
  1 

Multi-objective optimization of curved composite 

laminated plates 

Fábio Miguel Cascalheira Aguincha 

fabio.aguincha@tecnico.ulisboa.pt 

Instituto Superior Técnico, Universidade de Lisboa, Portugal 

December 2019 

The increasing use of carbon fiber composite materials is due, among other reasons, to their low 

weight, high stiffness and good fatigue behavior. By hybridizing carbon fiber composites with the 

addition of glass fibers, it is possible to create new lightweight composite materials that are 

simultaneously more ductile, more impact resistant and have a lower associated cost and may 

have many applications in structural components. Experimental tests were performed to 

determine the displacements of curved plates in laminated hybrid composite material when 

submitted to flexion-torsion loads. The plates were produced with different lamination 

configurations using hand lay-up, with carbon fiber and glass fiber reinforcements in an epoxy 

resin matrix. The elastic properties of the blades were obtained through tensile tests applied to 

specimens manufactured with the referred fibers. The computational simulations of the 

experimental tests were performed in Abaqus. The results of these simulations were analysed 

and compared with the experimental results. Plate optimization was performed using DMS, a 

multi-objective, direct search optimization method. The objective functions were the minimization 

of the maximum value of plate displacement, mass and cost that were obtained through a cycle 

interaction between DMS and Abaqus. Finally, three solutions best suited to the problem 

objectives were obtained. 

 

Keyword: Hybrid composites, carbon and glass fibers, multi-objective optimization, finite element 

method. 

 

1 Introduction
 

Polymer matrix laminate composite 

materials have been increasingly used in 

various structural applications due to their 

high stiffness and specific strength. In 

particular, in the aerospace industry a large 

percentage of the composite materials used 

in structural components are carbon fiber 

reinforced polymers. However, due to their 

high strength and high modulus of elasticity, 

carbon fibers are quite brittle compared to 

other composite reinforcements, exhibiting 

low toughness values [1]. Increasing 

toughness of continuous fiber reinforced 

composite materials has been an area of 

much research and development in the 

scientific community. Several strategies 

have been developed to make these 

materials more ductile and more impact 

resistant. The rupture strain values of these 

materials can be greatly increased by 

replacing some of the brittle fibers with more 

ductile fibers [2]. Due to the need to create 

new lightweight composite materials without 

compromising their toughness, there has 

emerged an interest in the hybridization of 

carbon fiber composites with the addition of 

glass fibers [3]. When building a new 

composite material through this 

hybridization, the goal is to retain the 

advantages of carbon and glass fibers while 

eliminating their major disadvantages [4]. In 

addition, in a laminated composite material, 

replacing carbon fiber layers in the laminate 

with glass fiber layers reduces the cost of 

this material, makes it more impact resistant, 

and hardly changes its flexural properties [5]. 
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2 Description of numerical models 
 

Two curve composite plates were 

modelled in ABAQUS [6], with different 

configurations in the laminate (different 

number, material arrangement and 

orientations of layers). After obtaining the 

numerical results, these were compared to 

the results of several mechanical tests, 

which were performed in the same 

conditions as the ones in the models 

created, in order to validate said models.  

2.1 Geometry, boundary conditions and 

FE mesh 

The dimensions of the plates are 

presented in Figure 1a and the model’s 

boundary conditions are illustrated in Figure 

1b. The plates are fixed in one end and there 

is a concentrated load F, with the value of 44 

N. Both displacements, Ud and Ue are 

considered positive in the same sense as the 

load vector. 

As previously said, two types of plates 

were modelled, and each configuration can 

be found in Table 1. In the material 

distribution, carbon fibers are indicated by 

the letter C, while the glass fibers are 

indicated by the letter G. 

The same mesh was generated for 

both plates and can be seen in Figure 2. This 

mesh is composed of 600 elements of type 

S8R [6]. 

 

 
a) 

 
b) 

Figure 1 - a) Plate dimensions [mm]; b) 
boundary conditions 

Table 1 – Configurations of both plates. 

Plate 
No. of 
layers 

Material 
Distribution 

Layer 
orientations 

A 6 
G / C / G / G 

/ C / G 
[902/0/90/02] 

B 8 
G / C / C / G 
/ G / C / C / 

G 
[02/902]S 

 

2.2 Material properties 

The materials that constitute the layers of the 

plates are carbon fibers and glass fibers. 

The mechanical properties of each material 

are presented in Table 2 (Ei – Young’s 

modulus, νij – Poisson’s coefficient, Gij – 

shear modulus, Sti – tensile strength, Sci – 

compressive strength, Ssij – shear strength, 

Gf – fracture energy). The mechanical 

properties are referred to local material 

directions (i, j = 1, 2 or 3) and we have 1=Z, 

2=X and 3=Y (X, Y, Z – Figure 2). 

Table 2 - Material properties [7] [8] [9]. 

 
Carbon 

fiber 

Glass 

fiber 

E1 [MPa] 91070 27128 

E2 [MPa] 10000 2542 

ν12 0.3 0.25 

G12 = G13 [MPa] 5000 4000 

G23 [MPa] 3470 3211 

St1 [MPa] 1500 1000 

Sc1 [MPa] 1200 600 

St2 [MPa] 50 30 

Sc2 [MPa] 250 110 

Ss12 = Ss23 [MPa] 75 40 

Gft [N/mm] 5.86 2.38 

Gfc [N/mm] 5.42 5.28 

Gmt [N/mm] 0.424 0.424 

Gmc [N/mm] 0.948 0.948 

Thickness [mm] 0.3 0.53 
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Figure 2 - FE mesh of the plate model. 

2.3 Hashin damage criterion 

The Hashin damage criterion is based on the 

works of Hashin and Rotem [10] and Hashin 

[11]. Unlike the polynomial criteria such as 

the Tsai-Hill and Tsai-Wu criteria [12] [13], 

which propose a single equation to predict 

damage initiation, the Hashin damage 

criterion takes into account four possible 

failure modes with four corresponding 

indexes: fiber breakage in tension, fiber 

buckling in compression, matrix racking in 

tension and matrix crushing in compression. 

According to the previous failure modes the 

four following equations apply, respectively: 

𝐹𝑓
𝑡 = (

𝜎11

𝑆𝑡1

)
2

+ (
𝜎12

𝑆𝑠12

)
2

 
(1) 

𝐹𝑓
𝑐 = (

𝜎11

𝑆𝑐1

)
2

 
(2) 

𝐹𝑚
𝑡 = (

𝜎22

𝑆𝑡2

)
2

+ (
𝜎12

𝑆𝑠12

)
2

 
(3) 

𝐹𝑚
𝑐 = (

𝜎22

2𝑆𝑠23

)
2

+ [(
𝑆𝑐2

2𝑆𝑠23

)
2

− 1]
𝜎22

𝑆𝑐2

+ (
𝜎12

𝑆𝑠12

)
2

 
(4) 

where σ11, σ22 and σ12 are the applied 
stresses and Sti, Sci and Ssij have the 
meaning previously explained. 

If one of the indexes exceeds the value of 

1.0 it means that the damage has begun in 

the material in one of the corresponding 

modes referred. Once damage initiation 

criteria has been satisfied in a given 

element, it is not able to support all the stress 

and therefore σ̂, effective stress tensor, 

intends to represent the stress acting over 

the damaged area that effectively resists the 

internal forces. Therefore this tensor is given 

by: 

𝜎 = 𝜎𝑀 where 𝑀 =

[
 
 
 
 

1

(1−𝑑𝑓)
0 0

0
1

(1−𝑑𝑚)
0

0 0
1

(1−𝑑𝑠)]
 
 
 
 

 
(5) 

In equation 5, σ is the true stress and M is 

the damage operator. df, dm and ds are 

internal variables that characterize fibre, 

matrix and shear damage, which are 

associated with the previous four modes 

mechanisms: 

𝑑𝑓 = {
𝑑𝑓

𝑡   𝑖𝑓 𝜎11 ≥ 0

𝑑𝑓
𝑐    𝑖𝑓 𝜎11 < 0

 
(6) 

𝑑𝑚 = {
𝑑𝑚

𝑡   𝑖𝑓 𝜎22 ≥ 0

𝑑𝑚
𝑐    𝑖𝑓 𝜎22 < 0

 
(7) 

𝑑𝑠 = 1 − (1 − 𝑑𝑓
𝑡)(1 − 𝑑𝑓

𝑐)(1 − 𝑑𝑚
𝑡)(1

− 𝑑𝑚
𝑐) 

(8) 

Before the damage initiates the material is in 

linear elastic regime and, in that case, M 

corresponds to the identity matrix. Once 

damage initiation criteria is verified for any 

mode, there is a reduction in stiffness matrix 

values, and the constitutive law is given by: 

𝜎 = 𝐶𝑑𝜀 
(9) 

𝐷 = 1 − (1 − 𝑑𝑓)(1 − 𝑑𝑚)𝜈12𝜈21 (10) 

𝐶𝑑

=
1

𝐷
[

(1− 𝑑𝑓)𝐸1 (1 − 𝑑𝑓)(1− 𝑑𝑚)𝜈12𝐸1 0

(1 − 𝑑𝑓)(1 − 𝑑𝑚)𝜈12𝐸2 (1− 𝑑𝑚)𝐸2 0

0 0 (1 − 𝑑𝑠)𝐺𝐷

] 
(11) 

where ε is the strain and Cd represents the 

damaged elasticity matrix. 

3 Numerical and experimental 
results and comparison 

 

In order to validate the models 

developed in this work, two plates were 

manufactured using the Hand Lay-Up 

method (plates A and B) and were then 

submitted to bending-torsion experimental 

tests in the boundary conditions mentioned 

in section 2.1. The displacements Ud and Ue 

were measured several times through 

several tests and the average of the results 

was found.  Both the results of the numerical 

analyses and the experimental tests were 

compared in order to validate the models 

developed. Both results are shown in Table 

3. The error was calculated as a percentage 

according to the following formula: 

𝛥 = 𝑎𝑏𝑠 (
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 − 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝐴𝑏𝑎𝑞𝑢𝑠

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙

)

∗ 100 

(12) 

 

It can be expected that Ud and Ue show 

symmetrical signals (positive Ud and 

negative Ue), since the load applies bending 

and torsion on the plates (in addition to shear 

stress). Regarding the differences between 

the experimental and numerical values, it is 

noteworthy that the displacement values Ud 

have relatively low error values, with the 

lowest value (3.88%) to be recorded on plate 
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A. For displacement Ue, the error values are 

higher than expected, with the numerical 

value almost double the experimental value 

(88.08%) in the worst case. This discrepancy 

is due to the fact that the plates were warped 

after being cut to the desired shape, and 

because of this warping, only the edge 

corresponding to the displacement Ud could 

be guaranteed to be horizontal during the 

experimental tests carried out, so it should 

be expected that the recorded experimental 

Ue values would in fact be different from 

those obtained numerically. Nevertheless, it 

can be seen that the computational model 

developed was accurate in predicting the 

mechanical behaviour of the plate’s 

displacements. 

Table 3 – Difference between the 
experimental and numerical results. 

 

Experimental 
displacement 

[mm] 

Abaqus 
displacement 

[mm] 
Δ % 

Plate 
A 

Ud 2.962 2.847 3.88 

Ue -0.814 -1.531 88.08 

Plate 

B 

Ud 1.706 1.571 7.91 

Ue -0.552 -0.786 42.39 

 

4 Optimization method and 
application 

 

4.1 Direct MultiSearch (DMS) method 

A constrained nonlinear 

multiobjective optimization problem can be 

mathematically formulated as 

min  𝐹(𝑥) ≡ (𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑚(𝑥))𝑇 
s.t. 𝑥 ϵ Ω 

(13) 

involving m objective functions. 

In the presence of m (≥2) objective 

functions, the minimizer of one function is 

not necessarily the minimizer of another. In 

this case, we don't have a single point that 

yields the “optimum point for all objectives”. 

Instead, we have a set of points, called 

Pareto optimal or non-dominated set. Given 

two points x1, x2 in Ω, x1 is said to dominate, 

in Pareto sense, another point x2 if and only 

if solution x1 is strictly better than x2 in at 

least one of the objectives and point x1 is not 

worse than x2 in any of the objectives. A set 

of points in Ω is non-dominated when no 

point in the set is dominated by another one 

in the set. 

Direct MultiSearch (DMS) [14] is a 

solver for multiobjective optimization 

problems, without the use of derivatives and 

does not aggregate any components of the 

objective function. It essentially generalizes 

all direct-search methods of directional type 

from single to multiobjective optimization. 

DMS maintains a list of feasible non-

dominated points (from which the new 

iterates or poll centres are chosen). DMS 

tries, however, to capture the whole Pareto 

front from the polling procedure itself. At 

each iteration, the new feasible evaluated 

points are added to this list and the 

dominated ones are removed. Successful 

iterations correspond then to changes in the 

iterate list, meaning that a new feasible non-

dominated point was found. Otherwise, the 

iteration is declared as unsuccessful. 

Most of the details have been omitted 

in this brief explanation, but the full 

description of the algorithm can be found in 

reference [28]. During this, the default 

parameters that come with DMS were used. 

4.2 Objectives and design variables 

In this work there are 3 objectives to 

minimize: plate’s mass, plate’s cost and the 

maximum displacement of the plate (Ud). In 

multiobjective optimization, it is important 

that the objective functions are 

contradictory, which means that while 

minimizing one of the objectives, the 

minimization of the others is not guaranteed. 

In this particular work the opposite objectives 

are mass and cost, because due to the 

materials used (glass fiber and carbon fiber) 

the lighter the plate is the more expensive it 

will be and vice versa. This is because 

carbon fiber is a lighter material than glass 

fiber but also more expensive. So by 

minimizing the mass of the structure, its cost 

will be increased. 

The design variables in this 

optimization are the number of layers in the 

plate, the orientations of each layer and the 

material of each layer. Some restrictions 

have been imposed on the problem. The 

number of layers ranges from 6 to 12, so as 

not to get a very thin plate and to have an 

upper limit of plate thickness. If there is no 

maximum number of layers, minimizing 

displacement could lead to results with a 

very high number of layers. An angle range 



  5 

for layer orientation between -75º and 90º 

with a 15º step was also defined. With this 

range of variation of orientation angles, this 

design variable can take the values of {-75º, 

-60º, -45º, -30º, -15º, 0º, 15º, 30º, 45º, 60º, 

75º, 90º}. The value of -90º was not included 

because a fiber with this orientation value 

exhibits the same mechanical behaviour as 

a fiber at 90º. As for the material, the layers 

can only be carbon fiber or glass fiber, as 

they were the 2 materials used throughout 

the work. The thickness of each layer 

material is the same as stated in Table 2. 

4.3 Application 

Since DMS uses variables with real 

values and this problem has variables with 

discrete values, we consider a vector of 

variables with 25 entries: 

𝑥 = [𝑥1 , 𝑥2 ,… , 𝑥25]
𝑇 

s. t.  𝑥 ϵ Ω 
(14) 

The first entry x1 corresponds to the number 

of layers in the plate and, as previously 

mentioned, ranges from 6 to 12. The next 12 

entries [x2: x13] correspond to the 

orientations of the layers and, as previously 

mentioned, range from -75 to 90, with a step 

of 15. The last 12 variables [x14: x25] 

correspond to the materials of the layers and 

can take the value 1 or 2. The value 1 

corresponds to carbon fiber and the value 2 

corresponds to glass fiber. It is important to 

note that if the value of x1 is, for example 6 

(6 layers), this means that only the values of 

[x2: x7] and [x14: x19] will be considered for 

analysis and the remaining variables are 

assumed to be null. 

5 Results and discussion 
 

The obtained solution is illustrated in 

Figure 3a. This Pareto front has a total of 70 

non-dominated points. In order to be able to 

discuss the results, 3 different projections of 

the points in different planes are presented: 

mass-cost, mass-displacement and cost-

displacement, as shown in Figure 3b, c and 

d, respectively. In these, some of the non-

dominated points are highlighted and the 

respective configurations and values of the 

objectives for these points are mentioned in 

Table 4 to compare solutions. 

Figure 3b shows 4 solutions to illustrate 

mass-cost variation. Solution 68 is the best 

in terms of mass (39.24 g), while solution 70 

is the best in terms of cost (1.22 €). As 

expected, solution 68 is entirely made of 

carbon fiber and solution 70 is made entirely 

of glass fiber and both have the minimum 

number of layers. Solutions 2 and 3 are 

intermediate configurations.  

Figure 3c shows 4 solutions to illustrate 

mass-displacement variation. Solution 10 is 

the best in terms of displacement (0.25 mm). 

As expected, this solution has the maximum 

number of layers. This allows for low 

displacement values but makes this solution 

one of the worst in mass (the worst has 

161.2 g). Solution 68 remains the best in 

terms of mass, but as it turns out it is the 

worst solution in terms of displacement 

values (1.91 mm). Solutions 54 and 56 are 

intermediate configurations having slightly 

higher displacement values than solution 10 

but having much smaller mass values.  

Figure 3d shows 4 solutions to illustrate 

the displacement-cost variation. Solution 10 

remains the best in terms of displacement 

values and as it turns out has a relatively low 

cost value over the most expensive solution 

(9.6 €). Solution 70 has one of the highest 

displacement values between the solutions 

found. Solutions 64 and 67 are intermediate 

configurations which have slightly higher 

displacement values than solution 10 but are 

much more economical. 

After looking at the best solutions for 

each objective and isolating a few 

intermediate configurations for each 

objective plane, there are other approaches 

that can be used to try to find a solution that 

is most desired. One possible approach is to 

consider a pseudo objective, that is, isolate 

the best solutions to the original 3 goals and 

use the values of a fourth goal to help decide 

the “optimal solution”. In this work, it was 

decided to use as a fourth objective the load 

necessary to bring the plate to failure under 

load. For this the Hashin failure criterion is 

used. The initial intention would be to use 

this load as the fourth objective directly in the 

optimization cycle described, but because 

this objective significantly increased the 

analysis time (about 200 times more) it was 

decided to use only 3 objectives in the 

optimization.
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Table 4 – Configurations and values of the objectives of the non-dominated points in Figure 3. 

Point 
No. of 
layers 

Material 
distribution 

Layer orientation 
Mass 

[g] 
Cost 
[€] 

Displacement 
[mm] 

2 6 [C2G3C] [-45/15/02/30/-45] 59.91 3.01 1.34 

3 6 [C2G]S [-45/15/02/30/-45] 53.02 3.61 1.45 

10 12 [C2G4]S 

[-30/-
45/30/152/02/15/0/45/-

30/-45] 
133.6 4.83 0.25 

54 12 [C12] 
[-452/30/15/-

15/02/15/0/45/-452] 
78.48 9.6 0.39 

56 11 [C11] 
[-452/30/152/03/-45/45/-

45] 
71.94 8.8 0.48 

64 12 [G12] 
[-30/-45/30/152/04/45/-

30/-45] 
161.2 2.45 0.31 

67 11 [G11] 
[-30/-45/30/15/04/30/-

302] 
147.7 2.24 0.38 

68 6 [C6] [-45/15/02/30/-45] 39.24 4.8 1.91 

70 6 [G6] [-45/30/02/30/-45] 80.58 1.22 1.54 

 
a) 

 
b) 

 
c) 

 
d) 

Figure 3 - Four different perspectives of visualization to the same set of non-dominated solutions: 
a) showing all planes; b), c) and d) presenting three projections in the planes mass-cost, 
displacement-mass and displacement-cost, respectively.
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The best solution for each objective 

and 3 intermediate configurations were 

chosen for the simulations with 

implementation of the Hashin criterion. For 

this, we select the solution that has the best 

value of the objective that is not present in 

the plane projections indicated. For 

example, for mass-cost projection, we 

choose the intermediate solution with the 

best displacement value. Given this, the 

solutions chosen for these simulations were 

solutions 2, 10, 56, 67, 68 and 70. 

These simulations are similar to 

those described previously, with one 

difference. Instead of a concentrated load, 

there is a boundary condition in Ud of vertical 

displacement (-50 mm). The load-

displacement graphs of the solutions used 

are shown in Figure 4. The point where there 

is an abrupt change of slope in these graphs 

is the point at which the material fails and the 

load at that point corresponds to the fourth 

objective defined. Table 5 shows the values 

of the loads where the failure occurred, the 

values of the displacements where the 

failure occurred, the stiffness and the 

corresponding failure modes. 

 

Table 5 - Stiffness and failure load, displacement and mode of the points analysed. 

Point 
Failure load 

[N] 
Failure displacement 

[mm] 
Stiffness [N/mm] 

Failure mode 

2 721 20.44 37.59 CM 

10 1787 11.54 155.56 CM 

56 1681 18.40 93.31 CM 

67 1685 16.21 103.93 CM 

68 529 19.99 27.41 TM 

70 730 24.44 30.99 CM 

 

Figure 4 – Load-displacement graphs for the points evaluated.
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As expected, all plates had the 

damage initiation in the matrix. The matrix is 

the weakest component so it was expected 

that the damage would start on it. All 

solutions had damage start in matrix 

compression mode (CM), except solution 

68, which initiated damage with matrix 

tensile stress (TM). In terms of failure load, 

the solution with the highest (most desired) 

load value is solution 10, with a value of 

1787 N, also presenting the highest stiffness 

(155.56 N / mm). However, solutions 56 and 

67 have failure load values that are not much 

lower than solution 10's values with fairly 

acceptable stiffness values when compared 

to other solutions. Also add the fact that both 

solutions 56 and 67 have greater ductility 

than solution 10. If we want to determine an 

optimal solution, we can opt for solution 10, 

as this is the best in terms of performance 

with the smallest displacement and highest 

failure load and stiffness value. However, if 

we need to choose more economical or 

lighter options without losing much in 

performance, we can choose either solution 

56 (lighter than 10) or solution 67 (lower cost 

than 10). 

From this application it becomes 

clear that the multiobjective optimization 

approach allows for a great flexibility in the 

design process. The need to conduct several 

single objective optimizations during the 

design process is thus kept to a minimum 

due to the fact that the available non 

dominated solutions can always be analysed 

from several perspectives. 

6 Conclusions 
 

In this work we apply the Direct 

MultiSearch for the design of composite 

curve plate. The plate is designed for 

minimum displacement, mass and material 

cost, by choosing the number of layers, the 

material of the layers, as well as the 

respective orientations. The solutions are 

presented in the form of a Pareto trade-off 

front and the results are analysed using the 

projections of this Pareto surface. The 

obtained results can be very useful in the 

design of this kind of structures, where a 

compromise between weight reduction, 

material cost and the value of displacement 

is sought. 
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