examines the effect of considering 

level 2 stations as potential sites for new vehicles. Finally, the impact of legislation in concerning VMERs 

and four alternative operating scenarios – free-vehicle relocation green-field scenario and a fully flexible 

EMS – are assessed in order to show how the current system could perform if the numerous restrictions 

are lifted. All experiments are conducted using CPLEX. 

7.5.1 THE IMPACT OF SEASONAL PEMS 
Currently, INEM deploys seasonal PEMs during the summer. In order to assess the impact of this policy, 

an additional type of vehicle is included in the model (Seasonal PEMs, SPEM). This vehicle is similar to 

the PEM except that it is selectable, i.e. it can be repositioned or removed from one period to the next. 

The impact of this vehicle is evaluated by fixing the remaining vehicles at their original stations and 

enabling SPEMs to be located freely during the summer months. The results of this analysis are 

summarized in Figure 26. 

Figure 26 - Seasonal PEM results (Left: Lisbon; Right: Setúbal). 
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The model suggests locating Setúbal’s seasonal PEM in BV Setúbal – Azeitão, which is, in fact, the only 

available location for this vehicle. In Lisbon, the seasonal PEM should be located at BV Cabo Ruivo. 

The results suggest that seasonal PEMs do contribute to improve the system’s coverage by 0.20% in 

Setúbal and 1.02% in Lisbon and the equity indicator by 15.4.% and 0.48%, respectively. 

Surprisingly, costs from the seasonal PEMs are smaller than the current system. Still, these costs are 

higher than the base line optimization. One reason for this is that exit prizes depend on the distance the 

PEM must travel. Without seasonal PEMs, some emergencies must be assigned to PEMs operating 

further away, since the existing PEM in this area is not capable of covering all emergencies. With an 

additional PEM in this region, although an associated capacity cost exists, exit prizes can be reduced 

due to the shorter travel distances. Additionally, by adjusting the shifts in which each vehicle operates, 

operating costs can also be reduced because PEMs do not have operating costs for INEM. These 

considerations are validated by Figure 27, which compares the different cost categories for the current 

system and seasonal PEM scenarios for Setúbal. 

It is interesting to evaluate if SPEMs are currently deployed in the most effective months or if, 

alternatively, they could be more beneficial in other periods. Presently, seasonal PEMs are used during 

three consecutive months – July, August and September. To test different alternatives, the starting 

month of SPEM operation is varied, and these vehicles are assumed to operate for three consecutive 

months. The resulting coverage values for different deployment months are presented in Figure 28. 

The results indicate that, in Setúbal, SPEMs are more effective during the summer, although operating 

these vehicles during May, June and July may provide a slight advantage. On the other hand, in Lisbon, 
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Figure 27 - Comparison of cost categories of seasonal PEMs against the current system. 
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SPEMs would be marginally more advantageous during the first months of the year, namely February, 

March and April. This is in line with what would be expected from the demand analysis presented in the 

previous chapter, where demand is greater during the winter. One possible reason for seasonal PEMs 

being more advantageous during the summer is that this additional vehicle is located in Azeitão, near 

popular destinations for summer holidays. 

7.5.2 FLEET EXPANSION ANALYSIS 
It is also important to understand if, keeping the original restrictions, expanding the emergency fleet 

could result in a performance improvement of the system. This question is in line with the current 

planning practice at INEM, which focuses on incremental vehicle additions to the system.  

For this reason, the impact of adding additional units of each type to the fleet is analysed by increasing 

the number of vehicles by one, two, three and four units. It is assumed that a new station is allowed for 

each new vehicle, in line with current practice. It is further assumed that the additional vehicle operates 

on all shifts. Cost is excluded from this analysis, since vehicle purchasing costs are not available, which 

is an important component of the expansion scenario. With these costs, it would be possible to develop 

a cost-benefit analysis and determine which vehicle would have a higher impact per unit cost in the 

system performance, thus supporting these decisions in both performance and cost metrics.  The results 

are presented in Figure 29. 

It is possible to conclude that adding different types of vehicles results in different impacts in the system’s 

ability to cover emergencies. In Lisbon, the results show that adding AEMs, PEMs and SIVs result in an 

almost equivalent performance improvement. For instance, one SIVs leads to an improvement of 2.7%, 

while an additional AEM leads to 3.1% increase and a PEM to 3.0% increase. Conversely, adding four 

SIVs results in a 10.5% coverage growth, four additional AEMs results in a 9.9% improvement and four 

PEMs in 9.7%. This similarity is mainly because AEMs and PEMs are capable of providing the same 

care levels and, given that there are many stations capable of housing both vehicles, their performance 

is identical. Nevertheless, AEMs still outperform PEMs for all scenarios, mostly due to their increased 

flexibility in what concerns the initial location and potential relocations - AEMs are selectable and can 

be located in many emergency stations types, while PEMs are non-selectable and limited to 

firefighter/Red Cross facilities. On the other hand, SIVs are differentiated vehicles, being able to provide 

both ALS and BLS. Despite being differentiated, this advantage is offset by the fact that the set of 

potential stations for SIV ambulances is more limited. Consequently, SIVs end up having similar results 
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to AEMs and PEMs, although they have a slight edge over these alternatives. Contrarily, adding VMERs 

leads to a markedly lower performance improvement. This is mainly due to the fact that VMERs are less 

versatile and, additionally, can only be positioned at a limited set of stations.  

Regarding Setúbal, SIVs are clearly the most beneficial vehicle to be added to the fleet, given their 

versatility. Recall that, currently, no SIV operates in Setúbal. However, the results show that providing 

one of these vehicles could be an interesting option, as one additional SIV leads to an improvement of 

2.26%, while two, three and four additional SIVs yield improvements of 2.99%, 3.02% and 3.09%. In 

second place, the addition of AEMs also generates an increase in expected coverage, although 

relatively smaller. In particular, one AEM increases coverage by 0.76%, two by 1.16%, three by 1.20% 

and four by 1.22%. Lastly, additional PEMs and VMERs practically do not contribute to increase the 

system’s ability to cover emergencies given that, currently, there are almost no emergency stations 

capable of receiving these vehicles. Any additional VMER would have to be located at Hospital de 

Setúbal, where one VMER is already stationed. This station can only receive one more vehicle and, as 

such, adding more than one VMER would not have any impact.  

Therefore, if the fleet is to be expanded in one unit, one AEM should be purchased for Lisbon and one 

SIV for Setúbal. However, it is important to bear in mind that adding two SIVs is more beneficial in Lisbon 

than two AEMs. The results also suggest that, from an expected coverage perspective, expanding the 

fleet through the purchase of AEMs seems to be more advantageous than through PEMs. Additionally, 

with the current limitations in finding bases for VMERs, increasing the number of these vehicles is not 

significantly attractive. 

Besides enabling the comparison of several expansion scenarios, the model also suggests the sites for 

additional vehicles. As an example, Table 20 presents the suggested stations for one additional vehicle 

of each type during the first month of the planning period. 

Table 20 - Suggested stations for one additional vehicle of each type during the first month of operation. 

Vehicle Lisbon Setúbal 

AEM Hospital Pulido Valente Centro de Saúde Bonfim 

SIV Hospital Santa Maria Centro de Saúde Bonfim 

PEM Regimento Sapadores Bombeiros - Benfica BV Setúbal - Azeitão 

VMER Hospital Dona Estefânia Hospital de Setúbal 
 

The value of the equity objective (Z3) showed to be insensitive to most expansion scenarios and most 

fluctuations occur in steps. For instance, for Setúbal, equity is improved by 8.92% if two AEMs or VMERs 

are added to the fleet. If more than two of such vehicles are added, the equity objective remains 

unchanged. However, any other expansion scenario leads only to a modest improvement of 0.5%. 

Therefore, in order to improve equity, the results suggest that adding two VMERs or AEMs in Setúbal 

is the best choice, while for Lisbon, the addition of one VMER or SIV is the most promising option. 

7.5.3 ADDITIONAL EMERGENCY STATIONS: LEVEL 2 
As mentioned, level 2 stations are less preferred than level 1, since they require agreements with 

organisations outside the Ministry of Health. Therefore, it becomes relevant to assess if considering 

these sites as potential stations for new emergency vehicles is worth the additional effort. To do so, the 
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previous experiment is replicated for AEMs, since these are the only vehicles which can be located at 

level 2 stations. Figure 30 compares the expected coverage for both layers of stations. 

The results indicate that considering level 2 stations provides only marginal benefit to the system’s 

performance when compared to level 1 stations. This is mainly due to the fact there is always a level 1 

or existing station close to any level 2 station and, as such, they provide only a marginal improvement 

over considering a smaller subset of potential stations. The equity objective, on the other hand, is 

considerably reduced with level 2 stations, decreasing from around 16.99 minutes to 13.59 minutes. 

Nevertheless, the proposed solutions under this scenario do take advantage of level 2 stations. For 

instance, one additional AEM in Setúbal, considering level 2 stations, should be located in in PSP 

Setúbal – 2ª Esquadra, while one additional AEM in Lisbon is suggested to be located at PSP Benfica 

– 20ª Esquadra and Escola Básica Alta de Lisboa, depending on the month. 

Note that the benefit of considering level 2 stations seems to increase as the number of vehicles added 

to fleet also increases. This may suggest that, although in a short-sighted perspective, considering level 

2 stations may not lead to great benefits, in the long run, using these stations may provide improvements 

in the system’s performance. Therefore, if it is expected that only few vehicles will be added to the fleet 

in the future, considering level 2 stations may not be required. However, if more vehicles are to be 

added, then considering level 2 stations is important, provided that the location of these additional 

vehicles is planned in advance. 

7.5.4 ALTERNATIVE OPERATING SCENARIOS 
Besides informing the GPCG about current planning practices – seasonal vehicles and fleet expansion 

– it is also interesting to study alternative scenarios to gain insights about possible managerial decisions 

which may improve the system’s performance. For this purpose, four alternative scenarios are tested.  

Firstly, the effect of removing legislation constraints concerning minimum vehicles at hospitals is 

assessed by lifting constraints (5) from the base line scenario. Secondly, a free vehicle relocation 

scenario is analysed, in which it is tested if the current system could be improved using only existing 

vehicles and existing stations but improving the way these vehicles are dynamically distributed among 

stations. For this purpose, a set of experiments are conducted allowing vehicles to be positioned at any 

station and considering all vehicles as selectable. Thirdly, a green-field scenario is used to test what 

would be an ideal system if the current system was not in place. To test this scenario, the constraints 

which set the initial state of the system (10-11) are removed. This way, the model can choose to open 

Figure 30 - Comparison of fleet expansion scenarios for level 1 and level 2 stations (Left: Lisbon; Right: Setúbal). 
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any station at the beginning of the planning horizon. However, the distinction between selectable and 

non-selectable vehicles and stations is still used. Finally, a fully flexible system is considered. In this 

case, besides assuming a green-field scenario, vehicle and station relocation constraints are lifted, and 

vehicles can be positioned at any station. Therefore, vehicles can be repositioned throughout the year 

to whichever stations maximize expected coverage. Although, in practice, this scenario may be 

excessively challenging to be implemented, it can provide insights on the maximum performance the 

system can achieve with the same resources – vehicles and stations – currently in operation. 

Given the limited time frame of this dissertation and the fact that the second and third runs of the 

lexicographic method proved to be computationally challenging for most scenarios, only the first 

objective is considered hereafter. Further investigation of the remaining objectives can be conducted for 

the most promising scenarios. The results are presented in Figure 31. 

 

Concerning the first experiment, the results suggest that the impact of legislative restrictions in isolation 

is small, mainly because the vehicles which are regulated by legislation – VMERs – are crewed by 

doctors from NHS hospitals and, as such, can only be located at the very sights in which the legislation 

requires them to be. The expected improvement in coverage for Lisbon is just 0.50%, due to the 

allocation of VMERs to INEM – R. Infante D. Pedro. In Setúbal, the results are exactly the same as the 

base-line optimization (improvement of 0.36%), given that Hospital de Setúbal is the only station which 

can be assigned VMERs. 

Moreover, the results of the vehicle relocation scenario suggest that the performance on both regions 

could be improved with the current vehicles and stations (i.e. without seasonal stations nor vehicles). In 

Lisbon, an improvement of 1.39% is expected, while for Setúbal it is just 0.33%. Note that these 

relocations do not need to be permanent, that is, the vehicle can be repositioned at the beginning of the 

day but still be stationed at its original station for replenishment or parking during the night.  

In order to assess the volatility of the solution proposed by this scenario, the number of relocations of 

vehicles of each type on each month is displayed in Figure 32. 

Figure 31 - Comparison of the results from the alternative operating scenarios (Left: Lisbon; Right: Setúbal). 
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The results suggest that, in Lisbon, an average of 12.3 relocations per month are required (47% of the 

fleet) while for Setúbal only 1.3 relocations are necessary (26% of the fleet).  Given their higher flexibility, 

AEMs are the vehicles which are relocated more often. The SIV ambulance of Lisbon is also relocated 

on almost every month (with exception of February), while all PEMs are relocated on every month except 

November. In Setúbal, the PEMs are only relocated on the first month, while VMERs and AEMs are 

relocated at the beginning of the planning horizon as well as from May from August and in December. 

Although it may be impossible to implement a system with a large amount of relocations, the results do 

highlight that performance improvements are possible without establishing new cooperation protocols 

for facilities. However, these improvements are modest, especially if the high number of required 

relocations is considered. Therefore, all in all, this strategy seems to be inefficient. 

Concerning the green-field scenario, only 

modest improvements are attained once again: 

1.16% for Lisbon and 0.58% for Setúbal. The 

resulting emergency stations are presented in 

Figure 33, including seasonal stations. This 

figure includes both seasonal and regular 

stations, as well as the comparison between 

existing and proposed stations. 

Analysing Figure 33, it is interesting to note that 

the proposed distribution of emergency stations 

in both Lisbon and Setúbal is more scattered 

than the original solution. Note that, in Lisbon, 

the number of emergency stations in the north 

and west of the city is clearly increased. 

Nevertheless, 11 of the original stations are 

kept, while nine are permanently closed. Out of 

the 11 stations which are kept, three are 

necessary, by law (since they must house 

VMERs), while three others are the ones which can house NINEMs. In Setúbal, four stations are kept – 

Hospital de Setúbal, BV Setúbal – Sede, Cruz Vermelha and BV Setúbal - Azeitão, while the remaining 

Figure 33 - Station configuration for the green-field scenario. 

Figure 32 - Required relocations per month on the free vehicle relocation scenario (Left: Lisbon; Right: Setúbal). 
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station is replaced by Centro de Saúde Bonfim. An additional seasonal station (July, August and 

September) is opened in Centro de Saúde São Sebastião. 

Regarding the distribution of emergency vehicles in this scenario, in Lisbon VMERs are kept at their 

original sites (Hospital São Francisco Xavier, Santa Maria and São José) due to legislation. Similarly, 

NINEMs are assigned to firefighter corporations – BV Beato, BV Campo de Ourique, RSB – Companhia 

de Intervenção Especial, Delegação de Lisboa da CVP, BV Lisboa and Corpo de Bombeiros Municipais 

– Quartel nº 2, which receive both a NINEM and a PEM. AEMs, on the other hand, are relocated as the 

demand pattern changes. For instance, in the first period AEMs are mainly distributed by existing 

stations and health centers, such as: a) Centros de Saúde Olivais, Graça, Benfica, Lumiar, Alcântara, 

Lóios – Olivais; b) hospitals, as Hospital da Cruz Vermelha, Santa Maria, São José, Pulido Valente, 

Instituto Português de Oncologia; c) as well as police stations (GNR Cavalaria Ajuda) and both INEM 

facilities (INEM Sede and INEM – R. Infante D. Pedro. 

In Setúbal, PEMs and VMERs are kept at their stations due to legislation and the fact that there are no 

other stations for PEMs. AEMs are positioned at Hospital de Setúbal and Centro de Saúde Bonfim, 

being repositioned from Hospital de Setúbal to Centro de Saúde de São Sebastião during the summer. 

Finally, the fully flexible EMS is, as expected, the scenario which yields a more significant improvement. 

For Lisbon, using the same vehicles and number of emergency stations, an improvement of 13.1% can 

be achieved. This improvement is higher than what would be obtained by adding four SIVs to the existing 

fleet. In Setúbal, a 0.94% improvement is possible which, in turn, is less attractive than the addition of 

a single SIV, which leads to improvements of 2.66%. Note, however, that for both cities, the 

improvement in a flexible system – in which both stations and vehicles are allowed to be relocated – is 

3 to 10 times higher than allowing only vehicles to be relocated or scratching off the existing stations. 

Therefore, it can be concluded that allowing multiple vehicle relocations without also providing flexibility 

for the location of emergency stations is ineffective. 

7.6 GENERAL RECOMMENDATIONS 
From the previous discussion, it can be concluded that: 

• Complying with the current restrictions imposed by INEM, the legislation and SIEM partners do 

not enable great improvements to be attained in what concerns expected coverage, mainly 

because the configuration of existing stations cannot be changed, and many vehicles cannot 

be relocated; 

• Seasonal PEMs improve the system performance in both areas, but would be more effective if 

deployed during the winter months for Lisbon; 

• If the fleet is to be expanded, the addition of SIVs to Setúbal is the most promising course of 

action, followed by AEMs. Further PEMs or VMERs are not beneficial due to the lack of available 

stations. For Lisbon, both AEMs and SIVs are good candidates, while the benefit of additional 

VMERs is far more limited. Accounting for the purchasing cost of vehicles is paramount to 

develop a cost-benefit analysis and assess the impact per unit cost of each vehicle type; 
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• Furthermore, accounting for Level 2 stations for potential expansion scenarios does not appear 

to bring considerable benefits compared to level 1 stations for small fleet expansions. However, 

if larger expansions are predicted, than their impact may be beneficial; 

• Only if both vehicles and stations are allowed to be relocated can the system be substantially 

improved; 

• With the current resources, the maximum expected coverage improvement for Lisbon is 13.3% 

increase and, for Setúbal, 0.98%. 

7.7 SENSITIVITY ANALYSIS 
Given the inherent uncertainty of several model parameters as well as the need to estimate some inputs, 

a sensitivity analysis is carried out to assess how the solutions provided by the model are likely to 

change due to variations in input parameters. For this purpose, a 10% variation (for continuous 

parameters) and 1 (for discrete parameters) is introduced in those parameters subject to uncertainty 

(such as demand) or those which had to be estimated (including capacity, operating and assignment 

costs, travel and service time, and coverage probabilities). Again, a lexicographic approach is used for 

the second and third objectives. Figure 34 shows the results of this analysis, which are conducted on 

the base line instance for Setúbal. 

Concerning the first objective, the parameters which have a larger impact are demand and coverage 

probabilities. This result could be expected, since these parameters are directly used in the computation 

of this objective function, which has only one term. The value of 𝑁 also has a considerable impact of the 

resulting objective since it influences the allocation of emergency requests to vehicles, promoting more 

distributed solutions but also leading to allocations which are less efficient. Surprisingly, the value of 

Figure 34 - Sensitivity Analysis results (Top: coverage; Middle: cost; Bottom: equity). 
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𝜌𝑚𝑎𝑥 (the maximum vehicle workload) has little impact in coverage, although it is important to highlight 

that the actual variation of this input is small and greater variations could be applied. The remaining 

parameters – Travel Time, Service Time and 𝜀 –show little influence in the value of expected coverage. 

Regarding cost, the cost category which generates a higher effect in total cost is capacity cost, followed 

by the operating cost and, finally, assignment cost. Note that the cost categories with higher impact 

correspond to those which are less flexible. That is, capacity costs are paid whenever a vehicle is 

allocated to a station, whereas operating costs are incurred only if that vehicle is operating and, finally, 

assignment costs are only paid if the vehicle is dispatched. As such, there are less degrees of freedom 

to adjust capacity costs than operating or assignment costs, which may help explain why the first 

category is the one with highest impact. 

Finally, concerning the equity objective, not surprisingly, travel time has a significant effect on the 

objective function value. The value of 𝜃 (maximum travel time) presents a smaller variation because, in 

the studied instance, most demand is assigned to vehicles, thus very few requests are penalized at the 

maximum system travel time. Again, 𝜌𝑚𝑎𝑥 and 𝜀 do not appear to significantly influence this objective. 

7.8 HEURISTIC APPROACH RESULTS 
Finally, the performance of the proposed two-stage hybrid heuristic is compared to CPLEX. For this 

purpose, the instances used in the scalability analysis are applied. Since the heuristic is only applicable 

to the first objective, only the first run (run 0) is considered. Recall that the heuristic requires two 

parameters (𝑁 and 𝜀) which control the addition of cuts to SP1. In order to derive the value of these 

parameters, a grid search is conducted trying several parameter combinations and letting the heuristic 

run for 10 iterations. The results for the L1.0 instance are presented in Table 21. 

Table 21 - Grid search results for the parameters of the heuristic. 

 

The grid search results show that, after a certain value of 𝑁, the result of the heuristic remains 

unchanged regardless of the selected value for 𝜀. Furthermore, greater values of 𝑁 generally require 

also higher values of 𝜀 to obtain improved results.  

Having selected the most promising heuristic parameters, Table 22 presents the results, comparing the 

CPLEX statistics with a simple problem decomposition (just one iteration of the heuristic), two iterations 

and five iterations. 

 

 

 

 𝑁 

𝜀 20 30 35 39 40 50 60 

1 1692.664 1692.103 1691.841 1691.800 1691.990 1690.204 1690.204 

1.25 1692.848 1693.196 1691.840 1691.800 1691.990 1690.204 1690.204 

1.5 1692.824 1693.196 1693.182 1691.800 1691.990 1690.204 1690.204 

1.75 1691.715 1692.988 1693.021 1693.194 1691.990 1690.204 1690.204 

2 1692.084 1692.667 1693.138 1693.163 1693.235 1690.204 1690.204 

2.5 1691.706 1692.541 1692.782 1692.848 1692.855 1690.204 1690.204 

3 1691.855 1692.089 1692.582 1692.629 1692.853 1690.204 1690.204 
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Table 22 - Results of the hybrid heuristic in comparison with CPLEX. 

 

The results show that the heuristic provides good feasible solutions for both small and large test 

instances. In fact, the relative gap of the solutions yielded by the heuristic is never greater than 2.10% 

after five iterations. Even with just one iteration (solving the two subproblems in sequence), the solutions 

are relatively good, especially considering that the computational times are reduced by up to 95.54% 

from CPLEX. When further iterations are allowed, the solution is further improved, but only slightly. This 

may suggest that, although the proposed cuts do improve the solutions, more effective cuts may exist. 

Nevertheless, for small instances (namely, S0.0 and S1.0), the gains in computational time are small 

for few iterations. For five iterations, the heuristic takes more time than CPLEX and produces worse 

results. Therefore, it can be concluded that the heuristic should not be applied for small instances, for 

which CPLEX is clearly more efficient and effective. On the other hand, for larger instances, the 

computational gains of the heuristic are attractive. For both the L1.0 and L2.0 instances, the heuristic 

outperforms CPLEX after just two iterations, reducing the computational time by 39.04% and 89.98%, 

respectively. Additionally, in the larger test instance (L2.0), the heuristic yields a slightly worse solution 

(a gap of 0.26% compared to 0.18% of CPLEX) but the computational time is reduced by 84.41%. 

It is also interesting to highlight that, after a given number of iterations (most often less than 10), the 

heuristic procedure stalls. That is, after a significant number of cuts are added to SP1, the new cuts 

become redundant and the heuristic becomes stuck in the same solution. This phase is reached more 

quickly if 𝑁 is larger, given that more cuts are added at the beginning of the algorithm. Although this 

property may help reduce the computational burden of the heuristic (since it can be stopped after two 

consecutive iterations with the same solution), it could be interesting to explore strategies to diversify 

the search and enable the algorithm to search other regions of the search space. 

It is possible to conclude that the proposed heuristic is an effective solution procedure for large 

instances, but not appropriate for smaller instances. Additionally, it suffers from the major drawback that 

it is designed to handle a single objective. 

 
4 The relative MIP gap is calculated with the same formula as CPLEX, to enable the comparison of results:   

𝐺𝑎𝑝 (%) =  
|𝐵𝑒𝑠𝑡−𝐵𝑜𝑢𝑛𝑑−𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛|

10−10+  |𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛|
 (IBM Knowledge Center, 2019b). 

 CPLEX  Problem Decomposition 

Experiment Objective Gap4 Time 
Best-

Bound 
 Objective Gap Time Δ 

L0.0 1691.43 0.47% 237.28 1699.38  1691.28 0.48% 92.41 -61.05% 
L1.0 1648.13 0.40% 2951.37 1654.72  1649.67 0.31% 184.91 -93.73% 
L2.0 1652.12 0.18% 9191.09 1655.09  1650.06 0.30% 410.07 -95.54% 
S0.0 323.39 0.49% 22.44 324.978  317.71 2.29% 17.04 -24.08% 
S1.0 322.41 0.00% 51.19 322.406  315.79 2.09% 34.83 -31.96% 
S2.0 321.58 0.00% 247.64 321.584  314.29 2.32% 75.65 -69.45% 
          

 Heuristic (2 iterations)  Heuristic (5 iterations) 

Experiment Objective Gap Time Δ  Objective Gap Time Δ 

L0.0 1693.14 0.37% 144.64 -39.04%  1693.14 0.37% 307.04 +29.40% 
L1.0 1650.75 0.24% 295.59 -89.98%  1650.75 0.24% 612.56 -79.25% 
L2.0 1650.85 0.26% 654.91 -92.87%  1650.85 0.26% 1432.67 -84.41% 
S0.0 319.55 1.70% 24.33 +8.42%  320.51 1.39% 43.80 +95.19% 

S1.0 316.39 1.90% 46.26 -9.62%  319.14 1.02% 81.29 +58.79% 

S2.0 314.29 2.32% 104.17 -57.93%  315.03 2.08% 193.13 -22.01% 
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8. CONCLUSIONS AND FUTURE WORK  
EMS are highly complex systems which are designed to save lives, being paramount in improving the 

health outcomes of the population. To do so, EMS systems usually operate multiple tiers of emergency 

vehicles, interacting with dispatching centres and NHS hospitals, while coordinating many entities which 

cooperate to provide the best possible care. 

In this dissertation, the Portuguese EMS system (SIEM), managed by INEM, is studied. The SIEM has 

evolved since the 1960’s, and nowadays answers more than 1.300.000 calls per year. Its main features 

include deploying several types of vehicles operated by multiple public entities with varying levels of 

responsibility, providing two layers of medical care (BLS and ALS) and using existing facilities as stations 

for emergency vehicles. Despite having to manage such a challenging system, INEM planners must rely 

on experience and intuition to make complex planning decisions. One of these decisions consists of 

determining the long-term positions of vehicles while waiting for emergency requests. This is both a 

strategical and tactical problem, as it encompasses the selection of stations and the allocation of 

vehicles to these stations. Naturally, this decision has a profound impact on the system’s response 

which, in turn, greatly affects the medical outcomes of patients. Despite the importance of this decision 

and the multiple legal and self-imposed constraints, INEM’s current planning practices are still mostly 

guided by empirical methods. This may help explain why SIEM’s performance is below the international 

standards, although the system includes more emergency vehicles than many countries. 

Recognizing the potential of a more sophisticated, scientific approach, the primary goal of this research 

is to apply OR techniques to assist INEM’s vehicle planning processes. Additional goals include 

characterizing EMS systems in general; providing an in-depth review of the wide literature of 

optimization models for EMS planning and contributing to the literature by modelling, formulating and 

implementing an optimization model in a real EMS context. 

To support the attainment of these goals, an exhaustive literature review of facility location models in 

the EMS context is provided, organized around modelling approaches. It is concluded that this problem 

has been deeply studied under multiple approaches, ranging from simple to very complex models 

capturing different aspects of EMS systems. Despite the richness of this research stream, very few 

studies incorporate multiple EMS aspects within a simple and integrated approach. Additionally, most 

approaches consider a green-field scenario, thus ignoring the fact that the current system is in operation 

and that, in practice, the main objective should be to help planners redesign existing systems.  

Exploring the insights of the literature review and the features of the case-study, a Multi-Objective 

Dynamic MIP model is proposed. Its main goal is to assist the gradual reconfiguration of an existing 

EMS system over time by determining the configuration of emergency stations on different periods, the 

allocation of emergency vehicles among these stations, and the areas of responsibility of each vehicle. 

The model considers (1) several types of emergency requests with varying needs (care levels), (2) 

multiple vehicles with different capabilities which may be dispatched together to a call (multi-dispatch), 

(3) strategic and tactical vehicle and station relocations, (4) fluctuations in demand and travel times both 

during the day and throughout a wider planning horizon. Furthermore, three objectives are considered: 

expected coverage, cost and equity of access.  
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Besides, given the known complexity of solving large MIP models, a hybrid heuristic approach based 

on decomposing the problem into two sub-problems is proposed. This heuristic is intended to streamline 

model solution for the first objective – expected coverage – enabling, for instance, the integration of the 

model in a potential decision-support system. 

In order to apply the model to the case-study, two historically challenging regions are considered: Lisbon 

and Setúbal. The analysed planning horizon is the year of 2020 (12 months). The data collection and 

treatment procedures necessary to transform real data into model inputs are described.  

A Lexicographic approach is proposed to handle multiple objectives, given the hierarchical structure of 

the objectives for the decision-maker: expected coverage is the most critical objective, followed by cost 

and equity. The results suggest that, under the current restrictions, only slight improvements are 

possible. In fact, comparing with the estimated current system performance, only a modest improvement 

of 0.31% and 0.36% in expected coverage for Lisbon and Setúbal, respectively, are obtained. Although 

for the remaining objectives more attractive improvements can be obtained, these results show that 

INEM restricts the opening and closing of facilities and relocation of vehicles to a great extent, thus only 

enabling very slight adjustments. Therefore, unless INEM is willing to able some of its current self-

imposed restrictions, there is only a small room for improvement. 

For this reason, several alternative policy scenarios are studied. In a first phase, current planning 

practices are examined, namely the addition of seasonal PEMs during the summer. The results show 

that the seasonal vehicles do improve the system performance, even if only slightly.  The suggested 

positions for seasonal PEMs are BV Setúbal – Azeitão for Setúbal and BV Cabo Ruivo in Lisbon. 

Furthermore, in what concerns the deployment months for the seasonal PEMs, it is concluded that 

Lisbon would benefit more if such vehicles were deployed during the winter months, while for Setúbal 

the current deployment months seem appropriate. 

The possibility of expanding the fleet size with the addition of new vehicles to the existing fleet is also 

studied. In Lisbon, the addition of one AEM is the most promising course of action, leading to 

improvements of around 3.1%. However, if further vehicles are to be added, then the addition of SIVs, 

with their greater flexibility, is recommended. Similarly, for Setúbal, the addition of SIVs is also 

recommended. For instance, four SIVs can improve Lisbon’s performance by 10.5%, while for Setúbal 

the improvement is 3.09%. Tests also show that considering a broader set of facilities as potential base 

stations (schools and police facilities) besides health units does not provide a significant benefit unless 

a large expansion is planned for in advance. 

Furthermore, four scenarios are studied: the impact of legislation, a free vehicle relocation system, a 

green-field scenario and a fully flexible EMS. The results from these scenarios enable the comparison 

of the expected system performance under increasing levels of flexibility. The main conclusions are that 

the impact of legislation is small, and that performance can be greatly improved with existing resources 

provided that both stations and vehicles are allowed to be relocated. 

All in all, the model proves to be quite flexible in the scenarios it enables to consider, clearly presenting 

the decision-maker how the system can and should evolve for varying degrees of flexibility. Besides the 

insights for INEM, the main contributions of this research are (1) a model of a EMS system with multiple 

vehicles and call priorities, (2) considering of the existing system in planning decisions, (3) integration 
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of the three main concerns of EMS planners which had not been combined and (4) a hybrid heuristic 

capable of reducing the computational burden for large instances concerning the coverage objective. 

Given the limitations in time and data availability, several assumptions are required to estimate 

parameters for the model. Namely, travel times and coverage probabilities are estimated from public 

information by applying an empirical model from the literature; Euclidean distances are used for 

demand-aggregation; travel times and coverage probabilities are assumed to be independent of the 

vehicle and to remain unchanged throughout the planning horizon and station capacities are also 

assumed to be constant. Moreover, cost information could not be provided by INEM, so rough estimates 

are presented based on public information. Therefore, in the future, more information should be 

collected concerning opening and closing costs, both from the GPCG as well as other INEM 

departments and, if necessary, SIEM partners. Once more cost information is available, a cost-benefit 

analysis is also suggested for the fleet expansion scenarios. 

Besides overcoming limitations regarding data collection and treatment, further suggestions for future 

work can also be identified. Regarding the mathematical model, it could be interesting to explore 

alternative methods to determine the upper bound on vehicle workload and the minimum number of 

vehicles which must be considered responsible for a given call. In fact, the proposed approach based 

on the Erlang-C formula implies assuming that vehicles operate as independent servers and that service 

time is exponentially distributed, both of which are limiting assumptions. One alternative could be to 

develop and apply a Hypercube model which fits the features of the model: multiple customer classes, 

server types with multi-dispatch to the same call and heterogeneous service times. Another alternative 

would be the use of an iterative simulation-optimization approach. Further research is also necessary 

to evaluate the impact of the chosen reliability level and other vehicle availability parameters in the 

resulting model solutions. Moreover, the proposed model considers deterministic demand. In the future, 

it may be appropriate to include demand stochasticity via, for instance scenarios or, alternatively, chance 

constraints. However, these modifications are expected to increase the model’s complexity and, 

simultaneously, its computational burden. Also, alternative equity measures may be pursued, since the 

proposed alternative only considers one dimension of equity. Another potential improvement consists 

of accounting for the impact of external vehicles (and external emergency requests) in the performance 

of the model. The current model assumes that the region of interest is isolated from its surroundings. 

However, in reality, there are adjacent areas whose demand and vehicles impact the operation of both 

regions. This can be modelled, for instance, as an additional demand node. Additionally, once precise 

cost information is collected, it may be appropriate to rethink the cost categories included in the model. 

Concerning the solution approach, the heuristic can be improved by seeking diversification strategies 

and alternative cuts to polish the solution. Another suggestion is the development of heuristics designed 

to handle the remaining objectives, allowing for study of cost and equity concerns in the alternative 

scenarios. It can also be interesting to study alternative hybrid heuristics, exploring other decomposition 

possibilities: solving sequentially for shorter planning horizons, dividing the region of interest into sub-

areas or splitting different emergency categories.  

Finally, following the literature (see Chapter 4), it is suggested that the model is validated against a 

simulation model, to identify opportunities for improvement. 
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APPENDIX A. DESCRIPTION OF SIEM’S EMERGENCY VEHICLES  
Table 23 - Emergency vehicles description. 

 Name Description Available vehicles (2011 – 2018) 

 
Medical 

Emergency 
Ambulance 

(AEM) 

Their function is to promptly transport TEPHs to the emergency scene, 
stabilize urgent victims and provide transport to the appropriate health facility. 
They are capable of providing BLS. They are owned and operated by INEM, 
and an AEM’s crew is composed by two TEPHs. 

 

 
Medical 

Emergency 
Motorcycle 

(MEM) 

Their function is to promptly transport one TEPH to the emergency scene, 
stabilize the victim and prepare transportation. MEMs are quicker through 
traffic, and sometimes perform primary triage as well as assist other vehicles. 
They are owned and operated by INEM. 

 

 

Inter-Hospital 
Pediatric 
Transport 

Ambulances 
(TIP) 

Their function is to provide stabilization and secondary (inter-hospital) 
assisted transportation of critical patients aged 0-18 to a differentiated health 
facility. Their crew is composed of one physician, one nurse and one TEPH 
and they have the necessary means to stabilize the patient. 

 

 

 
Immediate Life 

Support 
Vehicle (SIV) 

 

They provide differentiated medical care, including resuscitation, defibrillation 
and medication. They are used to stabilize and transport emergent patients 
and to perform inter-hospital transportation of critical patients. They are 
capable of providing Immediate Life Support (ILS). Their crew is composed 
of a nurse and a TEPH, and they are owned and operated by INEM. 

 

 

Vehicle of 
Medical 

Emergency 
and 

Reanimation 
(VMER) 

Their function is to transport a medical team directly to an emergency, to 
stabilize the victim and assist the transportation (although they do not perform 
the transportation itself). They are capable of providing ALS and their crew 
includes a physician and a nurse trained in medical emergency services 
provision working at the emergency department of an NHS hospital. They are 
owned by INEM. 
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 Medical 
Emergency 

Stations (PEM)  

 

Reserve 
Station (RES) 
Ambulances 

PEM and RES ambulances transport trained professionals in the shortest 
possible time, to stabilize the victim and provide transportation to the 
appropriate health facility. They provide BLS and complement other 
emergency vehicles. They are maintained and operated by a SIEM partner 
(i.e. firefighters, Red Cross). They follow INEM’s protocols and respond when 
called by a CODU. INEM pays an “exit prize” when an ambulance answers a 
call (larger for RES). 

They are staffed by two members of this SIEM partner, trained in emergency 
medical care and emergency driving. PEM and RES are established through 
different collaboration protocols:  

• PEM: owned and equipped by INEM and assigned to a SIEM partner. In 
2017, INEM has reformulated these agreements so that ambulances are 
acquired directly by the partner while INEM supports insurance and 
maintenance costs in installments. 

• RES: Completely owned by the SIEM partner, INEM pays an additional 
“rental” fee. 

More than one PEM and RES can be located on the same SIEM partner.  

 

 
Medical 

Emergency 
Helicopter 

Service 
(SHEM) 

They are used to transport critical patients between health units or between 
an emergency scene and a health unit, to transport a medical crew to an 
emergency scene or to transport donated organs. They are equipped with 
ALS equipment. Their crew includes, besides pilots, a physician and a nurse 
with specialized training. 

 

 
 Mobile Unit of 

Phycological 
Emergency 
Intervention 

(UMIPE) 

They intervene in potentially traumatic emergency situations, when the 
victims’ emotional stress requires negotiation to accept help or when children 
are involved. They are staffed by a TEPH and a psychologist. They are 
owned and operated by INEM. 

 

 

Non-INEM 
Ambulances 

(NINEM) 

These ambulances have the same function as PEM or RES ambulances. 
However, they are owned and operated by a partner which has no protocol 
established with INEM. They are used when INEM’s ambulances are 
unavailable or inexistent in the area, or when they are closed to the 
emergency. Here, INEM pays a single prize every time the vehicle is required. 
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APPENDIX B. LITERATURE REVIEW SUMMARY TABLE 
Table 24 - Literature review summary. 

Section Approaches Reviewed Papers 

Early Static 
Covering 
Models 

Determine number of facilities to provide coverage to 
all nodes. 

(Toregas et al., 1971; Church and Meadows, 1979) 

Maximize coverage provided by limited facilities. (Church and ReVelle, 1974; Eaton et al., 1985) 

Vehicle 
Unavailability 

Multiple coverage models ensuring that more than one 
vehicle is capable of covering a demand node 

(Daskin and Stern, 1981; Storbeck, 1982; Hogan and ReVelle, 1986; Batta and Mannur, 1990; Church and Gerrard, 2003; 
Doerner et al., 2005; Degel et al., 2015; Su, Luo and Huang, 2015; Liu et al., 2016) 

Probabilistic models: 
consider explicitly the 
unavailability of 
emergency vehicles 
through the busy fraction 
(i.e., the fraction of time 
that it is unavailable to 
serve demand) 

Reliability Models (Chapman and White, 1974; ReVelle and Hogan, 1988, 1989; Marianov and ReVelle, 1994, 1996) 

Expected Coverage 
Models 

(Daskin, 1983; Bianchi and Church, 1988; Repede and Bernardo, 1994; Jayaraman and Srivastava, 1995; Chuang and Lin, 2007) 

Hybrid Models (Alsalloum and Rand, 2006; Sorensen and Church, 2010) 

Queueing-based Models 
(Larson, 1974, 1975; Jarvis, 1985; Bianchi and Church, 1988; ReVelle and Marianov, 1991; Amiri, 1998, 2001; Marianov and 
Serra, 1998; Saydam and Aytuǧ, 2003; Galvão, Chiyoshi and Morabito, 2005; Rajagopalan, Saydam and Xiao, 2008; Ingolfsson, 
Budge and Erkut, 2008; McLay, 2009) 

Site-specific Models 
(ReVelle and Hogan, 1988; Goldberg and Paz, 1991; ReVelle and Marianov, 1991; Ingolfsson, Budge and Erkut, 2008; Knight, 

Harper and Smith, 2012; Shariat-Mohaymany et al., 2012; Toro-Díaz et al., 2013; Cho et al., 2014; Leknes et al., 2017) 

Capacitated models: limiting the demand that each 
vehicle can cover, i.e. establishing capacity constraints 

(Current and Storbeck, 1988; Pirkul and Schilling, 1991; Shiah and Chen, 2007; Schmid and Doerner, 2010; Yin and Mu, 2012) 

Demand and 
Travel Time 
Uncertainty 

Demand: account for the 
spatial and temporal 
uncertainty of emergency 
requests patterns. 

Queueing Theory (Poisson 
Process) 

(Batta, June M. Dolan and Krishnamurthy, 1989; Marianov and ReVelle, 1994, 1996; Marianov and Serra, 1998; Borras and 
Pastor, 2002; Saydam and Aytuǧ, 2003; Galvão, Chiyoshi and Morabito, 2005; Cho et al., 2014; Leknes et al., 2017) 

Random Variable (Beraldi, Bruni and Conforti, 2004; Zhang and Li, 2015; Chu et al., 2018) 

Scenarios 
(Beraldi and Bruni, 2009; Berman, Hajizadeh and Krass, 2013; Zhang and Jiang, 2014; Nickel, Reuter-Oppermann and Saldanha-
da-Gama, 2016; Sung and Lee, 2018) 

Fuzzy Programming (Wen and Iwamura, 2008; Torres, Trujillo and Maldonado, 2018) 

Travel Time: consider the 
variability in travel time 
throughout the planning 
horizon due to traffic 
conditions. 

Scenarios (Berman, Hajizadeh and Krass, 2013) 

Random Variable (Aly and White, 1978; Marianov and ReVelle, 1996) 

Uncertainty Sets (Bertsimas and Ng, 2019) 

Coverage Probabilities (Daskin, 1987; Goldberg and Paz, 1991; Ingolfsson, Budge and Erkut, 2008; Drezner, Marianov and Wesolowsky, 2016) 

Fuzzy Programming (Davari, Fazel Zarandi and Hemmati, 2011; Lahijanian, Zarandi and Farahani, 2017) (Torres, Trujillo and Maldonado, 2018) 

Time Dependent 
Models 

Account for the dynamic nature of multiple model 
parameters, including travel time, demand, fleet size and 
station capacity. 

(Repede and Bernardo, 1994; Rajagopalan, Saydam and Xiao, 2008; Setzler, Saydam and Park, 2009; Cheu, Lei and Aldouri, 

2010; Schmid and Doerner, 2010; Başar, Çatay and Ünlüyurt, 2011; Degel et al., 2015; Van Den Berg and Aardal, 2015; Dibene 
et al., 2017) 

Multiple 
Vehicles and 
Call Priorities 

Multiple Vehicles 

(David A Schilling et al., 1979; David A. Schilling et al., 1979; Charnes and Storbeck, 1980; Revelle and Snyder, 1995; Jayaraman 
and Srivastava, 1995; Serra, 1996; Amiri, 1998; McLay, 2009; Coskun and Erol, 2010; Davoudpour, Mortaz and Hosseinijou, 
2014; Chong, Henderson and Lewis, 2016; Colombo, Cordone and Lulli, 2016; Liu et al., 2016; Van Den Berg, Legemaate and 
Van Der Mei, 2017) 

Multiple Call Priorities: consider multiple call types with 
varying care level needs and coverage thresholds. 

(David A Schilling et al., 1979; Charnes and Storbeck, 1980; Revelle and Snyder, 1995; Silva and Serra, 2008; McLay, 2009; 
Chong, Henderson and Lewis, 2016; Colombo, Cordone and Lulli, 2016; Liu et al., 2016) 
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Alternative 
Performance 
Measures 

Alternative Coverage: try 
to overcome the limitations 
of traditional coverage 
metrics. 

Gradual Coverage 
(Church and Roberts, 1983; Berman and Krass, 2002; Drezner, Wesolowsky and Drezner, 2004; Drezner, Drezner and Goldstein, 
2010; Berman and Wang, 2011; Berman, Krass and Wang, 2011; Van Den Berg, Kommer and Zuzáková, 2016) 

Variable Radius (Berman et al., 2009; Davaria et al., 2010) 

Cooperation (Berman, Drezner and Krass, 2010a) 

Patient Survival: explicitly consider the medical 
outcomes of patients as an objective. 

(Felder and Brinkmann, 2002; Erkut, Erdogan and Ingolfsson, 2008; McLay and Mayorga, 2010; Knight, Harper and Smith, 2012; 
Zaffar et al., 2016; Leknes et al., 2017) 

Equity: seek to ensure that the disparities within the 
system are reduced. 

(Drezner, Drezner and Guyse, 2009; McLay and Mayorga, 2010; Chanta et al., 2011; Smith, Harper and Potts, 2013; Chanta, 
Mayorga and McLay, 2014a, 2014b; Cardoso et al., 2015; Toro-Díaz et al., 2015) 

Multi-Objective Approaches: combine multiple 
stakeholder perspectives into the optimization models. 

(Schilling et al., 1980; Daskin and Stern, 1981; Storbeck, 1982; Revelle, Schweitzer and Snyder, 1996; Tzeng and Chen, 1999; 
Harewood, 2002; Alsalloum and Rand, 2006; Yang, Jones and Yang, 2007; Kanoun, Chabchoub and Aouni, 2010; Smith, Harper 
and Potts, 2013; Chanta, Mayorga and McLay, 2014a; Zhang and Jiang, 2014) 

Joint Strategic, 
Tactical and 
Operational 
Models 

Combine multiple levels of decision making (strategic, 
tactical and operational) into a single mode. 

(Goldberg and Paz, 1991; Borras and Pastor, 2002; Ingolfsson, Budge and Erkut, 2008; Budge, Ingolfsson and Erkut, 2009; Toro-

Díaz et al., 2013, 2015; Davoudpour, Mortaz and Hosseinijou, 2014; Grannan, Bastian and McLay, 2014; Ansari , McLay and 
Mayorga, 2015; Chong, Henderson and Lewis, 2016; Leknes et al., 2017; Sung and Lee, 2018) 

Other Issues in 
EMS Vehicle 
Planning 

Forecasting: try to predict demand and travel time for 
the planning horizon. 

(Hall, 1971; Kolesar, Walker and Hausner, 1975; Kvalseth and Deems, 1979; Baker and Fitzpatrick, 1986; McConnel and Wi lson, 
1998; Channouf et al., 2007; Setzler, Saydam and Park, 2009; Budge, Ingolfsson and Zerom, 2010; Micheletti et al., 2010; Vile et 

al., 2012) 

Demand Aggregation: group demand points to improve 
the model’s tractability. 

(Goodchild, 1979; Francis et al., 2009; Aringhieri et al., 2017) 

Simulation: can be used in simulation-optimization 
techniques or to validate optimization models. 

(Current and Storbeck, 1988; Goldberg et al., 1990; Pirkul and Schilling, 1991; Fu, Glover and April, 2005; Shiah and Chen, 2007; 
Schmid and Doerner, 2010; Yin and Mu, 2012; Zhen et al., 2014; Aringhieri, Carello and Morale, 2016) 

Solution 
Techniques 

Meta-heuristics 

Tabu Search (Hogan and ReVelle, 1986; Chanta et al., 2011; Saydam et al., 2013; Toro-Díaz et al., 2015) 

Ant Colony (Doerner et al., 2005) 

Variable Neighbourhood Search (Schmid and Doerner, 2010) 

Genetic Algorithm (Saydam and Aytuǧ, 2003; Iannoni, Morabito and Saydam, 2009, 2011; Liu et al., 2016) 

Simulated Annealing (Galvão, Chiyoshi and Morabito, 2005) 

Exact Approaches 

Branch-and-Bound (Church and ReVelle, 1974; Church and Meadows, 1979) 

Constraint Generation (Bertsimas and Ng, 2019) 

Benders Decomposition (Sung and Lee, 2018) 

Lagrangian Relaxation (Berman, Hajizadeh and Krass, 2013) 

Single-cut approaches (Toregas et al., 1971) 

Reduction techniques (Church and Meadows, 1979). 

Heuristics 

Greedy Heuristics 
(Church and ReVelle, 1974; Silva and Serra, 2008; Iannoni, Morabito and Saydam, 2009, 2011; Berman, Hajizadeh and Krass, 
2013; Colombo, Cordone and Lulli, 2016) 

Concentration Heuristic (Colombo, Cordone and Lulli, 2016) 

Substitution Heuristics (Batta, June M Dolan and Krishnamurthy, 1989) 
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APPENDIX C. COMPACT MODEL FORMULATION 
Table 25 - Compact model notation, parameters and decision-variables. 

 

Notation Description Notation Description 

Sets 

𝑠 ∈ 𝑆 Working shifts 𝑝 ∈ 𝑃 Emergency priorities 

𝑡 ∈ 𝑇 Periods in the planning horizon; t= 0 is the 
beginning of the planning horizon 

𝑣 ∈ 𝑉 Vehicle types 

|𝑇| Number of planning periods  𝑙 ∈ 𝐿 Care levels 

𝑑 ∈ 𝐷 Demand points 𝑓 ∈ 𝐹 Emergency station locations 

Subsets 

𝑓 ∈ 𝐹𝑒𝑥𝑖 Existing station locations 𝑓 ∈ 𝐹𝑠𝑒𝑙  Selectable station locations 

𝑓 ∈ 𝐹𝑛𝑒𝑤 Potential new station locations 𝑣 ∈ 𝑉 𝑠𝑒𝑙 Selectable vehicles 

Indexed Sets 

𝑣 ∈ 𝑉𝑓 Vehicles that can be located at station 𝑓 𝑓 ∈ 𝐹𝑣 Stations where vehicles 𝑣 may be located 

𝑣 ∈ 𝑉𝑙 Vehicles capable of providing care level 𝑙 𝑙 ∈ 𝐿𝑝 Care levels 𝑙 required by a call of type 𝑝 

Parameters 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑓
𝑡  Cost of opening station 𝑓 at the beginning of 

period 𝑡 

𝜀 Minimum fraction of coverage that for a vehicle 
to be considered as actively cooperating to 
serve the node 

𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑓
𝑡 : Cost of closing a station at site 𝑓 at the 

beginning of period 𝑡 

𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡  Maximum number of vehicles that can be 

housed at station 𝑓 during period 𝑡 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑓
𝑡 : Average cost per vehicle of type 𝑣 of operating 

station 𝑓 during period 𝑡 

𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑣
𝑡  Number of vehicles 𝑣 available during period 𝑡 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑣
𝑡𝑠 Average cost of operating a vehicle of type 𝑣 

during shift 𝑠 on period 𝑡 
𝑀𝑖𝑛𝑉𝑒𝑖𝑐𝑓𝑣 Minimum number of vehicles of type 𝑣 that 

must be located at station 𝑓  

𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡𝑑𝑝𝑓𝑣𝑙
𝑡𝑠  Average cost of providing care level 𝑙 to a call 

of priority 𝑝 from node 𝑑 with a vehicle of type 
𝑣 from station 𝑓 during period 𝑡 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣 Number of vehicles of type 𝑣 at station 𝑓 at the 
beginning of the planning horizon 

𝐷𝑒𝑚𝑑𝑝
𝑡𝑠  Requests of priority 𝑝 from demand node 𝑑 

during on shift 𝑠 of period 𝑡 

𝑀𝑎𝑥𝑉𝑒𝑖𝑐𝑆ℎ𝑖𝑓𝑡𝑣
𝑡𝑠 Number of vehicles 𝑣 that are available to 

during shift 𝑠 of planning period 𝑡 

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒𝑑𝑝𝑙
𝑡𝑠  Average service time to provide care level 𝑙 to 

a priority 𝑝 call from demand node 𝑑 on shift 𝑠 
of period 𝑡 

𝑆ℎ𝑖𝑓𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑠 Number of time units in shift 𝑠 

𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑓𝑣𝑑
𝑡𝑠  Travel time for a vehicle of type 𝑣 from station 

𝑓 to node 𝑑 on shift 𝑠 of period 𝑡 

𝑊𝑝𝑙
1 , 𝑊𝑡

2, 𝑊𝑠
3 Weight of covering an emergency of priority 𝑝 

with care 𝑙 ; during period 𝑡 and working shift 𝑠 

𝛾𝑣𝑝𝑙  1, if a vehicle of type  𝑣 can provide care level 
 𝑙 to call of priority  𝑝; 0, otherwise 

𝜏𝑓 Minimum amount of time that a station at 𝑓 
must remain in operation once opened 

∅𝑓𝑣𝑑𝑝𝑙
𝑡𝑠  Probability that a vehicle of type 𝑣 departing 

from a station at site 𝑓 can cover at care level 𝑙 
a call of priority 𝑝 from demand node 𝑑 on shift 
𝑠 of planning period 𝑡 

𝑀𝑎𝑥𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑡 , 
𝑀𝑎𝑥𝑂𝑝𝑒𝑛𝑡,  

𝑀𝑎𝑥𝐶𝑙𝑜𝑠𝑒𝑑𝑡  

Maximum number of stations that can be 

operated/opened/closed during period 𝑡 

𝜃 Maximum travel time in the system 𝑖𝑡 Inflation rate on period t 

𝛿𝑓𝑑 1, if station 𝑓 can be assigned to calls at node 

𝑑; 0, otherwise 

𝐷𝑎𝑦𝑠𝑡 Number of days in planning period 𝑡 

Decision Variables 

𝑦𝒇
𝑡 ∈ [0; 1] 1, if an emergency station is operating at site 𝑓 

during planning period 𝑡; 0, otherwise. 

𝐴𝑇𝑇𝑑𝑝𝑙
𝑡𝑠 ∈ ℝ0

+: average travel time for care level 𝑙 to calls 𝑝 

from node 𝑑 during period 𝑡 and shift 𝑠 

𝑥𝑓𝑣
𝑡 ∈ ℕ𝟎 number of vehicles of type 𝑣 assigned to a 

station at site 𝑓 during planning period 𝑡 

𝑀𝑖𝑛𝐴𝑇𝑇𝑑𝑝
𝑡𝑠 ∈ ℝ0

+ average travel time for the first responding 
vehicle to calls of type 𝑝 from node 𝑑 during 

period 𝑡 and shift 𝑠 

𝑠ℎ𝑓𝑣
𝑡𝑠 ∈ ℕ𝟎 number of vehicles of type 𝑣 assigned to a 

station at site 𝑓 during planning period 𝑡 that 
are active on working shift 𝑠 

𝐸𝑓𝑣
𝑡+/𝐸𝑓𝑣

𝑡− ∈ ℕ𝟎: number of vehicles of type 𝑣 added to/removed 

from facility 𝑓 at the beginning of time period 𝑡 

𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ∈ [0; 1] proportion of demand of priority 𝑝 from node 𝑑 

for care level 𝑙 allocated to vehicles of type 𝑣 at 

station 𝑓 during period 𝑡 and shift 𝑠 

𝐻𝑣
𝑡+/𝐻𝑣

𝑡− ∈ ℕ𝟎 total number of vehicles of type 𝑣 added 
to/removed from the fleet at the beginning of 

period 𝑡 

𝑐𝑙𝑜𝑠𝑒𝑑𝑓
𝑡  ∈ [0; 1], 

𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 ∈ [0; 1] 

1, if a station at 𝑓 is closed/opened at the 
beginning of planning period 𝑡; 0, otherwise. 

𝑏𝑓𝑣
𝑡 ∈ [0; 1] 1, if vehicles of type 𝑣 are added to site 𝑓 at 

the beginning of period 𝑡; 0, otherwise. 

𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ∈ [0; 1] 1, if vehicles 𝑣 at station 𝑓 are assigned to calls 

of type 𝑝 from node 𝑑 at care level 𝑙 during 

shift 𝑠 and period 𝑡 

𝑐𝑣
𝑡 ∈ [0; 1] 1, if vehicles of type 𝑣 are added the fleet at 

the beginning of period 𝑡; 0, otherwise. 

𝐴𝑇𝑇̅̅ ̅̅ ̅̅ ∈ ℝ0
+: maximum average travel time for the first 

responding vehicle over the entire region and 
planning periods 

𝛽𝑑𝑝𝑙
𝑡𝑠 ∈ [0; 1] 1, if care level 𝑙 has the shortest average 

response time for calls of type 𝑝 from node 𝑑  

during planning period 𝑡 and working shift 𝑠 
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Objective Functions 

𝑍1  = max ∑ ∑ 𝑊𝑝𝑙
1

𝑙∈𝐿𝑝∈𝑃

× ∑ 𝑊𝑡
2 ×

𝑡∈𝑇

∑ 𝑊𝑠
3 ×

𝑠∈𝑆

∑ ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ×

𝑣∈𝑉𝑓𝑓∈𝐹𝑑∈𝐷

𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × ∅𝑓𝑣𝑑𝑝𝑙

𝑡𝑠  

𝑍2  = 𝑚𝑖𝑛 ∑
1

(1 + 𝑖𝑡)𝑡

𝑡∈𝑇\{0}

× ( ∑ 𝐶𝑙𝑜𝑠𝑒𝑑𝑓
𝑡 × 𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑓

𝑡

𝑓∈(𝐹𝑒𝑥𝑖∩𝐹𝑠𝑒𝑙)

+ ∑ 𝑂𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 × 𝑂𝑝𝑒𝑛𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑓

𝑡

𝑓∈(𝐹𝑛𝑒𝑤∩𝐹𝑠𝑒𝑙)

)

+ ∑
1

(1 + 𝑖𝑡)𝑡
× ∑ ∑ 𝑥𝑓𝑣

𝑡 × 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑜𝑠𝑡𝑓
𝑡  

𝑣∈𝑉𝑓𝑓∈𝐹

+ ∑ 𝑠ℎ𝑓𝑣
𝑡𝑠 × 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔𝐶𝑜𝑠𝑡𝑣

𝑡𝑠  
𝑠∈𝑆𝑡∈𝑇

+ ∑
1

(1 + 𝑖𝑡)𝑡
× ∑ ∑ ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠 × 𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡𝑑𝑝𝑙𝑓𝑣

𝑡𝑠

𝑠∈𝑆𝑙∈𝐿𝑝𝑝∈𝑃𝑑∈𝐷𝑡∈𝑇

 

 

𝑍3  = 𝑚𝑖𝑛 𝐴𝑇𝑇̅̅ ̅̅ ̅̅  

Constraints 

𝑠ℎ𝑓𝑣
𝑡𝑠 ≤ 𝑥𝑓𝑣

𝑡  , ∀𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

∑ 𝑥𝑓𝑣
𝑡

𝑓∈𝐹𝑣

≤ 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑣
𝑡  , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 

𝑥𝑓𝑣
𝑡 ≥ 𝑀𝑖𝑛𝑉𝑒𝑖𝑐𝑓𝑣 , ∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} 

∑ 𝑥𝑓𝑣
𝑡

𝑣∈𝑉𝑓

≤ 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡 × 𝑦𝑓

𝑡  , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 

∑ 𝑥𝑓𝑣
𝑡

𝑣∈𝑉𝑓

≥ 𝑦𝑓
𝑡 , ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 

∑ 𝑠ℎ𝑓𝑣
𝑡𝑠

𝑓∈𝐹

≥ 𝑀𝑎𝑥𝑉𝑒𝑖𝑐𝑆ℎ𝑖𝑓𝑡𝑣
𝑡𝑠  , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

𝑥𝑓𝑣
0 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣 , ∀ 𝑓 ∈ 𝐹𝑒𝑥𝑖 , 𝑣 ∈ 𝑉𝑓  

𝑦𝑓
0 = 1 , ∀ 𝑓 ∈ 𝐹𝑒𝑥𝑖 

𝑥𝑓𝑣
𝑡 ≥ 𝑥𝑓𝑣

𝑡−1 , ∀ 𝑣 ∈ 𝑉𝑠𝑒𝑙̅̅ ̅̅ ̅, 𝑓 ∈ 𝐹𝑣 , 𝑡 ∈ 𝑇\{0} 

𝑦𝑓
𝑡 ≥ 𝑦𝑓

𝑡−1 , ∀ 𝑓 ∈ 𝐹𝑠𝑒𝑙̅̅ ̅̅ ̅, 𝑡 ∈ 𝑇\{0} 

𝑦𝑓
𝑡 − 𝑦𝑓

𝑡−1 = 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 − 𝑐𝑙𝑜𝑠𝑒𝑑𝑓

𝑡  , ∀ 𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇\{0} 

𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 + 𝑐𝑙𝑜𝑠𝑒𝑑𝑓

𝑡  ≤ 1 , ∀ 𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇\{0} 

𝑥𝑓𝑣
𝑡 −𝑥𝑓𝑣

(𝑡−1)
= 𝐸𝑓𝑣

𝑡+ − 𝐸𝑓𝑣
𝑡−  , ∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} 

∑ (𝑥𝑓𝑣
𝑡 − 𝑥𝑓𝑣

(𝑡−1)
)

𝑓∈𝐹𝑣

= 𝐻𝑣
𝑡+ − 𝐻𝑣

𝑡−, ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 

𝐸𝑓𝑣
𝑡+ ≤ 𝑏𝑓𝑣

𝑡 × 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡  , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} 

𝐸𝑓𝑣
𝑡− ≤ (1 − 𝑏𝑓𝑣

𝑡 ) × 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡−1 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0,1} 

𝐸𝑓𝑣
1− ≤ (1 − 𝑏𝑓𝑣

1 ) × 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 

𝐻𝑣
𝑡+ ≤ 𝑐𝑣

𝑡 × 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑣
𝑡  , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} 

𝐻𝑣
𝑡− ≤ (1 − 𝑐𝑣

𝑡) × 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑓
𝑡−1 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0,1} 

𝐻𝑣
1− ≤ (1 − 𝑐𝑣

1) × ∑ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣

𝑓∈𝐹𝑣

 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 

∑ 𝑦𝑓
𝑏

𝑡+𝜏𝑓
𝑡 −1

𝑏=𝑡

≥ 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 × 𝜏𝑓

𝑡  , ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇\{0} 

∑ 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡

𝑓∈𝐹

 ≤ 𝑀𝑎𝑥𝑂𝑝𝑒𝑛𝑡 , ∀ 𝑡 ∈ 𝑇\{0} 
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∑ 𝑐𝑙𝑜𝑠𝑒𝑑𝑓
𝑡

𝑓∈𝐹

 ≤ 𝑀𝑎𝑥𝐶𝑙𝑜𝑠𝑒𝑑𝑡  , ∀ 𝑡 ∈ 𝑇\{0} 

∑ 𝑦𝑓
𝑡

𝑓∈𝐹

≤ 𝑀𝑎𝑥𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑡  , ∀ 𝑡 ∈ 𝑇\{0} 

(∑ 𝐸𝑓𝑣
𝑡+

𝑓∈𝐹

) − 𝐻𝑣
𝑡+ ≤ 𝑀𝑎𝑥𝑅𝑒𝑎𝑙𝑣

𝑡 , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 

∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑣∈𝑉𝑓𝑓∈𝐹

≤ 1, ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑙∈𝐿𝑝

≤ 𝑠ℎ𝑓𝑣
𝑡𝑠 , ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ≤ 𝛾𝑣𝑝𝑙 × 𝛿𝑓𝑑 , ∀∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑡 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ≥ 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠  ,         ∀∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑡 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

𝜀 × 𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ≤ 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠  ,         ∀∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑡 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

∑ ∑ ∑ 𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠 × (𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑓𝑣𝑑
𝑡𝑠 + 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒𝑑𝑝𝑙

𝑡𝑠 )

𝑙∈𝐿𝑝∈𝑃𝑑∈𝐷

≤ 𝜌𝑚𝑎𝑥 × 𝑠ℎ𝑓𝑣
𝑡𝑠 × 𝑆ℎ𝑖𝑓𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑠 , ∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

∑ ∑ 𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑣∈𝑉𝑓

 ≥ 𝑁 
𝑓∈𝐹

, ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

𝐴𝑇𝑇𝑑𝑝𝑙
𝑡𝑠 = (∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠

𝑣∈𝑉𝑓

 ×  𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑓𝑣𝑑
𝑡𝑠

𝑓∈𝐹

) + (1 − ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑣∈𝑉𝑓𝑓∈𝐹

) × 𝜃,

∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 
𝑀𝑖𝑛𝐴𝑇𝑇𝑑𝑝

𝑡𝑠 ≥  𝐴𝑇𝑇𝑑𝑝𝑙
𝑡𝑠  − 𝜃 × 𝛽𝑑𝑝𝑙

𝑡𝑠 , ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

∑ 𝛽𝑑𝑝𝑙
𝑡𝑠

𝑙∈𝐿𝑝

=  |𝐿𝑝| − 1 , ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

𝐴𝑇𝑇̅̅ ̅̅ ̅̅  ≥ 𝑀𝑖𝑛𝐴𝑇𝑇𝑑𝑝
𝑡𝑠  , ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

 

SP1: 

𝑍1  = max ∑ ∑ 𝑊𝑝𝑙
1

𝑙∈𝐿𝑝∈𝑃

× ∑ 𝑊𝑡
2 ×

𝑡∈𝑇

∑ 𝑊𝑠
3 ×

𝑠∈𝑆

∑ ∑ ∑ 𝑠ℎ𝑓𝑣
𝑡𝑠 ×

𝑣∈𝑉𝑓𝑓∈𝐹𝑑∈𝐷

𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × ∅𝑓𝑣𝑑𝑝𝑙

𝑡𝑠  

Subject to: 

𝑠ℎ𝑓𝑣
𝑡𝑠 ≤ 𝑥𝑓𝑣

𝑡  , ∀𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

∑ 𝑥𝑓𝑣
𝑡

𝑓∈𝐹𝑣

≤ 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑣
𝑡  , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 

𝑥𝑓𝑣
𝑡 ≥ 𝑀𝑖𝑛𝑉𝑒𝑖𝑐𝑓𝑣 , ∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} 

∑ 𝑥𝑓𝑣
𝑡

𝑣∈𝑉𝑓

≤ 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡 × 𝑦𝑓

𝑡  , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 

∑ 𝑥𝑓𝑣
𝑡

𝑣∈𝑉𝑓

≥ 𝑦𝑓
𝑡  , ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 

∑ 𝑠ℎ𝑓𝑣
𝑡𝑠

𝑓∈𝐹

≥ 𝑀𝑎𝑥𝑉𝑒𝑖𝑐𝑆ℎ𝑖𝑓𝑡𝑣
𝑡𝑠  , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇, 𝑠 ∈ 𝑆 

𝑥𝑓𝑣
0 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣  , ∀ 𝑓 ∈ 𝐹𝑒𝑥𝑖 , 𝑣 ∈ 𝑉𝑓 

𝑦𝑓
0 = 1 , ∀ 𝑓 ∈ 𝐹𝑒𝑥𝑖 

𝑥𝑓𝑣
𝑡 ≥ 𝑥𝑓𝑣

𝑡−1 , ∀ 𝑣 ∈ 𝑉𝑠𝑒𝑙̅̅ ̅̅ ̅, 𝑓 ∈ 𝐹𝑣 , 𝑡 ∈ 𝑇\{0} 

𝑦𝑓
𝑡 ≥ 𝑦𝑓

𝑡−1 , ∀ 𝑓 ∈ 𝐹𝑠𝑒𝑙̅̅ ̅̅ ̅, 𝑡 ∈ 𝑇\{0} 

𝑦𝑓
𝑡 − 𝑦𝑓

𝑡−1 = 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 − 𝑐𝑙𝑜𝑠𝑒𝑑𝑓

𝑡  , ∀ 𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇\{0} 
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𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 + 𝑐𝑙𝑜𝑠𝑒𝑑𝑓

𝑡  ≤ 1 , ∀ 𝑓 ∈ 𝐹 , 𝑡 ∈ 𝑇\{0} 

𝑥𝑓𝑣
𝑡 −𝑥𝑓𝑣

(𝑡−1)
= 𝐸𝑓𝑣

𝑡+ − 𝐸𝑓𝑣
𝑡−   , ∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} 

∑ (𝑥𝑓𝑣
𝑡 − 𝑥𝑓𝑣

(𝑡−1)
)

𝑓∈𝐹𝑣

= 𝐻𝑣
𝑡+ − 𝐻𝑣

𝑡−, ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 

𝐸𝑓𝑣
𝑡+ ≤ 𝑏𝑓𝑣

𝑡 × 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡  , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} 

𝐸𝑓𝑣
𝑡− ≤ (1 − 𝑏𝑓𝑣

𝑡 ) × 𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑎𝑝𝑓
𝑡−1 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0,1} 

𝐸𝑓𝑣
1− ≤ (1 − 𝑏𝑓𝑣

1 ) × 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓  

𝐻𝑣
𝑡+ ≤ 𝑐𝑣

𝑡 × 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑣
𝑡  , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0} 

𝐻𝑣
𝑡− ≤ (1 − 𝑐𝑣

𝑡) × 𝑉𝑒𝑖𝑐𝐴𝑣𝑎𝑓
𝑡−1 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 , 𝑡 ∈ 𝑇\{0,1} 

𝐻𝑣
1− ≤ (1 − 𝑐𝑣

1) × ∑ 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑒𝑖𝑐𝑓𝑣

𝑓∈𝐹𝑣

 , ∀ 𝑓 ∈ 𝐹 , 𝑣 ∈ 𝑉𝑓 

∑ 𝑦𝑓
𝑏

𝑡+𝜏𝑓
𝑡 −1

𝑏=𝑡

≥ 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡 × 𝜏𝑓

𝑡  , ∀ 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇\{0} 

∑ 𝑜𝑝𝑒𝑛𝑒𝑑𝑓
𝑡

𝑓∈𝐹

 ≤ 𝑀𝑎𝑥𝑂𝑝𝑒𝑛𝑡 , ∀ 𝑡 ∈ 𝑇\{0} 

∑ 𝑐𝑙𝑜𝑠𝑒𝑑𝑓
𝑡

𝑓∈𝐹

 ≤ 𝑀𝑎𝑥𝐶𝑙𝑜𝑠𝑒𝑑𝑡  , ∀ 𝑡 ∈ 𝑇\{0} 

∑ 𝑦𝑓
𝑡

𝑓∈𝐹

≤ 𝑀𝑎𝑥𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑠𝑡  , ∀ 𝑡 ∈ 𝑇\{0} 

(∑ 𝐸𝑓𝑣
𝑡+

𝑓∈𝐹

) − 𝐻𝑣
𝑡+ ≤ 𝑀𝑎𝑥𝑅𝑒𝑎𝑙𝑣

𝑡 , ∀ 𝑣 ∈ 𝑉, 𝑡 ∈ 𝑇 

 

SP2: 

𝑍1  = max ∑ ∑ 𝑊𝑝𝑙
1

𝑙∈𝐿𝑝∈𝑃

× ∑ 𝑊𝑡
2 ×

𝑡∈𝑇

∑ 𝑊𝑠
3 ×

𝑠∈𝑆

∑ ∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ×

𝑣∈𝑉𝑓𝑓∈𝐹𝑑∈𝐷

𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × ∅𝑓𝑣𝑑𝑝𝑙

𝑡𝑠  

Subject to: 

∑ ∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑣∈𝑉𝑓𝑓∈𝐹

≤ 1, ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿𝑝 , 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

∑ 𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑙∈𝐿𝑝

≤ 𝑠ℎ𝑓𝑣
𝑡𝑠 , ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

𝑎𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ≤ 𝛾𝑣𝑝𝑙 × 𝛿𝑓𝑑 , ∀∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑡 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ≥ 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠  ,         ∀∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑡 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

𝜀 × 𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠 ≤ 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠  ,         ∀∈ 𝐷, 𝑝 ∈ 𝑃, 𝑙 ∈ 𝐿, 𝑡 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

∑ ∑ ∑ 𝐷𝑒𝑚𝑑𝑝
𝑡𝑠 × 𝑎𝑑𝑝𝑙𝑓𝑣

𝑡𝑠 × (𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒𝑓𝑣𝑑
𝑡𝑠 + 𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒𝑑𝑝𝑙

𝑡𝑠 )

𝑙∈𝐿𝑝∈𝑃𝑑∈𝐷

≤ 𝜌𝑚𝑎𝑥 × 𝑠ℎ𝑓𝑣
𝑡𝑠 × 𝑆ℎ𝑖𝑓𝑡𝐿𝑒𝑛𝑔𝑡ℎ𝑠 , ∀ 𝑓 ∈ 𝐹, 𝑣 ∈ 𝑉𝑓, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 

∑ ∑ ∑ 𝑤𝑑𝑝𝑙𝑓𝑣
𝑡𝑠

𝑙∈𝐿𝑝𝑣∈𝑉𝑓

 ≥ 𝑁 
𝑓∈𝐹

, ∀ 𝑑 ∈ 𝐷, 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 
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APPENDIX D. EMERGENCY REQUEST ANALYSIS 
In order to verify the hypothesis that the volume of emergency requests varies strongly with time of the 

day and month, a Kruskal-Wallis test is conducted on the average number of calls per day and shift. 

For that purpose, the mean and standard deviation of the number of calls per day in each month and 

shift are calculated in R, and are presented in Table 26. 

Table 26 - Mean and standard deviation (SD) of the number of calls per day per month and shift. 

 Lisbon  Setúbal 

Month 

P1  P3  P1  P3 

Average SD  Average SD  Average SD  Average SD  

Jan-17 26.16129 3.899545  175.6452 22.75895  4.54839 2.39219  175.64520 22.75895 

Feb-17 23.57143 4.220133  160.2143 19.03283  4.28571 1.88281  160.21430 19.03283 

Mar-17 22.77419 5.277055  159.9032 13.93881  3.82759 1.64900  159.90320 13.93881 

Apr-17 19.16667 4.25954  154.7333 18.75419  3.82759 1.77420  154.73330 18.75419 

May-17 19.90323 5.545898  161.7419 15.04431  3.80645 2.19726  161.74190 15.04431 

Jun-17 20.06667 4.926587  160.8333 21.17429  3.82759 1.62720  160.83330 21.17429 

Jul-17 19.77419 4.425002  152.4194 15.44188  3.27586 1.38607  152.41940 15.44188 

Aug-17 17.54839 3.631700  143.7419 15.39257  3.10000 1.56139  143.74190 15.39257 

Sep-17 19.13333 4.932184  161.8667 18.3091  3.67857 1.56474  161.86670 18.30910 

Oct-17 21.45161 5.091422  165.4194 18.79499  3.93548 2.26474  165.41940 18.79499 

Nov-17 23.93333 4.912569  168.8667 19.21876  4.03333 1.93842  168.86670 19.21876 

Dec-17 23.87097 4.455274  170.4839 18.10133  4.70968 1.84740  170.48390 18.10133 

Jan-18 24.87097 5.327551  171.871 22.05409  4.54839 2.26331  171.87100 22.05409 

Feb-18 27.17857 6.359907  180.0000 15.87217  4.46429 2.25228  180.00000 15.87217 

Mar-18 24.83871 4.747608  168.7742 17.23313  3.96667 2.20475  168.77420 17.23313 

Apr-18 24.03333 4.634826  164.2000 21.11773  3.96429 2.38020  164.20000 21.11773 

May-18 20.6129 4.499462  166.7742 18.59339  3.50000 1.81557  166.77420 18.59339 

Jun-18 20.56667 4.438727  165.2667 16.88487  3.34483 1.56470  165.26670 16.88487 
            

Shift            

Morning 8.02564 2.96761  58.62454 9.58344  1.89781 1.07716  9.18681 3.06712 

Evening 9.86264 3.49645  76.26557 14.15021  2.09469 1.22769  12.01282 3.62886 

Night 4.50000 2.13070  29.11883 8.17072  1.44211 0.69276  4.75506 2.38167 

 

By analysing these values, it becomes apparent that the volume of calls is not steady, as confirmed by 

the test results presented in section 6.6. 

When choosing a statistical model to help predict the volume of calls in the planning horizon, besides 

analysing the inter-call times, the number of requests per day is also analysed. By evaluating the 

histograms of the number of emergencies per day (as in the Figure bellow), it is concluded that it 

resembles a Poisson distribution mass function, as would be expected. 
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Figure 35 - Histograms of the number of P1 emergencies in Setúbal per day. 
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APPENDIX E. ADDITIONAL CASE-STUDY DATA 
This appendix presents additional case-study data, duly referenced on Chapter 6. 

Table 27 - Maximum number of stations that can be opened or closed during the planning period. 

 

Table 28 - Number of emergency vehicles available on each month for Lisbon and Setúbal. 

 

 

Table 29 - Availability of emergency vehicles on different shifts in Lisbon and Setúbal. 

 

 

 

 

 

 
 

 

 Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

OPENING 
Lisbon 1 1 1 1 1 2 2 2 2 2 0 1 

Setúbal 1 1 1 1 1 2 2 2 2 2 0 1 

CLOSING 
Lisbon 1 1 1 1 1 1 1 1 2 1 1 1 

Setúbal 1 1 1 1 1 1 1 1 1 1 1 0 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

L
IS

B
O

N
 

NINEM 6 6 6 6 6 6 6 6 6 6 6 6 

RES 0 0 0 0 0 0 0 0 0 0 0 0 

PEM 2 2 2 2 2 2 3 3 3 2 2 2 

AEM 14 14 14 14 14 14 14 14 14 14 14 14 

SIV 1 1 1 1 1 1 1 1 1 1 1 1 

VMER 3 3 3 3 3 3 3 3 3 3 3 3 

S
E

T
Ú

B
A

L
 

NINEM 0 0 0 0 0 0 0 0 0 0 0 0 

RES 0 0 0 0 0 0 1 1 1 0 0 0 

PEM 5 5 5 5 5 5 6 6 6 5 5 5 

AEM 2 2 2 2 2 2 2 2 2 2 2 2 

SIV 0 0 0 0 0 0 0 0 0 0 0 0 

VMER 1 1 1 1 1 1 1 1 1 1 1 1 

  January- June | October-December July-September 

  Morning Evening Night Morning Evening Night 

LI
SB

O
N

 

NINEM 6 6 6 6 6 6 

RES 0 0 0 0 0 0 

PEM 2 2 1 3 3 3 

AEM 14 13 7 14 13 7 

SIV 1 1 1 1 1 1 

VMER 3 3 3 3 3 3 

SE
TÚ

B
A

L 

NINEM 0 0 0 0 0 0 

RES 0 0 0 0 0 0 

PEM 5 4 3 6 6 6 
AEM 2 2 1 2 2 1 

SIV 0 0 0 0 0 0 

VMER 1 1 1 1 1 1 
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Table 30 - Fitted arrival rate for P1 and P3 emergencies in Lisbon and Setúbal for each month (emergencies/hour). 

 

Table 31 - Maximum travel times for different cluster partitions and shifts. 
 

 

Table 32 - Estimated aggregate service times for Setúbal. 

 

Table 33 - Example of coverage probabilities for three stations and three demand regions (of the 1% cluster partitioning) 
in Setúbal. 

  Demand Areas 

Station  0 1 2 3 

BV Setúbal - Azeitão  0.0092 0.8976 0.1382 0.0164 

BV Setúbal - Sede  0.1344 0.0188 0.9922 0.7920 

Cruz Vermelha Setúbal  0.4410 0.0108 0.9914 0.6080 

  

   Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

L
IS

B
O

N
 

P
1
 Morning 1.23 1.29 1.29 1.05 1.08 0.99 1.03 1.01 0.98 1.12 1.26 1.20 

Evening 1.21 1.22 1.09 1.03 0.93 0.98 0.99 0.72 0.86 1.00 1.09 1.16 
Night 0.66 0.63 0.55 0.62 0.50 0.55 0.53 0.44 0.53 0.55 0.60 0.58 

P
3
 Morning 9.93 9.65 9.44 9.26 9.51 9.52 8.73 8.29 9.63 9.82 9.53 9.33 

Evening 7.93 8.02 7.60 7.04 7.43 7.05 6.71 6.29 6.99 7.08 8.04 8.01 
Night 3.84 3.57 3.46 3.63 3.57 3.77 3.62 3.39 3.63 3.79 3.51 3.92 

S
E

T
Ú

B
A

L
 

P
1
 Morning 0.20 0.16 0.17 0.17 0.17 0.17 0.15 0.15 0.14 0.14 0.14 0.21 

Evening 0.23 0.24 0.21 0.21 0.25 0.14 0.19 0.17 0.19 0.25 0.24 0.19 
Night 0.16 0.18 0.14 0.13 0.11 0.15 0.15 0.11 0.17 0.15 0.18 0.19 

P
3
 Morning 1.49 1.53 1.42 1.40 1.49 1.46 1.31 1.21 1.22 1.41 1.35 1.46 

Evening 1.30 1.38 1.20 1.28 1.18 1.24 1.19 1.21 1.19 1.25 1.22 1.19 
Night 0.67 0.62 0.63 0.59 0.64 0.70 0.59 0.54 0.62 0.57 0.55 0.60 

 Cluster 
Partition 

 Shift 

  Morning Evening Night 

L
IS

B
O

N
 1% (33)  53.0508206 48.9448809 39.7457861 

2% (66)  47.4069924 43.8451881 32.3604476 
5% (165)  51.5477667 46.1591022 45.5677732 

S
E

T
Ú

B
A

L
 

1% (27)  37.5065337 31.5487246 29.4652411 
2% (54)  39.6760742 31.4455207 28.8048597 
5% (135)  39.5771775 32.6457011 28.6140990 

 P1 - ALS P1 - BLS P3 - BLS 
Month Morning Evening Night Morning Evening Night Morning Evening Night 

January 60.89 55.56 58.28 58.97 65.46 63.04 63.85 65.37 61.10 
February 58.85 59.97 53.71 71.40 66.79 59.53 62.37 65.46 67.56 
March 55.65 43.34 64.65 66.90 62.14 67.80 62.50 62.97 65.72 
April 52.64 55.78 58.07 60.33 64.68 74.19 61.98 62.60 66.08 
May 61.42 56.75 58.23 65.38 71.42 74.41 61.13 61.71 65.75 
June 57.34 43.49 56.08 68.53 67.10 69.11 62.31 61.14 65.17 
July 67.13 60.84 53.89 61.96 67.91 68.93 59.45 64.17 62.71 
August 57.04 54.79 56.60 67.39 69.79 72.55 57.52 66.16 64.69 
September 51.45 53.25 58.09 54.97 72.22 81.33 57.82 63.97 61.10 
October 60.32 60.94 56.47 63.09 68.51 74.84 61.32 61.81 68.36 
November 55.29 41.45 57.72 63.47 61.55 73.51 60.64 61.93 66.37 
December 58.80 57.14 46.32 72.00 70.51 67.28 62.58 60.47 65.57 
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APPENDIX F. SCALABILITY ANALYSIS RESULTS 
In order to assess the scalability of the implemented model, several instances of different sizes are analysed. 

The number of emergency priorities, time periods, shifts and care levels is fixed, while the number of stations 

and demand areas are variable. The analysis uses the base line instances, whose size is presented in Table 

34. Each test is represented by a letter – L for Lisbon, S for Setúbal – and two numbers: the first represents 

the size of the instance (0 for the 1% partition, 1 for the 2% partition and 2 for the 5% partition), and the second 

is the experiment number (see section 7.3). 

Table 34 - Size of the base-line test instances. 

 

A Lexicographic Ordering approach is used to handle multiple objectives. For this purpose, objectives are 

ranked according to their priority for INEM. The resulting hierarchy, in decreasing order of importance, is Z1, 

Z2 and Z3. Three runs are conducted for each instance. Firstly, coverage is maximized (run 0). Subsequently, 

the value of this objective is bounded by a constraint (lower bound) and total costs are minimized (run 1). In 

the third run, an upper bound on costs and a lower bound on coverage are set and equity is maximized by 

minimizing 𝑍3 (run 2). Additionally, the solution of the previous run is used as a MIP start solution in CPLEX, 

given that it is always a feasible solution. 

Before proceeding to assess the computational time of these instances, it is interesting to analyze the rate of 

convergence to optimality of the branch-and-cut procedure for two test instances (Figure 36). It is possible to 

conclude that although a tight upper-bound is quickly set by CPLEX, and a quality feasible solution is found in 

some minutes, ensuring optimality is challenging. This suggests that the Linear Relaxation of the proposed 

model is relatively tight. 

 

Since proving optimality requires a significant amount of computational time without great improvement in the 

objective function, all tests are conducted using an optimality gap of 0.5% for the Z1 objective (run 0), while in 

the subsequent runs, a relative gap of 5% is applied. Different relative gaps are used because the first objective 

Instance City 
Demand 

areas Stations Constraints 

Variables 

Binary Integer Continuous 

L0.0 Lisbon 33 42 866430 212586 4178 213841 
L1.0 Lisbon 66 42 1716978 420666 4178 427681 
L2.0 Lisbon 165 42 4268862 1044366 4178 1069201 
S0.0 Setúbal 27 16 171189 39106 1016 42769 
S1.0 Setúbal 54 16 344565 78418 1016 87121 
S2.0 Setúbal 135 16 852297 193546 1016 217009 
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Figure 36 - Convergence of the branch-and-cut procedure in the base-line instances (Left: Lisbon, 1% cluster partition; 
Right: Setúbal, 5% cluster partition). 
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is more imperative and, thus, greater care should be taken when optimizing it. Computational times for run 0 

and objective function values are presented in Table 35.  

 
Table 35 - Computational time and objective function results for the model scalability analysis. 

 

As would be expected, the computational effort required to solve the model increases exponentially with the 

size of the instance. This is mainly due to the fact that, being a dynamic model with micro and macro time 

periods, the number of variables and constraints increases significantly even for small networks. In fact, by 

considering 12 time periods and three shifts, the number of variables (which are indexed by these parameters) 

increases 36 times when compared to a static model.  

The computational burden also increases significantly in the second and, mostly, third run of the Lexicographic 

method. This is because the additional constraints related with the previous objectives render the model much 

more difficult, even though an initial feasible solution is always provided by the prior run. Without this initial 

solution, the computational time is even greater. Overall, the computational overhead of the model is 

significant, since it is a large combinatorial problem. Nevertheless, given that speed is not crucial in this study, 

CPLEX is used in all experiences except when stated otherwise. 

The results also suggest that the chosen cluster partition only slightly influences the results. As mentioned, 

larger aggregation areas introduce errors in the model. Therefore, the 5% partitions are expected to be more 

accurate than the 1% partitions. In the tested instances, using larger aggregation areas results in an 

overestimation of expected coverage of 2.38% in Lisbon and 5.86% in Setúbal, between the 1% and 5% cluster 

partitions. Contrarily, the equity objective presents an underestimation of 4.78% in Lisbon and 2.07% in 

Setúbal. Regarding costs, the results are not conclusive. In Lisbon, they are underestimated by 1.40% in 

Lisbon, while in Setúbal they are overestimated by 8.37%. 

In light of these results, and in order to reduce the computational cost and allow for more experiments to be 

carried out, the remaining experiences are conducted using the L0 instances for Lisbon. For Setúbal, the S2 

test instances are used since the computational cost is still acceptable for all runs. A relative gap of 0.5% is 

used when maximizing expected coverage, while a gap of 5% is applied when optimizing the remaining 

objectives. Additionally, a time limit of 24 hours is used for each run. The following sections focus on exploring 

the model to assess the impact of alternative policies in the SIEM’s expected performance. 

 Run 0  Run 1  Run 2 

Instance 
Coverage 

(Z1) 
Gap 
(%) 

Branch-and-
Cut Time (s) 

Total 
Time (s) 

 Cost  
(Z2) 

Gap 
(%) 

 Equity 
(Z3) 

Gap 
(%) 

L0.0 1691.431 0.47% 188.7 237.28  65011.790 2.68%  15.105 0.00% 
L1.0 1647.422 0.44% 874.19 971.396  65131.897 4.24%  15.471 0.00% 
L2.0 1652.116 0.18% 8821.17 9191.09  65934.688 4.93%  15.864 0.00% 
S0.0 323.4685 0.00% 5.50 22.44  15157.960 3.20%  16.341 0.00% 
S1.0 322.4058 0.00% 18.08 51.19  13038.877 4.17%  17.476 0.00% 
S2.0 322.8103 0.00% 179.39 247.64  13986.250 4.60%  16.686 0.00% 
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APPENDIX G. SAMPLE MODEL SOLUTION 
Table 36 - Proposed solution sample for Lisbon in the base-line scenario. 

 

Station Vehicle Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

INEM Sede AEM (1, 1, 1) (1, 1, 1) (2, 2, 2) (2, 2, 1) (2, 2, 1) (2, 2, 1) (2, 1, 2) (1, 1, 0) (2, 2, 2) (1, 1, 1) (1, 1, 1) (2, 2, 2) 

GNR Reg. Cavalaria - Ajuda AEM (1, 1, 1) (1, 1, 0) (1, 0, 0) (1, 1, 0) (1, 1, 0) (1, 1, 1) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 1) (1, 1, 0) (1, 0, 0) 

Esquadra PSP - Bº Boavista AEM (1, 1, 1) (1, 1, 0) (1, 1, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 0) (1, 1, 1) (1, 1, 0) (1, 1, 0) (1, 1, 1) (1, 1, 0) 

Centro Saúde Lóios - Olivais AEM (3, 3, 0) (1, 1, 1) (1, 1, 1) (2, 2, 1) (1, 1, 0) (2, 2, 1) (1, 1, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

Hosp. Curry Cabral AEM (2, 2, 2) (1, 1, 1) (1, 1, 0) (1, 1, 1) (1, 1, 1) (1, 1, 0) (1, 1, 0) (3, 3, 1) (3, 2, 0) (3, 3, 1) (3, 3, 1) (1, 1, 0) 

Escola S.D. Benfica AEM (1, 1, 1) (1, 1, 1) (1, 1, 1) (2, 2, 1) (1, 1, 1) (1, 1, 0) (1, 1, 1) (1, 1, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 0) 

GNR Brigada Fiscal - Beato AEM (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 1) (1, 1, 1) 

GNR BT - Alcântara AEM (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 1) 

Hosp. Egas Moniz AEM (1, 1, 0) (1, 0, 0) (1, 1, 0) (1, 0, 1) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (0, 0, 0) (1, 1, 0) 

Hosp. Egas Moniz SIV (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0) 

Hosp. São Francisco Xavier VMER (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

Hosp. São José AEM (0, 0, 0) (1, 1, 0) (1, 1, 0) (1, 1, 1) (1, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 0) (1, 1, 1) 

Hosp. São José VMER (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

Hosp. Santa Maria AEM (1, 0, 1) (1, 1, 1) (1, 1, 1) (0, 0, 0) (1, 1, 1) (1, 1, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 0) (1, 1, 1) (1, 1, 0) 

Hosp. Santa Maria VMER (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

Hosp. Santa Maria SIV (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

INEM - R. Infante D. Pedro AEM (1, 1, 0) (1, 1, 1) (0, 0, 0) (1, 1, 0) (1, 0, 0) (1, 1, 1) (1, 1, 0) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 0) (1, 1, 1) 

INEM - R. Infante D. Pedro SIV (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) (1, 1, 0) (0, 0, 0) (1, 1, 0) 

RSB – Av. D. Carlos I PEM (2, 2, 1) (2, 2, 1) (2, 2, 1) (2, 2, 1) (2, 2, 1) (2, 2, 1) (2, 2, 2) (2, 2, 2) (2, 2, 2) (2, 2, 1) (2, 2, 1) (2, 2, 1) 

BV Ajuda AEM (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0) 

BV Ajuda NINEM (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

BV Beato AEM (0, 0, 0) (1, 0, 0) (1, 1, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

BV Beato NINEM (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

BV Campo de Ourique NINEM (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

BV Cabo Ruivo AEM (0, 0, 0) (1, 1, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 1) (0, 0, 0) (0, 0, 0) 

BV Cabo Ruivo NINEM (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

BV Lisboa AEM (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 0) 

BV Lisboa NINEM (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

BV Lisbonenses NINEM (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) (1, 1, 1) 

Centro de Saúde Graça AEM (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

Centro de Saúde Marvila AEM (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

Centro de Saúde Alvalade AEM (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

Centro de Saúde Benfica AEM (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 1) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 

Hospital Cruz Vermelha AEM (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) (1, 1, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0) 
Note: The solution for each facility/month is represented by (M, E, N), where M is the number of active vehicles during the morning, E is the number of active vehicles during the evening and 
N is the number of active vehicles during the night. 
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APPENDIX H. COMPUTATIONAL RESULTS 
Table 37 - Computational results summary. 

Experiment 

Instance Characteristics  Instance Size  Computational Time  Objectives 

Instance Run City 
Demand 

areas Stations 

 Variables 

Constraints 
Non-zero 

coefficients 

 

Root + BC (s) 
Total Time 

(s) 

 

Coverage (Z1) Gap (%) Cost (Z2) Gap (%) 
Equity 

(Z3) Gap (%)  Binary Integer Continuous   

Toy Instance 

T0 0 Toy Instance 3 3  177 51 235 1035 2464  0.09 3.68  5457.053 0.00% — — — — 
T0 1 Toy Instance 3 3  177 51 235 1034 2344  0.11 4.91  5457.053 0.00% 4946.559 0.01% — — 
T0 2 Toy Instance 3 3  177 51 235 1035 2464  0.16 4.95  5457.053 0.00% 4946.559 0.01% 0.496 0.00% 
T1 0 Toy Instance 6 6  2696 412 2971 12604 38648  0.50 5.25  8796.711 0,00% — — — — 
T1 1 Toy Instance 6 6  2696 412 2971 12605 40838  0.33 2.21  8796.711 0,00% 37089.903 0.94% — — 
T1 2 Toy Instance 6 6  2696 412 2971 12606 41158  1.80 3.49  8796.711 0,00% 37089.903 0.94% 0.548 4.36% 

0. Base Line 
Optimization & 
Scalability 
Analysis 

L0.0 0 Lisbon 33 42  212586 4178 213841 866430 3129900  188.7 237.28  1691.809 0.45% — — — — 
L0.0 1 Lisbon 33 42  212586 4178 213841 866431 3129900  130.69 134.062  1691.809 0.45% 65011.790 2.68% — — 
L0.0 2 Lisbon 33 42  212586 4178 213841 866432 3284750  6956.99 7039.87  1691.809 0.45% 65011.790 2.68% 15.105 0.00% 
L1.0 0 Lisbon 66 42  420666 4178 427681 1716978 5726482  2207.77 2300.332  1647.423 0.44% — — — — 
L1.0 1 Lisbon 66 42  420666 4178 427681 1716979 6079522  874.19 971.396  1647.423 0.44% 65131.897 4.24% — — 
L1.0 2 Lisbon 66 42  420666 4178 427681 1716980 6360219  12072.97 12166.612  1647.423 0.44% 65131.897 4.24% 15.471 0.00% 
L2.0 0 Lisbon 165 42  1044366 4178 1069201 4268862 13700185  9137.39 9310.026  1651.999 0.18% — — — — 
L2.0 1 Lisbon 165 42  1044366 4178 1069201 4268863 14401474  6282.66 7335.943  1651.999 0.18% 65934.688 4.93% — — 
L2.0 2 Lisbon 165 42  1044366 4178 1069201 4268864 14958264  13564.98 13865.731  1651.999 0.18% 65934.688 4.93% 15.864 0.00% 
S0.0 0 Setúbal 27 10  39106 1016 42769 171189 483332  5.5 22.44  323.394 0.49% — — — — 
S0.0 1 Setúbal 27 10  39106 1016 42769 171190 500424  124.77 141.31  323.394 0.49% 15157.960 3.20% — — 
S0.0 2 Setúbal 27 10  39106 1016 42769 171191 513698  533.36 580.21  323.394 0.49% 15157.960 3.20% 16.341 0.00% 
S1.1 0 Setúbal 54 10  78418 1016 87121 344565 948088  18.08 51.19  322.406 0.00% — — — — 
S1.1 1 Setúbal 54 10  78418 1016 87121 344566 974796  232.86 267.08  322.406 0.00% 13038.877 4.17% — — 
S1.1 2 Setúbal 54 10  78418 1016 87121 344567 995408  236.48 141.8  322.406 0.00% 13038.877 4.17% 17.476 0.00% 
S2.1 0 Setúbal 135 10  193546 1016 217009 852309 2265540  179.39 247.64  321.584 0.00% — — — — 
S2.1 1 Setúbal 135 10  193546 1016 217009 852310 2306592  1032.45 1104.76  321.584 0.00% 14946.895 4.60% — — 
S2.1 2 Setúbal 135 10  193546 1016 217009 852311 2338176  1410.92 1612.09  321.584 0.00% 14946.895 4.60% 17.796 0.00% 

1. Current 
System 
 

L0.1 0 Lisbon 33 20  211362 2486 213841 866430 2722858  15.28 107.67  1686.135 0.10% — — — — 
L0.1 1 Lisbon 33 20  211362 2486 213841 866431 2916276  79.69 181.19  1686.135 0.10% 66494.661 0.01% — — 
L0.1 2 Lisbon 33 20  211362 2486 213841 866432 3068570  514.67 610.61  1686.135 0.10% 66494.661 0.01% 17.856 4.86% 
S2.1 0 Setúbal 135 4  193222 620 217009 852297 2085804  151.58 239.81  320.4299 0.00% — — — — 
S2.1 1 Setúbal 135 4  193222 620 217009 852298 2126856  144.58 252.6  320.4299 0.00% 17119.534 0.00% — — 
S2.1 2 Setúbal 135 4  193222 620 217009 852299 2157828  140.42 219.38  320.4299 0.00% 17119.534 0.63% 18.321 0.48% 

2. Seasonal 
PEMs 

L0.2 0 Lisbon 33 42  249018 4877 249481 1011040 3436049  354.73 397.805  1703.41471 0.19% — — — — 
L0.2 1 Lisbon 33 42  249018 4877 249481 1011041 3663337  214.18 258.981  1703.41471 0.19% 65620.028 3.17% — — 
L0.2 2 Lisbon 33 42  249018 4877 249481 1011042 3852777  4624.53 4696.165  1703.41471 0.19% 65620.028 3.17% 15.1046 0.00% 
S2.2 0 Setúbal 135 10  208114 1280 231805 911601 2442939  102.22 174.56  321.583 0.00% — — — — 
S2.2 1 Setúbal 135 10  208114 1280 231805 911602 2488842  69.14 142.01  321.583 0.00% 14337.553 1.18% — — 
S2.2 2 Setúbal 135 10  208114 1280 231805 911603 2527518  366.78 439  321.583 0.00% 14337.553 1.18% 18.233 0.00% 

3./4. Fleet 
Expansion 

Results are presented in Table 38 

5. Impact of 
Legislation 

L0.5 0 Lisbon 33 42  212586 4358 213841 865398 2935450  2597.7 2649.907  1694.51984 0.44% — — — — 
S2.5 0 Setúbal 135 10  193546 1016 217009 852069 2265300  188.05 259.66  321.584 0.00% — — — — 

6. Vehicle 
Relocation 

L0.6 0 Lisbon 33 42  242444 4360 247105 999340 3402464  10783.8 10818.577  1709.56687 0.35% — — — — 
S2.6 0 Setúbal 135 10  187745 836 212077 830949 2200680  375.64 443.6  321.494 0.00% — — — — 

7. Green-Field 
Scenario 

L0.7 0 Lisbon 33 42  212586 4358 213841 866088 2935972  82156.05 81751.51  1705.624 0.50% — — — — 
S2.7 0 Setúbal 135 10  193546 1016 217009 852240 2265439  5533.47 5862.53  322.283 0.30% — — — — 

8. Fully Flexible 
SEM 

L0.8 0 Lisbon 33 42  503064 6480 498961 2018160 5099304  86384.92 86565.22  1910.371 0.71% — — — — 
S2.8 0 Setúbal 135 10  361020 1056 384697 361020 3977820  2671.5 2775.417  323.45302 0.48% — — — — 
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Table 38 - Fleet expansion scenarios computational results. 

Instance 

Instance Characteristics  Instance Size  Computational Time  Objectives 

Experiment Run City Demand areas Stations 

 Variables 

Constraints 
Non-zero 

coefficients 

 

Root + BC (s) Total Time (s) 

 Coverage 
(Z1) Gap (%) 

Equity 
(Z3) Gap (%)  Binary Integer Continuous   

L0.3 

AEM 

+1 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  393.94 465.57  1738.973 0.19% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  4010.27 4083.2  1738.973 0.19% 16.989 0.00% 

+2 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  197.02 267.31  1784.539 0.28% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  3881.59 3951.03  1784.539 0.28% 16.989 0.00% 

+3 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  159.56 232.87  1822.463 0.50% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  1655.91 1725.41  1822.463 0.50% 16.989 0.00% 

+4 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  214.05 288.94  1862.397 0.20% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  5932.42 6005.22  1862.397 0.20% 16.989 0.00% 

PEM 

+1 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  96.74 170.03  1740.905 0.16% — — 

2 Lisbon 33 42  212586 4358 213841 866431 3129900  582.14 652.15  1740.905 0.16% 16.989 0.00% 

+2 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  145.81 219.66  1783.127 0.15% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  1359.22 1429.44  1783.127 0.15% 16.989 0.00% 

+3 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  140.06 214.7  1819.150 0.37% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  1337.91 1407.29  1819.150 0.37% 16.989 0.00% 

+4 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  136.59 210.21  1856.460 0.27% — — 

2 Lisbon 33 42  212586 4358 213841 866431 3129900  1629.09 1698.63  1856.460 0.27% 16.989 0.00% 

VMER 

+1 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  21.2 95.94  1713.081 0.43% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  120.06 189.45  1713.081 0.43% 16.111 0.00% 

+2 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  24.98 98.25  1717.910 0.46% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  137.22 207  1717.910 0.46% 16.111 0.00% 

+3 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  18.5 62.45  1723.531 0.31% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  165.14 234.56  1723.531 0.31% 16.111 0.00% 

+4 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  17.11 88.01  1726.585 0.26% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  272.22 341.8  1726.585 0.26% 16.111 0.00% 

SIV 

+1 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  58.58 69.3  1737.669 0.26% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  634.31 703.53  1737.669 0.26% 16.111 0.00% 

+2 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  40.8 113.03  1786.039 0.24% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  798.86 869.41  1786.039 0.24% 16.111 0.00% 

+3 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  43.17 113.62  1824.515 0.46% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  412.01 481.01  1824.515 0.46% 16.111 0.00% 

+4 
0 Lisbon 33 42  212586 4358 213841 866430 2936482  27.86 98.25  1864.177 0.32% — — 
2 Lisbon 33 42  212586 4358 213841 866431 3129900  872.91 941.69  1864.177 0.32% 16.111 0.00% 

S2.3 

AEM 

+1 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  306.72 361.55  322.8708 0.00% — — 

2 Setúbal 135 10  193546 1016 217009 852310 2306592  1210.5 1280.39  322.8708 0.00% 18.233 4.89% 

+2 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  248.77 323.66  323.689 0.14% — — 

2 Setúbal 135 10  193546 1016 217009 852310 2306592  647.88 721.88  323.689 0.14% 16.686 0.00% 

+3 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  250.61 325.18  324.037 0.07% — — 

2 Setúbal 135 10  193546 1016 217009 852310 2306592  572.58 647.14  324.037 0.07% 16.686 0.00% 

+4 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  256.03 330.31  324.336 0.00% — — 

2 Setúbal 135 10  193546 1016 217009 852310 2306592  492.45 566.87  324.336 0.00% 16.686 0.00% 

PEM 

+1 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  139.93 213.78  320.569 0.00% — — 
2 Setúbal 135 10  193546 1016 217009 852310 2306592  136.56 212.69  320.569 0.00% 18.233 0.00% 

+2 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  150.3 224.32  320.569 0.00% — — 

2 Setúbal 135 10  193546 1016 217009 852310 2306592  145.56 219.75  320.569 0.00% 18.233 0.00% 

+3 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  149.59 223.37  320.569 0.00% — — 
2 Setúbal 135 10  193546 1016 217009 852310 2306592  150.08 224.49  320.569 0.00% 18.233 0.00% 

+4 0 Setúbal 135 10  193546 1016 217009 852309 2265540  149.19 224.09  320.569 0.00% — — 
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2 Setúbal 135 10  193546 1016 217009 852310 2306592  146.91 221.45  320.569 0.00% 18.233 0.00% 

VMER 

+1 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  98.97 172.91  320.549 0.00% — — 

2 Setúbal 135 10  193546 1016 217009 852310 2306592  180.63 255.77  320.549 0.00% 18.233 0.00% 

+2 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  98.42 172.07  320.549 0.00% — — 
2 Setúbal 135 10  193546 1016 217009 852310 2306592  177.72 252.61  320.549 0.00% 18.233 0.00% 

+3 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  98.44 171.5  320.549 0.00% — — 
2 Setúbal 135 10  193546 1016 217009 852310 2306592  177.23 251.48  320.549 0.00% 18.233 0.00% 

+4 
0 Setúbal 135 10  193546 1016 217009 852309 2265540  98.58 172.20  320.549 0.00% — — 

2 Setúbal 135 10  193546 1016 217009 852310 2306592  179.70 254.00  320.549 0.00% 18.233 0.00% 

SIV 

+1 
0 Setúbal 135 10  297514 1251 320581 1267638 3542596  913.23 1053.03  328.625 0.00% — — 
2 Setúbal 135 10  297514 1251 320581 1267639 3605593  2219.03 2320.67  328.625 0.00% 18.233 2.53% 

+2 
0 Setúbal 135 10  297514 1251 320581 1267638 3542596  452.94 555.11  330.016 0.00% — — 
2 Setúbal 135 10  297514 1251 320581 1267639 3605593  1010.05 1111.83  330.016 0.00% 16.686 0.00% 

+3 
0 Setúbal 135 10  297514 1251 320581 1267638 3542596  569.52 684.62  330.105 0.02% — — 
2 Setúbal 135 10  297514 1251 320581 1267639 3605593  959.34 1061.10  330.105 0.02% 16.686 0.00% 

+4 
0 Setúbal 135 10  297514 1251 320581 1267638 3542596  543.34 648.42  330.210 0.00% — — 
2 Setúbal 135 10  297514 1251 320581 1267639 3605593  893.44 1013.99  330.210 0.00% 16.686 0.00% 

L0.4 AEM 

+1 
0 Lisbon 33 121  408721 5565 401545 1633448 5581811  1548.3 1640.53  1739.938 0.20% — — 
2 Lisbon 33 121  408721 5565 401545 1633449 5953611  77337.55 77466.31  1739.938 0.20% 13.587 4.99% 

+2 
0 Lisbon 33 121  408721 5565 401545 1633448 5581811  1708.34 1798.49  1784.982 0.30% — — 
2 Lisbon 33 121  408721 5565 401545 1633449 5953611  86406 86533.98  1784.982 0.30% 9.818 9.75% 

+3 
0 Lisbon 33 121  408721 5565 401545 1633448 5581811  2428.64 2338.48  1828.082 0.22% — — 
2 Lisbon 33 121  408721 5565 401545 1633449 5953611  86403.59 86528.59  1828.082 0.22% 9.818 20.30% 

+4 
0 Lisbon 33 121  408721 5565 401545 1633448 5581811  520.75 671.42  1862.676 0.24% — — 
2 Lisbon 33 121  408721 5565 401545 1633449 5953611  86552.66 86614.181  1862.676 0.24% 9.818 25.85% 

S2.4 AEM 

+1 
0 Setúbal 135 16  253384 1094 276193 1090212 2962713  711.75 798.9  323.878 0.00% — — 
2 Setúbal 135 16  253384 1094 276193 1090213 3018021  3967.13 4054.86  323.878 0.00% 18.233 0.23% 

+2 
0 Setúbal 135 16  253384 1094 276193 1090212 2962713  904.47 991.06  324.362 0.00% — — 
2 Setúbal 135 16  253384 1094 276193 1090213 3018021  1451.56 1538.67  324.362 0.00% 16.686 0.00% 

+3 
0 Setúbal 135 16  253384 1094 276193 1090212 2962713  802.74 890.68  324.738 0.00% — — 
2 Setúbal 135 16  253384 1094 276193 1090213 3018021  1550.56 1638.76  324.738 0.00% 16.686 0.00% 

+4 
0 Setúbal 135 16  253384 1094 276193 1090212 2962713  778.28 864.84  324.8572 0.00% — — 
2 Setúbal 135 16  253384 1094 276193 1090213 3018021  1580.3 1668.49  324.8572 0.00% 16.686 0.00% 
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