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“Who can explain why one species ranges widely and is very numerous, and why another allied 

species has a narrow range and is rare? Yet these relations are of the highest importance, for they 

determine the present welfare, and, as I believe, the future success and modification of every 

inhabitant of this world.” 

Darwin C., On the Origin of Species, 1859  
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Abstract 

The microbial rare biosphere represents the bulk of microbial diversity in virtually all environments. This 

is historically recognized in general biology and confirmed in microbiology due to the emergence of high 

throughput sequencing of the small subunit of the ribosome gene. The number of studies on the 

microbial rare biosphere has been growing every year, allowing for the recognition that, despite their low 

abundance, they contribute to ecosystem functioning and are important to understanding microbial 

community assembly. Currently there is no coherent, unifying definition of microbial rarity, as the 

concepts in use vary greatly and commonly lack biological meaning. To approach this hurdle from a 

statistical standpoint, the Multivariate Cutoff Level Analysis (MultiCoLA) algorithm was recently 

proposed for determining abundance thresholds from where microbial rarity could be delineated across 

distinct microbiomes with their own unique community structures. This algorithm was tested in the 

present study, where it generated coherent results across independent marine datasets, but it is not 

able to give support to a non-subjective definition of microbial rarity. Nevertheless, using the rare 

prokaryotic communities identified with the later method, it was possible to explore how different 

metagenomic strategies and seawater sampling methodologies affect the structure of the so-defined 

marine microbial rare biosphere. Ecological insights from the Arctic Ocean data and from the Spongia 

officinalis (marine sponge) microbiome data corroborate existing knowledge on the marine prokaryotic 

rare community assembly processes. Furthermore, this study integrates both stochastic and 

deterministic mechanisms in the process of marine prokaryotic rare biosphere assembly, with water 

masses and host-associated relationships playing key roles. Finally, this work provides methodological 

guidelines for optimal sampling of the seawater rare biosphere. 

Keywords: community assembly; microbial dark matter; microbial ecology; rarity definition; seawater 

sampling; sponge-associated microbiome. 
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Resumo 

A biosfera rara microbiana representa a maior parte da diversidade microbiana em praticamente todos 

os ambientes. Isso é historicamente reconhecido na biologia geral e confirmado na microbiologia devido 

ao surgimento da sequenciação em massa do gene da subunidade pequena do ribossoma. O número 

de estudos sobre a biosfera rara microbiana vem crescendo a cada ano, permitindo o reconhecimento 

de que, apesar de sua baixa abundância, contribui para o funcionamento do ecossistema e é importante 

para entender a estrutura das comunidades microbianas. Até hoje não existe uma definição coerente 

de raridade microbiana e as definições utilizadas na literatura são variadas e sem significado biológico. 

Para resolver isso, o algoritmo de Análise Multivariada de Limites (MultiCoLA) foi proposto 

recentemente. Este trabalho testou esse algoritmo, constatando que fornece resultados coerentes 

quando comparando dados de diferentes amostragens do ambiente marinho, mas não fornece uma 

definição não subjetiva da biosfera rara microbiana. Ainda assim, usando as comunidades procarióticas 

raras descritas com esse método, foi possível explorar como diferentes estratégias de metagenómica 

e metodologias de amostragem de água do mar influenciam a descrição da biosfera rara procariota 

marinha. Informações ecológicas dos dados do oceano Ártico e dos dados do microbioma de Spongia 

officinalis (esponja marinha), permitiram corroborar o conhecimento existente sobre os processos de 

formação de comunidades procarióticas raras marinhas. Além disso, este trabalho sugere como integrar 

mecanismos estocásticos e determinísticos na estruturação das comunidades procarióticas raras no 

ambiente marinho, com massas de água e simbiose desempenhando papéis-chave. Finalmente, este 

trabalho fornece sugestões metodológicas para a amostragem da biosfera rara procariótica na água do 

mar. 

Palavra-chave: Montagem de comunidades; matéria negra microbiana; ecologia microbiana; definição 

de raridade; amostragem de água do mar; microbioma associado a esponjas marinhas 
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illustrate the number of different OTUs, and the line plots illustrate the Shannon index value. The top 

figure is relative to the entire community, whereas the bottom figure is relative to the rare communities 

identified in the 16S rRNA gene amplicon data (using the 1054 reads per sample threshold, from section 

3.1.3) and the TC-DNA shotgun sequencing data (using the 42 reads per sample, from section 3.1.3).
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1. Introduction 

1.1 Overview 

It is now known that the Species Abundance Distribution (SAD) of natural microbial communities follows 

a universal pattern consisting of a few high abundance taxa and a very large number of low abundance 

taxa (1–5). The low abundance microbial taxa are known as the microbial rare biosphere (6). It follows 

that the microbial rare biosphere represents a small number of cells and, counterintuitively, also 

represents the bulk of microbial diversity in a given environment or sample (3). Since the pioneering 

study by Sogin et al. (6), the biological processes explaining microbial rarity have been subjected to 

intense research. It is now accepted that the microbial rare biosphere is heterogeneous from the 

perspective of (i) spatial and temporal dynamics (7,8), (ii) activity (9–11), (iii) ecological role (12) and (iv) 

rarity mechanisms (3,8,9,13). From the first perspective (i), different environmental conditions are 

expected to produce biological abundance variations across time and spatial scales and other 

parameters such as habitat type and heterogeneity. The possible variations in biological abundances 

divide the concept of rare biosphere in different types of rarity (8). The currently most accepted division 

is (8,13): Permanently rare taxa (PRT); Permanently rare taxa, with variation; Conditionally rare taxa 

(CRT) and Transiently rare taxa. From the activity point of view (ii), it has been hypothesized that rare 

microbes can be dying cells, dead cells (3) or inactive, but viable, dormant cells (10). Notwithstanding, 

it was found that a significant component of the rare biosphere is not only active, but can also be more 

active than their abundant neighbors (11,14–16). From the ecological role view (iii), despite their low 

numbers, their high diversity represents a ‘genomic reservoir’ or ‘pool of diversity’ (3,4,8,12,17–20). This 

diversity can work as a ‘seed bank’ (21), assuming the existence of CRT that can respond to specific 

environmental alterations and/or stressors. The latter mechanism works by clonal amplification of a 

previously rare, but viable, cell (7). Another suggested process assumes the existence of low abundance 

cells with disproportionately high activity for a specific set of metabolic functions, with consequences for 

the overall community (9,22,23). Finally, it was recently proposed that rare, but active, bacteria can also 

use Horizontal Gene Transfer (HGT) to transfer useful genes to other bacteria, in response to specific 

stressors (24). This hypothesis is mainly supported by the finding of mobile plasmids with specific 

functional genes in rare biosphere members, with infrequently used genes in the sampled environment 

(24). From the perspective of rarity mechanisms (iv), a rare microbe can be unfit to grow in a specific 

environment, or can have optimal growth conditions, but be outcompeted or predated (1,3). From the 

Killing the Winner (KtW) theory perspective (25), low abundance can work as a defensive strategy to 

protect bacteria against bacteriophage attack, because the probability of a virus to find a rare host is 

lower than for an abundant host. Despite previous contradicting evidence emerging from host-

associated communities where dense microbiomes are found to possess lower viral abundances, due 

to suppressed lysis, favoring temperate dynamics (bacteriophages that switch between dormant and 

productive phases) (26). The rare microbes can also have intrinsic metabolic limitations preventing them 

from growing abundant, independently of the conditions (1,3). Recently, the molecular mechanisms 

behind high activity, in optimal conditions, with slow to null growth, are starting to be addressed (9). 
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 The microbial rarity patterns are found in all domains of life, with more studies focusing on 

prokaryotes (6,14,15,17,18,20,23,27–41) than eukaryotes (11,16,42–46). They are also found within 

functional groups (47). Some rare taxa are phylogenetically close to the abundant members, whereas 

others are phylogenetically distant (40). The microbial rare biosphere includes a considerable amount 

of genetic novelty (4,38,40) that has been related with unknown and unclassified taxa (8). To date, the 

study of the microbial rare biosphere has been mostly dependent of High Throughput Sequencing (HTS) 

strategies, mostly based on 16S and/or 18S amplicon sequencing, e.g. Sogin et al. (6). Those methods 

are necessary to have a general view on the entire rare community within a given sample, even though 

other methods, such as Total-Community DNA (TC-DNA) shotgun sequencing, should be used for a 

deeper understanding of the metabolism and full extent of the rare biosphere (9,12,48). Understanding 

the impact of different methodologies on metagenomic results and the resulting bias in relative 

abundance estimations (49) will be a key factor when studying the microbial rare biosphere.  

 This work addresses rarity from earlier studies in general biology and how different discoveries 

allowed for the finding of a virtually ubiquitous microbial rare biosphere. It covers the current knowledge 

of microbial rarity in ecology and then focuses in the marine environment, exploring missing gaps in 

current methodologies, both on conceptual and technical perspectives. Finally, this work addresses 

questions regarding the ecology and assembly patterns of the marine prokaryotic rare biosphere using 

host-associated and planktonic microbial communities as model systems, presenting insights into host-

driven selection and spatiotemporal dynamics of low abundance communities in marine settings, and 

into the stochastic and deterministic forces underlying their assembly mechanisms. 

1.2 Historical perspective of biological rarity 

Rarity is a general concept that has been previously studied in general ecology, but only recently it was 

successfully applied to the microbial world (6). Naturalists, as early as in the XIX century, observed that 

different species have different abundance distributions, with most species being rare. In fact, Darwin 

stated that “rarity is the attribute of a vast number of species of all classes, in all countries” (50). The 

prevalence of rarity was merely based on observations and not on statistical treatment of data. 

In the early XX century, some studies focused on the distribution of the frequency of abundances 

of different species, resulting in several SAD and similar arithmetic curves for different datasets. For all 

types of animals and plants tested, the SAD curves always had the same hollow-like shape (51). Figure 

1 illustrates the typical shape of a SAD curve. In the context of current microbiology, the equivalent to 

‘species’ in Figure 1 would be Operational Taxonomical Units (OTUs), defined in current metagenomics 

as a cluster of sequences with 97% (or more) similarity, with the number of reads assigned to each OTU 

used to calculate abundances, as proxy to individuals in macroecological communities. 

For instance, Corbet et al. (52) described, in 1942, a dataset of butterflies across different 

geographic points. By plotting the SAD, they found that, for the rare species, the relationship between 

the number of species (Si) with i’th number of individuals (n), can be described according to equation 1:  

𝑆𝑖 =
𝐶

𝑛𝑚
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Equation 1 

This relationship originated from the logarithm of the line equation, with C as a constant 

dependent on the dataset and m as a constant from the slope of the line. Because there are more rare 

species than abundant species (illustrated in Figure 1), it follows that the slope is negative, resulting in 

equation 1. 

 

 

 

 

 

 

 

 

From this dataset of butterflies, Fisher et al. (53) tried to establish a relationship between the 

number of individuals and the number of species within the sampling universe (equivalent to all 

samples). Where the total number of species in the universe of samples (Total Species, St), would be 

given by equation 2, resembling the harmonic series: 

𝑆𝑡 = 𝐶 ∑
1

𝑛

𝑛=+∞

𝑛=1

 

Equation 2 

Naturally, it is impossible, in biological systems, to have infinite species or an infinite number of 

individuals, thus, equation 2 has to be constrained (53). Preston (54) proved that equation 2 did not fit 

all data, because it would result in an even distribution of species, suggesting the Poisson distribution 

instead of the harmonic series. These first studies were followed by many others, with the main objective 

of designing a statistical model to explain the shape of the arithmetic curve of the SAD plot for the entire 

range of abundances observed in any community. Briefly, the first models were based on the lognormal 

distribution (54), where rare species have high proportions; the logseries distribution (53), with a lower 

proportion of rare species; the geometrical model, by Motomura, cited in (51), where communities are 

uneven in terms of abundance of different species; and the broken stick model (55), with even 

Figure 1. Hypothetical species abundance distribution, illustrating the typical hollow shape 

curve. Blue histograms for the number of species with i’t individuals and grey line representing the typical 

hollow shape curve. 
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abundances across communities. From the 1970’s, new models were produced to explain and predict 

SADs, in different contexts and at different taxonomical levels. Overall, different datasets fitted for 

different models and there was more effort on making new models, than on disproving and adapting 

previous models. For a comprehensive review, see McGill et al. (51).Nevertheless, those first studies 

were the first to reveal the widespread existence of highly diverse communities of rare species using an 

statistical analysis framework (52,53). They allowed the establishment of definitions that are still used 

today, such as the usage of distinguishing ‘abundance’ terminologies (54). Abundance can be ‘global 

abundance’, if it refers to the total number of individuals in a given universe (set of samples) or ‘local 

abundance’, if it refers to the number of individuals found in a specific sample. Thus, ‘global abundance’ 

is equivalent to the whole dataset, whereas the ‘local abundance’ is equivalent to specific samples. 

Finally, abundance is often approached in terms of ‘relative abundance’, meaning the proportion of 

individuals of a given species relative to the total number of individuals in a community (54). From now 

on, unless stated otherwise, abundance is referred to as ‘local abundance’, that is, the abundance that 

technically derives from a sample, which can be expressed as absolute values, or proportions (‘relative 

abundance’) of species (or OTUs, in the context of this work) in a given community. 

 After the first evidences in support of the highly diverse rare biosphere, early works on rarity 

focused solely on plants and animals (56). Rabinowitz et al. (57), described rarity from the perspective 

of geography, habitat and local abundance. By integrating the data this authors defined seven types of 

rarity, using results acquired from plant communities (57). Those findings are important today, as they 

form the conceptual basis on which the definition of rarity among microorganisms can be built (13). 

Furthermore, it was found that as body size was inversely correlated with relative abundance for most 

animals, the capacity of asexual reproduction and maintenance of small body sizes could be an 

advantage for rarity, in animals (58). By extrapolation it could be inferred that rarity would be 

advantageous for microbial species (59). As the SAD curve can be applied to any group of living 

organisms, including microorganisms, it could be predicted that the SAD curve would display the same 

behavior when microbial communities could be effectively sampled at appropriate scales. New methods 

based on the massive sequencing of the Small Subunit (SSU) of the rRNA gene (6,60), addressed 

thoroughly in the following sections, enabled appropriate description of natural microbial communities 

with unprecedented accuracy, opening new avenues to the study of rarity among microorganisms. 

1.3 Microbial rare biosphere 

1.3.1 First views on the role of the microbial rare biosphere in the ecosystem 

With the discovery of the microbial rare biosphere, several questions raised related to its geographical 

distribution, ecosystem-level functions and processes explaining low abundance (6). Sogin et al. (6) 

hypothesized the microbial rare biosphere to be a source of genomic innovation, possibly associated 

with community resilience (the ability to recover after a perturbation). 

 The realization of the existence of high genetic diversity among low abundance populations in 

heterogeneous environments highlighted the relevance of better understanding the microbial rare 

biosphere in terms of structure and function (61). To study the diversity and phylogenetic novelty of the 



22 
 

prokaryotic rare biosphere, Elshahed et al. (40) used near full length sequencing of 16S rRNA gene 

clones from soil samples, and quantified the phylogenetic distance between the rare and abundant 

OTUs identified. Both rare taxa phylogenetically close (named non-unique rare biosphere), and distant 

(named unique rare biosphere) to abundant taxa were found, suggesting much genetic novelty 

associated with the microbial rare biosphere (40). This genetic novelty concept would later be integrated 

into the dark biosphere concept (8). 

 The ‘seed bank’ hypothesis, proposed for the rare biosphere, provides a framework for the 

existence of a large number of different low abundance microorganisms in natural biomes, with a 

possible role in ecosystem functioning (21). Pedrós-Alió (21) also proposed that the microbial rare 

biosphere should be used to rethink the dictum of “Everything is everywhere, but the environment 

selects” by Baas Becking (see reference (62) for details). If this dictum holds, the microbial rare 

biosphere is dispersed across all environments: in environments with unfavorable conditions rare taxa 

remain rare, but viable, becoming abundant with changing conditions (21). For prokaryotes, growth by 

clonal amplification would work as an advantage to promote rarity, as singletons would not be dependent 

on the existence of mates in the same local environment (59), and with low abundances it would also 

be easier to escape predators (6,21). Using freshwater samples, Szabó et al. (39) tested the seed bank 

hypothesis by progressively removing the low abundance taxa. For that purpose, they diluted the original 

samples different times and for each dilution the rare prokaryotic communities were lowered. This is 

because with each dilution the probability of rare prokaryotes to remain is lower than that of abundant 

prokaryotes. Those dilutions worked as initial community inoculum for growth media with phenol or 

humic substances (mixture of bioavailable, but recalcitrant substances). By comparing the composition 

and functioning of the new prokaryotic communities, it was found that resistance to perturbations 

decreased with rare prokaryotes loss (39). In addition, it was also found that the most abundant 

members did not grow with the addition of phenol, explaining why the complete communities (rare and 

abundant) kept their functions after perturbation. Thus, the low abundance microbial species could 

confer functional redundancy to the microbial community, meaning that rare species could have 

overlapping functions with other abundant species, at the same time and space, as opposed to 

functional complementarity, where each species carries out a specific set of non-overlapping functions 

(39). Another study using freshwater samples, found that some prokaryotes with relative abundances 

close to 0.3% contributed to approximately 40% of ammonium uptake, suggesting that some rare 

prokaryotes can contribute disproportionately to ecosystem functioning (63). Despite the usual 

consensus around the seed bank theory, Galand et al. (41), in a time series study of the marine rare 

prokaryotic community of the Arctic ocean, provided evidence against the hypothesis. Their point of view 

was that the seed bank hypothesis required both a cosmopolitan distribution of the rare communities 

and the existence of CRT. Instead, they found that rare communities were associated with specific 

biogeographical patterns and not cosmopolitan distributions. Furthermore, they also did not find 

evidence for CRT in their samples. They differentiated the rare and abundant communities as influenced 

by distinct selective pressures, with the marine microbial rare biosphere being subject to water masses. 

These findings were further supported by another study in the Arctic ocean (27) and in Chinese lake 

water samples (32).  
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 From the seed bank theory it can also be expected that a significant number of dormant taxa 

make part of the rare biosphere (10). Dormant taxa are expected to have low abundance and low activity. 

To understand if the OTUs identified in a sample are active or inactive, one possibility is to compare the 

ratio of rDNA to rRNA sequences (cDNA). This method assumes that more metabolically active cells will 

have more ribosomes (10). In this context, Jones and Lennon (10) predicted the existence of both active 

and inactive rare taxa, based on dormancy models from plants adapted to microbiology, and confirmed 

the finding with rRNA:rDNA data from two lake samples. Later, Campbell et al. (14) used time series of 

coastal water samples, determining activity and abundance through time, finding that both activity and 

abundance oscillate with time, thus contradicting the findings by Galand et al. and Kirchman et al. 

(27,64). These differences might be due to different time series size (65) or can be intrinsic to the 

different environments tested. It was also found that some rare taxa can be more active than abundant 

taxa (10,14), and that some taxa decrease activity with increasing abundance, possibly because they 

enter in a stationary phase (14) and/or are predated more easily, from the KtW perspective (25). Despite 

some limitations in this methodology (66,67), the acceptance that rare microbes can be active and 

change activity trough different conditions, supports the existence of the seed bank theory. Also, the 

existence of active, but permanently rare taxa was confirmed as well by the identification of 

Desulfosporosinus spp., a rare taxon (0.006% relative abundance) found to have the most influence on 

sulfate reduction in the microbial communities of peatland soil samples, in a study coupling 16S rRNA 

amplicon gene sequencing and isotopic labeling of Sulphur (22).  

 These early findings suggested that the microbial rare biosphere could have different ways of 

impacting the local ecosystem, inducing new studies on the ecological role of the microbial rare 

biosphere (4). Sjöstedt et al. (68), tested how the same initial community would respond to different 

Dissolved Organic Carbon (DOC) concentrations and salinity. Results revealed significant differences 

in the overall community structure after exposure to different DOC concentrations, meaning that different 

OTUs were abundant and rare before and after the disturbances. Importantly, despite the differences in 

community composition, the overall functions of the whole community remained the same, with similar 

growth yields. A later study, using seawater samples from the Mediterranean Sea, tested the response 

of microbial communities to phenanthrene, a Polycyclic Aromatic Hydrocarbon (PAH), where rare taxa 

showed to work as keystone species, supported by in situ activity assays, and the microbial community 

composition of rare taxa worked well with the seed bank theory, with most PAH tolerant bacteria 

belonging to the prokaryotic rare biosphere (31).  

 Different ecological roles are associated with different ecological strategies and this aspect is 

key to understand how the microbial rare biosphere behaves with changing conditions. One of the first 

studies that considered the existence of different patterns of abundance and activity in the same rare 

community was by Hugoni et al. (15), distinguishing three types of rarity: ‘local seed bank’, ‘non local 

seed bank’ and ‘active, but always rare taxa’. This division includes active and inactive taxa, with inactive 

taxa being considered as members of the seed bank. Within that seed bank, some taxa are specific 

(and well adapted) to the local environment, whereas others randomly appear in the same local 

environment. The division in different types of rarity allows to explain why the microbial rare biosphere 
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can have both biogeographical and cosmopolitan patterns. The apparent contradiction can be 

understood in the light of the interaction between stochastic and deterministic mechanisms in microbial 

community assembly, recently reviewed by Zhou and Ning (5). Briefly, stochastic patterns follow the 

neutral theory, from general ecology, to explain SAD’s (69), whereas deterministic patterns follow the 

niche partitioning theory (70), the latter being the most studied. Gobet et al. (28), using the microbiome 

of coastal sands across different time points, found that bacterial community turnover over time was 

highly influenced by a permanently rare biosphere, as a consequence of deterministic patterns, i.e. as 

a response to specific environmental variables. Caporaso et al. (71), while comparing a time series of 6 

years of seawater samples, added that the deterministic factors are responsible for a core rare 

biosphere, which includes PRT and CRT, as they found a common group of rare microbes specifically 

adapted to their local environment. A different study used high sampling frequency (384 seawater 

samples), to understand what taxa were frequently found (present in most samples) or infrequently 

found (present in a few samples) (29). While no spatiotemporal patterns associated with infrequent rare 

taxa were observed, such patterns were found for frequent rare taxa, providing evidence for the 

coexistence of both stochastic and deterministic forces in shaping the structure of low abundance 

microbial communities. The results from Vergin et al. (29) were in agreement with the findings of 

Caporaso et al. (71), since the ‘core microbiome’ in the latter study (71) is the equivalent to the 

‘frequently rare taxa’ of the former (29). Congruently, Ai et al. (72) established a model simulation, where 

community dynamics of rare taxa were better understood when combining deterministic and stochastic 

processes. The transition from a descriptive to a modeling approach requires the disentanglement of 

stochastic from deterministic processes in the rare biosphere (5,13,29). 

 In contrast with the ever-growing literature on rare prokaryotes, there are few studies on the 

microbial eukaryotic rare biosphere. These were firstly addressed in the hypothesis article by Caron and 

Countway (1) and verified experimentally in later studies (44,45,73). In marine environments, there was 

no evidence for stochastic processes, as the distribution of different rare taxa was significantly correlated 

with biogeography (16). The patterns of rare and abundant protists are similar, despite functional 

differences, indicating functional complementarity (16). A later study, on the protist rare biosphere in 

freshwater environments, found a permanently rare, but active, protist community (11). Also finding that 

rare microbial eukaryotes can be more active than the abundant one, as was found for rare prokaryotes 

(14). Weise et al. (42), focusing on rare ciliates, a subset of the microbial eukaryotic rare biosphere, 

suggested that it is important to differentiate between effective and non-effective dispersal. Furthermore, 

they suggested that high dispersal rates would explain the insurgence of ‘accidentally rare taxa’ (or 

transiently rare taxa), whereas other OTUs could be temporarily rare and later follow the abundant 

species patterns (42). 

 Despite the different approaches to explain rarity patterns within the microbial rare biosphere 

(15,71), it was important to confirm the existence of CRT to support the seed bank hypothesis. The work 

by Shade et al. (7) compared microbial communities of 9 different ecosystems (air, ocean water, lake 

water, stream, human skin, human tongue, adult human gut, infant human gut, wastewater) across a 

long-time series. They described CRT in all ecosystems studied and found that those CRT contributed 
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significantly to overall community structure. Across a wide range of different ecosystems, they found 

that the CRT communities corresponded from 1% to 28% of the rare taxa and could account for up to 

98% of community variation (7). The reason why some studies indicate that the rare biosphere is 

permanently rare, is because they might not have enough sequencing power of the used marker gene 

and/or a sufficiently long-time series, as it has been shown that the identification of CRT is highly 

dependent on the temporal scale (7,65). The relevance of understanding CRT from the perspectives of 

stochastic and deterministic processes has been stressed in many studies (29,65,71,72). In fact, CRT 

can be associated with deterministic processes because one selective pressure (condition) induces 

growth or death. However, the existence of one CRT in a specific site can also result from random events 

of dispersal (stochastic factor). Hence, it is important to distinguish between resident taxa that are 

persistently found in that site from transient taxa that randomly appear on that same site (65). From this 

perspective, the persistent rare biosphere would be relative to the core microbial community, meaning 

the taxa specifically adapted to that site (7,65). In a study of soil CRT (33), a correlation between CRT 

and pulses of ecosystem activity was found, and CRT were considered not to be constricted to the seed 

bank, as they can also be active while rare (33). A further study by Baltar et al., (34) tested the microbial 

community response to nutrient enrichment and lowered pH through different seasons. It was found that 

the rare taxa were not always associated with the response to environmental perturbation. They 

disagree with previous studies possibly due to the definition of rarity used, where 0.1% to 1% relative 

abundance was considered common. While most studies use rarity thresholds around this range, by 

converting Baltar et al., (34) definition to a more common threshold, they would have close to 50% of 

CRT. With the establishment of the existence of CRT in a range of 1% to 28% relative abundance (7), 

and other findings regarding the spatiotemporal dynamics of the rare biosphere abundance 

(15,28,29,71), Lynch and Neufeld (8) established a conceptual framework to divide the different types 

of rarity: ‘permanently rare taxa’, ‘permanently rare taxa, with variation’, ‘conditionally rare taxa’ and 

‘transiently rare taxa’ (8), later adapted to fit community assembly theory (13). The relationship between 

the different types of rarity and the community assembly model is explored in section 1.4.1 of this thesis. 

1.3.2 Current view on the ecological role of the microbial rare biosphere 

Current studies are focusing on the ecological role of the rare biosphere at different levels, such as 

response to perturbations (2,20,24,74), host-symbiont interaction (43,75–79) and biogeochemical 

functions (36,80). In general, they support previous hypotheses. Relevant findings include the study by 

Kalenitchenko et al. (23), where singletons found on HTS studies were found to also have ecological 

roles. There is also the perspective of functional groups, as approached in a study by Yang et al. (47), 

which showed that methanogenic taxa could be permanently rare. Interestingly, the genes for methane 

reduction found were present in plasmids known to be mobile, thus leading to the hypothesis that 

permanent rare taxa can confer functional redundancy to the ecosystem through HGT. Wang et al. (24) 

also found evidence for this hypothesis. Thus, the microbial rare biosphere is potentially linked with 

mechanisms of conditional clonal growth, disproportionately high activity and/or transfer of useful genes, 

stored in its genomic pool. Some examples of how these mechanisms contribute to the ecosystem are 
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provided in this section, where the ecological role of the microbial rare biosphere is divided according 

with the following topics: biogeochemical cycles, community assembly and host associated interactions. 

1.3.2.1 Microbial rare biosphere and biogeochemical cycles 

From the biogeochemical point of view, it has been shown that rare taxa can contribute to specific 

pathways, despite their low abundance, due to disproportionally high activity and/or functional 

redundancy (1,9,22,23,36,63,80–82), supported by the finding that rare taxa can be more active than 

abundant taxa (9,10,14,15,83,84). 

 For the sulfur cycle, it was found that the genus Desulfosporosinus significantly contributed to 

sulfate reduction, despite having a relative abundance of 0.006% (22). Another study by Hausman et al. 

(80) tested the influence of sulfate enrichment on sulfate reduction reactions, and found that the rare 

genus Desulfosporosinus remained growing slowly, despite increasing activity as measured by 

rRNA:rDNA ratios, confirmed by qPCR. These findings show that activity is not necessarily related with 

growth and that rare taxa might have strategies to maintain high activity of some metabolic processes 

without being abundant (80). Those mechanisms were recently studied at the molecular level (9). The 

hypothesis that low abundant microorganisms can influence the sulfur cycle at the ecosystem level was 

further supported by Kalenitchenko et al. (23), where it was demonstrated that singletons in HTS 

datasets, with relative abundances equivalent to 0.00000002% and thus termed ‘ultrarare’, were active 

and responded to environmental shifts, contributing to the sulfur biogeochemical cycle (23). Another 

study regarding the sulfur cycle (85), using amplicon sequencing of (bi) sulfite reductase genes, found 

that a significant component of sulfate reducers belonged to unclassified taxa, thus representing genetic 

novelty. Although this study did not focus on the prokaryotic rare biosphere, it found that most of the 

genetic novelty was associated with the core microbiome that represented taxa with relative abundances 

of around 1%. However, most studies approaching the rare biosphere use rarity thresholds lower than 

1% to diagnose low abundance populations. 

 Regarding the methane cycle, rare aerobic methane oxidizing bacteria were found to be 

responsible for the whole methane consumption in the microbial community analyzed (81). That study 

combined methane isotopic labeling and metagenomics of riparian flood samples (81). A further study 

based on archaeal methane production, using methyl coenzyme-M reductase (mcrA) as gene marker, 

found that some methanogens were CRT (47). Also, some methanogens were found to be permanently 

rare, and since the mcrA genes of rare methanogens were associated with mobile genetic elements, the 

hypothesis has been raised that permanently rare methanogens contribute to the methane production 

through HGT processes (47). These results represent a new perspective on how the genetic pool of rare 

species can contribute to the overall community, in accordance with Wang et al. (24). Some evidence 

on the role of rare prokaryotes in the nitrogen cycling was also found in studies not focusing on the 

microbial rare biosphere. Griffiths et al. (86) found a relation with diversity loss and nitrification, in a 

dilution to extinction experiment. In addition, it was demonstrated that low abundance prokaryotes 

contributed to up to 40% ammonium consumption, contributing to nitrogen uptake (63). The loss of 

denitrification processes, where nitrate is reduced to dinitrogen, have been also associated with diversity 

loss, possibly related with rare prokaryotes (87). Finally, using both metagenomics and 
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metatranscriptomics, the view that the rare biosphere contributes to functional redundancy and that 

nitrogen fixation can be performed by rare taxa was also supported (82). In spite of all the above-

mentioned activities, it has been suggested that the carbon cycle would be hardly influenced by the rare 

biosphere, as it is mostly related with biomass gain and loss, and the rare biosphere, by definition, will 

not have a significant contribution to biomass (3). 

1.3.2.2 Microbial rare biosphere and community assembly 

The role of the rare biosphere can also be considered from the point of view of community assembly, 

usually reflecting the resistance and resilience of microbial communities when facing perturbations. A 

perturbation can be defined as a disturbance strong enough to get a response from the microbial 

community (29). In this case, resistance is the strength of the community against the perturbation and 

resilience is the ability to recover after the perturbation. The work by Fernandez-Gonzalez et al. (36) 

tested the influence of different energy inputs on prokaryotic communities. That study used methane as 

an input of energy and measured methane oxidation. They incubated the same original inoculum with 

two different strategies, one with constant methane input (control group) and another set with cyclical 

methane input, for a long-time period (36). The structure of the microbial community changed, but, 

despite the differences in energy inputs, the methane oxidation rate and growth rates become similar 

with time. Those results show, on one side, that the prokaryotic rare biosphere can actively respond to 

different methane contexts, but a more general view shows that prokaryotic communities remain stable 

with different energy inputs over time, because of the functional redundancy provided by the prokaryotic 

seed bank (36).  

 Other studies have shown the ability of rare prokaryotes to degrade pollutants (20,31,74), also 

reflecting the resistance provided by the low abundance taxa. One of these studies (31) tested the effect 

of phenanthrene (one type of PAH) high concentrations on a microbial community, finding that rare taxa 

are able to degrade phenanthrene and grow to become abundant, fitting well with the seed bank theory 

(31). Another study tested the prokaryotic response to an oil spill in soil, showing that some hydrocarbon 

degraders are CRT (20). Rare eukaryotes were also shown to be relevant for the recovery of microbial 

communities after oil spills in soil (46). In soil microcosms it was found that alkane degraders, 

corresponding to less than 0.1% relative abundance, were main contributors for the metabolism of long 

chain alkanes (88). This is further supported by Wang et al. (24), where they tested the response of a 

microbial community, isolated from a lake, to a group of organic compounds, such as 2,4-

dichlorophenoxyacetic acid, 4-nitrofenil and caffeine. Again, those compounds were degraded by CRT 

and the genes associated with 2,4-dichlorophenoxyacetic acid degradation were present in plasmids, 

known to be mobile, thus indicating HGT as a strategy for ecosystem resistance and resilience (24). 

This result is particularly important in the context of perturbation response, because 2,4-

dichlorphenoxiacetic acid was not found in the lake, meaning that the rare biosphere can have 

(apparently) unnecessary functions for long periods of time and, if needed, can transfer by HGT those 

functions (24). In agreement, it was also reported that, in denitrifying sludge communities, the complete 

degradation of cholesterol, through the 2,3-seco pathway, can be carried out by the microbial rare 
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biosphere (74). Other studies on microbial responses to pollutant degradation indirectly suggest, as well, 

that the rare biosphere has a role in pollutant degradation (89–91). 

1.3.2.3 Microbial rare biosphere and host-associated interactions 

The rare biosphere can work as a source for horizontal transfer of symbionts to their hosts (acquisition 

of microbial symbionts from the surrounding environment), as reported for rhizosphere microbiomes 

where most symbionts were recruited from the rare soil biosphere (77). This pattern was also found for 

the amphibian skin (92) and marine sponge microbiomes (75,93,94). Additionally, the rare biosphere 

can contribute to the overall symbiotic community and host health. Some studies addressing plant-

microbiome interactions reported on a relationship between the rare biosphere and plant health 

(76,77,95). In works testing plants with or without rare microbes in the soil, the plants presented less 

defenses, despite producing more nutrient content, when low abundance microorganisms were 

removed, possibly meaning that the rare biosphere helps stimulating plant immune response (76,95). 

The prokaryotic rare biosphere has also been described as a component of the coral microbiome (96) 

and, recently, rare dinoflagellates were associated with host-symbiont resilience in corals (43). Some 

studies indicate a role of the rare biosphere in the human microbiota, for example, Horz et al. (97) 

suggested that archaea in the human microbiota are overlooked because of their low abundance, but 

with an increasing recognition that archaea might be more important than previously thought. A study of 

the lung microbiota of Cystic Fibrosis patients showed that many pathogens associated with Cystic 

Fibrosis infections were present in low abundances (98). Regarding the mouth microbiota, it was found 

that low abundance species in biofilms contribute to the inflammatory process of periodontitis (99).  

1.4 Defining the microbial rare biosphere 

The definition of microbial rarity is subjective, and it depends on the methodology used. The most 

general definition is that the microbial rare biosphere corresponds to the OTUs that are included in the 

‘long tail’ of the Rank Abundance Curve (RAC, Figure 2) (3). The problem is on the exact threshold at 

which a specific OTU is considered rare, or ‘where is the beginning of the RAC long tail?’ (Figure 2, 

dashed circle). Most studies use a random threshold of relative abundance per sample, usually 0.1% 

(9,11,22,24,29,34,35,68,77,80,83,84,100–102) or 0.01% (7,37,38,41,103–107), meaning that OTUs 

with relative abundances inferior to those arbitrary thresholds are considered rare, in a given sample. 

Alternatively, the same arbitrary threshold can be expressed in absolute values, e.g. (5). If a threshold 

of 10 reads per sample is considered, it means that OTUs with less than 10 reads are rare, in a given 

sample. These thresholds are frequently used, but they can be considered ambiguous and artificial. 

Recently, it has been proposed another method to categorize the rare biosphere in a more meaningful 

way (13) based on the use of Multivariate Cutoff Level Analysis (MultiCoLA), developed by Gobet et al. 

(108), thus “exploring the effect of rarity on community structure” (13). Briefly, this approach compares 

the communities produced by different thresholds, using absolute abundance thresholds (number of 

reads, per sample) (13,108). The algorithm produces a new Table for each threshold (truncated Table), 

then each truncated Table is compared with the original community, using correlation values from 0 to 

1. For that purpose, there is the non-parametric Spearman rho correlation coefficient (109) and the 
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Procrustes correlation method (110). From the perspective of Jia et al. (13), the rarity threshold is 

decided based on the abrupt change of correlation, expected to reflect the distinction between two 

different groups: the abundant and the rare. Figure 3 illustrates the MultiCoLA expected results, from 

the perspective of the RAC curve from Figure 2. 
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Figure 2. Hypothetical rank abundance curve, as expected by the species abundance 

distribution. All different taxa are ordered from the most abundant to the least abundant in the Rank 

axis, with a plot of their relative abundance. The dashed circle with the question mark illustrates the 

ambiguity regarding the beginning of the long tail of the curve. Different blue shades are used to illustrate 

how different taxa in the same curve are sampled according with different methods (less-resolving TC-

DNA fingerprinting and cloning-and-sequencing methods compared with high throughput sequencing 

technologies). The waves in the end illustrate the unknown diversity, elusive to current methods. 
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Figure 3. Schematic representation of the MultiCoLA algorithm. Different abundance thresholds are 

applied resulting in different communities, as illustrated by the rank abundance curve in blue and by the 

dashed lines in gray. For each new community, a correlation value is plotted that is a measure of the 

resemblance between the original and the new community, and the correlation values are expected to 

decrease abruptly when the correct rarity threshold is selected.  
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The MultiCoLA method is intended to define rarity in a non-arbitrary, context-dependent 

perspective, despite that, as illustrated in Figure 3, it requires the selection of a threshold based on a 

set of correlation values. If the resulting data is not as objective as the data expected in Figure 3, where 

the decrease in correlation is very evident, then the choice of the threshold can be considered subjective. 

MultiCoLA can be the best option if it succeeds to give an absolute value threshold of reads per sample 

that is coherent with the magnitude of different, independent datasets. Furthermore, it has the potential 

to differentiate the abundant and rare communities as separate groups, because the threshold is 

decided based on correlation values. To our knowledge, the MultiCoLA approach, when used to define 

the microbial rare biosphere, has not yet been challenged as proof-of-concept in a contextual and 

interpretation-based manner. This method has been used (and constructed) previously for determining 

the effect of rare OTUs removal on the total community (28,108), not to define rarity. Because most 

studies apply thresholds of 0.1% to 0.01% relative abundance per sample, there is the possibility of 

considering those values as the consensus in the literature, but they, so far, do not rely on any biological 

justification. Thus, it is relevant to test new approaches. 

1.4.1 Defining different types of microbial rarity 

Previous studies (addressed in the 1.3.1 section of this work) associated biogeographic patterns of the 

microbial rare biosphere with deterministic mechanisms and cosmopolitan patterns with stochastic 

mechanisms, realizing that different mechanisms contribute to the abundance variation of the microbial 

rare biosphere (29,71,72). Cumulative knowledge of the abundance dynamics of the microbial rare 

biosphere allowed for the distinction of different types of rarity, based on the review by Lynch and Neufeld 

(8). The different types of rarity were connected with specific deterministic and stochastic mechanisms, 

integrating the types of rarity into the community assembly model (13). Deterministic processes work 

through selective pressures: if the selective pressure corresponds to a set of constant conditions across 

time/space1, it is ‘homogenizing selection’; if the selective pressure is due to a varying condition across 

time/space, it is ‘variable selection’. Conceptually, a rare cell under homogenizing selection does not 

change abundance across time/space because it is under the same conditions, thus belonging to the 

permanently rare biosphere. Alternatively, if the same cell is under variable selection, it can grow 

abundant by changing conditions and vice-versa, thus belonging to the CRT (13). Stochastic processes 

are based on random events and are harder to predict as they are influenced by drift, random death and 

growth of cells, selection and dispersal (5). Dispersal can produce different outcomes depending on its 

limitation, if dispersal is not limited, it dilutes the cells randomly in a process of ‘homogenizing dispersal’. 

A rare OTU under homogenizing dispersal will remain rare through time/space, but it will receive and 

loose members randomly, so it will produce permanent rarity, with variation (13). If dispersal is limited 

and different cells cannot randomly disperse, there will be significant differences across different 

time/space points. In the latter case, if a cell randomly appears in a given environment, it can be the 

only one, disappearing without new ones coming from another site, that is associated with transiently 

rare OTUs. This framework, proposed by Jia et al. (13), is consistent with the community assembly 

theory from general ecology (111). Therefore, by using community assembly theory to predict the major 

                                                                 
1 For simplicity purposes, only time and space are considered, but the model can be applied to any type of variables.  
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processes influencing a specific community, the different types of rarity within that community can also 

be identified. 

Another approach is to identify the types of rarity from the perspective of each OTU across 

samples, e.g. (7), it is less consistent with the community assembly theory, but it is mathematically 

simpler to determine. For the identification of CRT, for example, the coefficient of bimodality has been 

used to analyze if each OTU is CRT or not (7). Some difficulties might arise, as it is not always evident 

the distinction between stochastic and deterministic mechanisms. Consider that the observer point of 

view represents the known variables. The observer might identify that a group of OTUs are transiently 

rare across different sampling sites and explain them as a result of stochastic mechanisms (13). Those 

mechanisms are attributed to dispersal limitation, diversification and/or drift, but the distinction is not 

linear (5). For instance, if diversification (associated with speciation), is produced due to a set of 

selective pressures, then it is a deterministic mechanism, but if those selective pressures are unknown 

(and unpredictable), then the process is identified by the observer as stochastic. Not because it is itself 

stochastic, but because the deterministic cause of the effect is unknown to the observer (5). The best 

example of this apparent contradiction is the drift process, defined as the random death and birth of cells 

- it is random to the observer, because the observer does not know the variables responsible for each 

birth and death in a given environmental sample. Drift and diversification are difficult to correctly analyse 

in metagenomic assessment of natural microbial communities (5). This distinction between stochasticity 

and determinism is easier to solve using the mathematical model of community assembly (13) than 

trying to identify the types of rarity from the perspective of individual OTUs across samples, as it is 

biased by the observer’s point of view. 

1.5 Methodological developments that allowed the study of the microbial 

rare biosphere 

Microbial diversity can be addressed using two major methodological branches: culture-dependent and 

culture-independent methods. While the former approach may lead to the domestication of rare 

phylotypes in the laboratory (see Hardoim et al. (79), for an example from sponge symbiotic 

communities). The latter approach allows the study of the microbial rare biosphere in a comprehensive 

fashion, enabling the determination and comparison of the taxonomic composition and diversity of both 

abundant and rare fractions within the community (6). 

 Culture-dependent methods possess well-known caveats in the assessment of microbial 

diversity in any given environment, leading Staley and Konopka (112) to coin the term ‘great plate count 

anomaly’ to refer to the fact that only a minor fraction of the total microbial communities inhabiting natural 

ecosystems are cultivable (112). The ‘great plate count anomaly’ is based on the difference, by several 

orders of magnitude, of cell counts found in culturing methods (estimated via counting of colony forming 

units) versus the cell counts found with alternative, cultivation-independent methods such as direct 

observation with fluorescence (112). For a recent study on the ‘great plate count anomaly’ and the study 

of uncultured microorganisms see (79,113). The existence of not (yet) cultivable microorganisms 

required the assessment of microbial diversity with culture-independent methods. Those methods have 
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their roots in early works by Woese and Fox (114), where 16S and 18S rRNA gene sequences were 

used to reorganize the main divisions of life (at the time, prokaryotes and eukaryotes) to three domains 

of life: Bacteria, Archaea and Eukarya (114). To do so, a phylogenetic signal comparable across all living 

organisms was necessary. At the time, the ribosome was the only unit known to be universal and to 

evolve slowly, thus working as a phylogenetic signal (114). At the same time, methods to sequence DNA 

were being developed, such as chain termination DNA sequencing (115). Early approaches to 

understand prokaryotic natural communities (116,117) used both the knowledge of 16S rRNA gene 

sequences as a phylogenetic signal and the ability to sequence DNA. Giovannoni et al. (116), in a study 

of bacterioplankton in the Sargasso sea, showed that the phylogenetic analysis of 16S rRNA gene 

sequences, assessed by clone libraries, allows the study of microbial diversity in a culture independent 

way (116). This way, SSU rRNA DNA sequences became a tool to study natural microbial communities. 

At the same time, Ward et al. (117) also developed culture-independent methods to access microbial 

diversity with 16S rRNA gene sequences, where they showed its usefulness to study previously 

uncultured taxa. The general approach of cloning libraries allowed for a better estimation of the microbial 

biodiversity than the ones possible with traditional fingerprinting methods or culture-dependent methods 

(118,119). Indeed, one clone library study with high resolution described a SAD curve that resembled 

the ones previously discussed, suggesting the existence of a large group of species with very low 

abundance, from 9 coastal water samples, from different geographical points (120). Some fingerprinting 

methods such as Desaturating Gradient Gel Electrophoresis of rRNA genes (121) or automated 

Ribosomal Intergenic Spacer Analysis (122) were useful in describing natural microbial communities 

(123). Although these methods were powerful in enabling comparative analyses of multiple microbial 

communities simultaneously, and thus robust statistical assessments, they were limited in the number 

of different taxa identified, constraining the extent of the corresponding SAD curves (Figure 2), and 

consequently failing to have a comprehensive view on the microbial rare biosphere (3). 

 With the availability of HTS, it became possible to sequence up to millions of sequences at the 

same time, with a read length of 200 base pairs (bp) (124). Soon after, Kysela et al. (60) developed a 

method for the assessment of phylogenetic diversity based on HTS of the hypervariable region 6 (V6) 

of the SSU of rDNA sequences. This method was also called tag sequencing, because it used smaller 

sequences of specific small regions of the SSU rRNA, considered enough to assign taxonomy (60). In 

this case, the analytical pipelines used did not deliver lists of prokaryotic species, but of OTUs, that 

technically represent clusters of rRNA gene sequences sharing a given percent homology (usually, the 

OTU definition threshold is 97% 16S rRNA gene similarity), which are then taxonomically classified and 

used as proxies for species, in spite of continuous debate around the use of this approach as a proxy 

to estimate ‘true’ microbial species richness in the environment (125). With tag sequencing of the V6 

region of 16S rRNA sequences amplified from DNA extracted from deep ocean samples, Sogin et al. (6) 

found that most prokaryotic OTUs are rare, highlighting the long tail of the RAC, thus proving the 

existence (and coining the term) of ‘rare biosphere’ in microbiology. This was possible because of the 

higher sequencing power of the then emerging pyrosequencing technology, resulting in a more complete 

view of the true extent of microbial biodiversity in seawater samples (6). Figure 2 illustrates how different 



33 
 

methodologies influence the view of the RAC for the same community, revealing why HTS based 

methods were necessary to characterize the microbial rare biosphere. 

1.6 Marine microbial rare biosphere 

The marine microbial rare biosphere follows the same ecological patterns addressed in sections 1.3 and 

1.4.1. In fact, most of these studies focus on the analysis of seawater samples (6,7,14–16,27–

29,34,35,41,43,71,75,83,84,100,101,104,126–128), with less studies on other environments, such as 

soil (37,40,77,80,95,103). 

 In the ocean, the barriers to dispersal are not obvious, so it is tempting to think that microbes, 

due to their small size, are universally dispersed and simply change their relative abundance in the face 

of different conditions, as could be supported by the existence of the microbial rare biosphere (21). Rare 

marine microbes may display biogeographic distributions if they are from the core local microbiome or  

may be transiently rare displaying a cosmopolitan distribution (16,41). The component of the microbial 

rare biosphere that has a specific biogeography, in the ocean, has been associated with deterministic 

selective pressures, such as water masses (16,27,41). Anderson et al. (35) suggested that the abundant 

microbes are more cosmopolitan in the ocean than the rare ones, as it is easier for abundant taxa to be 

dispersed. The work also suggested that rare bacteria are more restricted geographically than archaea, 

as indicated by the cosmopolitan distribution of abundant archaea such as Marine Group I and II (35). 

The existence of conflicting views on the effect of selection in marine environments might be due to the 

ecological gradients tested (29,71). For example, Galand et al. (41) only found permanent rarity in the 

Arctic ocean, whereas Kirchman et al. (27), working on seawater samples from the same ocean, despite 

also finding that permanent rarity was prevalent, found a small percentage of coexisting CRT. 

Notwithstanding, permanent and conditional rarity are both linked to deterministic selective pressures 

(13). Recently, Troussellier et al. (78) proposed the ‘sustaining the rare hypothesis’, arguing that the 

distribution of rare microbes in the ocean is also connected to interactions with macro organisms, such 

as animals. Mobile animals, like fish, have a gut microbiota that is constantly being dispersed to the 

water as they travel long distances (78). On the other side, sessile animals, like marine sponges, work 

as water filters, accumulating large amounts of microbes and thus working as a source of 

microorganisms that are rare in the surrounding waters. For instance, Webster et al. (100) found rare 

taxa in seawater microbial communities that are present in the sponge microbiome as sponge-specific 

symbionts. This suggests that there are species that need the host associations to live, but can persist 

in the seawater as viable free-living cells, at low abundances, to be later filtered by other sponges (100). 

The presence of rare symbionts in seawater was also reported for long geographical distances, maybe 

explaining why different sponge species can have similar specific symbionts independently of 

geographic distributions (94). 

1.6.1 Marine microbial rare biosphere assessment, methodological aspects 

After seawater sampling for the retrieval of cells, the next steps can be ‘culture dependent’ or ‘culture 

independent’. It is worth noting that marine ecosystems include benthic systems, thus, sediment 

samples are also important, but this section will focus on the seawater component. For culture-
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independent methods, seawater sampling is based on the filtration of water, with the objective of 

retrieving cells from the total community present in a specific sampled volume, for posterior DNA 

extraction. Filters are usually of two types, membrane filters, e.g. in (14,16,29,41) or Sterivex filters, e.g. 

in (15,18,27,41,83,104), with pore sizes of approximately 0.22 µm. Sometimes, pre-filtration steps are 

used, e.g. in (11,27,101,129), to remove suspended particles and lower eukaryotic contamination, when 

assessing for marine rare prokaryotic diversity. Also, it is possible to use size fractioned filtration, where 

different pore sizes are sequentially used, for example, a pore of 20 µm, a pore of 3 µm and a pore of 

0.22 µm. In this case, there are three samples, the first expected to have cell sizes superior to 20 µm, 

the second expected to have cells ranging between 20 µm and 3 µm, and the last expected to have 

cells ranging from 3 µm to 0.22 µm. After seawater sampling, TC-DNA is extracted from the retrieved 

cells. Next, the community may be characterized by amplicon sequencing of target genes (e.g. 16S and 

18S rRNA gene to generate taxonomic profiles for prokaryotes and eukaryotes, respectively) or by TC-

DNA shotgun sequencing (taxonomic and functional profiling of the total community). Intriguingly, a 

recent study found that the marine planktonic rare biosphere is more sensitive to different DNA extraction 

protocols than the abundant biosphere (130). 

 For the past ten years or so, HTS has been mostly performed using 454 Pyrosequencing (124) 

(nowadays phased out) and Illumina (131) technologies. In 454 Pyrosequencing, genomic DNA is 

fragmented, fragments attach to beads in an emulsion of water and oil for emulsion Polymerase Chain 

Reaction (PCR) with a detection chip. DNA polymerase releases pyrophosphate at each nucleotide 

addition and a chip detects each pyrophosphate released. The first reaction uses one nucleotide, if the 

nucleotide is added to the sequence, then a signal is detected, after the reaction the remaining 

nucleotides are washed and another reaction, with another nucleotide, begins. Reactions continue until 

the final sequence is obtained (124,132). Whereas in Illumina, despite being also based on a 

polymerization reaction, DNA fragments are attached into a slide. Clusters are made with PCR 

amplification, for each round, reversibly fluorescently labeled nucleotides are added and the nucleotides 

not used are washed away. With the end of the round, a laser beam detects which nucleotides are 

added, then a new round can begin and this process is repeated for the entire sequence (132,133). The 

resulting sequences are pair ended, meaning they are sequenced from both directions. Most microbial 

rare biosphere studies published to this date used 454 pyrosequencing (6,16,29,39,86,101). This 

technology was initially preferred for microbial taxonomy assessments because it provided longer 

sequences than Illumina, but 454 pyrosequencing has a higher error rate and is known to have more 

PCR bias (134). The error rate is relevant for microbial rare biosphere studies, since it is important to 

know if one low abundance read is real or the result of sequencing errors (23,135). Notwithstanding, 

results from both technologies are valid to study the rare biosphere. The unprocessed sequences or raw 

reads have to be quality-filtered to guarantee that all analyzed data possess biological meaning, for 

example, using the MGnify platform (136) or other bioinformatic processing pipelines. For data 

generated with the Illumina chemistry, paired end reads are merged and tested for quality. Amplicon 

datasets are used for taxonomic information, shotgun sequencing datasets also identify genes and their 

potential functions. For taxonomy, SSU rRNA gene sequences are identified and taxonomically 

classified, according with some database, e.g. the Silva database (137), resulting in the assignment of 
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OTUs. For functional assessment, functional genes are predicted using a database, e.g. the InterPro 

database(138). The final output is a list of annotated and unannotated putative coding DNA sequences. 

 Amplicon sequencing-based methods are vulnerable to PCR bias and to the occurrence of 

artificial sequences, leading to the discussion on whether the microbial rare biosphere was an artifact. 

To test that, Neufeld et al. (61) compared commonly-used short sequences of the 16S rRNA gene with 

near full length sequencing of the 16S rRNA gene, finding perfect matches between the rare short 

sequences and the full length ones. Hamp et al. (139), showed that primer design has more influence 

on low abundance prokaryotes, but they also found that differences across primers were not significant. 

However, the strategy of amplicon sequencing and the strategy of TC-DNA shotgun sequencing, without 

amplification, results in significant differences (139) as expected by the fact that there are much less 

rRNA genes in a metagenome dataset than in an amplicon dataset. The PCR step could also lead to 

overestimations of the rare biosphere, but Huse et al. (135) showed that the rare biosphere identified in 

such context is real and not a result of artificial overestimations. Also related with PCR, Gonzalez et al. 

(140) showed that the prokaryotic rare biosphere can be underrepresented in comparison with the 

abundant biosphere, as it is more difficult to amplify low abundance sequences. On the other hand, they 

suggest that PCR has no bias in taxonomic identification, and that factors such as DNA quality after 

extraction are also important (140). It is generally recognized that the sequencing power is important for 

the study of the microbial rare biosphere (6,83), with conflicting views on the need to improve 

sequencing power or not (23,83). A recent study developed a model to estimate the bias associated with 

different methodological steps in metagenomics. From the model it is predicted that the relative 

abundance of the identified taxa can change dramatically (49). Therefore, the understanding of how 

methodological options influence the view of relative abundance of the microbial communities is 

important to have a correct view of the microbial rare biosphere. 

 Culture-dependent methods are also useful as they are necessary to explore the metabolism 

of microorganisms and are a prerequisite to classify new species. Studies testing the assessment of the 

microbial rare biosphere by culturing methods and HTS based methods, proved that some 

microorganisms randomly retrieved with culturing methods were not found with HTS, meaning that 

culturing methods can successfully identify undetected rare taxa (48,141–144). It was also confirmed 

that some traditionally cultured microorganisms belong to the microbial rare biosphere (48,83), as 

culture media can represent unique conditions, allowing the growth of very rare taxa. ‘Culturomics’ has 

also shown to be useful to complement metagenomic studies e.g. (145,146). 

 To answer ecological questions regarding the microbial rare biosphere, it might be necessary to 

go beyond the diversity assessment and functional prediction encoded in genes, and integrate those 

methodologies with other ones (12). Such methods include synthetic communities (147), for example, 

to test the effect of order of arrival in community dynamics. Manipulation of microbial communities, for 

example, using mesocosm experiments to test the effect of varying conditions in an original community, 

testing the effect of rare microbes loss (39), or the microbial rare biosphere behavior through 

environmental changes (2). One interesting approach to understand what is the role of specific rare taxa 

on biogeochemical cycles, or in other functions, is the use of stable isotope probing, for example to test 
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which microorganisms contribute the most to sulfur cycling (22). Another promising approach is the use 

of Metagenome Assembled Genomes (MAG), to have an integrated view of the metabolism of rare and 

not yet cultivable taxa (148). An example of the integration of multiple methods, including MAGs, is the 

recent study by Hausman et al. (9), where the molecular mechanisms of activity at low abundance are 

studied in depth, for Candidatus Desulfosporosinus infrequens, despite being uncultivable so far. The 

mentioned taxon, is responsible for dissimilatory sulfate reduction in peatland soils (80)  

1.7 Objectives overview 

 This work aims at both the methodological challenges associated with the correct assessment 

of the marine microbial rare biosphere, as well as the study of the ecology of low abundance microbial 

communities. For the methodological challenges, this work explores the definition of rarity, using the 

MultiCoLA approach proposed by Jia et al. (13), across different datasets and how different seawater 

sampling methodological steps influence the view of the prokaryotic rare biosphere. From the ecological 

perspective, this work explores the different types of rarity in the environment in relation with community 

assembly theory, in the context of the Arctic Ocean, and in relation with host-symbiont interaction. 

2. Methodology 

2.1 Datasets description 

2.1.1 EuroMarine Open Science Exploration 2017 dataset 

The main objective of the EuroMarine Open Science Exploration (EMOSE) 2017 was to study the 

different methodologies available for metagenomics-based studies of marine microbial communities, 

using the methods employed by large-scale marine microbial diversity surveys such as Tara Oceans 

(149), Malaspina (150) and the Ocean Sampling Day (151) by applying different filtration methods, 

filtered seawater volumes and library preparation strategies. Sequences generated with the EMOSE 

initiative were processed using MGnify (access number MGYS00001935) and are available at ENA 

(project PRJEB87662). Metadata information is available at PANGEA (152). Sampling was performed 

by the EMOSE 2017 team. 

 The samples were collected during 3 days, but this work only uses the samples collected on the 

first day to avoid small environmental variations. The sampling point was at latitude 42.486º and 

longitude 42.492º, the air temperature was 17.5ºC and the water temperature was 15.5ºC, salinity was 

38 psu and the depth of sampling was at 3 meters. There were six different groups of volumes: 1L, 2.5L, 

10L, 100L, 496L and 1000L. Due to methodological constraints during seawater sampling, within the 

1000L group the effectively filtered seawater volume included two samples of 716L and one sample of 

776L. Two filtration techniques were used: Whole water filtration (> 0.22 µm) by Sterivex filter units (ref: 

SVGPB1010) or membrane filter unit (ref: GPWP14250) and Size fractionated filtration (>20 µm, 3-20 

µm and 0.22-30 µm) just for the membrane filters. For the group of 496L, there were no replicates for 

the small and medium fraction and for the 1000L group there were two replicates for the small and 

medium size fractions, but three replicates for the large size fraction. Different approaches were used 

to retrieve taxonomical information: TC-DNA shotgun sequencing and SSU rRNA gene amplicon 
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sequencing, using the hypervariable region 9 (V9) of the 18S rRNA gene, with the 1391F/EukB set of 

primers, for eukaryotic diversity. For prokaryotic diversity, the hypervariable region 4 to 5 (V4-V5) of the 

16S rRNA gene was amplified using the primers 515F-Y/926R (153,154), modified from (155,156), to 

avoid underestimation of the SAR11 clade and overestimation of Gammaproteobacteria. This set of 

primers can also amplify 18S rRNA gene sequences at homologous regions, but with amplicons 

approximately 180 bp longer (153). After PCR, prokaryotic amplicons are expected to have 

approximately 450 bp, whereas eukaryotic amplicons are expected to have around 600 bp. After library 

preparation, with addition of overhangs for the sequencing machine, the library size is expected to vary 

from 450 to 850 bp, with prokaryotic sequences presumably in the range of 450 to 650 bp and eukaryotic 

sequences on the range of 650 to 850 bp. Three different sequencing strategies were used for the 16S 

rRNA gene amplicon sequencing, considering the given set of primers: (i) sequencing of the entire library 

(no sizing, MetaB16S nS) and (ii) sequencing of the two different range values separately (MetaB 16S 

sizing), for the 450 to 650 bp (MetaB 16S small) and for the 650 to 850 bp (MetaB 16S large) library 

size range (Table 1). The sequence platform for the TC-DNA shotgun sequencing samples was Illumina 

HiSeq 4000 and for the amplicon sequencing (for both sets of primers) was Illumina HiSeq 2500. The 

metagenomic strategies are summarized in Table 1. 

Table 1. Overview of the different metagenomic strategies used in the EMOSE 2017 dataset. 

MetaG is ‘shotgun sequencing of TC-DNA’, MetaB 18S is ‘amplicon sequencing for 18S V9 region of 

rRNA gene’, MetaB 16S nS is ‘amplicon sequencing of 16S V4-V5 region of rRNA gene, without sizing’, 

MetaB 16S small is ‘amplicon sequencing of 16S V4-V5 region of rRNA gene, with sizing for 400bp’ and 

MetaB 16S large is ‘amplicon sequencing of 16S V4-V5 region of rRNA gene, with sizing for 600bp’. 

Sequencing platform, read length, primers and library size are indicated (if applied). 

Metagenomic 

strategy 

Primers (if applied) Library size (if applied) Read 

length 

MetaG 16S NA NA 150 bp 

 

MetaB 18S 

1391F/EukB (157) 

V9 region of 18S rRNA gene 

 

290 - 300 bp 

 

150 bp 

MetaB 16S nS 515F-Y/926R (153) 

V4-V5 region of 16S rRNA gene 

(also targets 18S rRNA gene) 

450 – 850 bp 250 bp 

MetaB 16S small 450 – 650 bp 250 bp 

MetaB 16S large 650 – 850 bp 250 bp 

2.1.2 Spongia officinalis 2014 dataset 

The Spongia officinalis 2014 dataset resulted from TC-DNA shotgun sequencing from Spongia officinalis 

associated samples (158). Samples of sponge tissue (10g, 4 samples), surrounding seawater (1m away, 

2L, 3 samples) and surrounding sediment (1m away, 50g, 3 samples). Sampling was performed during 

May in 2014, at the coast of Pedra da Greta, Algarve. The water conditions were 18ºC, 8.13 pH and 

36.4‰ salinity. Samples of S. officinalis, seawater and sediments were collected through SCUBA diving. 



38 
 

The samples were collected at 20m depth following the sampling methodology described by Hardoim 

et al. (159). Nitrocellulose membranes (0.22 uM) were used for seawater filtration. DNA extraction was 

performed using UltraClean Soil DNA isolation kit for all samples. For the sponge specimens, DNA was 

extracted from the inner sponge body according with the methodology from Hardoim et al. (79). 

Sequencing was performed on an Illumina Hiseq 2500 apparatus. Sequences were processed using 

the MGnify platform (accession number MGYS00000563) and sequences are available at ENA (Project 

number PRJEB11585). 

2.1.3 Norwegian Young Sea Ice expedition 2015 dataset 

The Norwegian young sea Ice Expedition (NICE), performed between February to June 2015, had as 

an objective to monitor the effect of thinning of Arctic sea ice during winter to spring transition, collecting 

data for different research fields (160). The research vessel was fixed to the ice and drifted along with 

the ice in the region north of Svalbard, between the Nansen Basin, the Yermak Plateau and a 

Transitional region. These regions are surrounded by Yermak and Svalbard branches, representing an 

inflow of warmer and saltier Atlantic waters during the winter spring transition (161). Nine samples were 

collected during the transition from winter to spring, in March, April and June, ranging from a darker 

period to a lighter period and at different depths, from surface (5m) to subsurface (25m and 50m) and 

mesopelagic (250m) depths (162). Different samples also represent different water masses, namely: 

Polar Surface Water (PSW), warm Polar Surface Water (PSWw), Atlantic Water (AW) and Modified 

Atlantic Water (MAW). Seawater sampling was performed using whole water filtration, with Sterivex filter 

units (0.22 µm). Filtered volumes ranged from 3L to 11L. DNA extraction was performed with 

PowerWater DNA isolation kit protocol. The same samples were used for TC-DNA shotgun sequencing 

and SSU rRNA amplicon sequencing. Sampling information is summarized in Table 2. 

Table 2. Summary of the sampling conditions from the NICE 2015 dataset. Samples are numbered 

from 1 to 9 by order of the date of sampling and depth. The water masses listed are: Polar Surface 

Water (PSW), warm Polar Surface Water (PSWw), Modified Atlantic Water (MAW), Atlantic Water (AW). 

The sampled volume for each sample is also listed. 

Sample Date of sampling Depth (m) Ocean region Water mass Volume (L) 

NICE_1 09/03/2015 5 Nansen Basin PSW 5.7 

NICE_2 09/03/2015 50 Nansen Basin PSW 3.7 

NICE_3 09/03/2015 250 Nansen Basin MAW 4.5 

NICE_4 27/04/2015 5 Transitional Region PSW 11.0 

NICE_5 27/04/2015 50 Transitional Region PSW 11.0 

NICE_6 27/04/2015 250 Transitional Region MAW 9.2 

NICE_7 16/06/2015 5 Yermak Plateau PSW 3.0 

NICE_8 16/06/2015 20 Yermak Plateau PSWw 3.3 
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NICE_9 16/06/2015 250 Yermak Plateau AW 4.0 

Amplicon sequencing of the 16S rRNA gene was performed with the primer set 545F-Y/926R, 

previously described in (153,154), for the hypervariable regions V4-V5. For 18S rRNA gene sequences, 

the set of primers TAReuk454FWI/TAReukREV3 modified for the hypervariable region V4 were used, 

as described in Stoeck et al. (44). Amplicon sequences were processed on MGnify (accession number 

MGYS00001922) and are available on the ENA database (project number PRJEB21950). TC-DNA 

sequences were processed on MGnify (accession number MGYS00001869) and are available on the 

ENA database (project number PRJEB15043). 

2.2 Bioinformatic processing of raw reads, by the MGnify platform 

The raw reads from all the datasets (EMOSE 2017, Spongia officinalis 2014 and NICE 2015) were 

submitted to the MGnify platform, to have a standardized processing of raw reads across different 

datasets, as described in Mitchel (136). Briefly, the steps performed by the MGnify institute were: 

merging of raw reads with SeqPrep (136), then checked for quality with Trimmomatic (163). Reads from 

TC-DNA shotgun sequencing were divided in rRNA and non rRNA encoding sequences, using Infernal 

(164) with the Rfam database (165). For the SSU rRNA gene amplicon sequencing it is not necessary 

to distinguish from rRNA and non rRNA sequences. The SSU rRNA gene sequence was used for the 

cluster of OTUs, at 97% identity cutoff, using the program MapSeq (166) with the Silva database (137). 

All the steps described in the bioinformatic processing of raw reads were performed by the MGnify team. 

2.3 Downstream analysis 

In this work, downstream analysis is referred to as the handling of data resulting from the bioinformatic 

processing of raw reads, with the objective of extracting biological meaning from the datasets. In this 

work, when analyzing TC-DNA shotgun sequencing taxonomical information, unless stated otherwise, 

the focus was on the prokaryotes alone, excluding eukaryotes. Unless stated otherwise, the downstream 

analysis was performed in the R statistical environment (167). 

2.3.1 Multivariate Cutoff Level Analysis, adapted to define microbial rarity 

This work adapted the scripts developed for the MultiCoLA algorithm, available from Gobet et al. (108), 

based on the conceptual framework by Jia et al. (13), resulting in the scripts available in Annex 1. 

MultiCoLA can make the analysis ‘sample by sample’ (type = SAM), or for ‘all samples’ (type = ADS) at 

the same time. In ‘sample by sample’, the different thresholds are applied for each sample individually, 

whereas for the ‘all samples’ approach, the thresholds are applied at the same time to the all samples, 

as if they were combined into one. To define a threshold of rarity, ‘sample by sample’ is the best option. 

With this sample-based analysis, for each dataset it is necessary to calculate the maximum value of 

reads in all samples, and then select the sample with the lowest maximum. Furthermore, the original 

script focused on the abundant component (typem = abundant), but in this study it focus on the rare 

component (typem = rare). The correlation between dissimilarity matrices was measured using the non-

parametric Spearman’s coefficient and the Procrustes coefficient. The final output is the number of reads 

resulting after each threshold is applied and the comparison of different correlation coefficients resulting 
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after each of those thresholds. In all analyses performed with MultiCoLA, the entire list of OTUs was 

used (‘whole OTUs’), thus including unclassified (taxonomical NAs) OTUs. One important difference 

between the script used in this work and the original (108) is that the second part, regarding the addition 

of environmental variables, was not used, as it is not necessary for the definition of rarity. 

2.3.2 Alpha diversity 

The R package phyloseq (168) was used to calculate alpha diversity, with custom R commands (167). 

The metrics chosen include total number of OTUs per sample, total number of reads per sample and 

Shannon index (169), taking therefore the dominance of each OTU into consideration in the estimation 

of diversity evenness. The same metrics were applied to the total, rare and abundant communities, for 

each dataset. To estimate p-values for significant changes, One-Way ANOVA was used with R general 

commands, the script is available in Annex 2. 

2.3.3 Multivariate Ordination and Beta diversity 

For beta diversity, ordination analysis was used with custom R commands, vegan package (170). To 

decide whether to utilize linear or unimodal methods, it is necessary to calculate the gradient length, 

using Detrended Correspondence Analysis (DCA) (171). For linear methods and unconstrained 

analysis, Principal Components Analysis (PCA) (172) was used. For the Spongia Officinalis 2014 

dataset, beta diversity was also explored from the perspective of shared and specific OTUs (total, 

abundant and rare) across the different samples, using Venn diagrams, with VennDiagram R package 

(173).  

2.4 Defining different types of rarity 

For the NICE 2015 dataset, this work developed an R function (types.r, in Annex III) to distinguish the 

different types of rarity across sampling depth and sampling month. The function needs two inputs: a 

previously defined rarity threshold (t) and a complete OTU Table. This function is adapted for the NICE 

dataset and not generalized for any dataset of the same type. It compares three points for each OTU, 

in this context, compares three samples one after the other. If the sum of OTUs=0 in all samples, is 

labeled as absent. If OTUx>t in all samples, is labeled as abundant. From this point on, if it was not 

labeled as abundant, it is rare. If the rare OTUx=0 in at least one sample, it is labeled transiently rare. If 

the rare OTUx>t in at least one sample, it is labeled CRT. If the rare OTUx<t in all samples, it is labeled 

as permanently rare. If the variation of the permanently rare OTUx is high, it is labeled permanently rare 

OTU, with variation. The last step was later ignored and merged in the permanently rare label, as there 

is no correct value of variation to distinguish between the categories. The final output is a list of all OTUs 

and their respective label (absent, abundant, transiently rare, PRT, permanently rare with variation (later 

omitted) or CRT). 

2.5 Data visualization with Circos 

Circos is a software for circular visualization of big data in an esthetic and compact way (174). This work 

used Circos to have a qualitative view of diversity, using custom Perl commands. For the Spongia 
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Officinalis 2014 dataset, it includes the taxonomy of all OTUs, their respective abundance in all samples 

and links to visualize the rare OTUs shared across samples. For the NICE 2015 dataset, one Circos 

was produced for the TC-DNA shotgun sequencing taxonomic profile and another Circos, with the same 

script, for the 16S rRNA gene amplicon sequencing. The NICE Circos illustrates not only the abundance 

and full list of OTUs, but also the different types of rarity as defined by the types.r function. 
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3. Results 

3.1 Defining microbial rarity 

3.1.1 Testing MultiCoLA on the EMOSE 2017 dataset 

The EMOSE 2017 dataset was divided into five metagenomic strategies (Table 1). After applying 

MultiCoLA, each subset reflected a different threshold of rarity. Notwithstanding, by turning the absolute 

value of reads used to define rarity into their relative abundance equivalent, the mean value was 0.161%, 

ranging from 0.047% to 0.514% (Table 3). 

Table 3. Prokaryotic and eukaryotic rarity thresholds obtained by MultiCoLA, for the EMOSE 2017 

dataset. Rarity thresholds are in absolute abundance (number of reads per sample) and the average of 

the equivalent relative abundance across samples. 

Sub dataset Absolute 

abundance 

threshold 

Relative abundance 

threshold (average per 

sample) 

Number of reads 

clustered into 

OTUs (average 

per sample) 

Number of 

samples 

MetaG 16S 6 0.097% 60 014 50 

MetaB 18S 197 0.047% 1 492 134 47 

MetaB 16S nS 154 0.055% 1 920 794 68 

MetaB 16S small 972 0.094% 1 367 111 53 

MetaB 16S large 7899 0.514% 1 810 973 53 

Higher sequencing powers, in terms of the number of reads obtained from the marker genes 

assessed, were associated with amplicon sequencing strategies. The resulting rarity thresholds for 

those approaches were two orders of magnitude superior than that of the TC-DNA shotgun sequencing 

strategy data, when considering the prokaryotic taxa identified (Table 3). The threshold selected for 

MetaG 16S was 6 reads per sample, selected from one of the first thresholds below 0.9 correlation value 

in both Procrustes and non-parametric Spearman’s coefficient analyses (Figure 4A). In each sample, 

that absolute value threshold was on average less than 0.097%. For MetaB 18S, the threshold decided, 

with similar reasoning, was 197 reads per sample, corresponding to the lowest correlation value in the 

non-parametric Spearman’s correlation coefficient. With the Procrustes correlation, all values were close 

to 0.9 (Figure 4B). This absolute threshold corresponded to a relative abundance of 0.047% on average. 

For MetaB 16S nS, the threshold selected was 154 reads per sample, corresponding to 0.85 correlation 

value in the non-parametric Spearman’s correlation coefficient and 0.77 with the Procrustes correlation 

coefficient (Figure 4C). For MetaB 16S small, the threshold selected was 972 reads per sample, 

corresponding to 0.9 and 0.69 correlation values for the non-parametric Spearman and Procrustes 

correlation coefficients, respectively (Figure 4E). For this threshold, the average relative abundance per 

sample was 0.094%, corresponding to an average sequencing power of 1 367 111 reads (Table 3) per 

sample when both prokaryotic and eukaryotic OTUs retrieved with this specific set of primers (153) were 
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taken into account. By separating the OTUs identified as prokaryotes from those identified as 

eukaryotes, the prokaryotes corresponded to an average of 1 005 209 reads per sample, with an 

average relative abundance threshold per sample of 0.13%. For the OTUs identified as eukaryotes, the 

average number of reads was 361 902, and the average relative abundance threshold would be 1.9%. 

Applying the same reasoning for the large library sizing (MetaB 16S large), the total number of reads 

classified into OTUs per sample was, on average, 1 810 973, corresponding to an average relative 

abundance per sample of 0.514%. Here, the average number of reads and relative abundance per 

sample was 454 897 and 7.19% for prokaryotes, respectively, while for eukaryotes these values equaled 

1 356 076 reads and 4.9%, respectively. Thus, by applying the sizing strategy for the smaller amplicon 

size (MetaB 16S small) mostly prokaryotic reads were obtained, while sizing for the large size (MetaB 

16S large) resulted in the retrieval of mostly eukaryotic sequences. When no sizing was used, resulting 

in the analysis of both prokaryotic and eukaryotic reads at the same time, a much different rarity 

threshold was observed in comparison with small and large sizing (Table 3). 

 

 

 

 

 

 

Figure 4 is continued next page. 
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Furthermore, the count of rare OTUs identified in MetaB 16S large was superior than that 

obtained for MetaB 16S small, due to the difference in thresholds obtained (Figure 5). When the OTUs 

identified as prokaryotes and eukaryotes were separated within the MetaB 16S large and small datasets, 

the count of rare prokaryotic OTUs was superior for MetaB 16S small. Thus, library sizing improves rare 

prokaryotic diversity assessment for this set of degenerate primers. 

The pattern identified in the correlation values of the MultiCoLA results (Figure 4) was not the 

same as expected (Figure 3), because the correlation values decrease in a gradual, instead of drastic, 

way suggesting that there is no objective method to decide the exact threshold without a subjective 

choice. 

 

 

 

 

 

 

 

 

Figure 5. Comparison of rare OTUs count for MetaB 16S small and large sizing, for prokaryotes 

and eukaryotes combined and separated. Box plots with mean value, quartiles and outliers for the 

number of rare OTUs counted (rare prokaryotic and eukaryotic OTUs, rare prokaryotic OTUs and rare 

eukaryotic OTUs).  
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Figure 4. MultiCoLA results for the EMOSE 2017 dataset. Correlation values between the truncated 

community and the original community for each threshold tested. Thresholds are presented in number 

of reads per sample. Correlations are given by the non-parametric Spearman’s correlation coefficient 

(blue squares) and Procrustes correlation coefficient (orange circles). 4A – Results for MetaG 16S, for 

prokaryotic data; 4B – Results for MetaB 18S; 4C – Results for MetaB 16S nS; 4D – Results for MetaB 

16S small; 4E – Results for MetaB 16S large. 
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3.1.2 Testing MultiCoLA on the Spongia officinalis 2014 dataset 

For the Spongia Officinalis 2014 dataset, following the same reasoning as previously, the rarity threshold 

decided was 13 reads per sample (Figure 6), representing an average of 0.44% relative abundance per 

sample. This threshold was similar to the threshold obtained with similar methodologies in the previous 

dataset (MetaG 16S from EMOSE 2017), with 3224 reads per sample, on average. This dataset 

compares three different types of samples (sediment, seawater and sponge tissue) with characteristic 

communities (158). MultiCoLA is expected to have different behaviors according with the number of 

samples used and is expected to give different results according with the number of reads (13,108). 

Thus, to use all samples or to use different groups of samples (i.e. sediment, seawater and sponge 

tissue) separately can induce different results. To test that, the algorithm was also applied separately for 

each group of samples (Figure 7). The sponge tissue samples resulted in a threshold of 36 reads per 

sample, representing a relative abundance threshold ranging from 1.15% to 1.6%. For the sediment and 

seawater samples, the thresholds were 7 and 5 reads per sample, respectively and ranging from 0.26% 

to 0.36% relative abundance (in sediment) and 0.1% (in seawater). Figure 7 shows that values are more 

consistent when using all samples simultaneously rather than separately for each individual 

microhabitat. 

 

 

 

 

 

 

Figure 6. MultiCoLA results for the Spongia officinalis 2014 dataset. Correlation values between 

the truncated community and the original community for each threshold tested. Thresholds are 

presented in number of reads per sample. Correlations are given by the non-parametric Spearman’s 

correlation coefficient (blue squares) and Procrustes correlation coefficient (orange circles). 

 

 

 

 

 

 

Figure 7 legend on the next page. 
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Figure 7. Comparing MultiCoLA across different types of samples in the Spongia officinalis 2014 

dataset. Non-parametric Spearman’s correlation values for each group of samples (sediment in blue, 

seawater in yellow or sponge tissue in green) and for all samples combined, in dark green. 

3.1.3 Testing MultiCoLA on the NICE 2015 dataset 

For the TC-DNA shotgun sequencing data of the NICE 2015 dataset, MultiCoLA resulted in a threshold 

of 42 reads per sample (Figure 8A), representing a mean relative abundance of 1.12%, ranging from 

0.86% to 1.6%, per sample. For the 16S amplicon sequencing data, the absolute value threshold was 

1054 reads per sample (Figure 8B), representing a mean relative abundance of 0.6% ranging from 

0.24% to 0.95% per sample. The thresholds obtained in absolute values were higher than the values 

obtained in the EMOSE and Spongia officinalis datasets, when comparing similar metagenomic 

strategies. Also, the values for TC-DNA shotgun sequencing and 16S rRNA gene amplicon sequencing 

differed due to different number of reads delivered by each sequencing strategy. In the TC-DNA shotgun 

sequencing data, there were on average 3488 16S rRNA gene reads per sample, while in the 16S rRNA 

gene amplicon sequencing data, there were on average 212 365 reads per sample. 

3.2 Methodological assessment of the marine prokaryotic rare biosphere  

3.2.1 Seawater sampling effect on the prokaryotic rare biosphere, on the EMOSE 

2017 dataset 

The MetaB 16S nS data from EMOSE 2017 was selected to study how the prokaryotic rare diversity is 

affected by the type of filter unit (Sterivex vs membrane), the filtering methodology (whole water vs size 

fractioned filtration), the filtered volume and size fractioning (sometimes equivalent to pre filtration), of 

seawater samples. The subset without library sizing is the equivalent approach to other studies in the 

literature. The effect of different sampling methodologies in recovering the prokaryotic rare biosphere 
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Figure 8. MultiCoLA results for the NICE 2015 dataset. Correlation values between the truncated 

community and the original community for each threshold tested. Thresholds are presented in number 

of reads per sample. Correlations are given by the non-parametric Spearman’s correlation coefficient 

(blue squares) and Procrustes correlation coefficient (orange circles). 
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diversity were first evaluated by comparing alpha diversity metrics, according with the grouping of 

variables presented in Table 4. Alpha diversity metrics (number of OTUs, number of reads and Shannon  

diversity index) were applied to the rare, abundant and total community. The number of rare OTUs 

represents between 75% and 95% of all OTUs present, while the relative abundance per sample of 

those rare OTUs ranges from 0.57% to 3.3%. 

The diversity, as measured by the Shannon index, was always higher in the prokaryotic rare 

biosphere than in the total community (for example, Figure 9). There were no significant differences in 

rare prokaryotic richness and diversity between 2.5L and 10L samples for the Sterivex filter unit (Table 

5, group i). For 10L volumes, when comparing Sterivex and membrane filtering units, the values were 

similar as well, except for the number of OTUs, which were higher with the membrane filtering method, 

though not significantly (Table 5, group ii). For 10L, across the small (0.22-3µm) and medium fractions 

(3-20µm) there were significant differences (Table 5, group iii), with the small fraction displaying more 

reads for the total and abundant prokaryotes, but less reads for the rare ones. For 100L volumes, 

comparing for the small, medium and large fractions (3µm to 20µm), the differences in number of reads 

were not significant for the small and medium fractions, for the total and abundant communities, but 

there was a significant decrease for the large fraction (Table 5, group iv and figure 9). For the rare 

prokaryotic community, the number of reads increased with size fraction (Figure 9). For the number of 

OTUs and Shannon index there was a general increase in the prokaryotic rare biosphere, by increasing 

the size fraction (Figure 9). For 496L and superior volumes the patterns are like 100L (Table 5, groups 

v and vi). It is noteworthy that the 496L samples did not include replicas for the small and medium 

fractions, due to sampling constraints of very large volumes. Also, the values above 496L include 

samples with 716L and 760L, instead of the desired 1000L, due to sampling constraints. For the small 

fraction, across all volumes, except for the high variance in the number of reads, there were no evident 

differences in diversity values (Table 5, group vii, small fraction). For the medium fraction, across all 

volumes, 10L had less reads than the remaining, but beyond that, there was no increase in reads after 

100L (Table 5, group vii, medium fraction). For the OTUs number and Shannon index, there were no 

differences overall. For the large fraction, the only different pattern is the increase in OTUs number and 

Shannon index for 1000L (Table 5, group vii, large fraction). Overall, significant changes are associated 

with size fractionation (Table 5). For the alpha metrics, the samples with 100L are shown as illustrative 

of the most important patterns found (Figure 9). 

Table 4. Summary of the variables studied across samples in the EMOSE 2017 dataset. The type 

of filter, filtering methodology and filtered volume are listed for each group, with the variable analyzed. 

Group number Type of filter Filtering method Filtered volume 
(L) 

Variable analysed 

i Sterivex Whole water 2.5 – 10 Volume 

ii Sterivex and 
membrane 

Whole water 10 Type of filter 

iii Membrane Size fraction 10 Size fraction 

iv Membrane Size fraction 100 Size fraction 

v Membrane Size fraction 496L Size fraction 

vi Membrane Size fraction 716, 760 and 1000 Size fraction 
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vii 

Membrane Small size fraction 10 – 1000 Volume 

Membrane Medium size fraction 10 – 1000 Volume 

Membrane Large size fraction 10 – 1000 Volume 
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Figure 9. Alpha diversity plots for 100L, comparing for small (0.22 to 3 μm), medium (3 to 20 μm) 

and large size fractioning (more than 20 μm). Alpha metrics applied are the number of reads, the 

number of OTUs and the Shannon index. All metrics were applied separately to the total community, for 

the abundant community and for the rare community. 
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Table 5. Significance values for alpha diversity differences across the compared variables in 

Table 4, from the EMOSE 2017 dataset, regarding rare prokaryotic OTUs. One-way ANOVA test for 

total, abundant and rare communities, for alpha metric values. Rare and abundant communities were 

divided using a threshold of 154 reads per sample, from section 3.1.1. P-values<0.05 are in bold. 

 

The previous analysis was not informative from the point of view of community composition. To 

define the variables responsible for changes in community composition, ordination analysis was used. 

The gradient length, as measured by DCA, is of 1.25, meaning linear methods should be used. With an 

unconstrained analysis, by PCA (Figure 10), it is possible to identify different patterns. The Sterivex filter 

unit samples are grouped in a small area completely covered by the membrane filter unit samples area 

(Figure 10, compare squares with black and purple border). Thus, membrane filter samples have a 

broader composition (in rare prokaryotic OTUs) than the Sterivex ones, but both filters have different 

range of volumes. Within the same range of volumes, both types of filter are in the same area. For 10L, 

100L, 496L and 1000L samples cover a broad area, whereas the 2.5L samples are restrained within a 

Variable compared 
(group number) 

Alpha metric Total OTUs Abundant 
OTUs 

Rare OTUs 

Volume (i) Nº of OTUs 0.922 0.983 0.92 

Shannon index 0.471 0.483 0.632 

Nº of reads 1 0.551 0.85 

Type of filter (ii) Nº of OTUs 0.331 0.698 0.571 

Shannon index 0.201 0.263 0.095 

Nº of reads 0.272 0.271 0.572 

Size fraction (iii) Nº of OTUs 0.0151 0.083 0.0139 

Shannon index 0.0000109 0.0000105 0.00131 

Nº of reads 0.0014 0.00144 0.00077 

Size fraction (iv) Nº of OTUs 0.0132 0.807 0.0267 

Shannon index 2.52E-10 5.36E-09 0.00066 

Nº of reads 0.0000448 0.0000409 0.0313 

Size fraction (v) Nº of OTUs 0.118 0.528 0.00019 

Shannon index 4.42E-13 3.57E-08 0.0056 

Nº of reads 0.000549 0.0005 0.00055 

Size fraction (vi) Nº of OTUs 0.0159 0.101 0.00092 

Shannon index 0.0045 0.0316 0.0005 

Nº of reads 0.175 0.169 1.52E-07 

Volume - small 
fraction (vii) 

Nº of OTUs 0.0762 0.129 0.06 

Shannon index 0.731 0.651 0.388 

Nº of reads 0.0349 0.0349 0.024 

Volume - medium 
fraction (vii) 

Nº of OTUs 0.801 0.15 0.933 

Shannon index 7.08E-13 1.1E-10 0.548 

Nº of reads 0.0005 0.0048 0.0073 

Volume - large 
fraction (vii) 

Nº of OTUs 0.172 0.086 0.0362 

Shannon index 0.00599 0.000976 0.0033 

Nº of reads 0.148 0.146 0.0847 
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smaller area (Figure 10, compares yellow squares with remaining squares). For the filtering 

methodology, three separate groups clearly represent each size fraction, with the whole water filtering 

within the area of the small fraction size (Figure 10, compares black, gray and pink lines). Furthermore, 

the areas covered are much narrower and specific, indicating that each size fraction represents a 

different rare community. 

Figure 10. PCA of MetaB 16S nS data from the EMOSE 2017 dataset. Samples are illustrated 

according with volume (squares colored in red for 1000L, green for 100L, blue for 10L, yellow for 2.5L 

and cyan for 496L), filter type (square border in black for membrane filter units and purple for Sterivex 

filter units). Different areas are highlighted according with the filtration method (black line for the large 

fraction, gray line for the medium fraction, pink line for the small fraction and brown line for the whole 

water filtration). 

3.3 Sponge-associated prokaryotic rare biosphere (Spongia officinalis 

2014 dataset) 

Within the Spongia officinalis 2014 dataset, the prokaryotic rare biosphere was more diverse than the 

abundant and total biosphere in all types of samples (sponge tissue, seawater and sediment), despite 

of the lower number of reads from rare OTUs (Table 6). For the abundant community, the main number 

of reads is on the sediment, followed by seawater and sponge tissue. For the number of OTUs and for 
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the Shannon index, the sediment was always superior to seawater and sponge tissue samples, for both 

the total, abundant and rare biosphere. The differences on diversity are significant across different types 

of samples (Table 7). 

Table 6. Alpha diversity for the Spongia officinalis 2014 dataset samples. Values for alpha diversity 

are the Shannon index, number of OTUs and number of reads (of 16S rRNA gene sequences used for 

taxonomy). For each sample, communities are divided in total, abundant and rare, according with the 

OTUs abundance, using the rarity threshold of 13 reads per sample, from section 3.1.2. 

Sample Abundance Shannon index Number of OTUs Number of reads 

 
Sponge_1 

Rare 3.96 71 142 

Abundant 2.42 19 3016 

Total 2.67 90 3158 

 
Sponge_2 

Rare 4.21 93 183 

Abundant 2.36 18 2662 

Total 2.71 111 2845 

 
Sponge_3 

Rare 3.80 66 177 

Abundant 2.37 15 2075 

Total 2.75 81 2252 

 
Sponge_4 

Rare 4.05 83 182 

Abundant 2.35 21 2948 

Total 2.67 104 3130 

 
Sediment_1 

Rare 5.06 220 511 

Abundant 3.02 32 2039 

Total 3.93 252 2550 

 
Sediment_2 

Rare 4.75 163 402 

Abundant 2.89 26 1553 

Total 3.78 189 1955 

 
Sediment_3 

Rare 5.15 240 577 

Abundant 3.15 36 2163 

Total 4.08 276 2740 

 
Seawater_1 

Rare 4.34 107 278 

Abundant 2.47 20 4335 

Total 2.81 127 4613 

 
Seawater_2 

Rare 4.40 111 269 

Abundant 2.47 22 3891 

Total 2.84 133 4160 

 
Seawater_3 

Rare 4.56 137 327 

Abundant 2.49 24 4511 

Total 2.88 161 4838 
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Table 7. Significance values for alpha diversity differences across sponge tissue, sediment and 

seawater samples, from the Spongia officinalis 2014 dataset. One-way ANOVA test for total, 

abundant and rare communities, for alpha metric values. Rare and abundant communities were divided 

using a threshold of 13 reads per sample, from section 3.1.2. P-values<0.05 are in bold. 

 

Because the sponge tissue harbors a diverse microbiome highly influenced by the surrounding 

environment (79), it is important to know how many different OTUs are shared across different types of 

samples and how many are specific of each type of sample. Venn diagrams were used to illustrate those 

patterns (Figure 11). Different patterns emerge when dividing the community in total, rare and abundant, 

according with the threshold decided in section 3.1.2 (13 reads per sample). From a logical standpoint, 

the total community is equal to the rare community plus the abundant community and that applies to the 

Venn diagrams obtained. But it only applies to the entire Venn, meaning that it is not possible to add 

sponge specific rare OTUs and sponge specific abundant OTUs, to get the number of sponge specific 

OTUs from the total community. This is well illustrated with the example of CRT: consider OTU 77, 

assigned to the genus Rubrobacter. This OTU is rare in the sponge and abundant in seawater and 

sediment. Thus, it will be considered shared across all types of samples in the total community Venn 

diagram. But, when using the rare community, the abundant OTUs are removed, thus, it will be absent 

(not biologically absent, but absent as a rare OTU) in the seawater and sediment samples. From this 

logical constraint, because it is a CRT, it will be considered sponge-specific in the rare community Venn 

diagram and it will be considered shared across sediment and seawater in the abundant community. 

Despite that, when considering the total number of OTUs in the rare and abundant communities, the 

sum was equal to the sum in the total community. For those reasons, the Venn diagrams for analyzing 

patterns of shared and specific OTUs across different abundance categories should be accompanied 

with the types of rarity, to get a more reasonable interpretation (data not available). Seawater had more 

shared OTUs than specific OTUs for the rare and total biosphere, but not for the abundant biosphere, 

where most OTUs are specific. For the rare and total communities, within the seawater shared OTUs, 

most are shared with sediment or with sediment and sponge simultaneously, the shared OTUs between 

seawater and sediment are a minority. For the rare and total biosphere, sediment OTUs are mostly 

specific, and most of the shared OTUs are shared with seawater. Sponge tissue rare OTUs are mostly 

Samples compared Shannon index Number of OTUs Number of reads  

Sponge vs sediment 0.00017 0.000291 0.000122  
Rare Sponge vs seawater 0.00718 0.00758 0.000381 

Sediment vs seawater 0.0151 0.023 0.0192 

 Shannon index Number of OTUs Number of reads  

Sponge vs sediment 2.21E-05 0.00152 0.0284  
Abundant Sponge vs seawater 0.000852 0.0846 0.000731 

Sediment vs seawater 0.00189 0.0405 0.000888 

 Shannon index Number of OTUs Number of reads  

Sponge vs sediment 1.39E-06 0.000324 0.193  
Total Sponge vs seawater 0.00186 0.00865 0.000522 

Sediment vs seawater 0.00026 0.0243 0.00236 
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shared with sediment. Total community OTUs, from the sponge tissue, are mostly shared with sediment 

and seawater simultaneously (Figure 11). 

 

Figure 11. Venn diagrams for shared and specific prokaryotic OTUs across different samples, in 

the Spongia officinalis 2014 dataset. A – Shared and specific OTUs, from the total community, across 

sponge tissue, sediment and seawater samples; B – Shared and specific OTUs, from the rare 

community, with abundance <13 reads per sample, across sponge tissue, sediment and seawater 

samples; C – Shared and specific OTUs, from abundant community, with abundance ≥13 reads per 

sample, across sponge tissue, sediment and seawater samples. The rarity threshold was selected 

based on section 3.1.2. 

Ordination analysis can be used to understand if the quantitative patterns found with the shared 

OTUs listing and alpha diversity comparisons also apply for community composition, for the prokaryotic 

rare biosphere. The gradient of variance, as measured by DCA, is 2.27, thus selecting linear methods. 

From the PCA analysis (Figure 12), seawater and sponge samples are clustered together, indicating 

similar rare prokaryotic OTUs composition. Whereas the sediment sample are not clustered in one 

specific area and are further apart from the sponge and seawater samples.  

 

 

 

 

 

 

 

 

 

A B C 

Figure 12. Legend description on next page. 
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Figure 12. PCA of TC-DNA shotgun sequencing from the Spongia officinalis 2014 dataset, for the 

prokaryotic rare biosphere across sponge tissue, sediment and seawater samples. Sponge tissue 

samples are colored in blue, sediment samples are colored in green and seawater samples are colored 

in red. 

To view diversity from a qualitative point of view, a circular Figure was produced with Circos 

software (Figure 13). This Figure allows to visually understand and relate the relative abundance and 

taxonomic diversity of all OTUs, without removing essential information. There are, in total, 44 different 

prokaryotic phyla, not considering OTUs not assigned to any phylum, with 15 bacterial candidate phyla. 

From Figure 13, it is evident that the phyla with higher OTU richness are Proteobacteria, Bacteroidetes, 

Actinobacteria, Verrucomicrobia and Firmicutes. By further dividing each phylum in different classes, 

those major phyla are divided from 5 to 7 different classes. Interestingly, some of the less OTU-rich 

phyla were represented by many different classes, meaning they have few different OTUs in each 

specific class, for example, the phylum Chloroflexi contained OTUs classified in 7 different classes, with 

only 1 to 2 different OTUs per class. Most phyla were represented by few classes each containing many 

different OTUs while possessing many classes represented by few different OTUs. For example, the 

phylum Firmicutes has 17 OTUs belonging to the class Clostridia and 10 OTUs divided into five other 

classes. 

In the heatmaps from Figure 13, abundance is proportional to the color intensity, turning visible 

that most OTUs, across all samples, are rare and only a few are abundant. This is in accordance with 

the previous analysis, but in Figure 13 no numerical threshold is used to differentiate between rare and 

abundant OTUs, rarity is rather inferred from the gradient of colors. An important component of the pool 

of abundant OTUs are those not classifiable at phylum or class levels (Figure 13). Those OTUs belong 

to the microbial “dark matter” and are probably sub divided in other phyla and classes, meaning that an 

important component of diversity remains elusive (175). It is also noteworthy that, as expected from the 

previous analysis, some rare OTUs are specific of each environment (sponge tissue, sediment or 

seawater) and other rare OTUs are shared and/or have variable abundance from one environment to 

the other. More importantly, some phyla clearly have low abundance OTUs and absent OTUs in sponge 

tissue (in comparison with sediment and seawater), namely the phyla: Bacteroidetes, all candidate phyla 

(except for Candidatus Poribacteria), Ignavibacteriae, Planctomycetes, Rhodothermaeota, 

Synergistetes, Tenericutes and Verrucomicrobia. Proteobacteria, despite showing many different OTUs 

in sponge tissue samples, had lower abundances when compared with sediment and seawater samples. 

Overall, sediment samples displayed more intense colors compared with seawater and sponge tissue 

samples, despite having mostly rare OTUs. The sediment samples also had the lowest number of white 

spots (absent OTUs), indicating that it is the most diverse group of samples. There are some exceptions, 

for example, the phylum Candidatus Poribacteria is clearly abundant in sponge tissues and rare in 

sediment and seawater samples. The phyla with more OTUs in sponge tissue, when compared to other 

samples, include Thaumarchaeota, Acidobacteria, Chloroflexi, Gemmatimonadetes and in some groups 

within the classes Alpha and Gammaproteobacteria, within the Proteobacteria phylum. All candidate 

phyla in the sponge tissue, except for Candidatus Poribacteria, are always rare, suggesting a 
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relationship between the rare biosphere and the microbial “dark matter”. The sediment samples, despite 

having mostly rare OTUs, have some phyla with some abundant OTUs, such as Bacteroidetes, 

Planctomycetes and Proteobacteria (with exceptions). Other phyla, despite rare, are more abundant in 

sediment than in seawater or sponge. For the seawater samples, the major exceptions to rarity are in 

the phyla Bacteroidetes and some classes in Proteobacteria, such as Alpha and Epsilonproteobacteria, 

with the remaining phyla being mostly rare. Overall, most of the prokaryotic diversity was found in 

sediments, followed by seawater and sponge tissue (see gray section of Figure 13 and Table 6). 
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Figure 13. Legend description on next page. 
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Figure 13. Circular visualization of the Spongia officinalis 2014 dataset, for prokaryotes. Figure 

produced using Circos software. Read the Circos Figure clockwise, from outside to inside. All OTUs 

found at least in one sample are numbered from 1 to 566. OTUs are organized at phylum level by 

separated groups. Within each phylum section, colored bars are used for different classes and names 

are labeled in red. Heatmaps represent the abundance of each OTU in a given sample, with sponge 

tissue samples represented in orange, sediment samples represented in green and seawater samples 

represented in blue. White spaces in the heatmaps represent absence. The color gradient is highlighted 

at the bottom-left side of the Figure. Links highlight which OTUs are shared across: sponge tissue and 

sediment (pink), sponge tissue and seawater (light green), sediment and seawater (gray) and OTUs 

present in all types of samples (purple link). The gray slice, at the end of the Circos Figure, summarizes 

alpha diversity metrics, comparing the OTU count, reads count, Chao1, Shannon index and inverse of 

Simpsons for the total, rare and abundant OTUs. The gray slice area distinguishes rare from abundant 

OTUs using the threshold of 13 reads per sample, from section 3.1.2. This Figure can be better 

visualized using the virtual rather than the printed version one of this thesis. 

3.4 Spatiotemporal and depth effects on the marine prokaryotic rare 

biosphere of the Arctic ocean, on the NICE 2015 dataset 

The NICE 2015 dataset was used to study how the marine prokaryotic rare biosphere behaves through 

spatiotemporal variation (seasonal transition from winter to spring, corresponding to March, April and 

June samples, with spatial drift along the ice) and depth (transition from surface, to middle and bottom 

layer, corresponding to 5m, 25m or 50m and 250m samples). It was also used to study the influence of 

water masses on the prokaryotic communities. This dataset is divided in TC-DNA shotgun sequencing 

and 16S rRNA gene amplicon sequencing. 

3.4.1 TC-DNA sequencing data from the NICE 2015 dataset 

For TC-DNA shotgun sequencing data, there was a total of 31 400 16S rRNA gene amplicon reads, 

ranging from 2617 reads to 4851 reads per sample (Table 8). Most OTUs belong to the prokaryotic rare 

biosphere, but as they were represented by low numbers of sequences, abundant OTUs accounted for 

most of the reads obtained in the dataset, as usual. In total, 13 to 20 abundant prokaryotic OTUs versus 

221 to 301 rare prokaryotic OTUs were found, when considering all samples (Table 8). Diversity was 

always higher within the rare component, confirmed by the Shannon index values (Table 8). When 

comparing samples from March, April and June for the number of reads, there were more total and 

abundant reads in June than in March and April (Table 8). For the prokaryotic rare biosphere, March 

was lower in diversity than April and June, but the latter two displayed similar values. For the number of 

OTUs, there was some increase during the March to June transition for the total community, but not 

significant (Table 9). For the abundant and rare biosphere, the number of OTUs across months displayed 

no significant differences (Table 9). When comparing samples from Surface, Middle and Bottom water 

layers, there were no significant differences across depth, for all abundances and considering all alpha 

diversity metrics (Table 9). When comparing different water masses, despite the different number of 
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samples compared, all water masses showed different alpha diversity values. The more diverse water 

masses were PSWw and AW. 

Table 8. Alpha diversity for the NICE 2015 dataset samples, for prokaryotic data identified from 

TC-DNA shotgun sequencing. Values for alpha diversity are the Shannon index, number of OTUs and 

number of reads (of 16S rRNA gene sequences used for taxonomy). For each sample, communities are 

divided in total, abundant and rare, according with the OTUs abundance, using the rarity threshold of 

42 reads per sample, from section 3.1.3. 

Sample Abundance Shannon index Number of OTUs Number of reads 

 
NICE_1 

Rare 4.86 257 1111 

Abundant 2.15 13 1913 

Total 3.80 270 3024 

 
NICE_2 

Rare 4.89 264 1124 

Abundant 2.18 14 2130 

Total 3.76 278 3254 

 
NICE_3 

Rare 4.76 221 908 

Abundant 2.24 12 1994 

Total 3.65 233 2902 

 
NICE_4 

Rare 4.93 277 1228 

Abundant 2.54 18 2180 

Total 4.05 295 3408 

 
NICE_5 

Rare 4.95 269 1268 

Abundant 2.26 14 1779 

Total 4.06 283 3047 

 
NICE_6 

Rare 4.88 256 1081 

Abundant 2.32 13 1536 

Total 4.05 269 2617 

 
NICE_7 

Rare 4.92 262 1089 

Abundant 2.23 15 2993 

Total 3.53 277 4082 

 
NICE_8 

Rare 5.10 301 1359 

Abundant 2.50 20 3496 

Total 3.82 321 4855 

 
NICE_9 

Rare 4.92 278 1241 

Abundant 2.32 13 2970 

Total 3.69 291 4211 
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Table 9. Alpha diversity differences across samples compared in the NICE 2015 dataset, for 

prokaryotic data identified from 16S rRNA gene sequencing. One-way ANOVA tests were performed 

for total, abundant and rare communities to determine if alpha metric values are significantly different. 

Rare and abundant communities were divided using a threshold of 42 reads per sample, from section 

3.1.3. P-values<0.05 are in bold. 

Variables compared Shannon index Number of OTUs Number of reads Abundance 

Date/site 0.131 0.17 0.223  
Rare Depth 0.263 0.373 0.304 

Water mass 1.46E-08 2.63E-07 3.76E-07 

 Shannon index Number of OTUs Number of reads  

Date/site 0.204 0.42 0.0017  
Abundant Depth 0.987 0.296 0.884 

Water mass 0.0029 7.75E-07 4.44E-06 

 Shannon index Number of OTUs Number of reads  

Date/site 0.0061 0.174 0.0047  
Total Depth 0.861 0.349 0.782 

Water mass 0.965 3.42E-06 1.08E-07 

To understand what variables determine the structure of the prokaryotic rare biosphere within 

the NICE 2015 dataset, ordination analysis was used. The DCA value was 1.78, thus supporting the 

selection of linear multivariate ordination models for the analysis of this dataset. From the PCA diagram 

(Figure 14), samples from March and April were clustered together while June samples displayed a 

different prokaryotic rare biosphere composition. Also, June samples were distant from each other. The 

differences within June samples were due to different water masses, that are present at different depths, 

because of seasonal variation (161). 

 

 

 

 

 

 

 

 

 

 

Figure 14. Legend description on next page.  
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Figure 14. PCA of TC-DNA shotgun sequencing data from the NICE 2015 dataset, for rare 

prokaryotes. Samples are illustrated according with water masses (squares colored in red for AW, 

green for MAW, gray for PSW and yellow for PSWw), sampling depth (square border in black for Bottom, 

purple for Middle and cyan for Surface) and different areas are highlighted according with the date of 

sampling (gray line for March, black line for April and red line for June). 

Each OTU was labeled according with the type of rarity, if rare, using the function types.r, in R 

(Annex 3). The types of rarity were divided in spatiotemporal rarity and depth rarity, as the types of rarity 

were defined by comparing different variables. For spatiotemporal rarity, different depths were compared 

for the same date/site, whereas for rarity through depth, different dates/sites were compared for the 

same depth. Spatiotemporal and depth patterns were similar; therefore, in Figure 15 two illustrative 

examples are shown for (1) depth variation using March samples and (2) spatiotemporal variation using 

surface samples. All types of rarity were found, with transient rarity being the most prevalent, followed 

by permanent rarity. CRT were always the smallest group of rare OTUs, both from a spatiotemporal and 

across-depth perspective (Figure 15). Abundant OTUs represent the minority of OTUs, as previously 

described (larger number of reads corresponding to fewer OTUs). There were more permanently rare 

OTUs across depths than space/time. Considering that transient rarity is within the permanently rare 

biosphere, because those OTUs never grow abundant, results showed that rare OTUs remain rare in 

the Arctic ocean. 

With a circular visualization of the prokaryotic OTUs abundance across phyla and classes, it is 

possible to understand the different types of rarity from a qualitative perspective. In Figure 16, 76 

different prokaryotic phyla are represented, not counting unidentified phyla (Bacterial and Archaeal 

NA’s), with more than half being candidate phyla. From the inner heatmap, in blue, it is suggested that 

most of the candidate phyla are rare across depths and space/time. The inner blue heatmap, despite 

having low resolution, illustrates that most of the prokaryotic diversity is at low abundance, independently 

of the samples compared, as previously estimated in Table 8. Within more abundant phyla, e.g. 

70%

26%

1% 3%

Types of rarity across depth, march

72%

23%

1% 4%

Types of rarity across date/site, surface layer

Transiently rare

Permanently rare

Abundant

Conditionally rare

Figure 15. Percentage of prokaryotic rare OTUs (for each type of rarity) and abundant OTUs, 

identified in the TC-DNA shotgun sequencing data from the NICE 2015 dataset. The types of rarity 

are calculated according with the variables compared: Across depth, for march on the left; across 

date/site, for surface on the right. The algorithm types.r was used according with Annex 3. 
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Bacteroidetes, Proteobacteria and Firmicutes, there were a few classes with high abundance, but most 

of the other classes were rare. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Legend description on next page.  
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Furthermore, from the inner heatmap it is immediately suggested that transient rarity is present, 

because there are many white spots (indicating absence) followed by light colored spots (indicating low 

abundance). Those patterns are confirmed by the outer heatmap, with a color code for each type of 

rarity, illustrating the calculations on Figure 15. Transient rarity is represented by light blue spots, present 

in all phyla. Candidate phyla were essentially rare, with some exceptions being permanently rare (green 

spots). A common pattern was that phyla with high numbers of transiently rare OTUs also had high 

numbers of permanently rare OTUs, phylogenetically close. For the conditionally rare biosphere, it was 

mostly represented by phyla such as Proteobacteria, Verrucomicrobia, Euryarchaeota, Actinobacteria, 

Bacteroidetes, Nitrospinae and Chloroflexi. For Verrucomicrobia and Bacteroidetes, most CRT belong 

to a single class. For example, the class Flavobacteria encompasses all CRT from Bacteroidetes 

phylum. 

3.4.2 16S rRNA gene amplicon sequencing data from the NICE 2015 dataset 

There was a total of 1 911 285 reads within the 16S rRNA gene amplicon sequencing from the NICE 

2015 dataset, with 212 365 reads per sample on average. The same patterns were found as previously 

(TC-DNA shotgun sequencing, NICE 2015), with most of the OTUs being rare in all samples, but with 

the minority of abundant OTUs representing the bulk of the sequences (Table 10). When comparing 

spatiotemporal variation, from March, April and June, along drifting ice, the number of reads was 

generally higher in June samples for the total and abundant prokaryotes. For the rare prokaryotes, April 

and June samples displayed higher values than March. For the number of rare OTUs, there was a 

general non-significant increase from March to June (Table 11). Shannon diversity measures were 

similar across space and time, except for April, in the total biosphere, where there was an increase in 

diversity. When comparing different sampling depths, all values were similar, with no significant 

differences. When comparing water masses, alpha metrics were significantly different for each water 

mass, considering all abundance types, with PSWw and AW having usually higher values. 

 

 

Figure 16. Legend description on next page. 

Figure 16. Circular visualization of the TC-DNA shotgun sequencing data from the NICE 2015 

dataset, for prokaryotes. Figure produced using Circos software. Read the Circos Figure clockwise, 

from outside to inside. All OTUs found at least in one sample are numbered from 1 to 697. OTUs are 

organized at phylum level by separated groups, with phylum labels in black. Within each phylum, 

different colored bars represent different classes, and class names are labeled in red. The outer 

heatmaps represent the types of rarity of each OTU, if rare, or abundant or absent, with the color code 

on the bottom right. White spaces in the heatmaps represent absence. The color gradient for the types 

of rarity is highlighted in the superior right side of the Figure. The inner heatmaps represent abundance, 

where white spaces represent absence. The color gradient for abundance is on the bottom left side of 

the gradient. This Figure can be better visualized using the virtual rather than the printed version one of 

this thesis. 
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Table 10. Alpha diversity for the NICE 2015 dataset sample, for prokaryotic data identified from 

16S rRNA gene amplicon sequencing. Values for alpha diversity are the Shannon index, number of 

OTUs and number of reads (of 16S rRNA gene sequences used for taxonomy). For each sample, 

communities are divided in total, abundant and rare, according with the OTUs abundance, using the 

rarity threshold of 1054 reads per sample, from section 3.1.3. 

Sample 
 

Abundance Shannon index Number of OTUs Number of reads 

 
NICE_1 

Rare 3.844 182 15707 

Abundant 2.009 16 139105 

Total 2.523 198 154812 

 
NICE_2 

Rare 3.899 214 18969 

Abundant 2.276 22 166227 

Total 2.773 236 185196 

 
NICE_3 

Rare 4.065 204 14808 

Abundant 1.368 8 134741 

Total 1.958 212 149549 

 
NICE_4 

Rare 4.403 355 21733 

Abundant 2.329 18 88706 

Total 3.233 373 110439 

 
NICE_5 

Rare 4.302 283 25100 

Abundant 2.169 18 124744 

Total 2.978 301 149844 

 
NICE_6 

Rare 4.093 246 18879 

Abundant 2.586 27 154203 

Total 3.095 273 173082 

 
NICE_7 

Rare 4.204 289 24530 

Abundant 2.499 26 406976 

Total 2.814 315 431506 

 
NICE_8 

Rare 4.27 323 21461 

Abundant 2.716 33 368549 

Total 3.015 356 390010 

 
NICE_9 

Rare 3.623 193 7893 

Abundant 1.872 15 158954 

Total 2.145 208 166847 

To understand which variables were determining community composition for the rare biosphere 

in the 16S rRNA gene amplicon sequencing data of the NICE 2015 dataset, ordination analysis was 

used. The gradient length, as measured by DCA, was 2.4, supporting selection of linear ordination 

methods. According with the PCA plot (Figure 17), there was no obvious pattern in favor of a specific 

variable. Samples from June were further away from March and April. Samples from April were very 

distant from each other, while PSW water masses were generally close to each other as well as bottom 

samples. In June, each depth corresponded to a different water mass, which might be responsible for 

the differences across June samples. By changing season, different depths corresponded to different 

water masses, thus the combination of all variables explains better the patterns found. 
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Table 11. Significance values for alpha diversity differences across samples compared in the 

NICE 2015 dataset, for prokaryotic data identified from 16S rRNA gene amplicon sequencing. 

One-way ANOVA test for total, abundant and rare communities, for alpha metric values. Rare and 

abundant communities were divided using a threshold of 1054 reads per sample, from section 3.1.3. P-

values<0.05 are in bold.  

Variables compared Shannon index Number of OTUs Number of reads Abundance 

Date/site 0.29 0.144 0.509  
Rare Depth 0.509 0.44 0.142 

Water mass 2.20E-06 0.000190 1.30E-07 

 Shannon index Number of OTUs Number of reads  

Date/site 0.299 0.351 0.053  
Abundant Depth 0.444 0.518 0.759 

Water mass 0.00340 0.000320 0.000120 

 Shannon index Number of OTUs Number of reads  

Date/site 0.141 0.138 0.069  
Total Depth 0.321 0.422 0.718 

Water mass 0.00320 8.40E-05 9.60E-05 

 

 

 

 

 

 

 

 

 

 

 As in the TC-DNA shotgun sequencing data of the NICE 2015 dataset, each prokaryotic OTU 

was labeled a type of rarity for the 16S rRNA gene amplicon sequencing data (Figure 18). Transient 

rarity was the most frequent type of rarity in all comparisons made but was approximately 10% more 

Figure 17. PCA of 16S rRNA gene amplicon sequencing data from the NICE 2015 dataset, for rare 

prokaryotic data. Samples are illustrated according with water masses (squares colored in red for AW, 

green for MAW, grey for PSW and yellow for PSWw), sampling depth (square border in black for Bottom, 

purple for Middle and cyan for Surface) and different areas are highlighted according with the date of 

sampling (red line for March, black line for April and gray line for June). 
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frequent across time than across different depths, followed by permanent rarity and conditional rarity. 

As transient rare OTUs are always rare, the vast majority of rare OTUs are always rare with only a 

minority becoming abundant in changing conditions, a similar pattern found on the previous section 

3.4.1. For illustrative purposes, two examples are highlighted in figure 17. 

 

 

 

 For the 16S rRNA gene amplicon sequencing, of the NICE 2015 dataset, the same circular 

visualization was made as before (section 3.4.1). In Figure 19, there were represented 30 different 

prokaryotic phyla, not counting unidentified bacterial and archaeal phyla. The inner heatmap, despite 

having low resolution, illustrated that most of the prokaryotic diversity is at low abundances, 

independently of the sample, as previously calculated (Table 10). Within more abundant prokaryotic 

phyla, such as Bacteroidetes and Proteobacteria there were a few classes with high abundance, but 

most of the other classes were rare. Also, from the heatmap it is immediately suggested that transient 

rarity was present, because there were many white spots (indicating absence) followed by light colored 

spots (indicating low abundance). A common pattern was that phyla with high numbers of transiently 

rare OTUs also had high numbers of permanently rare OTUs, phylogenetically close. CRT were mostly 

present in phyla such as Crenarchaeota, Euryarchaeota, Actinobacteria, Bacteroidetes, Cyanobacteria, 

Proteobacteria, SAR406 and Verrucomicrobia. CRT, in this dataset, seem to be phylogenetically closer 

to other PRT, despite sometimes being associated with abundant OTUs. Some phyla were represented 

mostly by one type of rarity, for example, Firmicutes is mostly transiently rare. Other phyla were very 

rich in all types of rarity, such as Proteobacteria. This pattern may derive from the number of different 

classes within each phylum, since phyla like Bacteroidetes possess classes displaying all types of rarity 

(e.g. Flavobacteria) while others display only one type (e.g. OTUs from the class Bacteroidia are 

transiently rare or absent). 

 

 

Figure 18. Percentage of prokaryotic rare OTUs (for each type of rarity) and abundant OTUs, 

identified in the 16S rRNA amplicon sequencing data from the NICE 2015 dataset. The types of 

rarity are calculated according with the variables compared: Across depth, for march on the left; across 

date/site, for surface on the right. The algorithm types.r was used according with Annex 3. 
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Figure 19. Circular visualization of the 16S rRNA gene amplicon sequencing data from the NICE 

2015 dataset. Figure produced using Circos software. Read the Circos Figure clockwise, from outside 

to inside. All OTUs found at least in one sample are numbered from 1 to 697. OTUs are organized at 

phylum level by separated groups, with phylum labels in black. Within phylum, different classes have 

different colors, class labels are in red. The outer heatmaps represent the types of rarity of each OTU, 

if rare, or abundant or absent, with the color code on the bottom right. White spaces in the heatmaps 

represent absence. The color gradient for the types of rarity is highlighted in the superior right side of 

the Figure. The inner heatmaps represent abundance, where white spaces represent absence.  The 

color gradient for abundance is on the bottom left side of the gradient. This Figure is better analyzed on 

the virtual version than the printed online. 
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3.4.3 Comparing TC-DNA shotgun sequencing data with 16S rRNA gene 

amplicon sequencing data for the rare prokaryotic diversity, from the NICE 2015 

dataset 

With data from TC-DNA shotgun sequencing and 16S rRNA gene amplicon sequencing for the same 

environmental samples (NICE 2015 dataset) and focusing on the prokaryotic data, it was possible to 

compare how these different approaches behave in the description of the prokaryotic rare diversity 

(Table 12 and Figure 20). The number of marker gene reads was much higher in the 16S rRNA gene 

amplicon data, due to the targeted amplification by PCR. However, that did not translate into more OTUs, 

neither into the OTUs abundance equilibrium (Figure 20). In fact, the number of total and rare prokaryotic 

OTUs were sometimes superior in the TC-DNA shotgun sequencing data than in the 16S rRNA gene 

amplicon data (Figure 20). Also, the TC-DNA shotgun sequencing data delivered higher Shannon 

diversity values for the total and rare biosphere. For the abundant OTUs, there were more OTUs in the 

16S rRNA amplicon data and no significant differences in Shannon indices (Table 12).  

Table 12. Significance values of the differences across the 16S rRNA gene amplicon sequencing vs TC-

DNA shotgun sequencing data, from the NICE 2015 dataset. One-way ANOVA test comparing the samples 

from the NICE 2015 dataset, across both metagenomic strategies. Rare and abundant communities 

were divided according with the metagenomic strategy, for the TC-DNA shotgun sequencing, 42 reads 

per sample (section 3.1.3) and 1054 reads per sample (section 3.1.3) for the 16S rRNA gene amplicon 

sequencing data. P-values<0.05 are in bold.  

Variables compared Total Abundant Rare 

Shannon index 3.50E-06 0.492 6.50E-08 

Number of OTUs 0.832 0.0483 0.629 

Number of reads 5.30E-05 0.00011 3.60E-08 

Figure 20 is continued on the next page. 
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Figure 20. Comparison of the number of OTUs and Shannon index for TC-DNA shotgun 

sequencing and 16S rRNA gene amplicon sequencing data, from the NICE 2015 dataset. Bar plots 

illustrate the number of different OTUs, and the line plots illustrate the Shannon index value. The top 

figure is relative to the entire community, whereas the bottom figure is relative to the rare communities 

identified in the 16S rRNA gene amplicon data (using the 1054 reads per sample threshold, from section 

3.1.3) and the TC-DNA shotgun sequencing data (using the 42 reads per sample, from section 3.1.3). 

4. Discussion 

The microbial rare biosphere is a cryptic community, elusive to traditional methods, and its real 

dimension was discovered due to the advances of HTS. Since the pioneer work by Sogin et al. (6), the 

number of studies on this topic increased year by year, resulting in the recognition of the relevance of 

the microbial rare biosphere in ecosystem functioning (12), modeling (13) and on the understanding of 

metabolism at low abundances (9).  

4.1 Definition of the microbial rare biosphere 

By analyzing the literature cited in this work, focusing on the prokaryotic rare biosphere as assessed by 

16S rDNA amplicon sequencing methods, it is evident that there is no coherence in the definition of the 

concept of microbial rarity. For instance, 67% of the studies cited used relative abundance thresholds, 

3% used absolute abundance and 4% used both relative abundance and the absolute abundance 

equivalent thresholds to delineate rare communities. But approximately one third of the studies did not 

specify the definition used. Within the studies using relative abundances per sample, the most used 

threshold was 0.1% (9,11,22,24,29,34,35,68,77,80,83,84,100–102), followed by 0.01% 

(7,37,38,41,103–107) and 1% (14,36,128) and 0.001% (75,176). Other thresholds have also been used, 

including 0.005% (177), 0.004% (17), 0.02% (18) and 0.2% (15). Other studies have used whole dataset 

thresholds, for example, the usage of 0.01% per sample and 0.001% for the whole dataset (16,32,126) 

or 0.1% per sample and 0.006% for the whole dataset (178). The lowest thresholds, for example 0.001%, 

are sometimes equivalent to the singletons present in the dataset, depending on the sequencing depth 

of the marker gene used for taxonomic assignment. The overall range of thresholds is from 0.001% to 

1%, thus a difference of up to three orders of magnitude. The lack of coherence in the statistical 
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delineation - and consequently theoretical definition - of the microbial rare biosphere is evident. 

Furthermore, there is no biological basis to use one threshold or the other (13). Some authors indicate 

that the rare biosphere is the long tail of the RAC, e.g. Pedrós-Alió (3), however without presenting 

methods to decide where the long tail begins. 

The lack of coherence indicates the need for a set of guidelines to define microbial rarity, and 

the use of arbitrary thresholds reflects the need for a biological interpretation of the concept itself. The 

first attempt to solve the latter problem was based on the MultiCoLA algorithm (108), once adapted to 

define microbial rarity in a non-arbitrary way (13). The method is based on the comparison of different 

thresholds, each one corresponding to a truncated community, with the original (not truncated) 

community. In theory, if the rare community is distinct from the abundant community, then it will be very 

dissimilar to the original community. In this thesis, MultiCoLA did respond differently to different 

sequencing approaches (16S rRNA genes from TC-DNA shotgun sequencing data, 16S rRNA gene 

amplicon sequencing, with and without library sizing, 18S rRNA gene amplicon sequencing) in the 

EMOSE 2017 dataset, in terms of absolute value thresholds per sample. Those values, when converted 

to their relative abundance per sample equivalents, were all close to 0.1% (Table 3). Except for the 16S 

rRNA gene amplicon sequencing data with library sizing for larger sequences (MetaB 16S large), 

because that subset of data was expected to reflect incorrectly the prokaryotic diversity. Also, across 

independent datasets such as the Spongia officinalis 2014 and the NICE 2015 datasets, which 

employed TC-DNA shotgun sequencing to characterize microbial communities, the values obtained for 

MultiCoLA were similar (Figures 6 and 8). In this regard, MultiCoLA can be useful, because it delivers a 

specific definition, adjusted to each sequencing power of the marker gene used to assign taxonomy, in 

a consistent way. However, it did not prevent the usage of a “choice step”, in this study, because the 

correlation values behaved in a monotonous way, with no drastic changes (Figures 4,6 and 8). Even 

though correlations went down with more stringent thresholds, reflecting different community structures, 

the point where the change begins, or the point where the rare community is defined, is dependent on 

a subjective choice, with no objective criteria. In practice, the MultiCoLA output is a set of possible 

thresholds and not a specific one, meaning that different researchers using the same output could select 

different thresholds. Thus, the MultiCoLA based thresholds that are obtained remain arbitrary. Also, 

when comparing how the algorithm worked within datasets, by separating different types of samples, in 

the Spongia officinalis 2014 dataset, the correlation values obtained varied in unpredictable ways, 

meaning that separating samples from the analysis influences the MultiCoLA results (Figure 7). When 

joining all Spongia officinalis 2014 dataset samples the results are as expected, the reason why this 

happens is unknown. In an unpublished study (personal communication from Xiu Jia, 2019), the same 

limitations in using MultiCoLA were highlighted for soil datasets, using 16S rRNA gene amplicon 

sequencing data.  

Despite the problems listed above regarding the utilization of the MultiCoLA algorithm, for most 

datasets tested, the definitions obtained are not far from those found in the literature. Thus, our results 

showed that, for practical purposes, the rare communities defined with MultiCoLA can be used for 

subsequent analysis. There were few exceptions. For 16S rRNA gene amplicon sequencing with library 
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sizing, from the EMOSE dataset, the sizing was done because the set of primers selected can amplify 

18S regions, but 18S amplicons are larger than 16S amplicons. Thus, by separating the sequences by 

size, after library preparation, sizing is expected to improve specificity in prokaryotic diversity and reduce 

eukaryotic diversity in small-sized libraries. When applying MultiCoLA with both prokaryotes and 

eukaryotes (non-sized libraries), the definition will be influenced and have a different meaning in the 

prokaryotic and eukaryotic community. In fact, by using the library sizing approach, rare prokaryotic 

diversity was augmented in relation with rare eukaryotic diversity for the small library size, whereas the 

opposite happened for the large library size, as expected (Figure 5). By applying the rarity thresholds 

obtained for the prokaryotes and eukaryotes in separate, there are more rare prokaryotes in the small 

library size and more eukaryotic rare OTUs in the large library size (if those OTUs are considered truly 

rare, which is not the case, as previously discussed). Another problem with defining rarity after library 

sizing is well reflected in the MetaB 16S large rarity threshold, because it is several orders of magnitude 

superior to the others (both for prokaryotes and eukaryotes). This can be because the eukaryotic 

diversity overshadowed the prokaryotic diversity, as expected from the primer set (153). But library sizing 

was used to improve prokaryotic diversity and for that objective it worked, by selecting the small size 

and discarding the large size. The small library size threshold for rarity, when applied to prokaryotic 

sequences, is around 0.13% and for eukaryotes, is around 1%, meaning it can give a meaningful value 

for the rare prokaryotic biosphere and not for the rare eukaryotic biosphere, intended to be removed in 

the first place. The other exception was for the TC-DNA shotgun sequencing data from the NICE 2015 

dataset, because the average relative abundance threshold, per sample, was 1.25%, superior to those 

found on the literature and is a result from the lower number of 16S rRNA gene sequences available. In 

this case, despite providing a threshold different from those in the literature, it remains coherent given 

the abundance values. 

The ideal definition of the microbial rare biosphere should have consistent results across 

different datasets. Meaning, it should represent the same biological reality across independent datasets. 

For that, the sequencing power, technology and strategy should be taken in consideration. The fact that 

there are so many ways to define rarity is a reflection of the different methodologies and differences in 

sequencing power applied to study the microbial rare biosphere (13). One cannot assume a priori that 

a specific threshold will universally fit the rare biosphere, because the meaning of a specific threshold 

is dependent on community composition and different datasets have different diversity values. Despite 

that, the RAC figures always have the same pattern, namely, the long tail (3,51). The universal RAC 

shape is most probably the only safe assumption across any microbial community dataset, thus, the 

answer to define rarity may be on the development of a method to accurately calculate the beginning of 

the long tail, in a reproducible way. Furthermore, factors such as the utilization of a sample by sample 

threshold or for the whole dataset should be explored, as well as the use of relative abundance and 

absolute abundance thresholds. Besides the statistical definition of the rare biosphere, the 

methodological efficiency of the recovery of the taxa present in the environment is relevant. For example, 

if there are missing taxa, the total community described is not truly representative of the real diversity, 

thus influencing the estimation of rarity. Also, the recovery process should not be biased towards certain 

taxa, as it can have dramatic changes in the measured relative abundance (49).  
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4.2 Methods for microbial rare biosphere recovery  

High sequencing power is necessary to fully grasp the rare biosphere diversity (3,13,83), thus favoring 

the usage of 16S rRNA gene amplicon next generation sequencing technologies, for the prokaryotic 

rare biosphere. With the TC-DNA shotgun sequencing approaches, the sequence recovery of the 16S 

rRNA gene is much lower, but by increasing sequencing power and accuracy, the TC-DNA shotgun 

sequencing approach can present different advantages. For example, the Candidate Phyla Radiation 

(CPR) was partially absent in 16S rRNA gene amplicon datasets, but was identified in TC-DNA shotgun 

sequencing datasets from a previous study (175). Also, our TC-DNA shotgun sequencing data from the 

Spongia officinalis 2014 and NICE 2015 dataset, suggests that CPR taxa are mostly rare (Figures 13 

and 16). Considering this from the point of view of the definition of rarity, specifically for rare prokaryotes, 

16S rRNA gene amplicon sequencing is arguably better in representing the universe sampled, due to 

more sequencing power, thus more percentage of diversity collected. But the TC-DNA shotgun 

sequencing approach is better at enabling a more harmonized identification of OTUs since PCR bias in 

the rare biosphere cannot be ruled out in amplicon sequencing datasets (49,140,179,180). Also, with 

TC-DNA sequencing, it is possible to assess functional information, e.g. Karimi et al. (158). Another 

advantage of TC-DNA shotgun sequencing relies on the ability to further use MAGs to study the biology 

of specific rare taxa (148),  although metagenomic binning of contigs into genomes is easier for low 

complexity communities (181), and less efficient for low abundance microorganisms. In this work, when 

using TC-DNA shotgun sequencing, in both Spongia officinalis 2014 and NICE 2015 datasets, CPR taxa 

were identified as members of the rare biosphere (Figures 13 and 16). For example, the Candidate 

Phyla Levibacteria in the Spongia officinalis 2014 dataset (Figure 13) and the Candidate Phyla 

Saccharibacteria in the NICE 2015 TC-DNA shotgun sequencing data (Figure 16). However, these taxa 

were not found in the NICE 2015 16S rRNA gene amplicon sequencing dataset (Figure 19). The reason 

for this is probably related with the identification of CPR taxa with self-splicing introns in the 16S rRNA 

gene, with varying size and positions (175,182). Another possible reason is the bias within databases 

towards the sequences of previously cultured prokaryotes (183,184), resulting in primer design bias and 

consequent non-annealing of the primers. 

By direct comparison of 16S rRNA amplicon and TC-DNA shotgun sequencing in the same 

samples of the NICE 2015 dataset, despite the difference in the number of total and rare reads used for 

taxonomic identification, there was not an accentuated difference in the number of different rare 

prokaryotic OTUs identified in both approaches (Figure 20). In fact, there is probably a bias towards 

more dominant prokaryotes in the 16S rRNA gene amplicon sequencing data, as the Shannon index is 

lower in this case. The patterns of the rare prokaryotic community differ across both approaches. 

Specifically, the March and April rare communities are clustered together from the TC-DNA perspective 

(Figure 14) but represent different groups from the 16S rRNA gene amplicon sequencing perspective 

(Figure 17). This can be explained by the lower Shannon index in the 16S rRNA gene amplicon data, 

because it might be producing higher discrepancies of abundance across different taxa, thus leading to 

clustering of different groups. Alternatively, it might be a result of under sampling of the rare prokaryotic 

biosphere in the TC-DNA shotgun sequencing data. Missing taxa due to lower sequencing power of the 
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marker gene can lead to missing patterns. This is further supported by the fact that differences across 

the environmental variables are more significant from the perspective of the 16S rRNA gene amplicon 

data set (Tables 9 and 11). Missing taxa might also result in overestimation of transient rarity, if it is 

defined as rare OTUs that are absent in at least one sample, as is evident from comparing Figures 16 

and 19. Considering our data and the above arguments, this work argues that to study the prokaryotic 

rare biosphere, it is important to complement 16S rRNA gene amplicon sequencing with TC-DNA 

sequencing. The amplicon sequencing approach is more useful to identify most of the rare taxa and the 

TC-DNA sequencing approach is important to complement missing taxa, provide functional information 

and solidify biological interpretation, for example, through extensive analysis of MAGs and community 

functional profiles, when possible. 

Besides the sequencing strategy, the methodologies for environmental DNA collection will 

presumably influence the description of the rare prokaryotic biosphere. Little is known about the effect 

of different seawater sampling methodologies on the recovery of the marine prokaryotic rare biosphere. 

For instance, in a study which addressed how different DNA extraction kits influence diversity estimates, 

it was found that the rare prokaryotic biosphere is more sensible to different DNA extraction protocols 

than the abundant prokaryotic biosphere (130). From the literature cited, the influence of different 

seawater filtering methods and filtered volumes on the view of the marine prokaryotic rare biosphere is 

missing. When comparing the scope of seawater filtering methodologies, in marine microbial rare 

biosphere studies using 16S rRNA gene amplicon sequencing, pre-filtration prior to prokaryotic cells 

filtration is commonly used to lower eukaryotic “contamination” (15,27,64,68,83,84,101,104,126,128). 

Alternatively, whole water filtration is employed (6,18,29,34,35,176). Pre-filtration methodologies used 

in the literature include the usage of a mesh with pore size of 200µm (84,101,126,128), or membranes 

for pore sizes of 3µm (15,41,68,83,104) or 0.8µm (27). The bacterial cells, in the marine prokaryotic rare 

biosphere studies, independently of pre filtration or not, are mostly filtered with the Sterivex filter unit 

(15,27,29,41,68,83,84,101,104,128), but membrane filter units are also used (6,34,35,126,176), both 

with pore sizes of 0.22µm. Regarding volume, marine prokaryotic rare biosphere studies use: less than 

1L (126,176), 1L (6,18,34), 2L (101), 5-7L (15,41,104), 20L (68) and 170L (35); Some studies use a 

range of volumes instead, such as 5/6L to 15L (83,128). From this overview, except for 170L (35), the 

seawater volumes filtered for the study of the marine prokaryotic rare biosphere range from less than 

1L to up to 20L. Thus, regarding the seawater volume, it is relevant to understand if there are significant 

differences across the range of volumes used in the literature. It is also important to know if it is 

necessary to filter more seawater to have a better view of the marine prokaryotic rare biosphere.  

The 16S rRNA gene amplicon sequencing data from the EMOSE 2017 campaign (without library 

sizing), was used to explore how the view on prokaryotic rare diversity changes with increasing water 

filtration volume. Despite not representing entirely the complete range of values used in the literature, 

since volumes filtered within the EMOSE project ranged from 2.5L to up to more than 500L, our results 

suggest that volume was not an important factor determining the rare prokaryotic diversity in seawater. 

For example, when using Sterivex filters with whole water filtration, from 2.5L to 10L, the diversity values 

(number of rare OTUs, number of rare reads and Shannon index) did not differ significantly (Table 5). 
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When comparing a broader range of volumes, from 10L to more than 500L, the most significant 

differences were on the number of reads, possibly because more cells are collected, but the diversity 

itself, as measured for species richness (equivalent to number of rare OTUs in this work) and species 

equilibrium (as measured by the Shannon index) did not change significantly (Table 5). To discard the 

possibility that the increase in number of reads is due to volume and not sequencing power, a rarefaction 

analysis should be added in future work. Also, from the point of view of community composition, as 

analyzed by ordination analysis (Figure 10), the rare communities from larger volumes overlap with the 

rare communities from smaller volumes. Meaning that more volume, with more cells, does not 

necessarily lead to a better representation of the rare biosphere from the sampled universe. Thus, this 

work supports the utilization of the current range of seawater filtered volumes in the literature, since 

volumes superior to 100L do not compensate for the extra time and costs. Regarding the utilization of 

membrane large filters or Sterivex filters, with pore size of 0.22µm and whole water filtering, results are 

similar (Table 5). This is expected, because the pore size is the same, meaning that the same rare 

communities are being filtered, without being significantly influenced by the physical properties of the 

filter. Conversely, by changing the pore size, it is expected that different communities are retrieved. For 

instance, different size fractions, sometimes equivalent to pre-filtrations in the literature (when pre 

filtration is around 20 µm), resulted in significantly different communities (Table 5). When analyzing the 

medium size fraction (pore size 3µm – size fraction between 20µm and 3µm) and large size fraction 

(pore size 20µm - size fraction > 20µm), it was verified that these fractions select for different prokaryotic 

rare communities. This is supported by both the values of diversity (number of OTUs, number of reads 

and Shannon index, Table 5) and by the ordination analysis, where there is a clear grouping according 

with the pore size, independently of the remaining sampling variables (Figure 10). Then, caution should 

be taken when comparing datasets with or without pre-filtration steps.  

The most challenging aspect to explain the size fractioned diversity is not the existence of 

different communities, but why the medium and large size fractions have an excess of rare prokaryotic 

diversity compared with the small fraction. One hypothesis to explain such finding is that the high 

fractions also include rare host-associated prokaryotes, prokaryotes associated with rare hosts and/or 

particulate matter-associated prokaryotes. Furthermore, the marine rare biosphere is thought to be an 

important component of most host-associated microbiomes (e.g., Taylor et al. (94)), and host-associated 

microbiomes presumably include rare CPR (e.g. Wu et al., 2011 (184)), representing a significant 

component of biodiversity, as is well illustrated by Hug et al., 2016 (185). Thus, to have a full picture of 

the marine prokaryotic rare biosphere, it might be important to include eukaryotic cells. The presented 

data is not enough to accept or reject the hypothesis that the excess of rare prokaryotic diversity in the 

pre filtrate from EMOSE 2017 dataset is due to host-associated relationships, but the high unknown 

diversity of host associated microbes is in favor of such hypothesis. 

This finding suggests that it is better to use whole water filtration without pre filtration, since pre 

filtration is sometimes used to remove eukaryotic ‘contamination’. Thus, the use of pre filtration steps 

can hide an underexplored component of the prokaryotic rare biosphere. The exception is when the 

objective relies solely on the free-living marine rare prokaryotes, in this case the pre filtration step might 
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be useful to rule out rare prokaryotes associated with eukaryotes. But in the latter case, the existence 

of an excess of prokaryotic rarity in the pre filtrate should be analyzed, as some apparently free-living, 

rare prokaryotes might be host-associated prokaryotes that got randomly dispatched from the original 

host, as e.g. sponge symbionts were previously found as rare prokaryotes in geographically distant 

areas (94). 

4.3 Marine prokaryotic rare biosphere ecology 

There are multiple questions related to the rare biosphere ecology that are still far from a complete 

answer, such as: (i) How does the prokaryotic rare biosphere behaves in the ocean? (ii) Are those rare 

communities dispersed everywhere or represent distinct communities in different sites? (iii) The 

abundance is permanent or varies over time? and under what processes? (iv) Is the rare biosphere 

ecology modeled by stochastic or deterministic mechanisms? The relevance of understanding these 

mechanisms relies on the ecological functions of the prokaryotic rare biosphere (12), which provides 

resistance and resilience to ecosystems by working as a seed bank (68), and/or through 

disproportionally high activity (22), and/or by transferring functional genes (24). In addition, as illustrated 

by the long tail of the RAC, most of the known biodiversity is rare, both for microbes and non-microbes 

(3,51), arguably representing an important pool of genetic diversity (3,6,8,40). In this work, across 

independent datasets (EMOSE 2017, NICE 2015 and Spongia officinalis 2014) and within different 

samples of each dataset, this pattern was universal, a minimal number of rare prokaryotic reads 

corresponds to most of the prokaryotic OTUs from the community. The Shannon index indicated that 

the rare communities have more homogenous abundances than the total and abundant communities, 

with similar values (Table 6, 8 and 10). Thus, when the Shannon index is used to study the equilibrium 

of diversity it fails to consider the rare biosphere, this is because the index weights the relative 

abundance of OTUs, since the abundant OTUs are much more abundant than the rare OTUs, the latter 

ones much down-weighted. 

Soon after the first prokaryotic rare biosphere description (6), it was hypothesized that all 

microbes can be found everywhere, but at different abundances, bringing back to life the Baas Becking 

dictum “Everything is everywhere, but the environment selects” (21,59). Not because of the existence 

of the rare biosphere, but because it revealed that most of the microbial diversity was not collected with 

traditional methods, so one could not rule out the hypothesis that all OTUs are present in any 

environmental sample, but are not identified due to methodological limitations (6,59). Despite of the 

difficulty in proving or disproving the dictum, if it applies to the ocean, where prokaryotes are dependent 

on external factors for movement, it implies the existence of unlimited dispersal associated with 

stochastic patterns (5). Moreover, it would suggest the existence of a seed bank, able to respond to 

changing conditions (59). But as described in the introduction section of this work, despite the existence 

of a seed bank (68), there is evidence that everything is not distributed everywhere, as there are 

biogeographic distributions associated with deterministic patterns for both prokaryotes (41), and 

microeukaryotes (16). Notwithstanding, nowadays it is consensual that both deterministic and stochastic 

patterns model microbial community dynamics (126) (for a comprehensive review, see Zhou and Ning 

(5)). This reflects the existence of different types of rarity and respective mechanisms across different 
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variables (13). In this context, and in agreement with the findings of this thesis (see discussion below), 

the prokaryotic rare biosphere is now known to be influenced by water masses across different oceans 

(27,41,128). The marine prokaryotic rare biosphere distribution is also thought to be highly influenced 

by host-associated interactions (78).  

The NICE 2015 dataset allows to describe the behavior of the prokaryotic rare biosphere 

through spatiotemporal variations, because sampling was performed with a vessel fixed on ice, drifting 

along time, with different space coordinates (160). Other studies in the Arctic ocean indicate that there 

are biogeographical patterns of the prokaryotic rare biosphere, due to different water masses (27,41) 

and it was suggested that the relative abundance of the prokaryotic rare OTUs behaves in the same 

way through time (41). When comparing different depths (surface, middle and bottom) and different 

spatiotemporal coordinates (from March to June, in drifting ice), there are not significant differences in 

the prokaryotic rare biosphere diversity (Table 8 and 10), in accordance with Vergin et al. (41). But, when 

comparing different water masses, there are significant differences in the values of diversity. A shift in 

community composition was observed in June (Figures 14 and 17), because of the inflow of warmer 

Atlantic waters (AW) to the deeper layers. This inflow of AW works as a source of heat to the Arctic 

ocean, leading to the melting of ice, responsible for the warm Polar Surface Water (wPSW), thus forming 

three layers of water: PSW, PSWw and AW (161). On the other side, during March and April, the surface 

and middle layers of water correspond to PSW, thus explaining why the prokaryotic rare communities 

of March and April are closer to each other (Figures 14 and 17), except for the deeper layer, 

corresponding to MAW, resulting of the mixing with AW in the previous seasons (160,161). The main 

variable influencing the marine prokaryotic rare biosphere in the Arctic ocean is probably the different 

water masses at play, corroborating existing literature (27,41). 

A deeper look into the behavior of the prokaryotic rare biosphere, in the Arctic ocean, requires 

the distinction of the different types of rarity. From insights gained by previous studies of the prokaryotic 

rare biosphere in the same ocean, it is expected that most rare prokaryotic OTUs remain always rare 

(41), with a minor group of CRT (7,27). In this work, most of the prokaryotic rarity in the Arctic ocean 

was associated with transient rarity, followed by permanent rarity and a minor fraction of CRT (Figures 

15 and 18). Despite that, the methodology used in this study to distinguish the different types of rarity 

(types.r, in Annex III) is possibly overestimating transient rarity. Also, transient rarity might be a result of 

under-sampling due to lower sequencing depth. But the concept of transient rarity is within the concept 

of permanent rarity, the difference is that permanently rare OTUs remain viable through changing 

conditions, whereas transiently rare OTUs grow and eventually decay into extinction, with changing 

variables (8,13). Furthermore, in the previous studies of the prokaryotic rare biosphere, at different sites 

and through different time periods, at the same ocean, transient rarity would probably be included in the 

permanently rare group (27,41). It is less relevant to identify each type of rarity than it is to identify and 

explore the mechanisms explaining the rarity patterns.  

Dispersal limitation, in the NICE 2015 dataset, can explain the behavior of the abundance of the 

prokaryotic rare biosphere, because water masses were identified as relevant environmental drivers of 

the communities composition (27,41). Since prokaryotic cells movement is dependent of the water 
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current, if there are no water currents determining the biogeography of the cells, they will be diluted 

everywhere, by unlimited dispersal. However, if there are water masses at play, then they work as 

physical barriers separating different zones and, thus, they are equivalent to dispersal limitation. Galand 

et al. (41) considered water masses deterministic selective pressures, in principle contrasting with 

dispersal limitation that is considered stochastic. But as explained previously, if the cause of the effect 

is known (as it is the case of water masses within the NICE 2015 dataset), then it is considered 

deterministic (5). There is one remaining problem in this framework, because transient rarity is assumed 

to be stochastic and permanent rarity is assumed to be deterministic (13). This is because one cannot 

assume why each transiently rare OTU disappears across changing conditions, whereas it can be 

assumed that, by maintaining the same selective pressures over time, all permanently rare OTUs remain 

rare. Thus, it is possible to assume a constant selective pressure (homogenous selection in Jia et al. 

(13) terminology), favoring permanent rarity in the Arctic ocean. Combining these results with the 

community assembly theory, applied to the microbial rare biosphere (13), it is possible to extrapolate 

some important mechanisms in the Arctic ocean. One hypothesis, from our data and partially supported 

by previous results (27,41), is that the water masses randomly transport different cells. Cells that are 

not well adapted to the new environment eventually die and the water current will have the same effect 

on the distribution of the cells within the same water mass (because it is just a transportation effect). 

That would be the stochastic component. The deterministic component would be on the group of 

conditions that remain approximately constant through the spatiotemporal variation, within the water 

mass. This homogenous selection would promote permanent rarity. As highlighted before, transient 

rarity is a concept encompassed by the permanent rarity concept, because a transiently rare OTU is 

always rare, the difference is that it eventually disappears. Thus, because the significant majority of 

OTUs were identified as permanently rare and transiently rare, the following hypothesis might hold: 

stochastic mechanisms distribute the rare prokaryotes and deterministic mechanisms determine which 

ones subsist at low abundances and which ones disappear. To test this hypothesis thoroughly, it would 

be necessary to improve the method of identification of the types of rarity, to avoid overestimation of 

transient rarity. Then, it would be important to compare different methodologies to define each type of 

rarity. For instance, the method proposed by Jia et al. (13) is based on community assembly theory, 

which decides the types of rarity from the perspective of the community. Contrarily, in this work the 

algorithm types.r (Annex III) decides the type of rarity from the perspective of each individual OTU, and 

that might present caveats when modeling assembly mechanisms. The community assembly-based 

approach by Jia et al. (13), relied on ecological modeling perspectives (186–191). Consequently, it 

provides a more deductive and solidified method to disentangle the mechanisms debated on here. 

 It is noteworthy that there are other sources of movement of cells not identifiable in the NICE 

2015 dataset. For example, the transportation of rare prokaryotes by hosts that travel long distances, or 

the recruitment or sinking of microbial diversity in sessile hosts (78). The latter example is stochastic 

from a predictive point of view, because, despite that the cause of the movement is known, what cells 

will be transported to, and where, will appear as a random process. But considering the active 

recruitment of prokaryotes due to host-microbiome mechanisms preserved by natural selection (192), 

deterministic processes also play important roles for the recruitment of rare species.  
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 The sustaining of the rare hypothesis (78) explains the distribution of rare prokaryotes from the 

perspective of the inherent diversity of host-associated microbiomes. This framework is theoretically 

coherent, highlighting the relevance of the marine hosts microbiomes in the study of diversity, but is hard 

to fully prove with the current methodologies. For example, most studies on host associated rare 

prokaryotes focus on sessile animals, e.g. corals (43,96) and sponges (75,79,94,100). And most studies 

usually focus on the process of symbionts transportation to the host, rather than the opposite view, 

meaning, how hosts help the maintenance of a widespread and diverse rare biosphere (78). 

 There are insights into how sponges (as a model example of sessile host organism, with a 

diverse microbiome) can contribute for rare prokaryotic community assembly. Seawater works as a 

reservoir of sponge symbionts that remain viable and rare outside the host until being filtrated by the 

sponge (94,100). This is further supported by the finding that abundant sponge microbial symbionts are 

essentially either generalists or specialists (192) and by the finding that some rare microbial symbionts 

are species-specific (75). Furthermore, the sustaining of rare hypothesis (78), regarding the contribution 

of sessile macro organisms, fits well with the recognition that sponges, for example, represent an 

important reservoir of diversity (192). In fact, there were 44 prokaryotic phyla alone in the Spongia 

officinalis 2014 dataset analyzed in this work (158). Similarly, other studies have identified 32 different 

phyla in sponge-associated microbiomes (75) and a later study with higher sampling effort, found 41 

different phyla (192). In this study, using Spongia officinalis 2014 dataset, virtually all prokaryotic phyla 

host rare OTUs, similar to Reveillaud et al. (75), where 20 phyla out of 32 have rare OTUs. In the latter 

study, it was also highlighted that most phyla with rare OTUs are CPR (75). This stresses the importance 

of adding the host-associated rare microbial diversity into the picture of the global rare biodiversity.  

 Marine sediments are an understudied component in the tradeoff of prokaryotic OTUs and 

sessile hosts (158). It was suggested that sponge cellular shedding could work as a source of sponge 

associated microbial OTUs to the sediment environment (158). If specialized (host-associated) OTUs 

sink in the sediment, then it is expected that they become rare in the sediment. It was also suggested 

that particle intake by sponge (193) can justify the existence of shared OTUs between sediment and 

sponge associated communities (158). From a cyclical point of view, specialized OTUs in the sponge 

microbiome can sink in the sediment, live as particle-associated rare OTUs, and re-enter the sponge 

environment through particle intake of the sponge. The analysis of the rare biosphere from this work, 

that use the same dataset as Karimi et al. (158), but with a more recent version of the bioinformatics 

analysis (136), indicated that seawater and sponge tissue have more similar rare community 

compositions with each other than with sediment (Figure 12). This might reflect sponge filtration of 

seawater, the influx of water brings randomly selected cells for the sponge microbiome, once there, they 

can adapt (becoming abundant or remaining rare) or disappear. This explanation is supported by the 

findings of Hardoim et al. (79), where they found a stable community over time, for the dominant 

symbionts, but a rare community characterized by many transiently rare OTUs and some permanently 

rare (symbiotic) OTUs. The latter ones were hypothesized to be functionally redundant relatively to their 

abundant neighbors. The distinct rare communities found between sediment and other samples (water 

and sponge), and within sediment replicates (Table 6, figures 12 and 13), might be a consequence of 

highly diverse sediment samples. Sediments were previously shown to be more diverse than seawater 



77 
 

and sponge tissue, for the overall community (158). If the sediment diversity results from particle and 

cell sinking, then it is the result of stochastic mechanisms and the sponge specific OTUs sinking there, 

from sponge cell shedding, would be predicted to be transiently rare taxa. This work did not use the 

types.r algorithm in the sponge dataset, to confirm the proportion of transient and permanently rare taxa, 

because the algorithm is probably overestimating transient rarity and is better adapted to the NICE 2015 

dataset. Despite that, from the circular visualization (Figure 13), there is evidence for the transfer of 

transiently rare taxa from the sediment and seawater to the sponge. The same figure also reveals that 

most candidate phyla are present in sediments and are always rare, except for the Candidatus 

Poribacteria, abundant in sponge tissue samples (194). Another pattern is that some shared OTUs are 

phylum-specific, for example, the phylum Bacteroidetes is essentially shared across sediment and 

seawater, with a few rare OTUs sporadically occurring in the sponge samples (Figure 13). Important 

insights could also be gained from the analysis of Venn diagrams (Figure 11), where the number of total, 

rare and abundant prokaryotic OTUs are counted for shared and specific OTUs across samples: the 

majority of the assigned prokaryotic OTUs are sediment-specific, in agreement with the higher diversity 

found in sediment samples (158). Whereas most seawater prokaryotic OTUs are shared with sediment 

(Figure 11), possibly because of the random sinking of cells in the sediment layer. When looking at the 

rare component, the number of specific prokaryotic OTUs increases in both sediment, seawater and 

sponge tissue. From an analytical point of view, it is noteworthy that if one OTU is abundant in sediment, 

for example, and rare in the sponge tissue, then it will be classified as sponge tissue specific in the rare 

biosphere subset. Thus, OTUs that are shared in the total community and specific in the rare community 

are inferred to be CRT.  

 Integrating both the results from this work and the cited literature in the framework of the rare 

community assembly mechanism: Influx of seawater and sponge tissue cells shedding into sediments 

randomly transports prokaryotes across different types of environment (sponge tissue, sediment and 

seawater). This stochastic component explains the high numbers of transient rarity in the sponge tissue. 

The deterministic component is within each environment, where a group of conditions are maintained 

through time, resulting in a constant selective pressure, that allows some of the randomly distributed 

cells to persist. For example, permanently rare symbionts in the sponge tissue, that are viable and with 

possible functional redundancy (79). Regarding CRT, they result from deterministic mechanisms, in this 

context they can remain viable in the surrounding, non-optimal environment, and wait to (randomly) get 

in the optimal environment, where they are able to grow. Thus, CRT, in the host-associated landscape, 

can be considered opportunistic, whereas dominant symbionts are generalists and specialists (192). 

Thus, as in the water masses from the Arctic ocean, stochastic mechanisms distribute prokaryotic cells 

and deterministic mechanisms decide which ones remain rare, grow abundant or disappear. 

5. Conclusion and future perspectives 

The research performed in this study allowed to understand the phylogenetic diversity of the marine 

prokaryotic rare biosphere from the perspective of both stochastic and deterministic mechanisms. It is 

important to stress that different definitions of rarity and different methodologies to assess the marine 

prokaryotic rare biosphere will originate different types of rarity. Thus, it is relevant to understand the 
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concept of rarity, to define it in a biologically meaningful way and to know the best methods to recover 

the microbial rare biosphere.  

 MultiCoLA was proposed to solve the problem of the rarity definition (13), but in this work it was 

shown to fail in providing a non-arbitrary definition. Despite that, it can adjust to different sequencing 

approaches. A recently proposed method is based on the calculation of the beginning of the RAC “long 

tail” (personal communication with Xiu Jia, 2019). By testing that method, as well as other possible 

methods, combined with an understanding of the biological meaning of each rarity definition already 

used in the literature, it will be possible to establish guidelines for a comprehensive, coherent and 

biologically meaningful definition of the rare biosphere. 

 In this study, the missing gaps regarding methodology were assessed, specifically, the 

differences across TC-DNA shotgun sequencing and 16S rRNA gene amplicon sequencing and between 

different seawater sampling methodologies. This is relevant, because the definition of rarity – regardless 

the method employed - will only work if the sampled community is representative of the universe and 

collected in a non-biased way. Regarding the sequencing strategy, the SSU rRNA gene amplicon-based 

approach is the best for a good representativeness of the sampled universe, but the TC-DNA shotgun 

sequencing is better to have a non-biased view of diversity. Besides that, by crossing the data acquired 

with both strategies, it is possible to gain a better view of the rare microbial diversity in cause and answer 

functional questions. This work also provides some guidelines to seawater sampling, in the context of 

the rare biosphere: (i) Increasing volume results in more collected cells, but the representativeness of 

rarity does not change enough to justify the extra time and cost associated with volumes superior to 

100L; (ii) The usage of large membrane or Sterivex type filters with the same pore size, is indifferent; 

(iii) The usage of pre-filtration steps might omit an important component of the rare prokaryotic 

biosphere, specifically the one that is host-associated, thought to represent a heavy component of the 

rare biosphere biodiversity; (iv) Seawater pre-filtration steps should be used only in studies focusing in 

the free-living marine prokaryotes, but the excess of rare prokaryotic diversity in the pre filtrate should 

be analyzed, to identify possible false free-living prokaryotes. In the future, by comparing these results 

with the mock communities from the same dataset (EMOSE 2017), it will be possible to quantify the bias 

in relative abundance produced by the different methodological steps, by using the model proposed by 

McLaren et al. (49). 

 When analyzing the prokaryotic rare biosphere ecology, in this work, it became evident that the 

Shannon index acutely down weights the rare diversity when applied for the total microbial community, 

due to the drastic discrepancies in abundance from abundant to rare taxa. Thus, other indexes should 

be explored, also in studies of the total biosphere, since the true diversity is masked by the dominant 

OTUs. To understand the ecological mechanisms of rarity, this work further suggests that it is necessary 

to classify each type of rarity. For that objective, the algorithm types.r (Annex III) was developed in here, 

but it overestimated transient rarity. Instead, it is suggested the use of the model based on community 

assembly by Jia et al. (13). 

 This work corroborated previous community assembly findings, interpreting how stochastic and 

deterministic mechanisms can simultaneously explain different components of the marine prokaryotic 
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rare biosphere, across different variables. For the Arctic ocean, water masses stochastically distribute 

cells. Those cells are under homogeneous selection due to the characteristics of each water mass, 

which in turn (deterministically) selects for a permanently rare biosphere, that is viable. The remaining 

rare OTUs that are not well adapted randomly disappear, thus explaining the transiently rare biosphere 

component. To confirm this point of view, cross analysis of data from different methodologies, sites and 

time periods will be necessary. Comprehensive comparisons of different approaches to define the types 

of rarity are also lacking in the literature. Once the RAC-based approach to define rarity is solidified, it 

will be possible to proceed with, and test, such analysis and have a complete spatiotemporal picture of 

the Arctic ocean, with relevance in the context of climatic change. For the host-associated interactions, 

again, stochastic mechanisms randomly distribute cells across environments (in this work, sponge 

tissue, seawater and/or sediment). Those taxa which are not well adapted to the new environment 

disappear, becoming transiently rare. Whereas other taxa can persist as permanently rare or grow 

abundant, thus having opportunistic strategies. To integrate the sustaining the rare hypothesis (78) with 

the community assembly theory (13), applied to the marine prokaryotic rare biosphere, it will be 

necessary to gather data on mobile macro organisms, besides the data on sessile-host associated rare 

prokaryotes. In the future, the analysis of the host associated prokaryotic rare biosphere, the Spongia 

officinalis host in here, should be complemented with the information regarding the types of rarity, in the 

framework of the community assembly theory (13), to test the mechanisms predicted in this study. 
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7. Annexes 

Annex I – MultiCoLA R script, applied to define microbial rarity 

#Load functions necessary for MultiCoLA (108), available at:  

#https://www.mpi-bremen.de/en/Software-4.html#section1550 

https://www.mpi-bremen.de/en/Software-4.html#section1550
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#set working directory 

setwd(“/path_to_working_directory/”) 

#Load the original OTU table in text (.txt) format, with samples as columns and OTUs absolute 

#abundance values as rows, the first row indicates the column label and the first column indicates  

#the OTU label. 

#The last column gives taxonomic information for each row, if available. 

OTU_table <- read.table("OTU_table.txt",header=TRUE,row.names=1) 

class(OTU_table) # to confirm if the table is a data frame 

sapply(OTU_table,class) # to confirm if OTUs abundance is in numeric value and taxonomic 

#information as factor values 

#Use the function taxa.pooler.1.4.r to transform the data frame in a list, where each line is a matrix  

#with each sample as rows (instead of columns) and taxonomic information as columns (instead of 

#rows). 

source(“taxa.pooler.1.4.r”) 

OTU_taxa<-taxa.pooler(OTU_table) 

#The R prompt will ask: 

#1. Number of samples? (e.g. 16)...   

#2. Number of taxonomic levels? (e.g. phylum+class+order+family+genus=5)... 

#3. Presence/absence tables as output? (y/n)... 

#4. Output as text files? (y/n)... 

class(OTU_taxa) 

sapply(OTU_taxa,class) #Verify that the output is a list of matrices; 

#To produce each truncated table with a specific cutoff, use COtables.1.4.r.  

source(“COtables.1.4.r”) #Before using this function it is important to define: 

#The number of taxonomic levels; 

#(Type=): Application of cutoff based on the entire dataset “ADS” or by-sample “SAM”; 

#(typem=): Application of the cutoff to study the impact on “rare” or “dominant” fraction. 

#The function is repeated for each taxonomic level selected, in this example, for all taxonomic levels 

#(from domain (level = 1) to species (level = 7)); 

emose_truncated.DS.1<-COtables(OTU_taxa[[1]],Type="SAM",typem="rare") 

emose_truncated.DS.2<-COtables(OTU_taxa[[2]],Type="SAM",typem="rare") 

emose_truncated.DS.3<-COtables(OTU_taxa[[3]],Type="SAM",typem="rare") 

emose_truncated.DS.4<-COtables(OTU_taxa[[4]],Type="SAM",typem="rare") 

emose_truncated.DS.5<-COtables(OTU_taxa[[5]],Type="SAM",typem="rare") 

emose_truncated.DS.6<-COtables(OTU_taxa[[6]],Type="SAM",typem="rare") 

emose_truncated.DS.7<-COtables(OTU_taxa[[7]],Type="SAM",typem="rare") 

source(“cutoff.impact.1.4.r”) #Compares each truncated table with the original OTU table 

#This function needs the following information: 

#(Type=): cutoff used (“ADS” vs “SAM”). Use the same as before, in this example with “SAM”;  

#(corcoef): Correlation coefficients: “pearson”, “spearman” and “kendal”, in this example “spearman”; 
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#(typem=): “dominant” vs “rare”, the same as before “rare“; 

OTU_impact <- cutoff.impact (OTU_taxa, Type="SAM", corcoef="spearman", typem="rare") 

#This function asks: 

#Details of the NMDS calculations? (y/n)...; 

#If SAM-based only, maximum cutoff value? (e.g. 208)...  (it should correspond to “the lowest number 

#of maximum OTU occurrences in all samples” (108)) 

#To produces figures and tables, use the function cutoff.impact.fig.1.4.r. 

source(“cutoff.impact.fig.1.4.r”) 

OTU_impact_out<-cutoff.impact.fig(OTU_impact) 

#The function asks: 

#Output as text files? (y/n)...   

#Plot the results? (y/n)...       

#The output in text file (.txt) allows further analysis; 

#The threshold for rarity is decided by interpretation of data. 

#chose a threshold in absolute value, n. 

OTU_rare<-sapply(OTU_table,function(x) ifelse(x<n,x,0)) 

write.table(OTU_rare,"OTU_rare.txt") 

Annex II – One-way ANOVA R script 

#Groups to be compared are loaded as vectors 

Group1 <- c() #values of group 1, separated by “,”; 

Group2 <- c() #values of group 2, separated by “,”; 

Groupn <- c() #values of group n, separated by “,”; 

#Calculate p-values 

Combined_Groups <- data.frame(cbind(Group1, Group2,Groupn))  

Combined_Groups 

summary(Combined_Groups)   

Stacked_Groups <- stack(Combined_Groups) 

Stacked_Groups 

Anova_Results <- aov(values ~ ind, data = Stacked_Groups)  

summary(Anova_Results) 

Annex III – types.r function for defining different types of microbial rarity 

types <- function(A,t){ 

#A is matrix of samples 

#t is rarity threshold in number of reads per OTU per sample 

M <- c() #empty matrix 

for(i in 1:dim(A)[1]){ 

if (sum(A[i,])==0){ 

M[i] <- c("Absent") 

} else { 
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if (A[i,1] > t & A[i,2] > t & A[i,3]>t){ 

M[i] <- c("Abundant") 

} else { 

if (A[i,1] == 0 | A[i,2] == 0| A [i,3] ==0){ 

M[i] <- c("Transiently Rare") 

}else{ 

if (A[i,1]>t | A[i,2]> t|A[i,3]>t){ 

M[i] <- c("Conditionally Rare") 

}else{ 

if (var(A[i,])>=10){ 

M[i]<- c("Permanently Rare, with variation") 

}else{ 

if (var(A[i,])<=10){ 

M[i]<- c("Permanently Rare") 

}}}}}}}M} 


