

End-to-End Image Compression Optimization with Deep

Neural Networks

Paulo Miguel Ribeiro Eusébio

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Dr. Fernando Manuel Bernardo Pereira

Prof. Dr. João Miguel Duarte Ascenso

Examination Committee

Chairperson: Prof. Dr. José Eduardo Charters Ribeiro da Cunha Sanguino

Supervisor: Prof. Dr. Fernando Manuel Bernardo Pereira

Members of the Committee: Prof. Dr. Luís Eduardo de Pinho Ducla Soares

November 2019

ii

iii

Declaration

I declare that this document is an original work of my own authorship and that it fulfills all the

requirements of the Code of Conduct and Good Practices of the Universidade de Lisboa.

iv

v

Acknowledgments

First and foremost, I would like to thank my family for all the support throughout all my journey leading

to this very moment. I also thank my friends, new and old, for making this journey much more interesting.

I would like to thank my advisors as well, Prof. Fernando Pereira and Prof. João Ascenso, for the

constant availability, guidance and exigence, which are the pillars for a work to be proud of.

Finally, I thank Instituto de Telecomunicações (IT) for providing me with every resource and the

conditions I needed to develop this work.

vi

vii

Abstract

Deep neural networks have found great success on high-level computer vision tasks, notably image

classification and object recognition. These image-based tasks are usually addressed by convolutional

neural networks (CNNs), an architecture suitable to extract image features (e.g. edges) and to combine

them to create even more complex features (e.g. a face). This recent success in the image processing

world has also generated a growing interest in using deep learning tools (mostly CNNs) to address

lower-level tasks such as image coding.

In this context, the key objective of this Thesis is to design and assess an end-to-end coding framework

involving image pre and post-processing based on deep learning techniques around a conventional

image codec, e.g. JPEG. This can be achieved by using a CNN before encoding, for image

simplification, and a CNN after decoding, for image enhancement. The proposed coding framework is

based on available similar frameworks and tries to address their weaknesses and limitations, namely

the inability to include a codec in the CNN training process and the lack of consideration of the rate

limited resources in the adopted loss function (thus only focusing on distortion). More precisely, the two

main contributions of this Thesis are the design and implementation of a third CNN, so-called CNN-

FakeCodec, which is included in the overall coding framework for CNN training; and the design of a loss

function simultaneously considering the rate and distortion. The assessment results show that the

proposed solutions can outperform the selected benchmarks, although depending on the target quality.

Keywords: Deep learning, convolutional neural networks, image coding, rate-distortion optimization.

viii

ix

Resumo

As redes neuronais profundas (RNPs) têm alcançado grande sucesso na abordagem a tarefas

complexas na área da visão computacional, nomeadamente classificação de imagens ou

reconhecimento de objetos. Estas tarefas, que envolvem imagens, são tipicamente abordadas através

de redes neuronais convolucionais (RNCs), uma variante das RNPs. Este recente sucesso no mundo

do processamento de imagem levou a um crescente interesse no uso destas técnicas de aprendizagem

profunda (principalmente RNCs) para abordar outros problemas clássicos no mundo da imagem digital

como a codificação de imagem.

Neste contexto, o objetivo principal desta Tese é desenvolver e avaliar uma solução baseada em

técnicas de aprendizagem profunda para o complemento de um codec tradicional. Esta solução é

constituída por uma RNC para simplificar a imagem a codificar e outra RNC para melhorar a imagem

após a descodificação. A solução proposta é baseada em soluções já disponíveis na literatura e

ambiciona colmatar as respetivas limitações, nomeadamente a impossibilidade de incluir um codec

tradicional no treino de RNCs e a inexistência de uma função de custo no treino considerando também

o custo binário da codificação e não apenas a distorção. Mais concretamente, as duas principais

contribuições desta Tese são: o desenho de uma terceira RNC, nomeada CNN-FakeCodec, que é

incluída no processo de treino das restantes RNCs; uma nova função de custo que permite minimizar

tanto o débito de codificação como a distorção. Os resultados obtidos mostram que a solução proposta

apresenta melhorias em relação às soluções de referência em algumas situações, nomeadamente

dependendo da qualidade pretendida.

Palavras-chave: Aprendizagem profunda, redes neuronais convolucionais, codificação de imagem,

otimização débito-distorção.

x

xi

Table of Contents

Declaration .. iii

Acknowledgments ... v

Abstract .. vii

Resumo ... ix

List of Figures .. xiv

List of Tables .. xviii

List of Acronyms .. xxi

Chapter 1 ..1

1. Introduction ..1

1.1. Context and Motivation ..1

1.2. Objectives and Thesisô Structure ..2

Chapter 2 ..3

2. Deep Learning Processing as a Complement to Standard Image Coding: Concepts and Main

Solutions ...3

2.1. Basic Concepts: Training and Testing ..3

2.2. Artificial Neural Networks ...4

2.2.1. Artificial Neuron Model ...5

2.2.2. Network Architecture ..6

2.2.3. ANN Training ...7

2.3. Convolutional Neural Networks ..8

2.3.1. CNN Architecture ...9

2.3.2. Convolutional Layer ...10

2.3.3. Pooling Layer ...12

2.4. Recurrent Neural Networks ..12

2.5. Autoencoders ..14

xii

2.6. Main Deep Learning Processing Solutions Complementing Standard Image Coding Solutions

 15

2.6.1. Task-Aware Image Downscaling ..15

2.6.2. An End-to-End Compression Framework Based on Convolutional Neural Networks ...20

2.6.3. Learning a Convolutional Neural Network for Image Compact-Resolution27

Chapter 3 ..33

3. Adopted Coding Framework: Analysis and Improvements ..33

3.1. Adopted Coding Solution: Training Procedure and its Limitations33

3.2. CNN-FakeCodec: A Trained CNN to Reproduce Coding Artefacts35

3.2.1. CNN-FakeCodec Architecture ..37

3.2.2. CNN-FakeCodec Training Approaches and Procedure ...37

3.2.3. CNN-FakeCodec Stand-alone Performance Assessment ...39

3.3. Improved Loss Function: Including a Bitrate Term ..45

Chapter 4 ..49

4. Performance Assessment ..49

4.1. Benchmarks Definition and Implementation Settings ..49

4.2. Training, Validation and Test Material ..53

4.3. Benchmarks Performance Assessment ..54

4.4. Proposed Coding Solution: Performance Assessment ..57

4.4.1. Performance Assessment for the Coding Solution with CNN-FakeCodec57

4.4.2. Performance Assessment for the Coding Solution with a Rate Loss Term60

Chapter 5 ..71

5. Conclusions and Future Work ..71

5.1. Future Work...71

Bibliography ..73

xiii

xiv

List of Figures

Figure 2.1: Artificial neuron model loosely inspired by a biological neuron [14].5

Figure 2.2: Example of a fully connected neural network with two hidden layers [15].6

Figure 2.3: (Left) Progression with low learning rates. (Right) Progression with high learning rate.

Adapted from [16]. ..7

Figure 2.4: (Left) Forward pass on a single node. (Right) Backward pass on a single node. Adapted from

[18]. ..8

Figure 2.5: Example of a CNN architecture [19]. ..10

Figure 2.6: Activation map (orange) is the result of the convolution between the input (blue) and the filter

(green). ...11

Figure 2.7: Visual representation of a filter and a stack of activation maps [20].11

Figure 2.8: Image (blue) with zero-padding (dashed lines) of size 1 [21]. ...12

Figure 2.9: Example of max-pooling operation, reducing the inputôs dimensions [22].12

Figure 2.10: RNNôs structure unfolded as a chain of time steps [23]...13

Figure 2.11: Example of the overall auto-encoder architecture [27]. ...14

Figure 2.12: Layer types (left) used in the TAID architecture (middle) and the structure of the residual

block (Resblock) (right) [30]...16

Figure 2.13: Residual learning block with two layers parameterized with weights [1].18

Figure 2.14: Objective (PSNR), subjective and computational complexity comparison between SRGAN

[33], EDSR+ [34], TAU and ground-truth images. [30]. ..20

Figure 2.15: E2E-CNN framework architecture [6]. ..21

Figure 2.16: ComCNN (left) and RecCNN (right) architectures [6]..22

Figure 2.17: CNN-CR architecture [7]. ...27

Figure 2.18: Proposed CNN-CR/CNN-SR processing framework for image compression performance

improvement [7]. ...28

Figure 2.19: CNN-CR model learning framework [7]. ...29

xv

Figure 2.20: RD performance for several test sequences. Proposed_B and Proposed_F correspond to

the block-level and frame-level schemes, respectively. [7]. ..31

Figure 3.1: CNN-YL [7] architecture for inference. ...33

Figure 3.2: Architecture for an additional training step, where the inclusion of the CNN-FakeCodec

allows to train CNN-CR while considering the coding artefacts. ...35

Figure 3.3: CNN-FakeCodec baseline architecture. ...37

Figure 3.4: CNN-FakeCodec training scheme for the frame-based approach.38

Figure 3.5: CNN-FakeCodec training scheme for the block-based approach, in the pixel domain (left)

and in the frequency domain (right). ..39

Figure 3.6: CNN-FakeCodec architecture for the frame-based approach. ..41

Figure 3.7: Architecture for the block-based approach, in the pixel domain.42

Figure 3.8: CNN-FakeCodec architecture for the block approach in the frequency domain43

Figure 3.9: Visual comparison between images obtained with JPEG QF 10 and the CNN-FakeCodec

for the original input image. With (a) ï CNN-FakeCodec frame-based approach; (b) ï CNN-FakeCodec

block-based approach, pixel domain; (c) ï CNN-FakeCodec block-based approach, frequency domain.

Next to (a), (b) and (c) is the PSNR (in dB) between the given image and the JPEG QF 10 output. Input

images obtained from the DIV2K validation dataset. ..44

Figure 3.10: JPEG recommended quantization table for luminance [40]...45

Figure 3.11: Correlation between the estimated count of non-zero DCT coefficients after compression

and the image rate for a specific image. For each QF, the quantization table was scaled according (3.9).

 ...47

Figure 4.1: Performance assessment scheme for JPEG coding. ..50

Figure 4.2: Performance assessment scheme for JPEG coding with bicubic down-sampling before

encoding and bicubic up-sampling after decoding..51

Figure 4.3: DL-based coding benchmark: (Top) CNN-CR for down-sampling. (Bottom) CNN-SR for up-

sampling [7]. ...52

Figure 4.4: CNN-SR training loss plot. ...53

Figure 4.5: Top: ICIP 2016 images. From left to right: p08 (2592x1944) and bike (2048x2560). Bottom:

MPEG test frames. From left to right: Cactus (1920x1080) and Johnny (1280x720).54

Figure 4.6: RD performance for 4 test frames for the three selected benchmarks. Each chart title

indicates the frame name and the luminance spatial resolution. ...55

Figure 4.7: Example patches from the test images obtained with bicubic down-sampling (2nd column)

and CNN-CR down-sampling (3rd column). The input image (1st column) are the MPEG test frames

Johnny (1st row) and Cactus (2nd row). ..56

xvi

Figure 4.8: Example patches from images obtained with JPEG only (2nd column), bicubic JPEG (3st

column) and CNN-YL (4th column). The input image (1st column) are the MPEG test frames Johnny (1st

row) and Cactus (2nd row). ..57

Figure 4.9: RD performance for the proposed coding framework with the CNN-FakeCodec.58

Figure 4.10: Obtained images along the coding pipeline. The image shown is a small patch cropped

from the test image Bike. Images were coded with JPEG with QF 10 where the differences are more

clear. ..60

Figure 4.11: RD variation with ‗ for eq. (3.11) using the same QFs used for the CNN-YL benchmark.

 ...61

Figure 4.12: RD performance for the proposed coding framework with a method to minimize both the

rate and distortion. ..62

Figure 4.13: Extra test images with spatial resolution 2040x1356. Top: 0873 (left), 0898 (right). Middle:

0811 (left), 0824 (right). Bottom: 0825 (left), 0896 (right) [32]. ..63

Figure 4.14: RD performance for the proposed CNN-RD with the 6 extra test images with spatial

resolution 2040x1356. ...64

Figure 4.15: RD performance for the 4 test images, where CNN-RDv2 has a smaller ‗ in eq. (3.11). The

CNN-MSE curve is omitted for visual clarity...65

Figure 4.16: RD performance for the extra test images, where CNN-RDv2 has a smaller ‗ in eq. (3.11)

 ...66

Figure 4.17: Example region cropped from the image Johnny down-sampled with the different CNN-

based solutions. ..68

Figure 4.18: Obtained images along the coding pipeline. The showed image is small 90x90 patch

cropped from the test image Bike. Images were coded with JPEG with QF 75.69

xvii

xviii

List of Tables

Table 2.1: Objective quality assessment for the TAID framework and the VSDR [35] and ESDR+ [34]

up-scaling solutions. Down-scaled with bicubic down-sampling (3rd to 5th column) and the TAID

framework (6th to 8th column). [30]. ..19

Table 2.2: Performance evaluation comparing E2E-CNN (Proposed) against JPEG 2000 (left) and JPEG

(right) [6]. ..25

Table 2.3: PSNR, SSIM and rate (Bytes) comparison between BPG, BPG with RecCNN as post-

processing module and E2E-CNN using BPG. [6]..25

Table 2.4: Quality scores, PSNR (Top) and SSIM (Bottom), for several solutions, notably JPEG,

solutions in [47], [48], [49], [50], [51], [52], [43], [53], only the ComCNN, only the RecCNN and full E2E-

CNN (Proposed) [6]. ...26

Table 2.5: Running time with CPU/GPU obtained with (same order as in the figure) [47], [48], [49], [50],

[51], [52], [43], RecCNN and E2E-CNN (Proposed). [6] ...26

Table 2.6: BD-Rate results for the proposed frame-level and block-level compression schemes

compared to HEVC and the framework in [54] referred as ósimple DSô [7]. ...32

Table 3.1: CNN-YL [7] training procedure. The arrows by CNN-SR and CNN-CR are to remind its

respective operation, up-sampling (ŷ) or down-sampling (Ź). ...34

Table 3.2: Training procedure for the proposed coding solution that includes the CNN-FakeCodec. ..36

Table 3.3: Patch size performance impact, best in bold. ..40

Table 3.4: Filter size performance impact, best in bold. ...40

Table 3.5: Network depth performance impact, best in bold. ..40

Table 3.6: Filter depth performance impact, best in bold. ...40

Table 3.7: Filter size impact in performance (best in bold) for the block-based approach, pixel domain.

 ...41

Table 3.8: Padding technique performance impact, best in bold. ...42

Table 3.9: Filter size performance impact, best in bold. ...43

Table 3.10: CNN-FakeCodec performance for different modeling approaches (best in bold) using the

validation dataset and JPEG with QF 10. ..44

xix

Table 4.1: BD-rate and BD-PSNR for the proposed solutions with respect to the benchmarks.59

Table 4.2: BD-rate and BD-PSNR performances for the CNN-RD and CNN-RDv2 in comparison to the

benchmarks and the CNN-MSE. ...67

xx

xxi

List of Acronyms

CNN Convolutional neural network
RD Rate-distortion
RNC Rede neuronal convolucional
RNP Rede neuronal profunda
JPEG Joint Photographic Experts Group
HEVC High Efficiency Video Coding
ML Machine learning
DL Deep learning
ANN Artificial neural network
ReLU Rectified linear unit
FNN Feed forward neural network
RNN Recurrent neural networks
LSTM Long short-term memory
PCA Principal component analysis
AE Autoencoder
PDF Probability density function
TAID Task-aware image down-scaling framework
LR Low-resolution
SR Super-resolution
TAD Task-aware down-scaled image
TAU Task-aware up-scaled image
SRGAN Generative adversarial network for image super-resolution
EDSR Enhanced deep super-resolution network
VDSR Very deep convolutional networks
RGB Red, blue, green
Y Luminance
CbCr Chrominances
HD High-definition
E2E-CNN End-to-end compression framework with two CNNs
BPG Better portable graphics
ComCNN Compact Representation Creation
RecCNN Reconstructed image creation
BN Batch normalization
ARCNN Artefact reduction convolutional neural network
PSNR Peak signa-to-noise ratio
SSIM Structural similarity index
Bpp Bits per pixel
QF Quality factor
QP Quantization parameter
CPU Central processing unit
GPU Graphics processing unit
CNN-CR CNN for image compact-resolution
CR Compact-resolution
CNN-SR CNN for super-resolution
CTU Coding tree units
MPEG Movie Picture Experts Group
UHD Ultra-high definition
BD-Rate Bjøntegaard delta rate
CNN-YL CNN proposed by Yue Li et al.
CNN-PRE Pre-processing CNN
CNN-POS Post-processing CNN
DCT Discrete cosine transform

xxii

1

Chapter 1

1. Introduction

This chapter introduces the context and motivation for addressing the image coding problem in a

framework where deep learning techniques play a pre and post-processing role. After, the Thesis

objectives and the structure of this document are defined.

1.1. Context and Motivation

In todayôs world, image coding is critical in multiple contexts, notably for the large companies (e.g.

Instagram, Facebook or Google) which need to store and transfer large amounts of images. Without

image coding, the storage and bandwidth requirements would be much larger since storing an image

using its original sample-based representation is very rate costly.

Efficient lossy image coding solutions are critical to meet those requirements since they achieve large

rate savings by removing some perceptually irrelevant image components, notably high-frequency

details which are less relevant to the human visual system. Although lossy coded images obtained are

not the same as the original images (since some information has been eliminated), this difference, so-

called distortion, may be perceptually irrelevant, leading to the so-called transparent quality; more

aggressive coding may also be applied to achieve larger rate savings at the cost of larger quality

penalties. The goal of coding is, naturally, to lose as less information as possible (i.e. to minimize

distortion) for a specific target rate or minimize the rate to achieve a target quality. In summary, image

codecs try to obtain the best rate-distortion (RD) trade-off and more modern technologies should offer

better RD performance, meaning less rate for the same quality or more quality for the same rate.

With the emergence of deep neural networks, notably the convolutional neural network (CNN)

architecture, and its success in solving complex image-based tasks (e.g. image classification [1]), it is

reasonable to expect that this technology may also perform well in the image coding field. In this context,

three main paths may be followed nowadays to improve image coding, notably:

¶ Conventional image coding technology improvement: This path consists in further

improving the conventional, signal processing-oriented solutions for image coding as developed

in the past, notably the Joint Photographic Experts Group (JPEG) standard [2] or the High

Efficiency Video Coding (HEVC) (intra coding mode) standard [3]. Naturally, some of the

available conventional codecs are simpler and were developed many years ago (the case of

JPEG) and others are more recent and more complex with a higher efficiency (the case of

2

HEVC). The JPEG standardization group is presently following this path with the development

of the JPEG XL standard.

¶ Pure deep-learning-based image codecs: This path implies replacing the conventional

codecs architecture with a fully deep learning-based architecture. This is a totally disruptive path

which adopts an encoder-decoder architecture only-based on neural networks, such as those

proposed in [4] [5]. The JPEG standardization group has currently an AhG which is studying

this path, nicknamed as JPEG AI (Artificial Intelligence).

¶ Conventional image coding complemented with deep learning techniques: This path tries

to somehow combine the best of the two worlds above, the past and the future, in a meaningful

way. An interesting way to follow this path is by still using a conventional image codec, thus

benefiting from interoperability with existing image eco-systems, which is surrounded by deep

learning technology, e.g. a pre-processing, down-sampling CNN before the encoder and a post-

processing, up-sampling CNN after the decoder. The idea is to simplify the image to be coded

with the conventional codec with some appropriate deep learning pre-processing, thus saving

rate, assuming that the simplified decoded image may be enriched/enhanced with some

appropriate deep learning post-processing. In this framework, the overall RD performance may

be improved while keeping compatible with the conventional image coding world. Naturally, this

type of solutions does not require changes in the selected coding standard such as in [6] [7].

1.2. Objectives and Thesisô Structure

The objective of this Thesis is to develop an end-to-end image coding framework to improve the RD

performance offered by conventional image coding solutions in a fully compliant way, this means without

compromising the interoperability of the image coding streams, by integrating deep learning tools in new

pre and post-processing stages. Thus the proposed coding framework includes not only a conventional

image codec but also two deep neural network based modules (more precisely, CNNs): a pre-

processing CNN (i.e. before the encoder) for image simplification and a post-processing CNN for image

enhancement, where simplification is equivalent to image down-sampling and enhancement to image

up-sampling. It is expected that by appropriately learning these two CNN models in an end-to-end way

(i.e. aware of each other and ideally also of the image coded), the overall RD performance may be

improved over learning them individually or simply using conventional filters instead (e.g. bicubic) for

pre and post-processing.

To achieve the objectives of this Thesis, this document is structured in the following way: in Chapter 2,

the deep learning and neural network basic concepts are reviewed, followed by a literature review on

image coding solutions based on CNN tools inserted before and after the image codec; in Chapter 3,

an in-depth analysis of a specific reference coding solution from the literature is presented and its main

limitations identified with the target to overcome them with a set of techniques specifically proposed to

address them; Chapter 4 reports the performance assessment of the proposed coding solutions

regarding the relevant benchmarks; finally, Chapter 5 concludes this Thesis by summarizing the key

contributions and outcomes and proposing paths for future work.

3

Chapter 2

2. Deep Learning Processing as a Complement to Standard

Image Coding: Concepts and Main Solutions

In recent years, artificial intelligence, the simulation of intelligent behavior in computers, has exploded

in popularity, especially machine learning (ML), defined by Tom Mitchell as the answer to ñHow can we

build computer systems that automatically improve with experience, and what are the fundamental laws

that govern all learning processes?ò [8]. This field has found great success (e.g. in computer vision

applications) due to novel algorithms and architectures which require large amounts of data and let

machines directly learn from data without any explicit programming.

Within the ML field, the deep learning (DL) area can be defined as ñ(é) a machine learning technique

that constructs artificial neural networks to mimic the structure and function of the human brain (é) uses

multiple layers of nonlinear processing to extract features from data and transform the data into different

levels of abstraction (classification).ò [9]. This area has been increasingly successful, mainly due to the

growing availability of large datasets and computational power as well as advances in parallelization

techniques for computation. DL techniques have proved very efficient in complex tasks such as image

classification [10] [11] and natural language processing [12].

Since the objective of this Thesis is to design a DL based processing pipeline which includes and

complements standard image coding solutions targeting improving the overall rate-distortion (RD)

performance, this chapter reviews the main solutions in the literature with similar objectives. Also, for a

better understanding of the presented solutions, the necessary background concepts on DL techniques

are first described. More precisely, this chapter is organized as follows. In Section 2.1, the fundamental

concepts to train and test a DL algorithm are presented; after, sections 2.2 to 2.5 review the main DL

architectures and techniques while Section 2.6 review relevant image coding solutions in the literature

employing DL techniques as a complement which is the technical approach to image coding adopted in

this Thesis.

2.1. Basic Concepts: Training and Testing

In this section, the basic concepts necessary to understand the training and testing process of a DL

network/model (most common to ML algorithms) are presented.

A DL algorithm uses some training data (training samples) to learn first about a task in order it is able

after to perform the same task for some data that it has never seen before (test samples). To assess

4

how the model performs in realistic conditions, the dataset is usually divided into two disjoint subsets.

The first is a larger subset (e.g. ¾ of the complete dataset), so-called the training set, while the smaller

subset is the so-called test set. A DL algorithm defines a model (or a parametrized function) using the

training set; after, this model may be used for any test set (that can never be used for training) to perform

some task, thus defining the performance of the model under realistic conditions for that task.

Since there are many DL algorithms available in the literature, it is most common to classify them by

their learning/training method, namely as:

¶ Supervised learning: In this case, for each input from the training dataset, there is a label or a

target value for the output. The DL algorithm performs a prediction by mapping the input to the

output based on a model (or function) obtained with the training dataset and learns a model using

the difference between the prediction and the ground truth.

¶ Unsupervised learning: In this case, the training data does not have any target value and the DL

algorithm just uses the dataset to learn and model the underlying structure and its distribution.

¶ Semi-supervised learning: In this case, the dataset has both labeled and unlabeled samples. This

method can be considered as an extension of supervised learning where adding unlabeled samples

can lead to more accurate predictions or an extension of unsupervised learning where adding

labeled samples can lead to an improved characterization of the dataset's distribution and its

underlying structure.

For supervised learning, there are several types of algorithms that mostly address regression and

classification problems; for unsupervised learning, clustering and association rule learning are more

common. Semi-supervised learning offers additional information for traditional tasks such as

classification and clustering. Independently of the learning approach, a DL algorithm requires a loss

function to measure how different are the predicted and the ground truth labels/values. Nowadays,

there are many loss functions which are usually selected depending on the target application/task.

A DL model has internal parameter values which are estimated from the data as well as external

parameters, the so-called hyper-parameters, that are usually manually specified. The hyper-

parameters are tuned by the researchers to improve the performance of the DL algorithm.

The performance of the DL algorithm is rather dependent on the data used for training. When the DL

algorithm models the training data with high precision (including noisy samples), this may have a

negative impact on the performance for new data, i.e. the model does not generalize well. This

phenomena, so-called overfitting, is detected when the prediction accuracy over the training set is

much higher than on the test set. To address the overfitting problem, there are several regularization

techniques such as introducing an extra term into the loss function to penalize higher complexity models.

2.2. Artificial Neural Networks

As mentioned earlier in this chapter, a DL network takes raw data as input and learns the model to

extract, with multiple layers of non-linear processing, the most important features from the input data

(i.e. information), appropriate to perform the targeted task.

5

The so-called artificial neural network (ANN) is one of the foundations of DL techniques and its

structure allows to extract and combine features into multiple levels of abstraction, as described in this

section. ANNs, as the name itself suggests, take inspiration from biological neural networks, notably

their structure, and were developed many decades ago, e.g. the first artificial neuron was presented in

1943 [13]. However, neural networks have enjoyed much success recently due to the advances, already

mentioned, such as the availability of large datasets and computational power.

2.2.1. Artificial Neuron Model

The atomic unit of an ANN is the artificial neuron, which is represented in Figure 2.1, where ὺ is the

weighted sum of the input vector ὼ according to:

ὺ ύὼ ὦ ȟ (2.1)

or expressed as the dot product

 ὺ ύ ẗὼ ὦ ȟ (2.2)

where ύ is a vector of weights, with same dimensions as ὼ, and ὦ is a bias term added to the weighted

sum.

Figure 2.1: Artificial neuron model loosely inspired by a biological neuron [14].

Each element ὼ from the input vector ὼ is multiplied by the corresponding weight ύ which controls how

much each input affects the neuronôs outcome. The bias term acts as a learnable threshold to control

the strength of the neuronôs output signal. The value ὺ is then transformed by a non-linear function, thus

producing the neuronôs output ώ as

 ώ •ὺ (2.3)

where •ẗ is called as activation function. The role of this function is to introduce a non-linearity in

the neuron, thus providing the flexibility to approximate rather complex functions. The most common

activation functions are:

¶ Sigmoid function: Squashes the output of a neuron between 0 and 1 and is defined as ʒÖ
ρ

ρ ÅȤÖ
.

¶ Rectified linear unit (ReLU): This is the most popular activation function and is defined as

ʒÖ ÍÁØ πȟ Ö. The ReLU provides better results for models with many neurons and its derivative

is easy to calculate.

6

¶ Leaky ReLU: Adaptation of the ReLU to have a non-zero derivative across all its domain (for the

ReLU, it is zero for negative numbers) and is defined as ʒÖ
πȢπρÖȟ ÉÆ Ö π
Öȟ ÉÆ Ö π

 .

¶ Maxout: This is a generalization of the ReLU and its adaptations and increases the flexibility of the

simple neuron model at the cost of having to estimate more parameters. In this case, the neuron

has two sets of parameters available and is defined as ʒÖ ÍÁØ×ρ
4ẗÖÂρȟ ×ς

4ẗÖÂς ; the ReLU is

a special case where Âρȟ ×ρ π.

2.2.2. Network Architecture

To provide an accurate relationship between the observed data (input) and its target values/labels

(output), neurons are then connected to approximate more complex functions. A fully connected network

is the simplest type of ANN and it is a sequence of layers, where each layer is a group of neurons in

parallel. In a fully connected network, each neuron is connected to every other neuron in the following

layer. This architecture, represented in Figure 2.2, has the following structure:

¶ Input layer: The input layer receives input data to the network and passes that information to the

next layer.

¶ Hidden layer: Layers of neurons, which combine the information from the previous layers. A model

can have none or many hidden layers stacked, where each layer successively learns more complex

and abstract features. For some problems, the more layers are used, the more efficient the neural

network can be.

¶ Output layer: The last layer is responsible for obtaining an output value (predicted outcome) based

on the information processed by the hidden layers. The number of neurons in the output layer

depends on the problem to be solved, e.g. for a binary decision only one neuron is needed.

The input data is processed along the chain of layers to produce an output, where the number of hidden

layers is the depth of a model and the number of neurons in a layer is the layer size.

Figure 2.2: Example of a fully connected neural network with two hidden layers [15].

Neural networks where the data is processed always in the same direction (acyclic model) through the

layers are designated Feedforward Neural Networks (FNNs); however, other architectures exist where

the network is not acyclic, such as Recurrent Neural Network, where loops are allowed. This type of

network is presented in Section 2.4.

7

2.2.3. ANN Training

The neural networkôs bias and weights parameters for all neurons (also called the network model) are

estimated from a training set; if labeled, the training data provides the target output for each

corresponding input. A training procedure with the goal of minimizing an empirical loss function is usually

employed; this process determines the parameters such that for some input propagated throughout the

network a prediction as close as possible to the target output is obtained.

A popular iterative training technique for ANN is the so-called Gradient descent technique, which

progressively updates the model parameters while decreasing the error value, as measured by the loss

function, towards a minimum. This technique can be expressed by

 —ὸ ρ —ὸ – ɳ ὒ— ȟ (2.4)

where —ὸ ρ are the parameters in iteration ὸ ρ, —ὸ the parameters in iteration ὸ, – is the so-called

learning rate hyper-parameter, which specifies how large is the update, and ὒɳ— is the gradient of

the loss function with respect to its parameters. The ὒɳ— value is proportional to how much the

parameters should change for the loss function to decrease, i.e. the parameters are updated in the

opposite direction of the loss function gradient.

The learning rate determines the size of the update that is needed to reach the minimum value of the

loss function and is important for the algorithm convergence. A small learning rate will find the minimum,

most likely at the cost of many iterations. A high learning rate may be faster; however, it may lead to

divergence, notably if the magnitude of the update is larger than the distance to the minimum. Figure

2.3 illustrates these dualities where the red line represents the functionôs value during the gradient

descent with the argument w* standing for the minimum value of the represented function f(w).

Figure 2.3: (Left) Progression with low learning rates. (Right) Progression with high learning rate. Adapted
from [16].

To further optimize the gradient descent algorithm, some techniques can be employed to provide a more

efficient update of the model parameters. A common practice is to update the learning rate during the

convergence process to increase the convergence speed while minimizing the risks of divergence (e.g.

using Adam algorithm [17]).

Gradient descent does not guarantee that the global minimum value is reached as the found minimum

may be local and not global. However, it still leads to good practical results and is much simpler than

finding the global minimum. The process of minimizing the loss function with gradient descent is

executed iteratively with an FNN in the following way:

8

¶ Parameters initialization: Parameters are initialized, usually with random values, which usually do

not have much impact on the final outcome of this process.

¶ Forward pass: The input data is processed by every layer of the network in a feed-forward way,

thus obtaining the predicted value(s). Then, the loss function is computed between the predicted

and target values. Every nodeôs output is a function of its inputs as represented in Figure 2.4 (left).

¶ Backward pass: Starts by calculating the loss gradient with respect to the output and after

backpropagates (opposite direction to the forward pass) the result to compute the lossô gradient with

respect to every parameter. This is performed with the chain rule (a simple way to calculate the

derivative of a composition of functions) and allows to backpropagate the error backwards,

assuming the derivative of the activation functions present in the network are known. Figure 2.4

(right) represents this process for a single node.

Figure 2.4: (Left) Forward pass on a single node. (Right) Backward pass on a single node.
Adapted from [18].

¶ Parameters update: Each parameter is updated according to Equation (2.4). There are several

variants of the gradient descent algorithm, which define different ways to update the model

parameters, e.g. the mini-batch gradient descent variant only updates the parameters for a set of

training examples.

The training process consists in iteratively repeating steps 2, 3 and 4 until a stopping criterion is met,

e.g. a threshold on the error or some fixed number of iterations is reached.

Depending on how the neural networks are trained, overfitting may occur, e.g. when the amount of

training data is low compared to the number of model parameters that need to be found. A common

technique to prevent overfitting in these architectures are regularization techniques, which are

modifications of the learning procedure to find a model that is more general and can provide better

accuracy for unseen data. An example of a regularization technique is the so-called dropout, where the

goal is to have a model which is less dependent from the results of a particular set of units, thus

increasing the modelôs generalization. This is achieved by temporarily (for each training sample)

removing from the backward and forward passes the contributions of a random set of neurons.

2.3. Convolutional Neural Networks

Nowadays, complex tasks involving images, such as object recognition or image classification, are

useful for many applications (e.g. self-driving cars, and visual surveillance among others) and, thus,

9

significant research efforts have been dedicated to address the problems faced by these applications.

Images are rather difficult to process since an image is a high dimensional input where each pixel value

corresponds to one dimension of the input vector; color images with three channels (e.g. red, green and

blue (RGB)) are even more difficult since they have an increased input dimensionality. Therefore,

images require a very large number of model parameters if a fully connected network, such as the ANN

presented in Section 2.2, is used; moreover, also a very long training process would result. This fact

motivates the use of simpler networks, notably the so-called convolutional neural networks (CNNs)

architectures, which are presented in this section, have obtained great popularity and success.

2.3.1. CNN Architecture

A CNN relies on the same foundations as a traditional ANN, in the sense that the model learns a set of

weights and bias; however, the main novelty is a new type of layer, the so-called convolutional layer,

which is especially designed to extract features from images. Another type of layer which is often used

together with convolutional layers is the so-called pooling layer, which aims to decrease the input

dimensions while preserving the most relevant information. The convolutional and pooling layersô

structure and operations are described in sections 2.3.2 and 2.3.3 respectively. In summary, the CNN

architectural elements are the following:

¶ Input layer: Takes an input image and passes it to the network. An image may be grayscale and

thus represented with a single 2D matrix (each matrix element corresponding to a pixel value) or a

color image usually represented with three channels/components (e.g. RGB), where each channel

is again represented with a 2D matrix. Each matrix element is then an input to the network.

¶ Convolutional layer: Performs a convolution operation using a set of learned weights. The output

is also a matrix, which is, usually, element-wise submitted to a non-linearity, such as the ReLU.

¶ Pooling layer: Optional layer which targets lowering the dimensionality of its input. The most

popular pooling operation is the so-called max-pooling, which takes as input a local region of the

matrix and outputs its maximum element.

¶ Fully connected layer: Optional layer, only used for the last group of layers to perform classification

based on the features extracted from the convolutional layers.

Figure 2.5 gives an example of a CNN architecture where each convolutional layer successively extracts

more complex (high-level) features. The pooling layers decrease the input dimensions and a fully

connected layer performs classification.

10

Figure 2.5: Example of a CNN architecture [19].

The training process for a CNN is the same as for an ANN, thus using the gradient descent algorithm to

minimize some loss function, since the convolutional and pooling operations are differentiable.

2.3.2. Convolutional Layer

The convolutional layer fundamental unit is the so-called filter (or kernel), defined by a set of parameters

(or weights), which usually correspond to a matrix with some fixed size. These filters slide over the input

image or the output values of a previous layer, thus performing a convolution operation which results in

a set of feature maps. When a filter is combined with a non-linear activation function, the artificial neuron

model previously described is obtained. However, instead of being connected to every neuron in the

previous layer as in fully connected layers, this neuron is only connected to a small set of units, i.e. to a

local region of the previous layer, drastically reducing the number of parameters in the network model.

A CNN neuron is responsible to detect some feature anywhere in the image and may correspond to

simple operations, such as a blur or edge detector. Since a large set of filters is typically used, and the

output of the filters can be combined with a sequence of convolutional layers, it is possible to detect

more high-level features (e.g. objects) in an image.

The filter dimensions are defined by its height, width, and depth. The first two, also referred as the

neuronôs receptive field, are fixed but may have any value, while the filterôs depth must match the

inputôs depth. The filter output is then the dot product between its matrix of weights and the input region

(plus some bias, as for ANN), and produces a response; the filter weights are learned and depend on

the data that has been used for training. The response of the filter for every position of the input is a

two-dimensional activation map; a stronger response in the map indicates that the filter has detected

some pattern in the input, while a weaker response indicates that the pattern has not been detected.

A key concept in convolutional layers is parameter sharing, since the same filter weights are used for

all filters, independently of the local region of the image where the filter is applied (thus, achieving

translation invariance); this significantly contributes to lowering the total number of model parameters

that need to be learned. Figure 2.6 shows an example of a convolution between an input volume (5x5x1)

and a filter (3x3x1). In the activation map, the two highlighted elements correspond to the first two steps

of convolution between the filter and the input volume. The remaining elements are obtained by

continuing to slide (in Figure 2.6, by 1 pixel) the filter over the input volume and repeating the filter

operation at each position.

11

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

0 0 1 1 0

0 1 1 0 0

*

1 0 1

0 1 0

1 0 1

=

4 3

Input Filter Activation Map

Figure 2.6: Activation map (orange) is the result of the convolution between the input (blue) and the filter
(green).

In a convolutional layer, multiple filters (where each can be seen as a neuron) may be stacked, thus

allowing to detect different patterns (e.g. lines in any position); the size of this stack defines the layer

depth, where each filter usually detects a different feature in the input. By applying the convolutional

filters to the input volume, a set of activation maps are produced, which are concatenated to form the

output of the convolutional layer. Figure 2.7 shows a visual representation of these concepts, where the

input volume (σςσςσ) and the filter (υ υ σ) have a depth of 3. The output volume (σςσςρπ)

is a stack of activation maps, meaning that 10 filters were independently applied to the input.

Figure 2.7: Visual representation of a filter and a stack of activation maps [20].

A convolutional layer also introduces the following operations and hyper-parameters:

¶ Stride: In the convolution layers, the filters are applied to a local square region (receptive field),

centered at every position of the input volume, effectively sliding the filter along the input. The stride

hyper-parameter specifies how many positions should the filter move between each convolution. A

value of 1 indicates that every position is used as filter center while larger stride values lead to lower

spatial resolutions for the feature maps (compared to the input), e.g. a stride of 2 leads to feature

maps with half the size (in height and width) compared to the input. In Figure 2.6, the activation map

was obtained with a stride of 1.

¶ Zero-padding: Padding the input with zeros around the (vertical and horizontal) borders can

preserve the input dimensions when a convolutional layer is applied. The zero-padding hyper-

parameter specifies the size of the padding. This size usually corresponds to half the size of the

filter, e.g. a σ σ filter usually applies a zero-padding of size 1, thus preserving the input dimensions

at the output (with stride of 1). Figure 2.8 represents an image (blue) with a zero-padding of size 1

for a σ σ filter (shade) to produce an output activation map (green) with the same dimensions as

the input.

12

Figure 2.8: Image (blue) with zero-padding (dashed lines) of size 1 [21].

2.3.3. Pooling Layer

The pooling layer aims to decrease the width and height of its input (the depth remains the same) while

preserving the most relevant information. This operation lowers the number of model parameters

needed for the following layers, therefore reducing the computational effort required to train the model

and also preventing overfitting. Rather often, pooling layers are interleaved with convolutional layers.

While the pooling layer has no learnable parameters, its operation is similar to the convolutional layers.

In this layer, a pooling operation is applied to a local square region of the input centered at every (or

some according to the stride hyper-parameter) position of the input. The size of this region is defined by

the window size hyper-parameter. In the max-pooling operation, the output corresponds to the

maximum value of the input values in each window. Figure 2.9 represents the max-pooling operation

where a τ τ matrix is reduced to a ς ς matrix.

Figure 2.9: Example of max-pooling operation, reducing the inputôs dimensions [22].

This type of layer is optional in a CNN, i.e. it is the network designerôs choice to introduce it or not in the

network architecture. In a CNN architecture, an alternative to reduce the input spatial dimensions is to

apply a convolutional layer with a stride greater than 1. For the model training process, in the backward

pass, the max-pooling node acts a gradient router, i.e. passes the gradient value to the selected node

(during the forward pass), and a zero gradient to the remaining nodes.

2.4. Recurrent Neural Networks

Many complex tasks, such as video captioning and language translation, involve recognizing patterns

from sequences of data, e.g. video frames or words. FNNs fall short to recognize such patterns since

each input is independently processed, without considering previous input or output information.

13

Recurrent Neural Networks (RNNs) have shown better performance for some tasks due to its capacity

to maintain context information between sequence elements, i.e. allowing information to persist through

time, learning from the past. Furthermore, an RNN can map an arbitrary sized input sequence to an

arbitrary sized output sequence.

The core block of an RNN architecture is the RNN cell (blue cell in Figure 2.10) which consists of a

traditional FNN with layers of neurons, weights and biases. The main difference is that the output of the

RNN cell is fed back to the network along with the next input element (hence the name recurrent

network) in a loop, thus allowing to preserve context information throughout the sequence. This network

structure can be unrolled, as depicted in Figure 2.10 right), and represented as multiples copies of itself,

where each copy is passing information to the next, each representing a time step (or iteration). A

sequence is a set of elements (e.g. images or words) successively fed to the network at each iteration.

Figure 2.10: RNNôs structure unfolded as a chain of time steps [23].

The RNN cell computes and stores the so-called hidden state, Ὤ, as a function of the previous hidden

state and its current input element. This value summarizes the sequence elements already seen and is

then passed as an input to the next iteration to compute the next hidden state, thus being able to learn

long-term dependencies. At time step ὸ, it can be expressed as

 Ὤ ‰ὠὬ Ὗὼ ὦ (2.5)

where ‰Ȣ is an activation function (such as the sigmoid or ReLU functions) to introduce a non-linearity

to the model, ὠ and ὦ are sets of weights and biases applied to the previous hidden state Ὤ , and Ὗ

another set of weights applied to the input ὼ. At each time step, the respective hidden state may also

be used to compute an output. At time step ὸ, the output can be defined as:

 έ ὡὬ ὦ (2.6)

where ὡ and ὦ are sets of weights and biases and Ὤ the hidden state at time step ὸ. In RNNs, it is

also common to have έ as an input to an FNN (e.g. to label the output) or even to another RNN.

For supervised training, έ (along with its ground truth) is used to compute a loss function at each

iteration; all losses are then summed to train the model using the gradient descent algorithm. The weight

sets Ὗȟὠȟὡ and biases are learnable parameters and they are shared throughout all iterations and

updated after every batch of training samples (as for FNN).

For long sequences, the performance of vanilla/basic RNNs decreases [24] as it tends to disregard the

contribution of past elements, i.e. dependencies between distant sequence elements are rarely

14

detected. To address this problem, the so-called Long Short-Term Memory (LSTM) architecture [25]

is a common evolution of the RNN, which uses a slightly more complex RNN cell and is able to recognize

these long-term dependencies.

2.5. Autoencoders

Dimensionality reduction is the process of lowering the number of random variables associated to the

data and is an efficient way to solve several unsupervised ML problems, e.g. denoising, super-resolution

as well as coding of high dimensionality data. Recently, traditional approaches to this problem, such as

Principal Components Analysis (PCA), have been outperformed [26] by a new type of DL architecture,

the so-called autoencoder (AE).

An AE is a neural network with an especial hidden layer that follows some restriction, e.g. obtaining a

compact (code) description of the original input. From this coded representation, also called latent

representation, the network should be able to reconstruct the input as faithfully as possible at the output.

This type of neural networks is classified as unsupervised learning (or self-supervised learning) since it

is trained by attempting to replicate in the most accurate way its input to its output.

In an AE, represented in Figure 2.11, the input and output layers dimensions (i.e. number of neurons)

must match and the input is passed to a hidden layer with smaller dimensionality, the so-called

bottleneck, thus forcing the network model to learn a low-dimensional representation of the input,

notably by extracting its most representative features.

Figure 2.11: Example of the overall auto-encoder architecture [27].

As shown in Figure 2.11, the AE structure can be grouped into two stages, encoder and decoder, where

the middle layer is the bottleneck layer and is common to both stages. At the encoder, a chain of hidden

layers successively reduces the input dimensions until the bottleneck layer, thus creating a coded

(compressed) representation of the input. The decoder restores the original data dimensions from the

coded representation available at the bottleneck layer and attempts to faithfully reconstruct the original

input. The coded representation has some useful properties, namely the ability to represent the input

data in a compact way by exploiting the correlations between elements. In the training process, a loss

function is used to measure how different is the reconstructed output from the original input and the

model is trained using gradient descent as for other networks.

The AE depicted in Figure 2.11 is an example of an undercomplete autoencoder since the hidden

layer (and thus the code) has a smaller dimension (code size) than the input layer. In this case, by

forcing the autoencoder to have a lower dimensionality code, it is possible to capture the most salient

15

features of the training set. Another type of AE is the overcomplete (or sparse) autoencoder, which

is allowed to have a hidden layer of higher dimension (code size) in comparison to the input layer.

However, in this case, another type of restriction is imposed on the code learned by the network, notably

via a sparsity term that is added to the loss function to ensure that only a limited number of neurons

are simultaneously activated at the autoencoder bottleneck. This type of restriction forces each neuron

to learn independent and more representative features, as each neuron, when activated, has a greater

impact on the final result.

The AE layers may be fully connected or convolutional, the latter being more adequate to process

images due to their size. Several AE variations have been proposed, notably targeting specific problems,

such as a denoising AE [28] to remove noise from data samples and a variational AE [29] where the

probability density function (PDF) of the training data is estimated and new examples (similar to the

training samples) can be generated by sampling from the learned PDF.

2.6. Main Deep Learning Processing Solutions Complementing Standard Image

Coding Solutions

In this section, some selected solutions available in the literature related to the objectives as this Thesis

are reviewed. While not specifically developed for image coding, the first solution can be made

complementary to conventional image coding standards to achieve a better overall RD performance.

The two remaining solutions have the specific goal of improving the RD performance of standard image

coding solutions by including additional processing components based on DL principles: pre-processing

at the encoder and post-processing at the decoder.

2.6.1. Task-Aware Image Downscaling

A. Context and Objectives

The task-aware image down-scaling framework (TAID) proposed in [30] addresses the general

problem of image scaling/resizing, where the image spatial resolution may be reduced for storage or

transmission to be later increased (restored), when needed, e.g. for user visualization. TAID is an AE

based framework that reduces the spatial resolution at the encoder while at the decoder the image

spatial resolution is restored; the low-resolution image is compressed and may be stored or transmitted.

Thus, the following main operations can be identified:

¶ Image down-scaling (LR task): This operation creates a low-resolution (LR) image by down-

scaling (reducing the spatial resolution) the original image while preserving as much as

possible the visual information and spatial structure.

¶ Image up-scaling (SR task): This operation creates an original resolution image by up-scaling

(increasing the spatial resolution) the LR image to the original resolution in a so-called super-

resolution (SR) process. This is an ill-posed problem since several high-resolutions images can

be inferred from a single LR image.

16

The TAID framework approach is to create an LR image that maximizes the restoration performance

when the high-resolution image is estimated, i.e. to produce an image as similar as possible to the

original by also controlling how the LR image is created. In this case, a deep convolutional AE model is

used where the encoder performs down-scaling (the output is the LR image) and the decoder up-scaling

(the output is the reconstructed image). A guidance image, obtained with a conventional algorithm

(such as bicubic down-sampling), is also computed to guarantee (or constrain) that the LR version

produced by the encoder has a similar visual information to the original, naturally for a lower spatial

resolution. However, when the LR image is constrained to be similar to the guidance image, it may result

in a poorer restoration of the original image spatial resolution (i.e. the SR task) and, thus, the training

process allows to control the trade-off between the down-scaling performance (i.e. visual quality of the

LR image) and the SR performance (i.e. similarity to the original image).

B. Architecture and Walkthrough

The TAID follows an AE based architecture, shown in Figure 2.12 (middle). The original (input) image

is represented as Ὅ , the guidance image as Ὅ and the reconstructed image (output) as Ὅ . The

LR image obtained after encoding through quantization (as described later), corresponds to the so-

called task-aware down-scaled (TAD) image, represented as Ὅ . The ὒ is the loss term computed

between the original and reconstructed (TAU) images (output from the SR task) and ὒ is the loss

term computed between the guidance and TAD images (output from the LR task).

Figure 2.12: Layer types (left) used in the TAID architecture (middle) and the structure of the residual
block (Resblock) (right) [30].

The pipeline shown in Figure 2.12 (middle) follows the principles of an AE architecture (as described in

Section 2.5) and includes the following steps:

¶ Downscaling network: The down-scaling network (at encoder side) consists in two

convolutional layers (conv), followed by a down-scaling layer (Inv.PixelShuffle), three residual

blocks, a convolution layer, a skip connection (with pixel-wise sum) and a convolutional layer.

The down-scaling layer reduces the spatial resolution by half in both spatial dimensions and the

residual block inckudes two convolutional layers with a ReLU activation in between (as shown

in Figure 2.12 (right)). The output of the down-scaling network (i.e. the TAD image) is the pixel-

17

wise sum of the last convolutional layer output and the guidance image. This means that this

first network only learns the residual that has to be added to the guidance image.

¶ Quantization module: Since the TAD image may contain floating-point values, a differentiable

quantization operation (i.e. a function with a derivative, compatible with gradient descent)

produces an image with a fixed size value of 8 bits per sample, suitable to be displayed on a

screen. This module can be generalized to any image coding solution provided that all included

operations are differentiable, as usually happens in a lossless image codec.

¶ Upscaling network: The up-scaling network (at decoder side) has the inverse architecture of

the down-scaling network (since both build an AE), except for the down-scaling layer that is

replaced with an up-scaling layer (PixelShuffle) to double the input spatial resolution in both

dimensions. The decoder input is the TAD image and its spatial resolution is increased to be

the same as the original image, thus obtaining the reconstructed TAU image.

The down-scaling layer is located before the encoder and the up-scaling layer after the decoder to

reduce the computational complexity of the remaining layers. The TAID network architecture is defined

to downscale and up-scale the image spatial resolution by a factor of 2; however, with minor changes

to the structure, higher scaling factors (powers of 2) can be obtained by introducing a loop at the encoder

(and at the decoder) to successively downscale (and up-scale) the input image. Following the described

architecture, the TAID framework can be formally described as:

 Ὅ ὪὫὍ ȟ (2.7)

where Ὣẗ and Ὢẗ are the down-scaling (at encoder) and up-scaling (at decoder) networks,

respectively.

The up-scaling layer uses a technique, so-called sub-pixel convolution [31] (or pixel shuffle), to

increase the input spatial resolution and the inverse technique (inverse pixel shuffle) to reduce it. The

convolutions layers preceding the up-scaling and down-scaling layers have 256 filters and compute 256

feature maps while the remaining convolutional layers have 64 filters and compute 64 feature maps.

Since the sub-pixel convolution and residual learning are rather important techniques for the described

architecture they are explained in more detail:

¶ Sub-pixel convolution: A sub-pixel convolution technique with scaling factor ὶ computes a

volume with size ὶὌ ὶὡ ὅ from an input volume with size Ὄ ὡ ὶὅ, where Ὄ and ὡ

correspond to the height and width of the input array and ὅ is the number of image channels (or

feature maps). In this architecture, the scaling factor is ὶ ς for the up-scaling layer. Since the

convolutional layer preceding the pixel shuffle layer computes 256 features maps (i.e.

Ὄ ὡ ςυφ), after applying the sub-pixel convolution, the resulting volume has size

ςὌ ςὡ φτ, i.e. twice the input resolution in both spatial dimensions. For the down-scaling

layer (inverse pixel shuffle), the scaling factor is ὶ ρςϳ , thus reducing the input resolution to

half for both spatial dimensions. The usage of sub-pixel convolution also allows to generalize

the TAID framework to a colorization task where, instead of changing the spatial resolution, the

down-scaling network computes a grayscale image (i.e. reduces the number of image channels)

18

and the up-scaling network restores the original color image (i.e. increases the number of image

channels).

¶ Residual learning: Residual learning [1], illustrated in Figure 2.13, is a rather popular technique

for neural networks, which leads to a faster convergence of the training procedure. Assuming

that Ὄὼ is a function that correctly models some input ὼ to its output, then this technique

consists in learning a residual Ὂὼ such that Ὄὼ Ὂὼ ὼ. In [1], it is observed that Ὂὼ is

easier to learn than Ὄὼ since the residual connection also allows to propagate a gradient value

(during the backward pass), which may be more useful than a gradient value passed by multiple

weight layers. Moreover, the identity function is easily learned by setting Ὂὼ to zero.

Figure 2.13: Residual learning block with two layers parameterized with weights [1].

C. Training Procedure

The AE based TAID framework is trained end-to-end, thus including both the down-scaling and up-

scaling networks. The optimization problem to be solved during the training can be described as:

—ᶻȟ—ᶻ ÁÒÇ ÍÉÎ

ȟ

ρ

ὔ
ὒ Ὢ Ὣ Ὅ ȟὍ ȟ (2.8)

where — and — represent the down-scaling and up-scaling network parameters, respectively, ὔ is the

batch size, Ὅ is the ὲ training sample and ὒ is the loss function (e.g. MSE). However, since no

ground-truth exists for the LR task, and there is no guarantee that the obtained LR image is visually

similar to the original, a down-scaled guidance image is computed using bicubic down-sampling.

Thus, the complete loss function, including the guidance image, is formulated as (with the model

parameters omitted for notation simplicity):

 ὒ ὪὫὍ ȟὍ ȟὍ ὒ ὪὍ ȟὍ ‗ὒ Ὅ ȟὍ ȟ (2.9)

where Ὅ is the ὲ training sample, Ὅ is the ὲ guidance image, ὒ and ὒ are the loss

functions for the SR and LR task, respectively, Ὅ is the ὲ computed TAD image (i.e. the down-

scaling network output), and ‗ is a hyper-parameter controlling the trade-off between the SR and LR

performance. If ‗ π, the TAID framework disregards the guidance image and, thus, it is not constrained

in computing an LR image visually similar to the original.

The óDIV2Kô training dataset [32] was used to obtain images for the training and test sets; the model has

been trained for σ ρπ iterations (total number of model parameter updates). During the early training

iterations, the quantization module is ignored (i.e. skipped during the forward and backward passes) as

it may contribute to training instabilities. For the last iterations, the quantization module is included to

fine-tune the model parameters.

19

D. Performance Assessment

The TAID framework has been compared with the following SR solutions available in the literature and

also exploiting DL based principles: i) generative adversarial network for image super-resolution

(SRGAN) [33]; ii) enhanced deep super-resolution network (EDSR+) [34]; and iii) image super-resolution

using very deep convolutional networks (VDSR) [35]. The SRGAN, EDSR+ and VDSR models have 15,

68 and 20 convolutional layers, respectively. The datasets used for the experiments were óSet5ô [36],

óSet14ô [37], óB100ô [38], óUrban100ô [39] and óDIV2Kô validation dataset [32]. The experiments were

performed on RGB (three channels) and grayscale images (single channel). The grayscale images were

obtained by converting the RGB components of the original image into the luminance (Y) and

chrominance (CbCr) components (YCbCr color space) and dropping the chrominance channels.

Although the authors also evaluated the TAID framework performance for the colorization task, the

results shown here are only for the LR/SR tasks, due to the objective of this Thesis.

Table 2.1 compares the SR task performance when using scaling factors of 2 and 4 (achieved with loops

at the encoder and decoder), where the peak signal-to-noise ratio (PSNR) metric was used to compare

the original and reconstructed images. More precisely, the experiments compared the reconstruction

quality of the bicubic down-sampled images (3rd to 5th column) and the TAD down-sampled images (6th

to 8th column), as stated in the 2nd line of the table. The reconstructed images were obtained with the

EDSR+ and VDSR architectures for SR and the TAU up-sampling method, as stated in the 3rd line. The

PSNR values were obtained for the grayscale and color version of the images (values separated with a

slash); the red and blue highlighted values indicate the best and second-best performances (i.e. higher

PSNR) for the respective test conditions (i.e. dataset and scaling factor).

Table 2.1: Objective quality assessment for the TAID framework and the VSDR [35] and ESDR+ [34] up-
scaling solutions. Down-scaled with bicubic down-sampling (3rd to 5th column) and the TAID framework (6th

to 8th column). [30].

The PSNR values in Table 2.1 show that, when using TAD for down-sampling, coupled either with TAU

or with EDSR+ or VDSR, higher quality can be achieved when compared to previous methods (using

bicubic down-sampling). Moreover, the ESDR+ network when coupled with the TAD down-sampling

method has the best performance for all datasets and scaling factors. The VDSR also benefits from the

TAD down-sampling to achieve the second-best performance with color images for all the datasets.

20

Both the EDSR+ and VDSR were re-trained by the authors, using TAD images instead of interpolated

images.

A visual example of the proposed solution performance compared with SRGAN [33] and EDSR+ [34]

(benchmarks) is shown in Figure 2.14. A scaling factor of 4 was used to reduce the spatial resolution

and the same factor to restore it. For the benchmarks, the LR images were obtained using bicubic down-

sampling. From this example, the following conclusions can be taken:

¶ Subjective quality: The TAID framework reconstructs more detailed images (sharper edges,

less blur), which are also more (perceptually) similar to the original image.

¶ Objective quality: The restored image PSNR for the TAID framework is higher compared to

other alternative solutions, such as SRGAN [33] and ESDR+ [34].

¶ Computational Complexity: Using TAU for up-sampling, the restored image is computed in

10 ms (using a GPU), which is faster than the alternative solutions. It is reported in [30] that, by

using the TAU up-sampling for high-definition (HD) images, the up-scaling operations are

executed in 140 ms.

Figure 2.14: Objective (PSNR), subjective and computational complexity comparison between SRGAN
[33], EDSR+ [34], TAU and ground-truth images. [30].

2.6.2. An End-to-End Compression Framework Based on Convolutional Neural

Networks

A. Context and Objective

In [6], an end-to-end compression framework with two CNNs (E2E-CNN) is proposed with the goal

of improving the RD performance of traditional image coding solutions. An important contribution of this

work is a technique to simultaneously train the two involved CNNs, which allows for the backpropagation

algorithm to be applied even when lossy coding solutions (with quantization) are used. The framework

does not require any change to the image codec and, thus, can be made compliant with other existing

21

codecs, such as the JPEG standard [2], JPEG 2000 standard [40] and Better Portable Graphics (BPG)

codec [41], which corresponds to a subset of tools from the HEVC standard.

B. Architecture and Walkthrough

This compression framework consists of two CNNs. The first CNN, the so-called compact convolutional

neural network (ComCNN), corresponds to a pre-processing step, targeting creating a compact

representation of the image to be coded by the encoding step, which should preserve the structural

information that is later needed for the enhancement phase. The second CNN is the so-called

reconstruction convolutional neural network (RecCNN) and aims at enhancing the quality of the decoded

image, thus corresponding to a post-processing step. The overall E2E-CNN architecture is shown in

Figure 2.15 and includes the following steps:

¶ Compact Representation Creation (ComCNN): The original image is fed to the ComCNN,

which computes a compact image representation, notably with a lower spatial resolution.

¶ Image Encoder: The obtained compact representation is encoded with a conventional image

coding solution, such as the JPEG standard, resulting into a bitstream that can be stored or

transmitted.

¶ Image Decoder: A decoded version of the compact representation can be obtained by decoding

the coded bitstream. This may be a lossy process and, thus, the decoded image can have some

compression artifacts.

¶ Reconstructed Image Creation (RecCNN): The decoded image is first up-sampled to the

original spatial resolution using bicubic interpolation. Then, it is fed to the RecCNN to improve

its quality and obtain the final reconstructed image that may be shown to the user.

Figure 2.15: E2E-CNN framework architecture [6].

Since the two CNNs are the most novel components in the proposed processing pipeline, the

architectures of both neural networks will be described next.

The ComCNN, shown in Figure 2.16 (left), has three layers, which aim at computing a compact

representation of the original image, while maintaining its spatial structure and information. The layers

have the following characteristics:

22

¶ 1st layer ï Convolutional + ReLU: Convolutional layer with a total of 64 filters of size σ σ ὧ,

where σ σ are the spatial dimensions (width and height) and ὧ is the number of image

channels. This layer generates 64 features maps, which are processed by ReLU activations.

¶ 2nd layer ï Convolutional + BN + ReLU: Convolutional layer that aims at computing down-

scaled (higher-level) features, with a total of 64 filters of size σ σ φτ and stride 2. This layer

generates 64 features maps, followed by batch normalization (BN) [42] and ReLU activations.

¶ 3rd (last) layer - Convolutional: Convolutional layer responsible for creating the compact

representation with ὧ convolutional filters of size σ σ φτ. Due to the design of this filter (which

operates on 64 channels), an image representation with ὧ channels is obtained. No ReLU

activation is performed in the last layer.

After the compact representation is encoded, decoded and up-sampled with bicubic interpolation, the

RecCNN aims at reconstructing the image with the best possible quality by computing a residue that

characterizes the noise between the original and the up-sampled images. The RecCNN, shown in Figure

2.16 (right), has 20 layers with the following characteristics:

¶ 1st layer - Convolutional + ReLU: Convolutional layer with 64 filters of size σ σ ὧ used to

generate 64 feature maps, followed by ReLU activation.

¶ 2nd to 19th layers ï Convolutional + BN + ReLU: Convolutional layers with 64 filters of size

σ σ φτ, to generate 64 features maps followed by BN and ReLU activation.

¶ 20th (last) layer - Convolutional: Convolutional layer with ὧ filters of size σ σ φτ to compute

the residue. This residue is after added to the up-sampled decoded image to enhance its quality.

Figure 2.16: ComCNN (left) and RecCNN (right) architectures [6].

The BN technique [42] is especially useful when the neurons activation values in a hidden layer have

different order of magnitudes, what may compromise the learning in following layers. In other words,

without BN, an activation value much larger than the rest may drastically reduce the effect of the neurons

in the following layers, thus slowing the training procedure.

C. Training Procedure

Both ComCNN and RecCNN must collaborate to benefit/match from/to each other and, thus, a unified

end-to-end learning algorithm is employed to simultaneously compute the parameters for both CNNs.

This join training is the E2E-CNN framework main novelty and allows obtaining better reconstructions

for the decoded images in comparison to conventional image enhancement (post-processing) methods

(e.g. [43]) and standard image coding solutions (such as JPEG).

23

The training algorithm fixes the RecCNN parameters (— to perform the updating of the ComCNN

parameters (— (with the Gradient Descent technique) and vice-versa. This process is executed

iteratively and the details are presented next.

The optimization problem lies in finding — and — parameters that minimize the loss function (computed

between the original and reconstructed images) over the training set, which may be defined as:

—ȟ— ÁÒÇ ÍÉÎ

ȟ
ὙὩὧ—ȟὅὅέά—ȟὼ ὼ , (2.10)

where ὙὩὧẗ corresponds to RecCNN parametrized by —, ὅẗ represents both the image encoder and

the image decoder sequentially (e.g. JPEG), ὅέάẗ corresponds to ComCNN parametrized by —, and

ὼ is the original (input) image. However, since the ὅȢ stage involves a quantization step (to reduce the

image irrelevant components), which is not differentiable, the backpropagation algorithm cannot be

applied with (2.10). To overcome this problem, the proposed solution derives two update rules (one for

the RecCNN and another for the ComCNN), which are performed iteratively in the training of both

models.

RecCNN Update Rule

The — (i.e. the RecCNN model) parameters are updated first. By fixing —, the best — can be found by:

— ÁÒÇ ÍÉÎὙὩὧ—ȟὅέάὅ—ȟὼ ὼ Ȣ (2.11)

For notation simplicity, an auxiliary variable ὼ is introduced in (2.11), which corresponds to the decoded

and up-sampled representation, fed to the RecCNN, and defined as

 ὼ ὅέάὅ—ȟὼ ȟ (2.12)

Since — is fixed, the RecCNN is simply a CNN fed with some image ὼ . Then, the update rule is

 — ÁÒÇ ÍÉÎᴁὙὩὧ—ȟὼ ὼᴁ. (2.13)

The mean-squared error (MSE) loss function to be used to obtain the — parameters corresponds to:

ὒ —
ρ

ςὔ
ÒÅÓὅὼ ȟ— ὅὼ ὼ ȟ (2.14)

where ὔ is the batch size, ὼ is the Ὧ compact representation produced by the ComCNN, ὼ is the

Ὧ image in the current batch and ÒÅÓẗ is the residue learned by the RecCNN. Equation (2.14) is

equivalent to (2.13), only expressed in the form of a residue.

ComCNN Update Rule

The best — parameters (i.e. the ComCNN model) are obtained by fixing —, where:

— ÁÒÇÍÉÎὙὩὧ—ȟὅέάὅ—ȟὼ ὼ Ȣ (2.15)

24

For the — update, the gradient cannot flow from the RecCNN to the ComCNN since ὅȢ is not

differentiable. To overcome this problem, the following update rule has been derived to find the best —:

— ÁÒÇ ÍÉÎὙὩὧ—ȟὅέά—ȟὼ ὼ , (2.16)

which essentially consists in skipping the encoding and decoding steps when flowing the gradient, from

the RecCNN to the ComCNN in the backward pass, with — fixed. The MSE loss function to obtain —

corresponds to:

ὒ — В ὙὩὧ—ȟὅέά—ȟὼ ὼ , (2.17)

where ὔ is the batch size and ὼ is the Ὧ image in the current batch.

The training process is executed iteratively (while switching the fixed model parameters) with a batch

size . ρςψ, for 50 epochs (number of times the complete training dataset is used). Following [44], from

a total of 400 images with size ρψπρψπ (width and height), 204800 patches with size φτφτ were

cropped for training. For testing, five images with size ςυφςυφ and two images with size υρςυρς

(for a total of 7 grayscale test images) were used.

D. Performance Assessment

The E2E-CNN performance has been assessed with experiments using the óSet5ô [36], óSet14ô [37],

óLIVE1ô [45], and óGeneral-100ô [46] datasets, and the JPEG and JPEG 2000 standards to code the

compact representation. The results obtained have been compared with those obtained when using

each codec alone to encode the original image, this means without the additional pre- and post-

processing CNN based phases. Moreover, the E2E-CNN results for the 7 test images were compared

with those obtained by the BPG codec and also other solutions in the literature, namely post-processing

quality enhancement methods following traditional image decoders ([47], [48], [49], [50], [51], [52], [43])

and a DL based solution technique named artifacts reduction convolutional neural network (ARCNN)

[53]. A summary of the experimental results is now presented.

Objective Quality Evaluation

For the objective quality evaluation, the adopted quality metrics were the PSNR and also the structural

similarity (SSIM) index to compare the original and finally reconstructed images.

In Table 2.2 (left), E2E-CNN using JPEG 2000 to code the compact representation is compared with

the conventional JPEG 2000 codec alone. The JPEG 2000 encoder in the E2E-CNN was adjusted to

achieve a similar target bitrate, defined in terms of bits per pixel (bpp), tos the bitrate spent by the JPEG

2000 codec alone. The higher qualities achieved by E2E-CNN (labelled as Proposed), for both quality

metrics, show that the JPEG 2000 codec performance can be improved, as much as 2.91 dB and 0.1357

for PSNR and SSIM, respectively. In Table 2.2 (right), E2E-CNN using JPEG to code the compact

representation is compared with the conventional JPEG codec alone for two quality factors (QFs),

notably 5 and 10. Again, the E2E-CNN was adjusted to achieve a bitrate similar to the JPEG bitrate.

The E2E-CNN (Proposed) outperforms the JPEG codec for both quality metrics, as much as 3.07 dB

and 0.1268 for PSNR and SSIM, respectively.

25

Table 2.2: Performance evaluation comparing E2E-CNN (Proposed) against JPEG 2000 (left) and JPEG
(right) [6].

The E2E-CNN was also evaluated regarding the BPG coding solution, which is more advanced and,

thus, more compression efficient than both JPEG and JPEG 2000. In this case, the 7 test images were

BPG coded using quantization parameters (QPs) with values 43 and 47. The experiments also included

BPG used only with the RecCNN as a post-processing module (without up-sampling), what allows to

evaluate the impact (in this case the absence) of the pre-processing neural network. The results in Table

2.3 show that the E2E-CNN (6th to 8th columns) obtained better quality for the PSNR and SSIM, with

average gains of 0.99 dB and 0.0218, respectively, while less rate was spent to encode each test image

(with a 5.22% bitrate saving, on average). BPG with the RecCNN as post-processing module (3rd to 4th

column) also achieves a better quality than BPG alone, with average gains of 0.81 dB and 0.0168 for

PSNR and SSIM, respectively. However, the complete E2E-CNN framework effectively leads to the best

performance results (except for the Butterfly test image).

Table 2.3: PSNR, SSIM and rate (Bytes) comparison between BPG, BPG with RecCNN as post-
processing module and E2E-CNN using BPG. [6].

The E2E-CNN with JPEG to encode the compact representation was also compared to other solutions

available in the literature, still using the same 7 test images. To better understand the E2E-CNN

