
Navigation and guidance strategy online planning and execution

for autonomous UAV

Ana Raquel Araújo Simão do Carmo
raquelcarmo@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

November 2019

Abstract

Efficient path planning for autonomous Unmanned Aerial Vehicles (UAVs) in cluttered environments
is a challenging decision-making problem under uncertainty. Recently, Mixed-Observability Markov
Decision Processes (MOMDPs) have been proposed to solve such navigation problems with the goal of
reducing computational effort. In this work, a Partially Observable Stochastic Shortest Path (PO-SSP)
planning problem is modelled as a MOMDP. The resulting model enables the planner to deal with a priori
probabilistic sensor availability and path execution error propagation, which depend on the navigation
and guidance solution used. This approach results in a large and complex path planning problem to be
solved. To address this issue, a goal-oriented variant of the Partially Observable Monte-Carlo Planning
(POMCP), one of the fastest online state-of-the-art Monte-Carlo Tree Search algorithms for partially
observable environments, is used. It relies on the Upper Confidence Bounds (UCB1) as an action
selection strategy, which depends on a coefficient typically adjusted manually that requires an exhaustive
search to find the most suitable value. This exhaustive search applied to such a complex planning
problem may be extremely time consuming. Therefore, dynamic coefficients are proposed as a first
contribution of this dissertation. A second contribution is to incorporate this navigation and guidance
strategy in a planning-while-executing framework. The resulting structure provides strictly anytime
solutions, while exploiting action execution time to anticipate and plan future states, minimizing the
overall duration of the mission. Simulations performed in Gazebo allow to evaluate the performance of
this structure.
Keywords: Path Planning under Uncertainty, Navigation and Guidance Strategy, Mixed-Observability
Markov Decision Process, Concurrent Planning and Execution.

1. Introduction

Unmanned Aerial Vehicles (UAVs) constitute a
research field that has been extensively explored in
the last decade. Recent advances made it possible
for an UAV to develop autonomous capabilities, that
is, to perform tasks without requiring a human to
control them. As a result, UAVs can nowadays be
employed in a variety of operations, ranging from
search and rescue, surveillance and inspection mis-
sions [2], to navigation missions in cluttered envi-
ronments (e.g. urban areas) [14].

Autonomous navigation capabilities include func-
tionalities embedded in a Guidance, Navigation and
Control system (GNC) onboard the UAV system.
The navigation module estimates the state of the
vehicle based on the measurements of the onboard
sensors. Besides the classical solution combining In-
ertial Navigation Systems (INS) with Global Posi-
tioning Systems (GPS) as a self-localization system,
one can also rely on solutions based on 2D or 3D vi-
sion sensors: visual odometry, visual Simultaneous
Localization and Mapping (SLAM), etc. [2] [14].

However, all of these solutions have their own limi-
tations. An INS-only navigation solution quickly di-
verges due to accumulation of inertial measurement
bias, so it is usually coupled with GPS. Yet, GPS
signal can easily be masked or degraded due to oc-
clusion in cluttered environments. Consequently, a
UAV cannot sustain autonomous flight in the ab-
sence of GPS signal, if it is not backed up with al-
ternative sensors that do not rely on GPS informa-
tion. Nevertheless, visual SLAM and optical flow
techniques require rich texture on the image. Thus
it is of crucial importance to embed, in the UAV
onboard flight system, different navigation solutions
and their use in each phase of the mission to be de-
cided according to the surrounding environment.

Fortunately, the performance of some sensors can
be predicted by a priori knowledge about the en-
vironment. For instance, given a known satellite
constellation and a position, it is possible to obtain
information about the accuracy of a GPS measure-
ment in the form of Position Dilution of Precision
(PDOP) [4] [7]. This information can be very use-

1

ful for path planning, as this allows the planner to
anticipate an eventual degradation of the sensors’
accuracy and its influence on the path execution er-
ror along the way, minimizing the collision risk [3].

Although extensive research exists on applications
of these UAV localization and guidance approaches,
only recent developments can be found on the deci-
sion of switching navigation modes among the ones
available onboard as a function of the availability of
the sensors that depend on the environment [1] [15].
Delamer et al. have explored the complete model
of closed-loop vehicle motion with the functions of
GNC in the decision-making process, while taking
into account the sensors’ availability, in a significant
body of work, including ([4], [3]). Nevertheless, such
developments were achieved under an offline config-
uration of the planning algorithm, which is not suit-
able for applications in real scenarios with environ-
ments as dynamic as urban areas.

Having that in consideration, the main objective
of this work is to apply a generic planning-while-
executing framework to deal with the continuous
state space problem addressed in an real-time con-
figuration onboard a UAV. In particular, to han-
dle possible evolutions of the environment and of
the UAV state during the mission execution, pro-
viding strictly anytime solutions. In such frame-
work, a GNC transition model will be integrated in
the decision-making process of the online planner,
thereby allowing the propagation of the belief state
according to the availability of the onboard sensors.

This paper is organized as follows: firstly a sec-
tion on previous work briefly describes the GNC
model used and formalizes the problem addressed
as a Mixed-Observability Markov Decision Process
(MOMDP). This is followed by a section on the of-
fline approach, which presents the planning algo-
rithm to solve the MOMDP problem in an offline
configuration and our contribution on strategies for
parameter tuning. After, the reader is led through
the online approach, in which the planner is con-
verted into an online configuration and a brief ex-
planation is done of the planning-while-executing
framework that will drive the planner. Simulation
results illustrate the advantages and disadvantages
of the proposed approach. Furthermore, the perfor-
mance of this framework is also tested in a robot
simulator, Gazebo. Lastly, conclusions and future
work are discussed.

2. Previous work

Following the work developed in [3], the problem
addressed aims at finding a navigation and guidance
strategy for making UAVs reach a given destination
safely (avoiding obstacles) and efficiently (minimum
distance or time) in a cluttered environment under
uncertainty, thus making it a Partially Observable
Stochastic Shortest Path (PO-SSP) planning prob-
lem. It takes into account the availability of sensors

that depend on the environment and, with that, de-
cides on the navigation and guidance strategy to be
used by the UAV. Given the nature of the state vari-
ables being considered, [3] make use of the MOMDP
representation [10] to model this PO-SSP problem.

To illustrate this approach, this work focuses on
the UAV model proposed by [3], where the GNC
closed-loop system (Figure 1) is modelled as a tran-
sition function of the continuous vehicle state vector
x, which comprises the position, velocity and ac-

celerometer bias (x =
[
X T VT βTa

]T
). The navi-

gation module relies on the Extended Kalman filter
to estimate this state x and its error covariance P
for a selected navigation mode. The guidance and
control module then executes a selected path by us-
ing the navigation solution. The execution precision
is given by the execution error covariance

∑
, which

may depend on P.
The architecture of the overall planning system

considers the (closed-loop) GNC model as part of the
MOMDP planning problem. The planner will then
consider GNC’s closed-loop transitions to compute
the possible evolutions of the system’s state. The
policy computed by the planner take as inputs the
probability distribution over the current state, bsh ,
and a vector of booleans on sensors’ availability, sv,
and returns an action a, which contains information
on a reference velocity to pursue, Vref , and on the
navigation mode to use. Afterwards, a new vector of
sensors’ availability s′v is observed from the environ-
ment and the belief state update is performed. The

new belief b
s′h
a is then used by the policy to define

the next action to execute. Figure 1 illustrates the
system’s architecture.

A priori knowledge on the environment is assumed
to be given as a set of probability grid maps of ob-
stacles and availability of each of the sensors (Figure
2). These maps are used during the planning task to
propagate the path execution uncertainty given the
probabilistic sensor’s availability, and then to evalu-
ate obstacle collision risk.

Navigation
module

Guidance
module

Vehicle
motion model

Sensors

GNC

Policy
bsh , sv

bsh , a

s′v

Belief state
update

b
s′h
a

Environment

s′v

s′v

ba

Figure 1: System architecture diagram [3].

2.1. MOMDP Model
Following [3], the PO-SSP path planning problem

addressed is modelled as a MOMDP problem. As-
suming that a vehicle always knows if a given sensor
can be used or not in the current decision time step,
then the sensor’s availability is considered as a fully
observable state variable of the model. On the other

2

(a) WallBaffle (b) 2m precision (c) 10m precision

(d) CubeBaffle (e) 1m precision (f) 2m precision

Figure 2: Obstacle maps [8] and examples of proba-
bility maps of GPS availability with different preci-
sion thresholds, given in meters.

hand, the vehicle state vector x is non-observable
from the planning model point of view, as the only
outputs from the GNC model are the localization
and execution error covariances P and

∑
.

The MOMDP is defined as a tuple
(Sv,Sh,A,Ω, T ,O, C, b0), where Sv is the space of
fully observable states; Sh is the space of hidden
continuous states; A is the set of actions; Ω is
the set of observations; T is the state transition
function; O is the observation function, such as
O(o, a, s′h, s

′
v) = Pr(o|s′h, s′v, a); C : S × A → R+

0 is
the cost function; b0 = (s0

v, b
0
Sh), where b0Sh ∈ Bh is

the initial probability distribution over the initial
hidden continuous states, conditioned to s0

v ∈ Sv,
the initial fully observable state.

The visible state sv ∈ Sv is defined as a tuple
sv = (FS1

, FS2
, ..., FSN

, FCol,P), where FSi
defines

the fully observable boolean state variable for the
availability of sensor Si, i = 1, ..., N , and FCol rep-
resents a fully observable boolean variable for a col-
lision flag. Finally, P is the localization error covari-
ance matrix computed by the Kalman filter.

The hidden continuous state sh ∈ Sh is defined
as sh = x, recalling that x is the continuous vehi-

cle state vector defined by x =
[
X T VT βTa

]T
.

Apart from the vehicle position X , it is necessary to
consider the velocity V and the accelerometer bias
βa in the state sh, as they are considered in the
transition function to estimate the next state.

An action a ∈ A is defined as a tuple a =
({Vref} ,mn), where Vref is the reference velocity
in the guidance module, {Vref} defines a finite set
of possible Vref and mn ∈ {S1, ..., SN} is the naviga-
tion mode to be considered at each planning epoch
t, depending on the sensors’ availability.

Given the specificity of the model addressed, the
set of observations Ω is equal to Sv. Although the
agent receives no direct or even imprecise observa-
tion on the state sh, the propagation dynamics of the
error execution depending on the choice of naviga-

tion mode are known. This avoids considering sensor
measurements, which are not accessible at the mo-
ment of planning, and therefore avoid working with
a continuous observation space.

Following the GNC transition model described in
[3], the complete transition function is given as:

T (sv, s
′
v, a, s

′
h, sh) = Pr(s′v|s′h) Pr(s′h|sh, sv, a) (1)

where Pr(s′v|s′h) represents the transition function
for s′v, which depends only on the probabilistic
sensors availability maps and Pr(s′h|sh, sv, a) ∼
N (s̄′h,

∑̃′
(sv)) is based on the GNC closed-loop

model, given that the probability distribution of
a predicted state s′h follows a normal distribution
N (s̄′h,

∑̃′
(sv)), which in turn, is a function of the

previous state sh, the previous visible state sv and
the action a.

The cost function to be minimized is defined in
Equation 2. It is expected that by minimizing the
cost, the algorithm will minimize the flight time (for
efficiency) and the probability of collision (for safety)
at the same time.

C(st, at) =


0, if st ∈ G

K −
t−1∑
k=0

C(sk, ak), if st in collision

ft, otherwise

(2)
where ft is the flight time for a given action a at de-
cision step t and K is a fixed cost in case of collision.
When a collision occurs, the cost of any action is a
fixed penalty subtracted with the total flight time
since the initial belief state until the collision state.
This trick avoids penalizing more if the collision oc-
curs after a longer flight time or near the goal.

The aim of solving a POMDP problem is to find
a policy π : B → A, where B define the belief state
space, which optimizes a given criterion usually de-
fined by a value function. In the MOMDP problem
addressed, the value function V π(b) is defined as the
expected total cost payed from starting in a certain
belief state b and following policy π, as:

V π(b) = Eπ

[∞∑
t=0

C(bt, π(bt))

∣∣∣∣∣ b0 = b

]
(3)

where C(bt, π(bt) = a) is the expected cost of execut-
ing an action a in belief state b. Then the optimal
value function V ∗(b) is given as:

V ∗(b) = min
a∈A

[
C(b, a) +

∑
sv∈Sv

Pr(sv|b, a)V ∗(bsva)

]
(4)

When Equation 4 converges for all belief states, it
is possible to extract the optimal policy π∗:

π∗(b) = arg min
a∈A

[
C(b, a) +

∑
sv∈Sv

Pr(sv|b, a)V ∗(bsva)

]
(5)

3

3. Offline Approach
3.1. POMCP-GO Algorithm

Given the specificity of the MOMDP model cho-
sen, comprising a continuous hidden state space and
a discrete fully observable state space, the mainte-
nance and update of belief states would require an
expensive computational effort. An interesting so-
lution is to apply algorithms that do not need ex-
plicit representations of belief states at each decision
stage, such as the POMCP algorithm [12].

Nevertheless, the classical POMCP algorithm
does not completely meet the needs for path plan-
ning towards a goal state, therefore a new variant
was proposed. Such algorithm is called POMCP-GO
(Algorithm 1) as it is a goal oriented version of the
POMCP algorithm. The main differences between
both versions are hereafter discussed.

Algorithm 1: POMCP-GO Offline

1 Function POMCP-GO Offline(h, b0):
2 while nbTrial < nbmax do
3 sh ∼ b0
4 Trial(h, sh, sv, 0)
5 nbTrial+ = 1

6 return a∗ ← arg min
a∈A

Q(b0, a)

7 Function Trial(h, sh, sv, d):
8 if sh ∈ G then
9 return 0

10 if FCol == 1 then
11 return K − t ft
12 if h /∈ T then
13 for a ∈ A do
14 T (ha)← (Ninit(ha), Qinit(h, a))

15 Vinit(h)← min
a∈A

Q(h, a)

16 ā← arg min
a∈A

{
Q(h, a)− c

√
logN(h)
N(ha)

}
17 (s′h, s

′
v, C(sh, ā)) ∼ G(sh, ā)

18 Q(h, ā)′ ← C(sh, ā) + Trial(hao, s′h, s′v,
d+ 1)

19 N(h)← N(h) + 1
20 N(hā)← N(hā) + 1

21 Q(h, ā)← Q(h, ā) + Q(h,ā)′−Q(h,ā)
N(ha)

22 V (h)← min
a∈A

Q(h, a)

Firstly, a computational budget as a number of
trials to perform is used (line 2). In an offline con-
figuration, all trials start from the initial belief state
V (b0), that is, the root of the exploration tree (line
3), rather than at the current belief state. Then,
belief states are represented indirectly through the
POMCP property of generating sequences of history
nodes and sequence nodes. Since it is a goal-oriented
problem, [3] proposed that each trial should end up
only in a terminal state (goal or collision), instead of

being stopped every time a new node is initialized.
In the case of reaching a goal, a cost of 0 is returned
(line 9); whereas if collision is detected, a collision
cost is returned (line 11), as defined by Equation 2.

Differently from POMCP [12], in POMCP-GO, if
a new node ha is created, its value is estimated using
an initial heuristic value and not a rollout method.
Indeed, Q-values are initialized using the Dijkstra
deterministic shortest path algorithm [5] applied to
the obstacles grid map to compute the estimated
flight time. Furthermore, as the Q-value is progres-
sively updated throughout the simulations, it allows
to compute the value of V (h) as V (h) = min

a∈A
Q(h, a)

(line 15). At each step, the action a is chosen with
a UCB1-based selection strategy (line 16), the next
new state s′h is calculated using the GNC transi-
tion function, rather than the black-box simulator,
and the visible state s′v is randomly drawn according
to the probabilities given by the sensor’s availability
maps. The algorithm then continues to explore from
the new node hao = {h, a, s′v}.

3.2. Action selection strategies for planning
In our application case, POMCP-GO relies on the

following UCB1-based formula for action selection:

āUCB = arg min
a∈A

®
Q(h, a)− c

logN(h)

N(h, a)

´
(6)

Equation 6 depends on an exploration factor c,
which is a constant value typically adjusted man-
ually. This parameter varies significantly between
planning domains, requiring an exhaustive search to
find the most suitable value. Since this intensive
parameter tuning is not suited for an online plan-
ning configuration, the performance of three other
selection strategies is examined: decay with depth
(DWD), entropy-based coefficient (EBC) and a two-
steps sampling scheme based on simple regret and
cumulative regret. While the first two techniques
explore the use of adaptive coefficients in Equation
6 to avoid the exhaustive search, the last approach
introduces the notion of simple regret minimization
into the selection procedure.

3.2.1. Decay with depth (DWD)
In online path planning, it is often more inter-

esting to explore at the beginning or near obstacles
than at the end, when the vehicle is close to the goal.
Indeed, it is during the first periods that it is crucial
to explore alternative paths, which anticipate likely
collisions. Using the formula proposed by [3], the
DWD coefficient starts with a higher value in the
beginning, to support the exploration of available
actions, and then as the depth of the tree increases,
lower values of the coefficient are considered in order
to give way to the exploitation, as follows:

cDWD =
Ck
t

(K − t ft) (7)

4

where Ck is a constant value, K is the collision
penalty and t is the depth of the tree since the be-
ginning of the flight, i.e. t = t0.

3.2.2. Entropy-based Coefficient (EBC)
The suggested coefficient is based on a score re-

lated to a measure of the uncertainty about the sen-
sors’ availability. More specifically in our application
case, the coefficient adapts according to the entropy
of the probability grid map of the navigation sen-
sors’ availability. Then, during the planning process,
the value of the coefficient lies within a specific user-
defined interval [cmin, cmax], encoding, on the action
selection strategy, the need to explore more thor-
oughly in the areas where the uncertainty is higher.
The EBC is proportional to the maximum possible
cost value as follows:

cEBC(sv, sh) = en(sv, sh) max
s∈S
a∈A

|C(s, a)| (8)

where en(sv, sh) = (cmax − cmin) e(sv, sh) + cmin is
the normalized entropy to fit in [cmin, cmax], and

e(sv, sh) = −
∑
sv∈∫v

Pr(sv|sh) log2(Pr(sv|sh)) (9)

is the value of the entropy according to the probabil-
ity grid map of the navigation sensors’ availability.
In this case, ∫v = (FS1

, FS2
, ..., FSN

) is a subset of
Sv that only considers the fully observable boolean
state variables FSi , i.e. neither P nor FCol are ac-
counted for during the computation of this coeffi-
cient.

3.2.3. SR+CR MCTS Sampling Scheme
In [13], authors argue that, at the root node, the

sampling in MCTS is usually aimed at finding the
first move to perform. For this, one needs to pro-
mote exploration. Once one move is shown to be
the best choice with high confidence, the value of
information of additional samples of the best move
is low. On the other hand, it is beneficial to promote
exploitation in the nodes deeper in the tree. For this
purpose, [13] propose a two-stage sampling scheme,
SR+CR MCTS. This selects an action at the current
root node according to a scheme suitable for mini-
mizing the simple regret (SR), which can be achieved
by replacing the log(·) operator in Equation 6, with
a faster growing sub-linear function, such as

√
(·):

āUCB√
(·)

= arg min
a∈A

Q(h, a)− c

√√
N(h)

N(h, a)


(10)

And then at non-root nodes it selects actions ac-
cording to UCB1, which approximately minimizes
the cumulative regret (CR). In this case, the explo-
ration factor c in Equation 10 has to be tuned in the
same manner as in UCB1. However, the authors

argue that this approach is expected to be signifi-
cantly less sensitive to the tuning of this parameter
and also to outperform the classic UCB1 in terms of
convergence rate of the value function.

3.3. Back propagation strategies
The backup function defines how the knowledge

on state-value estimates V (h) and action-value esti-
mates Q(h, a) that is gathered in the trials is propa-
gated through the tree [6]. In this work, two differ-
ent Q-value approximations are tested, resulting in
two distinct back-propagation strategies. For both
approaches, the state-value estimates are updated
based on the best successor.

3.3.1. Classical POMCP
In this strategy, the action-value estimates are up-

dated based on the mean return from all trajectories
started when action a was selected in history h. Let
Q(h, a)′ be the simulated return computed recur-
sively over the trajectories, then the state-value and
action-value estimates are calculated as

V (h)← min
a∈A

Q(h, a)

Q(h, a)← Q(h, a) +
Q(h, a)′ −Q(h, a)

N(ha)

(11)

This strategy is the one commonly adopted in
the POMCP algorithm. As the action-value esti-
mate Q(h, a) averages over all trajectories started
in that action a, and not over trials starting with a
and following the optimal policy, this might cause
a potential pitfall: if a trajectory yields a very high
cost compared to an optimal one, a single trial over
said course can bias Q(h, a) disproportionately over
many trials [6].

3.3.2. MinPOMCP
This strategy derives from the MaxUCT algo-

rithm proposed in [6] and constitutes part of the
contributions of this dissertation. In this case, the
estimation of the action-values is based on the value
of its best successor, rather than on all trajectories,
as follows

V (h)← min
a∈A

Q(h, a)

Q(h, a)← C(h, a) +

∑
haoN(hao)V (hao)

N(ha)

(12)

where

C(h, a)← C(h, a) +
C(sh, a)− C(h, a)

N(ha)
(13)

is the mean immediate cost of executing action a in
history h. As a result of applying this strategy, the
contributing subtree in the back-propagation step is
identical to the best partial solution tree and, there-
fore, the pitfall discussed in the Classical POMCP
strategy no longer applies.

5

3.4. Simulations

Configuration A total of 8 case studies are exam-
ined: 2 environment maps, for which 2 distinct sen-
sor’s availability maps, with 2 different initial states
each, are considered. A total of 10 value and pol-
icy optimizations are performed for each case study.
The total number of trials in each optimization pro-
cess is set to 50000. For each 5000 trials, 1000 sim-
ulations are performed to evaluate the policy being
currently optimized.

Two onboard sensors are considered: INS, avail-
able all the time, and GPS, available according to
the probability maps. Moreover, two benchmarks
from [8] are selected: WallBaffle: map containing
two walls as obstacles (Figure 2a) and CubeBaffle:
map containing two cubes as obstacles (Figure 2d).
Both maps contain a grid size of 100×100×20 cells,
where each grid cell has the size of 2m× 2m× 2m.

The initial belief state is defined as b0 =
(s0
v, bS0

h
= (s0

h,
∑̃

0)), where s0
v = [1, 1, 0,P]

is the initial visible state; P =
∑̃

0 =
diag(1, 1, 1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01). Two
initial states s0

h are considered for each map. For
WallBaffle: s0

h = [10, 25, 5, 0, 0, 0, 0, 0, 0] and s0
h =

[50, 25, 5, 0, 0, 0, 0, 0, 0], representing the initial posi-
tions (10, 25, 5)m and (50, 25, 5)m, respectively; and
for CubeBaffle: s0

h = [35, 20, 5, 0, 0, 0, 0, 0, 0] and
s0
h = [65, 20, 5, 0, 0, 0, 0, 0, 0], representing the ini-

tial positions (35, 20, 5)m and (65, 20, 5)m, respec-
tively. The target state is defined at the position
sg = (50, 80, 5)m.

The set of Vref is composed by 26 reference speeds
for each navigation sensor, thus comprising a total of
52 possible actions. Parameters in the GNC model
are configured to ensure an action duration of 4 sec-
onds. The collision cost is fixed at K = 450.

Concerning the selection strategies, extensive
search is performed in UCB1 (UCB(c)) for the values
c = (0.01, 0.05, 0.1, 0.5, 1, 5, 10), Decay with Depth
(DWD) uses Ck = 0.2222, Entropy-based Coeffi-
cient (EBC) applies [cmin, cmax] = [0, 0.0222], so
that cEBC lies within an interval of [0, 10], to be
comparable with the values examined in UCB1, and
SR+CR MTCS (UCB√

(·)(c)) only uses the coeffi-

cient that showed the best results in UCB1.

The metrics evaluated include the value of the ini-
tial belief state V (b0) during the optimization (used
to check the convergence in value of the policy be-
ing optimized for the initial state of belief), value
of the initial belief state V (b0) executed (based on
the simulations), the success rate (in %), the aver-
age flight time T for the successful simulations (al-
lows to verify the minimization of the flight time)
and the computational time per optimization (indi-
cator of the computational complexity inherent to
the strategies).

Classical POMCP is tested for each of the 4 se-
lection strategies, while MinPOMCP is performed

only for the coefficient that showed the best results
in UCB1 and for the EBC, making it a total of 6
different combinations used. Selection strategies us-
ing the MinPOMCP back-propagation approach are
identified with an extra subscript MP.

Results This section comprises only the values ob-
tained after the 50000 trials were reached. Figures 3
and 4 represent the results of the metrics V (b0) op-
timized and V (b0) simulated for all the approaches.
The data is organized in the form of bars, being the
tip of the filled bar the average, while the extremes
of the vertical lines represent the standard deviation.

It is noticeable that the UCB1’s best fixed coeffi-
cient varies significantly, not only across the different
GPS precision probabilistic availability maps con-
sidered, but also when changing initial positions in
the same map. For this reason, the use of an adap-
tive coefficient to fit all the different planning do-
mains becomes a very promising solution for an on-
line planning configuration. Both V (b0) optimized
and simulated computed for EBC lie within the val-
ues obtained for the UCB1 fixed coefficients for every
case study, although never reaching the values of the
best fixed coefficient. Therefore, a compromise must
be made between the desired quality of the results
and the time one is willing to spend on the exhaus-
tive search for the optimal coefficient value. On the
other hand, both DWD and UCB√

(·) do not show

a consistent behaviour, yielding the best results for
particular case studies, while the worst results for
others. Furthermore, the DWD strategy takes more
time to ensure the convergence of the value func-
tion. Finally, the combination of ECB with the
MinPOMCP strategy is a promising approach for
the online planning, since it offers no need for ex-
tensive search of the best UCB1 coefficient and the
MinPOMCP helps to accelerate value convergence.

4. Online Approach

4.1. Online POMCP-GO algorithm

The main differences between the online and the
offline approach include the computational budget,
the belief state representation and the trial length.

Regarding the computational budget, a timeout is
applied, instead of a fixed number of trials. Being
an online approach, the trials begin from the cur-
rent belief state b, rather than starting always in
the initial belief. As such, rejection sampling [12] is
performed to reinvigorate the new belief state, after
each action a is executed and the respective obser-
vation sv is perceived from the real world. Similarly
to the classic POMCP [12], each trial finishes after
a new node is created. Furthermore, an additional
trial length condition is established, ending the trial
if the current depth reached a maximum depth D.
This condition promotes breadth-first search, which
improves action selection with short time budgets.

6

U
C

B
(1

0)

E
B

C

D
W

D
U

C
B
√ (·)

(1
0)

U
C

B
M

P
(1

0)

E
C

B
M

P

80

85

90

V
(b

0
)

Optimized
Executed

(a) 2m GPS precision with
initial position at (10, 25, 5)m

U
C

B
(5

)

E
B

C

D
W

D
U

C
B
√ (·)

(5
)

U
C

B
M

P
(5

)

E
C

B
M

P

70

80

90

V
(b

0
)

Optimized
Executed

(b) 10m GPS precision with
initial position at (10, 25, 5)m

U
C

B
(5

)

E
B

C

D
W

D
U

C
B
√ (·)

(5
)

U
C

B
M

P
(5

)

E
C

B
M

P

60

70

80

90

V
(b

0
)

Optimized
Executed

(c) 2m GPS precision with
initial position at (50, 25, 5)m

U
C

B
(0
.0

1)

E
B

C

D
W

D
U

C
B
√ (·)

(0
.0

1)
U

C
B

M
P

(0
.0

1)

E
C

B
M

P

60

70

80

V
(b

0
)

Optimized
Executed

(d) 10m GPS precision with
initial position at (50, 25, 5)m

Figure 3: Results obtained for the WallBaffle map, using different combinations of action selection and
back-propagation strategies.

U
C

B
(1

0)

E
B

C

D
W

D
U

C
B
√ (·)

(1
0)

U
C

B
M

P
(1

0)

E
C

B
M

P

70

75

80

V
(b

0
)

Optimized
Executed

(a) 1m GPS precision with
initial position at (35, 20, 5)m

U
C

B
(0
.0

1)

E
B

C

D
W

D
U

C
B
√ (·)

(0
.0

1)
U

C
B

M
P

(0
.0

1)

E
C

B
M

P

65

70

75

80

85

V
(b

0
)

Optimized
Executed

(b) 2m GPS precision with
initial position at (35, 20, 5)m

U
C

B
(0
.0

5)

E
B

C

D
W

D
U

C
B
√ (·)

(0
.0

5)
U

C
B

M
P

(0
.0

5)

E
C

B
M

P

60

80

100

120

V
(b

0
)

Optimized
Executed

(c) 1m GPS precision with
initial position at (65, 20, 5)m

U
C

B
(0
.5

)

E
B

C

D
W

D
U

C
B
√ (·)

(0
.5

)
U

C
B

M
P

(0
.5

)

E
C

B
M

P

70

80

90

100

V
(b

0
)

Optimized
Executed

(d) 2m GPS precision with
initial position at (65, 20, 5)m

Figure 4: Results obtained for the CubeBaffle map, using different combinations of action selection and
back-propagation strategies.

This online approach acts by interleaving planning
and execution phases. Because the ultimate goal of
these guidance and navigation strategies is to ap-
ply them onboard the UAV in a real-time configu-
ration, it becomes unfeasible to have the UAV con-
stantly stopping mid-air while the planning phase
takes place. For this reason, the POMCP-GO is in-
corporated in a planning-while-executing framework
described in the next section.

4.2. Planning-while-executing framework

AMPLE [11] is a framework that follows the di-
rection of reactive or continuous planning, in which
a plan is initially proposed and then works by iter-
atively fixing flaws in such plan when an anomaly
occurs at execution-time, and on continuously up-
dating goals, state and planning horizons.

This framework is strictly anytime in the sense
of policy execution under time constraints, as it en-
sures the return of an applicable action in any pos-
sible execution state at a precise time point, exactly
when required by the execution engine; reactive to
environment changes, which are incorporated in the
planning requests being managed in parallel to the
action execution and conditional by prioritizing fu-
ture execution states and computing a partial (in-
complete) but applicable policy for each action.

The AMPLE framework, depicted in Figure 5 is
composed of two threads: a planning thread (server),
that manages plan optimization while answering to

client requests; and an execution thread (client), that
adds and removes planning requests according to the
system’s and environment’s evolution, in order to
get the action to execute in the current state, from
the optimized policy or from the default one.

Strategy

EXECUTION THREAD

PLANNING THREAD

Observation

Action

Planner

P

π
sik−1

→ aik−1

sik → aik
sik+1

→ aik+1

sik+2
→ aik+2

sik−2
→ aik−2

sjk−2
→ ajk−2

sjk−1
→ ajk−1

sjk → ajk
sjk+1

→ ajk+1

sjk+2
→ ajk+2

πsr

π
d
e
f
a
u
lt

πd

solve progress

get action

load problem
get actions

get effects
remove plan request

add plan request

Figure 5: AMPLE architecture: connections be-
tween the execution and the planning threads [11].

4.3. Integration of POMCP-GO in AMPLE
The AMPLE framework is developed in the

Robotic Operating System (ROS). As such, three
nodes are established for the planning thread, the
execution thread (using the AMPLE-NEXT strategy
[11]) and the planner (online POMCP-GO). The sev-
eral methods illustrated in Figure 5 constitute ser-
vices that connect these nodes. The planning thread
node is implemented as an intermediary in all of

7

these services, meaning that the execution thread
node and the planner node are not directly con-
nected.

In this application case, the planning time for
each future state s′v is computed proportionally to
the probability of getting such effect after the exe-
cution of an action a in the current belief state b,
i.e. Pr(s′v|b, a). However, the MOMDP model is not
declarative on these probabilities, so an approxima-
tion is done with the following formula:

Pr(s′v|b, a) =
N(hao)

N(ha)
(14)

As the values of the visitation counters N(hao)
and N(ha) are iteratively updated in the back-
propagation step of the POMCP-GO algorithm dur-
ing the trials, this probability becomes more precise
as the mission progresses.

4.4. Simulations
Configuration Simulations are conducted com-
paring the performance of three approaches:
POMCP-GO driven in AMPLE; POMCP-GO im-
plemented using the classical online paradigm, that
is, with planning and execution phases interleaved;
and an algorithm that consecutively applies default
actions with no planning time associated. The lat-
ter serves as a baseline indicator of the quality of the
default policy πd used. There are a total of 4 appli-
cation cases examined: 2 environment maps, using 1
sensor’s availability map with 2 different initial be-
lief states. A total of 100 simulations are performed
for each application case.

Table 1 summarises the parameters used in these
simulations. The metrics evaluated include the to-
tal mission duration, from the moment the problem
is loaded until a terminal state is reached (either
a goal or a collision); the total planning time dur-
ing the mission, taking into consideration the initial
bootstrap time in the case of AMPLE; the success
rate (in %) and the default actions rate, which is the
ratio between the number of default actions, com-
puted from the default policy πd, used and the total
number of actions performed (in %).

POMCP-GO POMCP-GO in AMPLE

Paradigm Planning and execution Concurrent planning and
phases interleaved execution phases

timeout 2s, 3s, 4s 4s (action duration)
∆bootstrap − 5s, 10s, 15s
ASS UCB1∗ and EBC UCB1∗ and EBC
BPS Classical POMCP Classical POMCP
D 10 10
K 450 450
#Particles b 300 300

Table 1: Parameters used for the online simulations,
where ASS stands for Action Selection Strategy and
BPS for Back-propagation Strategy.

Results Figure 6 depicts the results obtained for
the WallBaffle map, while Figure 7 illustrates the
results obtained for the CubeBaffle map, using the
EBC as an action selection strategy.

As expected, increasing the time budget in the
POMCP-GO algorithm leads to better success rates,
since providing more time for planning allows the al-
gorithm to search deeper in the tree and thus to im-
prove the quality of the policy being optimized. On
the other hand, such 2 extra seconds in the timeout
increases significantly the total duration of the mis-
sion, by more than 35% in most cases.

Similarly in the AMPLE framework, increasing
the initial bootstrap time improves the performance
of the algorithm. This happens because providing
more time to the planner to optimize the action for
the first belief state also allows it to explore more
thoroughly the state space near the root, improv-
ing the policy for the initial belief states. However,
the success rates achieved by AMPLE are in general
worse than when using POMCP-GO in the classical
online paradigm, except when comparing POMCP-
GO with a timeout of 2s and AMPLE with boot-
strap of ∆bootstrap = 15s. This stems from three
factors. Firstly, in the POMCP-GO the time bud-
get is used entirely to compute the next optimized
action, without limiting the tree to search in a spe-
cific subtree. On the other hand, in the AMPLE
framework, the planning time given is proportional
to Pr(s′v|b, a) (Equation 14), and consequently dur-
ing such duration the tree is limited to search in the
subtree correspondent to that effect. Furthermore,
since the algorithm has to learn these probabilities
as the mission progresses, it becomes fairly possible
for the planner to assign the lowest planning time
to the effect that was posteriorly perceived from the
environment.

Secondly, the POMCP-GO is an online algorithm
with anytime properties. However, it does not ac-
count for its own computation time during the opti-
mization process and, consequently, if the timeout is
reached before the end of a trial, the algorithm will
only provide an action after the back-propagation
step of said trial is performed, allowing to further
improve the quality of the policy. Whereas in the
AMPLE framework, the algorithm is strictly any-
time, meaning it does not wait for the end of the
trial and automatically provides the action already
present in the backup policy πsr.

Thirdly, the AMPLE framework runs in ROS,
having three distinct nodes connected through ser-
vices. This causes the planning requests to natu-
rally inherent a lag, meaning the actual planning
time budget given to an effect is lower than the one
included in the planning request. This can have as
a consequence that no actual planning is done for
that effect, leading to a default action being used
instead.

8

Apart from the loss of optimality found in AM-
PLE, this approach allows the reduction of the over-
all time of the mission, exploiting action execution
time to anticipate and plan future states.

5. Application in Gazebo

To test the AMPLE framework with the POMCP-
GO algorithm in Gazebo, the hector quadrotor pack-
age [9] is used in an environment that replicates the
obstacle maps.

Figure 8 represents five trajectories planned for
the WallBaffle map, using a probability map of
2meter GPS precision for an initial position in
(50, 25, 5)m. A bootstrap duration of ∆bootstrap =
15s is used for AMPLE, as well as the EBC in
action selection and Classical POMCP as a back-
propagation strategy. Projections of the trajectories
are illustrated over the 3 planes xy, xz and yz.

The UAV chooses to go between the obstacles in
order to minimize the flight time, instead of flying
over them. This choice leads the UAV through ar-
eas where the availability of the GPS is less likely,
causing the navigation solution chosen to be pre-
dominantly INS. This has an impact on the width
of the simulated trajectory, which reflects the exe-
cution error inherent to the INS.

6. Conclusions

The first contribution of this dissertation was a
parameter tuning stage for the planning algorithm.
Comparisons between the proposed approaches al-
lowed to conclude that while DWD and UCB√· did
not show a consistent behaviour, the EBC results
always lied within the values obtained for the fixed
coefficients in UCB1, although never reaching the
values of the best fixed coefficient. Therefore, a com-
promise must be made between the desired quality
of the results and the time one is willing to spend
on the exhaustive search for the optimal value as
done in UCB1. Furthermore, the back-propagation
MinPOMCP generally improved the performance
for both UCB1 and EBC selection strategies, ac-
celerating the convergence of the value function as
expected, following the work of [6].

Simulation results regarding the combined ap-
proach of POMCP-GO and AMPLE, showed that
although AMPLE did not achieve in general suc-
cess rates as good as the POMCP-GO algorithm,
the overall time of the mission was reduced and ac-
tions were ensured to be provided strictly anytime.

As future work, we propose to test the combina-
tion of AMPLE and POMCP-GO with the Min-
POMCP back-propagation strategy, which is ex-
pected to achieve better results than the ones ob-
tained in Section 4.4 and also to test it in more
complex and realistic scenarios with different dy-
namics that truly reflect an urban area. Further-
more, we propose to explore a parallelization of plan-
ning requests in the AMPLE framework, rather than

the current sequentialization strategy being used,
to provide the same planning duration for each re-
quest.

References

[1] M. W. Achtelik and S. Lynen. Motion- and
Uncertainty-aware Path Planning for Micro
Aerial Vehicles. Journal of Field Robotics,
31(4):676–687, 2014.

[2] C. P. Chanel, F. Teichteil-Königsbuch, and
C. Lesire. Multi-target detection and recogni-
tion by UAVs using online POMDPs. In Pro-
ceedings of the 27th AAAI Conference on Artifi-
cial Intelligence, AAAI 2013, pages 1381–1387,
2013.

[3] J.-A. Delamer, Y. Watanabe, and C. P. Car-
valho Chanel. Solving path planning problems
in urban environments based on a priori sensors
availability and execution error propagation. In
AIAA Scitech 2019 Forum, 2019.

[4] J.-A. Delamer, Y. Watanabe, and C. Ponzoni
Carvalho Chanel. MOMDP modeling for UAV
safe path planning in an urban environment. In
Journées Francophones sur la Planification, la
Décision et l’Apprentissage pour la conduite de
systèmes (JFPDA 2017), 2017.

[5] E. W. Dijkstra. A Note on Two Problems in
Connexion with Graphs. Numerische Mathe-
matlk, 1(1):269–271, 1959.

[6] T. Keller and M. Helmert. Trial-based Heuris-
tic Tree Search for Finite Horizon MDPs. In
Twenty-Third International Conference on Au-
tomated Planning and Scheduling (ICAPS’13),
pages 135–143, 2013.

[7] F. Kleijer, D. Odijk, and E. Verbree. Prediction
of GNSS Availability and Accuracy in Urban
Environments Case Study Schiphol Airport. In
Location Based Services and TeleCartography
II, Lecture Notes in Geoinformation and Car-
tography, pages 387–406. Springer, Berlin, Hei-
delberg, 2009.

[8] B. Mettler, Z. Kong, C. Goerzen, and M. Whal-
ley. Benchmarking of obstacle field navigation
algorithms for autonomous helicopters. An-
nual Forum Proceedings - AHS International,
3:1936–1953, 2010.

[9] J. Meyer, A. Sendobry, S. Kohlbrecher, U. Klin-
gauf, and O. von Stryk. Comprehensive Sim-
ulation of Quadrotor UAVs Using ROS and
Gazebo. In Third International Conference
on Simulation, Modeling, and Programming for
Autonomous Robots, pages 400–411. Springer,
Berlin, Heidelberg, 2012.

9

D
ij
ks

tr
a

P
.-
G

O
(2
s)

P
.-
G

O
(3
s)

P
.-
G

O
(4
s)

A
M

P
L
E

(5
s)

A
M

P
L
E

(1
0s

)
A

M
P

L
E

(1
5s

)

0

20

40

60

80

100

P
er
ce
n
ta
g
e

(%
)

Missions succeeded

Missions failed

Default actions

(a) Initial position (10, 25, 5)m

P
.-
G

O
(2
s)

P
.-
G

O
(3
s)

P
.-
G

O
(4
s)

A
M

P
L
E

(5
s)

A
M

P
L
E

(1
0s

)
A

M
P

L
E

(1
5s

)

0

50

100

150

T
im
e

(s
)

Total mission time

Total planning time

(b) Initial position (10, 25, 5)m

D
ij
ks

tr
a

P
.-
G

O
(2
s)

P
.-
G

O
(3
s)

P
.-
G

O
(4
s)

A
M

P
L
E

(5
s)

A
M

P
L
E

(1
0s

)
A

M
P

L
E

(1
5s

)

0

20

40

60

80

100

P
er
ce
n
ta
g
e

(%
)

Missions succeeded

Missions failed

Default actions

(c) Initial position (50, 25, 5)m

P
.-
G

O
(2
s)

P
.-
G

O
(3
s)

P
.-
G

O
(4
s)

A
M

P
L
E

(5
s)

A
M

P
L
E

(1
0s

)
A

M
P

L
E

(1
5s

)

0

50

100

150

T
im
e

(s
)

Total mission time

Total planning time

(d) Initial position (50, 25, 5)m

Figure 6: Results obtained for the WallBaffle map, using a probability grid map considering 2m GPS
precision, the EBC as action selection strategy and Classical POMCP as back-propagation strategy.

D
ij
ks

tr
a

P
.-
G

O
(2
s)

P
.-
G

O
(3
s)

P
.-
G

O
(4
s)

A
M

P
L
E

(5
s)

A
M

P
L
E

(1
0s

)
A

M
P

L
E

(1
5s

)

0

20

40

60

80

100

P
er
ce
n
ta
g
e

(%
)

Missions succeeded

Missions failed

Default actions

(a) Initial position (35, 20, 5)m

P
.-
G

O
(2
s)

P
.-
G

O
(3
s)

P
.-
G

O
(4
s)

A
M

P
L
E

(5
s)

A
M

P
L
E

(1
0s

)
A

M
P

L
E

(1
5s

)

0

50

100

150

T
im
e

(s
)

Total mission time

Total planning time

(b) Initial position (35, 20, 5)m

D
ij
ks

tr
a

P
.-
G

O
(2
s)

P
.-
G

O
(3
s)

P
.-
G

O
(4
s)

A
M

P
L
E

(5
s)

A
M

P
L
E

(1
0s

)
A

M
P

L
E

(1
5s

)

0

20

40

60

80

100

P
er
ce
n
ta
g
e

(%
)

Missions succeeded

Missions failed

Default actions

(c) Initial position (65, 20, 5)m

P
.-
G

O
(2
s)

P
.-
G

O
(3
s)

P
.-
G

O
(4
s)

A
M

P
L
E

(5
s)

A
M

P
L
E

(1
0s

)
A

M
P

L
E

(1
5s

)

0

50

100

150

T
im
e

(s
)

Total mission time

Total planning time

(d) Initial position (65, 20, 5)m

Figure 7: Results obtained for the CubeBaffle map, using a probability grid map considering 2m GPS
precision, the EBC as action selection strategy and Classical POMCP as back-propagation strategy.

0
10 20 30 40 50 60 70 80 90

1000

20

40

60

80

100

0

5

10

15

x (m)

y (m)

z
(m

)

Trajectory 1

Trajectory 2

Trajectory 3

Trajectory 4

Trajectory 5

Figure 8: Five trajectories executed in the WallBaf-
fle environment in Gazebo, for an initial position at
(50, 25, 5)m and a goal position at (50, 80, 5)m.

[10] S. C. W. Ong, S. W. Png, D. Hsu, and W. S.
Lee. Planning under Uncertainty for Robotic

Tasks with Mixed Observability. International
Journal of Robotics Research, 29(8):1053–1068,
2010.

[11] C. Ponzoni Carvalho Chanel, A. Albore,
J. T’Hooft, C. Lesire, and F. Teichteil-
Königsbuch. AMPLE: an anytime planning and
execution framework for dynamic and uncer-
tain problems in robotics. Autonomous Robots,
43(1):37–62, 2019.

[12] D. Silver and J. Veness. Monte-Carlo Planning
in Large POMDPs. In Advances in Neural In-
formation Processing Systems 23 (NIPS 2010),
pages 2164–2172, 2010.

[13] D. Tolpin and S. E. Shimony. MCTS Based on
Simple Regret. In Twenty-Sixth AAAI Confer-
ence on Artificial Intelligence, 2012.

[14] F. Vanegas, D. Campbell, N. Roy, K. J. Gaston,
and F. Gonzalez. UAV tracking and following
a ground target under motion and localisation
uncertainty. In 2017 IEEE Aerospace Confer-
ence, pages 1–10. IEEE, 2017.

[15] Y. Watanabe, S. Dessus, and P. Fabiani. Safe
path planning with localization uncertainty for
urban operation of VTOL UAV. In AHS 70th
Annual Forum, 2014.

10

	Introduction
	Previous work
	MOMDP Model

	Offline Approach
	POMCP-GO Algorithm
	Action selection strategies for planning
	Decay with depth (DWD)
	Entropy-based Coefficient (EBC)
	SR+CR MCTS Sampling Scheme

	Back propagation strategies
	Classical POMCP
	MinPOMCP

	Simulations

	Online Approach
	Online POMCP-GO algorithm
	Planning-while-executing framework
	Integration of POMCP-GO in AMPLE
	Simulations

	Application in Gazebo
	Conclusions

