
Program Synthesis from Noisy Tabular Data

Daniel Ramos
daniel.r.ramos@tecnico.ulisboa.pt

INESC-ID / Instituto Superior Técnico, Universidade de Lisboa, Portugal

October 2019

Abstract

This document targets program synthesis, the task of automatically generating programs from a set of
constraints. Interest in program synthesis has soared in recent years, mainly because of what it promises
to deliver: to allow users with little programming knowledge to indirectly program, by simply providing
input-output examples. Although recent program synthesizers are capable of synthesizing programs
from input-output examples, most of them cannot deal with noise. Therefore, a simple mistake in one
of those examples can render the synthesis task unfeasible. Moreover, to the best of our knowledge, the
task of synthesizing programs from a set of noisy input-output examples remains unexplored. In this
document, we aim to solve program synthesis in such a setting. We divide our contributions into three
sections: (1) a hybrid algorithm for program enumeration that uses both SMT and graph-based search;
(2) a generalized synthesis algorithm to solve the problem of synthesizing programs from noisy examples;
(3) a synthesizer capable of synthesizing programs from noisy input-output examples of tables.
Keywords: Program Synthesis, Satisfiability Modulo Theories, Noisy Examples, Table Transforma-
tions

1. Introduction
Suppose we have a list of names with over three
thousand entries. From this list we would like to
extract the surname of each entry for statistical
purposes. From a programmer’s point of view, the
task seems rather easy. We can simply write a reg-
ular expression and match it against each name,
using a tool of our choice. However, from a non-
programmer’s point of view, this task can be a big
headache. Despite not having any knowledge about
programming, the non-programmer would certainly
like to have a way of automating this tedious and
repetitive task as well. Ideally, he would verbalize
his intent to some kind of assistant and it would
return a program to automate this task.

This problem is known as program synthesis: the
problem of automatically generating programs in a
programming language from a high-level specifica-
tion, such as a first-order logic formula or input-
output examples[13]. In this paper, we focus on
the problem of synthesizing programs from input-
output examples. Specifically, we seek to synthesize
programs from a set of noisy input-output examples
of tables that only roughly approximate the desired
input-output behavior. Informally, our new prob-
lem statement is as follows. Given a set of tables
A, a table B obtained from a noisy source, and a
programming language L, is it possible to find a
program P ∈ L such that P (A) ≈ B?

1.1. Document Structure
This document is organized as follows. In section 2,
we start with a brief introduction to program syn-
thesis, where we explain the fundamental concepts
related to the different dimensions of program syn-
thesizers. In section 3, we propose a generalized
program synthesis algorithm that leverages both
SMT and graph-based search. In section 4, we
present and discuss the results we obtained from
empirically evaluating our algorithm on a set of 487
benchmarks. Finally, the paper concludes in sec-
tion 5.

2. Background
According to Gulwani et al.[13], a program synthe-
sizer is generally defined across 3 dimensions, (1)
the user intent or problem specification, (2) the pro-
gram space, and (3) the search technique. In this
section, each one of these dimensions is introduced
in detail.

2.1. Problem Specification
In traditional compilers, there is a well-defined lan-
guage in which we express the operations we want
the computer to do. Similarly, program synthe-
sizers must have a mechanism of understanding
their users. The big difference between the two
is in the way they perceive the users’ intention.
Instead of interpreting an artificial programming
language like compilers, program synthesizers cap-

1

ture user intent through mechanisms that are fa-
miliar to the average user, that is, it does not re-
quire them to learn a new formalism. These mech-
anisms can range from complete formal specifica-
tions such as a first-order formula fully describ-
ing the program functionality[9, 10, 12, 23], or am-
biguous specifications such as pairs of input-output
examples[6, 7, 8, 11, 14, 15, 18, 19, 22, 24, 26] or
even natural language[4, 25].

In this work, we focus on Programming by Ex-
ample (PBE), a branch of program synthesis that
uses pairs of input-output examples as the problem
specification for the synthesizer.

Definition 1. (Problem specification) The
problem specification Λ of the program synthe-
sis problem is a set of n input-output examples
{(~xi, yi) : 0 ≤ i ≤ n− 1}, where ~xi is the vector
with the input values of example i and yi is the
respective output.

2.2. Program Space
The number of programs in a programming lan-
guage is usually infinite. For example, the body of a
while statement in C++ can have an arbitrary num-
ber of statements of unlimited depth. Naturally, in
order to make program synthesis feasible, the space
in which synthesizers operate has to be limited. A
naive approach would be to place a hard limit on the
depth and arity of each operator. In practice, the
combinatorial nature of the problem still requires
a further reduced search space. This is why pro-
gram synthesizers usually explore a small subset of
a programming language instead of the program-
ming language itself. This subset is known as the
program space, and it can be defined by using a
domain specific language[13].

Definition 2. (Domain specific language) A
domain specific language (DSL) L is a formal lan-
guage that can be described by a context-free gram-
mar G = (V,Σ, R, S), where V is a finite set of
non-terminal symbols, Σ is a finite set of terminal
symbols, R is a finite relation from V to (V ∪ Σ)∗

defining the production rules, and S is the start
symbol.

Throughout this work, it is assumed that every
grammar used to describe the DSL only contains
three types of terminal symbols, the component
(function) related symbols, the n program inputs
x0, x1, ..., xn−1, and constants. We represent each
production rule of a DSL in form lhs→ rhs, where
lhs is the non-terminal symbol that is replaced by
the string rhs. In particular, we represent each
production rule corresponding to a component by
A0 → β(A1,A2, ...,An), where β is the component
(a terminal symbol), and A1,A2, ...,An are non-
terminal symbols corresponding to its arguments.

Example 1. Assuming x0 is the only program in-
put, we can define a simple DSL L in the domain
of table manipulation:

S → select(S,M) | transpose(S) | x0
M → 1 | 2 | 3 | ... | 10

Given a DSL, we can define the notions of com-
plete program and sketch.

Definition 3. (Program) A program P in a
DSL L described by a context-free grammar
G = (V,Σ, R, S) is a string P ∈ (Σ ∪ V)∗, such
that S *

=⇒ P .

Definition 4. (Complete program) A complete
program Pc in a DSL L described by a context-free
grammar G = (V,Σ, R, S) is a string Pc ∈ (Σ)∗,
such that S *

=⇒ Pc.

Example 2. Consider the DSL L defined
in Example 1. Some examples of complete
programs are select(x0, 5), transpose(x0), and
select(transpose(x0), 1). Moreover, select(S,M),
transpose(S), and select(transpose(S), 1) are pro-
grams, but they are not complete programs because
they contain non-terminal symbols.

Similarly to Feng et al.[5], we represent programs
as abstract syntax trees (AST), tree representations
of the syntactic structure of programs. We think of
nodes of an AST as structures with 3 attributes, (1)
the DSL symbol it represents, (2) a list of pointers
to its children, and (3) a unique index. Given a
program P , we refer to the root node of its AST by
Root(P). Given a node N , we use Ch(N) to denote
an ordered list of its children. We use sN to denote
the unique index associated with node N . Given a
program P , we associate index sR = 0 with its root
node R = Root(P). The index of the j’th child of
node N is sN × b+ j, where b is the maximum arity
of any DSL component.

Example 3. Consider the DSL L defined in Exam-
ple 1. By successively applying the productions of
L starting from the start symbol, we can derive the
program P := select(transpose(x0), 1), which can
be represented by the AST illustrated in Figure 1.

2.3. Search Technique
In the classical version of program synthesis, the
synthesizer’s objective is to find a program that sat-
isfies every input-output example. This formulation
is too narrow for our purposes, since it cannot fit
the problem we aim to solve: synthesizing programs
from noisy input-output examples. Therefore, we
propose an alternative formulation.

Problem statement 1. Given a domain spe-
cific language L, a problem specification Λ with

2

N0

select

N1transpose

N3x0

N2 1

Figure 1: AST representation of the program
select(transpose(x0), 1). NsN denotes the node
with index sN . The DSL symbol associated with
each node is next to it.

n input-output examples (~xi, yi) ∈ Λ, and a
cost function to measure the quality of programs
c : L × S 7→ R+, where S is the set of all prob-
lem specifications, the generalized program synthe-
sis problem is to find a complete program P ∈ L
such that P = argminP ′∈L c(P ′,Λ).

The search technique we use to solve the synthe-
sis problem largely depends on the internal repre-
sentation we choose. For instance, if we model our
problem as state-space search problem, we will most
certainly use a graph search algorithm. Whereas if
choose to model our problem as set of constraints,
we will most likely use a constraint solver. In this
paper, we opt for a hybrid representation that uses
both graphs and logical formulas. Therefore, we in-
troduce some concepts related to the satisfiability
of formulas.

Consider a set V = {v1, v2, ..., vn} of n Boolean
variables. A literal is a variable vi ∈ V or its nega-
tion ¬vi. A clause is a disjunction of literals. A
propositional formula in conjunctive normal form
(CNF) is a conjunction of clauses. Given a propo-
sitional formula in CNF ϕ, the propositional satis-
fiability (SAT) problem consists in deciding if there
exists an assignment to each variable in V such that
ϕ is satisfied. The satisfiability modulo theories
(SMT) is a generalisation of SAT, where the domain
of variables depends on a given theory T . A T -atom
is ground atomic formula in theory T . A T -literal
is a T -atom t or its negation ¬t. A T -formula is
a conjunction, or a disjunction of T -literals. Given
a T -formula ϕ, we say that it T -satisfiable if there
exists an assignment to each variable of ϕ such that
ϕ is satisfied.

Example 4. Consider the following SMT formula
in the theory of linear integer arithmetic (LIA):

(x+ y = 2) ∧ (z ≥ x+ y) ∧ (x = 1)

The assignment {x = 1, y = 1, z = 2} serves as
proof that the formula is satisfiable.

Recall that our goal is to represent the program
space using graphs and logical formulas. In partic-
ular, we are mostly interested in using SMT formu-
las. One of our motivations is that if we encode
the program space in SMT, we can use off-the-shelf
SMT solvers1 such as Z3[3] to enumerate programs.
Therefore, we do not have to fully design a special
propose algorithm to solve our problem.

3. Implementation
In order to build a program synthesis algorithm, we
first need to have a way to enumerate programs.
Our objective is to divide the enumeration of pro-
grams in a loop consisting of two smaller steps:
(1) build an incomplete program comprised of only
components (a sketch), and (2) complete the sketch
in all possible ways until a satisfying program is
found or the sketch is exhausted. For clarification
purposes we formally define the notion of sketch.

Definition 5. (Sketch) Consider a domain spe-
cific language L described by a context-free gram-
mar G = (V,Σ, R, S), where Σ = F ∪ I ∪ C2, in
which F is the set of component related symbols,
I is the set of input variable symbols, and C is the
set of constant symbols. A sketch P ∈ L is a string
P ∈ (F ∪ V)∗, such that S *

=⇒ P , and P 6= S.

Example 5. Recall the DSL from Example 1,
where x0 is the only program input:

S → select(S,M) | transpose(S) | x0
M → 1 | 2 | 3 | ... | 10

Some examples of sketches include select(S,M),
transpose(S), and select(transpose(S),M).
Moreover, select(S, 1), transpose(x0), and
select(transpose(S), 1) are not sketches be-
cause they contain terminal symbols corresponding
to constants and inputs.

3.1. K-tree Model For Sketches
The first step in our enumeration algorithm re-
quires us to encode the space of syntactically cor-
rect sketches. Similarly to programs, sketches can
be represented as abstract syntax trees. Our idea
is to implicitly represent all abstract syntax trees
using a set of constraints in SMT, and then use an
SMT solver to enumerate them. We achieve this
by using the k-tree model for sketches. A k-tree is
simply a tree in which all nodes but those at max-
imum depth have k children. We think of k-tree
nodes as structures with 3 attributes, (1) a pointer
to a DSL component or null, (2) a list of pointers
to its children, and (3) a unique index. We use sN

1An SMT solver is program that can verify the satisfia-
bility of SMT formulas.

2The terminal symbols of the 3 classes are pairwise dis-
joint, thus F ∩ I = ∅, F ∩ C = ∅, I ∩ C = ∅.

3

to the unique index associated with node N . If we
choose k as the maximum component-arity3 of all
DSL components, then we are guaranteed to be able
to represent all sketches of that DSL using k-trees.

Example 6. Consider the DSL from Example
5. The component-arity of select(S,M) is 1, be-
cause out of its 2 arguments, only S can be con-
verted into a component. The component-arity of
transpose(S) is equal to its arity, because its only
input S can be converted into a component.

Example 7. Consider the DSL from Example 5.
Since the maximum component-arity of all DSL
components is 1, a 1-tree suffices to represent all
sketches in this DSL. In Figure 2, we show some
examples of sketches of this DSL represented in a
1-tree of depth 2.

N0select

N1null

N2null

(a) select(S,M)

N0transpose

N1null

N2null

(b) transpose(S)

Figure 2: Two sketches in the DSL of Example 5
represented in a 1-tree of depth 2.

Next, we focus on our SMT encoding of the k-tree
model for sketches.

Variables Our goal is to encode all sketches of a
given DSL L in SMT using integer variables. There-
fore, we need to associate each DSL component with
a unique positive integer identifier. For each DSL
component c, we use Id(c) to denote the unique
positive integer identifier associated with it. We
also say that Id(null) = 0. Let us consider an ab-
stract k-tree T of depth d, where k is the maximum
component-arity of components in L. To encode
this tree in SMT, we will need two sorts of vari-
ables:

• An integer variable vsN for each node N of
the k-tree T , denoting the DSL component as-
signed to node N ;

• An auxiliary Boolean variable bsN for each
node N of the k-tree T , denoting whether node
N is assigned to a component (bsN = 1), or to
null (bsN = 0).

3The component-arity of a given component e is the num-
ber of components e can take as input.

Constraints Before discussing the constraints,
we introduce some notation that will helps us de-
scribe them. Given a k-tree T , we use Int(T), and
Nodes(T) to refer to the internal, and all nodes of
T , respectively. We use Ch(N) to refer to children
of node N . Given a DSL L, we use Comps(L),
and ComponentStartSymbol(L) to refer to its com-
ponents, and the components with a production
rule whose left-hand side is the start symbol of the
DSL, respectively. Lastly, we define the function
CDomain(C|N = e), read the component domain
of node C ∈ Ch(N) given that Node N has been
assigned to component e. CDomain(C|N = e) is
determined by the arguments of e: if node C is the
i’th child of N , and component e has a component-
arity bigger or equal to i, then CDomain(C|N = e)
is the set DSL components that can be assigned to
i’th argument of component e; if node C is the i’th
child of N, and component e has a component-arity
smaller than i, then Domain(C|N = e) = {null}.
The constraints are as follows.

• One constraint asserting that the output node
must be assigned to components with a pro-
duction rule whose left-hand side is the start
symbol of the DSL:∨

c ∈ ComponentStartSymbol(L)

v0 = Id(c) (1)

Example 8. Consider the DSL from Example
5. Constraint 1 on the output node of any 2-
tree of this DSL is as follows:

v0 = Id(select) ∨ v0 = Id(transpose)

• Constraints ensuring consistency between par-
ent and child nodes (enforcing the structure de-
fined in the grammar):

∀N ∈ Int(T),∀C ∈ Ch(N),∀c1 ∈ Comps(L) :

vsN = Id(c1) =⇒
∨

c2∈CDom(C|N=c1)
∪{null}

vsC = Id(c2)

(2)

Example 9. Consider the DSL from Exam-
ple 5, and the 1-tree of Figure 2(a). Con-
straint 2 on the internal node N1, for compo-
nent transpose is as follows:

v1 = Id(transpose) =⇒ (v2 = Id(select) ∨
v2 = Id(transpose) ∨ v2 = Id(null))

• Constraints ensuring that if internal nodes are
assigned null, then their children are assigned
null as well:

∀N ∈ Int(T),∀C ∈ Ch(N) :

vsN = Id(null) =⇒ vsC = Id(null)
(3)

4

Example 10. Consider the DSL from Exam-
ple 5, and the 1-tree of Figure 2(a). Constraint
3 on the internal node N1 is as follows:

v1 = Id(null) =⇒ v2 = Id(null)

Optional constraints We can further reduce the
program space by adding extra constraints.

• Constraints used to enforce exactly p compo-
nents to be used in the k-tree:

∀N ∈ Nodes(T) :

vsN = Id(null) ⇐⇒ bsN = 0
(4)

(∑
N ∈ Nodes(T)

bsN

)
= p (5)

Example 11. Consider the DSL from Exam-
ple 5, and the 1-tree of Figure 2(a). If we want
to enforce the generated program to have 2
components, we add the following constraints:

v0 = Id(null) ⇐⇒ b0 = 0

v1 = Id(null) ⇐⇒ b1 = 0

v2 = Id(null) ⇐⇒ b2 = 0

(b0 + b1 + b2) = 2

• One constraint used to enforce at least one the
leaf nodes to be used:∨

N∈Nodes(T)

¬(vsN = Id(null)) (6)

Example 12. Consider the DSL from Exam-
ple 5, and the 1-tree of Figure 2(a). If we want
to enforce the leaf to be used, we add the fol-
lowing constraint:

¬(v2 = Id(null))

Given a DSL, we can construct a formula with
the all of the previously described constraints, and
then use an SMT solver enumerate satisfying as-
signments of that formula. Each of the satisfying
assignments corresponds to a different sketch.

3.2. Sketch Completion
The second step in our enumeration algorithm is the
sketch completion. Given a particular sketch, our
objective is to exhaustively enumerate the complete
programs that can be obtained from that sketch.
We can do this step by using a graph-based search
algorithm. Our idea is as follows. The structure
of the AST of a program is solely decided by its
sketch. Therefore, after enumerating a sketch, we
can construct an incomplete AST with the correct
structure, in which Leaf nodes are not assigned to
any DSL element. Example 13 illustrates this data-
structure for a particular sketch.

Example 13. Consider the DSL of Example 5 and
the sketch select(transpose(S),M). Figure 3 illus-
trates the incomplete AST of this sketch. Leaf
nodes are left unassigned.

N0

select

N1transpose

N3?

N2 ?

Figure 3: Incomplete AST for the sketch
select(transpose(S),M).

Algorithm 1 shows the DynamicFillTree func-
tion that leverages this data structure in order
to enumerate all programs of a sketch. It re-
sembles a depth-first search on a graph. The
result of calling DynamicFillTree on a AST
node T is a list with all complete AST with root
node T . DynamicFillTree uses two core func-
tions: (1) Combinations, and (2) FillLeaves.

The function Combinations (line 7) re-
turns a list where each element is a combina-
tion of sub-trees. For instance, let us sup-
pose that Combinations is called on the list
[[t1, t2], [t3, t4], [t5]]. The possible combinations are
[{t1, t3, t5}, {t1, t4, t5}, {t2, t3, t5}, {t2, t4, t5}].

The elements assigned to the leaf nodes are de-
cided by the FillLeaves function (line 8). This
function returns all possible combinations of assign-
ments to the leaf nodes of a given internal node. In
order to prevent the generation of semantically in-
correct programs, this function depends on not only
of the component assigned to the parent node but
also on the sub-trees of its non-leaf siblings.

Example 14. Consider the DSL from Exam-
ple 5, and the AST from Figure 3. Sup-
pose that the input table x0 is a table with 3
rows and 6 columns. Calling FillLeaves on
the children of node N0 yields the following:
FillLeaves([N2], [N0 = select,N1 = transpose,
N3 = x0}) = [{N2 = 1}, {N2 = 2}, {N3 = 3}].

3.3. Synthesis Algorithm
In the classical version of program synthesis, the
synthesizer is given a black-box function that ei-
ther accepts or rejects a program. Thus, if the syn-
thesizer finds a program that is classified as correct

5

Algorithm 1: DynamicFillTree(T)

input : T , an AST node
output: trees, a list with all possible completions of T

1 child_trees← [] // a list of lists of complete trees
2 for c ∈ InternalChildren(T) do // the non-leaf children of T

3 child_trees← child_trees+ [DynamicFillTree(c)] // all completions starting at c

4 if child_trees = [] then // if we reach a node whose children are only leaves
5 child_trees← [[null]] // we add a dummy value to get a single combination

6 trees← []
7 for combination ∈ Combinations(child_trees) do
8 constants_list← FillLeaves(LeafChildren(T), combination ∪ {T = T.v})
9 for constants ∈ constants_list do

10 trees← trees+ [combination ∪ constants ∪ {T = T.v}]

11 return trees

by the black-box function, it can simply return that
program. In the generalized version, the synthesizer
takes as input a cost function it must minimize. In
order to consider a program correct (and thus re-
turn it), the synthesizer must prove that the cost of
the program it has found is minimum. If the synthe-
sizer knows the cost function’s minimum value, it
can use it as a stopping criterion. However, in gen-
eral, the synthesizer does not know which kind of
cost function the user will provide. One way to solve
this problem is by simply enumerating all possible
programs of the DSL, calculating their costs, and
then select the minimum. In Algorithm 2, we show
a generalized synthesis algorithm CostSynthesize
that uses this method.

CostSynthesize leverages both the k-tree for-
mula for sketches, and the data structure previ-
ously described. We explore program spaces of
different depths incrementally (i.e. programs of
smaller depth are explored first). In line 3, we
start by building the k-tree formula for sketches.
The formula should include the optional constraint
6, which enforces at least one of the leaf nodes to
be used. This constraint prevents the same sketch
from being enumerated twice at different depths.
After enumerating a sketch in line 4, we construct
the sketch’s incomplete AST by calling the func-
tion BuildTree in line 6. Subsequently, in the for
loop of lines 7 − 10, we sweep through all possible
completions of the incomplete AST, and test them
against the problem specification. In line 7, we call
the function DynamicFillTree(T), which returns
a list with all possible completions of T . In lines
8 − 11, we convert each tree into a program in the
DSL, and test it against the problem specification.

Although CostSynthesize theoretically solves
the generalized synthesis problem, it is a very in-

efficient algorithm, since it goes through the entire
program space. In real-world scenarios, this is sim-
ply not a feasible approach. We can tackle this in-
efficiency problem at the expense of correctness by
only exploring the first N ranked programs4. Our
motivation is that if we explore the program space
orderly, we do not have to go through the entire
program space to find a program that is likely to
be correct. In fact, if we have a sufficiently good
program ordering, we might even find the optimal
program. The ordering of the program space can
be achieved by encoding adequate predicates into
the SMT encoding of the k-tree model, which we
will discuss next. To implement this non-optimal
version of the synthesis algorithm, the only modifi-
cation we have to make to CostSynthesize is to
add a timeout to each iteration of the for loop of
lines 2 − 12. In this way, the algorithm will only
explore the highest ranking programs according to
the encoded predicates.

3.4. Program Space Ordering
The current SMT encoding of k-tree model pro-
vides us a way to perform a brute force enumer-
ation of sketches. However, simply performing a
blind brute force search usually does not suffice,
due the size of the program space[13]. One way
to tackle this problem is to perform an heuristically
guided search. We can achieve this by encoding
predicates into the SMT formula of the k-tree, each
one stating a degree of preference towards a dif-
ferent construct. For example, we could create a
predicate occurs(select, 5), stating that we would
like component select to appear in the synthesized

4If we do so, CostSynthesize is only guaranteed to re-
turn the best among the explored programs. Therefore, the
solutions it provides are not necessarily correct.

6

Algorithm 2: CostSynthesize(L, c,Λ, k, n)

input : L, a domain specific language
Λ, a problem specification
c, a cost function
k, the maximum component-arity of any component in the DSL
n, an upper-bound for depth of the solution

output: Pbest, a program with depth at most n such that P = argminP ′∈L c(P ′,Λ)

1 Pbest ← ∅
2 for i = 0 to n do
3 F ← BuildSketchFormula(L, k, i) // build the k-tree formula for sketches
4 ω ← SMTSolve(F) // ω is a sketch
5 while ω 6= ∅ do
6 T ← BuildTree(L,F , ω) // convert the sketch to an incomplete AST
7 for Tc ∈ DynamicFillTree(T) do // for every completion of T

8 P ← TreeToProgram(Tc)

9 if c(P,Λ) ≤ c(Pbest,Λ) then
10 Pbest ← P

11 F ← BlockModel(F , ω) // block the current sketch
12 ω ← SMTSolve(F)

13 return Pbest

program with a preference value of 5. The idea is
that if we encode these predicates into the SMT
formula of the k-tree, we can ask the SMT solver
to enumerate the programs orderly, starting with
the ones that maximize the preferences. Essentially,
we are transforming the SMT solving problem into
a MaxSMT solving problem, where the goal is to
find the program with the highest score[2]. Next,
we provide a way to encode two different kinds of
predicates for DSL components: (1) occurs(e, w)
used to state that we would like component e to
occur in the program with a preference value of w,
and (2) is_parent(e1, e2, w) used to state what we
would like the sequence of components e1(e2(...), ...)
to occur in the synthesized program with a prefer-
ence value of w.

Variables To calculate a program’s score we need
to know which predicates it satisfies. Thus, for each
predicate we have a Boolean variable stating if it is
satisfied.

• A Boolean variable oe for each predicate
occurs(e, w), such that oe = 1 if and only if
component e occurs;

• A Boolean variable pe1,e2 for each predicate
is_parent(e1, e2, w), such that pe1,e2 = 1
if and only if the sequence of components
e1(e2(...), ...) occurs;

• An auxiliary Boolean variable pe1,e2,N for
each predicate is_parent(e1, e2, w) and inter-
nal node N , such that pe1,e2,N = 1 if and only
if the sequence of components e1(e2(...), ...) oc-
curs and starts at node N .

Objective Function We use Occurs(L), and
IP(L) to denote the occurs, and is_parent pred-
icates the user has provided for the DSL L. The
objective function the SMT solver has to maximize
is as follows. ∑

occurs(e,w) ∈ Occurs(L)

w · oe+

∑
is_parent(e1,e2,w) ∈ IP(L)

w · pe1,e2
(7)

Example 15. Consider the DSL from Example 5,
and the following predicates:

occurs(select, 10) (8)
occurs(transpose, 2) (9)

is_parent(select, transpose, 1) (10)
is_parent(transpose, transpose, 10) (11)

The program select(transpose(x0), 1) satisfies
predicates 8, 9, and 10. Therefore, it has a score
of 10 · 1 + 2 · 1 + 1 · 1 + 10 · 0 = 13.

7

Constraints We use Int(T), and Nodes(T) to de-
note the internal nodes, and all nodes of k-tree T ,
respectively. We also use Ch(N) to denote to chil-
dren of node N . Id is the function that maps DSL
components to their unique positive integer identi-
fiers.

• Constraints asserting that if a predicate in
Occurs(L) is satisfied, then the corresponding
Boolean variable is assigned to 1, or 0 if other-
wise.

∀occurs(e, w) ∈ Occurs(L) :∨
N∈Nodes(T)

vsN = Id(e) ⇐⇒ oe = 1 (12)

Example 16. Consider the DSL from Exam-
ple 5, the 1-tree of depth 2 from Figure 2(a),
and the predicate occurs(select, 10). Con-
straint 12 for the predicate occurs(select, 10)
is as follows:

3∨
i=0

vi = Id(select) ⇐⇒ oselect = 1

• Constraints asserting that if a predicate in
IP(L) is satisfied, then the corresponding
Boolean variable is assigned to 1, or 0 if other-
wise.

∀is_parent(e1, e2, w) ∈ IP(L),∀N ∈ Int(T) :

vsN = Id(e1) ∧
(∨
C∈Ch(N)

vsC = Id(e2)
)

⇐⇒ pe1,e2,N = 1
(13)

∀is_parent(e1, e2, w) ∈ IP(L) :∨
N∈Int(N)

pe1,e2,N = 1 ⇐⇒ pe1,e2 = 1 (14)

Example 17. Consider the DSL from Exam-
ple 5, the 1-tree of depth 2 from Figure 2(a),
and the predicate occurs(select, 10). For the
predicate is_parent(select, transpose, 1), con-
straints 13, and 14 are as follows:

(v0 = Id(select) ∧ (v1 = Id(transpose))

⇐⇒ pselect,transpose,N0 = 1

(v1 = Id(select) ∧ (v2 = Id(transpose))

⇐⇒ pselect,transpose,N1 = 1

(pselect,transpose,N0 ∨ pselect,transpose,N1)

⇐⇒ pselect,transpose

Since these predicates are fully encoded into the
SMT formula of the k-tree, we do not need to make
any change to the synthesis algorithm. Notwith-
standing the usefulness of these predicates to guide

the search, we would like to emphasize that there
is a cost for each one we add. In particular, each
is_parent(e1, e2, N) adds an exponential number of
variables and constraints. The more of these pred-
icates we add, the more complex the optimization
problem will be.

4. Evaluation
4.1. Experimental Setup
In order to evaluate CostSynthesize shown in Al-
gorithm 2, we designed a DSL for table manipula-
tion that closely resembles R. In our DSL every
component has a component arity of at most 2.
Therefore, we used a 2-tree model to encode the
sketch space. Subsequently, we generated 487
benchmarks, each one comprised of: (1) an input
table, (2) a noisy output table, (3) and a correct
output table. The output tables were comprised of
two columns, one of strings, and one of numerical
data. The noisy output tables were obtained by in-
troducing error into the numerical columns of the
correct output tables. The method used to gener-
ate these benchmarks can be found in the thesis. In
Table 1, we present a summary of the benchmarks.

Solution Depth 3 4 5 6
Tests 164 147 101 75

Table 1: Brief summary of the 487 generated bench-
marks.

Algorithm 3 shows the cost function we used to
score programs. We used a threshold of ε = 0.10
(line 18 of Algorithm 3). Moreover, we encoded
both is_parent and occurs predicates in the k-
tree formula for sketches. Finally, there is one dif-
ference between our implementation and the algo-
rithms provided in this paper. Although CostSyn-
thesize is designed to search for solutions of differ-
ent depths, in our tests, we provided the synthesizer
with the depth of the solution we found ourselves,
and forced the synthesizer to search for a solution
of that depth. This was done because we sought
to evaluate the performance of the synthesizer on
feasible program spaces.

We ran each benchmark with a time limit of 3600
seconds, on a Intel(R) Xeon(R) CPU E5-2630 v2 @
2.60GHz with 64GB of RAM. We used the Z3[1, 3]
SMT solver to enumerate sketches.

4.2. Results and Discussion
We consider having solved a benchmark if the out-
put table produced by the best solution found by
the synthesizer within the time limit is equal to the
correct output table of the benchmark. In 261 out
of 487 benchmarks, a correct solution was enumer-
ated at some stage during the execution. However,
we were only able to solve 203 out of the 261 bench-

8

Algorithm 3: CostFunction(P,Λ)

input : P , a program
Λ, a program specification

output: c, the cost of program P on specification Λ

1 c← 0

2 for (~xi, yi) ∈ Λ do
3 ŷi ← P (~xi)

4 if Nrows(ŷi) 6= Nrows(yi) or Ncols(ŷi) 6= Ncols(yi) then
5 return +∞ // if tables have different column types (ex int,int vs str,int)

6 categorical1 ← Sort(CategoricalCol(ŷi)) // sorted alphabetically
7 categorical2 ← Sort(CategoricalCol(yi)) // sorted alphabetically
8 if categorical1 6= categorical2 then
9 return +∞ // if categorical columns are different, then program is wrong

10 yi ← Sort(yi, key = lambda x : Categorical(x),Numerical(x))

11 ŷi ← Sort(ŷi, key = lambda x : Categorical(x),Numerical(x))

12 numerical1 ← NumericalCol(ŷi)

13 numerical2 ← NumericalCol(yi)

14 for i = 0 to i = Nrows(yi) do

15 d←
∣∣∣ numerical1[i]−numerical2[i]
MaxValue(yi)−MinValue(yi)

∣∣∣ // normalizing distance to the interval of [0, 1]

16 if d > ε then
17 return +∞ // if there is a deviation of more than ε, discard the program

18 c← c+ d
Nrows(yi)

19 return c

marks, that is, the synthesizer enumerated a correct
solution but failed to select it in 58 out of the 261
benchmarks (due to cost being lower on incorrect
solutions). In Figure 4, we summarize the obtained
results by solution depth. We can see that we are
able to solve instances with only up to depth 4. The
pace at which the synthesizer is enumerating pro-
grams is not sufficiently fast to reach a correct solu-
tion within the time limit for instances of depth 5.
Profiling one of the instances we see that 77% of the
execution time is spent on the construction of pro-
grams given a sketch (the sketch completion step),
8% is spent on the cost function, 5% is spent on the
SMTSolve calls used to enumerate sketches, and the
remaining 10% is spent on framework-specific func-
tion calls (initialization functions and others). The
reason the majority of execution time is spent on
the programs’ construction is that it requires us
to evaluate programs using the DSL’s interpreter.
Therefore, improving the synthesizer’s performance
involves either reducing the number of evaluations
(namely through the use of pruning techniques), or
improving the interpreter’s performance.

4.3. Impact of Pruning

In order to reduce the number of evaluations, and
thus increase the synthesizer’s performance, we de-
cided to implement Morpheus[6] pruning tech-
nique into our algorithm. Morpheus uses abstract
specifications of components to discard incomplete
programs without having to complete them. A fur-
ther explanation of this pruning technique can be
found in the thesis. In Figure 5, we compare the
times at which the first correct program was enu-
merated, with and without pruning. In general, we
can that the first correct solution is being enumer-
ated first when pruning is used. There are 43 in-
stances in which we are only able to enumerate a
correct solution if we use pruning. However, there
are also 4 instances in which we are only able to
enumerate a correct solution if we do not use it.

5. Conclusions

In this paper, we proposed a generalized algorithm
to solve the problem of synthesizing programs from
noisy examples. The key challenge we addressed is
the fact that these examples only roughly approxi-
mate the desired input-output behavior. Our idea is
to enumerate programs orderly within a fixed time

9

2 3 4 5
0

50

100

150

200

components in solution

#
be

nc
hm

ar
ks

Total Within Correct

Figure 4: Number of solved benchmarks by depth.
For each depth, the blue bar represents the to-
tal number of benchmarks with the given depth.
The red, and yellow bars represents the number of
benchmarks in which a correct program was enu-
merated, and in which a correct program selected
by the synthesizer, respectively.

limit, and then select the best among all using a
cost function. We evaluated this approach in a sce-
nario where the problem specification is comprised
of an input table, and a noisy output table. We
also showed the impact of pruning through the use
of incomplete specifications of components. Finally,
we built a real program synthesizer and integrated
it into the Trinity[16] tool.

5.1. Future Work
There is a lot of promising work being currently
developed in the field of program synthesis. In
particular, accelerating the enumeration process
is still a very active area of research. Recently,
(author?)[21] proposed a synthesis algorithm that
can achieve a throughput of 31,400 programs per
second. We intend to explore ways to achieve such
a similar or better throughput, since we could see
huge improvements in our algorithm from it.

We also intend to explore different ways to dis-
ambiguate programs. One of the drawbacks of us-
ing incomplete specifications such as input-output
examples is that there is usually a big set of pro-
grams that satisfy it, albeit most of them are not
representative of the user’s intent. In our case, we
have an extra layer of complexity, since we aim to
synthesize programs from noisy input-output exam-
ples. One idea to tackle this problem is to inter-
act with the users whilst synthesizing programs, in
order to better understand their intent. For exam-

101 102 103 104
101

102

103

104

3600 seconds timeout
3
6
0
0

seconds
tim

eout

seconds (without pruning)

se
co
nd

s
(w

it
h
pr
un

in
g)

Figure 5: Time at which the first correct solution
was enumerated for all benchmarks within the time
limit of 3600 seconds.

ple, suppose that the synthesizer finds two programs
that both yield the desired output on the user’s pro-
vided input. In order to select the correct program
among the two, the synthesizer could try to search
for a different set of inputs in which both programs
yield different outputs. Subsequently, the synthe-
sizer could ask the user to select the correct output
for the new inputs.

There is also some recent work that makes use
of other sources of information to reduce the pro-
gram space. For example, Draco[17] is a recent
program synthesizer for the Vega-lite[20] language
that requires the user to provide some (but not all)
language elements to be used. We intend to explore
a similar idea by using predicates, in which we re-
quire the user to provide one of the components that
is necessarily part of the solution.

Finally, parallelization is still to be fully explored
in program synthesis. Our two-step enumeration
algorithm provides a straightforward way to in-
troduce parallelization. In our enumeration algo-
rithm, searching for complete programs in differ-
ent sketches represent independent tasks. There-
fore, we can always explore an arbitrary number of
sketches at the same time, granted that the gener-
ation of sketches outpaces its consumption.

Acknowledgements
This work was supported by national
funds through FCT with references
UID/CEC/50021/2019, CMU/AIR/0022/2017
and DSAIPA/AI/0044/2018.

10

References
[1] N. Bjørner, A. Phan, and L. Fleckenstein. νz

- an optimizing SMT solver. In Tools and
Algorithms for the Construction and Analy-
sis of Systems - 21st International Conference,
TACAS 2015, Held as Part of the European
Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April
11-18, 2015. Proceedings, pages 194–199, 2015.

[2] Y. Chen, R. Martins, and Y. Feng. Maximal
multi-layer specification synthesis. In Proceed-
ings of the ACM Joint Meeting on European
Software Engineering Conference and Sympo-
sium on the Foundations of Software Engi-
neering, ESEC/SIGSOFT FSE 2019, Tallinn,
Estonia, August 26-30, 2019., pages 602–612,
2019.

[3] L. M. de Moura and N. Bjørner. Z3: an ef-
ficient SMT solver. In C. R. Ramakrishnan
and J. Rehof, editors, Tools and Algorithms
for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008,
Held as Part of the Joint European Confer-
ences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lec-
ture Notes in Computer Science, pages 337–
340. Springer, 2008.

[4] A. Desai, S. Gulwani, V. Hingorani, N. Jain,
A. Karkare, M. Marron, S. R, and S. Roy. Pro-
gram synthesis using natural language. In L. K.
Dillon, W. Visser, and L. Williams, editors,
Proceedings of the 38th International Confer-
ence on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, pages
345–356. ACM, 2016.

[5] Y. Feng, R. Martins, O. Bastani, and I. Dillig.
Program synthesis using conflict-driven learn-
ing. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design
and Implementation, PLDI 2018, Philadel-
phia, PA, USA, June 18-22, 2018, pages 420–
435, 2018.

[6] Y. Feng, R. Martins, J. V. Geffen, I. Dil-
lig, and S. Chaudhuri. Component-based syn-
thesis of table consolidation and transforma-
tion tasks from examples. In Proceedings of
the 38th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementa-
tion, PLDI 2017, Barcelona, Spain, June 18-
23, 2017, pages 422–436, 2017.

[7] J. K. Feser, S. Chaudhuri, and I. Dillig. Syn-
thesizing data structure transformations from

input-output examples. In Proceedings of the
36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, pages
229–239, 2015.

[8] J. Frankle, P. Osera, D. Walker, and
S. Zdancewic. Example-directed synthesis: a
type-theoretic interpretation. In R. Bodík
and R. Majumdar, editors, Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Lan-
guages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 802–815. ACM,
2016.

[9] A. Gascón, A. Tiwari, B. Carmer, and
U. Mathur. Look for the proof to find the pro-
gram: Decorated-component-based program
synthesis. In Computer Aided Verification
- 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Pro-
ceedings, Part II, pages 86–103, 2017.

[10] C. C. Green. Application of theorem prov-
ing to problem solving. In Proceedings of the
1st International Joint Conference on Artifi-
cial Intelligence, Washington, DC, USA, May
7-9, 1969, pages 219–240, 1969.

[11] S. Gulwani. Automating string processing
in spreadsheets using input-output examples.
In Proceedings of the 38th ACM SIGPLAN-
SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, pages 317–
330, 2011.

[12] S. Gulwani, S. Jha, A. Tiwari, and R. Venkate-
san. Synthesis of loop-free programs. In Pro-
ceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and
Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011, pages 62–73, 2011.

[13] S. Gulwani, O. Polozov, and R. Singh. Pro-
gram synthesis. Foundations and Trends in
Programming Languages, 4(1-2):1–119, 2017.

[14] Z. Jin, M. R. Anderson, M. J. Cafarella, and
H. V. Jagadish. Foofah: Transforming data
by example. In Proceedings of the 2017 ACM
International Conference on Management of
Data, SIGMOD Conference 2017, Chicago, IL,
USA, May 14-19, 2017, pages 683–698, 2017.

[15] V. Le and S. Gulwani. Flashextract: a frame-
work for data extraction by examples. In
M. F. P. O’Boyle and K. Pingali, editors, ACM

11

SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’14,
Edinburgh, United Kingdom - June 09 - 11,
2014, pages 542–553. ACM, 2014.

[16] R. Martins, J. Chen, Y. Chen, Y. Feng,
and I. Dillig. Trinity: An extensible syn-
thesis framework for data science. PVLDB,
12(12):1914–1917, 2019.

[17] D. Moritz, C. Wang, G. L. Nelson, H. Lin,
A. M. Smith, B. Howe, and J. Heer. For-
malizing visualization design knowledge as con-
straints: Actionable and extensible models in
draco. IEEE Trans. Vis. Comput. Graph.,
25(1):438–448, 2019.

[18] P. Osera and S. Zdancewic. Type-and-
example-directed program synthesis. In Pro-
ceedings of the 36th ACM SIGPLAN Confer-
ence on Programming Language Design and
Implementation, Portland, OR, USA, June 15-
17, 2015, pages 619–630, 2015.

[19] O. Polozov and S. Gulwani. Flashmeta: a
framework for inductive program synthesis. In
Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applica-
tions, OOPSLA 2015, part of SPLASH 2015,
Pittsburgh, PA, USA, October 25-30, 2015,
pages 107–126, 2015.

[20] A. Satyanarayan, D. Moritz, K. Wongsupha-
sawat, and J. Heer. Vega-lite: A grammar of
interactive graphics. IEEE Trans. Vis. Com-
put. Graph., 23(1):341–350, 2017.

[21] K. Shi, J. Steinhardt, and P. Liang. Frangel:
component-based synthesis with control struc-
tures. PACMPL, 3(POPL):73:1–73:29, 2019.

[22] C. Smith and A. Albarghouthi. Mapreduce
program synthesis. In Proceedings of the 37th
ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17,
2016, pages 326–340, 2016.

[23] A. Tiwari, A. Gascón, and B. Dutertre. Pro-
gram synthesis using dual interpretation. In
Automated Deduction - CADE-25 - 25th Inter-
national Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceed-
ings, pages 482–497, 2015.

[24] C. Wang, A. Cheung, and R. Bodík. Synthesiz-
ing highly expressive SQL queries from input-
output examples. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI
2017, Barcelona, Spain, June 18-23, 2017,
pages 452–466, 2017.

[25] N. Yaghmazadeh, Y. Wang, I. Dillig, and
T. Dillig. Sqlizer: query synthesis from natural
language. PACMPL, 1(OOPSLA):63:1–63:26,
2017.

[26] S. Zhang and Y. Sun. Automatically synthesiz-
ing SQL queries from input-output examples.
In 2013 28th IEEE/ACM International Con-
ference on Automated Software Engineering,
ASE 2013, Silicon Valley, CA, USA, Novem-
ber 11-15, 2013, pages 224–234, 2013.

12

