
Implementing Network Level High-Availability and
Load-Balancing on OpenStack, using SDN and

NFV
Filipe Emanuel Lourenço Ramalho Fernandes
Instituto Superior Técnico, Universidade de Lisboa

Abstract—Software Defined Networks (SDN) and Network
Functions Virtualization (NFV) offers a new way to design,
deploy and manage networking services. SDN relies on sepa-
rating the control plane from the data plane, in data networks.
NFV decouples network functions from proprietary hardware
appliances so they can run in software. These network functions
are softwarized and then consolidated on standard Commercial
off-the-shelf (COTS) equipment. This work proposes a solution
to implement high-availability and load-balancing as a Virtual
Network Function (VNF) between OpenStack regions using
SDN concepts and NFV Open Source MANO (OSM). High-
Availability is a characteristic of a system that usually as an
uptime period higher than normal. Load-Balancing refers to
efficiently distribute workload between two or more resources, in
this case, two OpenStack regions. As use-case, it is used Instituto
Superior Técnico (IST) OpenStack infrastructure to deploy and
evaluate the implemented system.

Index Terms—NFV, SDN, OpenStack, Open Source MANO,
High-Availability, Load-Balancing

I. INTRODUCTION

Over the years, since the beginning of the Information Tech-
nology (IT) era, computer systems have drastically changed
and improved. Storage and memory evolved and new concepts
like clouds and virtualization arose. But over most of these
years data network architecture and management have been
somehow stagnant.

With Information and Communication Technologies (ICT)
evolution, Networks are becoming more and more complex,
new services are always being deployed and traditional net-
works are becoming inflexible and difficult to manage.

On the other hand, open-source communities had a huge
impact on IT evolution and modernisation. The main proof of
that are Linux based operating systems like Debian, Red Hat
and Android.

Over the last few years, open-source started to spread to
computer networks, first with Software Defined Networks
(SDN) and OpenFlow, and now with Network Functions
Virtualization (NFV) concept. SDN decouples data and control
planes, centralising all the control functions on a single net-
work controller. This does not mean the existence of only one
node as network controller, but the existence of a centralised
cluster with a view of the entire network. This controller is able
to define network policies and configure the entire network
using simple software implemented functions. For the first
time in computer networks history, it is becoming possible
to decouple network functions from proprietary hardware

(the main goal of NFV), and run it on commodity standard
machines (for instance a machine running some Linux dis-
tribution). This means that much proprietary hardware may
be replaced by Commercial off-the-shelf (COTS) hardware
running open-source implementation of traditional network
functions.

Apparently, this evolution may seem bad news to network
hardware vendors, because they will lose market share. How-
ever, if they adapt their business to focus on what they are
truly good and specialize in it, computer networks might have
a huge leap forward shortly.

This work explores the potential of these new network
paradigms to build complex, yet flexible, network services.

A. Motivation

Instituto Superior Técnico (IST) has an OpenStack infras-
tructure composed by two regions, Alameda and Taguspark.
OpenStack is a cloud operating system, composed of several
services/projects which are explained in section 2.5. On this
OpenStack infrastructure, the existing regions are independent.
One of the main features of such multi-region architecture is
to offer a simple solution for High-Availability (HA) and load-
balancing. Whenever an application or service requires high
availability, it may be deployed in parallel in two regions. If
one of these becomes unavailable, the application or service
remains active and operational on the surviving region.

One main challenge of such configuration is to deal with
public Internet Protocol (IP) addresses since these are usually
distinct in both regions. In other words, if a service that
requires HA is published with an IP address of one region, and
if this region for some reason becomes unavailable, the service
will also become unavailable, since the access IP becomes
unreachable. To overcome this limitation, there is the need to
dynamically serve requests on both regions exposing the same
public IP to external clients.

This work proposes and discusses a solution for this issue
using SDN and NFV, using as orchestrator the Open Source
MANO (OSM) project.

II. STATE OF THE ART

Within the telecommunication industry, service provisioning
has been based on network operators deploying physical
proprietary hardware for each function of a given service.
Also, this hardware must be interconnected statically in order

1



to implement a fixed sequence of pre-defined operations. These
requirements, along with the need for high quality, availability,
stability and strict protocols led to long product cycles, heavy
dependence on specialised hardware and extremely low service
agility. However, applications today require more diverse and
new services with higher data rates and availability.

Since hardware-based appliances rapidly reach end of life,
requiring much of the procure-design-integrate-deploy cycle to
be repeated with little or no revenue benefit, new approaches
are being explored.

In the next sections, we address the main technologies and
concepts that these approaches comprise.

A. Software Defined Networks

The concept of SDN appeared intending to separate the
control and data planes in data networks.

The main concept of SDN relies on the separation of the
data and control planes, centralising all control functions in
a single network controller. In SDN, network devices imple-
ment only the data plane, where simple packet forwarding is
processed. Forwarding rules and actions are programmed on
a central network controller [1], which runs on a standard
computing server [2].

Since in SDN control and forwarding functions are fully
decoupled, network devices can be programmed with high
flexibility and dynamically adapted to application require-
ments, which enables the creation and quick deployment of
new types of applications and services.

By decoupling control and forwarding functions, SDN en-
ables to automate provisioning and orchestration which re-
duces overall management time and the chance of human error,
therefore reducing (Operational Expenses (OPEX)) costs. On
the other hand, since in theory, it may rely on simplified
network nodes that implement only the data plane, it may also
limit the need to purchase specialized networking hardware,
reducing (Capital Expenditures (CAPEX)) costs.

In 2004 a standard called Forwarding and Control Element
Separation (ForCES) was published by Internet Engineering
Task Force (IETF). This standard considered various ways
to decouple the control and forwarding functions [3]. The
first attempts of decoupling these functions failed because the
internet community viewed the separation of those as too risky
and vendors got concerned that creating a standard Application
Programming Interface (API) between control and data planes
would increase competition.

Along with the concept of SDN, OpenFlow [4] was created
by Stanford’s computer science department. The first API for
OpenFlow was created in 2008, later that year appeared an
operating system for networks (NOX). Over the next two years
both SDN and OpenFlow got supporters and in 2011 Open
Networking Foundation (ONF) was founded to promote these
technologies.

SDN-based networks are composed of three planes/layers,
Application, Control and Data planes. Between Application
and Control planes there is the Northbound Interface and

between Application and Data planes, there is the Southbound
Interface.

The main component of an SDN network is the controller,
which is the application that acts as a centralized control
point in the SDN network, manages the flow and forwarding
rules of the switches/routers, and works at the same time as
a broker that manages and configures the network resources
according to the requirements of higher-level applications. The
controller communicates through two standard interfaces: the
SouthBound Interface (SBI) and the NorthBound Interface
(NBI).

Southbound API is the controller interface that communi-
cates with network nodes. There are different protocols that
implement the communication between the controller and the
network nodes, but the most popular and widely used is the
OpenFlow protocol.

Northbound API is the controller interface that communi-
cates with higher-level applications. There is not a standard
protocol defined for the NBI [5]–[7]. However, it is usu-
ally implemented through a REST API [8] or directly on
a programming language. While there were some efforts to
develop a standard for the NBI protocol, such standard was
not yet established. In practice, each SDN controller has its
own specification.

B. Network Functions Virtualization

As seen in the previous section, SDN established new
principles regarding network management and network pro-
grammability. One of the outcomes of this principle is net-
work softwarization, which is based on the possibility to
virtualize network functions [9]. Virtual Network Functions
(VNF) are virtualized tasks that used to be performed on
proprietary, dedicated hardware. With NFV, these tasks are
moved from dedicated hardware devices to virtual machines
or containers that may be run on COTS hardware. Examples
of VNFs include firewalls, Domain Name System (DNS),
Network Address Translation (NAT), Virtual Private Network
(VPN) gateways, Deep Packet Inspection (DPI) and Intrusion
Detection System (IDS) [10].

In October 2012, at a conference on SDN and OpenFlow, a
specification group (”Network Functions Virtualisation”) that
was part of European Telecommunications Standards Institute
(ETSI) published a white paper [10] regarding NFV. Since that
white paper, the specification group produced several materials
including a standard terminology definition and use cases
for NFV that act as references for the adoption of Network
Virtualization by vendors and operators.

As stated before, one of NFV goals is to decouple network
functions from proprietary hardware appliances. It means that
applications/functions that typically had to be ran on specific
proprietary hardware are virtualized/softwarized to run on
COTS equipment. These applications are executed and con-
solidated on standard IT platforms like high-volume servers,
switches, and storage which reduces CAPEX and support pay-
as-you-grow models, eliminating over-provisioning. NFV also
reduces OPEX, since the specialized hardware devices may

2



be replaced with software running in virtual servers, saving
space, power and cooling requirements and simplifying the
overall management of network services.

NFV provides several other benefits, as it enables shorter
development cycles, openness of platforms, scalability and
flexibility and allows the use of a single platform for different
applications, users and tenants [10]–[12].

While NFV offers increased management and operational
flexibility, it also encompasses several challenges. One of such
challenges is the migration of conventional network functions
to NFV and the co-existence of NFV with legacy platforms.
Furthermore, achieving high performance virtualized networks
appliances which are portable between different hardware
vendors and different hypervisors can be a complex task. As
seen before, one of the NFV benefits is scalability, but this
is only possible if all functions can be automated. Moreover,
NFV domains must be secure, resilient, and VNFs should be
decoupled from any underlying hardware and software [10],
[11], [13], [14].

NFV is applicable to any data plane packet processing and
control plane function in mobile and fixed networks.

With the aim to develop a unified framework for NFV, the
ETSI Industry Specification Group (ISG) developed the ETSI
NFV reference framework. The ETSI architecture comprises
three main domains [15]:

1) The first domain are VNF and their corresponding VNF
Managers. These represent the communications appli-
cations (previously deployed as custom appliance type
hardware solutions) now fully virtualized, supporting
elasticity, orchestration, and SDN enablement. Closely
correlated with the VNFs are also the associated Element
Management Systems (EMS) as well as northbound
connectivity to OSS/BSS systems for provisioning, ac-
counting and other functions.

2) The second one is NFV Infrastructure (NFVI) which is
comprised of the underlying data center hardware (com-
pute, networking and storage) with the associated virtu-
alization layer, abstracting that hardware to a software
controlled Cloud and SDN environment. The Virtualized
Infrastructure Manager (VIM) is closely correlated to
this [16], [17]; i.e., OpenStack control functions.

3) The last domain is NFV Management and Orchestration.
This one can be divided into three functional blocks:
NFV Orchestrator (NFVO), VNF Manager (VNFM) and
VIM.
The NFVO is responsible for the on-boarding of Net-
work Service (NS), VNF packages and the lifecycle
management of the NSs. These packages are described
using Network Service Descriptor (NSD) and Virtual
Network Function Descriptor (VNFD), respectively.
The VNFM coordinates the configuration and event
reporting between NFVI and EMS. It also supervises
the lifecycle management of VNF instances.
The VIM manages and controls resources from the
NFVI.

III. ARCHITECTURE OF THE PROPOSED SOLUTION

In this chapter, it is described the architecture of the
proposed solution. As stated in chapter I, the main goal of
this work is to develop access redundancy and load-balancing,
between two or more OpenStack regions, using SDN and NFV
concepts. As use-case it is used the current IST OpenStack
infrastructure.

On an OpenStack environment, when a Virtual Machine
(VM) needs to be accessed from the public network, it is
usually assigned a floating IP address. If for some reason,
one region becomes temporarily out of service, the services
running on VMs from that region will become unavailable.
The service only survives if there is a fast handover from the
services in the failure region to the other one. There is the need
to dynamically configure the network between those regions,
to serve requests on the available region and respective VM.
This work also proposes to leverage this dynamic network
configuration and implement load-balancing between multi-
region OpenStack environments.

The core idea of this work is to use NFV Management and
Orchestration (MANO) to deploy a NS with one VNF capable
of detecting when a service is unavailable, dynamically con-
figuring the underlying network of OpenStack and filter/route
traffic to the desired host.

In this chapter it is first presented IST infrastructure, then
the overall architecture of the proposed solution.

The architecture can be divided in two views, physical
and virtual. Physical architecture is composed of all physical
nodes supporting the OpenStack infrastructure and proposed
solution. Nodes deployed on each OpenStack region belong
to the virtual architecture.

A. IST Infrastructure

IST OpenStack environment is composed of two regions,
one at Alameda Campus (region A) and the other at Taguspark
campus (region T).

Both regions of the infrastructure have precisely the same
core services and are symmetric. OpenStack services that
support IST infrastructure are: Designate, Keystone, Nova,
Neutron, Cinder, Glance, Horizon.

These core OpenStack services are running over six VMs
running on the same hypervisor. This hypervisor is replicated
on hardware (localcontroller1 and localcontroller2) with au-
tomatic fail-over between them.

The core OpenStack services previously mentioned have
several dependencies. There is a module to coordinate opera-
tions and exchange messages between core services, a database
module to store persistent data, and additional networking
modules that support Neutron operation.

Core OpenStack services from region A and T are com-
pletely independent, with exception to the authentication ser-
vice (keystone), that is deployed on a remote server and is
used by both regions.

Between regions A and T, currently, there is only one
physical link, which implies a single point of failure. Since
we aim to implement high-availability between OpenStack

3



regions, some sort of triangulation through a third site is
mandatory to have redundant paths available. Although trian-
gulation between regions is not implemented yet, it is foreseen
in the near future. In this work, we assume that it is already
available. However, note that this redundancy is transparent at
the logical level, and therefore will not be mentioned further
in this document.

Both OpenStack regions are connected to IST network and
have connectivity to/from public network through a cluster
of routers named Gatekeeper IST. A global view of Open-
Stack underlying network architecture is presented in figure
1. Also, all network devices on the underlying network shall
be replicated, with automatic fail-over between them (due to
the scope of this work). It means that each network node is
actually a cluster of network devices with automatic fail-over.
These clusters are represented as a group of three overlaying
devices, as illustrated in figure 1.

Gatekeeper IST

OpenStack underlying network

OpenStack Region T

Public Network/Internet

Region A
Entrypoint
(OpenFlow
compliant)

Region T
Entrypoint
(OpenFlow
compliant)

OpenStack Region A

Fig. 1: Global view of IST OpenStack underlying network

B. Architecture

The proposed solution is presented in figure 2 and is further
divided into physical and virtual architectures.

This solution is divided in three main blocks, separated with
dashed lines and different colours.

The yellow and bottom block represents the underlying
OpenStack network, composed of physical network devices.
These network devices are responsible to forward incoming
and outcoming packets to the desired OpenStack region. Each
network device shall be replicated to avoid a single point of
failure.

The top block, blue and red, is composed of NFV MANO
and SDN controller. These components can be deployed on
the same physical or virtual machine. Due to the nature of
this work, this node shall also be replicated. The proposed
NFV MANO software is OSM and the SDN controller is
Floodlight. OSM is responsible to manage and orchestrate net-
work services and VNFs deployed within OpenStack tenants.

Floodlight is responsible to dynamically configure OpenStack
underlying network.

The middle block is the OpenStack environment, which is
composed by two regions. The OpenStack environment can be
divided in two layers, physical and virtual. Physical layer is
composed of the physical machines running core OpenStack
services. The virtual layer is presented on orange and green
blocks, and concerns to the network services deployed on
OpenStack tenants of both regions.

Each one of these blocks have a specific function that is
described below on physical and virtual architectures. Physical
architecture is composed of NFV manager and orchestrator,
SDN controller and OpenStack infrastructure and underlying
network. Virtual architecture is composed of the network
services and respective VNFs deployed at each OpenStack
tenant.

C. Physical architecture

Each block that relies on a machine outside of OpenStack
virtual environment belongs to the physical layer. The function
of each block is described below.
Open Source MANO
OSM is the component responsible for the orchestration of the
VNFs and management of NFV. It has a list of NSs and the
respective VNFs that compose them. Since OSM is aligned
with ETSI NFV reference architecture, it uses the defined
interfaces to communicate with the VIM (OpenStack), which
are Vi-VNfm and Or-Vi.

This work uses OSM to deploy, previously defined, NSs
that are configured to ensure HA and Load-Balancing (LB).
These NSs are defined using NSDs and VNFDs and uploaded
to OSM through Command Line Interface (CLI) or Graphical
User Interface (GUI).

After NSs are deployed, OSM can use Juju charms to
instruct the deployed VNFs to perform previously defined
actions. These actions must be configured and described on
the VNFD.

Although we propose to use NFV and OSM mainly to de-
ploy some specific NSs that ensure HA and LB, our proposed
solution/infrastructure can later benefit from some advantages
like reduced CAPEX and OPEX, shorter development cycles,
and the use of a single platform to deploy different services
on different users and tenants.
OpenStack/VIM
Since this work focus on the specific use case of IST Open-
Stack infrastructure, we propose the use of OpenStack as the
VIM. Yet, in theory, our proposed solution can also be applied
to OpenVim, Amazon Web Services (AWS), and VMware
vCD, since all are currently supported VIMs of OSM.

OpenStack infrastructure is composed of two or more re-
gions. If one becomes unavailable for some reason, incoming
network traffic is forwarded to another one. Traffic can also
be split between available regions.

Each region shall have services for authentication, com-
puting resources, virtual networking, operative system images
and a dashboard. These services are enabled with the core

4



M
an

ag
es

 a
nd

 O
rc

he
st

ra
te

s 
N

FV

Remote Floodlight Controller

OpenStack Environment

Gatekeeper

OpenStack underlying network

OpenStack
Region T

Tenant User 1 

VNF

R
e-assigned

Floating IP 1T

R
eg

io
ns

 w
ith

 re
pl

ic
a

R
ep

lic
a 

St
at

us
Pe

rfo
rm

an
ce

 m
et

ric
s

VM exposing 
web service

OpenStack
Region A

Tenant User1 

VNF

R
e-assigned

Floating IP 1A

VM exposing 
web service

R
eg

io
ns

 w
ith

 re
pl

ic
a

R
ep

lic
a 

St
at

us
Pe

rfo
rm

an
ce

 m
et

ric
s

D
yn

am
ic

al
ly

 a
dd

/d
el

et
e 

flo
w

 e
nt

rie
s

NFV Management and Orchestration - Open Source MANO

Public Network/Internet

Region T
Entrypoint
(OpenFlow
compliant)

Region A
Entrypoint
(OpenFlow
compliant)

Fig. 2: Architecture of the proposed solution

OpenStack services: Keystone, Nova, Neutron, Glance and
Horizon.

An OpenStack environment can have multiple architectures
and our solution is in theory compatible with all of them. Since
we abstract from the inner components of our main blocks, if
the ETSI NFV reference architecture is ensured, our proposed
solution shall perform as expected.
Network architecture
Our network architecture is quite simple although it has two
mandatory requirements. It shall exist triangulation between
OpenStack regions and the public network. Network devices
must support OpenFlow protocol, version 1.3 since it enables
changes on headers of data packets.

As SDN controller, we propose the use of Floodlight,
since it has a module to push static flow entries to network
devices via HyperText Transfer Protocol (HTTP) requests
using Representational State Transfer (REST) API. This allows
a system administrator to dynamically configure the network
from almost every computing device with the required access.

Floodlight controller should run on a remote server acces-
sible from the OpenStack provider network. The controller
is mainly used to install and remove table flow entries on
the network devices providing public network connectivity to
OpenStack regions.

These network devices have the following behaviour:

1) Receive and analyse incoming packet;
2) Check if it matches any entry on flow table;
3) Perform packet changes if it is needed;

4) Route the packet to the desired output port.
Floodlight can program network devices to perform differ-

ent changes on a packet. In this work, we only need to change
the packets source and destination of IP and Media Access
Control (MAC) addresses.

D. Virtual architecture

Virtual architecture is the set of machines deployed within
OpenStack tenants and their respective behaviour to ensure HA
and LB. On figure 3 it is presented only the virtual architecture
and the underlying network is abstracted as a cloud.

OpenStack Region 1
Tenant X

Web Server 1

Token
Ring

VNF 1
Floating IP A  - 
exposing service

OpenStack Region 2
Tenant X

Web Server 2

Token
Ring

VNF 2
Floating IP B - 
exposing service

Public Network/Internet

Underlying Physical Network

Fig. 3: Virtual Architecture

5



Problem overview
As explained before, in order to expose a certain service
on an OpenStack environment, a VM is deployed, and it is
assigned a floating IP address to it, enabling access to and
from the public network. If we require HA or LB, we must
replicate this service on other OpenStack region, in order to
provide redundancy if the primary region becomes unavailable
or overloaded. In this scenario, HA and LB is only ensured
if we have a fast handover of the incoming/outcoming traffic
to/from the desired available region.

To implement this fast handover we propose to deploy an
additional VM, at each region, along the original one. In case
of failure or overloading, the floating IP address exposing the
service is re-assigned to this new VM. By default, it forwards
incoming traffic to the original VM.

This additional VM is actually a VNF with a predefined
behaviour. And this pair of VMs can be replaced with a NS
previously defined and deployed by OSM.

The architecture of this solution is presented on figure 3
and the network service is explained below.
Proposed network service
Assume that Web Server 1 and 2 are the VMs exposing some
service with the need of HA and/or LB. Consider also that
VNF 1 and 2 are the VMs responsible to ensure a certain
Service Level Agreement (SLA).

VNFs deployed at each region of a tenant send a heartbeat,
every Th second, to the other region. An action is taken if, at
the other end, n heartbeats are missed. Th and n are parameters
that can be initialised using default values or defined according
to the respective SLA.

The action taken when n heartbeats are missed consists of
re-configuring the underlying network. If a certain service was
being served at region 1, an OpenFlow message will be sent to
change the flow of the respective service, in order to be served
on region 2. VNFs instantiated on each region of a tenant are
the ones responsible to send that control message.

The same action can be taken under other predefined metrics
in order to implement LB. For instance, Central Processing
Unit (CPU) utilisation, network links load or the number
of active connections, scheduled maintenance, etc. All these
metrics may be measured by each VNF, which may take
appropriate actions in each case.

With this solution, the network automatically adapts to the
user needs, keeping services available.

If at least one region is available, services worst time of
unavailability (Tun)is:

Tun = Th ∗ n+ Tnrp + Tnd

where Tnrp is the network reprogramming time and Tnd is
the network delay.

Due to the nature of this work, the VNFs and the under-
lying network devices are replicated with automatic fail-over
between them.

IV. IMPLEMENTATION

On this chapter, it is presented the implementation of the
proposed solution.

As mentioned in the previous chapter, this work uses IST
OpenStack environment as use-case. But since this environ-
ment is in production and there is no test environment, two
identical regions of OpenStack were deployed, in association
with Direção dos Serviços de Informática do Instituto Superior
Técnico (DSI-IST), that borrowed all the necessary equipment
and space to accommodate it.

As already described in chapter III, the deployed scenario
can be divided into two layers, physical and virtual. The phys-
ical layer is composed of OpenStack infrastructure, physical
network devices and servers. The virtual layer is composed of
the devices deployed within OpenStack cloud environment.

Physical and virtual layers are composed of several nodes.
As stated in the previous chapter, since this work aims to
enable access redundancy and load-balancing between Open-
Stack regions, on a production scenario, all nodes described
on this chapter shall be replicated with automatic fail-over
between them. On this implementation, due to the lack of
resources and time constraints, these nodes do not have
replication nor automatic fail-over. However, the implemented
system has all the requirements to be used as a proof-of-
concept and is further evaluated in chapter V.

Both layers, physical and virtual, are described below in
this chapter.

A. OpenStack Infrastructure

The deployed test infrastructure is presented in figure 4. It
is similar to the one in production on IST, although it does
not have Designate and Cinder OpenStack services. Note that
these are not core services of basic OpenStack architecture
and are not required in the scope of this work.

Region 1 Region 2

controller compute1 r2controller r2compute1

Raspberry Pi 3
Running: OpenVSwitch

Bundled with: 5 ethernet ports

IST Network

Public Network

Fig. 4: OpenStack Infrastructure

The deployed infrastructure is composed of two OpenStack
regions (region 1 and 2) and the respective connection to
the public network. Each region is composed by two nodes,
controller and compute1, running core OpenStack services
(described in figure and detailed below). All nodes have a
connection to IST network and the public network through
a switch. Since we had not available a physical switch with
support to OpenFlow 1.3, we used a Raspberry Pi 3 Model
B+ running OpenVSwitch module. This node is described in
more detail in section IV-C.

6



Each server node has two Network Interface Card (NIC)s,
one connecting to the provider network (dark blue links) and
the other connecting to the management network (light blue
links). Each that supports the same OpenStack region must be
connected to the same private network (management network),
in this case, nodes are connected to each other.

Since region 1 and 2 are completely symmetric and have
the same configurations except for network configurations, the
procedures described below apply for both regions.

As stated before, each region is supported by two nodes.
These nodes were set up with OpenStack release Rocky (the
currently supported release at the time of the deployment),
following its installation guide available at OpenStack official
website. The installation process is not explained in detail,
but the most important packages and procedures are described
below.

An OpenStack environment relies on its core services
and the respective dependencies. OpenStack services between
nodes are synchronised using Chrony, an implementation of
Network Time Protocol (NTP). Controller node sync with
Official Ubuntu NTP server (ntp.ubuntu.com) and compute1
node sync with controller.

Apart from time synchronisation, OpenStack services rely
on MySQL to store information, RabbitMQ to coordinate
operations among them, Memchached to cache tokens and
Etcd, a distributed reliable key-value store is used to store
configurations, keeping track of services availability and some
other scenarios. All of these dependencies run on controller
node.

Due to the lack of resources and need for other services,
the deployed OpenStack environment is composed of the core
services of a basic architecture and a dashboard.

B. Physical Layer
From the physical point of view, the scenario represented

in figure 5 was deployed. It comprises OpenStack nodes from
both regions, one node running OpenVSwitch and one node
running OSM and Floodlight controller, further called OF-
Node.

Region 1 Region 2

controller compute1 r2controller r2compute1

RpiVSwitch

10.0.0.11/24
172.20.126.26/24

10.0.0.31/24
172.20.126.27/24

10.0.0.11/24 10.0.0.31/24
172.20.126.176/24 172.20.126.177/24

172.20.126.254/24

172.20.126.190/24

192.92.147.19/24
100.68.11.169/27

OF-Node

Fig. 5: Physical Network Topology

Nodes from both regions were deployed and connected to
IST Taguspark campus facilities subnet 172.20.126.0/24. Each

region node communicates directly with the other through an
Ethernet cable, on private network 10.0.0.0/24.

OF-Node is a VM, running on IST OpenStack Region T
(production environment). Although this node is a VM it
belongs to physical architecture, only nodes running on the
deployed OpenStack environment are considered virtual nodes.

Controller and compute nodes were already described be-
fore, RpiVSwitch and OF-Node are described below.

C. RpiVSwitch

One of the main components of this work is the node
RpiVSwitch, a Raspberry Pi working as an OpenFlow switch.
Since the design of the proposed solution, we realised the need
for a network device compliant with OpenFlow protocol.

During the development of this thesis we tried to
use Mikrotik routers, but the respective Operative System,
RouterOS, is only compatible with version 1.0, which does
not support the required features. Then, we tried to use two
different Alcatel-Lucent switches recently withdrawn from
production on IST facilities. One had its software outdated
and the respective license to update also expired. The other
was updated, compliant with OpenFlow 1.3+, but it only
had interfaces for optical cables and there were no available
adaptors to use.

After all those tries we had the ideia of using one Raspberry
Pi 3 Model B+, bundled with 4 USB-to-Ethernet adaptors,
running Open vSwitch (OVS).

RpiVSwitch is connected to a remote controller and performs
Transparent Packet Redirection (TPR). TPR, in this case, is
the following: when a certain user sends packets to a VM on
region 2, when packets arrive at RpiVSwitch, packets headers
are modified (MAC and IP destination addresses are switched
from region 2 VM to region 1 VM) and sent to region 1. The
reverse also occurs, in the sense that response packets sent in
the opposite direction from region 1 VM to original user VM
are also modified (MAC and IP source addresses are switched
from region 1 VM to region 2 VM) and sent to the original
user.

This script sends a HTTP POST request to Floodlight
controller. This request order the controller to add two flow
rules to the identified switch. These flow rules perform the
mentioned TPR packet header changes.

The RpiVSwitch behaviour is very simple. By default it
only performs packet forwarding and when programmed by
the controller, this node also modifies packet headers and re-
routes them.

Since RpiVSwitch has very limited resources, and the goal
was to develop only a proof-of-concept, we opted to use it
only to forward packets. On a production scenario, using an
OpenFlow compliant switch, this node could also be used to
ensure LB. There would be a pool of servers, to serve requests
with a given pattern, and the network node would load-balance
these requests to servers on that pool. Since RpiVSwitch gets
easily overloaded of packets, LB is ensured by other nodes,
this behaviour is explained in section IV-E.

7



D. OF-Node

As mentioned before, nodes on the virtual layer were
deployed with OSM running on OF-Node.

OF-Node was setup with OSM release 5, the most recent
release at the time of installation, using a dockerized installa-
tion.

In this work we use OSM to deploy a network service,
named thesis-ns, that will ensure our main goals, HA and LB.

After OSM installation on OF-Node, we configured it to
access our VIM, the deployed OpenStack environment. First,
on each OpenStack region, we created an account for OSM
user with one project and admin role. Then we added the VIM
to OSM.

This network service is described using a NSD which
mainly describes a NS with one VNF, member with index
1 of this VNF is connected to an external network named
”provider” on the VIM tenant.

Our VNF is composed of two VMs, DataVM and MgmtVM
which is the Virtual Deployment Unit (VDU). Both are
connected to each other through an internal, private network.
MgmtVM is also connected to the provider network.

OF-Node is also running the OpenFlow Floodlight con-
troller. It communicates with RpiVSwitch (listening on port
6653) via SBI using the OpenFlow protocol. It uses NBI
to communicate with the application plane, which exposes a
REST API on port 8080.

E. Virtual Layer

The virtual layer is composed of the VMs deployed within
OpenStack tenants.

In section IV-B it were described the physical devices and
environment required to support the virtual layer. Below it is
explained the role of the virtual nodes that ensure HA and LB.

To explain the role of each virtual node, a summary of the
scenario deployed and explained on the previous sections is
presented in figure 6.

On this figure, it is represented OSM tenants of region
1 and 2, its connection to the IST and public networks
through RpiVSwitch, and also the controller node (OF-Node)
connected to IST network.

The system implemented to achieve the goals of this work
lay on the transparent packet redirection which allows us to
re-route incoming and out-coming traffic to the desired VM
exposing a certain service. On this implementation, we opted
to expose an web-server using python3 http.server module.

Since DataVM is protected on a private network, inacces-
sible from outter networks, MgmtVM needs to forward traffic
with destination to that node. This is performed using IPTables
prerouting and postrouting rules.

Each MgmtVM is responsible to verify if his peer DataVM
is working as expected and exchange this information with
MgmtVM from the other region.
High-availability
Regarding HA, MgmtVMs establish a Transmission Con-
trol Protocol (TCP) socket between them. Primary-MgmtVM
runs primary.py and Replica-MgmtVM runs replica.py. These

scripts works as a client-server architecture. Both nodes listen
and replies to heartbeat messages.

On primary.py it is called a function named check-
HTTPServer. This function makes a request to the web-server
and verifies its operation. This function described below.

In this case we don’t have a DNS record for our website,
otherwise, we would replace the IP address with the Uniform
Resource Locator (URL). Our goal with this script is to verify
the status of the web-server. If we get any status different from
200, which is the code for request succeed, we assume that
the web-server has some malfunction and will redirect to the
server on the other region.

On the replica region, its MgmtVM runs replica.py script,
which ensures that the service exposed on the web-server has
a limited time of unavailability.

Assuming that region 1 is the primary region, we elect
Mgmt and Data nodes of region 1 as Primary-MgmtVM and
Primary-DataVM. Nodes of region 2 are elected as Replica-
MgmtVM and Replica-DataVM.

We expose our web-server with the IP address of Primary-
MgmtVM. This node will forward packets with destination
port 80 to Replica-DataVM.

Replica-MgmtVM sends a heartbeat, (”Alive” message),
every Th second. If Primary-MgmtVM receives the heartbeat,
it sends a request to Primary-DataVM to check the status of
the HTTP server. If Primary-DataVM returns 200 status code,
Primary-MgmtVM replies to Replica-MgmtVM heartbeat with
”Alive” message. In this scenario, everything is working as
expected.

If Primary-MgmtVM does not receive ”Alive” message or
Primary-DataVM does not reply with 200 status code, the
number of heartbeats misses Hm is increased at Replica-
MgmtVM. Being n the max number of missed heartbeats, if
Hm >= n, Replica-MgmtVM checks the status of Replica-
DataVM. If it returns 200 status code, flows to implement
TPR are installed. If it returns a different status code, there
is no available region and node to serve the requests of the
exposed service.
Th and n are parameters that can be initialised using default

values or defined according to the respective SLA.
Load-Balancing
Regarding LB, we implemented three metrics that trigger TPR.

The first metric is packets per second. As explained before,
MgmtVM is exposed on the public network and forwards
HTTP traffic do DataVM. This metric counts the number of
packets passing on the internal network interface and if it
reaches a predefined number, TPR is triggered.

The second metric implemented is similar. Since triggering
TPR on a predefined number of packets per second will
probably reset an established connection, the second metric,
counts the number of active HTTP flows on DataVM instead.
This way established connections are not interrupted.

The third implemented metric concerns with the load of
DataVM instead of network load. When the CPU utilisation
of DataVM reaches a certain percentage, MgmtVM triggers
TPR.

8



DataVM
192.168.167.3/24

MgmtVM
192.168.167.22/24

R1
OSM Tenant

172.20.126.110/24

DataVM
192.168.243.14/24

MgmtVM
192.168.243.6/24

R2
OSM Tenant

172.20.126.110/24

RpiVSwitch

IST Network  

OF-Node

192.92.147.19/24
100.68.11.169/27

Public Network

Fig. 6: Summary of the deployed scenario

V. EVALUATION

In this chapter, it is presented some of the tests performed
to test and evaluate the implemented solution.

As stated in the previous chapter, the system was deployed
on DSI-IST Taguspark campus facilities.

The test scenario is the one described in the implementation
chapter with the addition of an extra PC to make requests from
the IST network.

A. High-availability

In this section, it is presented the tests performed to evaluate
HA and time of unavailability when one region becomes
unavailable for some reason.

Region 2 is in this scenario the primary region, R2-
MgmtVM is running primary.py and R1-MgmtVM is running
replica.py.

To measure the time of unavailability of our solution,
we produced perftest.py, a script that performs consecutive
requests to region 2, during 60 seconds, and counts the number
of requests, the number of successful and failed requests and
the time of unavailability. On table I, it is presented the results
outputted by perftest.py, using different values of T h and
n. Note that during the execution of perftest.py, R2-DataVM
is shut down in order to force the system to reconfigure the
network and start serving requests on the other, available,
region.

#requests Success rate(%) Fail rate(%) T un(s) T h(s) n
8398 91.24 8.76 24.72 2 10
8631 96.85 3.15 9.88 2 5
9631 98.66 1.34 5.09 1 5
9614 99.5 0.5 3.25 0.5 5

TABLE I: Results of tests evaluating HA with different pa-
rameters T h and n

Analysing results of the previous table, we can conclude that
success rate increases and the time of unavailability drastically
decreases, as we decrease parameters T h and n.

While performing consecutive requests over 60 seconds,
with parameters T h = 0.5 and n = 5, the time of
unavailability is only 3.25 seconds and the success rate is
99.5%. This means that, with our solution, the primary region

could fail almost two times a week and we would guaran-
tee a ”five nines” SLA. In this case we calculate that the
T nrp+ T nd = 0.753s.

To ensure a ”five nines” SLA a system can have a max-
imum downtime of 6.05 seconds per week. If our solution
fails two times a week, we calculate it to be unavailable:
2 ∗ 3.25seconds = 6.5seconds > 6.05seconds.

With a specialised network device instead of RpiVSwitch,
our solution will most likely guarantee ”five nines” SLA with
the mentioned parameters.

B. Load-Balancing

In this section, it is presented the tests and respective results
regarding the evaluation of LB.

We produced lb-test.py to evaluate the system, an extension
of perftest.py. This script, instead of the time of unavailability,
measures and count which region served each request.

The system will be tested with three LB policies, packets
per second, number of active flows and CPU usage.

Results using packets per second policy are presented in
table II. In this scenario, each MgmtVM trigger TPR as soon
as they forward one packet to DataVM.

Analysing the experimental results, we conclude that the
system has a behaviour very similar to round-robin. It serves
almost 50% of requests on each region and has a low rate of
requests not served. The percentage of requests are not exactly
50%, probably due to the network reprogramming time and
minor random fluctuations. There are requests not served since
TPR is triggered when a single packet passes the interface
connected to the inner network. It means that at least some
packets of a single request are split and routed to different
regions.

Regarding active number of flows policy, which means that
LB is triggered when a certain number of active flows is
reached, the results are presented in table III. Each MgmtVM
redirect traffic on 1000 active flows, test script performs 2000
requests, given that, it is expected that each region serves
1000 requests. This policy is tested with different times of
update (T update), this time refers to the periodicity which
MgmtVM asks DataVM for its active number of flows.

In this case, the same request distribution issue occurs, there
are more requests served in the primary region. Once again,

9



Time(s) #requests Success(%) Fail(%) T un(s) R1(%) R2(%)
20 755 99.47 0.53 0.1 49.7 50.3
60 2271 99.51 0.49 0.29 49.8 50.2

TABLE II: Results of LB using packets per second policy

Time(s) T un (s) R1 (%) R2(%) T update(s)
78.5 0 45.8 54.2 5
80 0 46.5 53.5 0.5

TABLE III: Results of LB using number of active flows policy

this probably occurs due to the network reprogramming time.
Using this policy there is 100% success rate.

Regarding CPU utilisation policy, since RpiVSwitch gets
overloaded of packets before DataVMs significantly increases
CPU usage, all packets are always served by the same region
with a success rate of 100%.

VI. CONCLUSION

This work had a clear goal, how to leverage SDN and
NFV concepts to implement HA and LB on IST OpenStack
infrastructure. As explained before, IST has two regions of
OpenStack, symmetric and independent. Notwithstanding it is
not possible, or at least there is no simple way of load-balance
traffic between a service replicated in both regions. The same
happens concerning HA, given that a service running on one
region is exposed via its IP address or DNS record pointing
to that address, it is not simple to keep the availability of the
service if the region where it is deployed become unavailable
for some reason.

A. Discussion

The premise of this work was implementing HA and LB
on OpenStack, with the above-mentioned concepts, and if
possible, design and implement a solution compatible with
different OpenStack architectures, with two or more regions,
and also compatible with different clouds, for instance AWS.
As a proof-of-concept, during the development of this work,
an OpenStack infrastructure with two regions, for test pur-
poses, were deployed on IST Taguspark campus facilities.
On this OpenStack environment, we deployed and tested the
solution proposed in this work, and despite some limitations
regarding limited resources and time constraints, the system
implemented works as expected.

Although the implemented system had proven to achieve its
goal, in the previous chapter there is pretty obvious that the
main limitation of this work is the network node, RpiVSwitch.
As described before this node is a Raspberry Pi 3 Model B+
and has limited resources, mainly the CPU in what concerns
to the needs of packet processing using OVS.

B. Future work

Due to logistics issues, both regions of the deployed Open-
Stack infrastructure were setup on Taguspark campus, ideally,
the proof-of-concept shall be done with one region deployed at
each campus and if possible test the system with an additional
third region.

The architecture of the proposed solution assumes that all
nodes are replicated, yet mainly due to limited resources, time
constraints and the fact that replication is not the focus of this
work, the presented proof-of-concept does not have any node
replicated. In future work, before implementing this solution
on a cloud in production, a more complete deployment shall
be tested.

REFERENCES

[1] X. Foukas, M. K. Marina, and K. Kontovasilis, “Software defined
networking concepts,” Software Defined Mobile Networks (SDMN):
Beyond LTE Network Architecture, p. 21, 2015.

[2] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications Magazine, vol. 51,
no. 2, pp. 114–119, February 2013.

[3] R. Gopel L, “Separation of control and forwarding plane inside a
network element,” in 5th IEEE International Conference on High Speed
Networks and Multimedia Communication (Cat. No.02EX612), July
2002, pp. 161–166.

[4] R. Narisetty, L. Dane, A. Malishevskiy, D. Gurkan, S. Bailey,
S. Narayan, and S. Mysore, “Openflow configuration protocol: Imple-
mentation for the of management plane,” in 2013 Second GENI Research
and Educational Experiment Workshop, March 2013, pp. 66–67.

[5] J. Dix, “Clarifying the role of software-defined networking northbound
apis,” Network, vol. 4, p. 11, 2013.

[6] W. Zhou, L. Li, M. Luo, and W. Chou, “Rest api design patterns for
sdn northbound api,” in 2014 28th international conference on advanced
information networking and applications workshops. IEEE, 2014, pp.
358–365.

[7] S. R. David Lenrow, “Nothbound interface working,” Open Network
Foundation, 2013.

[8] A. Kondwilkar, P. Shah, S. Reddy, and D. Mankad, “Can an sdn-based
network management system use northbound rest apis to communicate
network changes to the application layer?” Capstone Research Project,
pp. 1–10, 2015.

[9] O. S. Brief, “Openflow-enabled sdn and network functions virtualiza-
tion,” 2014.

[10] N. W. Paper, “Network functions virtualisation: An introduction, ben-
efits, enablers, challenges call for action. issue 1,” Oct. 2012, https:
//portal.etsi.org/NFV/NFV White Paper.pdf, visited 2018-12-28.

[11] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “Nfv: state of the
art, challenges, and implementation in next generation mobile networks
(vepc),” IEEE Network, vol. 28, no. 6, pp. 18–26, Nov 2014.

[12] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys Tutorials, vol. 18,
09 2015.

[13] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, Feb 2015.

[14] D. Hausheer, O. Hohlfeld, D. R. López, B. M. Maggs, and C. Raiciu,
“Network Function Virtualization in Software Defined Infrastructures
(Dagstuhl Seminar 17032),” Dagstuhl Reports, vol. 7, no. 1, pp. 74–102,
2017. [Online]. Available: http://drops.dagstuhl.de/opus/volltexte/2017/
7246

[15] “Etsi, “network function virtualization: Architectural framework,”,”
2013, https://www.etsi.org/deliver/etsi gs/NFV/001 099/002/01.01.01
60/gs nfv002v010101p.pdf, visited 2018-12-28.

[16] A. Kavanagh, “Openstack as the api framework for nfv: the benefits,
and the extensions needed,” Ericsson Review, vol. 2, p. 102, 2015.

[17] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Performance of
network virtualization in cloud computing infrastructures: The openstack
case,” in 2014 IEEE 3rd International Conference on Cloud Networking
(CloudNet), Oct 2014, pp. 132–137.

10


