CDRGen: A Clinical Data Registry Generator

Pedro Miguel da Cunha Alves
Instituto Superior Técnico
Universidade de Lisboa, Portugal
pedro.cunha.alves@tecnico.ulisboa.pt

Abstract

In the health sector, data analysis is typically
performed over clinical data that is stored in
Clinical Data Registries (CDRs). Currently, CDRs
tend to be supported by a software application
composed of a user interface, a database and the
logic that provides the communication between
these two. As far as we could find, in Portugal
there are twelve CDRs covering seven medical
specialties, which does not satisfy the physicians’
demand from other medical specialties. This
demand eventually causes the creation of new
CDRs, but these are usually created from scratch.
This results in a waste of resources since CDRs
have common characteristics: their user interfaces
support common functionalities and their collected
data covers common topics. Therefore, this thesis
focus on the development of a Clinical Data Reg-
istry Generator (CDRGen) software system that
generates CDRs with a minimum effort in terms
of software design and development. CDRGen
creates CDRs more efficiently, enabling to satisfy
the physicians’ requirements in a timely manner.
CDRGen also facilitates the developers’ work
since, in general, they only need to specify the
data to collect and CDRGen generates a CDR
based on it. Concretely, CDRGen receives a
high-level specification of the data to collect,
parses it and generates the three components of
a CDR: user interface, database and the logic
that provides the communication between these
two. Before developing CDRGen, we perform
an analysis of the existing Portuguese CDRs
regarding collected data, functionalities and user
interface. When developing CDRGen, we use one
existing CDR. After its development, we use two
other CDRs to evaluate CDRGen. For these two
CDRs, we measure the time required to develop
a new CDR. In addition, we assess the quality of
the generated CDR regarding its database and
functionalities.

Keywords: CDRGen,
Database, User interface

Clinical data registry,

1. Introduction

In the health sector, the concept of Clinical Data
Registry (CDR) is crucial [1]. A CDR records data
about patients and the health care they receive
over time. Typically, a CDR is focused on a given
medical specialty or a set of diseases. They prove
to be remarkable for conducting scientific research
that addresses clinical problems [2]. This scientific
research is based on data analysis performed over
data collected and stored in CDRs.

Very often, physicians use Excel files to build
their own CDR. However, Excel files have limita-
tions, such as poor scaling, for example. Given
these limitations, over the years there has been
an effort to build more robust CDRs that are com-
posed of three components: (i) a user interface that
enables to enter data through forms and then to ac-
cess data; (ii) a database to store the entered data;
and (iii) the logic that provides the communication
between the user interface and the database.

In Portugal, there have been some initiatives re-
garding the creation of CDRs. However, the CDRs
that currently exist do not cover all medical spe-
cialties. In fact, we were able to find 12 CDRs
that cover 7 medical specialties (all described in
Section 2). The existing Portuguese CDRs col-
lect data and types of data that are common to
various medical specialties (for instance, the pa-
tient's name as a string and the birth date as a
date). In addition, as far as we know, the data that
is collected and stored by half of the Portuguese
CDRs is structured (e.g., it is stored in a rela-
tional database). This characteristic provides ad-
vantages, since storing structured data facilitates
the execution of data analysis.

1.1. Problem

Since the Portuguese CDRs do not cover all medi-
cal specialties, new CDRs tend to be created. Due
to this, typically new software applications are built
from scratch in order to support each of these new
CDRs. This is a waste of resources since a lot
of work is repeated given the fact that CDRs have
similar characteristics. Namely, their user inter-
face provides common functionalities (such as en-
ter and navigating through the data) and their col-

lected data covers common topics (e.g., patient’s
characteristics and medical examinations). The re-
peated work increases substantially if the way in
which the user interacts with their user interfaces
is always the same. Derma.pt is an exceptional
example of a CDR that, we believe, has been built
reusing the results of Reuma.pt CDR. To overcome
this built from scratch process, we could use Low-
Code Development Platforms (LCDPs) to build ap-
plications that support CDRs and also reuse the
work performed between them. However, we
would always have to make a lot of changes if we
wanted to generate another CDR that collects dif-
ferent specific data and that provided the same in-
teraction with the user interface.

1.2. Objectives
The main objective of this thesis is to design and
develop a Clinical Data Registry Generator (CDR-
Gen) software system to generate a CDR based
on a high-level specification. Using CDRGen, we
want to generate CDRs with a minimum effort in
terms of software design and development.

To develop CDRGen, we focus on the following
three sub-objectives:

e Identification of the collected data, the func-
tionalities and the user interface character-
istics taking into account the existing Por-
tuguese CDRs.

e Syntax of the specification to provide to
CDRGen for generating a new CDR.

e Generation of the software logic required to
create and manage the database, the user in-
terface and the logic that provides the commu-
nication between these two components of the
generated CDR.

1.3. Solution
The overview of the solution to generate a CDR is
illustrated in Figure 1 and is described as follows:

Specification
JSON
file

User Interface Labels

CDRGen Clinical Data Registry

Software Software
system system

% 2%
T H
OUTPUT

JSON
file

INPUT
Figure 1: Overview of the solution to generate a CDR.

e The input of CDRGen is two JavaScript Ob-
ject Notation (JSON) files called specification
and user interface labels. The specification is
mainly composed of the data to be collected
by the CDR. The user interface labels de-
scribe the labels of the user interface that are
not related with the data to be collected.

e CDRGen reads these two JSON files, parses
them, and generates the code to create and
manage the generated CDR.

e A CDRiis the output of CDRGen.

1.4. Validation
To assess CDRGen, we use two existing CDRs
and, for each CDR, we measure:

e The time required to develop a CDR with
CDRGen.

e The ratio of tables, their relationships and at-
tributes that exist in the generated database
in relation to the expected database based on
the data collected by the existing CDR.

e The ratio of functionalities that the generated
CDR can perform in relation to the functionali-
ties provided by the existing CDR.

1.5. Document Outline

This document is organized as follows. Section
2 details the related work regarding the existing
Portuguese CDRs and LCDPs in general. In Sec-
tion 3, we perform a requirements analysis based
on what is currently supported by the Portuguese
CDRs that we approach in Section 2. Section 4
details CDRGen and, in Section 5, we assess it.
Finally, Section 6 presents the conclusions of this
thesis, an approach to its limitations and a vision of
future work.

2. Related Work

In this section, we describe the related work re-
garding two aspects: (i) the twelve Portuguese
CDRs that we were able to find (Section 2.1);
and (ii) Low-Code Development Platforms (Section
2.2).

2.1. Portuguese Clinical Data Registries
We organize the twelve Portuguese CDRs that we
were able to find in three groups of CDRs:

1. Specialty-specific, composed of the following
4 CDRs that cover different medical special-
ties: (i) Reuma.pt'; (i) Derma.pt?; (iii) National
Cancer Registry (RON)3; and (iv) Information
System for HIV/AIDS infection (SI.VIDA)

2. Cardiological, composed of the following 6
CDRs that address different diseases of Car-
diology: (i) Portuguese Registry of Acute
Coronary Syndromes (ProACS) #; (i) Na-
tional Registry of Arrhythmogenic Right Ven-

Thttp://www.reuma.pt/
2http://www.derma.pt/
Shttps://dre.pt/application/file/a/107688306/
“4https://registos.spc.pt/RegistoSCA/

Table 1: Summary of the Portuguese CDRs

Property Group Specialty-specific CDRs | Cardiological CDRs Research CDRs
Clinical - Reuma.pt - ProACS - PMR - Umedicine
data registries - Derma.pt - RNMAVD | - PRNC - PRECISE Stroke
- RON - PRo-HCM | - RNCI
- SI.LVIDA
Medical - Rheumatology - Cardiology - Urology
specialties - Dermatology - Neurology
- Oncology
- Infectiology
Data collected - Patient’s characteristics - Patient’s characteristics | - Patient’s characteristics
- Diagnosis - Patient’s history - Patient’s history

- Examinations

- Disease-specific
- Treatment

- Questionnaires

- Family history - Examinations

- Diagnosis - Treatment
- Examinations - Patient’s follow-up
- Treatment - Symptoms

- Patient’s follow-up - Questionnaires

Structured data - Yes (25%) - Yes (50%) - Yes
- Unknown (75%) - Unknown (50%)
Accessible to - Health workers - Physicians (75%) - Physicians
- Patients - Unknown (25%) - Patients
- Clerks

tricular Myocardiopathy (RNMAVD)®; (iii) Por-
tuguese Registry of Hypertrophic Cardiomy-
opathy (PRo-HCM)®; (iv) Portuguese My-
ocarditis Registry (PMR)”; (v) Portuguese
Registry of Non-compaction Cardiomyopathy
(PRNC)?; and (vi) Portuguese Registry on In-
terventional Cardiology (RNCI)®

3. Research, composed of the following 2 CDRs
built in the context of research projects: (i)
Umedicine; and (ii) PRECISE Stroke°.

Table 1 summarizes the Portuguese CDRs, and
describes, for each of the three groups mentioned,
the concerned CDRs, its medical specialties, the
data collected, whether the data is structured, and
by whom it is accessible.

All the CDRs are primarily focused on data en-
try, and the data analysis is usually performed by
external tools to the CDRs. In addition, Reuma.pt
in conjunction with Umedicine are the only CDRs
that are accessible both to physicians and patients,
contrarily to the other CDRs that can only be ac-
cessed by physicians or by other type of health
workers.

These CDRs collect data common to various
topics, such as patient’s characteristics, diagno-

Shttp://registos.spc.pt/RegistoMAVD/
Bhttp://registos.spc.pt/RegistosMiocardiopatia/
"http://registos.spc.pt/RegistosMiocardite/
8http://registos.spc.pt/RegistoMNC/
%http://registos.spc.pt/RegistosNacionaisSPC/
Ohttps://stroke.precisemed.org/home/

sis, treatments, medical examinations and patient’s
follow-up. The data to be collected is adjusted in
relation to the medical specialty of each CDR. In
six of the CDRs the data is structured, being com-
posed largely by enumerated fields and by a few
free text fields.

Finally, during the research about the Por-
tuguese CDRs, we verified that there are no CDRs
for some medical specialties. This is a problem,
since physicians require CDRs for their medical
specialties.

2.2. Low-Code Development Platforms (LCDPs)

LCDPs are software platforms composed of tools
that allow developers to create applications effi-
ciently and with a minimum amount of written code.
In order to develop applications, the LCDPs pro-
vide a high-level environment that is mainly com-
posed of graphical user interfaces. LCDPs usu-
ally provide a lower cost compared to the stan-
dard process of creating applications. Still, sup-
pose we wanted to develop several applications
that provide the same functionality but whose data
to store is different. When using LCDPs, we could
always create a new application and develop ev-
erything from scratch. Although, we would be
wasting resources since work would be repeated
given the common aspects of the applications. On
the other hand, we could reuse the first applica-
tion developed and change certain aspects. How-
ever, we would not only have to change the appli-

cation database (which was expected), but also its
user interface in order to accommodate the differ-
ent data. This way, we always had to spend time
and, therefore, resources. This would be a prob-
lem that fits into the creation of new CDRs, since
they usually provide common functionalities (such
as adding and navigating through the data) and
collect different specific data.

3. Requirements Analysis

In this section we present the requirements analy-
sis that we perform in order to decide what we will
support in any CDR to be generated. The require-
ments gathering is performed with respect to three
topics: (i) data to store (Section 3.1); (ii) functional-
ities (Section 3.2); and (iii) user interface (Section
3.3). This analysis is performed based on the ex-
isting Portuguese CDRs, that we described in Sec-
tion 2.1. Since we do not have full access to all
these CDRs, we rely on those that we have infor-
mation on at least one of the topics.

3.1. Data to Store

In terms of the data to store, we first identify the
common entity groups with respect to the data col-
lected by the 12 CDRs addressed in Section 2.1. In
concrete, we identify the following six entity groups:

e Person, representing the patient, namely her
characteristics

e Diagnosis, representing the symptoms and
diseases

e Treatment, representing the various treat-
ments that a patient can perform

e Questionnaire, representing the question-
naires that a patient fills in

e Medical examination, representing medical
examinations

e Medical appointment, representing the pa-
tient’s follow-up in medical visits.

These entity groups will be the basis for indicat-
ing the data to be collected by a CDR to gener-
ate. An entity group is identified by a name and
is composed of one or more entities. An entity is
also identified by a name and is composed of one
or more attributes. An attribute is identified by a
name and has a value. The values of all attributes
represent the data that is collected by a CDR.
With these entity groups identified, we focus
on the four CDRs that we have information about
the data collected: RON, RNMAVD, PRNC and
Umedicine. As we found in these four CDRs, in
a CDR to generate we will have relationships be-
tween the entity that represents the patient and

the other entities. These relationships may have
a one-to-one or a one-to-many multiplicity. In addi-
tion, as we found in Umedicine, we will also support
the existence of relationships between the entities
that represent'’: symptom and disease; treatment
and medical examination; treatment and dis-
ease; medicine and disease; and medicine and
medication.

Concerning the attribute types, in a CDR to gen-
erate we will support the following attributes types:
string, numeric (integer and float), date, enumer-
ated, list (of one of the previous types), boolean,
and image. This set of attribute types results
mainly of the union of the sets of attribute types
that we found in the four CDRs that we focused
on. As we also found, for an enumerated-type at-
tribute it will be possible to collect another value
other than the values that are predefined. In addi-
tion, for string and numeric attributes we will en-
able to define a limit of characters/digits.

Finally, we will support the constraints between
attributes stating that:

e The value of an attribute can determine the as-
signment of values to other attributes (founded
in all four CDRs).

e The value of an attribute must be one of the
values that were already given to another at-
tribute (founded in three of the four CDRs)2.

3.2. Functionalities

Regarding the functionalities that are supported
by CDRs, we analyse five CDRs: Umedicine,
Reuma.pt, RON, PRNC and RNMAVD. The
CDR to be generated will be able to be ac-
cessed by four different user types: (i) patient;
(i) clerk; (iii) administrator physician; and (iv)
non-administrator physician. We chose these
user types since we believe that they cover the dif-
ferent user types that may exist. The adminis-
trator physician user type always exists for any
generated CDR, while the other three user types
may not necessarily exist. These user types will be
able to perform different functionalities, as follows:

e The patient user will be able to:

— Add/visualize/edit/delete her data from
any of the six entity groups.

e The clerk user will be able to:

— Add patient users

— Add a subset of personal data of new pa-
tients.

"This will not be included in the system implementation
2This will not be included in the system implementation

e The administrator physician user will be
able to:

— Add/visualize/edit/delete data from any of
the six entity groups that concerns a pa-
tient

— Search for patients by name or by other
kind of identification

— Generate reports regarding modifications
(add/edit/delete) on the data of a particu-
lar patient

— Add users of any type.

e The non-administrator physician user will
be able to perform the same functionalities as
the administrator physician user, however
it will only be able to add patient users in-
stead of being able to add users of any type.

e All user types will also be able to edit and re-
trieve their password.

While the administrator physician user will be
able to add/visualize/edit/delete data of any pa-
tient, the permissions of the other user types may
vary. For instance, the patient user may only be
able to visualize a subset of her personal data.

These functionalities resulted from the general-
ization of the union of the functionalities supported
by the CDRs that we analysed. In particular, we
sought to prioritize the key functionalities that a
CDR usually has: add, visualize, edit and delete
data. In addition, we enable to change the permis-
sions of the user types over the data in order to
give more flexibility.

3.3. User Interface

Among all the CDRs analysed, we have access to
the full Umedicine user interface and only a few
screenshots of Reuma.pt’s user interface. This is
enough to identify the widgets that are used in their
user interfaces to enter data. Based on that in-
formation, we predefine the widgets that will be
used in the user interface to enter data accord-
ing to each type of attribute. For example, a text
box will be used to enter the value of a string-type
attribute. Regarding other aspects of the user in-
terface, we follow the only CDR that we have full
access: Umedicine.

4. CDRGen
In this section, we present a Clinical Data Reg-
istry Generator (CDRGen) that is able to generate
a CDR with a minimum effort in terms of software
design and development. The high-level architec-
ture of CDRGen is illustrated in Figure 2.

In general terms, the process for generating a
CDR starts with two JSON files: the JSON file

CDRGen

Specification Clinical Data Registry

[JSON file]

User Interface Labels

[JSON file]

INPUT

Figure 2: High-level architecture of CDRGen.

[Software System]

OuTPUT

Code Generator Container

Web Ul Client Generaf tor
Web Application Generator

specification and the JSON file user interface la-
bels (described in Sections 4.1 and 4.2, respec-
tively). CDRGen reads these JSON files, parses
them and generates code in order to produce a
CDR (described in Section 4.3). The CDRGen’s
software modules that parse the input and that
generate the CDR’s code are described in Section
4.4. During the development of CDRGen, we use
the Umedicine CDR as example.

4.1. CDRGen Input 1/2: JSON File Specification

We first designed a metamodel in order to describe
the metadata of a CDR to be generated that is de-
fined in the JSON file specification. This meta-
model was designed based on the requirements
analysis that we performed in Section 3, where we
identified: the user types to be supported by a CDR
to be generated; and the entity groups that form
the basis of the data to be collected by a CDR. We
must also bear in mind that a CDR to be generated
must have a name. Given this, the basis of the
metadata of a CDR to be generated consists of the
CDR’s name, the types of users to be supported,
and the entity groups required to define the data to
be collected.

Figure 3 represents the UML class diagram of
the specification metamodel. In the specification,
each entity group can optionally have a set of per-
missions and is composed of one or more enti-
ties. Each entity has a name, can optionally have
a set of permissions and properties, and has one
or more attributes. Each attribute has a name, a
type and can optionally have a set of values, per-
missions and properties. In attributes:

e The type specifies the kind of values the at-
tribute can hold (e.g., string, integer). String
and numeric attributes can optionally have a
minimum and a maximum number of charac-
ters/digits, respectively.

e The set of values is required for enumerated-
type attributes. It shows the concrete values
that can be hold by that attribute. For exam-
ple, the gender can be an enumerated-type
attribute whose values are male and female.

In entities and attributes, the set of properties
specifies one or more properties. For example,

5 orted er t ty]
upported user i]pej User Type 1user ype 6
permissions Permissi permissions
0..%* 0..*
-value
O,ﬁimissions
Attribute
Clinical Data Registry Metadat: Centity IR Entity Group entities~ | Entity attributess | DA valuesw | val
-clinical data registry name L€ —name 1..% —name 1..* :typf’a‘h t <'P;* 7Uaa:::
-minCharacters
properg%%i Property O{)ffperties?
Figure 3: UML class diagram of the specification metamodel.
3] g p
an entity can have the historic property'3, indicat- Ui 4 . e i
. . . . "clinica ata registry name": "Simple Registry",
ing that the entity can contain several instances "users": ["patient”],
that are identified by a date-type attribute. An at- S
tribute can have the not null property, which in- e
dicates that it cannot hold the null value. In en- "patient”, v
tity groups, entities and attributes, the set of per- e
missions specifies if a user type can read and/or B P I
write (i.e., permission’s value) a particular entity valuest: I'male”, “emale)
. . "permissions": "patient": "RW"
group/entity/attribute.] ’ :
Let us suppose that we want to generate a CDR]
according to the following example: N enones |
(1) Example. Simple Registry is a CDR that e
can be accessed by two types of users: ad- ey start dater, maater)
ministrator physician and patient. In "permissions”: { "patient": "R" } |,
. . { "attribute": ["End date", "date"],
Simple Registry, we want to collect: "permissions”: { "patient": "R"))

e The patient’s name which, in this case,

identifies the patient
The patient’s gender (male or female)

ends a radiotherapy treatment.

In Simple Registry, a patient user can vi-
sualize and change her name and gender,
but he/she can only visualize the start and
end dates of radiotherapy treatments.

Figure 4 illustrates the JSON file specification
that needs to be given as input to CDRGen in or-
der to generate the CDR according to Example (1).
This JSON file specification is described, in a struc-
tured form, by the following six aspects:

e Clinical data registry name: Simple Registry
(specified in line 2).

e Types of users supported: administrator
physician and patient (specified in line 3).
Note that since the administrator physi-
cian user always exists for any CDR gener-
ated, it is not specified.

BWe call the entities that have the historic property as
historic-type entities, otherwise we call them non-historic enti-
ties, which are the entities that can only have one instance (the
default).

}

}

Exam

The date when a patient starts and Figure 4: The resulting JSON file specification according to

ple (1).

Entities: Patient and Radiotherapy (Speci-
fied in lines 7-16 and 21-28, respectively).

Attributes of each entity: Patient entity has
a name (specified in lines 9-11) that holds a
string (the patient’s identifier) and a gender
(specified in lines 12-14), which has an enu-
merated type with “male” and “female” as pos-
sible values; Radiotherapy entity has a start
and end dates (specified in lines 23-24 and
25-26, respectively), where both hold a date.

The permissions of each attribute for the pa-
tient user: read (R) and write (W) the pa-
tient's name and the patient’s gender (spec-
ified in lines 11 and 14, respectively); read
(R) the radiotherapy’s start date and radio-
therapy’s end date (specified in lines 24 and
26, respectively). We only need to define the
patient user's permissions since the admin-

istrator physician user has full access to
any generated CDR, i.e., he/she can read and
write in all the entities’ attributes.

e The entities that compose each entity group:
person entity group (specified in lines 5-18)
is composed of the Patient entity; treatment
entity group (specified in lines 19-30) is com-
posed of the Radiotherapy entity.

4.2. CDRGen Input 2/2: JSON File User Interface La-
bels

The JSON file user interface labels describes the
labels of the user interface that are not related
with the data to be collected by the CDR (for in-
stance, labels of buttons, informative sentences).
This JSON file enables to customize the user inter-
face labels in order to match the same idiom (e.g.,
Portuguese, English, French) of the data to be col-
lected by the CDR. This JSON file is only com-
posed of an object that contains several key-value
pairs. The keys are predefined English strings and
the corresponding value is a string that represents
the label that is given to an element of the user in-
terface. For example, Add is one of the keys and its
value represents the label that is given to the add
buttons that appear in the user interface.

4.3. CDRGen Output: Clinical Data Registry

The architecture of the generated CDR is the same
as Umedicine’s architecture and is illustrated in
Figure 5.

HTTP Request

HTML R 3 N
SQL esponse S ‘\
- Queries AN
-— >
N~ AJAX Request
N’)
MysQL JSON Object Web Ul Client

Relational DB

Web Server
Figure 5: Architecture of the generated CDR. Figure edited
from Lages et al. [3].

Basically, the generated CDR has a client-server
architecture, which is the typical architecture of a
system that queries a database whose access by
users is achieved through a web browser. This
client-server architecture is composed of three
components: (i) a web user interface client, where
the user interacts through a web browser; (ii) a web
server; and (iii) a MySQL relational database.

The generated CDR will be accessible by the
user types that were defined in the JSON file speci-
fication. Each user type may have different permis-
sions over the data according to the given specifi-
cation and it will be able to perform different func-
tionalities as we stated in Section 3.2.

4.4. CDRGen: Parsing and Code Generation
CDRGen parses the two JSON files and generates
the code for creating the CDR’s database, web

server and web user interface client. As shown in
Figure 2 at the beginning of Section 4, CDRGen is
composed of four modules as follows.

Parser. The parser is responsible for reading
and parsing two JSON files: the JSON file spec-
ification and the JSON file user interface labels.
Then, it sends the resulting data to the code
generator modules (i.e., the database generator,
the web user interface client generator and the
web application generator). The data that results
from the parsing of the JSON file user interface
labels is sent only to the web user interface client
generator module. On the other hand, the data
that results from the parsing of the JSON file
specification is sent to all code generator modules.

Database Generator. The database genera-
tor is responsible for creating a MySQL relational
database to store the data that is entered by users
through the user interface (i.e. the data collected
by the CDR). The database to be created relies
heavily on the specification. In general, each entity
is represented by a table in the database and each
attribute of that entity is represented by an attribute
in the same table. In addition, each table that rep-
resents an entity has a relationship with the table
that represents the patient (let us call it patient
table). If a table represents a non-historic entity
(i.e., an entity that can only have one instance),
then there is a one-to-one relationship between
this table and the patient table. Otherwise, if
a table represents a historic-type entity (i.e., an
entity that can have several instances), then there
is a many-to-one relationship between this table
and the patient table.

Web User Interface Client Generator. The
web user interface client generator is responsible
for generating the code that supports the interac-
tion with the user. Specifically, this module creates
the screens of the user interface. To that end, it
generates Java Server Pages (JSP) files. The
design of these screens is aesthetically based
on the Umedicine user interface. These screens
include the data entry forms and the screens
for visualizing and navigating through the data.
The data entry forms are the screens where the
user enters data, i.e., are the screens where the
user adds a new instance of an entity or edits an
instance.

Web Application Generator. The web appli-
cation generator is responsible for generating the
code regarding the communication between the
database and the user interface (i.e., the web
server’s role). As in Umedicine, the web server

must answer to requests sent by web clients,
perform operations on the data, and store and
retrieve data from the database [3]. The web
server of the generated CDR has a structure equal
to the Umedicine’s web server: a Java application
that uses the Spring Framework ecosystem'.
The server component architecture is also the
same as Umedicine’s web server. It follows the
Model-View-Controller design pattern, in which we
have the model and the controller layers in the web
server'®. The model layer is composed of data
access objects and services, while the controller
layer is only composed of controllers. These three
concepts are defined as follows:

e Controllers are responsible for the web client
interactions, in which they receive web client
requests, invoke services and send re-
sponses.

e Services are invoked by controllers or other
services in order to process the data that is
sent by clients or that is retrieved from the
database. Basically, the services contain the
business logic and process the data for the
controllers use in their responses to clients.

e Data Access Objects are responsible for
the interaction between the server and the
database. It contains Structured Query Lan-
guage (SQL) instructions that enable to store
and retrieve data from the database. The data
retrieved is converted into Java objects and
then forwarded to the service layer.

In order to generate the web server of the CDR
(i.e., a Java application), the web application gen-
erator generates Java classes that represent the
controllers, the services, the data access objects
and the entities that were specified. The Java
classes that represent the specified entities are the
classes used to convert the data retrieved from the
database to Java objects.

5. Validation

In this section, we describe the assessment of
CDRGen against two CDRs that were not used
during its development. In concrete, we detail the
testing of CDRGen against PRNC and its valida-
tion against PRECISE Stroke. We test CDRGen
against PRNC in order to verify if our requirements
analysis has been well performed, since PRNC
was one of the CDRs used during that analysis.
On the other hand, PRECISE Stroke was not used
during the requirements analysis, so we use it to
validate. We chose these two CDRs to assess

4https://spring.io/
5The view layer is generated by the web user interface client
generator module

CDRGen since we know what data is collected and
the functionalities that they should provide. These
CDRs cover two different medical specialties: Car-
diology in the case of PRNC and Neurology in the
case of PRECISE Stroke. Thus, we end up as-
sessing CDRGen against two medical specialties
besides the one that was used for testing CDRGen
during its development, i.e., Urology.

In Section 5.1, we describe the evaluation met-
rics that we use and, in Section 5.2, we assess
CDRGen against the concerned CDRs.

5.1. Metrics
To test and validate CDRGen, we measure the fol-
lowing metrics:

1. Performance of the generation process: time
that the developer'® spends writing the spec-
ification and time that CDRGen takes to gen-
erate the CDR.

2. Quality of the generated CDR, by measuring
the ratio of:

e The tables, their attributes and relation-
ships that the generated CDR’s database
has in relation to what it is expected to
have based on the data that is collected
by the existing CDR.

e The functionalities that we can perform
through the generated CDR’s user inter-
face in relation to those provided by the
existing CDR.

5.2. Testing with PRNC and Validation with PRECISE
Stroke

For PRNC, the author (i.e., an expert) spent about
125 minutes (2 hours and 5 minutes) to write a
specification that covered 5 entity groups, 12 en-
tities and 243 attributes. Then, CDRGen took
about 2 seconds to generate the CDR based on
that specification. For PRECISE Stroke, the author
spent about 284 minutes (4 hours and 44 minutes)
to write a specification that covered 5 entity groups,
23 entities and 633 attributes. Then, CDRGen took
about 4 seconds to generate the CDR based on
that specification. Given this, we observe that the
time for CDRGen to generate a CDR is irrelevant
because it is in the order of magnitude of seconds.
In addition, we observe that the time to write the
specification based on the PRECISE Stroke’s data
was less compared to the time to write the spec-
ification based on the PRNC’s data regarding the
number of attributes specified (633 versus 243 at-
tributes). This happened because many attributes
of PRECISE Stroke are repeated in different enti-
ties, which simply led us to copy the definition of
these attributes to the concerned entities.

'81n this case we are referring to the author, i.e., an expert

For PRNC, CDRGen was able to generate a
database that had all the tables and relationships
between tables that it was supposed to have. Only
1 of the 244 attributes collected by the existing
PRNC (i.e., approximately 100%) was not included
in the generated database. These results shows
that the requirements analysis performed regard-
ing the data collected was almost excellent. On the
other hand, we have not achieved as good results
as these with PRECISE Stroke with respect to the
generated database. Since PRECISE Stroke was
not used in the requirements analysis, we were
completely unaware of the data that it collected.
Still, the database generated based on the data
collected by the existing PRECISE Stroke had ap-
proximately 97% of the tables, 88% of the attributes
and 91% of the relationships between tables that it
was supposed to have.

These results with the existing PRECISE Stroke
were not better since it collects data of types that
CDRGen does not support, such as automatic
computed fields'”, datetime, time, and image lists
where each image has attributes that detail it. Fi-
nally, we also observed that the historic-type enti-
ties that exist in PRECISE Stroke are not properly
supported by CDRGen.

Regarding the functionalities of the generated
CDRs, we observed that the user is able to per-
form about 94% and 89% of the functionalities of
the existing PRNC and PRECISE Stroke, respec-
tively. These results were not better since CDRGen
does not support the following three functionalities:
(i) visualize statistical data; (ii) export all data of a
set of patients; and (iii) delete all data of a patient.

Overall, as expected, we observe that we
achieve a greater success with PRNC than with
PRECISE Stroke, since PRNC was used in the re-
quirements analysis. However, we also observe
that we can generate a CDR that support much of
the existing PRECISE Stroke that we barely knew.
In addition, in both cases, we observe that the time
required to generate a CDR when using CDRGen
is on the order of magnitude of hours if the de-
veloper is an expert in the specification language.
Possibly in the worst case this magnitude can go
up to 2 or 3 days in the case that the developer
does not know the specification language at all.
Still, the time required to generate a CDR with-
out using CDRGen (i.e., what currently happens) is
much longer than this. In fact, the developer of the
existing PRECISE Stroke took about 300 hours (12
days and 12 hours) of work to develop it, reaching
the order of magnitude of weeks.

17 Automatic computed fields are attributes that are calculated
based on formulas that use the values of other attributes

6. Conclusions and Future Work
6.1. Conclusions

In this thesis, we presented a Clinical Data Reg-
istry Generator (CDRGen) software system to gen-
erate CDRs with a minimum effort in terms of soft-
ware design and development. The CDR is gener-
ated from two JSON files: one that describes, in a
high-level language, the characteristics of the data
that needs to be collected by the CDR; and another
that describes the user interface labels.

Throughout the development of CDRGen, we
used the existing Umedicine CDR. Then, to assess
CDRGen, we used the existing PRNC to test and
the existing PRECISE Stroke to validate. As ex-
pected, we achieved a greater success testing with
PRNC than validating with PRECISE Stroke, since
PRNC was used in the requirements analysis. Al-
though, we also generated a CDR that supported
much of the existing PRECISE Stroke. Finally, dur-
ing this assessment process, we observed that by
using CDRGen, we can generate CDRs in just a
few hours, as opposed to the standard procedure
which can take weeks.

6.2. Limitations and Future Work

The limitations and the future work aspects of this
thesis are separated in three groups. In the first
group, we point out the aspects that ended up not
being implemented in CDRGen as it was supposed
to, namely:

e The attribute constraint that states that the
value of an attribute must be one of the values
that were already given to another attribute.

e The relationships between some specific en-
tities (such as medicine and disease) as we
identified in Umedicine during the require-
ments analysis.

The second group consists of the limitations that
were identified during the evaluation of CDRGen.
These limitations correspond to aspects that CDR-
Gen does not support and, therefore, part of the
future work would be to implement them.

Finally, in the third group, we consider other lim-
itations, namely:

e The user interaction with the generated CDRs
is always the same, which can be problematic
if the user interface does not have good us-
ability.

e The maintenance of the generated CDR, since
over time it may be necessary to change the
data to be collected, for example.

e The way the developer specifies the data to be
collected by the CDR to be generated, which
follows a verbose syntax that is described in

the JSON format. As such, part of the future
work could be to develop a user interface that
allows developers to specify the data to be col-
lected visually.

References

[1] M. J. Santos, H. Canhdo, A. F. Mourao,
F. Oliveira Ramos, C. Ponte, C. Duarte,
A. Barcelos, F. Martins and J. A. Melo
Gomes. Reuma.pt contribution to the knowl-
edge of immune-mediated systemic rheumatic
diseases. Acta Reumatologica Portuguesa,
42:232-239, July 2017.

[2] Helena Canhéo, Augusto Faustino, Fernando
Martins, Jodo Eurico Fonseca, Patricia Nero
and Jaime C. Branco. Reuma.pt - the
rheumatic diseases portuguese register. Acta
Reumatologica Portuguesa, 36:45-56, Jan-
uary 2011.

[3] Nuno F. Lages, Bernardo Caetano, Manuel J.
Fonseca, Joado D. Pereira, Helena Galhardas
and Rui Farinha. Umedicine: A System for Clin-
ical Practice Support and Data Analysis. Data
Management and Analytics for Medicine and
Healthcare (DMAH), VLDB Workshop, 102—
120, 2017.

Appendix A — List of Acronyms

CDR Clinical Data Registry

CDRGen Clinical Data Registry Generator
JSON JavaScript Object Notation

JSP Java Server Pages

LCDP Low-Code Development Platform
PMR Portuguese Myocarditis Registry

PRNC Portuguese Registry of Non-compaction
Cardiomyopathy

ProACS Portuguese Registry of Acute Coronary
Syndromes

PRo-HCM Portuguese Registry of Hypertrophic
Cardiomyopathy

RNCI Portuguese Registry on Interventional Car-
diology (Registo Nacional de Cardiologia de
Intervencao, in Portuguese)

RNMAVD National Registry of Arrhythmogenic
Right Ventricular Myocardiopathy (Registo Na-
cional de Miocardiopatia Arritmogénica do
Ventriculo Direito, in Portuguese)

RON National Cancer Registry (Registo On-
colégico Nacional, in Portuguese)

SQL Structured Query Language

10

