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Abstract

Lack of transparency has become a great barrier to the widespread adoption of machine learning
in many areas of human society, despite the outstanding performance of recent algorithms in terms
of accuracy. When accounting for important and costly decisions, end users need to understand the
model to be able to rely on the predictions. In that regard, explaining black-box models has become
a hot topic in Machine Learning. This paper develops a novel approach to inspect the estimated risks
of using a black-box regression model for a given test case. We describe, evaluate and propose tools
that visually convey the relationship between the expected error and the values of a predictor variable.
Moreover, we illustrate the usefulness of our tools by applying them and other state-of-the-art methods
to a concrete real world case study with high socioeconomic impact: understanding factors that drive
the fishing effort around Large Scale Marine Protected Areas.
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1. Introduction

Sophisticated machine learning algorithms devel-
oped recently have reached a complexity level that
inherently hinders their functioning. As these mod-
els begin driving important and costly decisions,
end users have been pressuring for explainability
and transparency. In fact, the lack of transparency
is currently one of the largest obstacles to the wide-
scale adoption of machine learning. In this context,
implementing explainable models and understand-
ing black box models has become one of the hot
topics in Artificial Intelligence (AI) research.

There are plenty of methods one can use for bet-
ter understanding the behaviour of a model. In
this work, we address the explanation of (black-
box) regression models through the usage of visual
methods, since these are more adequate for convey-
ing information to end users with reduced techni-
cal background. Most existing explainability work
analyses the output (predicted values) of the al-
gorithm. However, we claim that explaining the
performance (prediction error) of the model is also
of high relevance, particularly when the predictions
drive costly decisions. We will then focus on this
particular aspect, proposing three tools that pro-
vide insight into the relationship between the pre-
diction error of the models and the values of the pre-
dictor variables. This approach helps the end user
assessing the risks of using the regression model in
certain domains, as well as explaining the reasons

behind some performance degradation.

Finally, to showcase the competence of explain-
ability tools, we analyse the fishing effort of vessels
around different areas of the globe near to Large
Scale Marine Protected Areas (LSMPA) using vari-
ous methods. Using the proposed tools, we begin by
comparing predictive algorithms to select the most
suitable for the problem, following with an overview
analysis of the performance of the chosen algorithm.
Lastly, we employ some selected state-of-the-art in-
terpretability tools to fully understand the impact
of a set of environmental, physical and economic
factors on the fishing effort.

This paper is organised as follows. In Section 2
we provide an overview of the existent tools. Our
proposals are described in Section 3 and the results
of the real world application are discussed in Sec-
tion 4. Finally, the main conclusions are presented
in Section 5.

2. Background

The main innovations and endeavours in explain-
able AI can be represented by the considerable
number of interpretability tools that have been be-
ing suggested recently [1, 12], which intend to un-
derstand the influence of the inputs in the pre-
dicted outcome, answering to the problem of in-
terpretability. These methods can be distinguished
between global and local explanations, depending
on whether the functioning of a model is described



in broad terms or if the explanation concerns a pre-
diction for a specific instance. Moreover, existing
tools approach the problem from different perspec-
tives. For instance, feature importance methods try
to attribute a score for the influence of each feature
on the prediction function [7, 9]. Other tools try to
visually show the relationship between the values
of a predictor variable and the output of a model
and can even be extended to display the interaction
between two predictors [4, 10].

Most existing work focuses on analysing the pre-
dictions of the models. However, we claim that in
order to trust a prediction it is also crucial to pro-
vide an assessment of the risk of the model, and
on this necessity lies the problem of accountability.
The evaluation of a regression model hinges on the
differences between the true and predicted values
and can be executed using scalar or graphical met-
rics. The former methods, most commonly used,
quantify an estimate of the expected error, using
approaches such as the Mean Squared Error and the
Median Error [13, 21]. Other approaches compare
the quality of several models [2, 20] by estimating
the loss of information. However, these methods
provide a single metric for the entire model, con-
cealing information if certain predicted values tend
to be more error prone. Graphic metrics provide a
different perspective on the analysis of the model,
informing about the changes in the performance for
different operating conditions, as are example the
REC curves [5] and surfaces [22]. REC curves plot
the error tolerance versus the percentage of points
predicted under that same tolerance, representing
an estimation of the cumulative distribution func-
tion of the error of the model. REC surfaces, in
turn, add the target values to this graphic.

The existing accountability tools only address the
overall error or the error tolerance in respect to the
target value. These methods assess the model as
a whole, not considering that different conditions
might lead to distinct performance behaviours as
well as not establishing a relationship with the pre-
dictor’s values. Thus, this will be the main distin-
guishing factor of our proposals.

3. Explaining the Performance of the Black-
Box

In light of previous research, we concluded that
there has been a great development in the field of
interpretability methods to the detriment of inves-
tigation of accountability methods, which have yet
not seen any recent innovation considering regres-
sion tasks.

In this section we describe a set of visual tools
that help explaining the performance of different
black box regression models. Our approach relates
the expected error of the model to the predictor
variables values to provide a more detailed analysis

of the risk associated with trusting a model for a
concrete test case.

Table 1: Data sets used for the experiments.

Data Set Nr. Cases Nr. Predictors
al 198 11
a2 198 11
a3 198 11
ad 198 11
ab 198 11
a7 198 11
Abalone 4177 8
acceleration 1732 14
availPwr 1802 15
bank8FM 4499 8
cpuSm 8192 12
fuelCons 1764 37
boston 506 13
maxTorque 1802 32
servo 167 4
airfoild 1503 5
concreteStrength 1030 8
machineCpu 209 6

Table 2: Regression algorithms, parameters, and
respective used R packages.

Learner Parameter Variants R package

Neural ;ize = 1%’ 1 t [24)
ecay = 0.1, nne

Networks (NN) ¢ — 1000

Support

Vector cost = 10, 1071 [8]

Machines (SVM) 94mma = 0.01

Random

Forests ntree = 1000 randomForest [16]

(RF)

Gradient distribution =" gaussian”,

Boosting n.trees = 5000, gbm [11]

Machines (GBM) interaction.depth = 3

Throughout this section we will illustrate the
proposed tools using experiments carried out on
18 regression data sets, with properties described
in Table 1. To guarantee that the tools are
model-agnostic and to avoid the existence of model-
dependent bias, each data set was modelled using
the four distinct predictive learning algorithms de-
scribed in Table 2. As stated before, our tools hinge
on the analysis of the error of a regression model.
To ensure the trustworthiness of our results, the
prediction error of each data set and model was es-
timated using 10-fold Cross Validation (CV) with
the R package performanceEstimation [23]. This
procedure allowed us to obtain, for each case in the
data set, a reliable estimate of the prediction error
of a black-box model we want to study.

Due to the extensive number of data sets, mod-
els and predictors, we cannot showcase all the re-
sults here. Hence, we will only illustrate some
pertinent examples, while the full graphs can
be consulted at http://github.com/inesareosa/
MScThesis. The web page also contains the source
code for each tool and to obtain all figures, all im-
plemented in R [18], ensuring full reproducibility of



the results and analysis.

3.1. Error Dependence Plot

The first tool to be introduced, the Error Depen-
dence Plot (EDP), shows the relation between the
expected error of a single regression model and the
values or categories of a predictor.

Obtaining the distribution of the error for each
value of a numeric predictor is strenuous, specially
for continuous variables and small data sets since
each value will probably not repeat many times in
the data set. To ensure a reliable visualization, we
propose discretizing the numerical predictor vari-
ables into meaningful bins. This process allows for
the collection of several error values in each bin,
therefore enabling the estimation of the error dis-
tribution. Ideally, the range of the bins should be
selected by an expert in accordance with the anal-
ysis goals. Nevertheless, as this knowledge is not
always available, we here suggest selecting the bins
with the following quantiles of the predictor vari-
able distribution: [0 - 10%] (extremely low values);
[10% - 35%)] (low values); [35% - 65%)] (central val-
ues) [65% - 90%)] (high values); and [90% - 100%]
(extremely high values). Note that this binning pro-
cess is not required for nominal predictor variables,
that have their bins defined by their categories.

Our proposed EDPs show the distribution of the
estimated error, in the Y-axis, for each bin of the
predictor values, in the X-axis, by grouping all the
training cases that match each bin and then show-
ing the respective error distribution through the us-
age of boxplots. EDPs also display the overall error
distribution and a line indicating the median error
for comparison, as well as the information of the
number of training cases belonging to each bin and
the respective percentage of the data set.

Absolute error distribution
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Figure 1: EDP for feature Frequency of data set
airfoild trained with RF.

Figure 1 shows the EDP for the numerical feature
Frequency of data set airfoild when trained with
a Random Forest (RF). The feature values were

segmented into 5 bins, as shown in the X-axis of the
plot, with each boxplot representing the estimated
error distribution of the RF in the respective
range of values. This illustrative EDP shows
that extreme values (Frequency = [200,250] and
Frequency = [12500,20000]) have a considerably
distinct estimated error distribution comparing
to the overall data, displayed in the rightmost
part of the plot. For these values, the Random
Forest is expected to have a considerably worse
performance. Nevertheless, the EDP also shows
that the higher prediction errors of the Random
Forest, although rare, occurred in other ranges of
the variable Frequency where the performance of
the model is expected to be much better. This may
serve as an alert of the possible influence of other
factors in those ranges of Frequency.

3.1.1 Bivariate EDPs

EDPs are univariate and thus ignore interactions
among the predictors, which may impact the per-
formance of the models. To capture some of these
potential interacions we suggest the usage of bivari-
ate EDPs. These graphs are conceptually the same
as the EDPs but they show the estimated error dis-
tribution for a combination of two predictors. These
are obtained with a similar procedure as EDPs, the
only difference being that the partition of the errors
is made across all possible combinations of bins be-
tween both predictors, instead of the bins of a single
predictor. For a deeper insight, EDPs can also be
adjusted to capture trivariate interactions.

Figure 2 shows an example of a Bivariate EDP
for the data set a7 when trained with a Support
Vector Machine (SVM). This case explores the im-
pact of the predictors season and PO/ on the esti-
mated error of the model. The top left panel shows
the overall error distribution of the model without
any conditioning of the two predictors. Each of the
remaining panels then represent a different bin of
PO/4. For each bin of PO4, having the bins of season
as the X-axis, we show the boxplots of the estimated
error distribution for the respective combination of
predictor values. This small example allows us to
observe that the SVM has a considerably different
behaviour for season = autumn when PQO4 is in
the range [169 — 285.71] (high values of POJ). We
can also observe that for the lowest values of PO/
the performance is generally much better, indepen-
dently of the season. Note that if a combination
of values of the two variables does not occur in the
training data, the respective boxplot is not shown,
as it is example the joint occurrence of extremely
high values of PO4 and size=autumn.
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Figure 2: Bivariate EDP for data set a7 trained with SVM for features season and PO/.

3.1.2 Evaluating EDPs

To understand how effective EDPs are in anticipat-
ing the error of the model in future test cases, we
have carried out a visual and a metric evaluation.

For both experiments, each data set in Table 1
was randomly partitioned into a training (70%) and
a test set (30%). Using the training set, the models
in Table 2 were trained and the respective estimated
errors for each instance were computed using CV,
with the estimates being used to obtain EDPs. Af-
terwards, with the models learned in the 70% train-
ing set, we obtained the predictions and respective
errors on the separate 30% test set left out of the
EDP creation. We aim to verify whether the dis-
tribution of the errors obtained on the test set is
similar to the distribution shown on the EDPs ob-
tained using the CV estimates of the training data.

To facilitate the comparison of the distribution of
the errors observed on the test set to the distribu-
tion shown on the EDPs, we propose a variant of
these graphs where two boxplots are show for each
value of the predictor: (i) the original boxplot of
the EDP; and (ii) the boxplot of the errors of the
model on the test set. Through visual inspection,
the end user can verify if the actual error had a sim-
ilar distribution to the one indicated by the EDP.

The analysis of the experiments carried out with
all the data sets in Table 1 lead to the conclusion
that EDPs tend to have higher reliability for larger
data sets and, in most cases, for bins with consid-
erable representation. This occurs because CV es-
timates are more effective when the available data
samples are sufficiently large. Figure 3 shows the
EDP evaluation of a Gradient Boosting Machine
(GBM) trained on data set fuelCons for feature At-
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Figure 3: Evaluation of EDP for feature Attribute9
of data set fuelCons trained with GBM.

tribute9d. The major disparity between the error
distributions is observed for Attribute9 = [7600-
55000], where the number of cases with this value
in the training set was of only 8 (0.65% of the train-
ing set), and in the test set only 3 cases had this
value of the feature. Another bin, with the range
Attribute4 =[3000-3700], presents a smaller discrep-
ancy, having 28 (2.27%) cases on the training set.
The other bins, with larger representation, present
the best results, with both errors showing a similar
distribution, showcasing the reliability of the EDPs
information.

To further investigate the reliability of the esti-
mates provided by EDPs, we ran a formal test that
compares the equality of two continuous distribu-
tions: the Anderson-Darling (AD) test [3], which
assumes as a null hypothesis that the two samples
(each bin of the EDP and the test errors obtained
for the same predictor values) are drawn from the
same distribution. In our evaluation, rejecting the
null hypothesis would then mean that the EDPs



did not estimated successfully the error behaviour
for that given range of predictor values. The test
was conducted using the function ad.test from the R,
package kSamples [19], that returns a p-value which
should be compared to a significance level « - if p-
value< «, the null hypothesis should be rejected.
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Figure 4: Proportion of p-values against size of bin
for each model (GBM, NN, RF and SVM), distin-
guished if above or below a = 0.05 and a = 0.01.
Bar width of 100 instances.

Figure 4 analyses the resultant AD test p-values
against two commonly used significance levels a =
{0.01,0.05} for the size of the predictor bins of each
data set, for each algorithm. Here we distinguish
between the percentage of p-values above o = 0.05
(in green), below a = 0.05 (in yellow and red) and
below @ = 0.01 (in red), plotting the ratio of p-
values for each size of the bin. We observe a partic-
ularity for the Neural Networks, in which the CV
estimates are clearly the least effective in predicting
the error behaviour, as we can conclude by the high
percentage of p-values under 0.01. All the other
models, specially the GBM and the SVM, show an
improvement on the reliability of the estimates with
the increase of the size of the bin, strengthening the
assumptions made in the previously discussed visual
evaluation.

In summary, our experiments show that EDPs
obtained using a CV process to estimate the errors
of a black box model will generally provide reliable
estimates of the expected error of the model for each
feature value, if enough data is available for this CV
process. However, a special advert should be made
to the usage of EDPs with Neural Networks, since
their estimates were found not to provide trustwor-
thy results. Note that these results do not arise
from a failure of the EDPs but rather from the fact
that the estimated CV errors have been observed
to be unreliable, due to an higher instability of the
NNs that lead to the performance on a training set
not being completely replicable on a test set.

3.2. Parallel Error Plots

EDPs have limitations when plotting various vari-
ables simultaneously, since these are restricted to
display the information for a maximum of three

variables at a time. However, most real world prob-
lems have many more feature variables and poten-
tial interactions between these should not be ig-
nored. From this perspective, we propose an ex-
tension of EDPs to a multivariate representation:
the Parallel Error Plots (PEPs), which represent
the estimated error profile across the range of val-
ues of multiple predictors simultaneously through
the usage of parallel coordinate plots [14].

Given the limitations of parallel coordinate plots,
we decided to split the very high errors from the
rest, assuming that the end users are interested in
knowing the conditions that lead the models to a
unusually bad performance as these might be an
indicator of higher risk. Hence, we suggest dividing
the errors in two categories: the top 10% errors
and the rest. This division is not strict and in fact,
the user is free to select another criterion and even
advised to so if dealing with extremely large data
sets, where the percentage should be adjusted to
avoid jeopardizing visualization.

PEPs plot each feature variable in the X-axis,
represented by a vertical bar that results from uni-
forming the scale of each variable. The uniformiza-
tion of PEPs map the original range of each feature
into a [0,1] scale, with 0 corresponding to the mini-
mum and 1 to the maximum values of the variable
in the data set. Mapping all feature values to this
uniform scale supports the display of all values on
the same Y-axis. Using this scale, each instance of
a data set is then represented by a line that crosses
each vertical bar in the respective scaled value of
the predictor. Additionally, PEPs color the line of
each case according to the respective estimated er-
ror: if the model had a very high expected error
(by default on the top 10%) when forecasting some
case the corresponding line is shown in red, other-
wise the line is drawn in grey. This enables the end
user to easily detect some patterns and overall ten-
dencies concerning the conditions in terms of the
predictors that lead to higher prediction errors.

We advise ordering the predictors in the X-axis
by a score of feature relevance, using feature impor-
tance methods. This way end users can easily con-
firm whether the lowest performance is explained by
the most important features. Here, we ordered the
predictors by importance using the function varImp
from the R package caret [15], which calculates the
variable importance through model-specific meth-
ods.

Figure 5 depicts the PEP of a RF trained on data
set al, with all predictors of the data set ordered
from left to right in increasing order of estimated
feature importance. PEPs help in identifying in-
teresting patterns concerning the largest errors of
the models. In fact, with this plot it can be ob-
served that the largest errors of the Random Forest
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Figure 5: Parallel Error Plot of Random Forest for
dataset al.

occur for the cases in which PO4, oPO4, CIl, NH,
Chla and NO3 have lower values of their range and
when mnO2 has higher values . On the other hand,
the highest errors do not seem to be strongly cor-
related with the values of the variables season, size
and speed. This type of information can be of great
value when deciding whether we can trust the pre-
diction of the Random Forest for a new test case of
this problem.

PEPs present some limitations when outliers oc-
cur in the predictors range, since this leads to a
compression of the other values. This limitation can
be addressed by using other methods of making the
scales of the variables uniform, that are robust to
outliers. Furthermore, with a large data set, the vi-
sualisation might get confusing. In these cases, one
can either randomly subset the data set to help in-
terpretation or pick a lower percentage for defining
the top errors. Finally, the visualization provided
by PEPs may also suffer from an excessive number
of predictors. In these cases we can opt for show-
ing only a subset of the predictors, which could be
determined by scores of feature relevance.

3.3. Multiple model Error Dependence Plots
EDPs and PEPs allow to understand the conditions
in terms of predictor values that lead to a different
predictive performance of one model. In this section
we argue that it is also relevant to do this analysis
with the goal of comparing different models on the
same problem, as it would allow to make model se-
lection for specific test cases based on their predic-
tor values. With this goal we propose the Multiple
model Error Dependence Plots (MEDPs), which de-
velop EDPs to further analyse multiple models si-
multaneously, across the range of a predictor.

In similarity to the EDPs, we compartmentalize
the feature of interest using the process described
in Section 3.1. Then, for each bin within the pre-
dictor values, the error boxplots of each model rep-
resenting the estimated error distribution (obtained
using CV) are arranged side by side, enabling the
end user to compare the performance of the models

across the domain of the chosen predictor. In or-
der to facilitate comparisons, the MEDPs show the
overall error distribution and a dashed line repre-
senting the median predicted error for each model.
Through visual inspection of the estimated error
behaviour, this tool helps finding the model most
suitable for any particular test case given its fea-
ture values.

As EDPs, MEDPs present a bivariate variant
that allows for the identification of interactions
between predictors, using the same visualisation
method but showing several boxplots (one for each
model) for each combination of bins.

MEDPs can be a useful tool to decide between
two models with a similar overall performance or
to identify whether the model with the best global
performance is outperformed for a certain range or
category of predictor variables. As an illustrative
example, take the MEDP on the acceleration data
set for Attributel (Figure 6), in which the best over-
all performance is achieved with the GBM, as seen
in the right part of the plot. Analysing the per-
formance of all 4 models for each category of At-
tributel, one can conclude by the expected error
distribution that this model in fact underperforms
when the feature Attributel=nominal5. This plot
then indicates that, if operating in domains of nomi-
nals, the GBM is not as reliable as the other models,
in contrary to the what the overall performance il-
lustrates. Note that the bin Attributel = nominal4
does not have the representation necessary to reach
a reliable conclusion in respect to the performance
of the models.

4. Large Scale Marine Protected Areas and
Global Fishing Fleets

In this section we tackle a real world problem - how
certain characteristics of Large Scale Marine Pro-
tected Areas (LSMPAs) and geographic-influenced
factors impact fishing effort within and near a
LSMPA. For such purpose, we perform a compre-
hensive study on predictive models trained with a
data set with information about thirteen LSMPAs
[6], using state-of-art interpretability methods as
well as the accountability tools proposed in Sec-
tion 3.

Marine Protected Areas (MPAs) have been desig-
nated around the world’s oceans to enhance global
marine protection and to counteract threats origi-
nated by overfishing, coastal development and cli-
mate change. LSMPAs encompass MPAs with an
area over 100 000km? and should be actively man-
aged for protection across the entire geographic ex-
tent of the area [25]. Established and planned fu-
ture LSMPAs will soon constitute 95% of the global
marine protected area [6], but their fairly recent ex-
istence calls for a reevaluation of some ecological
and socio-economic factors as initially perceived for
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Figure 6: MEDP for feature Attributel of data set acceleration using logarithmic scale.

smaller MPAs. In fact, despite the restriction or
prohibition of fishing activities in these areas, there
is a scarcity of information on how LSMPAs inter-
act with surrounding fisheries. Thus, the object of
this case study are these large-scale MPAs.

With this aim, we analysed how a variety of fac-
tors influence the fishing effort in thirteen LSMPAs
established before 2015. This study investigates the
area inside and around each MPA, evaluating re-
gions within a radius of up to 500km from the bor-
der, allowing for an insight on the influence of the
MPA in neighboring zones. Regarding the data set
used (further detailed in [6]), the target variable we
are interested is the fishing effort, measured by fish-
ing hours, and the predictor variables in study are
environmental (sea surface temperature and ocean
productivity), physical (depth, distance to the MPA
boundary, distance to high seas, area, shape, per-
centage of buffer in high seas and percentage of
MPA bordering the high seas) and economic (age,
GDP, enforcement, number of management zones,
number of protection categories and percentage of
no-take). The first five predictors mentioned are
variable within each MPA, while the remaining pa-
rameters are fixed and relative to each particular
LSMPA.

An exhaustive analysis of each individual LSMPA
is extremely extensive to be fully represented here,
so we will focus on the global analysis. However,
these results can be consulted in the web page
https://github.com/inesareosa/MScThesis.

With the aim of investigating how each character-
istic and parameter of a MPA relates to the fishing
effort, we initially compared the accuracy of 3 algo-
rithms to choose the most adequate one: a Support
Vector Machine, a Multivariate Adaptive Regres-
sion Spline (MARS) and a Random Forest, calcu-
lating the error estimates of each data instance us-
ing 10-fold CV. The parameters for each algorithm
were tuned using the R package performanceEsti-
mation [23].

The median expected absolute error for the three
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Figure 7: MEDP of features from Fishing Effort
analysis

algorithms was calculated, with the SVM and the
RF presenting the best overall performance in terms
of this metric (10.365 and 10.309 respectively),
while the MARS had the worse performance, with
a median error of 18.614. As stated previously, us-
ing a single metric for quantifying an overall per-
formance might conceal some particularities in re-
spect to certain values of the domain. Furthermore,
the similar median expected error between the Ran-
dom Forest and the Support Vector Machine de-
mand further investigation for sensibly selecting the
most adequate model. Hence, we employed MEDPs
across all predictor values, using the quantiles of the
values to select the ranges of the bins.



The MEDPs, plotted in Figure 7, showed that the
estimated performance improves with the increase
of Depth and Shape, being that for the former we
can actually establish some differences between the
SVM and the RF, since the SVM outperforms for
cases when depth is of Om, while the RF outper-
forms for values of depth superior to 6000m. The
MEDP of feature GDP also shows some variability,
with the SVM and the RF showing an improved
estimated error distribution for countries with an
higher GDP. It was concluded that for all other
features the expected performance tends to behave
similarly across the values of the domain. There-
fore, we can infer that the model performance is
not related to the values of these predictors. All
MEDPs disclosed a consistent underperformance
from the MARS model, independently of the op-
erating domain.

In light of previous considerations, we can infer
that MARS is clearly outperformed by the SVM
and RF algorithms for this problem of fishing effort.
Moreover, the differentiation between the usage of
the SVM versus the RF depends on the values of
the domain in which the end user would want to
operate on. However, for further analysis we opted
to utilise just the Random Forest since it has the
better median expected absolute error, besides be-
ing the most commonly used algorithm in this field.

Up to this point the interaction between predic-
tors was disregarded. The usage of PEPs allow for
an analysis of the performance across the values of
all the predictors simultaneously, thus enabling the
inspection of possible interactions that might lead
to performance degradation.
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Features

Figure 8: PEP for the RF that models all the 13
LSMPAs, for the 6 most important predictors

Figure 8 depicts the Parallel Error Plot for the 6
most important predictors (computed with R pack-
age caret) of the RF that models all LSMPAs. This
plot shows that the top 1% of the errors are likely
to occur in situations with high temperatures, low
values of ocean productivity and extremely low to
central depths, not having any particular visible re-
lation with the distance to high seas, percentage of

buffer in high seas and size.

Accountability methods do not provide the entire
information required to fully understand the prob-
lem. Therefore, in a second phase, some selected
state-of-the-art interpretability methods were ap-
plied to discover which factors influence fishing
within and near LSMPAs. Local methods were not
adopted since the main purpose is to obtain an over-
look of the influence of a variety of factors behind
fishing effort patterns, without any particular inter-
est in explaining specific predictions.

80000~
50000~

40000~

9% Increase MSE

H

20000- .
o . I e
B9 2 % 2 % %y %%
’ H s 2 ’ ] 4 g

is_MP

perc_buffe
a

Predictor

Figure 9: PFI results: % Increase in the Mean
Squared Error for each feature of the Random For-
est that models the LSMPAs

The Permutation Feature Importance (PFI) [7]
enables the calculation of a score that selects the
most important features for a given model, being
model-specific for Random Forests. This computa-
tion was performed using the R package random-
Forest [16]. Figure 9 plots the results, showing that
the primary drivers of overall fishing effort are en-
vironmental factors, particularly the SST and the
Ocean Productivity. This was not unexpected since
optimal temperatures lead to high concentration of
plankton, which in turn increases the concentration
of fish. We emphasize the role of the Percentage of
Buffer in the High Seas, which is considered with
this method as the most important MPA charac-
teristic for determining the fishing effort.

To capture the influence of each predictor vari-
able in the fishing effort patterns, we used ALE
plots, which plot the estimated variation of the tar-
get value for each value of the predictor. These
were calculated using the function ale from R pack-
age iml [17].

We concluded that most variables show clear in-
fluence on defining fishing effort patterns. In Fig-
ure 10 the ALE plots for the three features con-
sidered as most important are depicted. The high-
est fishing effort values are encountered in shallower
waters, with temperatures between 15°C and 17°C
or above 21°C, as well as for places with very low or
very high ocean productivity (below approximately
875mgC/m? /day or above 1375 mgC/m?/day).
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Figure 10: ALE Plots of the fishing effort in relation
to predictors of the Random Forest that models the
LSMPAs

The fishing hours tendentially increase with the
distance to the Marine Protected Area and show
some variability with the distance to high seas, with
greater effort in areas located in high seas. Regard-
ing the parameters specific to each LSMPA | higher
fishing effort apparently occurs for older and bigger
MPAs with greater shape ratio, when designated
by countries with a lower GDP, lower enforcement
and fewer number of management zones but with
stronger protection. Fishing hours tend to decrease
the higher the percentage of buffer located in high
seas, and slightly increase with the percentage of
MPA bordering high seas, apart for cases with ex-
tremely high percentages, where the fishing effort is
lower.

All the algorithms that evaluate the influence of
predictor values in the model outcome ignore in-

teractions between those same predictors, that can
influence the model prediction. The H-Statistic is
a metric that estimates the degree of interactions
between features, in a scale from 0 to 1, with 0
reporting no interaction and 1 informing that the
effect on a prediction arises solely from interaction.
This value was obtained using R package iml [17].
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Figure 11: H-Statistic for the Random Forest that
models all 13 LSMPAs together

Figure 11 plots the H-Statistic for the predictors
of the Random Fores. The value for the Sea Surface
Temperature, close to 1, shows that this feature im-
pacts the outcome almost solely by means of inter-
action with other features. This is a curious remark
if taking into consideration that this was considered
as the most important feature. Ocean Productiv-
ity, Distance to High Seas, Depth and Percentage
of Buffer of High Seas also present a relatively high
H-Statistic.

5. Conclusions

The demand for transparency calls for methods
that enable an insight on the functioning of black
box models, to better understand them and conse-
quently trust them. This paper describes a series of
model agnostic visual tools designed to address the
problem of explainability. In addition to interpret
the model itself, it is crucial to anticipate the risks
associated with trusting the models.

We describe a novel approach, in which we try ex-
plain the relation between the expected error and
the values of the predictor variable. We suggested
three new tools that increase the ability of end users
to correctly access the risks behind predicting for
a certain test case. We propose and evaluate the
Error Dependence Plots (EDPs), which visualise
the expected error distribution of a model against
the values of a predictor variable. Next, we extend
EDPs to a multivariate setting with Parallel Error
Plots (PEPs). Later, a variant of EDPs to com-
pare different models is presented - the MEDP. All



tools, code and data used in this paper are available
in https://github.com/inesareosa/MScThesis.
We have presented some illustrative examples of
these tools that showcase their utility in estimating
the risk associated with using a certain algorithm.

Lastly, we investigated a case about the interac-
tion of Large Scale Marine Protected Areas (LSM-
PAs) with fishing fleets. We provided a compara-
tive analysis between three algorithms, in which we
concluded that the SVM and the RF have a better
performance than MARS to this problem. Later,
the chosen algorithm, a RF, was further scrutinized
in terms of performance and interpretability. This
study lead to some interesting findings in terms of
feature importance, relation of features with out-
come and interactions between features.

As further work, we believe an interesting re-
search direction could be related to the development
of a tool that would ally interpretability and per-
formance analysis. In what regards the fishing ef-
fort case study, we would like to inspect the model
using local methods to determine reasons behind
extremely high predicted fishing effort.

References

[1] A. Adadi and M. Berrada. Peeking inside
the black-box: A survey on explainable arti-
ficial intelligence (xai). IEEE Access, 6:52138—
52160, 2018.

H. Akaike. Information Theory and an Ez-
tension of the Maximum Likelihood Principle,
pages 199-213. Springer New York, New York,
NY, 1973.

T. Anderson and D. Darling. Asymptotic the-
ory of certain goodness of fit criteria based on
stochastic processes. The Annals of Mathemat-
ical Statistics, 23:193-212, 06 1952.

D. Apley. Visualizing the effects of predictor
variables in black box supervised learning mod-
els. 12 2016.

J. Bi and K. P. Bennett. Regression error char-
acteristic curves. In Proc. of the 20th Int. Conf.
on Machine Learning, pages 43-50, 2003.

K. Boerder, B. O’Leary, C. McOwen,
E. Madin, D. M. McCauley, C. Jablonicky,
L. T. Torgo, M. Dureuil, D. P. Tittensor, and
B. Worm. Interactions between large marine
protected areas and global fishing fleets (under
review).

L. Breiman. Random forests. Mach. Learn.,
45(1):18-21, Oct. 2001.

E. Dimitriadou, K. Hornik, F. Leisch,
D. Meyer, and A. Weingessel. el071: Misc
Functions of the Department of Statistics
(e1071), TU Wien, 2011.

A. Fisher, C. Rudin, and F. Dominici. All mod-
els are wrong but many are useful: Variable

10

[10]

[11]

importance for black-box, proprietary, or mis-
specified prediction models, using model class
reliance, 2018.

J. Friedman. Greedy function approximation:
A gradient boosting machine. The Annals of
Statistics, 29:1217-1222, 11 2000.

B. Greenwell, B. Boehmke, J. Cunningham,
and G. Developers. gbm: Generalized Boosted
Regression Models, 2018.

R. Guidotti, A. Monreale, S. Ruggieri,
F. Turini, F. Giannotti, and D. Pedreschi. A
survey of methods for explaining black box
models. ACM Comput. Surv., 51(5):93:1-
93:42, Aug. 2018.

R. J. Hyndman and A. B. Koehler. Another
look at measures of forecast accuracy. Interna-
tional Journal of Forecasting, pages 679-688,
2006.

A. Inselberg. The plane with parallel coordi-
nates. The Visual Computer, 1(2):69-91, 1985.
M. Kuhn. caret: Classification and Regression
Training, 2019.

A. Liaw, M. Wiener, L. Breiman, and A. Cut-
ler. randomForest: Breiman and Cutler’s Ran-
dom Forests for Classification and Regression,
2018.

C. Molnar. iml: Interpretable Machine Learn-
ing, 2019.

R Core Team. R: A Language and Environ-
ment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Aus-
tria, 2017.

F. Scholz and A. Zhu. kSamples: K-Sample
Rank Tests and their Combinations, 2019.

G. Schwarz. Estimating the dimension of a
model. The Annals of Statistics, 6(2):461-464,
Mar. 1978.

M. Shcherbakov, A. Brebels, N. Shcherbakova,
A. Tyukov, T. Janovsky, and V. Kamaev. A
survey of forecast error measures. World Ap-
plied Sciences Journal, 24:171-176, 01 2013.
L. Torgo. Regression error characteristic sur-
faces. In KDD’05: Proc. of the 11th ACM
SIGKDD, pages 697-702, 2005.

L. Torgo. performanceEstimation: An Infra-
Structure for Performance Estimation of Pre-
dictive Models, 2016.

W. N. Venables and B. D. Ripley. Modern Ap-
plied Statistics with S. Springer, 4th edition,
2002.

D. Wagner, A. Wihlem, A. Friedlander,
A. Skeat, A. Sheppard, B. Bowen, C. Gay-
mar, G. Martin, I. Wright, J. Philibotte,
J. Parks, J. Bosanquet, K. Aiona, J. brider,
K. Morishige, L. Wright-Koteka, N. Lewis,
N. Brownie, R. Kosaki, and Z. Basher. 02 2013.



