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Abstract 

Deep neural networks have found great success on high-level computer vision tasks, notably image 

classification and object recognition. These image-based tasks are usually addressed by convolutional 

neural networks (CNNs), an architecture suitable to extract image features (e.g. edges) and to combine 

them to create even more complex features (e.g. a face). This recent success in the image processing 

world has also generated a growing interest in using deep learning tools (mostly CNNs) to address 

lower-level tasks such as image coding. 

In this context, the key objective of this Thesis is to design and assess an end-to-end coding framework 

involving image pre and post-processing based on deep learning techniques around a conventional 

image codec, e.g. JPEG. This can be achieved by using a CNN before encoding, for image 

simplification, and a CNN after decoding, for image enhancement. The proposed coding framework is 

based on available similar frameworks and tries to address their weaknesses and limitations, namely 

the inability to include a codec in the CNN training process and the lack of consideration of the rate 

limited resources in the adopted loss function (thus only focusing on distortion). More precisely, the two 

main contributions of this Thesis are the design and implementation of a third CNN, so-called CNN-

FakeCodec, which is included in the overall coding framework for CNN training; and the design of a loss 

function simultaneously considering the rate and distortion. The assessment results show that the 

proposed solutions can outperform the selected benchmarks, although depending on the target quality.  

 

Keywords: Deep learning, convolutional neural networks, image coding, rate-distortion optimization. 
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Resumo 

As redes neuronais profundas (RNPs) têm alcançado grande sucesso na abordagem a tarefas 

complexas na área da visão computacional, nomeadamente classificação de imagens ou 

reconhecimento de objetos. Estas tarefas, que envolvem imagens, são tipicamente abordadas através 

de redes neuronais convolucionais (RNCs), uma variante das RNPs. Este recente sucesso no mundo 

do processamento de imagem levou a um crescente interesse no uso destas técnicas de aprendizagem 

profunda (principalmente RNCs) para abordar outros problemas clássicos no mundo da imagem digital 

como a codificação de imagem. 

Neste contexto, o objetivo principal desta Tese é desenvolver e avaliar uma solução baseada em 

técnicas de aprendizagem profunda para o complemento de um codec tradicional. Esta solução é 

constituída por uma RNC para simplificar a imagem a codificar e outra RNC para melhorar a imagem 

após a descodificação. A solução proposta é baseada em soluções já disponíveis na literatura e 

ambiciona colmatar as respetivas limitações, nomeadamente a impossibilidade de incluir um codec 

tradicional no treino de RNCs e a inexistência de uma função de custo no treino considerando também 

o custo binário da codificação e não apenas a distorção. Mais concretamente, as duas principais 

contribuições desta Tese são: o desenho de uma terceira RNC, nomeada CNN-FakeCodec, que é 

incluída no processo de treino das restantes RNCs; uma nova função de custo que permite minimizar 

tanto o débito de codificação como a distorção. Os resultados obtidos mostram que a solução proposta 

apresenta melhorias em relação às soluções de referência em algumas situações, nomeadamente 

dependendo da qualidade pretendida.  

 

Palavras-chave: Aprendizagem profunda, redes neuronais convolucionais, codificação de imagem, 

otimização débito-distorção. 
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Chapter 1 

1. Introduction 

This chapter introduces the context and motivation for addressing the image coding problem in a 

framework where deep learning techniques play a pre and post-processing role. After, the Thesis 

objectives and the structure of this document are defined. 

1.1. Context and Motivation 

In todayôs world, image coding is critical in multiple contexts, notably for the large companies (e.g. 

Instagram, Facebook or Google) which need to store and transfer large amounts of images. Without 

image coding, the storage and bandwidth requirements would be much larger since storing an image 

using its original sample-based representation is very rate costly. 

Efficient lossy image coding solutions are critical to meet those requirements since they achieve large 

rate savings by removing some perceptually irrelevant image components, notably high-frequency 

details which are less relevant to the human visual system. Although lossy coded images obtained are 

not the same as the original images (since some information has been eliminated), this difference, so-

called distortion, may be perceptually irrelevant, leading to the so-called transparent quality; more 

aggressive coding may also be applied to achieve larger rate savings at the cost of larger quality 

penalties. The goal of coding is, naturally, to lose as less information as possible (i.e. to minimize 

distortion) for a specific target rate or minimize the rate to achieve a target quality. In summary, image 

codecs try to obtain the best rate-distortion (RD) trade-off and more modern technologies should offer 

better RD performance, meaning less rate for the same quality or more quality for the same rate. 

With the emergence of deep neural networks, notably the convolutional neural network (CNN) 

architecture, and its success in solving complex image-based tasks (e.g. image classification [1]), it is 

reasonable to expect that this technology may also perform well in the image coding field. In this context, 

three main paths may be followed nowadays to improve image coding, notably: 

¶ Conventional image coding technology improvement: This path consists in further 

improving the conventional, signal processing-oriented solutions for image coding as developed 

in the past, notably the Joint Photographic Experts Group (JPEG) standard [2] or the High 

Efficiency Video Coding (HEVC) (intra coding mode) standard [3]. Naturally, some of the 

available conventional codecs are simpler and were developed many years ago (the case of 

JPEG) and others are more recent and more complex with a higher efficiency (the case of 
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HEVC). The JPEG standardization group is presently following this path with the development 

of the JPEG XL standard. 

¶ Pure deep-learning-based image codecs: This path implies replacing the conventional 

codecs architecture with a fully deep learning-based architecture. This is a totally disruptive path 

which adopts an encoder-decoder architecture only-based on neural networks, such as those 

proposed in [4] [5]. The JPEG standardization group has currently an AhG which is studying 

this path, nicknamed as JPEG AI (Artificial Intelligence).   

¶ Conventional image coding complemented with deep learning techniques: This path tries 

to somehow combine the best of the two worlds above, the past and the future, in a meaningful 

way. An interesting way to follow this path is by still using a conventional image codec, thus 

benefiting from interoperability with existing image eco-systems, which is surrounded by deep 

learning technology, e.g. a pre-processing, down-sampling CNN before the encoder and a post-

processing, up-sampling CNN after the decoder. The idea is to simplify the image to be coded 

with the conventional codec with some appropriate deep learning pre-processing, thus saving 

rate, assuming that the simplified decoded image may be enriched/enhanced with some 

appropriate deep learning post-processing. In this framework, the overall RD performance may 

be improved while keeping compatible with the conventional image coding world. Naturally, this 

type of solutions does not require changes in the selected coding standard such as in [6] [7].  

1.2. Objectives and Thesisô Structure 

The objective of this Thesis is to develop an end-to-end image coding framework to improve the RD 

performance offered by conventional image coding solutions in a fully compliant way, this means without 

compromising the interoperability of the image coding streams, by integrating deep learning tools in new 

pre and post-processing stages. Thus the proposed coding framework includes not only a conventional 

image codec but also two deep neural network based modules (more precisely, CNNs): a pre-

processing CNN (i.e. before the encoder) for image simplification and a post-processing CNN for image 

enhancement, where simplification is equivalent to image down-sampling and enhancement to image 

up-sampling. It is expected that by appropriately learning these two CNN models in an end-to-end way 

(i.e. aware of each other and ideally also of the image coded), the overall RD performance may be 

improved over learning them individually or simply using conventional filters instead (e.g. bicubic) for 

pre and post-processing.  

To achieve the objectives of this Thesis, this document is structured in the following way: in Chapter 2, 

the deep learning and neural network basic concepts are reviewed, followed by a literature review on 

image coding solutions based on CNN tools inserted before and after the image codec; in Chapter 3, 

an in-depth analysis of a specific reference coding solution from the literature is presented and its main 

limitations identified with the target to overcome them with a set of techniques specifically proposed to 

address them; Chapter 4 reports the performance assessment of the proposed coding solutions 

regarding the relevant benchmarks; finally, Chapter 5 concludes this Thesis by summarizing the key 

contributions and outcomes and proposing paths for future work. 
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Chapter 2 

2. Deep Learning Processing as a Complement to Standard 

Image Coding: Concepts and Main Solutions 

In recent years, artificial intelligence, the simulation of intelligent behavior in computers, has exploded 

in popularity, especially machine learning (ML), defined by Tom Mitchell as the answer to ñHow can we 

build computer systems that automatically improve with experience, and what are the fundamental laws 

that govern all learning processes?ò [8]. This field has found great success (e.g. in computer vision 

applications) due to novel algorithms and architectures which require large amounts of data and let 

machines directly learn from data without any explicit programming.  

Within the ML field, the deep learning (DL) area can be defined as ñ(é) a machine learning technique 

that constructs artificial neural networks to mimic the structure and function of the human brain (é) uses 

multiple layers of nonlinear processing to extract features from data and transform the data into different 

levels of abstraction (classification).ò [9]. This area has been increasingly successful, mainly due to the 

growing availability of large datasets and computational power as well as advances in parallelization 

techniques for computation. DL techniques have proved very efficient in complex tasks such as image 

classification [10] [11] and natural language processing [12]. 

Since the objective of this Thesis is to design a DL based processing pipeline which includes and 

complements standard image coding solutions targeting improving the overall rate-distortion (RD) 

performance, this chapter reviews the main solutions in the literature with similar objectives. Also, for a 

better understanding of the presented solutions, the necessary background concepts on DL techniques 

are first described. More precisely, this chapter is organized as follows. In Section 2.1, the fundamental 

concepts to train and test a DL algorithm are presented; after, sections 2.2 to 2.5 review the main DL 

architectures and techniques while Section 2.6 review relevant image coding solutions in the literature 

employing DL techniques as a complement which is the technical approach to image coding adopted in 

this Thesis. 

2.1. Basic Concepts: Training and Testing 

In this section, the basic concepts necessary to understand the training and testing process of a DL 

network/model (most common to ML algorithms) are presented.  

A DL algorithm uses some training data (training samples) to learn first about a task in order it is able 

after to perform the same task for some data that it has never seen before (test samples). To assess 
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how the model performs in realistic conditions, the dataset is usually divided into two disjoint subsets. 

The first is a larger subset (e.g. ¾ of the complete dataset), so-called the training set, while the smaller 

subset is the so-called test set. A DL algorithm defines a model (or a parametrized function) using the 

training set; after, this model may be used for any test set (that can never be used for training) to perform 

some task, thus defining the performance of the model under realistic conditions for that task.  

Since there are many DL algorithms available in the literature, it is most common to classify them by 

their learning/training method, namely as: 

¶ Supervised learning: In this case, for each input from the training dataset, there is a label or a 

target value for the output. The DL algorithm performs a prediction by mapping the input to the 

output based on a model (or function) obtained with the training dataset and learns a model using 

the difference between the prediction and the ground truth. 

¶ Unsupervised learning: In this case, the training data does not have any target value and the DL 

algorithm just uses the dataset to learn and model the underlying structure and its distribution. 

¶ Semi-supervised learning: In this case, the dataset has both labeled and unlabeled samples. This 

method can be considered as an extension of supervised learning where adding unlabeled samples 

can lead to more accurate predictions or an extension of unsupervised learning where adding 

labeled samples can lead to an improved characterization of the dataset's distribution and its 

underlying structure. 

For supervised learning, there are several types of algorithms that mostly address regression and 

classification problems; for unsupervised learning, clustering and association rule learning are more 

common. Semi-supervised learning offers additional information for traditional tasks such as 

classification and clustering. Independently of the learning approach, a DL algorithm requires a loss 

function to measure how different are the predicted and the ground truth labels/values. Nowadays, 

there are many loss functions which are usually selected depending on the target application/task.  

A DL model has internal parameter values which are estimated from the data as well as external 

parameters, the so-called hyper-parameters, that are usually manually specified. The hyper-

parameters are tuned by the researchers to improve the performance of the DL algorithm.  

The performance of the DL algorithm is rather dependent on the data used for training. When the DL 

algorithm models the training data with high precision (including noisy samples), this may have a 

negative impact on the performance for new data, i.e. the model does not generalize well. This 

phenomena, so-called overfitting, is detected when the prediction accuracy over the training set is 

much higher than on the test set. To address the overfitting problem, there are several regularization 

techniques such as introducing an extra term into the loss function to penalize higher complexity models. 

2.2. Artificial Neural Networks 

As mentioned earlier in this chapter, a DL network takes raw data as input and learns the model to 

extract, with multiple layers of non-linear processing, the most important features from the input data 

(i.e. information), appropriate to perform the targeted task.  
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The so-called artificial neural network (ANN) is one of the foundations of DL techniques and its 

structure allows to extract and combine features into multiple levels of abstraction, as described in this 

section. ANNs, as the name itself suggests, take inspiration from biological neural networks, notably 

their structure, and were developed many decades ago, e.g. the first artificial neuron was presented in 

1943 [13]. However, neural networks have enjoyed much success recently due to the advances, already 

mentioned, such as the availability of large datasets and computational power.  

2.2.1. Artificial Neuron Model 

The atomic unit of an ANN is the artificial neuron, which is represented in Figure 2.1, where ὺ is the 

weighted sum of the input vector ὼ according to: 

 
ὺ ύὼ ὦ ȟ (2.1) 

or expressed as the dot product 

 ὺ ύ ẗὼ ὦ ȟ (2.2) 

where ύ is a vector of weights, with same dimensions as ὼ, and ὦ is a bias term added to the weighted 

sum.  

 

Figure 2.1: Artificial neuron model loosely inspired by a biological neuron [14]. 

Each element ὼ from the input vector ὼ is multiplied by the corresponding weight ύ which controls how 

much each input affects the neuronôs outcome. The bias term acts as a learnable threshold to control 

the strength of the neuronôs output signal. The value ὺ is then transformed by a non-linear function, thus 

producing the neuronôs output ώ as 

 ώ •ὺ  (2.3) 

where •ẗ is called as activation function. The role of this function is to introduce a non-linearity in 

the neuron, thus providing the flexibility to approximate rather complex functions. The most common 

activation functions are: 

¶ Sigmoid function: Squashes the output of a neuron between 0 and 1 and is defined as ʒÖ
ρ

ρ ÅȤÖ
. 

¶ Rectified linear unit (ReLU): This is the most popular activation function and is defined as 

ʒÖ ÍÁØ πȟ Ö. The ReLU provides better results for models with many neurons and its derivative 

is easy to calculate. 
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¶ Leaky ReLU: Adaptation of the ReLU to have a non-zero derivative across all its domain (for the 

ReLU, it is zero for negative numbers) and is defined as ʒÖ
πȢπρÖȟ  ÉÆ Ö π
Öȟ           ÉÆ Ö π

 . 

¶ Maxout: This is a generalization of the ReLU and its adaptations and increases the flexibility of the 

simple neuron model at the cost of having to estimate more parameters. In this case, the neuron 

has two sets of parameters available and is defined as ʒÖ ÍÁØ×ρ
4ẗÖÂρȟ ×ς

4ẗÖÂς ; the ReLU is 

a special case where Âρȟ ×ρ π. 

2.2.2. Network Architecture 

To provide an accurate relationship between the observed data (input) and its target values/labels 

(output), neurons are then connected to approximate more complex functions. A fully connected network 

is the simplest type of ANN and it is a sequence of layers, where each layer is a group of neurons in 

parallel. In a fully connected network, each neuron is connected to every other neuron in the following 

layer. This architecture, represented in Figure 2.2, has the following structure: 

¶ Input layer: The input layer receives input data to the network and passes that information to the 

next layer. 

¶ Hidden layer: Layers of neurons, which combine the information from the previous layers. A model 

can have none or many hidden layers stacked, where each layer successively learns more complex 

and abstract features. For some problems, the more layers are used, the more efficient the neural 

network can be. 

¶ Output layer: The last layer is responsible for obtaining an output value (predicted outcome) based 

on the information processed by the hidden layers. The number of neurons in the output layer 

depends on the problem to be solved, e.g. for a binary decision only one neuron is needed. 

The input data is processed along the chain of layers to produce an output, where the number of hidden 

layers is the depth of a model and the number of neurons in a layer is the layer size.  

 

Figure 2.2: Example of a fully connected neural network with two hidden layers [15]. 

Neural networks where the data is processed always in the same direction (acyclic model) through the 

layers are designated Feedforward Neural Networks (FNNs); however, other architectures exist where 

the network is not acyclic, such as Recurrent Neural Network, where loops are allowed. This type of 

network is presented in Section 2.4. 
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2.2.3. ANN Training 

The neural networkôs bias and weights parameters for all neurons (also called the network model) are 

estimated from a training set; if labeled, the training data provides the target output for each 

corresponding input. A training procedure with the goal of minimizing an empirical loss function is usually 

employed; this process determines the parameters such that for some input propagated throughout the 

network a prediction as close as possible to the target output is obtained. 

A popular iterative training technique for ANN is the so-called Gradient descent technique, which 

progressively updates the model parameters while decreasing the error value, as measured by the loss 

function, towards a minimum. This technique can be expressed by 

 —ὸ ρ —ὸ – ɳ ὒ— ȟ (2.4) 

where —ὸ ρ are the parameters in iteration ὸ ρ, —ὸ the parameters in iteration ὸ, – is the so-called 

learning rate hyper-parameter, which specifies how large is the update, and ὒɳ— is the gradient of 

the loss function with respect to its parameters. The ὒɳ— value is proportional to how much the 

parameters should change for the loss function to decrease, i.e. the parameters are updated in the 

opposite direction of the loss function gradient.  

The learning rate determines the size of the update that is needed to reach the minimum value of the 

loss function and is important for the algorithm convergence. A small learning rate will find the minimum, 

most likely at the cost of many iterations. A high learning rate may be faster; however, it may lead to 

divergence, notably if the magnitude of the update is larger than the distance to the minimum. Figure 

2.3 illustrates these dualities where the red line represents the functionôs value during the gradient 

descent with the argument w* standing for the minimum value of the represented function f(w). 

 

Figure 2.3: (Left) Progression with low learning rates. (Right) Progression with high learning rate. Adapted 
from [16]. 

To further optimize the gradient descent algorithm, some techniques can be employed to provide a more 

efficient update of the model parameters. A common practice is to update the learning rate during the 

convergence process to increase the convergence speed while minimizing the risks of divergence (e.g. 

using Adam algorithm [17]). 

Gradient descent does not guarantee that the global minimum value is reached as the found minimum 

may be local and not global. However, it still leads to good practical results and is much simpler than 

finding the global minimum. The process of minimizing the loss function with gradient descent is 

executed iteratively with an FNN in the following way:  
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¶ Parameters initialization: Parameters are initialized, usually with random values, which usually do 

not have much impact on the final outcome of this process. 

¶ Forward pass: The input data is processed by every layer of the network in a feed-forward way, 

thus obtaining the predicted value(s). Then, the loss function is computed between the predicted 

and target values. Every nodeôs output is a function of its inputs as represented in Figure 2.4 (left). 

¶ Backward pass: Starts by calculating the loss gradient with respect to the output and after 

backpropagates (opposite direction to the forward pass) the result to compute the lossô gradient with 

respect to every parameter. This is performed with the chain rule (a simple way to calculate the 

derivative of a composition of functions) and allows to backpropagate the error backwards, 

assuming the derivative of the activation functions present in the network are known. Figure 2.4 

(right) represents this process for a single node.  

  

Figure 2.4: (Left) Forward pass on a single node. (Right) Backward pass on a single node. 
Adapted from [18]. 

¶ Parameters update: Each parameter is updated according to Equation (2.4). There are several 

variants of the gradient descent algorithm, which define different ways to update the model 

parameters, e.g. the mini-batch gradient descent variant only updates the parameters for a set of 

training examples. 

The training process consists in iteratively repeating steps 2, 3 and 4 until a stopping criterion is met, 

e.g. a threshold on the error or some fixed number of iterations is reached. 

Depending on how the neural networks are trained, overfitting may occur, e.g. when the amount of 

training data is low compared to the number of model parameters that need to be found. A common 

technique to prevent overfitting in these architectures are regularization techniques, which are 

modifications of the learning procedure to find a model that is more general and can provide better 

accuracy for unseen data. An example of a regularization technique is the so-called dropout, where the 

goal is to have a model which is less dependent from the results of a particular set of units, thus 

increasing the modelôs generalization. This is achieved by temporarily (for each training sample) 

removing from the backward and forward passes the contributions of a random set of neurons. 

2.3. Convolutional Neural Networks 

Nowadays, complex tasks involving images, such as object recognition or image classification, are 

useful for many applications (e.g. self-driving cars, and visual surveillance among others) and, thus, 
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significant research efforts have been dedicated to address the problems faced by these applications. 

Images are rather difficult to process since an image is a high dimensional input where each pixel value 

corresponds to one dimension of the input vector; color images with three channels (e.g. red, green and 

blue (RGB)) are even more difficult since they have an increased input dimensionality. Therefore, 

images require a very large number of model parameters if a fully connected network, such as the ANN 

presented in Section 2.2, is used; moreover, also a very long training process would result. This fact 

motivates the use of simpler networks, notably the so-called convolutional neural networks (CNNs) 

architectures, which are presented in this section, have obtained great popularity and success. 

2.3.1. CNN Architecture 

A CNN relies on the same foundations as a traditional ANN, in the sense that the model learns a set of 

weights and bias; however, the main novelty is a new type of layer, the so-called convolutional layer, 

which is especially designed to extract features from images. Another type of layer which is often used 

together with convolutional layers is the so-called pooling layer, which aims to decrease the input 

dimensions while preserving the most relevant information. The convolutional and pooling layersô 

structure and operations are described in sections 2.3.2 and 2.3.3 respectively. In summary, the CNN 

architectural elements are the following: 

¶ Input layer: Takes an input image and passes it to the network. An image may be grayscale and 

thus represented with a single 2D matrix (each matrix element corresponding to a pixel value) or a 

color image usually represented with three channels/components (e.g. RGB), where each channel 

is again represented with a 2D matrix. Each matrix element is then an input to the network. 

¶ Convolutional layer: Performs a convolution operation using a set of learned weights. The output 

is also a matrix, which is, usually, element-wise submitted to a non-linearity, such as the ReLU. 

¶ Pooling layer: Optional layer which targets lowering the dimensionality of its input. The most 

popular pooling operation is the so-called max-pooling, which takes as input a local region of the 

matrix and outputs its maximum element.  

¶ Fully connected layer: Optional layer, only used for the last group of layers to perform classification 

based on the features extracted from the convolutional layers.  

Figure 2.5 gives an example of a CNN architecture where each convolutional layer successively extracts 

more complex (high-level) features. The pooling layers decrease the input dimensions and a fully 

connected layer performs classification.  
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Figure 2.5: Example of a CNN architecture [19]. 

 

The training process for a CNN is the same as for an ANN, thus using the gradient descent algorithm to 

minimize some loss function, since the convolutional and pooling operations are differentiable. 

2.3.2. Convolutional Layer 

The convolutional layer fundamental unit is the so-called filter (or kernel), defined by a set of parameters 

(or weights), which usually correspond to a matrix with some fixed size. These filters slide over the input 

image or the output values of a previous layer, thus performing a convolution operation which results in 

a set of feature maps. When a filter is combined with a non-linear activation function, the artificial neuron 

model previously described is obtained. However, instead of being connected to every neuron in the 

previous layer as in fully connected layers, this neuron is only connected to a small set of units, i.e. to a 

local region of the previous layer, drastically reducing the number of parameters in the network model. 

A CNN neuron is responsible to detect some feature anywhere in the image and may correspond to 

simple operations, such as a blur or edge detector. Since a large set of filters is typically used, and the 

output of the filters can be combined with a sequence of convolutional layers, it is possible to detect 

more high-level features (e.g. objects) in an image. 

The filter dimensions are defined by its height, width, and depth. The first two, also referred as the 

neuronôs receptive field, are fixed but may have any value, while the filterôs depth must match the 

inputôs depth. The filter output is then the dot product between its matrix of weights and the input region 

(plus some bias, as for ANN), and produces a response; the filter weights are learned and depend on 

the data that has been used for training. The response of the filter for every position of the input is a 

two-dimensional activation map; a stronger response in the map indicates that the filter has detected 

some pattern in the input, while a weaker response indicates that the pattern has not been detected. 

A key concept in convolutional layers is parameter sharing, since the same filter weights are used for 

all filters, independently of the local region of the image where the filter is applied (thus, achieving 

translation invariance); this significantly contributes to lowering the total number of model parameters 

that need to be learned. Figure 2.6 shows an example of a convolution between an input volume (5x5x1) 

and a filter (3x3x1). In the activation map, the two highlighted elements correspond to the first two steps 

of convolution between the filter and the input volume. The remaining elements are obtained by 

continuing to slide (in Figure 2.6, by 1 pixel) the filter over the input volume and repeating the filter 

operation at each position. 
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Figure 2.6: Activation map (orange) is the result of the convolution between the input (blue) and the filter 
(green). 

 

In a convolutional layer, multiple filters (where each can be seen as a neuron) may be stacked, thus 

allowing to detect different patterns (e.g. lines in any position); the size of this stack defines the layer 

depth, where each filter usually detects a different feature in the input. By applying the convolutional 

filters to the input volume, a set of activation maps are produced, which are concatenated to form the 

output of the convolutional layer. Figure 2.7 shows a visual representation of these concepts, where the 

input volume (σςσςσ) and the filter (υ υ σ) have a depth of 3. The output volume (σςσςρπ) 

is a stack of activation maps, meaning that 10 filters were independently applied to the input. 

 

Figure 2.7: Visual representation of a filter and a stack of activation maps [20]. 

A convolutional layer also introduces the following operations and hyper-parameters: 

¶ Stride: In the convolution layers, the filters are applied to a local square region (receptive field), 

centered at every position of the input volume, effectively sliding the filter along the input. The stride 

hyper-parameter specifies how many positions should the filter move between each convolution. A 

value of 1 indicates that every position is used as filter center while larger stride values lead to lower 

spatial resolutions for the feature maps (compared to the input), e.g. a stride of 2 leads to feature 

maps with half the size (in height and width) compared to the input. In Figure 2.6, the activation map 

was obtained with a stride of 1. 

¶ Zero-padding: Padding the input with zeros around the (vertical and horizontal) borders can 

preserve the input dimensions when a convolutional layer is applied. The zero-padding hyper-

parameter specifies the size of the padding. This size usually corresponds to half the size of the 

filter, e.g. a σ σ filter usually applies a zero-padding of size 1, thus preserving the input dimensions 

at the output (with stride of 1). Figure 2.8 represents an image (blue) with a zero-padding of size 1 

for a σ σ filter (shade) to produce an output activation map (green) with the same dimensions as 

the input.  
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Figure 2.8: Image (blue) with zero-padding (dashed lines) of size 1 [21]. 

 

2.3.3. Pooling Layer 

The pooling layer aims to decrease the width and height of its input (the depth remains the same) while 

preserving the most relevant information. This operation lowers the number of model parameters 

needed for the following layers, therefore reducing the computational effort required to train the model 

and also preventing overfitting. Rather often, pooling layers are interleaved with convolutional layers. 

While the pooling layer has no learnable parameters, its operation is similar to the convolutional layers. 

In this layer, a pooling operation is applied to a local square region of the input centered at every (or 

some according to the stride hyper-parameter) position of the input. The size of this region is defined by 

the window size hyper-parameter. In the max-pooling operation, the output corresponds to the 

maximum value of the input values in each window. Figure 2.9 represents the max-pooling operation 

where a τ τ matrix is reduced to a ς ς matrix.  

 

Figure 2.9: Example of max-pooling operation, reducing the inputôs dimensions [22]. 

 

This type of layer is optional in a CNN, i.e. it is the network designerôs choice to introduce it or not in the 

network architecture. In a CNN architecture, an alternative to reduce the input spatial dimensions is to 

apply a convolutional layer with a stride greater than 1. For the model training process, in the backward 

pass, the max-pooling node acts a gradient router, i.e. passes the gradient value to the selected node 

(during the forward pass), and a zero gradient to the remaining nodes. 

2.4. Recurrent Neural Networks 

Many complex tasks, such as video captioning and language translation, involve recognizing patterns 

from sequences of data, e.g. video frames or words. FNNs fall short to recognize such patterns since 

each input is independently processed, without considering previous input or output information. 
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Recurrent Neural Networks (RNNs) have shown better performance for some tasks due to its capacity 

to maintain context information between sequence elements, i.e. allowing information to persist through 

time, learning from the past. Furthermore, an RNN can map an arbitrary sized input sequence to an 

arbitrary sized output sequence.  

The core block of an RNN architecture is the RNN cell (blue cell in Figure 2.10) which consists of a 

traditional FNN with layers of neurons, weights and biases. The main difference is that the output of the 

RNN cell is fed back to the network along with the next input element (hence the name recurrent 

network) in a loop, thus allowing to preserve context information throughout the sequence. This network 

structure can be unrolled, as depicted in Figure 2.10 right), and represented as multiples copies of itself, 

where each copy is passing information to the next, each representing a time step (or iteration). A 

sequence is a set of elements (e.g. images or words) successively fed to the network at each iteration. 

 

Figure 2.10: RNNôs structure unfolded as a chain of time steps [23]. 

The RNN cell computes and stores the so-called hidden state, Ὤ, as a function of the previous hidden 

state and its current input element. This value summarizes the sequence elements already seen and is 

then passed as an input to the next iteration to compute the next hidden state, thus being able to learn 

long-term dependencies. At time step ὸ, it can be expressed as 

 Ὤ ‰ὠὬ Ὗὼ ὦ   (2.5) 

where ‰Ȣ is an activation function (such as the sigmoid or ReLU functions) to introduce a non-linearity 

to the model, ὠ and ὦ are sets of weights and biases applied to the previous hidden state Ὤ , and Ὗ 

another set of weights applied to the input ὼ. At each time step, the respective hidden state may also 

be used to compute an output. At time step ὸ, the output can be defined as: 

 έ ὡὬ ὦ  (2.6) 

where ὡ and ὦ are sets of weights and biases and Ὤ the hidden state at time step ὸ. In RNNs, it is 

also common to have έ as an input to an FNN (e.g. to label the output) or even to another RNN. 

For supervised training, έ (along with its ground truth) is used to compute a loss function at each 

iteration; all losses are then summed to train the model using the gradient descent algorithm. The weight 

sets Ὗȟὠȟὡ and biases are learnable parameters and they are shared throughout all iterations and 

updated after every batch of training samples (as for FNN). 

For long sequences, the performance of vanilla/basic RNNs decreases [24] as it tends to disregard the 

contribution of past elements, i.e. dependencies between distant sequence elements are rarely 
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detected. To address this problem, the so-called Long Short-Term Memory (LSTM) architecture [25] 

is a common evolution of the RNN, which uses a slightly more complex RNN cell and is able to recognize 

these long-term dependencies. 

2.5. Autoencoders  

Dimensionality reduction is the process of lowering the number of random variables associated to the 

data and is an efficient way to solve several unsupervised ML problems, e.g. denoising, super-resolution 

as well as coding of high dimensionality data. Recently, traditional approaches to this problem, such as 

Principal Components Analysis (PCA), have been outperformed [26] by a new type of DL architecture, 

the so-called autoencoder (AE). 

An AE is a neural network with an especial hidden layer that follows some restriction, e.g. obtaining a 

compact (code) description of the original input. From this coded representation, also called latent 

representation, the network should be able to reconstruct the input as faithfully as possible at the output. 

This type of neural networks is classified as unsupervised learning (or self-supervised learning) since it 

is trained by attempting to replicate in the most accurate way its input to its output. 

In an AE, represented in Figure 2.11, the input and output layers dimensions (i.e. number of neurons) 

must match and the input is passed to a hidden layer with smaller dimensionality, the so-called 

bottleneck, thus forcing the network model to learn a low-dimensional representation of the input, 

notably by extracting its most representative features. 

 

Figure 2.11: Example of the overall auto-encoder architecture [27]. 

As shown in Figure 2.11, the AE structure can be grouped into two stages, encoder and decoder, where 

the middle layer is the bottleneck layer and is common to both stages. At the encoder, a chain of hidden 

layers successively reduces the input dimensions until the bottleneck layer, thus creating a coded 

(compressed) representation of the input. The decoder restores the original data dimensions from the 

coded representation available at the bottleneck layer and attempts to faithfully reconstruct the original 

input. The coded representation has some useful properties, namely the ability to represent the input 

data in a compact way by exploiting the correlations between elements. In the training process, a loss 

function is used to measure how different is the reconstructed output from the original input and the 

model is trained using gradient descent as for other networks.  

The AE depicted in Figure 2.11 is an example of an undercomplete autoencoder since the hidden 

layer (and thus the code) has a smaller dimension (code size) than the input layer. In this case, by 

forcing the autoencoder to have a lower dimensionality code, it is possible to capture the most salient 
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features of the training set. Another type of AE is the overcomplete (or sparse) autoencoder, which 

is allowed to have a hidden layer of higher dimension (code size) in comparison to the input layer. 

However, in this case, another type of restriction is imposed on the code learned by the network, notably 

via a sparsity term that is added to the loss function to ensure that only a limited number of neurons 

are simultaneously activated at the autoencoder bottleneck. This type of restriction forces each neuron 

to learn independent and more representative features, as each neuron, when activated, has a greater 

impact on the final result.  

The AE layers may be fully connected or convolutional, the latter being more adequate to process 

images due to their size. Several AE variations have been proposed, notably targeting specific problems, 

such as a denoising AE [28] to remove noise from data samples and a variational AE [29] where the 

probability density function (PDF) of the training data is estimated and new examples (similar to the 

training samples) can be generated by sampling from the learned PDF. 

2.6. Main Deep Learning Processing Solutions Complementing Standard Image 

Coding Solutions 

In this section, some selected solutions available in the literature related to the objectives as this Thesis 

are reviewed. While not specifically developed for image coding, the first solution can be made 

complementary to conventional image coding standards to achieve a better overall RD performance. 

The two remaining solutions have the specific goal of improving the RD performance of standard image 

coding solutions by including additional processing components based on DL principles: pre-processing 

at the encoder and post-processing at the decoder.  

2.6.1. Task-Aware Image Downscaling 

A. Context and Objectives 

The task-aware image down-scaling framework (TAID) proposed in [30] addresses the general 

problem of image scaling/resizing, where the image spatial resolution may be reduced for storage or 

transmission to be later increased (restored), when needed, e.g. for user visualization. TAID is an AE 

based framework that reduces the spatial resolution at the encoder while at the decoder the image 

spatial resolution is restored; the low-resolution image is compressed and may be stored or transmitted. 

Thus, the following main operations can be identified: 

¶ Image down-scaling (LR task): This operation creates a low-resolution (LR) image by down-

scaling (reducing the spatial resolution) the original image while preserving as much as 

possible the visual information and spatial structure. 

¶ Image up-scaling (SR task): This operation creates an original resolution image by up-scaling 

(increasing the spatial resolution) the LR image to the original resolution in a so-called super-

resolution (SR) process. This is an ill-posed problem since several high-resolutions images can 

be inferred from a single LR image. 
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The TAID framework approach is to create an LR image that maximizes the restoration performance 

when the high-resolution image is estimated, i.e. to produce an image as similar as possible to the 

original by also controlling how the LR image is created. In this case, a deep convolutional AE model is 

used where the encoder performs down-scaling (the output is the LR image) and the decoder up-scaling 

(the output is the reconstructed image). A guidance image, obtained with a conventional algorithm 

(such as bicubic down-sampling), is also computed to guarantee (or constrain) that the LR version 

produced by the encoder has a similar visual information to the original, naturally for a lower spatial 

resolution. However, when the LR image is constrained to be similar to the guidance image, it may result 

in a poorer restoration of the original image spatial resolution (i.e. the SR task) and, thus, the training 

process allows to control the trade-off between the down-scaling performance (i.e. visual quality of the 

LR image) and the SR performance (i.e. similarity to the original image). 

B. Architecture and Walkthrough  

The TAID follows an AE based architecture, shown in Figure 2.12 (middle). The original (input) image 

is represented as Ὅ , the guidance image as Ὅ  and the reconstructed image (output) as Ὅ . The 

LR image obtained after encoding through quantization (as described later), corresponds to the so-

called task-aware down-scaled (TAD) image, represented as Ὅ . The ὒ  is the loss term computed 

between the original and reconstructed (TAU) images (output from the SR task) and ὒ  is the loss 

term computed between the guidance and TAD images (output from the LR task).  

 

Figure 2.12: Layer types (left) used in the TAID architecture (middle) and the structure of the residual 
block (Resblock) (right) [30]. 

The pipeline shown in Figure 2.12 (middle) follows the principles of an AE architecture (as described in 

Section 2.5) and includes the following steps: 

¶ Downscaling network: The down-scaling network (at encoder side) consists in two 

convolutional layers (conv), followed by a down-scaling layer (Inv.PixelShuffle), three residual 

blocks, a convolution layer, a skip connection (with pixel-wise sum) and a convolutional layer. 

The down-scaling layer reduces the spatial resolution by half in both spatial dimensions and the 

residual block inckudes two convolutional layers with a ReLU activation in between (as shown 

in Figure 2.12 (right)). The output of the down-scaling network (i.e. the TAD image) is the pixel-
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wise sum of the last convolutional layer output and the guidance image. This means that this 

first network only learns the residual that has to be added to the guidance image. 

¶ Quantization module: Since the TAD image may contain floating-point values, a differentiable 

quantization operation (i.e. a function with a derivative, compatible with gradient descent) 

produces an image with a fixed size value of 8 bits per sample, suitable to be displayed on a 

screen. This module can be generalized to any image coding solution provided that all included 

operations are differentiable, as usually happens in a lossless image codec. 

¶ Upscaling network: The up-scaling network (at decoder side) has the inverse architecture of 

the down-scaling network (since both build an AE), except for the down-scaling layer that is 

replaced with an up-scaling layer (PixelShuffle) to double the input spatial resolution in both 

dimensions. The decoder input is the TAD image and its spatial resolution is increased to be 

the same as the original image, thus obtaining the reconstructed TAU image.  

The down-scaling layer is located before the encoder and the up-scaling layer after the decoder to 

reduce the computational complexity of the remaining layers. The TAID network architecture is defined 

to downscale and up-scale the image spatial resolution by a factor of 2; however, with minor changes 

to the structure, higher scaling factors (powers of 2) can be obtained by introducing a loop at the encoder 

(and at the decoder) to successively downscale (and up-scale) the input image. Following the described 

architecture, the TAID framework can be formally described as: 

 Ὅ ὪὫὍ ȟ (2.7) 

where Ὣẗ and Ὢẗ are the down-scaling (at encoder) and up-scaling (at decoder) networks, 

respectively. 

The up-scaling layer uses a technique, so-called sub-pixel convolution [31] (or pixel shuffle), to 

increase the input spatial resolution and the inverse technique (inverse pixel shuffle) to reduce it. The 

convolutions layers preceding the up-scaling and down-scaling layers have 256 filters and compute 256 

feature maps while the remaining convolutional layers have 64 filters and compute 64 feature maps.  

Since the sub-pixel convolution and residual learning are rather important techniques for the described 

architecture they are explained in more detail: 

¶ Sub-pixel convolution: A sub-pixel convolution technique with scaling factor ὶ computes a 

volume with size ὶὌ ὶὡ ὅ from an input volume with size Ὄ ὡ ὶὅ, where Ὄ and ὡ 

correspond to the height and width of the input array and ὅ is the number of image channels (or 

feature maps). In this architecture, the scaling factor is ὶ ς for the up-scaling layer. Since the 

convolutional layer preceding the pixel shuffle layer computes 256 features maps (i.e. 

Ὄ  ὡ ςυφ), after applying the sub-pixel convolution, the resulting volume has size 

ςὌ ςὡ φτ, i.e. twice the input resolution in both spatial dimensions. For the down-scaling 

layer (inverse pixel shuffle), the scaling factor is ὶ ρςϳ , thus reducing the input resolution to 

half for both spatial dimensions. The usage of sub-pixel convolution also allows to generalize 

the TAID framework to a colorization task where, instead of changing the spatial resolution, the 

down-scaling network computes a grayscale image (i.e. reduces the number of image channels) 
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and the up-scaling network restores the original color image (i.e. increases the number of image 

channels). 

¶ Residual learning: Residual learning [1], illustrated in Figure 2.13, is a rather popular technique 

for neural networks, which leads to a faster convergence of the training procedure. Assuming 

that Ὄὼ is a function that correctly models some input ὼ to its output, then this technique 

consists in learning a residual Ὂὼ such that Ὄὼ Ὂὼ ὼ. In [1], it is observed that Ὂὼ is 

easier to learn than Ὄὼ since the residual connection also allows to propagate a gradient value 

(during the backward pass), which may be more useful than a gradient value passed by multiple 

weight layers. Moreover, the identity function is easily learned by setting Ὂὼ to zero. 

 

Figure 2.13: Residual learning block with two layers parameterized with weights [1]. 

C. Training Procedure 

The AE based TAID framework is trained end-to-end, thus including both the down-scaling and up-

scaling networks. The optimization problem to be solved during the training can be described as: 

 
—ᶻȟ—ᶻ  ÁÒÇ ÍÉÎ  

ȟ

ρ

ὔ
ὒ Ὢ  Ὣ Ὅ ȟὍ ȟ (2.8) 

where — and — represent the down-scaling and up-scaling network parameters, respectively, ὔ is the 

batch size, Ὅ  is the ὲ  training sample and ὒ  is the loss function (e.g. MSE). However, since no 

ground-truth exists for the LR task, and there is no guarantee that the obtained LR image is visually 

similar to the original, a down-scaled guidance image is computed using bicubic down-sampling.  

Thus, the complete loss function, including the guidance image, is formulated as (with the model 

parameters omitted for notation simplicity): 

 ὒ ὪὫὍ ȟὍ ȟὍ ὒ ὪὍ ȟὍ ‗ὒ Ὅ ȟὍ ȟ (2.9) 

where Ὅ  is the ὲ  training sample, Ὅ  is the ὲ  guidance image, ὒ  and ὒ  are the loss 

functions for the SR and LR task, respectively, Ὅ  is the ὲ  computed TAD image (i.e. the down-

scaling network output), and ‗ is a hyper-parameter controlling the trade-off between the SR and LR 

performance. If ‗ π, the TAID framework disregards the guidance image and, thus, it is not constrained 

in computing an LR image visually similar to the original.  

The óDIV2Kô training dataset [32] was used to obtain images for the training and test sets; the model has 

been trained for σ ρπ iterations (total number of model parameter updates). During the early training 

iterations, the quantization module is ignored (i.e. skipped during the forward and backward passes) as 

it may contribute to training instabilities. For the last iterations, the quantization module is included to 

fine-tune the model parameters.  
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D. Performance Assessment 

The TAID framework has been compared with the following SR solutions available in the literature and 

also exploiting DL based principles: i) generative adversarial network for image super-resolution 

(SRGAN) [33]; ii) enhanced deep super-resolution network (EDSR+) [34]; and iii) image super-resolution 

using very deep convolutional networks (VDSR) [35]. The SRGAN, EDSR+ and VDSR models have 15, 

68 and 20 convolutional layers, respectively. The datasets used for the experiments were óSet5ô [36], 

óSet14ô [37], óB100ô [38], óUrban100ô [39] and óDIV2Kô validation dataset [32]. The experiments were 

performed on RGB (three channels) and grayscale images (single channel). The grayscale images were 

obtained by converting the RGB components of the original image into the luminance (Y) and 

chrominance (CbCr) components (YCbCr color space) and dropping the chrominance channels. 

Although the authors also evaluated the TAID framework performance for the colorization task, the 

results shown here are only for the LR/SR tasks, due to the objective of this Thesis.  

Table 2.1 compares the SR task performance when using scaling factors of 2 and 4 (achieved with loops 

at the encoder and decoder), where the peak signal-to-noise ratio (PSNR) metric was used to compare 

the original and reconstructed images. More precisely, the experiments compared the reconstruction 

quality of the bicubic down-sampled images (3rd to 5th column) and the TAD down-sampled images (6th 

to 8th column), as stated in the 2nd line of the table. The reconstructed images were obtained with the 

EDSR+ and VDSR architectures for SR and the TAU up-sampling method, as stated in the 3rd line. The 

PSNR values were obtained for the grayscale and color version of the images (values separated with a 

slash); the red and blue highlighted values indicate the best and second-best performances (i.e. higher 

PSNR) for the respective test conditions (i.e. dataset and scaling factor). 

Table 2.1: Objective quality assessment for the TAID framework and the VSDR [35] and ESDR+ [34] up-
scaling solutions. Down-scaled with bicubic down-sampling (3rd to 5th column) and the TAID framework (6th 

to 8th column). [30]. 

 

The PSNR values in Table 2.1 show that, when using TAD for down-sampling, coupled either with TAU 

or with EDSR+ or VDSR, higher quality can be achieved when compared to previous methods (using 

bicubic down-sampling). Moreover, the ESDR+ network when coupled with the TAD down-sampling 

method has the best performance for all datasets and scaling factors. The VDSR also benefits from the 

TAD down-sampling to achieve the second-best performance with color images for all the datasets. 
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Both the EDSR+ and VDSR were re-trained by the authors, using TAD images instead of interpolated 

images. 

A visual example of the proposed solution performance compared with SRGAN [33] and EDSR+ [34] 

(benchmarks) is shown in Figure 2.14. A scaling factor of 4 was used to reduce the spatial resolution 

and the same factor to restore it. For the benchmarks, the LR images were obtained using bicubic down-

sampling. From this example, the following conclusions can be taken: 

¶ Subjective quality: The TAID framework reconstructs more detailed images (sharper edges, 

less blur), which are also more (perceptually) similar to the original image. 

¶ Objective quality: The restored image PSNR for the TAID framework is higher compared to 

other alternative solutions, such as SRGAN [33]  and ESDR+ [34]. 

¶ Computational Complexity: Using TAU for up-sampling, the restored image is computed in 

10 ms (using a GPU), which is faster than the alternative solutions. It is reported in [30] that, by 

using the TAU up-sampling for high-definition (HD) images, the up-scaling operations are 

executed in 140 ms. 

 

Figure 2.14: Objective (PSNR), subjective and computational complexity comparison between SRGAN 
[33], EDSR+ [34], TAU and ground-truth images. [30]. 

2.6.2. An End-to-End Compression Framework Based on Convolutional Neural 

Networks 

A. Context and Objective 

In [6], an end-to-end compression framework with two CNNs (E2E-CNN) is proposed with the goal 

of improving the RD performance of traditional image coding solutions. An important contribution of this 

work is a technique to simultaneously train the two involved CNNs, which allows for the backpropagation 

algorithm to be applied even when lossy coding solutions (with quantization) are used. The framework 

does not require any change to the image codec and, thus, can be made compliant with other existing 
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codecs, such as the JPEG standard [2], JPEG 2000 standard [40] and Better Portable Graphics (BPG) 

codec [41], which corresponds to a subset of tools from the HEVC standard. 

B. Architecture and Walkthrough 

This compression framework consists of two CNNs. The first CNN, the so-called compact convolutional 

neural network (ComCNN), corresponds to a pre-processing step, targeting creating a compact 

representation of the image to be coded by the encoding step, which should preserve the structural 

information that is later needed for the enhancement phase. The second CNN is the so-called 

reconstruction convolutional neural network (RecCNN) and aims at enhancing the quality of the decoded 

image, thus corresponding to a post-processing step. The overall E2E-CNN architecture is shown in 

Figure 2.15 and includes the following steps: 

¶ Compact Representation Creation (ComCNN): The original image is fed to the ComCNN, 

which computes a compact image representation, notably with a lower spatial resolution.  

¶ Image Encoder: The obtained compact representation is encoded with a conventional image 

coding solution, such as the JPEG standard, resulting into a bitstream that can be stored or 

transmitted.  

¶ Image Decoder: A decoded version of the compact representation can be obtained by decoding 

the coded bitstream. This may be a lossy process and, thus, the decoded image can have some 

compression artifacts. 

¶ Reconstructed Image Creation (RecCNN): The decoded image is first up-sampled to the 

original spatial resolution using bicubic interpolation. Then, it is fed to the RecCNN to improve 

its quality and obtain the final reconstructed image that may be shown to the user. 

 

Figure 2.15: E2E-CNN framework architecture [6]. 

Since the two CNNs are the most novel components in the proposed processing pipeline, the 

architectures of both neural networks will be described next.  

The ComCNN, shown in Figure 2.16 (left), has three layers, which aim at computing a compact 

representation of the original image, while maintaining its spatial structure and information. The layers 

have the following characteristics: 
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¶ 1st layer ï Convolutional + ReLU: Convolutional layer with a total of 64 filters of size σ σ ὧ, 

where σ σ are the spatial dimensions (width and height) and ὧ is the number of image 

channels. This layer generates 64 features maps, which are processed by ReLU activations. 

¶ 2nd layer ï Convolutional + BN + ReLU: Convolutional layer that aims at computing down-

scaled (higher-level) features, with a total of 64 filters of size σ σ φτ and stride 2. This layer 

generates 64 features maps, followed by batch normalization (BN) [42] and ReLU activations. 

¶ 3rd (last) layer - Convolutional: Convolutional layer responsible for creating the compact 

representation with ὧ convolutional filters of size σ σ φτ. Due to the design of this filter (which 

operates on 64 channels), an image representation with ὧ channels is obtained. No ReLU 

activation is performed in the last layer. 

After the compact representation is encoded, decoded and up-sampled with bicubic interpolation, the 

RecCNN aims at reconstructing the image with the best possible quality by computing a residue that 

characterizes the noise between the original and the up-sampled images. The RecCNN, shown in Figure 

2.16 (right), has 20 layers with the following characteristics: 

¶ 1st layer - Convolutional + ReLU: Convolutional layer with 64 filters of size σ σ ὧ used to 

generate 64 feature maps, followed by ReLU activation. 

¶ 2nd to 19th layers ï Convolutional + BN + ReLU: Convolutional layers with 64 filters of size 

σ σ φτ, to generate 64 features maps followed by BN and ReLU activation. 

¶ 20th (last) layer - Convolutional: Convolutional layer with ὧ filters of size σ σ φτ to compute 

the residue. This residue is after added to the up-sampled decoded image to enhance its quality. 

 
 

Figure 2.16: ComCNN (left) and RecCNN (right) architectures [6]. 

The BN technique [42] is especially useful when the neurons activation values in a hidden layer have 

different order of magnitudes, what may compromise the learning in following layers. In other words, 

without BN, an activation value much larger than the rest may drastically reduce the effect of the neurons 

in the following layers, thus slowing the training procedure.    

C. Training Procedure 

Both ComCNN and RecCNN must collaborate to benefit/match from/to each other and, thus, a unified 

end-to-end learning algorithm is employed to simultaneously compute the parameters for both CNNs. 

This join training is the E2E-CNN framework main novelty and allows obtaining better reconstructions 

for the decoded images in comparison to conventional image enhancement (post-processing) methods 

(e.g. [43]) and standard image coding solutions (such as JPEG).   



23 

 

The training algorithm fixes the RecCNN parameters (—  to perform the updating of the ComCNN 

parameters (—  (with the Gradient Descent technique) and vice-versa. This process is executed 

iteratively and the details are presented next. 

The optimization problem lies in finding — and — parameters that minimize the loss function (computed 

between the original and reconstructed images) over the training set, which may be defined as: 

 
—ȟ— ÁÒÇ ÍÉÎ 

ȟ
ὙὩὧ—ȟὅὅέά—ȟὼ ὼ , (2.10) 

where ὙὩὧẗ corresponds to RecCNN parametrized by —, ὅẗ represents both the image encoder and 

the image decoder sequentially (e.g. JPEG), ὅέάẗ corresponds to ComCNN parametrized by —, and 

ὼ is the original (input) image. However, since the ὅȢ stage involves a quantization step (to reduce the 

image irrelevant components), which is not differentiable, the backpropagation algorithm cannot be 

applied with (2.10). To overcome this problem, the proposed solution derives two update rules (one for 

the RecCNN and another for the ComCNN), which are performed iteratively in the training of both 

models.  

RecCNN Update Rule 

The — (i.e. the RecCNN model) parameters are updated first. By fixing —, the best — can be found by: 

 
—  ÁÒÇ ÍÉÎὙὩὧ—ȟὅέάὅ—ȟὼ ὼ Ȣ (2.11) 

For notation simplicity, an auxiliary variable ὼ  is introduced in (2.11), which corresponds to the decoded 

and up-sampled representation, fed to the RecCNN, and defined as 

 ὼ ὅέάὅ—ȟὼ ȟ (2.12) 

Since — is fixed, the RecCNN is simply a CNN fed with some image ὼ . Then, the update rule is 

 —  ÁÒÇ ÍÉÎᴁὙὩὧ—ȟὼ ὼᴁ. (2.13) 

The mean-squared error (MSE) loss function to be used to obtain the  — parameters corresponds to: 

 

ὒ —
ρ

ςὔ
ÒÅÓὅὼ ȟ— ὅὼ ὼ ȟ (2.14) 

where ὔ is the batch size, ὼ  is the Ὧ  compact representation produced by the ComCNN, ὼ is the 

Ὧ  image in the current batch and ÒÅÓẗ is the residue learned by the RecCNN. Equation (2.14) is 

equivalent to (2.13), only expressed in the form of a residue. 

ComCNN Update Rule 

The best — parameters (i.e. the ComCNN model) are obtained by fixing —, where: 

 
—  ÁÒÇÍÉÎὙὩὧ—ȟὅέάὅ—ȟὼ ὼ Ȣ (2.15) 
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For the — update, the gradient cannot flow from the RecCNN to the ComCNN since ὅȢ is not 

differentiable. To overcome this problem, the following update rule has been derived to find the best —: 

 
—  ÁÒÇ ÍÉÎὙὩὧ—ȟὅέά—ȟὼ ὼ , (2.16) 

which essentially consists in skipping the encoding and decoding steps when flowing the gradient, from 

the RecCNN to the ComCNN in the backward pass, with — fixed. The MSE loss function to obtain — 

corresponds to: 

 
ὒ — В ὙὩὧ—ȟὅέά—ȟὼ ὼ , (2.17) 

where ὔ is the batch size and ὼ is the Ὧ  image in the current batch. 

The training process is executed iteratively (while switching the fixed model parameters) with a batch 

size . ρςψ, for 50 epochs (number of times the complete training dataset is used). Following [44], from 

a total of 400 images with size ρψπρψπ (width and height), 204800 patches with size φτφτ were 

cropped for training. For testing, five images with size ςυφςυφ and two images with size υρςυρς 

(for a total of 7 grayscale test images) were used. 

D. Performance Assessment 

The E2E-CNN performance has been assessed with experiments using the óSet5ô [36], óSet14ô [37], 

óLIVE1ô [45], and óGeneral-100ô [46] datasets, and the JPEG and JPEG 2000 standards to code the 

compact representation. The results obtained have been compared with those obtained when using 

each codec alone to encode the original image, this means without the additional pre- and post-

processing CNN based phases. Moreover, the E2E-CNN results for the 7 test images were compared 

with those obtained by the BPG codec and also other solutions in the literature, namely post-processing 

quality enhancement methods following traditional image decoders ( [47], [48], [49], [50], [51], [52], [43]) 

and a DL based solution technique named artifacts reduction convolutional neural network (ARCNN) 

[53]. A summary of the experimental results is now presented. 

Objective Quality Evaluation 

For the objective quality evaluation, the adopted quality metrics were the PSNR and also the structural 

similarity (SSIM) index to compare the original and finally reconstructed images.  

In Table 2.2 (left), E2E-CNN using JPEG 2000 to code the compact representation is compared with 

the conventional JPEG 2000 codec alone. The JPEG 2000 encoder in the E2E-CNN was adjusted to 

achieve a similar target bitrate, defined in terms of bits per pixel (bpp), tos the bitrate spent by the JPEG 

2000 codec alone. The higher qualities achieved by E2E-CNN (labelled as Proposed), for both quality 

metrics, show that the JPEG 2000 codec performance can be improved, as much as 2.91 dB and 0.1357 

for PSNR and SSIM, respectively. In Table 2.2 (right), E2E-CNN using JPEG to code the compact 

representation is compared with the conventional JPEG codec alone for two quality factors (QFs), 

notably 5 and 10. Again, the E2E-CNN was adjusted to achieve a bitrate similar to the JPEG bitrate. 

The E2E-CNN (Proposed) outperforms the JPEG codec for both quality metrics, as much as 3.07 dB 

and 0.1268 for PSNR and SSIM, respectively. 
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Table 2.2: Performance evaluation comparing E2E-CNN (Proposed) against JPEG 2000 (left) and JPEG 
(right) [6]. 

 

 

The E2E-CNN was also evaluated regarding the BPG coding solution, which is more advanced and, 

thus, more compression efficient than both JPEG and JPEG 2000. In this case, the 7 test images were 

BPG coded using quantization parameters (QPs) with values 43 and 47. The experiments also included 

BPG used only with the RecCNN as a post-processing module (without up-sampling), what allows to 

evaluate the impact (in this case the absence) of the pre-processing neural network. The results in Table 

2.3 show that the E2E-CNN (6th to 8th columns) obtained better quality for the PSNR and SSIM, with 

average gains of 0.99 dB and 0.0218, respectively, while less rate was spent to encode each test image 

(with a 5.22% bitrate saving, on average). BPG with the RecCNN as post-processing module (3rd to 4th 

column)  also achieves a better quality than BPG alone, with average gains of 0.81 dB and 0.0168 for 

PSNR and SSIM, respectively. However, the complete E2E-CNN framework effectively leads to the best 

performance results (except for the Butterfly test image). 

Table 2.3: PSNR, SSIM and rate (Bytes) comparison between BPG, BPG with RecCNN as post-
processing module and E2E-CNN using BPG. [6]. 

 

The E2E-CNN with JPEG to encode the compact representation was also compared to other solutions 

available in the literature, still using the same 7 test images. To better understand the E2E-CNN 


































































































