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Resumo

O planeamento eficiente de trajetórias de Veı́culos Aéreos Não Tripulados (VANTs) autónomos em

ambientes estocásticos é um problema de tomada de decisões desafiante. Recentemente, Processos

de Decisão de Markov com Observação Mista (MOMDPs) foram propostos para o resolver, reduzindo o

esforço computacional. Neste trabalho, um problema de planeamento da trajetória mais curta em am-

biente estocástico parcialmente observável (PO-SSP) é modelado como um MOMDP. O modelo resul-

tante permite ao planeador lidar a priori com a disponibilidade probabilı́stica do sensor e a propagação

de erros de execução da trajetória, que dependem da solução de navegação e guiamento usada. Esta

abordagem resulta num problema pesado e complexo a ser resolvido. Para o enfrentar, é utilizada

uma variante orientada a objetivos do Partially Observable Monte-Carlo Planning (POMCP), um dos

algoritmos de pesquisa em árvore mais rápidos para ambientes parcialmente observáveis em tempo

real. Este usa Upper Confidence Bounds (UCB1) como estratégia de seleção da ação, a qual depende

de uma constante tipicamente ajustada manualmente que requer uma pesquisa exaustiva para encon-

trar o valor mais adequado. Esta pesquisa exaustiva aplicada num problema tão complexo como este

pode consumir muito tempo. Assim, são propostos coeficientes dinâmicos como primeira contribuição

desta dissertação. A segunda contribuição passa por incorporar esta solução de navegação e guia-

mento numa arquitetura de planeamento e execução em simultâneo. A estrutura resultante fornece

soluções estritamente anytime, enquanto explora o tempo de execução da ação para antecipar estados

futuros, minimizando a duração total da missão. Simulações realizadas em Gazebo permitem avaliar o

desempenho desta estrutura.

Palavras-chave: Planeamento de Trajetórias sob Incerteza, Estratégia de Navegação e

Guiamento, Processo de Decisão de Markov com Observação Mista, Planeamento e Execução em

simultâneo.
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Abstract

Efficient path planning for autonomous Unmanned Aerial Vehicles (UAVs) in cluttered environments

is a challenging decision-making problem under uncertainty. Recently, Mixed-Observability Markov De-

cision Processes (MOMDPs) have been proposed to solve such navigation problems with the goal of

reducing computational effort. In this work, a Partially Observable Stochastic Shortest Path (PO-SSP)

planning problem is modelled as a MOMDP. The resulting model enables the planner to deal with a priori

probabilistic sensor availability and path execution error propagation, which depend on the navigation

and guidance solution used. This approach results in a large and complex path planning problem to be

solved. To address this issue, a goal-oriented variant of the Partially Observable Monte-Carlo Planning

(POMCP), one of the fastest online state-of-the-art Monte-Carlo Tree Search algorithms for partially ob-

servable environments, is used. It relies on the Upper Confidence Bounds (UCB1) as an action selection

strategy, which depends on a coefficient typically adjusted manually that requires an exhaustive search

to find the most suitable value. This exhaustive search applied to such a complex planning problem

may be extremely time consuming. Therefore, dynamic coefficients are proposed as a first contribution

of this dissertation. A second contribution is to incorporate this navigation and guidance strategy in a

planning-while-executing framework. The resulting structure provides strictly anytime solutions, while

exploiting action execution time to anticipate and plan future states, minimizing the overall duration of

the mission. Simulations performed in Gazebo allow to evaluate the performance of this structure.

Keywords: Path Planning under Uncertainty, Navigation and Guidance Strategy, Mixed-Observability

Markov Decision Process, Concurrent Planning and Execution.
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Chapter 1

Introduction

This chapter aims to briefly explain the relevance of an online navigation and guidance strategy for

planning-while-executing in autonomous Unmanned Aerial Vehicles (UAVs). A short review of the state-

of-the-art on motion planning and existing frameworks for offline and online planning is conducted in

Section 1.3. The thesis’ objectives and contributions are exposed in Section 1.4, as well as its outline in

Section 1.5.

1.1 Motivation

Unmanned Aerial Vehicles (UAVs) constitute a research field that has been extensively explored in

the last decade. Until now, UAVs have been almost exclusively operated by humans. However, recent

advances in sensing technology, computing power, mapping and data processing have made it possible

for an UAV to begin developing autonomous capabilities, that is, to perform tasks without requiring a

human to control them. As a result, UAVs can nowadays be employed in a variety of operations, both

civil and military, ranging from search and rescue, surveillance and inspection missions (e.g. landmine

detection or inspection of towers for corrosion and other defects) [1], to navigation missions in cluttered

environments (e.g. urban areas) [2].

Autonomous navigation capabilities include environment mapping, localization and guidance func-

tionalities embedded in a Guidance, Navigation and Control system (GNC) onboard the UAV system.

Navigation refers to the determination, at a given time, of the vehicle’s state (localization, velocity, etc.).

Guidance uses the state estimation to compute the desired trajectory from the vehicle’s current location

to a designated target, as well as desired changes in the state, for following that path. Finally, con-

trol is responsible for manipulating and giving the actuators commands to be executed to carry out the

reference trajectory.

The navigation module estimates the state of the vehicle based on the measurements of the onboard

sensors. Besides the classical solution combining Inertial Navigation Systems (INS) with Global Posi-

tioning Systems (GPS) as a self-localization system, one can also rely on solutions based on 2D or 3D

vision sensors: visual odometry, visual Simultaneous Localization and Mapping (SLAM), etc. [1] [2].
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However, it is important to notice that all of these solutions have their own limitations, depending on

how the environment is perceived. An INS-only navigation solution quickly diverges due to accumulation

of inertial measurement bias, so it is usually coupled with GPS. Yet, GPS signal can easily be masked or

degraded due to occlusion in cluttered environments. Consequently, a UAV cannot sustain autonomous

flight in the absence of GPS signal, if it is not backed up with alternative sensors that do not rely on GPS

information. Nevertheless, visual SLAM and optical flow techniques require rich texture on the image

and are influenced by the visibility of the points of interest. For these reasons and in order to guarantee

autonomous capabilities and the safety of the mission, it is of crucial importance to embed, in the UAV

onboard flight system, different navigation solutions and their use in each phase of the mission to be

decided according to the surrounding environment.

Furthermore, real life scenarios are often stochastic, inheriting uncertainty from various sources,

such as state evolution and perception. Uncertainty in state evolution is considered if the outcome of an

action is not fully predictable, due to unexpected environment changes (e.g. winds or impacts) or faulty

actuators onboard the UAV. On the other hand, uncertainty in perception occurs if the current state is not

precisely known, due to noisy measurements from imperfect sensors. Reasons for non-reliable sensors

are numerous, namely signal occlusion, noise, electronic failure or range limits. Consequently, not ac-

counting for uncertainty when designing an autonomous vehicle can cause failure of actions or deviation

from the trajectories, which may result in unfeasible trajectories and lead to disastrous outcomes, such

as collisions.

Fortunately, the performance of some sensors can be predicted by a priori knowledge about the

environment. For instance, the GPS accuracy depends on the visibility of the constellation of satellites,

which itself depends on geolocation, time and the environment. Given a known satellite constellation

and a position, it is possible to obtain information about the accuracy of GPS measurement in the form

of Dilution of Precision (DOP) [3]. DOP is a metric allowing to estimate a priori the degradation of the

precision of the GPS. In particular, PDOP (Position Dilution of Precision) is the standard deviation of the

position error calculated by a GPS receiver and it is possible to calculate the PDOP for each given point

in a 3D georeferenced map [4]. This information could be very useful for path planning, as this would

allow the planner to anticipate an eventual degradation of the sensors’ accuracy and its influence on the

path execution error along the way, thereby minimizing the risk of collision [5].

Although extensive research exists on applications of these UAV localization and guidance ap-

proaches, only recent developments can be found on the decision of switching navigation modes among

the ones available onboard as a function of the availability of the sensors that depend on the envi-

ronment. Previous work [6] [7] dealt with the problem of deterministic and discrete path planning by

considering the uncertainty of the location of the vehicle and propagating it along a path calculated ac-

cording to the environment. Delamer et al. have explored the complete model of closed-loop vehicle

motion with the functions of GNC in the decision-making process, while taking into account the sensors’

availability, in a significant body of work, including ([3], [8], [5]). Incorporating the GNC transition module,

which can be considered as a ”low level” system, in a ”high level” POMDP model, allowed to propagate

the influence of sensor availability on the uncertainty of the trajectory executed. Nevertheless, such
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developments were achieved under an offline configuration of the planning algorithm, which is not ap-

propriate for applications in real scenarios with environments as dynamic as the ones found in urban

areas.

The work developed in this dissertation is integrated in an ongoing research project named NavPlan,

result of a collaboration between the French Aerospace Lab, ONERA, and ISAE-SUPAERO. This project

aims to create solutions regarding the subject of decision on navigation and guidance strategies for

autonomous UAVs in cluttered environments.

1.2 Problem Statement

This dissertation deals with the problem of planning safe (avoiding obstacles) and efficient (minimum

distance or time) trajectories towards a goal under uncertainty, taking into account the availability of

sensors that depend on the environment and, with that, deciding on the navigation and guidance strategy

to be used by the UAV.

Such trajectory planning problem is a sequential decision-making problem under partial observability.

In fact, the autonomous vehicle must perform a sequence of actions in order to carry out its mission with

uncertainty about its position, in an environment itself uncertain, because the availability of sensors is

probabilistic. In this context, the agent can only estimate the world state by propagating a probability

distribution over the set of possible states he could be in, in other words, a belief state. An even bigger

challenge arises when considering that the state estimation (localization) and path execution (guidance)

results are defined over a continuous state space in a dynamic environment.

Ultimately, the planning approach will have to handle new perceptions of the environment or possible

evolutions of the UAV state, adapting the model and replanning when necessary in a real-time configu-

ration. Considering only when the model and the goal do not change and for a finite-dimension discrete

state, action and observation spaces, it is possible to compute a policy for every reachable belief state

before the mission. However, it becomes a challenge to do so when having a continuous state space in

a dynamic environment, due to the exponential complexity of the model.

Having that in consideration, the main objective of this work is to apply a generic planning-while-

executing framework to deal with such a continuous state space problem in an real-time configuration

onboard a UAV. In particular, to handle possible evolutions of the environment and of the UAV state

during the mission execution, providing strictly anytime solutions. In such framework, a GNC transition

model will be integrated in the decision-making process of the online planner, thereby allowing the

propagation of the belief state according to the probabilistic availability of the onboard sensors.
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1.3 State-of-the-art

1.3.1 Motion planning

The problem of motion planning has been widely discussed in the literature, and there are several

studies to tackle the same problem from different perspectives. A number of classic text books describe

motion planning with many details and under different conditions and constraints ([9], [10]). A key com-

mon concept in motion planning is a configuration. A configuration specifies positions of all the points

in a system at a given time. Consequently, configuration space refers to the set of all possible configu-

rations and is split into two subsets: free space, Cfree, and obstacle space, Cobs. Cobs contains all the

configurations where the robot intersects any obstacle, while Cfree represents the set of configurations

where the robot does not collide with any obstacle.

Cobs

Cobs
Cfree

xstart

xgoal

Figure 1.1: Generalized robotic path planning problem shown in a 2D configuration space. We wish to
plan a path from xstart to xgoal through the free space Cfree [10].

Many algorithms have been developed to fulfill the objective of finding the optimal motion plan. The

way to achieve this objective varies greatly on how the environment is perceived and what is enclosed

by the plan, which implies distinct characteristics to each algorithm [11]. Motion planners can be divided

into two main categories depending on the input given: path planning or trajectory planning algorithms

[12]. Path planning algorithms have the purpose of generating a geometric path (continuous curve),

given an initial and a goal state, passing through a sequence of locations. On the other hand, trajectory

planning algorithms take the solution from the robot path planning algorithm and determine how to move

along such path, endowing it with time information.

Path planning

Path planning algorithms are usually divided according to the methodologies used to generate the

geometric path. Most literature works focus only on 2D path planning algorithms [10], thus limiting

the behavior of the vehicles to surface. Since the work here addressed considers aerial vechiles, the

extensive survey on 3D path planning algorithms by Yang et al. [13] provide a more interesting view on

the current literature. Following the taxonomy they proposed, five distinct categories are considered to

divide path planning algorithms: sampling based, node based, mathematical model based, bioinspired
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and multifusion based algorithms.

Sampling based algorithms require a general representation of the whole workspace and act by con-

tinuously sampling nodes from a continuous space within its frontiers. They rely on a sufficiently

large number of samples to eventually find a solution (if there is one), avoiding building a com-

plete configuration space. As such, their main concern lies with feasibility rather than optimality.

These methods are further divided into active and passive planners. Passive planners generate a

roadmap connecting the start and goal, but require a search algorithm to operate in the generated

network to find the best feasible path, while active planners can achieve the best feasible path to

the goal independently. Some of the most implemented families include passive algorithms like

the Probabilistic RoadMap (PRM) and 3D Voronoi Diagrams, as well as active algorithms such as

Rapidly-exploring Random Tree (RRT) and the Artificial Potential Field.

PRM [14] is a multi-query method that builds a roadmap by iteratively sampling random configura-

tions in Cfree and attempting to connect them. Once the roadmap is constructed, a node based

algorithm is applied to compute the least cost path from the initial to the goal states. RRT, first

developed by LaValle and Kuffner [15], aimed at solving path planning problems for nonholonomic

(each state depending on the path taken to achieve it) and kinodynamic (considering both cine-

matic and dynamic constraints) systems. It explores the configuration space by rapidly growing

a tree to generate a path connecting the start node and the goal node. Several extensions to

the basic algorithm were developed, namely RRT∗, which computes a better path than RRT by

undergoing through a graph search when a new vertex is added to the tree, making it provably

asymptotically optimal [16].

Artificial Potential methods, first introduced by Khatib [17], are based on the idea of assigning a

potential function (relationship between Cfree and Cobs) to Cfree and simulating the vehicle as a

particle subject to a force defined by a potential field. It computes the goal attraction and obsta-

cle repulsion simultaneously, guiding the vehicle to move always along the total force gradient.

However, such methods are incomplete because they are prone to drop into local minima area.

Node based optimal algorithms convert the problem of finding a path into a graph search problem.

They work with a predetermined set of nodes that represent the environment and apply search

algorithms, guaranteeing optimality and completeness with the information they are given.

One of the first approaches to solving search problems was the Dijkstra algorithm [18]. This

method focuses on finding the shortest path in a graph where edges’ weights are already known.

Initially classified as uninformed, due to using no heuristic function, this algorithm was further

improved in [19] to include such feature. Another approach, arguably the most widely used one,

is the A∗ algorithm. This algorithm is an extension of Dijkstra’s and reduces the total number of

states by introducing a heuristic estimation of the cost from the current state to the goal state.

The heuristic function can be designed to obtain the constraints, while the estimation must never

overestimate the actual cost to reach the nearest goal node.
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Mathematical model based algorithms compute models of the environment (kinematic constraints)

and the system itself (dynamics constraints) and then bound the models with the cost function to

achieve an optimal solution. As an example, [20] proposed Mixed-Integer Linear Programming

(MILP) for path planning and obstacle avoidance problems for a wall-climbing robot in 3D environ-

ments.

Bioinspired algorithms mimic biological behaviours to solve path planning problems. These methods

avoid computing complex environment models, choosing to apply stochastic approaches to search

a near optimal path. For instance, Ant Colony Optimization (ACO) [21] imitates the behaviour of

ants in finding the shortest path by using pheromone information.

Multifusion based algorithms combine several classes of algorithms together to achieve a better per-

formance than when they are implemented on their own.

Optimal Path Planning

Optimal path planning algorithms are developed considering some optimality parameters or crite-

ria such as minimum state error with or without uncertainty, execution time, energy (actuator effort),

minimum jerk or hybrid approaches [12].

The methods presented in the previous sections can incorporate some kind of feature that measures

costs or have some heuristic policy which, when associated to a cost function, constitute an optimization

tool that must be minimized or maximized (depending on the problem) attaining an optimal path plan.

For instance, applying the concept of cost to a certain action or state generates cost-based algorithms.

One of the first numerical methods for solving optimal control problems was the work of Bellman [22],

in the 1950s. A major pillar of dynamic programming method is the Principle of Optimality defined by

Bellman, which enunciates that an optimal path has the property that whatever the initial conditions and

control variables (choices) over some initial period, the remaining decisions variables must constitute an

optimal policy with regard to the state resulting from the first decision.

Planning under Uncertainty

When uncertainty is added to path planning, the problem changes, and many extra considerations

need to be taken into account. As explained earlier in Section 1.2, there are various sources of non-

determinism. Therefore, it is very beneficial to have planners that include uncertainty while solving

problems.

Markov Decision Processes (MDPs) are one of the most popular planning tools in non-deterministic

environments where the state of the system is observable. Even though background information about

MDPs is provided in Chapter 2, we refer the readers to [23], [24] for comprehensive references.

A more complex approach uses the Partially Observable Markov Decision Processes (POMDPs)

framework. POMDPs extend MDPs to include incomplete sensing of the state. This approach makes up

the majority of the background for this dissertation and, as such, is thoroughly described in Chapter 2.
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1.3.2 Offline and Online Planning

One of the key ingredients in making fully autonomous robots to act in real-time scenarios is the ability

to select and organize actions over time in order to fulfil some high level objectives (e.g. maximizing

reward functions, reaching symbolic system states). This implies reacting to potentially uncertain events

that may occur due to the execution of the actions.

There are several approaches to face real-time scenarios in which an agent has to plan and execute

a sequence of actions. Figure 1.2 illustrates four different existing paradigms. While the first two meth-

ods are usually implemented offline, the last two are implemented online, i.e. in real-time. Black line

segments represent planning duration, while red line segments represent plan execution duration.

1)

2)

3)

4)
Time

Task arrival Task completion

Figure 1.2: Four strategies for interleaving periods of planning (in black) and execution (in red) [25].

In method 1), the agent computes an optimal plan first and then executes it. While the execution

time is minimized, the combined time of the planning and execution phases is substantial. In method

2), the agent computes a feasible but non-optimal plan first and then executes it. In this case, plan

execution takes more time, but the combined cost is reduced. In method 3), the agent performs a

limited amount of search that leads to an incomplete plan and then executes it until further planning is

required, repeating this cycle of interleaving planning and execution phases until the task is completed.

The resulting combined cost can be lower or higher compared to the previous ones, depending on the

application domain and online planning technique.

Finally, method 4) proposes to perform planning and execution concurrently. As such, it requires

a shared access to the current partial plan with proper synchronization mechanisms to guarantee the

correctness and integrity of each process. The benefit of such a continuous planning paradigm is that it

can fully exploit execution time for planning, reducing the overall cost of the solution [25].

Several applications in robotics involve time-constrained interleaving of planning and execution phases

(method 3)) [1] [2] [26]. In these cases, as time goes on, the actions that were planned few seconds

ago might no longer be suitable nor feasible in the current situation, due to the increasing discrepancy

between the expected situation and the one observed, forcing the agent to continuously change its plan.

Therefore, real-time planning demand a tight coordination between the predicted evolution of the envi-

ronment and the time required to generate plans as to maximize the chance that planned actions are

valid in the states where they were expected to be executed. Thus continuous planning methods emerge
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as an interesting option to tackle the problem [25] [27].

Moreover, when facing real-time critical applications, the autonomous system is required to provide

some basic guarantees to ensure the safety of the mission, such as anytime solutions, i.e. guarantee

an executable action for any time threshold specified. Anytime algorithms quickly build an applicable

sub-optimal (feasible) solution and then refine it if more time is available. A particular case of anytime

planning algorithms consist in the online planning algorithms [28] [29] [26]. However, the authors in

[27] claim that most online approaches are not strictly anytime in the sense that the execution of their

continually improved policy is not guaranteed to succeed under strict time constraints. Indeed, the

replanning requests are usually performed when a planned action is not applicable in the current state

and most of these algorithms do not take into account if the replanning episode will end before the given

deadline is reached nor do they account for their own computational time as a cost to optimize along

with the action costs.

Recent theoretical advances have been made to intimately reason about the evolution of the envi-

ronment and the computational time of the planning algorithms [30]. [25] also propose a planning-while-

executing framework for stochastic shortest path problems, where they exploit prior knowledge of the

time it takes to execute any action directly in the cost function. In this way, the combined cost of planning

and plan execution is minimized. However, they still cannot ensure valid executable actions when the

execution engine requests them.

To address this issue, Chanel et al. [27] proposed an anytime generic planner for execution-driven

planning in robotics, called AMPLE − Anytime Meta PLannEr. This framework will be implemented in

the present dissertation and as such is thoroughly described in Chapter 5.

While plan execution frameworks in literature exploit individual and specific methods and languages

that are not widely adopted standards, [31] proposes ROSplan, a framework for linking task-planning

with an execution interface provided by ROS. However, the drawback with this architecture is that only

temporal planners able to interpret PDDL2.1, a planning domain description language, can be used.

Many successful planning frameworks for autonomous systems also explore scheduling a set of

parallel actions, i.e. concurrently executed, so as to minimize the total execution time or to maximize the

number of executed actions. For instance, [32] propose EUROPA, which is an open-source framework

for planning and scheduling within a constraint-based temporal planning paradigm.

1.4 Objectives and contributions

As stated previously, the work elaborated within this dissertation is integrated in a research project,

called NavPlan. This project aims to study in the continuous state space models to address the plan-

ning problem of the navigation and the guidance strategy for autonomous UAVs that evolve in cluttered

environments. The resulting online planning framework will run onboard the UAV and will have to adapt

and replan when necessary, for instance when considering a new goal state, or upon new perception of

the environment, or when the UAV state estimation during its flight no longer matches with the model.

Figure 1.3 illustrates a diagram concerning two different phases of the project: the previous devel-
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oped work (in black) and the objectives set out for the present dissertation (in red).

NavPlan
Project

Offline
approach

Online
approach

Offline
POMCP-GO

MOMDP
Model

GNC
Model

Parameter
tuning

Online
POMCP-GO

AMPLE framework
with POMCP-GO

Planning phase followed
by execution phase

Planning phase and
execution phase interleaved

Concurrent planning and
execution phases

Figure 1.3: Organization of the NavPlan research project.

The previous work comprises the problem formulation based on a Mixed-Observability Markov De-

cision Process (MOMDP) model [33] [34], which is an extension of the POMDP framework, in order to

compute a safe and efficient trajectory from an initial to a goal state, in a partial sensing environment with

motion uncertainty; a GNC model to be incorporated in the planning algorithm to allow the propagation

of the sensor’s availability in the state transition and an offline planning algorithm, POMCP-GO, to solve

the MOMDP planning problem.

In order to achieve the main objective of the project, this dissertation has secondary goals:

1. develop strategies for parameter tuning in the offline planning algorithm proposed in the previous

work;

2. convert the offline planning algorithm into an online configuration, which is an approach more

adaptable to real flight application cases;

3. integrate the online planning algorithm in a concurrent planning-while-executing framework, to be

developed in Robotic Operating System (ROS);

4. apply the resulting framework in a robot simulator, Gazebo, in order to evaluate its performance.

Contributions

This dissertation’s contribution consists in the implementation of a state-of-the-art online path plan-

ning algorithm in a planning-while-executing framework, thereby enhancing the state-of-the-art of path

planning frameworks applied to autonomous navigation problems.

A paper submission to the ECAI Conference 2020, in the Prestigious Applications of Intelligence

Systems (PAIS) track, is currently under preparation.
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1.5 Thesis Outline

Seeking the achievements of the stated objectives, this dissertation entails the mathematical context

and the merging process of different algorithms in 6 chapters, as follows:

Chapter 1 Introduction − presents the need for developing an algorithm which computes a path for a

UAV facing environmental uncertainty and partial sensing while simultaneously considering a priori

knowledge on sensor availability. It also comprises a short review of the state-of-the-art on motion

planning and existing frameworks;

Chapter 2 Background − is devoted to introduce Markov Decision Processes and some of its exten-

sions, namely POMDPs and MOMDPs. State-of-the-art algorithms to solve problems using the

POMDP framework are mentioned, along with their advantages and disadvantages. Additionally,

Monte Carlo methods and their application to POMDPs are elaborated, namely the POMCP algo-

rithm;

Chapter 3 Problem formulation − focuses in previous work developed in the scope of the NavPlan

problem. It comprises the GNC model proposed and formalizes the problem addressed as a

MOMDP;

Chapter 4 Offline approach − presents the planning algorithm to solve the MOMDP problem in an

offline configuration and our contribution on strategies for parameter tuning;

Chapter 5 Online approach − leads the reader through the online approach, by proposing an online

version of the planning algorithm and explaining the planning-while-executing framework in which

the planner is integrated. Simulation results illustrate the advantages and disadvantages of the

proposed approach. Furthermore, the performance of this framework is also tested in the robot

simulator Gazebo.

Chapter 6 Conclusions − addresses the final remarks and further work directions.
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Chapter 2

Background

This chapter leads the reader from the challenge of decision-making under uncertainty in fully ob-

servable environments to partially observable ones, through the presentation of approximate solving

methods that derive near optimal behaviour for an agent, both offline and online.

Section 2.1 introduces mathematical notations for environments with complete observability as Markov

Decision Processes (MDPs), while Section 2.2 describes a particular subclass of goal-oriented planning

problems in fully observable environments. Afterwards, partially observable environments are intro-

duced in Section 2.3, with Partially Observable Markov Decision Processes (POMDPs) constituting the

mathematical model for such environments. There are two classes of algorithms that construct policies

for POMDPs: offline and online planning algorithms. Both classes are addressed in Section 2.4, with the

addition of a subclass of POMDPs, the Mixed-Observability Markov Decision Processes (MOMDPs) that

eases the process of solving POMDPs. Monte Carlo methods, a family of online planning algorithms,

range from simple rollout methods to tree search methods such as Monte Carlo Tree Search (MCTS),

and are elaborated on in Section 2.5. The extensions of MCTS to POMDPs are also discussed in that

section.

2.1 Markov Decision Processes

The task of controlling an autonomous agent can be seen as a sequential decision-making problem

under uncertainty. That is, the system must decide which actions to execute to achieve a desired per-

formance, even when there is uncertainty about the world around it and what will happen in the future.

Consider now an agent that perceives its environment through a number of onboard sensors and tries

to reach a goal which may require several sequential actions to accomplish. As long as the sensors

provide the complete state of the environment, such sequential decision problems can be approached

by a number of reinforcement learning and planning algorithms [35]. Moreover, these planning problems

are typically formulated as an instance of a Markov Decision Process or an MDP.

The Markov Decision Process (MDP) [23] is a mathematical formalism that can represent a wide

range of sequential decision-making problems, in which the environment is fully observable. Such for-
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malism is able to represent outcome uncertainty with a stochastic state transition model.

Formally, an MDP is defined by a 5-tuple (S,A, T ,R, s0), where:

– S is the state space, representing the set of all possible states of the system;

– A denotes the action space, i.e. the set of all actions available to the agent;

– T : S ×A× S → [0, 1], represents the transition function between states.

T (s, a, s′) = Pr(st+1 = s′|st = s, at = a),∀t, ∀at ∈ A,∀st ∈ S and ∀st+1 ∈ S

is defined as the probability that the system will transition to state s′, given that action a is per-

formed in state s. Since T is a conditional probability defined for every triplet (s, a, s′),
∑
s′∈S
T (s, a, s′) =

1,∀(s, a);

– R : S × A → R is the reward function, giving the expected immediate reward gained by the

agent for taking each action in each state. In particular, R(s, a) represents the expected reward for

executing action a in state s;

– s0 is the initial state of the system.

In this model, the mappings T and R depend only on the previous state and the action taken; even

if additional previous states were to be considered, the transition probabilities and the expected rewards

would remain the same. This independence assumption is known as the first order Markov property

i.e., the state and reward at time t + 1 is dependent only on the state and the action at time t [35].

In the graph represented in Figure 2.1, the nodes correspond to state and action variables distributed

along two successive instances in time, and the arrows represent probabilistic dependencies between

the variables.

at

st st+1

R(st, at)

Figure 2.1: Transition model of an MDP, in which an agent in state st performs an action at. After doing
so, he finds himself in state st+1 with a reward R(st, at).

Due to the uncertainty on the actions’ outcomes, an agent is not able to control the evolution of the

environment. Instead, he can only influence the decision-making process using a set of actions, for

which he collects rewards (or pays costs). For this reason, the aim of solving an MDP is to develop

a strategy that allows to choose the action to be performed for all possible situations (states) it could

encounter, in order to guarantee robustness in the face of uncertainty. Such strategy is called policy

π : S → A, assigning an action a ∈ A to each state s ∈ S.

This strategy should optimize some numerical criterion, generally defined as the total amount of

rewards gathered (or costs payed) when successfully applying the policy π(s) from the beginning of the
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decision process over a finite or infinite discrete time horizon. Considering a finite-horizon optimality

criterion,

E

[
k−1∑
t=0

Rt

]
,

where Rt is the reward received at the time step t and E(·) denotes expectation, the agent’s goal is

to maximize this expected long-term reward over the horizon length k. This criterion induces a non-

stationary policy, i.e., the choice of action depends not only on the state, but also on the time step.

On the other hand, the infinite-horizon optimality criterion,

E

[ ∞∑
t=0

γtRt

]
,

applies a discount factor γ ∈ [0, 1) in order to guarantee convergence over the horizon. As the value

of this parameter decreases, the significance of rewards received at a later point is gradually reduced,

thereby reducing their influence on the choice of actions at an earlier stage. Here, the optimality cri-

terion becomes the maximization of the expected sum of discounted rewards (also called the return or

discounted return). As no time horizon is imposed, this criterion induces a stationary policy.

The cumulative expected discounted rewards obtained by following a specific policy π, from a certain

state s, is defined by the value function equation V π(s), as follows:

V π(s) = Eπ

[ ∞∑
t=0

γtR(st, π(st))

∣∣∣∣∣ s0 = s

]
(2.1)

By opening the sum in Equation 2.1, a Bellman’s equation can be defined over the value function

[23], such as:

V π(s) = Eπ [R(s0, π(s0))|s0 = s] + Eπ

[ ∞∑
t=1

γtR(st, π(st))

∣∣∣∣∣ s1 = s

]

=
∑
s′∈S

Pr(s′|s, π(s))

(
R(s, π(s)) + γ Eπ

[ ∞∑
t=0

γtR(st, π(st))

∣∣∣∣∣ s0 = s′

])

=
∑
s′∈S

Pr(s′|s, π(s)) [R(s, π(s)) + γ V π(s′)] (2.2)

A policy π that maximizes the value function V π(s) is called optimal policy π∗. It specifies, for each

state s, the optimal action to execute, assuming that the optimal policy is followed at every step after

this action is taken. It has been proven that, for a policy of any structure, e.g. that is stochastic or that

depends on more than just the state, there exists a Markov policy that can attain the same objective

value. Consequently, it is always possible to find a deterministic Markov policy that achieves the optimal

objective value [36].
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The optimal value function V ∗(s) is defined as follows:

V ∗(s) = max
π

V π(s)

= max
π

{
Eπ

[ ∞∑
t=0

γtR(st, π(st))

∣∣∣∣∣ s0 = s

]}
(2.3)

It can be demonstrated that the optimal value function satisfies the Bellman’s equation, V ∗ = LV ∗,

where the operator L is the Bellman’s dynamic operator [23] [35]. Since the convergence of the sums at

an infinite horizon is ensured by the discount factor γ ∈ [0, 1), one has, for all policies π = (a, π′):

V ∗(s) = max
π

{∑
s′∈S

Pr(s′|s, π(s)) [R(s, π(s)) + γ V π(s′)]

}

= max
(a,π′)

{∑
s′∈S

Pr(s′|s, a)
î
R(s, a) + γ V π

′
(s′)
ó}

= max
a∈A

{∑
s′∈S

Pr(s′|s, a)
[
R(s, a) + γ max

π′
V π
′
(s′)
]}

= max
a∈A

{∑
s′∈S

Pr(s′|s, a) [R(s, a) + γ V ∗(s′)]

}
(2.4)

When Equation 2.4 converges for all s ∈ S, then the solution is guaranteed to be optimal.

In order to calculate the optimal policy, a method based on dynamic programming is applied [37],

which relies on the Bellman equation that characterizes the optimal value function and consists of con-

verging the value progressively towards the fixed point of Equation 2.4 for each state, through repeated

application of the Bellman operator L.

Let V be a value function with the following initialization:

V0(s) = max
a∈A
{R(s, a)} (2.5)

Then the value function for each instant t, Vt(s), can be computed based on the value function for

successor values from the previous iteration Vt−1, according to its recursive propriety [35]. Therefore,

Vt(s) can be given as:

Vt(s)← max
a∈A

[
R(s, a) + γ

∑
s′∈S

Pr(s′|s, a)Vt−1(s′)

]
(2.6)

When L is applied iteratively, i.e. Vn+1 = L [Vn], the value function will eventually reach a fixed point

when Vn+1 = Vn. This point is the optimal value function and the process of finding the value function in

this manner is known as Value Iteration [23] [24].

Once the optimal value function has been found, the optimal policy π∗ may be easily extracted ac-

cording to:

π∗(s) = arg max
a∈A

[
R(st, π(st) = a) + γ

∑
s′∈S

Pr(s′|s, a)V ∗(s′)

]
(2.7)
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2.2 Stochastic Shortest-Path MDP

Finite-horizon and infinite-horizon discounted MDPs are located at the opposite ends of a spectrum

− the former assume the number of time steps to be limited and known; the latter assume it to be infinite.

Naturally a third possibility comes along: problems with finite but unknown horizon, i.e. indefinite-horizon

optimality criterion [35] [38].

The subclass of decision-making problems that assumes this third possibility is called Stochastic

Shortest-Path MDP (SSP MDP). In this case, there is a set of target states and the goal is to minimize

the expected total cost until the target set is reached. The optimality criterion is not discounted-sum,

but a total sum without discounts. As there is no a priori bound to reach the target set (a target can be

reached at different times along different paths), it is also not a finite-horizon objective.

A SSP MDP is defined by a 6-tuple (S,G,A, T , C, s0), where:

– S is the state space, representing the set of all possible discrete states of the system;

– G is a non-empty set of discrete target (or goal) states , where G ⊆ S;

– A denotes the action space, i.e. the set of all actions available to the agent;

– T : S × A × S → [0, 1], represents the transition function between states, similarly to an MDP. In

addition, Pr(s, a, s) = 1 for each s ∈ G and all a ∈ A, meaning target states are absorbing;

– C : S × A → R+
0 is the cost function that returns the immediate positive cost C(s, a) > 0 payed by

the agent for taking action a ∈ A in state s ∈ S \ G and C(s, a) = 0 for each s ∈ G and all a ∈ A,

i.e., target states are cost-free;

– s0 is the initial state of the system.

Taking this information in consideration, solving a SSP MDP means finding an expected cost-minimizing,

as opposed to a reward-maximizing, policy [35]. The value function equation V π(b) is given as:

V π(s) = Eπ

[ ∞∑
t=0

C(st, π(st))

∣∣∣∣∣ s0 = s

]
(2.8)

And the optimal value function V ∗(s) satisfies, for all s ∈ S:

V ∗(s) = min
a∈A

[∑
s′∈S

Pr(s′|s, a) [C(s, a) + V ∗(s′)]

]

= min
a∈A

[
C(s, a) +

∑
s′∈S

Pr(s′|s, a)V ∗(s′)

]
(2.9)

The largest differences from the classical version of the MDP (Equations 2.1 and 2.3) are the re-

placement of a maximization problem with a minimization problem, the replacement of a reward function

with a cost function, the definition of goal states as being absorbing states, and the omitted γ factor,

since it is fixed at 1.

To be noted that both MDP and SSP MDP assume the environment to be fully observable, i.e., the

onboard sensors are perfect. In many domains, however, sensors do not receive complete information
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about the state of the environment and its perception becomes partial and imperfect. In this sense,

an agent found in an environment, which is not fully observable and the outcome of its actions is not

completely certain, will have to rely on the observations it receives from the environment in order to

make decisions. This agent-environment interaction can be modelled in terms of a Partially Observable

Markov Decision Process (POMDP), which is introduced in the next section.

2.3 Partially Observable Markov Decision Processes

A Partially Observable Markov Decision Process (POMDP) is similar to an MDP, except that the

agent cannot directly observe the state. Instead, it only has access to observations that give incomplete

information about the current states. In this way, a POMDP is able to represent state uncertainty in

addition to the outcome uncertainty that can be encoded in an MDP.

A POMDP can be defined as a 7-tuple (S,A, T ,R,Ω,O, b0), where:

– S,A, T ,R have the same meaning as in an MDP;

– Ω is the set of all possible observations;

– O : S ×A× Ω→ [0, 1] is the observation function.

O(s′, a, o) = Pr(ot+1 = o|st+1 = s′, at = a),∀t,∀ot+1 ∈ Ω,∀at ∈ A and ∀st+1 ∈ S

is defined as the probability of observing o if action a is performed and the resulting state is s′. This

conditional probability is defined for every triplet (s′, a, o) and, therefore,
∑
o∈Ω

O(s′, a, o) = 1,∀(s′, a);

– b0 represents the agent’s initial probability distribution over the states, also known as belief state.

The transition model of a POMDP is represented by Figure 2.2, where the nodes correspond to

state s, action a and observation o variables distributed along two successive instances in time, and the

arrows represent probabilistic dependencies between the variables.

at

st

ot

st+1

ot+1

R(st, at)

Figure 2.2: Transition model of a POMDP.
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2.3.1 Belief State

In environments where the state is not directly observable, the agent needs to reason over the

complete history of actions and observations up to the current time, in order to decide which action

to perform. Such history, at time step t, is defined as

ht = {a0, o1, ..., ot−1, at−1, ot}.

As the action to execute is among |A| actions and the observation to be perceived in the new state

is in the set of |Ω| observations, the number of possible histories grows exponentially with the size

t of the history as (|A||Ω|)t. Therefore, rather than resorting to this explicit and memory expensive

representation, one may summarize all relevant past information in a probability distribution over the

state space S, which is denoted as the belief state b. It is defined such that
∑
s
b(s) = 1, where b(s) is the

probability assigned to the particular state s in the belief state b.

The agent can compute its current belief state as the posterior probability distribution of being in

each state, given the complete history:

bt ∈ B, bt(s) = Pr(st = s|ht = h),∀s ∈ S (2.10)

where B forms the set of all possible belief states.

An important feature of the belief state bt is that it respects the Markov property, making it a sufficient

statistic for the complete past history of the process ht [37]. Therefore, the agent can choose its actions

based on the current belief state b(s) and no additional past information can improve the knowledge

about the current state of the world.

At any time t, given the current belief state b(s), an action a executed and an observation o perceived

by the agent, the belief state at t+ 1 can be updated according to Bayes’ rule [37] as:

bao(s′) = Pr(s′|b, a, o)

=
Pr(o, s′|b, a)

Pr(o|b, a)

=
Pr(o|s′, a)Pr(s′|b, a)

Pr(o|b, a)

=
Pr(o|s′, a)Pr(s′|b, a)∑

s′∈S

∑
s∈S

Pr(o|b, a, s, s′)Pr(s, s′|b, a)

=

Pr(o|s′, a)
∑
s∈S

Pr(s′|s, a)b(s)∑
s′∈S

Pr(o|s′, a)
∑
s∈S

Pr(s′|s, a)b(s)
(2.11)

The size of the belief space is illustrated best by an example. Consider a 2 × 2 grid world with its 4

discrete states. The belief is a 4-dimensional probability mass function and to update it the agent needs
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to consider the transition probabilities of all possible states and the probability of being in each of these

states. While the computations necessary to update the belief state can still be performed in a relatively

small amount of time for problems with a small state space, computing the update is hard for problems

with thousands or millions of states. In addition, it might not even be possible to represent the transition

or observation probabilities in a compact form. This problem will be further explored in Section 2.4.

2.3.2 Policy and value function

As in an MDP, the aim of solving a POMDP is to find a policy π∗ that optimizes the value function

V π. Since the environment in a POMDP is not fully observable, the policy is no longer defined over the

states, but rather over the belief state b as π : B → A, assigning an action a ∈ A to each belief b ∈ B.

The value function V π(b) of a discounted reward-based POMDP can be defined as the cumulative

expected discounted rewards obtained by following a specific policy π, from a certain belief state b, as

follows:

V π(b) = Eπ

[ ∞∑
t=0

γtR(bt, π(bt))

∣∣∣∣∣ b0 = b

]
(2.12)

where R(bt, π(bt) = a) =
∑
s∈S
R(s, a)bt(s) is the expected reward of executing an action a in belief state

b for the discrete state space.

Similarly to what has been done in Section 2.1, by opening the sum in Equation 2.12, a Bellman’s

equation can be defined over the value function, such as:

V π(b) = Eπ [R(b0, π(b0))|b0 = b] + Eπ

[ ∞∑
t=1

γtR(bt, π(bt))

∣∣∣∣∣ b1 = bπ

]

=
∑
s∈S
R(s, π(b))b(s) + γ

∑
o∈Ω

Pr(o|b, π)Eπ

[ ∞∑
t=0

γtR(bt, π(bt))

∣∣∣∣∣ b0 = boπ

]

=
∑
s∈S
R(s, π(b))b(s) + γ

∑
o∈Ω

Pr(o|b, π)V π(boπ) (2.13)

The optimal value function V ∗(b) becomes:

V ∗(b) = max
a∈A

{∑
s∈S
R(s, a)b(s) + γ

∑
o∈Ω

Pr(o|b, a)V ∗(boa)

}
(2.14)

where boa is the belief state reached by performing action a and perceiving observation o.

And the optimal policy is extracted according to:

π∗(b) = arg max
a∈A

[∑
s∈S
R(s, a)b(s) + γ

∑
o∈Ω

Pr(o|b, a)V ∗(boa)

]
(2.15)

Equation 2.7 associates an action to a specific belief state, i.e. π : b → a, and therefore must be

computed for all possible belief states in order to define a full policy, which can be an intractable problem.

Another important notion inherent to POMDPs is the action-value function, or Q-value function
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Q(b, a), defined by:

Qπ(b, a) =
∑
s∈S
R(s, a)b(s) + γ

∑
o∈Ω

Pr(o|a, b)V π(boa) (2.16)

Equation 2.16 determines the expected value when executing action a in belief state b, assuming

that the optimal policy is followed at every step after this action is taken. The first term specifies the

expected immediate reward of action a in belief state b and the second term specifies the summed value

of all successor belief states, weighted by the probability of observing o in those belief states.

2.3.3 Extension to continuous state space

Several planning problems, especially navigation problems, are modelled as POMDPs with a contin-

uous state space [39], [40]. In this case, the belief state update, considered initially in Equation 2.11,

uses integrals instead of sums, as follows:

bao(s′) =

Pr(o|s′, a)

∫
s∈S

Pr(s′|s, a)b(s) ds∫
s′∈S

Pr(o|s′, a)

∫
s∈S

Pr(s′|s, a)b(s) ds ds′
(2.17)

Similarly, the optimal value function V ∗(b) becomes:

V ∗(b) = max
a∈A


∫
s∈S

R(s, a)b(s) ds+ γ
∑
o∈Ω

Pr(o|b, a)V ∗(boa) do

 (2.18)

Equation 2.18 considers a continuous state space, while the observation space remains discrete.

Recent work has shown the POMDP definition for continuous action spaces [41] and continuous obser-

vation spaces [40], including algorithms to solve it.

2.4 Solving POMDPs

POMDPs provide a general framework for planning in partially observable stochastic environments.

Nevertheless, only few POMDP planning problems can be solved exactly due to their computational

complexity. In fact, POMDP planning is computationally intractable in the worst case: infinite-horizon

POMDPs [42]. The challenges arise from three main sources:

1. Most real world applications have extremely large state and observation spaces;

2. As the state is not fully observable, the agent must reason with beliefs, which are probability

distributions over the states. Since a belief state has to be maintained for an estimate of the

agent’s state and has to be updated every time the agent performs an action, the update process

becomes computationally expensive as the size of the state space increases. Consider that there

are N unique possible states of the system, then the belief state will be an N dimensional vector

of continuous values. As the value N gets larger, the planning problem becomes cumbersome.
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3. The number of action-observation histories that must be considered for POMDP planning grows

exponentially with the planning horizon, as well as with the state and observation spaces. A

common approach followed by POMDP solvers is a tree search procedure to explore combinations

of actions and observations. Exploring all these combinations causes the search tree to grow wider

as a consequence of a large branching factor. The planning algorithm, thus, has to evaluate all

nodes in the search tree so as to derive an optimal solution and a large branching factor in trees

demands voluminous computations.

The first two difficulties are usually referred to as the curse of dimensionality, and the last one, the

curse of history [35] [43].

Despite this issue, the value function denotes a mathematical property that simplifies the computation

of the optimal value function for a finite-horizon POMDP. In fact, a key result by [37] shows that the

value function is piecewise linear and convex (PWLC), which allows to represent it as a set of values

over the belief space, often called α-vectors. A number of exact value function algorithms exploit this

property, namely Policy or Value Iteration algorithms. The remaining problem with these approaches is

that the number of α-vectors needed to represent the value function grows exponentially in the number

of observations at each iteration (inherit the curse of dimensionality), turning out to be computationally

very expensive.

Due to the high complexity of exact solving approaches, most of the recent research in the area has

focused on developing approximate algorithms that can be applied to larger POMDPs. Based on time

budget, these approaches can be classified into two categories: offline solvers and online solvers.

2.4.1 Offline solvers

Offline algorithms attempt to find approximate solutions for POMDP problems offline, in the sense

that they specify, prior to the execution, the best action to execute for all possible situations. This

approach has achieved dramatic progress in computing near-optimal policies, particularly point-based

algorithms.

The idea behind point-based algorithms is to sample a representative finite set of attainable belief

states ∆, where ∆ ⊂ B, and then update the value function and its gradient over the sampled subset,

rather than the entire belief state space B, achieving belief space dimensionality reduction. Several

algorithms exploit this approach, namely PBVI [44], PERSEUS [45], HSVI [46] and SARSOP [47], differ-

ing slightly in how they choose belief states and how they update the value function with respect to the

sampled belief states.

Nevertheless, successful application of offline POMDP solvers to real world problems has been

limited in scalability, because the number of future events grows exponentially with the planning horizon

and, consequently, the computation time required to calculate a policy over every possible belief state

increases significantly. Moreover, small changes in the environment’s dynamics require recomputing the

full policy and when the environment is largely unknown, this approach constructs POMDP models too

heavy to be solved by even the best offline solver today. To overcome this matter, online POMDP solvers

20



were developed and are explored in the next section.

2.4.2 Online solvers

Online planning algorithms approach POMDPs from a completely different angle than offline algo-

rithms. Whereas an offline search would compute an exponentially large contingency plan considering

all possible happenings, an online search plans only for the current belief state, limiting the set of belief

states reachable from the current belief state to a time computational budget.

In this setting, a planning phase and an execution phase are applied alternately at each time step.

In the planning phase, the agent’s current belief state is passed on to the algorithm and it searches for

a single best action to execute in that belief only. In the execution phase, this action is executed in the

environment and the agent’s current belief state is updated. Interleaving these two steps enables online

algorithms to adapt faster to a dynamic environment, given the smaller number of reachable belief states

considered due to the time budget.

One drawback of online planning is that it generally needs to meet hard real-time constraints, thus

greatly reducing the available planning time, compared to offline approaches. Nevertheless, further

developments [29], [48], [28] show that online search and offline policy computation are complementary

and can be combined. For instance, using approximate or partial policies computed offline as heuristic

functions to guide the online search algorithm. This combination enables online search algorithms to

plan on shorter horizons, thereby respecting online real-time constraints and retaining a good precision.

Ross et al. [28] provide an extensive survey on many existing online planning methods and a general

framework for online algorithms that use an AND/OR-tree during the planning phase. The authors relate

this framework to a set of existing online planning algorithms which apply Branch-and-Bound pruning

[49], Heuristic Search (e.g., AEMS [29], [50]) and Monte Carlo sampling [26] to improve the search.

In the Branch-and-Bound pruning method, upper and lower bounds on the value Q∗(b, a) of each

action a, for every belief b in the tree, are computed offline for the fringe nodes, and are propagated up

the tree during search. Then, nodes that have upper bounds lower than lower bounds of other nodes

are pruned out, thus limiting the tree width in the context of actions.

Heuristic Search, instead of reducing the branching factor, try to focus the search on the most rel-

evant reachable beliefs by using heuristics to select the best fringe belief node to expand. Thereby

allowing the search algorithm to make good decisions by expanding as few nodes as possible, improv-

ing the performance of the agent.

Finally, Monte Carlo sampling methods break both curses mentioned in Section 2.4, by randomly

sampling states from the belief state and by sampling histories using a black-box simulator. These

methods are introduced and further explored in Section 2.5, as the main algorithm used to solve the

POMDP problem in the present work, Partially Observable Monte Carlo Planning (POMCP), derives

from this concept (Section 2.5.7).

Determinized Sparse Partially Observable Tree (DESPOT) is a similar approach to the POMCP al-

gorithm, that attempts to achieve better performance by analysing only a small number of random out-
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comes in the tree [48]. Planning under Uncertainty with Macro-Actions (PUMA) [51] and Randomized

Belief-Space Replanning (RBSR) [52] perform best first search in the belief space, just as POMCP does.

However, instead of solving a Multi-Armed Bandit problem, these approaches sample action sequences

using heuristics in the state space, assuming the states are fully observable after an action is performed.

Additionally, an online algorithm called Adaptive Belief Tree (ABT) was designed specifically to ac-

commodate changes in the environment without having to replan from scratch [53]. This algorithm

addresses the issue of the significant waste of computational resources inherent to replanning in most

POMDP online solvers, by proposing to reuse and improve an existing policy at each time step, updating

it as needed whenever the POMDP model changes. Some very recent methods, e.g. QMDP-Net [54],

have attempted to solve POMDPs by training recurrent neural networks.

2.4.3 Mixed-Observability Markov Decision Processes

An extension of the POMDP model, proposed by [33] and [34], is a model with mixed observability

designated as Mixed-Observability Markov Decision Process (MOMDP). MOMDPs explore a particular

structure where certain state variables are fully known at each epoch. Indeed MOMDPs propose a

middle-ground scenario between MDPs and POMDPs, considering state variables that can be directly

observed, namely visible variables, as well as partially observable variables, in the same model. This

approach follows a similar idea to factored POMDPs [55] [35], that present the state s as a vector of

variables in a view to exploit the underlying structure of the problem.

Formally a MOMDP model is specified as an 9-tuple (Sv,Sp,A, TSv , TSp ,R,Ω,O,
Ä
s0
v, b

0
Sp

ä
). Sv repre-

sent the set of fully observable state variables sv, while Sp represent the set of partially observable state

variables sp. Thus the complete state space is described by (sv, sp) such that |S| = |Sv|×|Sp| represents

the complete domain of the state space. The observation and reward functions remain the same as in

POMDP, but can be expressed in terms of the two sets of state variables: O(s′, a, o) = O(s′v, s
′
p, a, o) and

R(s, a) = R(sv, sp, a), respectively.

Instead of a single transition probability T , the MOMDP considers the transition probabilities for each

component separately:

– TSv : Sv × Sp × A × Sv → [0, 1] represents a transition function such that TSv (sv, sp, a, s
′
v) =

Pr(s′v|sv, sp, a) gives the probability that the fully observable state variable has value s′v if the agent

takes action a in state (sv, sp);

– TSp : Sv×Sp×A×Sv×Sp → [0, 1] represents a transition function such that TSp(sv, sp, a, s
′
v, s
′
p) =

Pr(s′p|sv, sp, a, s′v) gives the probability that the partially observable state variable has value s′p if

action a is taken in state (sv, sp) and the fully observable state variable has a resulting value of s′v.

Finally,
Ä
s0
v, b

0
Sp

ä
represents the initial belief state b0Sp conditioned by s0

v. All other aspects remain as

they are in the POMDP. The authors in [56] describe how any system modelled as a POMDP, can be

equivalently constructed as a MOMDP by reparameterizing S.

A difference remains between the MOMDP models proposed by [33] and [34]. The latter approach

considers an additional factorization of the observation space in accordance with the division of the
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state space, resulting in Ω = Ωv × Ωp, where Ω is the complete set of observations composed by

the observation set for the fully observable states osv ∈ Ωv and the observation set for the partially

observable states osp ∈ Ωp. As a result of this partition, the visible counterpart of the observation is

equal to the set of visible states, Ωv = Sv, i.e. Pr(osv |sv) = 1. Figure 2.3 illustrates this difference.
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(a) Transition model of the MOMDP proposed by [33].

at

stv

osvt

st+1
v

osvt+1

R(st, at)

stp st+1
p

st st+1

o
sp
t o

sp
t+1

(b) Transition model of the MOMDP proposed by [34].

Figure 2.3: Factored model of state and observation transitions of a MOMDP for an action at.

The main benefit of the MOMDP over the POMDP is that the belief state probability distribution can

be defined over a smaller belief state space Bp (which refers to the Sp space, instead of the complete

S space) and is represented as b = (sv, bSp). This reduces the problem dimension from |Sv| × |Sp| to

simply |Sp|, leading to a vast improvement in computational efficiency for POMDP solvers.

2.5 Monte Carlo methods in POMDPs

Monte Carlo methods have been widely used in areas such as challenging games [57], engineering

and computational biology [58].

Monte Carlo methods use a very different paradigm for online planning in POMDPs, when compared

to the strategies mentioned in the previous section. In this approach, the algorithm uses a black-box

simulator G as a generative model of the POMDP. This simulator is a randomized algorithm that employs

the same dynamics as the POMDP. Once given a state st ∈ S and an action at ∈ A as input, it provides a

sample of a successor state st+1, an observation ot+1 and a rewardRt+1 as output, (st+1, ot+1,Rt+1) ∼

G(st, at), where the operator ∼ denotes sampling, e.g., y ∼ w means y is sampled from w.

The models contained in the underlying POMDP provide the successor variables: the state st+1 ∈ S

is given by the transition model, st+1 ∼ T (s, a), the observation ot+1 ∈ Ω is given by the observation

model, ot+1 ∼ O(s, a), and the reward Rt+1 is drawn from the reward function, Rt+1 ∼ R(s, a). Instead
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of directly considering the model’s dynamics, the value function is updated using the sequences of

states, observations and rewards that are generated by the simulator, given an initial state s0 sampled

from b0. Besides this, a generative model may often be available when explicit next-state distributions

are not.

A key idea behind this approach is to perform several simulations to derive a successful strategy,

since not much can be learned from a single random simulation. Therefore, all Monte Carlo methods

keep track of the value of an action a in a state s, denoted by Q(s, a), and the number of times action a

has been selected in state s, denoted by N(s, a), throughout the simulations.

In addition, Kearns et al. [59] have shown that the sample complexity of Monte Carlo methods,

i.e. the amount of samples required to create good policies, is determined only by the difficulty of the

POMDP, rather than the size of the state space or observation space.

The development of Monte Carlo planners for POMDPs has evolved from simple rollout methods that

do not construct a search tree [60] over methods that perform depth-first search with a fixed horizon [59]

to a Monte Carlo Tree Search method [26] that is not limited by a fixed horizon and can compete with

offline full-width planners in problems with large state spaces. These algorithms are addressed in detail

in the next subsections.

2.5.1 Monte Carlo Rollouts

Monte Carlo rollouts, or Monte Carlo simulations, is the most basic Monte Carlo method. Each

iteration consists of two steps. The first step, called Simulation, selects actions according to some

probability distribution, usually a uniform distribution, until a terminal condition is reached. Each action

is given to the black-box simulator to obtain a sequence of rewards (Rd=0,Rd=1, ...,Rdn), where dn de-

notes the depth of the simulation phase, i.e., the number of steps until the terminal condition is reached.

From this sequence, the simulated return R̂ is computed as follows:

R̂ =

dn∑
d=0

γdRd (2.19)

The second step, called Back-propagation, updates the values of the action a selected during the

Simulation step. The visitation count N(s, a) is increased by the unit and the value Q(s, a) is estimated

by the mean return from s of all simulations in which a was selected from state s, according to the

following set of equations:

N(s, a) = N(s, a) + 1 (2.20)

Q(s, a) = Q(s, a) +
R̂−Q(s, a)

N(s, a)
(2.21)

To be noted that Q(s, a) is not defined as introduced in Equation 2.16. The algorithm then repeats

these steps until some terminal condition is reached. At this point, the action with the highest average

value Q(s, a) is chosen.
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2.5.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a best-first search algorithm that combines Monte Carlo rollouts

with tree search, and was introduced in different versions by Chaslot [57] and Coulom [61] in 2006.

Although MCTS has been mainly applied to the domain of game theory in classical board games such

as Go [57], it can be applied to any domain that can be expressed in terms of state-action pairs, such

as decision theory and bandit-based methods. In fact, over the last few years, MCTS has also achieved

great success with complex real-world planning, optimization and control problems.

MCTS rests on two fundamental concepts: that the true value of an action may be approximated

using random sampling; and that these values may be used efficiently to guide the exploration of the

tree. Its aim is to select the best move to execute by exploring the search space pseudo-randomly. In the

beginning of the search, the exploration is performed at random. Then by using the results of previous

explorations, the algorithm becomes able to predict more accurately the most promising moves, and

thus, the exploration becomes narrower.

In MCTS, the nodes can be called state nodes, because they represent states in the problem, and

directed links to child nodes represent actions leading to subsequent states. The method iteratively

builds a search tree, one node after the other, based on the results of random simulations, until it

is interrupted or a computational budget is reached. This budget can be defined in many ways: for

instance, in terms of time or number of simulations performed.

Four steps are applied per search iteration: Selection, Expansion, Simulation and Back-propagation.

The construction process of the MCTS tree is illustrated in Figure 2.4.

(a) Selection (b) Expansion (c) Simulation (d) Back-propagation

Figure 2.4: Monte Carlo Tree Search.

The algorithm starts with only the root node. A Selection strategy (Figure 2.4a) is used to recursively

choose actions, according to the statistics stored in the nodes of the search tree, descending through

the tree until a leaf node L is reached. This process is done using a Tree Policy, which will be explained

in detail in Section 2.5.3.

Once this happens, the Expansion phase (Figure 2.4b) is called to store one or multiple children

of L in the tree, according to the available actions. The simplest rule, proposed by Coulom [61], is to

expand one node per simulation. The node expanded corresponds to the first position encountered that

was not stored yet.

From this point forward, the Simulation step (Figure 2.4c) begins: if L does not correspond to a
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terminal state in the problem, a simulation is performed using a Simulation Policy (also explained in

Section 2.5.3). This simulation starts with the action selected at L and ends when a terminal state is

reached (either a goal was achieved or constraints were violated). At the end, a reward is computed to

assess the quality of the reached state.

Finally, a Back-propagation (Figure 2.4d) is performed on the statistics of each node traversed with

the outcome of the Simulation step (using Equations 2.20 and 2.21), while backtracking through the

internal nodes up to the root of the tree.

When the algorithm reaches a computational budget or is interrupted, the search terminates and an

action a is selected at the root node by one of the following criteria, introduced by [62]:

– Max child : Select the action with the highest reward.

– Robust child : Select the most visited action.

– Max-Robust child : Select the action with both the highest visitation count and the highest reward.

– Secure child : Select the action which maximizes a lower confidence bound.

MCTS provides three important advantages [62]. (1) Asymmetric growth of the tree developed during

the MCTS search. State nodes which appear to be more valuable in the problem are visited more often,

biasing the search towards more promising areas of exploration. (2) Anytime property that allows the

execution of the algorithm to be stopped at any time to return the action that is currently estimated to be

optimal. (3) Aheuristic property, i.e. the lack of need for domain-specific knowledge, making it readily

applicable to any domain that may be modelled using a tree. However, significant improvements in

performance may often be achieved using heuristics.

2.5.3 Tree and Simulation Policies

There are two main aspects of the Monte Carlo Tree Search that can be changed for algorithm

variability: the Tree or Selection Policy and the Simulation or Rollout Policy.

The Tree Policy defines the selection procedure of the action-nodes already contained on the tree.

When traversing it, they can be chosen at random or confidence bounds can be applied to estimate

the probability of the outcome being the optimal solution. By definition, an action is sub-optimal for a

given state, if its value is less than the best of the action-values for the same state. Since action-values

depend on the values of successor states, the problem boils down to getting the estimation error of

the state-values for such states to decay fast [43]. In order to achieve this, an efficient algorithm must

face the exploration-exploitation dilemma, which can be described as the search for a balance between

exploring the environment to find profitable actions while taking the empirically best action as often as

possible. The simplest instance of this dilemma is the Multi-Armed Bandit (MAB) problem [63], which is

analogous to the node selection problem encountered in MCTS.

In the most basic formulation of a K-armed bandit problem, an agent (gambler) is presented with a

set of K slot machines (”arms” of the bandit) and has to decide which one of them to play, how many

times to do so for each machine and in which order, knowing that, when he pulls an arm i, it provides
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a random payoff Xi,n, where i = 1, ...,K and n ≥ 1. Successive plays of machine i yield payoffs

Xi,1, Xi,2, ... which are independent and drawn from a fixed but unknown distribution over [0, 1], with

unknown expectation µi = E [Xi,n], associated with that specific arm.

The goal of the gambler is to maximize the total payoff earned through iterative plays. In this way,

a dilemma arises: the gambler can select the machine that gives the current highest expected payoff

based on the knowledge already acquired (exploitation), or attempt sub-optimal arms so as to further

increase knowledge (exploration) and to ensure that no good alternatives are missed because of early

estimation errors.

Therefore, the MAB problem relies on the elaboration of an allocation strategy to decide what is the

next machine to play in order to optimize the expected total reward and minimize the cumulative regret,

Rn, which is the difference between the sum of rewards associated with an optimal strategy µ∗n and

the sum of the actual collected rewards after n plays [64]. In other words, the cumulative regret is the

expected loss due to not playing the best option in hindsight. This type of regret is accumulated during

execution of the algorithm and each time a non-optimal arm is sampled, the cumulative regret increases.

Let Ti(n) be the number of times machine i has been played during the first n plays. Then the

cumulative regret after n plays can be expressed as:

Rn = µ∗n− µj
K∑
j=1

E [Tj(n)] (2.22)

where µ∗ = max {µ1, µ2, ..., µK}. It is important to highlight the necessity of attaching non-zero proba-

bilities to all arms at all times, in order to ensure that the optimal arm is not missed due to temporarily

promising rewards from a sub-optimal arm. Thus, an upper confidence bound ought to be defined as a

function of the rewards obtained so far.

Several effective strategies based on the Multi-Armed Bandit problem have been proposed in litera-

ture (and detailed in [63]). Some of these methods are described below:

– Random: The nodes are selected at random from the parent, not depending on any reward esti-

mate.

– UCB1: The simplest Upper Confidence Bound (UCB) strategy, which minimizes cumulative regret,

while converging to the empirically best arm without any prior knowledge on the reward distribu-

tions. This strategy dictates to play arm j that maximizes Equation 2.23, as:

j∗ = arg max
j

®
Xj + c

 
lnn

Tj(n)

´
(2.23)

in which Xj is the average reward obtained from machine j, Tj(n) is the number of times machine

j has been played so far, n is the overall number of selections done so far and c ≥ 0 is a parameter

that enables to control the exploration-exploitation trade-off. Although the theory suggest a default

value of c =
√

2, this parameter is usually experimentally tuned to increase performance.

The first term in Equation 2.23 vouches for the exploitation of the previously visited choices with the
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highest reward values, while the second encourages the exploration of undiscovered nodes. Once

the empirical best arm is found by exploring the available options, UCB1 exploits it by repeatedly

sampling it more often, minimizing the overall cumulative regret.

The authors show that if strategy UCB1 is run on K machines having arbitrary reward distribu-

tions with support in [0, 1], then the expected cumulative regret after any number n of plays has

logarithmic growth uniformly over n and is bounded by:

ERnUCB1 ≤

8
∑

i:µi<µ∗

lnn

∆i

+

Å
1 +

π2

3

ã K∑
i=1

∆i (2.24)

where ∆i = µ∗ − µi.

The MCTS instance using this action selection strategy is usually referred to, in literature, as Upper

Confidence Bounds applied to Trees (UCT) [43] and will be further explained in Section 2.5.4.

– UCB1-Tuned: This strategy relies on the tuning of the UCB1 formula accounting also for the vari-

ance of each arm to obtain a refined upper bound on rewards expectation. In this case, Equation

2.23 is replaced by:

j∗ = arg max
j

®
Xj +

 
lnn

Tj(n)
min

ß
1

4
, Vj(Tj(n))

™´
(2.25)

where

Vj(Tj(n)) = σ2
j +

 
2 lnn

Tj(n)

is an upper confidence bound on the variance of machine j computed from samples observed so

far,

σ2
j =

Ñ
1

2

Tj(n)∑
m=1

X2
j,m

é
−X2

j,Tj(n)

and the factor 1
4 is an upper bound on the variance of a Bernoulli random variable. The authors

claim this approach performs better in practice than the UCB1, but comes without theoretical guar-

antees.

– ε-Greedy: The node is selected so as to maximize the value of the following formula:

j∗ = arg max
j

ß
Xj +

εn
Tj(n)

™
(2.26)

This approach requires the computation of εn = min
{

1, cKd2n
}

, where K is the number of child

nodes, n is the child node being considered, c > 0 and 0 < d < 1. This calculation determines

that the probability to play the node with the highest average reward is equal to 1− εn, whereas a

random node will be selected with probability εn.

The Simulation Policy deals with how the domain is played out in the simulations that are performed

from the leaf node onwards, in order to produce a value estimate. The simplest and regular version of
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Monte Carlo Tree Search uses a uniform random rollout policy, πrollout.

2.5.4 Upper Confidence Bounds applied to Trees Algorithm

Kocsis and Szepesvári (2006) introduced an instance of a MCTS algorithm, the Upper Confidence

Bounds applied to Trees (UCT) algorithm, that applies the UCB1 strategy (Equation 2.23) to guide

selective sampling of actions in rollout-based planning problems [43]. Their aim was to design a MCTS-

based algorithm that had a small error probability if stopped prematurely and that converged to game-

theoretic optimum given sufficient time.

In UCT, the action selection problem is treated as a separate multi-armed bandit for every explored

internal node. The arms correspond to actions and the payoffs to the cumulative (discounted) rewards

of the paths originating at the nodes. In particular, in state s, the action that maximizes Equation 2.27 is

selected:

āUCT = arg max
a∈A

®
Q(s, a) + 2c

 
lnN(s)

N(s, a)

´
(2.27)

where Q(s, a) is computed as in Equation 2.21, N(s) =
∑
a
N(s, a) is an overall count of visits payed to

state s and N(s, a) is the number of times action a was selected when state s has been visited. It is

generally understood that N(s, a) = 0 yields a UCT value of∞, so that previously unvisited children are

assigned the largest possible value, to ensure that all children of a node are considered at least once

before any child is expanded further.

Similarly to UCB1, an exploration factor c is introduced for a better tuning of the exploration-exploitation

trade-off. A higher value of this parameter implies that the investigation of the state space close to the

root is done more thoroughly, while with c = 0 the algorithm acts greedily within the tree. For rewards in

the range [0, 1], [43] found a choice of c = 1/
√

2 to satisfy the Hoeffding inequality. With rewards outside

this range, the exploration factor needs to be set through extensive experimentation because the need

for exploration varies from domain to domain.

2.5.5 Partially Observable UCT Algorithm

The UCT algorithm introduced in the previous section is applied to fully observable environments. In

order to extend it to partial observability, a search tree of histories instead of states has to be considered.

The resulting algorithm is denominated Partially Observable Upper Confidence Bound applied to Trees

algorithm (PO-UCT) [26] and applies a modified version of Equation 2.27 to execute action selection:

āPO-UCT = arg max
a∈A

®
Q(h, a) + c

 
logN(h)

N(h, a)

´
(2.28)

where Q(h, a) is computed as in Equation 2.21 considering history h instead of state s, N(h) counts the

number of times history h has been visited and N(h, a) is the number of times the algorithm selected

action a upon visiting history h.
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Related Algorithms

Motivated by some prolific achievements in the challenging trade-off between exploration and ex-

ploitation, researchers have since been striving to attain a better understanding of when and why the

UCT algorithm succeeds and fails, and to extending and refining it beyond its basic form. These devel-

opments are greatly increasing the range of applications for which UCT is a tool of choice and pushing

its performance to ever higher levels.

Browne et al. [62] present a comprehensive survey on variations and enhancements of the UCT

algorithm, as well as of other MCTS techniques. For instance, [65] use Progressive Bias to linearly com-

bine the standard UCT evaluation with an heuristic evaluation with the weight proportional to the number

of simulations. The more simulations are performed, the more statistical confidence, and therefore, the

higher weight is assigned to the standard UCT formula. Another approach [66] explores the use of

simple regret minimizing bandit algorithms at the root, while using UCT throughout the tree, which has

shown the potential to overcome some weaknesses of the UCT algorithm. A variant of the UCT algo-

rithm, used in deep Reinforcement Learning (RL) tool such as the AlphaGo, exploits the neural network

to predict the next action and is called the PUCT algorithm [67] [68]. In [69], the authors integrate a task

hierarchy into the MCTS framework, specifically leading to a hierarchical version of UCT (H-UCT).

Moreover, [70] propose the trial-based heuristic tree-search framework, which incorporates ingredi-

ents from MCTS, Dynamic Programming and Heuristic Search. Within their framework, they derive three

new novel algorithms: MaxUCT, that merges action-value Monte-Carlo backup function and state-value

Full Bellman backup function; DP-UCT, which considers probabilities in the backups of action-value

estimates; and UCT∗, that incorporates trial length in DP-UCT. Such variants of UCT proved to per-

form significantly better and in less time than the standard UCT algorithm. Finally, [71] attempted to

dynamically tune online the exploration constant from the UCT formula, without however being able to

successfully enhance the performance relatively to the fixed value.

2.5.6 Monte Carlo Belief State Updates

Once applied a Tree Policy strategy and selected an action a, the agent transits into the execution

phase to perform the action in the real world. At this point, the agent receives an observation o and has to

update its belief state. In small state spaces, the belief state can be updated exactly by Bayes’ theorem

(Equation 2.17). However, in large state spaces, even a single Bayes update may be computationally

hard. Moreover, a compact representation of the transition or observation probabilities may not be

available.

To tackle this problem, the belief state can be approximated by a set of random state samples, called

particles, and rejection sampling can be used to update the particles based on a sampled observation,

rewards and state transitions [26]. The process of rejection sampling is depicted in Figure 2.5.
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Figure 2.5: Rejection sampling process.

The process begins by sampling a state s from the current time step belief state bt, i.e. by selecting

a particle at random. This particle is passed into the black-box simulator, (s′, o′,R) ∼ G(s, a), to return

a successor state s′ and an observation o′. If the sampled observation o′ matches the one received

from the real world o, then the next state s′ is added to the updated belief state b̂t+1. The process is

repeated until M particles have been added to b̂t+1. With sufficient particles, the approximated belief

state approaches the true belief state, lim
M→∞

b̂(h) = b(h).

2.5.7 Partially Observable Monte Carlo Planning

The Partially Observable Monte Carlo Planning (POMCP) algorithm, developed by Silver and Veness

[26], is an online algorithm that combines the PO-UCT algorithm (Section 2.5.5) with Monte Carlo belief

state updates (Section 2.5.6). By incorporating the observations inherited from the partially observable

domain, the search tree changes from a tree of states to a tree of histories, as illustrated in Figure 2.6.

More specifically, there are two variations of nodes in the POMCP tree: history nodes and sequence

nodes. Each history node represents a possible history hk = {a0, o0, a1, o1, ..., ak, ok}. The edges

emerging from the history node correspond to actions. Each sequence node represent a sequence hk =

{hk−1, ak} that includes the previous history hk−1 and the action ak selected at the preceding history

node. The edges emerging from a sequence node correspond to observations, leading to subsequent

history nodes. Figure 2.6 illustrates the search tree built by POMCP, while Figure 2.7 represents its
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evolution. The complete POMCP algorithm is described in Algorithm 1.

a1 a2

a1 a1 a1 a1

o1 o1 o1o2 o2 o2

a2 a2 a2 a2

o1 o1o2 o2

h0 = ht

h1 =
{
h0, a1

}
h1 =

{
h0, a2

}

h2 =
{
h1, o2

}
h2 =

{
h1, o1

}

h3 =
{
h2, a2

}

h4 =
{
h3, o2

}
h4 =

{
h3, o1

}
h3 =

{
h2, a1

}

Figure 2.6: The search tree constructed by POMCP for a problem with 2 actions and 2 observations,
with history nodes represented in white and sequence nodes in black.

The tree contains a node T (h) = 〈N(h), V (h), b(h)〉 for each represented history h, where N(h)

counts the number of times history h has been visited, V (h) is the value of history h and a set of

particles b(h) that approximate the belief state for the represented history h. For each sequence node,

the tree stores T (ha) = 〈N(ha), Q(h, a)〉, where N(ha) is the number of times a given action a has been

chosen after history h was visited and Q(h, a) is the action-value estimate, or Q-value, computed from

the mean return of all simulations started when action a was selected in history h.

The search procedure is called from the current history ht and begins from a start state s, that is

sampled from the belief state b(ht) (line 3). The Selection strategy alternates between the selection of

actions at history nodes and observations at sequence nodes. At a history node, an action a is selected

according to the PO-UCT algorithm mentioned in Section 2.5.5 (line 19). This action a is then submitted

to the black-box simulator to generate an observation o (line 20). At the succeeding sequence node, o

decides which edge the algorithm needs to follow.

In the Expansion step, each new sequence node ha that is added to the tree corresponds to the

first new history encountered during the Selection step and is initialized with 〈Ninit(ha), Qinit(h, a)〉 (line

17). This Q-value initialization is performed with a rollout method starting from this node (line 18). Each

Simulation phase then progresses by simulating action-observation sequences, allowing to build an

asymmetric tree (line 21).

The Back-propagation step (lines 22 to 24) updates the statistics of each node traversed according

to: 

N(h)← N(h) + 1

N(ha)← N(ha) + 1

Q(h, a)← Q(h, a) +
Q(h, a)′ −Q(h, a)

N(ha)

(2.29)
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where Q(h, a)′ is the simulated return computed recursively over the trajectories.

When the algorithm reaches a computational budget (line 2) or is interrupted, the search terminates

and the agent selects the action with the greatest Q-value (line 5), for which it receives an observation

ot from the world (Figure 2.7b). At this point, the node T (htatot) becomes the root of the new search

tree and the belief state b(htatot) determines the agent’s new belief state. In case the new belief state

is not yet composed of M particles, the algorithm performs rejection sampling (as described in Section

2.5.6) until len(b(htatot)) == M . The remainder of the tree is pruned (Figure 2.7c), as all other histories

are now impossible.

a1 a2

a1 a1

o1 o2

a2 a2

o1 o1o2 o2

h

r = +2 −1 −3 +5 +1 +3

{1, 2}

{3,−1}

{2,−2}

{1,−1}
{1,−3}

{1, 5} {1, 1}

{1, 3}{2, 3}

{3, 3}{2, 1}

{5, 4}

{N = 8, V = 1.5}

(a) Tree search in POMCP.
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a1

o1 o2

a2

ha2o2

{1, 5} {1, 1}

{1, 3}{2, 3}

{N = 3, V = 3}

(c) Tree pruned with node
ha2o2 as new root.

Figure 2.7: An illustration of POMCP in an environment with 2 actions and 2 observations.
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Algorithm 1: Partially Observable Monte-Carlo Planning

1 Function Search(h):
2 while not timeout do
3 s ∼ b(h)

4 Simulate(s, h, 0)

5 return a∗ ← arg max
a

Q(h, a)

6 Function Rollout(s, h, depth):
7 if γdepth < ε then
8 return 0

9 a ∼ πrollout(h)

10 (s′, o,R(s, a)) ∼ G(s, a) /* Black-box simulator */

11 return R(s, a) + γ Rollout(s′, hao, depth+ 1)

12 Function Simulate(s, h, depth):
13 if γdepth < ε then
14 return 0

15 if h /∈ T then
16 for a ∈ A do
17 T (ha)← (Ninit(ha), Qinit(h, a))

18 return Rollout(s, h, depth)

19 ā← arg max
a

®
Q(h, a) + c

 
logN(h)

N(ha)

´
20 (s′, o,R(s, ā)) ∼ G(s, ā) /* Black-box simulator */

21 Q(h, ā)′ ← R(s, ā) + γ Simulate(s′, hao, depth+ 1)

22 N(h)← N(h) + 1

23 N(hā)← N(hā) + 1

24 Q(h, ā)← Q(h, ā) +
Q(h, ā)′ −Q(h, ā)

N(hā)
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Chapter 3

Problem formulation

This chapter focuses in previous work developed in the NavPlan project. Section 3.2 presents the

GNC model proposed by [5] to be integrated in the planning algorithm. Section 3.3 formalizes the

Partially Observable Stochastic Shortest Path MDP (PO-SSP) addressed in this work as a MOMDP, to

take advantage of the factorization of the state space for a reduction in policy computation time.

3.1 System architecture

This section follows the work developed in [5] and [8], concerning the definition of the path planning

problem. The problem addressed aims at finding a navigation and guidance strategy for making UAVs

reach a given destination safely and efficiently in a cluttered environment under uncertainty. Therefore,

it combines the partial observability property of the POMDP model with the objective of reaching a goal

as in the SSP MDP, thus making it a Partially Observable Stochastic Shortest Path (PO-SSP) planning

problem. It considers a priori probabilistic availability of the vehicle onboard sensors and execution

error propagation, which depends on the navigation solution being used. Given the nature of the state

variables being considered, [5] make use of the MOMDP representation to model this PO-SSP problem.

In the path planning problem addressed, a target state or a set of target states is considered and,

therefore, the optimization objective becomes the minimization of the expected total cost until the target

state is reached.

Let us suppose a vehicle equipped with N different onboard navigation sensors, such as inertial

sensors, GPS and vision sensors, which are used by the GNC system to execute a path. The navigation

filter estimates the vehicle state x and its error covariance matrix P by using measurements from a set

of selected and available sensors, which define a navigation mode. The guidance and control module

executes a selected path segment (or action) by using the navigation solution. A priori knowledge on

the environment is assumed to be given by a set of probability grid maps of obstacles and availability of

each of the N onboard navigation sensors. These maps are used during the planning task to propagate

the path execution uncertainty given the probabilistic sensor’s availability, and then to evaluate obstacle

collision risk.
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The architecture of the overall planning system considers the (closed-loop) GNC model as part of

the MOMDP planning problem. The GNC sub-system considered includes the vehicle motion model,

the onboard sensor’s models in the navigation module and the guidance law. As mentioned previously,

the goal of using this closed-loop configuration between the vehicle motion model with the GNC module

and the planner is to be able to propagate, during planning, the influence of sensor availability and

uncertainty on the execution error of the trajectory.

The planner will then consider GNC’s closed-loop transitions to compute the possible evolutions of

the system’s state. The policy computed by the planner take as inputs the probability distribution over

the current state, bsh , and a vector of booleans on sensors’ availability, sv, and returns an action a,

which contains information on a reference velocity to pursue, Vref , and on the navigation mode to use.

Afterwards, a new vector of sensors’ availability s′v is observed from the environment and the belief state

update is performed. The new belief bs
′
h
a is then used by the policy to define the next action to execute.

Figure 3.1 illustrates the system’s architecture described.
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module

Vehicle
motion model

Sensors

GNC

Policy
bsh , sv

bsh , a

s′v

Belief state
update

b
s′h
a

Environment

s′v

s′v

ba

Figure 3.1: System architecture diagram, in which the GNC closed-loop vehicle model is incorporated
into the MOMDP transition function [5].

The GNC module proposed works with a high frequency. However, for a POMDP-based planner,

it might not be desirable for it to work in a high operating frequency, as this would involve increasing

the number of operations over the indefinite horizon and to further confront the problem of the curse of

dimensionality. Therefore, it is counterproductive to operate the planner at the same frequency as the

GNC module. As such, two distinct functioning frequencies are considered: a unit of time from GNC,

k, and a planning epoch, t. The planner’s time represents several units of time of the GNC transition

system, as illustrated in Figure 3.2.

t t+m...

...

k k + 1 k + 3 k + n

t+ 1

Figure 3.2: Difference between the functioning frequency of the GNC system and the planner.

In the following sections, it is considered the presence of at least an onboard Inertial Measurement

Unit (IMU), whose availability and accuracy do not depend on the environment. However, its acceleration
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and angular velocity measurements are biased, causing a drift in the estimation of the velocity and the

position, when used alone in the navigation module during state estimation. Therefore, other sensors,

such as GPS, can be fused with IMU in order to limit or even correct such drift.

3.2 GNC transition model

This section presents the GNC transition model proposed by [5], to be integrated in the MOMDP

planning problem.

3.2.1 State transition model

The state x of the UAV is defined by its position X T = [x y z], its velocity in the inertial local frame

VT = [vx vy vz], and the accelerometer bias in the UAV frame βTa =
[
βax βay βaz

]
, such as:

x =


X

V

βa

 (3.1)

Then, considering the GNC closed-loop model with an acceleration a as input, the state transition

can be defined as:

ẋ =


Ẋ

V̇

β̇a

 =


V

a

0

+


vX

vV

vβ

 =


0 I 0

0 0 0

0 0 0

x +


0

I

0

 a+ v = A x + B a+ v (3.2)

where v ∼ N (0, Q̃) is the transition process noise. According to this model, the state transition from

x(tk) to x(tk+1 = tk + ∆t) = xk+1 can be derived as:

xk+1 = Φ xk + B ak + vk+1 (3.3)

where vk+1 ∼ N (0,Q) is the discretized transition process noise and

Φ =


I ∆tI 0

0 I 0

0 0 I

 , B =


∆t2

2 I

∆tI

0

 , Q ' ∆tQ̃

Based on Equation 3.3, one can define the probability density Pr(xk+1|xk, ak) that the vehicle is in

state xk+1 after receiving the vector of control (acceleration) ak in state xk. Such probability density is

obtained as a multidimensional normal distribution:

xk+1 ∼ N (Φxk + Bak,Q) (3.4)
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3.2.2 State estimation in the navigation module

The UAV state x is not accessible in reality and hence, it is estimated by the navigation module using

sensor measurements available onboard. The state estimator is based on an Extended Kalman Filter

(EKF) [72], which includes two steps: (1) Prediction, by the IMU acceleration measurements, and (2)

Correction by the other navigation sensor Sn, n = {1, ..., N} measurements , if available.

Prediction

The IMU acceleration measurement aIMUk
is used to propagate the estimated state from k to k + 1.

It measures the biased, non-gravitational UAV body acceleration and is given as:

aIMUk
= RBIk(ak − g) + βak + ξIMUk

(3.5)

where RBIk is a rotation matrix from the inertial to the UAV body frames (assumed to be known), g is

the gravity vector and ξIMUk
∼ N (0,RIMU ) is the IMU acceleration measurement error.

From Equation 3.5, the real acceleration in the local inertial frame is described as:

ak = RT
BIk

(aIMUk
− βak − ξIMUk

) + g (3.6)

Whereas the estimated acceleration âk is computed based on the measure aIMUk
and on the esti-

mated bias β̂ak :

âk = RT
BIk

(aIMUk
− β̂ak) + g (3.7)

According to the process model (Equation 3.3), the estimated state x̂k is propagated as:

x̂−k+1 = Φx̂k + Bâk

= Φx̂k + B
Ä
RT
BIk

Ä
aIMUk

− β̂ak
ä

+ g
ä

(3.8)

Then the state prediction error x̃−k+1 becomes:

x̃−k+1 = xk+1 − x̂−k+1

= (Φ xk + B ak + vk+1)− (Φ x̂k + B âk)

= Φ (xk − x̂k) + B (ak − âk) + vk+1

= Φ x̃k −B RT
BIk

Ä
β̃ak + ξIMUk

ä
+ vk+1

= (Φ−∆Φa
k) x̃k + vk+1 −B RT

BIk
ξIMUk

(3.9)

where ∆Φa
k = B RT

BIk

[
0 0 I

]
. And the associated covariance error is then given by:

P−k+1 = (Φ−∆Φa
k) Pk (Φ−∆Φa

k)
T

+ Q + R̃IMUk
(3.10)
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where R̃IMUk
= B RT

BIk
RIMU RBIk BT . For simplicity, the case of RIMU = σ2

IMUI was considered

and hence R̃IMUk
= B RIMU BT remains constant for all k.

Sensor correction

When the n-th onboard sensor is available at tk+1, the predicted state (Equation 3.3) can be corrected

by using its measurement zSnk+1
, according to:

zSnk+1
= hSn

(xk+1) + ξSnk+1
(3.11)

where ξSn
∼ N (0,RSn

) is a measurement noise of the n-th sensor. For instance, in the case of a

GPS sensor, zGPSk+1
would be a position and velocity measurement, whereas for a vision-based sensor,

zLMk+1
would be the pixel-coordinates information of a visible landmark. Then, the predicted state x̂−k+1

is corrected such as:

x̂k+1 = x̂−k+1 +KSnk+1

Ä
zSnk+1

− hSn

(
x̂−k+1

)ä
= x̂−k+1 +KSnk+1

Ä
hSn (xk+1)− hSn

(
x̂−k+1

)
+ ξSnk+1

ä
' x̂−k+1 +KSnk+1

Ä
HSnk+1

x̃−k+1 + ξSnk+1

ä
(3.12)

where HSnk+1
is the measurement matrix such that:

HSnk+1
=
∂hSn

(x)

∂x

∣∣∣∣
x=x̂−k+1

(3.13)

and KSnk+1
= P−k+1H

T
Snk+1

(
HSnk+1

P−k+1H
T
Snk+1

+ RSn

)−1

is the gain that minimizes the estimation co-

variance error Pk+1, designated Kalman gain. Then, the estimated error and its covariance are updated

as:

x̃k+1 =
Ä
I−KSnk+1

HSnk+1

ä
x̃−k+1 −KSnk+1

ξSnk+1
(3.14)

Pk+1 =
Ä
I−KSnk+1

HSnk+1

ä
P−k+1 (3.15)

If there is no onboard sensor available for the Correction step, the estimation error and its covariance

remain as those from the Prediction step (Equations 3.9 and 3.10).

Guidance module

A set of actions is defined in the planning problem (Section 3.3) such that each action comprises a

desired velocity vector Vref for the UAV. Given such desired velocity Vref , the following linear guidance

law is applied to execute an action:

ak = K̂pVref −Kd

Ä
V̂k − Vref

ä
= KpVref −KdV̂k (3.16)
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where Kp,Kd > 0 are control gains and V̂k is the estimated UAV velocity at instant tk, i.e. V̂k =[
0 I 0

]
x̂k. Then, xk+1 can be obtained by substituting this guidance law into the discrete process

model (Equation 3.3):

xk+1 = Φ xk + B
(
KpVref −Kd

[
0 I 0

]
x̂k

)
+ vk+1

= Φ xk + BKpVref −BKd

[
0 I 0

]
(xk − x̃k) + vk+1

=
(
Φ−∆ΦV

)
xk + BKpVref + ∆ΦV x̃k + vk+1 (3.17)

where ∆ΦV = BKd

[
0 I 0

]
. Hence, given the current state xk, the state xk+1 follows the Gaussian

distribution as described below:

xk+1 ∼ N
Ä(

Φ−∆ΦV
)
xk + BKpVref ,∆ΦV Pk ∆ΦV

T

+ Q
ä

= N
Ä
x̄k+1|k, Q̃

a
k+1

ä
(3.18)

where the covariance Q̃a
k+1 becomes a function of the estimation error covariance Pk given by the

navigation system (Equation 3.10 or 3.15). Note that, this normal distribution defines the execution error

for a time step k|k+1 of the path segment. Recalling an action effect at the decision time of the planning

problem, the step t (epoch) − see Figure 3.2 − is the result of a path segment that considers several

steps k|k + 1. In the following section this relation is formalized.

State probability density function

Consider an initial state x(t0) = x0 and an initial error covariance P0, such that x̃0 = N (0,P0). For

a given action a, it is possible to compute the distribution of the next state x1 = x(t0 + ∆t), given that ∆t

is considered n times k steps, as:

fX(x1|x0) ∼ N (x̄1|0, Q̃
a
1) (3.19)

Simultaneously, the state estimation error covariance is updated to P1 according to the selected

navigation mode (Equation 3.10 or 3.15). As mentioned in Section 3.1, the GNC transition model and

the planning model work at different rates, meaning that a single state transition from s0 to s1 with action

a in the planner, makes up several state transitions from x0 to xn in the system’s model. Therefore, state

transitions in the system must continue further up to n > 1 with the same action a. The conditional state

transition at tk, knowing x0, can be obtained sequentially as follows:

fX(xk|x0) ∼
∫
fX(xk|xk−1)fX(xk−1|x0) dxk−1 (3.20)

where fX(xk|xk−1) ∼ N (x̄k|k−1, Q̃
a
k−1). In parallel, the Kalman filter process is repeated k times to

obtain Pk. Assuming, as simplifications, that Q̃k and Pk do not depend on the state xk−1 and that the

sensor is available during the entire action, than the state transition function in the planning model can
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be given as in Equation 3.21 when k = n.

fX(xk|x0) ∼ N (x̄k|0,
∑̃
k), k > 1 (3.21)

where ∑̃
k is the execution error covariance.

The state transition function from s0 to s1 can be re-written with a notation from the planning model

as shown below.

fS(s1|s0) = fX(xn|x0) ∼ N (x̄n|0,
∑̃
n) = N (s̄1,

∑
1) (3.22)

Equation 3.22 constitutes the link between the GNC’s closed-loop transition model and the MOMDP

planning model.

3.3 MOMDP model

Following [5], the PO-SSP path planning problem addressed is modelled as a MOMDP problem,

described in Section 2.4.3. As mentioned previously, in MOMDPs the state space is factorized into

partially observable state variables and fully observable state variables. In this way, the belief state

space (distribution probability over states) has a smaller dimension compared to the classical POMDP

framework, which allows to decrease the processing time for value and policy computation.

It is assumed that the vehicle always knows which sensors are available at each decision time step.

Thus the sensor’s availability is considered a fully observable state variable of the model. On the other

hand, the vehicle state vector x is taken as a hidden (non observable) state from the planning model

point of view. Given the GNC transition model described in Section 3.2, the only output considered is

the execution error distribution (bounded by the covariance matrix Q̃) and so, neither partial nor direct

symbolic observation is possible for it.

The MOMDP considered, represented in Figure 3.3, is defined as a tuple (Sv,Sh,G,A,Ω, T ,O, C, b0),

such that:

– Sv is the set of fully observable states;

– Sh is the set of hidden continuous states;

– G is the set of fully observable target states, whose states sg ∈ G are composed only by the 3D

position;

– A is the set of discrete actions;

– Ω is the set of discrete observations;

– T (sv, sh, a, s
′
v, s
′
h)→ [0, 1] is the state transition function;

– O is the observation function, such that:

O(s′v, s
′
h, a, o) = Pr(o|s′v, s′h, a) =


1, if o = s′v

0,otherwise
(3.23)
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– C : S ×A → R+
0 is the cost function, where S = Sv × Sh;

– b0 = (s0
v, b

0
Sh), where b0Sh ∈ Bh is the initial probability distribution over the initial hidden continuous

state, conditioned to s0
v ∈ Sv, the initial fully observable state.

at

stv st+1
v

C (st, at)

sth st+1
h

st st+1

bt+1bt

State Space

S : Sv × Sh

Belief state
Space

B : Sv × Bh

ot+1 = st+1
v

Figure 3.3: MOMDP model considered [8].

State Space

The complete state space is described by (sv, sh) such that |S| = |Sv|× |Sh| represents the complete

domain of the state space.

The visible state sv ∈ Sv is defined as a tuple sv = (FS1
, FS2

, ..., FSN
, FCol,P), where FSi

defines the

fully observable boolean state variable for the availability of sensor Si, i = 1, ..., N , and FCol represents

a boolean variable for a collision flag. It is assumed that the latter is also fully observable, for instance, by

measuring or estimating a force of contact. Finally, P is the localization error covariance matrix computed

by the Kalman Filter (Section 3.2.2). It is necessary to include this matrix in the state definition, as it is

propagated by the navigation module in function of the selected action in each decision step.

The hidden continuous state sh ∈ Sh is defined as sh = x, recalling that x is the continuous vehicle

state vector defined by x =
[
X T VT βTa

]T . Apart from the vehicle position X , it is necessary to

consider the velocity V and the accelerometer bias βa in the state sh, as they are considered in the

transition function to estimate the next state.

Action Space

An action a ∈ A is defined as a tuple a = ({Vref} ,mn), where Vref is the reference velocity in the

guidance module (see Equation 3.16), {Vref} defines a finite set of possible Vref and mn ∈ {S1, ..., SN}

is the navigation mode to be considered at each planning epoch t, depending on the sensors’ availability.
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Observation Space and Observation Function

As a result of the factorization of the observation space and the specificity of the model chosen, the

set of observations Ω is equal to Sv, and therefore the observation function O is deterministic, because

o = s′v (Equation 3.23) regardless of s′v, s′h and a. However, it is important to be noted that there is still

uncertainty attached to the hidden state, because in the MOMDP model used (Figure 3.3) the visible

state s′v depends on s′h, which itself depends on the previous states sv and sh, thus Pr(s′v|s′h, a) is not

deterministic.

Although the agent receives no direct or even imprecise observation on the state sh, the propagation

dynamics of the error execution depending on the choice of navigation mode are known. This modelling

choice was made to avoid considering sensor measurements, which are not accessible at the moment

of planning, and therefore avoid working with a continuous observation space, recalling that POMDPs

have an exponential complexity with the size t of the history, being (|A||Ω|)t the branching factor for tree

search solving methods. This allows to have a number of observations equal to the number of visible

states (available sensors and associated matrix P), reducing the complexity of the problem.

Transition function

The transition function T (sv, s
′
v, a, s

′
h, sh) is factorized according to the state space and, thereby, is

composed of two functions:

– a transition function TSh such as:

TSh(sh, sv, a, s
′
h) = Pr(s′h|sh, sv, a) ∼ N (s̄′h,

∑̃′
(sv)) (3.24)

which is based on the GNC closed-loop model, given that the probability distribution of a predicted

state s′h follows a normal distributionN (s̄′h,
∑̃′

(sv)) (see Equation 3.22), which, in turn, is a function

of the previous hidden state sh, the previous visible state sv and the action a.

– a transition function TSv such that TSv (s′h, s
′
v) = Pr(s′v|s′h), which represents the transition function

for s′v and depends only on the probabilistic sensors availability maps and the obstacle map, and

thereby only on the next state s′h. Concretely, Pr(s′v|s′h) is the product between the probabilities of

the availability of each onboard sensor,

Pr(s′v|s′h) = Pr (F ′Col|s′h)

|Sv\{P,FCol}|∏
i=1

Pr(F ′Si
|s′h) (3.25)

where |Sv \ {P, FCol} | is the number of on-board sensors. P is not considered in the transition

function TSv because the transition of P is deterministic for a given navigation mode.
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Thus, the complete transition function becomes:

T (sv, s
′
v, a, s

′
h, sh) = TSv (s′h, s

′
v) TSh(sh, sv, a, s

′
h)

= Pr(s′v|s′h) Pr(s′h|sh, sv, a)

= Pr(s′v, s
′
h|sh, sv, a) (3.26)

Belief State

The belief state b represents the probability distribution over states. In this MOMDP model, the belief

state can be factorized into a probability distribution over the hidden state space Sh conditioned on the

fully observable state sv, such as bSvSh = (sv, bSh). The current belief state is updated after each action

a and each perceived visible state s′v, in accordance with the transition and observation functions, by

using the Bayes’ rule (see Equation 2.17). Therefore, the belief state update is decomposed into two

sub-functions:

1. Given a belief state bsh and an action a, the GNC transition function propagates the belief state

to the next one, ba, thus defining a belief state transition related with the action execution error

propagation:

ba(s′h) = Pr(s′h|b, a) =

∫
Sh

Pr(s′h|sh, sv, a) b(sh) dsh (3.27)

2. The second function is related with the probability of observing s′v, given by the probability grid

maps, based on the belief ba (see [3] for more details):

Pr(s′v|b, a) =

|G|∑
i=0

Pr(s′v|s′h ∈ ci) Pr(s′h ∈ ci|b, a) (3.28)

where ci corresponds to the i-th cell of the probability map and |G| is the number of cells in the

map.

Finally, the complete new belief state bs
′
h
a can be written as:

b
s′h
a (s′h) = Pr(s′h|b, a, s′v) =

Pr(s′h, s
′
v|b, a)

Pr(s′v|b, a)
=

Pr(s′v|s′h)Pr(s′h|b, a)

Pr(s′v|b, a)
(3.29)

Cost function

The cost function to be minimized is defined accounting for the UAV flight time and a cost of collision.

It is expected that by minimizing the cost, the algorithm will minimize the flight time (for efficiency) and

the probability of collision (for safety) at the same time. More precisely, the cost function is defined as:

C(st, at) =



0, if st ∈ G

K −
t−1∑
k=0

C(sk, ak),∀ak ∈ A if st is in collision

ft, otherwise

(3.30)
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where ft is the flight time for a given action a at decision step t and K is a fixed cost in case of collision.

When a collision occurs, the cost of any action is a fixed penalty subtracted with the total flight time since

the initial belief state until the collision state. This trick avoids penalizing more if the collision occurs after

a longer flight time or near the goal.

For simplicity, it is assumed that all action durations coincide with the constant planning epoch,

which generates a constant ft for any action at and any state st at any depth t. Furthermore, this

assumption removes the dependency of the cost function on the action, consequently leading to the

following simplification in Equation 3.30, in case of collision:

C(st, at) = C(st) = K − t ft. (3.31)

Value function

As mentioned in Section 2.3, the aim of solving a POMDP problem is to find a policy π : B → A,

where B define the belief state space, which optimizes a given criterion usually defined by a value

function. In the MOMDP problem addressed, the value function V π(b) is defined as the expected total

cost payed from starting in a certain belief state b and following policy π. Therefore, Equations 2.8 and

2.12 are combined into the following form:

V π(b) = Eπ

[ ∞∑
t=0

C(bt, π(bt))

∣∣∣∣∣ b0 = b

]
(3.32)

where C(bt, π(bt) = a) is the expected cost of executing an action a in belief state b.

Then the optimal value function V ∗(b) is given as:

V ∗(b) = min
a∈A

[
C(b, a) +

∑
sv∈Sv

Pr(sv|b, a)V ∗(bsva )

]
(3.33)

When the value (Equation 3.33) converges for all belief states, it is possible to extract the optimal

policy π∗, given as:

π∗(b) = arg min
a∈A

[
C(b, a) +

∑
sv∈Sv

Pr(sv|b, a)V ∗(bsva )

]
(3.34)
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Chapter 4

Offline Approach

This chapter presents the offline approach. Section 4.1 describes the planning algorithm proposed

by [5] to solve the MOMDP problem addressed in this work, in an offline configuration. This allows a

better understanding of the performance and properties of the algorithm, which gives way to a parameter

tuning section (Section 4.2). This section constitutes the first contribution of this dissertation, in which

different action selection policies and back-propagation strategies are explored in the planning algorithm

and whose results will then be used for the online approach in Chapter 5. In particular, a novel adaptive

coefficient for action selection is proposed, which avoids extensive parameter tuning, while guaranteeing

a given level of performance for further online planning.

4.1 Offline POMCP-GO Algorithm

Maintaining and updating belief states can be an extremely difficult and expensive step. Given the

specificity of the MOMDP model chosen, comprising a continuous hidden state space and a discrete

fully observable state space, the calculation of the probability distribution on Sh and posterior correc-

tion by s′v (Equation 3.29) would require an expensive computational effort. [8] explored the use of a

Gaussian Mixture Model (GMM) to approximate the new belief, but this technique still emerged as be-

ing computationally heavy. To tackle this problem, an interesting solution is to apply algorithms that do

not need to maintain an explicit representation of the belief state at each decision stage, such as the

POMCP algorithm presented in Section 2.5.7.

Nevertheless, the classical POMCP algorithm does not completely meet the needs for path planning

towards a goal state, therefore a new variant was proposed. Such algorithm is called POMCP-GO as it

is a goal oriented version of the POMCP algorithm. The main differences between the classic version of

the POMCP (Algorithm 1) and the one presented are hereafter discussed. Algorithm 2 fully describes

the implementation of POMCP-GO.

Firstly, a computational budget as a number of trials to perform is used (line 2). In an offline configura-

tion, all trials start from the initial belief state V (b0), that is, the root of the exploration tree (line 3), rather

than at the current belief state as done in the online configuration. Then, belief states are represented
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Algorithm 2: POMCP-GO Offline

1 Function POMCP-GO Offline(h, b0):
2 while nbTrial < nbmax do
3 sh ∼ b0
4 Trial(h, sh, sv, 0)

5 nbTrial+ = 1

6 return a∗ ← arg min
a∈A

Q(b0, a)

7 Function Trial(h, sh, sv, d):
8 if sh ∈ G then
9 return 0

10 if FCol == 1 then
11 return K − t ft

12 if h /∈ T then
13 for a ∈ A do
14 T (ha)← (Ninit(ha), Qinit(h, a))

15 Vinit(h)← min
a∈A

Q(h, a)

16 ā← arg min
a∈A

{
Q(h, a)− c

√
logN(h)
N(ha)

}
17 (s′h, s

′
v, C(sh, ā)) ∼ G(sh, ā)

18 Q(h, ā)′ ← C(sh, ā) + Trial(hao, s′h, s′v, d+ 1)

19 N(h)← N(h) + 1

20 N(hā)← N(hā) + 1

21 Q(h, ā)← Q(h, ā) + Q(h,ā)′−Q(h,ā)
N(ha)

22 V (h)← min
a∈A

Q(h, a)

indirectly through the POMCP property of generating sequences of history nodes and sequence nodes.

Since it is a goal-oriented problem, [5] proposed that each trial should end up only in a terminal state

(goal or collision), instead of being stopped every time a new node is initialized. In the case of reaching

a goal, a cost of 0 is returned (line 9); whereas if collision is detected, a collision cost is returned (line

11), as defined by Equation 3.30.

Recalling the POMCP algorithm (Algorithm 1), when a new history node h is explored, a sequence

node ha is created and initialized for each action a. This initialization is done with a rollout method to

estimate the Q-value of each new node ha, by simulating sequences of random action-observation pairs

starting from this new node. At each step, the action a is chosen with a UCB1-based selection strategy

(line 16) and the next new state s′ and observation o are generated using the black-box simulator. The

algorithm then continues to explore from the new node hao = {h, a, o}.

Differently from POMCP, in POMCP-GO (Algorithm 2), if a new node ha is created, its value is

estimated using an initial heuristic value and not a rollout method. Such informative heuristic initialization

is described in Section 4.1.1. As the Q-value is progressively updated throughout the simulations, it

allows to compute the value of V (h) as V (h) = min
a∈A

Q(h, a) (line 15). At each step, the action a is
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chosen with a UCB1-based selection strategy (line 16), the next new state s′h is calculated using the

GNC transition function, rather than the black-box simulator, and the visible state s′v is randomly drawn

according to the probabilities given by the sensor’s availability maps. The algorithm then continues to

explore from the new node hao = {h, a, s′v}.

4.1.1 Heuristic function

Following the work proposed in [73], instead of applying a rollout method to each new node ha

created, as done in the classical version of POMCP [26], a deterministic shortest path algorithm is used

to initialize the Q-values and thereby to guide the search for UCB1 in the first explorations, until the goal

is reached. This choice was inspired by the RTDP-Bel algorithm [38], which proposes to solve mainly

goal-oriented POMDPs and that assigns values based on a heuristic function to belief states that have

not been visited yet.

Given the planning problem addressed, the Dijkstra algorithm [18] (presented in Section 1.3) was

chosen to estimate the distance between a certain position and the goal. In order to do so, the deter-

ministic obstacle grid map was turned into a graph, in which each cell corresponds to a node. The cell

containing the goal is the goal node and the edges of the graph are weighted by the estimated distance

to move from one cell to another.

Once this graph is created, the Dijkstra algorithm computes the minimum distance for each node,

which is then divided by the reference velocity to get the estimated flight time to reach the goal. These

calculations are made a priori and the result is stored as a map, in order to be consulted by the algorithm

whenever a new node is initialized. When a node h in the tree is explored for each action a ∈ A, a new

node ha is created. Using the GNC transition function, it is possible to compute the average state s′h

from the normal law defined by Equation 3.18. The cell containing this state will then be the node of the

Dijkstra graph to be used to initialize the value Qinit(h, a).

4.2 Proposed approach for parameter tuning

This section serves the purpose of applying the various Action selection strategies proposed in Sec-

tion 4.2.1, as well as the Back-propagation strategies described in Section 4.2.2, for the POMCP-GO

algorithm described in the previous section, in order to evaluate its performance, to verify the con-

vergence of the algorithm over the trials and to find the most suitable approach to apply in an online

configuration.

4.2.1 Action selection strategies for planning

As mentioned in sections 2.5.3 and 2.5.7, the Selection Policy, applied to the classic POMCP al-

gorithm, defines the way to select the actions at history nodes. As an action selection strategy, a

UCB1-based formula (Equation 2.28) is applied. Adapting this formula to the minimization problem here
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addressed, one gets the following:

āUCB = arg min
a∈A

®
Q(h, a)− c

 
logN(h)

N(h, a)

´
(4.1)

Equation 4.1, similarly to Equation 2.28, depends on an exploration factor c, which is a constant value

typically adjusted manually. This parameter varies significantly between planning domains, requiring an

exhaustive search to find the most suitable value. This exhaustive search, applied to the complex path

planning problem addressed in this work, may be extremely time consuming.

Therefore, besides applying this method as a Selection strategy, the performance of three other

selection strategies is examined: decay with depth (DWD), entropy-based coefficient (EBC) and a two-

steps sampling scheme based on simple regret and cumulative regret. While the first two techniques

explore the use of adaptive coefficients in Equation 4.1 to avoid the exhaustive search inherent to the

use of a fixed exploration factor c, the last approach introduces the notion of simple regret minimization

into the selection procedure. These three strategies are explained hereafter.

Decay with depth

In online path planning, it is often more interesting to explore at the beginning or near obstacles than

at the end, when the vehicle is close to the goal. Indeed, it is during the first periods that it is crucial to

explore alternative paths, which anticipate likely collisions. For this reason, using a variable coefficient

that decreases as time goes by is expected to promote the breadth-first search.

Using the following model proposed by [73], the coefficient starts with a higher value in the beginning,

to support the exploration of available actions, and then as the depth of the tree increases, lower values

of the coefficient are considered in order to give way to the exploitation. The exact formula of the Decay

with Depth (DWD) coefficient for our application case is as follows:

cDWD =
Ck
t

(K − t ft) (4.2)

where Ck is a constant value, K is the collision penalty and t is the depth of the tree since the beginning

of the flight, i.e. t = t0. Figure 4.1 depicts the evolution of the DWD coefficient over the depth of the tree.

The action selection formula in this case becomes:

āDWD = arg min
a∈A

®
Q(h, a)− cDWD

 
logN(h)

N(h, a)

´
(4.3)

Entropy-based Coefficient

In this case, the suggested coefficient is based on a score related to a measure of the uncertainty

about the sensors’ availability. More specifically in our application case, the coefficient adapts according

to the entropy of the probability grid map of the navigation sensors’ availability. Then, during the planning

process, the value of the coefficient lies within a specific user-defined interval [cmin, cmax], encoding, on
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Figure 4.1: Decay of the coefficient cDWD over the depth of the search tree.

the action selection strategy, the need to explore more thoroughly in the areas where the uncertainty is

higher.

The Entropy-based Coefficient (EBC) is proportional to the maximum possible cost value as follows:

cEBC(sv, sh) = en(sv, sh) max
s∈S
a∈A

|C(s, a)| (4.4)

where en(sv, sh) = (cmax − cmin) e(sv, sh) + cmin is the normalized entropy to fit in [cmin, cmax], and

e(sv, sh) = −
∑
sv∈∫v

Pr(sv|sh) log2(Pr(sv|sh)) (4.5)

is the value of the entropy according to the probability grid map of the navigation sensors’ availability. In

this case, ∫v = (FS1
, FS2

, ..., FSN
) is a subset of Sv that only considers the fully observable boolean state

variables FSi
, i.e. neither P nor FCol are accounted for during the computation of this coefficient.

The action selection formula in this case becomes:

āEBC = arg min
a∈A

®
Q(h, a)− cEBC

 
logN(h)

N(h, a)

´
(4.6)

Simple Regret (SR) + Cumulative Regret (CR) MCTS Sampling Scheme

Recently, simple regret has been proposed as a new criterion for assessing the performance of

both MAB [74] and MCTS [66] [64] algorithms. In order to introduce this notion, first consider the MAB

problem described in Section 2.5.3. In a cumulative regret setting, every choice made in each play

has a direct effect on the agent’s reward. As such, the agent wants to minimize the number of sub-

optimal arms pulled in order to achieve a reward as high as possible. Now suppose that the agent

can perform a number of trials without consequence, in a simulated environment, after which it must

make a recommendation (i.e. must choose the final move). Based only on its recommendation, the

agent is rewarded. In this case, the performance of the agent is measured by the simple regret of its

recommendation. A low simple regret implies that the recommendation is close to the actual best option.
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In this way, simple regret, rn, is defined as the expected difference between the reward µj of the arm

with the greatest sample mean, j = arg max
i
Xi, and the optimal reward, µ∗:

rn = µ∗ − µj (4.7)

In [66], authors argue that, at the root node, the sampling in MCTS is usually aimed at finding the

first move to perform. For this, one needs to promote exploration. Once one move is shown to be the

best choice with high confidence, the value of information of additional samples of the best move is low.

Therefore, simple regret becomes a naturally fitting quantity to optimize at the root node, rather than

cumulative regret.

For this purpose, they propose a simple regret minimization sampling scheme similar to UCB1, but

samples the current best arm less often. This can be achieved by replacing the log(·) operator in

Equation 2.28, with a faster growing sub-linear function, such as
√

(·):

āUCB√
(·)

= arg min
a∈A

Q(h, a)− c

√√
N(h)

N(h, a)

 (4.8)

In order to support an optimal move choice at the root, it is beneficial in many cases to find a more

precise estimate of the value of the state in the nodes deeper in the tree, i.e. to encourage exploitation.

Thus a cumulative regret minimization scheme becomes a better option at this point. Taking this into

consideration, [66] propose a two-stage sampling scheme, SR+CR MCTS, which selects an action at

the current root node according to a scheme suitable for minimizing the simple regret (SR), such as

UCB√
(·), and then at non-root nodes selects actions according to UCB1, which approximately minimizes

the cumulative regret (CR).

In this case, the exploration factor c in Equation 4.8 has to be tuned in the same manner as in the

UCB1. However, the authors argue that this approach is expected to be significantly less sensitive to the

tuning of this parameter and also to outperform the classic UCB1 in terms of convergence rate of the

value function.

4.2.2 Back-propagation strategies

The backup function defines how the knowledge on state-value estimates V (h) and action-value

estimates Q(h, a) that is gathered in the trials is propagated through the tree [70]. Depending on the

algorithm, any number of additional parameters might be updated, for instance the visitation counter, as

done in POMCP, or a solve label that indicates that a node’s estimate has converged.

In this work, two differentQ-value approximations are tested, resulting in two distinct back-propagation

strategies. For both approaches, the state-value estimates are updated based on the best successor.
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Classical POMCP

In this strategy, the action-value estimates are updated based on the mean return from all trajec-

tories started when action a was selected in history h. Let Q(h, a)′ be the simulated return computed

recursively over the trajectories, then the state-value and action-value estimates are calculated as:


V (h)← min

a∈A
Q(h, a)

Q(h, a)← Q(h, a) +
Q(h, a)′ −Q(h, a)

N(ha)

(4.9)

This strategy is the one commonly adopted in the POMCP algorithm. As the action-value estimate

Q(h, a) averages over all trajectories started in that action a, and not over trials starting with a and

following the optimal policy, this might cause a potential pitfall: if a trajectory yields a very high cost

compared to an optimal one, a single trial over said course can bias Q(h, a) disproportionately over

many trials [70].

MinPOMCP

This strategy derives from the MaxUCT algorithm proposed in [70] and constitutes part of the contri-

butions of this dissertation. In this case, the estimation of the action-values is based on the value of its

best successor, rather than on all trajectories, as follows:


V (h)← min

a∈A
Q(h, a)

Q(h, a)← C(h, a) +

∑
haoN(hao)V (hao)

N(ha)

(4.10)

where

C(h, a)← C(h, a) +
C(sh, a)− C(h, a)

N(ha)
(4.11)

is the mean immediate cost of executing action a in history h. As a result of applying this strategy,

the contributing sub-tree in the back-propagation step is identical to the best partial solution tree and,

therefore, the pitfall discussed in the Classical POMCP strategy no longer applies.

4.3 Evaluation based on offline planning and simulations

4.3.1 Configuration

A total of 8 case studies are examined: 2 environment maps, for which 2 distinct sensor’s availability

maps, with 2 different initial states each, are considered. A total of 10 value and policy optimizations are

performed for each case study. The total number of trials in each optimization process is set to 50000.

For each 5000 trials, 1000 simulations are performed to evaluate the policy being currently optimized.

Sensors: The vehicle model used is the one defined in Section 3.2 of Chapter 3, considering only two

onboard sensors: INS, available all the time, and GPS, available according to the probability maps.
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Environments: Simulations are conducted on a benchmarking framework for UAV obstacle field navi-

gation proposed in [75], which provides environments with different obstacle configurations. Two bench-

marks are selected:

WallBaffle: map containing two walls as obstacles (Figure 4.2a);

CubeBaffle: map containing two cubes as obstacles (Figure 4.2e);

with a grid size of 100× 100× 20 cells, where each grid cell has the size of 2m× 2m× 2m.

(a) WallBaffle map

y
(m

)

x (m)

(b) 1m precision
y

(m
)

x (m)

(c) 2m precision

y
(m

)

x (m)

(d) 10m precision

(e) CubeBaffle map

y
(m

)

x (m)

(f) 1m precision

y
(m

)

x (m)

(g) 2m precision
y

(m
)

x (m)

(h) 10m precision

Figure 4.2: Obstacle maps proposed on the test benchmark [75] as well as examples of probability maps
of GPS availability with different precision thresholds, given in meters.

A priori knowledge on the GPS availability is supposed. As done in [5], probability grid maps for

GPS availability are used for different GPS precision thresholds, given in meters. These thresholds

yield different probabilistic availability maps. For instance, if the 1meter precision GPS availability map

indicates a probability of 60% in a given cell, it means that there is a 60% chance that GPS will be

available with 1meter of precision in this cell. Moreover, these precision thresholds are only used to

generate different GPS availability maps, and not used in the Kalman filter.

For the WallBaffle map, 2m and 10mGPS precision thresholds are examined, while in the CubeBaffle

map, 1m and 2m GPS precisions are chosen. To be noted that when less GPS precision is required,

more likely the GPS availability is. Figure 4.3 illustrates the set of maps considered, which is composed

by the probability map on GPS availability as well as a map of the environment (obstacles).

Initial conditions: The initial belief state is defined as b0 = (s0
v, bS0

h
= (s0

h,
∑̃

0)), where:

– s0
v = [1, 1, 0,P] is the initial visible state, where P =

∑̃
0;

– ∑̃
0 = diag(1, 1, 1, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01);

– Two initial states s0
h are considered for each map:

WallBaffle: s0
h = [10, 25, 5, 0, 0, 0, 0, 0, 0] and s0

h = [50, 25, 5, 0, 0, 0, 0, 0, 0], representing the

initial positions (10, 25, 5)m and (50, 25, 5)m, respectively;
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Figure 4.3: Representation of the probability map on GPS availability and the environment map.

CubeBaffle: s0
h = [35, 20, 5, 0, 0, 0, 0, 0, 0] and s0

h = [65, 20, 5, 0, 0, 0, 0, 0, 0], representing the

initial positions (35, 20, 5)m and (65, 20, 5)m, respectively;

The target state is defined at the position sg = (50, 80, 5)m and is considered reached if the position

comprised in sh is within a margin of 3meters from sg.

Actions: An action is composed by a reference speed and a navigation mode depending on the choice

of the sensor. The set of Vref is composed by 26 reference speeds, which can be represented as direc-

tions (Figure 4.4), for each navigation sensor, thus comprising a total of 52 possible actions. Parameters

of the GNC model are configured to ensure an action duration of 4 seconds.

x

y

z

Figure 4.4: Set of directions considered.

Parameters: The collision cost is fixed at K = 450. Moreover, for the implementation of the proposed

selection strategies, extra parameters need to be configured:

– UCB1 (UCB(c)): extensive search is performed for the values in c = (0.01, 0.05, 0.1, 0.5, 1, 5, 10);

– Decay with Depth (DWD): Ck = 0.2222, so that the first coefficient cDWD has the value of cDWD =

0.2222×K = 100 with the evolution depicted in Figure 4.1;

– Entropy-based Coefficient (EBC): [cmin, cmax] = [0, 0.0222] so that cEBC lies within an interval of

[0, 10], to be comparable with the values examined in UCB1;

– SR+CR MTCS (UCB√
(·)(c)): only the coefficient that showed the best results in UCB1 is used in

this approach.
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Metrics: To evaluate the quality of the policy computed, the following metrics are examined:

– The value of the initial belief state V (b0) during the optimization. This metric is used to check

the convergence in value of the policy being optimized for the initial state of belief;

– The value of the initial belief state V (b0) executed or simulated. The value of b0 during opti-

mization is biased because it is the average cost of all trials and therefore does not represent the

actual value of b0. The value of executed b0 is based on a formula derived by [5] and is computed

with the results of the simulations, as follows:

V (b0)exe = pcK + (1− pc)T (4.12)

where pc is the collision probability at the initial belief state b0 when following the optimized policy

during the simulations, K is the collision penalty and T is the average total flight time to reach the

goal, starting from b0 knowing that no collision occurred, i.e. FColk = 0,∀k ≥ 0;

– The success rate, which is the ratio between the number of simulations that ended up in the goal

state and the total number of simulations performed (in %);

– The average flight time T for the successful simulations (without collision), which allows to verify

the minimization of the flight time;

– The computational time per optimization is an indicator of the computational complexity inherent

to the strategies.

Strategies: Two back-propagation strategies are tested in this step: Classical POMCP and MinPOMCP.

Classical POMCP is tested for each of the 4 selection strategies, while MinPOMCP is performed only

for the coefficient that showed the best results in UCB1 and for the EBC, making it a total of 6 different

combinations used. Selection strategies using the MinPOMCP back-propagation approach are identified

with an additional subscript MP.

4.3.2 Results

The results showed in this section reflect only the values obtained after the total number of 50000

trials were reached. Figures 4.5, 4.6, 4.7 and 4.8 represent the results of the metrics V (b0) optimized

and V (b0) simulated for all the approaches. The data is organized in the form of bars, being the tip of the

filled bar the average, while the extremes of the vertical lines represent the standard deviation. Tables

4.1 and 4.2 register the average and standard deviation values for the success rate, average flight time

and computation time per optimization.

Appendix A.1 depicts the results of the metrics V (b0) optimized and V (b0) simulated for the extensive

search process using the UCB1 formula, along with the results of the EBC for comparison. Appendix A.2

shows the evolution of the metrics V (b0) optimized and V (b0) simulated during the optimization process,

i.e. for each 5000 trials, for the best and the worst strategy in each case study. Furthermore, examples

of the 1000 trajectories executed after the 50000 trials are also shown in Appendix A.2.
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Regarding the initial step of the exhaustive hand-tuning process using the UCB1 formula, Figures

A.1, A.2, A.3 and A.4 show that the UCB1’s best fixed coefficient varies significantly, not only across

the different GPS precision probabilistic availability maps considered, but also when changing initial

positions in the same map. For this reason, the use of a coefficient that can be dynamically tuned to

fit all the different planning domains becomes a very promising solution to avoid the previous extensive

parameter tuning, being therefore more appropriate for an online planning configuration. Moreover,

comparing the UCB1 fixed coefficients and the EBC results, one can verify that both V (b0) optimized

and simulated computed for EBC lie within the values obtained for the fixed coefficients for every case

study, although never reaching the values of the best fixed coefficient. These results were expected,

since the application of EBC implies the use of values within the user specified interval, which comprises

not only the optimal coefficient, but also others that do not generate results as satisfying. In this case,

using cEBC ∈ [0, 10], values close to 10 were used where the uncertainty on GPS availability was higher,

encoding the need for more exploration in these areas, otherwise lower values close to 0 were applied.

Therefore, a compromise must be made between the desired quality of the results and the time one is

willing to spend on the exhaustive search for the optimal coefficient value before online planning.

WallBaffle map

Figures 4.5 and 4.6 and Table 4.1 comprise the results for the WallBaffle map. The GPS availability

maps chosen allow to detect a difference in the exploration factor c of the UCB1 formula that showed the

best results: the lower the GPS precision required, more likely the GPS availability is and less exploration

is needed, resulting in a lower factor c. Consequently, the average computation time per optimization is

also lower for a lower c, as can be seen in Table 4.1.
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Figure 4.5: WallBaffle map with initial position in (10, 25, 5)m, using different combinations of action
selection and back-propagation strategies.

Focusing on the results obtained when applying the Classical POMCP back-propagation strategy, it

can be immediately verified that the V (b0) optimized is always higher or close to the simulated V (b0), for

all the selection policies. As explained in Section 4.2.2, the action-value estimatesQ(h, a) in the POMCP
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Figure 4.6: WallBaffle map with initial position in (50, 25, 5)m, using different combinations of action
selection and back-propagation strategies.

algorithm are averages of all trials starting with a, regardless of following the optimal policy afterwards.

If trajectories holding a very high cost (collision cost) are encountered, Q(h, a) will retain a higher value

over many trials. Thus, the value of optimized b0 will often be higher than the simulated value.

Regarding the selection strategy Decay with Depth (DWD), it shows the highest difference between

the optimized V (b0) and the executed V (b0), which may indicate that the optimized V (b0) needed more

trials to converge to a lower value. For the initial position (10, 25, 5)m in both GPS precision maps, it

yielded the lowest simulated V (b0), influenced by the success rate being the highest. However, this

approach does not offer consistency, reaching the highest V (b0) values, along with the worst success

rates, for the initial position (50, 25, 5)m in the 2m GPS precision map. This can be explained by observ-

ing the lower graph of the first column of Figure A.8, in which it is possible to verify that 50000 trials were

not sufficient to guarantee the convergence of the optimized V (b0), as the tendency of its evolution is to

keep decreasing over the trials. Furthermore, this strategy requires on average the highest computation

time per optimization.

The UCB√
(·) strategy also does not present a consistent behaviour. According to what was ex-

pected, this two-sampling scheme strategy should accelerate the convergence of the algorithm, leading

to lower values of both optimized and executed V (b0) and higher success rates as compared to the ones

obtained by the UCB1 formula using the same coefficient c. However, this is only the case for the initial

position (10, 25, 5)m in the 10m GPS precision map.

When applying the MinPOMCP back-propagation strategy, a substantial improvement on the conver-

gence of the initial belief state value is verified for both selection policies UCB1 and EBC. The values

registered in Table 4.1 follow this outcome, as the success rate also increases. Moreover, for both se-

lection policies used, the simulated V (b0) is now higher than the optimized V (b0) in some cases. This is

explained because this back-propagation strategy considers only the best successors in the tree, lead-

ing often to an optimistic value of b0. Additionally, the EBCMP approach achieves even better success

rates and lower values in both V (b0), when compared with the best UCB1 coefficient, for most of the

58



cases here considered. On the other hand, this back-propagation strategy requires more computation

time per optimization.

WallBaffle, 2m GPS precision WallBaffle, 10m GPS precision

Initial position (10, 25, 5)m (50, 25, 5)m (10, 25, 5)m (50, 25, 5)m

UCB1∗

Success (%) 97.42 (1.09) 97.35 (1.45) 98.45 (1.83) 98.54 (1.12)

T (s) 73.75 (0.81) 67.80 (3.33) 75.05 (2.52) 63.32 (3.98)

Time per optimization (min) 153.03 (4.50) 80.80 (9.23) 88.33 (3.47) 65.30 (8.08)

EBC
Success (%) 97.59 (1.02) 97.04 (0.85) 97.19 (3.28) 97.64 (2.51)

T (s) 75.54 (1.42) 68.87 (2.95) 72.81 (1.08) 64.51 (2.55)

Time per optimization (min) 113.80 (3.34) 119.60 (4.29) 75.45 (4.63) 79.33 (2.05)

DWD
Success (%) 98.68 (1.04) 96.52 (1.26) 99.91 (0.08) 99.69 (0.45)

T (s) 76.46 (0.88) 69.80 (3.88) 77.34 (2.31) 69.82 (3.50)

Time per optimization (min) 196.00 (28.26) 266.5 (29.06) 101.67 (4.71) 164.9 (17.55)

UCB√
(·)

Success (%) 97.99 (0.90) 96.69 (1.42) 99.00 (0.78) 97.83 (1.50)

T (s) 74.71 (1.58) 67.97 (3.93) 73.85 (1.06) 62.40 (3.03)

Time per optimization (min) 203.30 (14.73) 144.50 (28.32) 66.33 (2.62) 55.56 (3.82)

UCB1∗MP

Success (%) 98.25 (0.94) 98.28 (1.03) 99.00 (0.89) 98.35 (1.25)

T (s) 74.68 (1.24) 59.13 (1.33) 74.59 (1.52) 60.25 (1.72)

Time per optimization (min) 277.67 (9.67) 161.00 (17.47) 124.30 (4.61) 86.34 (3.47)

EBCMP

Success (%) 97.81 (0.80) 98.29 (1.19) 99.07 (0.92) 99.75 (0.31)

T (s) 75.46 (1.71) 60.57 (2.07) 75.56 (2.15) 60.21 (2.31)

Time per optimization (min) 119.01 (6.31) 98.30 (4.63) 101.20 (5.35) 85.67 (2.87)

Table 4.1: Performance comparison between strategies in the WallBaffle map. The data is organized
as Average (Standard deviation). In bold are represented the best values of the three metrics (success
rate, flight time and computational time) for each back-propagation strategy.

CubeBaffle map

Figures 4.7 and 4.8 and Table 4.2 comprise the results for the CubeBaffle map. The GPS availability

maps chosen are so close in terms of precision that it does not allow to draw the same clear conclusion

for the exploration factor c with the best results in the UCB1, as done with the WallBaffle map. However,

the average computation time for each optimization remains lower for the map with the lowest GPS

precision required (Table 4.2).

Once again, the DWD strategy does not appear to be consistent, achieving the best results for the

initial position (35, 20, 5)m in both GPS precision maps, with the lowest simulated V (b0) along with the

highest success rates, while the initial position (65, 20, 5)m scored the worst success rates and highest

simulated V (b0) in both GPS precision maps. The lower graph in the first column of Figure A.10 indicates

59



U
C

B(
10

)

EB
C

DW
D

U
C

B
√ (·)

(1
0)

U
C

B M
P
(1

0)

EC
B M

P

70

75

80

V
(b

0
)

Optimized
Executed

(a) 1m precision on GPS availability

U
C

B(
0.

01
)

EB
C

DW
D

U
C

B
√ (·)

(0
.0

1)
U

C
B M

P
(0
.0

1)

EC
B M

P

65

70

75

80

85

V
(b

0
)

Optimized
Executed

(b) 2m precision on GPS availability

Figure 4.7: CubeBaffle map with initial position in (35, 20, 5)m, using different combinations of action
selection and back-propagation strategies.
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Figure 4.8: CubeBaffle map with initial position in (65, 20, 5)m, using different combinations of action
selection and back-propagation strategies.

that, although convergence on the optimized value function was ensured over the optimization process,

the 50000 trials were not sufficient to converge the policy, which keeps changing and leading to different

success rates and total fight times, as can be seen by the behaviour of the simulated V (b0) and its

variability. Additionally, the lower graph in the first column of Figure A.12 denotes a convergence of

the value function begin optimized, while the executed V (b0) remains comparatively high. This can be

explained by the choice of executing the trajectory between the obstacles, rather than going around, as

illustrated in the example of trajectories shown for this case. Indeed, the uncertainty on GPS availability

in the area between the obstacles is higher, which may lead the navigation solution to be predominantly

INS, meaning higher path execution errors and an increase on the collision risk, hence why the success

rates are lower. The computation time remains, on average, the highest for this approach.

The performance of the UCB√
(·) strategy is worse in all 4 case studies, when compared to the UCB1

formula using the same coefficient c. Particularly for both initial positions in the 1m GPS precision map,
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this approach was computationally the most expensive.

Finally, the combination of the MinPOMCP back-propagation strategy with the best UCB1 coefficient

and the EBC shows an enhancement of the performance of such selection strategies, once again accel-

erating the value convergence, except in the initial position (35, 20, 5)m of the 1m GPS precision map.

Particularly in the initial position (65, 20, 5)m of the 1m GPS precision map, the success rates increased

significantly, with both simulated and optimized V (b0) decreasing dramatically. On the other hand, this

back-propagation strategy requires on average more computation time per optimization.

CubeBaffle, 1m GPS precision CubeBaffle, 2m GPS precision

Initial position (35, 20, 5)m (65, 20, 5)m (35, 20, 5)m (65, 20, 5)m

UCB1∗

Success (%) 98.65 (0.54) 92.44 (0.81) 97.59 (0.85) 97.76 (1.48)

T (s) 67.97 (3.66) 70.06 (0.96) 64.77 (1.38) 66.88 (1.56)

Time per optimization (min) 155.33 (1.25) 94.34 (8.29) 66.34 (3.82) 173.33 (2.36)

EBC
Success (%) 98.02 (0.58) 89.34 (2.89) 96.82 (1.42) 98.35 (0.67)

T (s) 67.78 (1.64) 69.58 (0.91) 65.23 (3.58) 69.67 (2.46)

Time per optimization (min) 110.45 (17.39) 177.30 (5.09) 98.67 (3.94) 86.67 (9.42)

DWD
Success (%) 99.57 (0.67) 86.91 (3.32) 99.66 (0.52) 95.39 (3.36)

T (s) 70.58 (1.64) 70.10 (2.10) 70.64 (3.48) 69.66 (3.67)

Time per optimization (min) 233.75 (25.34) 356.34 (4.32) 199.30 (34.32) 285.76 (18.90)

UCB√
(·)

Success (%) 97.96 (0.82) 91.51 (1.77) 96.69 (1.30) 97.43 (0.74)

T (s) 68.12 (3.41) 70.46 (0.89) 64.69 (2.61) 66.54 (1.07)

Time per optimization (min) 333.67 (10.53) 407.53 (8.99) 51.33 (6.18) 53.36 (1.70)

UCB1∗MP

Success (%) 97.20 (0.66) 97.11 (0.43) 97.70 (1.64) 98.09 (1.26)

T (s) 65.08 (0.74) 66.32 (0.98) 64.37 (1.60) 65.23 (0.61)

Time per optimization (min) 199.33 (7.59) 113.75 (4.97) 106.67 (1.25) 215.42 (4.08)

EBCMP

Success (%) 96.89 (0.87) 97.49 (0.53) 97.27 (1.76) 99.36 (0.95)

T (s) 64.41 (0.80) 66.10 (0.21) 63.70 (0.81) 65.67 (0.82)

Time per optimization (min) 107.66 (6.13) 121.63 (1.25) 97.68 (3.09) 100.03 (9.27)

Table 4.2: Performance comparison between strategies in the CubeBaffle map. The data is organized
as Average (Standard deviation). In bold are represented the best values of the three metrics (success
rate, flight time and computational time) for each back-propagation strategy.

4.3.3 Summary

From the results obtained in the previous section, it is possible to draw some conclusions regarding

the different action selection and back-propagation strategies tested.

Firstly, the EBC strategy avoids the extensive parameter tuning inherent to the use of the fixed explo-

ration factor c in the UCB1 formula, while guaranteeing a satisfying level of performance for all domains
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considered. On the other hand, both DWD and UCB√
(·) do not show a consistent behaviour, yielding

the best results for particular case studies, while the worst results for others. Additionally, the DWD

strategy takes longer to ensure the convergence of the value function. Concerning an online planning

configuration, where an extensive parameter tuning is not desirable, the EBC strategy is more adaptable

to different planning domains and therefore will be the one used in Chapter 5, along with the UCB1 best

coefficient for comparison purposes.

Furthermore, the combination of ECB with the MinPOMCP back-propagation strategy is a promising

approach for the online planning configuration, since it offers no need for extensive search of the best

UCB1 coefficient and the MinPOMCP helps to accelerate value convergence.
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Chapter 5

Online Approach

This chapter leads the reader through the online approach. Section 5.1 proposes an online version

of the POMCP-GO planning algorithm. Section 5.2 explains the planning-while-executing framework in

which the online POMCP-GO algorithm is integrated to provide strictly anytime and continuous solutions

during the mission execution. In Section 5.3, simulations are performed on the resulting framework,

whose implementation is done in Robot Operating System (ROS), and comparison remarks are made

with the POMCP-GO algorithm implemented alone. Finally, Section 5.4 explores the performance of this

framework in a robot simulator, Gazebo.

5.1 Online POMCP-GO Algorithm

This section introduces the online algorithm to solve the PO-SSP planning problem. This algorithm

is an online configuration of the POMCP-GO algorithm presented in Chapter 4 and is fully described in

Algorithm 3. The main differences between the online and the offline approach include the computational

budget, the belief state representation and the trial length.

Regarding the computational budget, a timeout is applied (line 2), instead of a fixed number of trials,

in order to submit the planner to time-constrained environments. Being an online approach and as

mentioned in Chapter 2, the trials begin from the current belief state b, rather than starting always in the

initial belief. As such, rejection sampling (Section 2.5.6) is performed to represent the new belief state,

after each action a is executed and the respective observation sv is perceived from the real world.

Similarly to the classic POMCP [26], each trial finishes after a new node is created (line 11). Fur-

thermore, an additional trial length condition is established in Algorithm 3, ending the trial if the current

depth reached a maximum depth D (line 18). This condition reinforces the need to investigate the action

space closer to the root of the tree more thoroughly (i.e. promotes breadth-first search), which might

improve action selection with short time budgets.

This online approach acts by interleaving planning and execution phases. Because the ultimate goal

of these guidance and navigation strategies is to apply them onboard the UAV in a real-time configura-

tion, it becomes unfeasible to have the UAV constantly stopping mid-air while the planning phase takes
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Algorithm 3: Online POMCP-GO

1 Function Search(h):
2 while not timeout do
3 sh ∼ b(h)

4 Trial(sh, h, 0)

5 return a∗ ← arg min
a∈A

Q(h, a)

6 Function Trial(sh, h, depth) :
7 if sh ∈ G then
8 return 0

9 if FCol == 1 then
10 return K − t× ft

11 if h /∈ T then
12 for a ∈ A do
13 T (ha)← (Ninit(ha), Qinit(h, a))

14 Vinit(h)← min
a∈A

Q(h, a)

15 return Vinit(h)

16 ā← SelectionPolicy(h, ha, c)

17 (s′h, s
′
v, C(sh, ā)) ∼ G(sh, ā)

18 if depth < D then
19 Q(h, ā)′ ← C(sh, ā) + Trial(s′h, hao, depth+ 1)

20 N(h)← N(h) + 1

21 N(hā)← N(hā) + 1

22 V (h), Q(h, ā)← Back-propagation(C(sh, ā), Q(h, ā)′)

place, regardless of its duration. For this reason and for those mentioned in Section 1.3.2, the POMCP-

GO is incorporated in a planning-while-executing framework, which is described in the following section.

5.2 AMPLE planning-while-executing framework

AMPLE [27] follows the direction of reactive or continuous planning, in which a plan is initially pro-

posed and then works by iteratively fixing flaws in such plan when an anomaly occurs at execution-time,

and on continuously updating goals, state and planning horizons.

This framework is strictly anytime in the sense of policy execution under time constraints, as it

ensures the return of an applicable action in any possible execution state at a precise time point, exactly

when required by the execution engine; reactive to environment changes, which are incorporated in

the planning requests being managed in parallel to the action execution and conditional by prioritizing

future execution states and computing a partial (incomplete) but applicable policy for each action.

AMPLE has been successfully applied to solve UAV’s missions such as target detection [1] and

autonomous landing [76], using classical planning frameworks or (PO) MDPs models.

64



5.2.1 AMPLE architecture

The AMPLE framework, depicted in Figure 5.1 is composed by two threads: a planning thread, which

can also be seen as a server thread, that manages plan optimization while answering to client requests;

and an execution thread, or client thread, that adds and removes planning requests according to the

system’s and environment’s evolution, in order to get the action to execute in the current state, from the

optimized policy or from the default one.

Strategy

EXECUTION THREAD

PLANNING THREAD
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planning request’s initial state no longer
relevant

relevant state without available planned action

Figure 5.1: AMPLE architecture: connections between the execution and the planning threads [27].

The planning thread contains an instance of the planning algorithm called Planner. Most of the re-

quests addressed to the planning thread from the execution thread concern the management of planning

requests, while others correspond to getting information about the planning problem being solved.

When the planning thread receives the planning requests, it must compute and update the cur-

rent policy depending on the information included in the request. A planning request r is a 4-tuple

(I,∆, α, αp), where I is a (belief) state for which a policy must be computed, ∆ is the (continuous) maxi-

mum allowed duration for the policy optimization, α is an algorithm variant of the planner (some planners

can only provide one variant) and finally, αp comprises the parameters of α. This last variable is generic

enough to take into account any parameter required by the planner to handle requests.

For the explanations that follow, some notation needs to be clarified (italic bold data identify data

structures shared by both threads):

– P represents the planning problem;

– psm is the state machine that formalizes the interaction between both threads;

– πd is the default policy. This policy is the ”rescue” policy, which can be either computed offline or
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quickly computed online before the optimization of the policy;

– πsr is the backup policy to solve requests. This policy is a copy of the policy being optimized that

is updated during the optimization process;

– pr forms a queue of planning requests managed by the execution thread and solved by the plan-

ning thread;

– stopCurrentRequest is a boolean indicating whether the current request being solved in the plan-

ning thread must be interrupted;

– stopPlannerRequest is a boolean indicating whether AMPLE must be stopped.

As seen in Figure 5.1, the execution thread can interact with the planning thread through the use of

several methods, namely:

– load problem to load an initial problem P in the planner;

– add plan request to add a request r to the queue of pending planning requests pr ;

– remove plan request to remove a request r from pr , if it is not being solved by the planning

thread; otherwise, it sets the boolean stopCurrentRequest to true to inform the planning thread

to stop solving this request and to remove it;

– get action to read the optimized action to be executed in the current state, if it is included in the

backup policy πsr ; otherwise an action defined by the default policy πd is read instead;

– get actions to get the set of actions applicable in state s;

– get effects to get the set of states reachable by performing action a in state s.

5.2.2 AMPLE planning thread

The planning thread automatically manages the queue of planning requests and locally updates the

policy in bounded time for each planning request. Algorithm 4 illustrates the pseudocode of the planning

thread. The algorithm is conceived as an endless loop that continuously reacts to the current mode of

the state machine psm.

At first, if the mode of the state machine is LOADING PROBLEM (after an activation of the load problem

command by the execution thread), then it loads the planning problem P and changes the mode to

PROBLEM LOADED (lines 3 to 5). If the mode is PLANNING (after an add plan request command in the

execution thread), it checks if the front planning request in the queue is already being solved (line 7).

If not, it launches its optimization (lines 25 to 28), which mainly consists in recording the current time

and calling the solve initialize planner procedure. Otherwise, it means that the planning thread

was already solving this request from a previous iteration of its endless loops. In this case, it tests

if the optimization of this request must end (line 11), which can happen if the planner procedure has

converged, if the time allocated to solve the request has been consumed, if requested by the execution

thread via the remove plan request command or if the AMPLE planner has to be stopped.
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If all these conditions are false, the optimization of the request continues by calling the solve progress

planner procedure and the backup policy πsr is updated for the (belief) state queried by the current plan-

ning request (lines 22 to 23). Otherwise, the solve end planner procedure is called, the backup policy

is updated and the current planning request is removed from the queue (lines 12 to 15). Then, the

next planning request in the queue, if any, is launched or the mode of the state machine is changed to

PROBLEM SOLVED (line 19).

Algorithm 4: AMPLE Planning

1 solvingRequest← false ;

2 while true do
3 if state == LOADING PROBLEM then
4 pln.load problem (P) ;

5 state = PROBLEM LOADED ;

6 else if state == PLANNING then
7 if solvingRequest == false then
8 launch front request() ;

9 else
10 t← get current time ;

11 if pln.solve converged (pr.front.αp) or t− requestStartT ime > pr.front.∆ or

stopCurrentRequest == true or stopPlannerRequest == true then
12 pln.solve end() ;

13 πsr ← πsr ∪ pln.policy (pr .front.I) ;

14 pr .pop front() ;

15 stopCurrentRequest ← false ;

16 if pr not empty then
17 launch front request() ;

18 else
19 state = PROBLEM SOLVED ;

20 solvingRequest← false ;

21 else
22 pln.solve progress (pr .front.αp) ;

23 πsr ← πsr ∪ pln.policy (pr .front.I) ;

24 Procedure launch front request():
25 solvingRequest← true ;

26 pln.set algorithm (pr .front.α,pr .front.αp) ;

27 requestStartT ime← get current time ;

28 pln.solve initialize (pr .front.I) ;

67



5.2.3 AMPLE execution thread

The way the execution thread manages the planning requests, by adding or removing them according

to the current execution state and to the future probable evolution of the system, and the action execution

can follow different planning strategies, depending on the instantiation of the state machine. AMPLE gives

to the planner the capability of switching between such planning strategies, with the guarantee to provide

a plan anytime, with respect to time constraints.

Chanel et al. [27] propose three different strategies instantiated within the execution thread:

– AMPLE-NEXT that provides a short-term prediction of the system’s evolution. As the system begins

to execute an action, all the next possible (belief) states coming from this action are computed and

plan requests are added for each of them, allowing for the planning thread to provide an optimized

action on time as soon as the current action terminates;

– AMPLE-PATH that provides long-term reasoning about the most probable execution path of the sys-

tem, computed by applying the current optimized policy (or the default one, if necessary) from the

current execution state via successive calls to the get action command;

– AMPLE-PORTFOLIO that uses a set of distinct planners to solve the current problem, in order to have

more chance of finding a solution.

The AMPLE-PATH strategy is not appropriate for problems with high uncertainty in action effects, since

the chance of leaving the most probable path is very high, leading to an invalid strategy at almost every

action and the consequent use of only the default policy. Furthermore, the AMPLE-PATH strategy is not

suitable for random problems because the various portfolio planners should be logically chosen to be

efficient at solving a specific problem. Therefore, the AMPLE-NEXT strategy will be the one chosen to be

implemented in this work and will be further explored in the next section. For more information on the

remaining strategies, please refer to [27].

AMPLE-NEXT: predicting the evolution of the system one step ahead

The AMPLE-NEXT strategy is formalized in Algorithm 5. Prior to the planning-while-executing loop,

the AMPLE framework requires an initial bootstrap in which the planner computes a first optimized

action in the initial (belief) state for a given period of time ∆bootstrap (line 1). Once an action has been

completed, the next one to be executed, action a, is gathered by calling the get action command for the

current execution state (line 3), its expected duration ∆a is computed (line 5) and its execution begins.

Then, plan requests are added for each possible next (belief) state of the system I ′, with a maximum

computation time proportional to ∆a and to the probability of getting I ′ as an effect of executing a in the

current (belief) state I (lines 7 to 11). The system waits for action a to complete (line 12), while added

planning requests are being solved in the planning thread. Once the execution is terminated, the system

removes the previous planning requests in case they have not yet been solved by the planning thread

(line 14), the current execution state is observed and the algorithm goes back to the beginning of the

execution loop.
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Algorithm 5: AMPLE-NEXT

1 I ← bootstrap execution (P,∆bootstrap) ;

2 while stopPlannerRequest == false do
3 a← get action (psm, πd,P, πsr, b) ;

4 Start execution of action a ;

5 ∆a ← expected duration of action a ;

6 prNext← empty list of planning request pointers ;

7 for I ′ ∈ get effects (I, a) do
8 r.I ← I ′ ;

9 r.∆← Pr(I ′|a, I) ∆a ;

10 add plan request (psm,pr, r) ;

11 prNext.pushback(r) ;

12 Wait until action a has completed ;

13 for r ∈ prNext do
14 remove plan request (psm,pr, r) ;

15 stopCurrentRequest ← true ;

16 I ← observe and update current belief state ;

5.2.4 Integration of POMCP-GO in AMPLE

The AMPLE framework is developed in the Robotic Operating System (ROS). As such, three nodes

are established for the planning thread, the execution thread and the planner (online POMCP-GO). The

several methods described in Section 5.2.1 and illustrated in Figure 5.1 constitute services that connect

these nodes. The planning thread node is implemented as an intermediary in all of these services,

meaning that the execution thread node and the planner node are not directly connected.

In this application case, the planning time for each future state s′v is computed proportionally to

the probability of getting such effect after the execution of an action a in the current belief state b, i.e.

Pr(s′v|b, a). However, the MOMDP model is not declarative on these probabilities, so an approximation

is done with the following formula:

Pr(s′v|b, a) =
N(hao)

N(ha)
(5.1)

As the values of the visitation counters N(hao) and N(ha) are iteratively updated in the back-

propagation step of the POMCP-GO algorithm during the trials, this probability becomes more precise as

the mission progresses. Furthermore, both solve progress and solve initialize planner procedures

constitute calls to the Trial function (line 6) in the POMCP-GO algorithm (Algorithm 3).

5.3 Simulations

This section presents the simulations performed online using the AMPLE framework implemented in

ROS. The performance of three approaches is compared: POMCP-GO driven in AMPLE; POMCP-GO

implemented using the classical online paradigm, that is, with planning and execution phases inter-
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leaved; and an algorithm that consecutively applies default actions with no planning time associated.

The latter serves as a baseline indicator of the quality of the default policy πd used.

5.3.1 Configuration

There are a total of 4 application cases examined in these simulations: 2 environment maps, using 1

sensor’s availability map with 2 different initial states. A total of 100 simulations are performed for each

application case.

Sensors: The vehicle model used is the one defined in Section 3.2, considering only two onboard

sensors: INS, available all the time, and GPS, available according to the probability maps.

Environments: Two benchmarks are selected:

WallBaffle: map containing two wall as obstacles (Figure 4.2a), with a 2meter precision on GPS

availability (Figure 4.2c);

CubeBaffle: map containing two cubes as obstacles (Figure 4.2e), with a 2meter precision on

GPS availability (Figure 4.2g);

with a grid size of 100× 100× 20 cells, where each grid cell has the size of 2m× 2m× 2m.

Initial conditions: Similar to the initial conditions described in the simulations performed for parameter

tuning (Section 4.2).

Actions: Similar to the actions considered in the simulations performed for parameter tuning (Section

4.2). Parameters in the GNC model are configured as to ensure an action duration of 4 seconds.

Parameters: Table 5.1 summarises the parameters used in these simulations. For the AMPLE frame-

work, three different bootstrap durations are examined ∆bootstrap = 5, 10, 15s for each application case.

The online POMCP-GO algorithm also requires the specification of extra parameters: the maximum

depth is D = 10, the number of particles for the belief state representation is set at M = 300, the

collision cost is fixed at K = 450 and the timeout given to the planning phase for the classical online

configuration is tested using timeout = 2, 3, 4s for each application case.

Furthermore, two selection policies are used for both configurations of POMCP-GO (classical online

paradigm and the integration in AMPLE): the UCB1 coefficient that showed the best results in each

application case (denoted with ∗) and the EBC with the same setup as the one used in the simulations

for parameter tuning. The back-propagation strategy applied is the Classical POMCP.

Default policy πd: This policy consists on the result obtained when applying the Dijkstra’s algorithm to

the obstacle grid map (see Section 4.1.1).

Metrics: To evaluate the performance of the algorithm, the following metrics are examined:

– The total mission duration, from the moment the problem is loaded until a terminal state is

reached (either a goal or a collision);

– The total planning time during the mission, taking into consideration the initial bootstrap time in

the case of AMPLE;
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POMCP-GO POMCP-GO driven in AMPLE

Paradigm Planning and execution Concurrent planning and
phases interleaved execution phases

Planning duration (timeout) 2s, 3s, 4s 4s (action duration)

Initial bootstrap (∆bootstrap) − 5s, 10s, 15s

Action selection strategy UCB1∗ and EBC UCB1∗ and EBC

Back-propagation strategy Classical POMCP Classical POMCP

Maximum depth D 10 10

Collision cost 450 450

Number of particles to
represent belief state 300 300

Table 5.1: Parameters used for the online simulations.

– The success rate, which is the ratio between the number of simulations that ended up in the goal

state and the total number of simulations performed (in %).

– The default actions rate, which is the ratio between the number of default actions, computed from

the default policy πd, used during the missions and the total number of actions performed (in %).

5.3.2 Results

Figures 5.2, 5.3, 5.4 and 5.5 depict the results obtained for the WallBaffle map. Figures 5.2 and 5.3

are relative to the simulations with the best UCB1 coefficient and the EBC, respectively, for the initial

position (10, 25, 5)m, while Figures 5.4 and 5.5 represent the simulations with the best UCB1 coefficient

and the EBC, respectively, for the initial position (50, 25, 5)m.
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Figure 5.2: WallBaffle map with initial position in (10, 25, 5)m, using UCB∗.
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Figure 5.3: WallBaffle map with initial position in (10, 25, 5)m, using EBC.
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Figure 5.4: WallBaffle map with initial position in (50, 25, 5)m, using UCB∗.

Figures 5.6, 5.7, 5.8 and 5.9 depict the results obtained for the CubeBaffle map. Figures 5.6 and

5.7 are relative to the simulations with the best UCB1 coefficient and the EBC, respectively, for the initial

position (35, 20, 5)m, while Figures 5.8 and 5.9 represent the simulations with the best UCB1 coefficient

and the EBC, respectively, for the initial position (65, 20, 5)m.

Regarding the default policy πd, it is possible to observe that the baseline heuristic policy computed

with the Dijkstra algorithm provides satisfying initial solutions, with no planning time associated, for

most of the application cases, except for the WallBaffle map with starting position in (50, 25, 5)m, for

which the success rate registered was 53%. Moreover, this heuristic policy affects the performance of

both configurations being tested, as they achieve better success rates when the heuristic policy itself

performs better. Nevertheless, it can be noticed that the number of default actions used during the
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Figure 5.5: WallBaffle map with initial position in (50, 25, 5)m, using EBC.
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Figure 5.6: CubeBaffle map with initial position in (35, 20, 5)m, using UCB∗.

missions is quite low, meaning that the planner was able to compute policies for the corresponding belief

states.

As expected, increasing the time budget in the POMCP-GO algorithm leads to better success rates,

since providing more time for planning allows the algorithm to search deeper in the tree and thus to

improve the quality of the policy being optimized. Furthermore, the improvement on the quality of the

results achieved when going from timeout = 2s to timeout = 4s lies in most cases between 1% and

3%, meaning that those 2 seconds of additional planning time allows the algorithm to further exploit the

best moves and their values. On the other hand, such 2 extra seconds increases significantly the total

duration of the mission, by more than 35% in most cases.

Similarly in the AMPLE framework, increasing the initial bootstrap time improves the performance of
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Figure 5.7: CubeBaffle map with initial position in (35, 20, 5)m, using EBC.
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Figure 5.8: CubeBaffle map with initial position in (65, 20, 5)m, using UCB∗.

the algorithm. This happens because providing more time to the planner to optimize the action for the

first belief state also allows it to explore more thoroughly the state space near the root, improving the

policy for the initial belief states. However, the success rates achieved by AMPLE are in general worse

than when using POMCP-GO in the classical online paradigm, except when comparing POMCP-GO

with a timeout of 2s and AMPLE with bootstrap of ∆bootstrap = 15s. This stems from three factors.

Firstly, in the POMCP-GO the time budget is used entirely to compute the next optimized action, with-

out limiting the tree to search in a specific subtree. On the other hand, the AMPLE framework distributes

unevenly the planning time over the expected future effects of the current action being executed. Indeed,

this planning time given is proportional to the probability of such effect/observation being the one to ac-

tually be perceived after the action execution, i.e. is proportional to Pr(s′v|b, a), and consequently during
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Figure 5.9: CubeBaffle map with initial position in (65, 20, 5)m, using EBC.

such duration the tree is limited to search in the subtree correspondent to that effect. Furthermore,

the MOMDP model is not declarative on these probabilities and so the algorithm has to learn them as

the mission progresses (Equation 5.1). As a consequence, it becomes fairly possible for the planner to

assign the lowest planning time to the effect that was posteriorly perceived from the environment. One

way to solve this problem is to explore a parallelization of the planning requests for all the possible future

effects, creating parallel trees for each effect and assign the same planning time for all, as opposed to

the current sequentialization of planning requests being used.

Secondly, the POMCP-GO is an online algorithm with anytime properties. However, it does not

account for its own computation time during the optimization process and, consequently, if the timeout

is reached before the end of a trial, the algorithm will only provide an action after the back-propagation

step of said trial is performed, allowing to further improve the quality of the policy. Whereas in the

AMPLE framework, the algorithm is strictly anytime, meaning it does not wait for the end of the trial and

automatically provides the action already present in the backup policy πsr.

Thirdly, while the POMCP-GO is implemented in Python, the AMPLE framework runs in ROS, having

the planning thread, the execution thread and the planner in three distinct nodes connected through

services. Planning requests sent by the execution thread are first managed by the planning thread

and are posteriorly sent to the planner through these services. This process causes them to naturally

inherent a lag, meaning the actual planning time budget given to an effect is lower than the one included

in the planning request. This can have as a consequence that no actual planning is done for that effect,

leading to a default action being used instead.

Apart from the loss of optimality found in AMPLE, this approach allows the reduction of the overall

time of the mission, exploiting action execution time to anticipate and plan future states.

Regarding the action selection strategies used, there is no clear distinction as to which performs

best, although it is expected that the performance of both strategies is enhanced if combined with the
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MinPOMCP back-propagation strategy, as seen in Chapter 4. Nevertheless, the EBC selection strat-

egy, being dynamically tuned, does not require the exhaustive search that is associated with the UCB1

formula and achieves approximately the same quality results for both application cases, making it more

suited to an online planning configuration. Thus its implementation is considered successful and further

work on its scalability to other planning domains would result in promising developments.

5.4 Application in Gazebo

As the AMPLE framework using the POMCP-GO algorithm is implemented in ROS, it makes possible

testing it in a robot simulator called Gazebo. In order to do so, the hector quadrotor package [77] is used

to simulate a quadrotor UAV system in an environment that replicates the obstacle maps used throughout

this dissertation.

Figures 5.10 and 5.11 represent 5 trajectories planned for the WallBaffle map and the CubeBaffle

map, respectively. For each map, a GPS availability map of 2meter precision is used (Figures 4.2c and

4.2g) and the same 2 distinct initial states used in the previous simulations are considered. A bootstrap

duration of ∆bootstrap = 15s is used for AMPLE. Regarding the POMCP-GO algorithm, the EBC is

applied in the action selection strategy and Classical POMCP is the back-propagation strategy used.

The two red spheres represent the initial and the goal positions, whose size relies approximately on

the covariance error considered for each position, and the light grey structures illustrated in the graphs

constitute the obstacles for each map. More specifically, in Figure 5.10 the obstacles include 2 walls,

while in Figure 5.11 these become 2 cubes. Furthermore, projections of the trajectories executed are

illustrated over the three planes xy, xz and yz in a lighter shade.

To be noted that the dynamics of the quadrotor UAV system were not modified to fit the vehicle motion

model considered in the GNC model, as such process would lie outside the scope of this dissertation.

For this reason, these symbolic simulations are not as realistic as they could have been if the real

dynamic model had been used.

WallBaffle map

Regarding the trajectories performed in the WallBaffle map in the initial position (10, 25, 5)m (Figure

5.10b), the UAV avoids the wall obstacles by flying over and then descending again. Getting high allows

it to have a greater probability of GPS availability and thus reduce its uncertainty and the risk of collision

(see Figure 4.2c). In this case, bypassing obstacles does not avoid areas where the GPS has a low

probability of being available and the flight time may be longer.

On the other hand, with an initial position in (50, 25, 5)m, the UAV chooses to go between the obsta-

cles in order to minimize the flight time, instead of flying over them. This choice leads the UAV through

areas where the availability of the GPS is less likely, causing the navigation solution chosen to be pre-

dominantly INS. This has an impact on the width of the simulated trajectory, which reflects the execution

error inherent to the INS. Particularly in trajectory 3 (in Orange) of Figure 5.10c, it can be observed an

initial safe policy with an intention of rising to fly over the obstacles, but then the observation received
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led it to descend again and to fly between the two obstacles. This can be explained on the basis of

online planning. In POMCP-GO, similarly to POMCP, there is no guarantee of optimality. The optimal

policy would fly over obstacles, but the most promising one, following the heuristic initial value, is to pass

between them, yielding a lower flight time. Thus online planning algorithms would have to optimize a lot

to be able to change this policy.

(a) Environment in Gazebo.

0
10 20 30 40 50 60 70 80 90

1000

20

40

60

80

100

0

5

10

15

x (m)

y (m)

z
(m

)

Trajectory 1
Trajectory 2
Trajectory 3
Trajectory 4
Trajectory 5

(b) Initial position at (10, 25, 5)m and goal position at
(50, 80, 5)m.

0
10 20 30 40 50 60 70 80 90

1000

20

40

60

80

100

0

5

10

15

x (m)

y (m)

z
(m

)

Trajectory 1
Trajectory 2
Trajectory 3
Trajectory 4
Trajectory 5

(c) Initial position at (50, 25, 5)m and goal position at
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Figure 5.10: Five trajectories executed in the WallBaffle map for two distinct initial positions, using EBC
in the action selection strategy in POMCP-GO and a bootstrap time of 15s for AMPLE. Projections of the
trajectories are illustrated over the three planes xy, xz and yz.

CubeBaffle map

Analysing the trajectories performed in the CubeBaffle map for both initial positions, there is a clear

preference by the UAV to bypass the obstacles on the outside instead of flying between them, as in

the latter option the probability of GPS availability is lower (see Figure 4.2g), yielding a higher risk of

collision. Furthermore, no trajectory opted to fly over the obstacles, which would be the safest policy,

but would also achieve a higher flight time. Particularly in trajectories 1 (in Blue) and 4 (in Magenta) for

an initial position at (65, 20, 5)m, there is a clear distortion in the executed path, unseen in the remaining

trajectories, resulting from the uncertainty on the GPS availability and consequent choice of INS as a

navigation solution in the area between the obstacles.
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(a) Environment in Gazebo.
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(b) Initial position at (35, 20, 5)m and goal position at
(50, 80, 5)m.
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(c) Initial position at (65, 20, 5)m and goal position at
(50, 80, 5)m.

Figure 5.11: Five trajectories executed in the CubeBaffle map for two distinct initial positions, using EBC
in the action selection strategy in POMCP-GO and a bootstrap time of 15s for AMPLE. Projections of the
trajectories are illustrated over the three planes xy, xz and yz.
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Chapter 6

Conclusions

This chapter makes an overview of the fulfilment of this thesis objectives, previously stated in Chapter

1. Future work that could improve or complement this dissertation is proposed in Section 6.2.

Building upon previous work in the scope of the NavPlan project, this dissertation deals with the

problem of planning safe and efficient trajectories towards a goal under uncertainty, taking into account

the availability of sensors that depend on the environment and, with that, deciding on the navigation and

guidance strategy to be used by the UAV. Given the specificity of the planning problem, a GNC transition

module was integrated in the planning algorithm to propagate the influence of sensor availability on the

trajectory being executed.

The formulation of the planning problem as a MOMDP was addressed in Chapter 3, along with a

description of the GNC model to be incorporated in the planning algorithm. The resulting MOMDP

problem comprised continuous hidden states and discrete fully observable states, which required an

expensive computational effort to update the belief states.

6.1 Achievements

Over the developed work addressed in this dissertation, the main objective was to apply a generic

planning-while-executing framework to an online planning algorithm able to solve the planning problem

under consideration. In order to accomplish this goal, further secondary objectives were fulfilled.

After recalling why the POMCP algorithm was chosen to address this MOMDP planning problem,

Chapter 4 was dedicated to the first contribution of this dissertation: a parameter tuning stage for the

planning algorithm. As the final aim was to perform online planning, extensive parameter tuning was

not a good option. Therefore, adaptive coefficients were proposed to be integrated in the action se-

lection step. Because an offline configuration of the planner allowed for a better understanding of its

performance and properties, four distinct selection strategies (UCB1, EBC, DWD and UCB√·) and two

back-propagation approaches (Classical POMCP and MinPOMCP) were combined and tested in an of-

fline goal-oriented variant of POMCP (POMCP-GO). Comparisons between these approaches allowed

to conclude that while DWD and UCB√· did not show a consistent behaviour over the different scenarios,
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the EBC results always lied within the values obtained for the fixed coefficients in UCB1, never reaching

the values of the best fixed coefficient but still yielding satisfying results for all application cases, thus

making it more suited to an online planning configuration. Therefore, a compromise must be made be-

tween the desired quality of the results and the time one is willing to spend on the exhaustive search

for the optimal value as done in UCB1. Furthermore, the implementation of the back-propagation Min-

POMCP generally improved the performance for both UCB1 and EBC selection strategies, accelerating

the convergence of the value function as expected, following the work of [70].

Chapter 5 was dedicated to the online approach. Firstly, the POMCP-GO algorithm was changed

to an online configuration, with the necessary modifications. Then a generic framework named AM-

PLE, that allows concurrent planning and execution phases, was described, implemented in ROS, and

used to drive the POMCP-GO algorithm. To compare the performance of AMPLE and POMCP-GO

combined, online simulations were performed with the POMCP-GO algorithm implemented using the

classical paradigm of planning and execution phases interleaved, as well as simulations with an algo-

rithm that consecutively applied default actions. Results showed that although the AMPLE framework

did not achieve in general success rates as good as the POMCP-GO algorithm, the overall time of the

mission was reduced and actions were ensured to be provided strictly anytime. A final implementation

of the resulting framework in a robot simulator, Gazebo, was successfully achieved.

6.2 Future Work

Even though the proposed objectives were achieved, further studies could improve or complement

this dissertation. Therefore, the following topics are suggested as future work:

– A study over the scalability of the EBC coefficient to other POMDP planning problems could be

interesting for further characterization of this approach;

– Test the proposed combination of the AMPLE framework and the POMCP-GO algorithm with the

MinPOMCP back-propagation strategy, which is expected to achieve better results than the ones

obtained in Section 5.3;

– Test the proposed combination of the AMPLE framework and the POMCP-GO algorithm in more

complex and realistic scenarios with different dynamics that truly reflect an urban area;

– Explore a parallelization of planning requests in the AMPLE framework, rather than the current

sequentialization strategy being used, in order to provide the same planning duration for each

request;

– Create the dynamic model of the autonomous UAV that is going to be used in test flights in the

Gazebo simulation, in order to obtain simulation results as realistic as possible.
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Appendix A

Additional results in parameter tuning

stage

A.1 Comparison between EBC and the extensive search using UCB1

The following Figures A.1, A.2, A.3 and A.4 depict the results of the metrics V (b0) optimized and

V (b0) simulated for the extensive search process using the UCB1 formula, along with the results of the

EBC for comparison, for the eight case studies considered. The data is organized in the form of bars,

being the tip of the filled bar the average, while the extremes of the vertical lines represent the standard

deviation.

Comparing the UCB1 fixed coefficients and the EBC results, one can verify that both V (b0) optimized

and simulated computed for EBC lie within the values obtained for the fixed coefficients for every case

study, although never reaching the values of the best fixed coefficient. Therefore, a compromise must be

made between the desired quality of the results and the time one is willing to spend on the exhaustive

search for the optimal coefficient value before online planning.
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Figure A.1: WallBaffle map with initial position in (10, 25, 5)m.
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Figure A.2: WallBaffle map with initial position in (50, 25, 5)m.

U
C

B(
0.

01
)

U
C

B(
0.

05
)

U
C

B(
0.

1)
U

C
B(

0.
5)

U
C

B(
1)

U
C

B(
5)

U
C

B(
10

)

EB
C

70

75

80

85

V
(b

0
)

Optimized
Executed

(a) 1m precision on GPS availability

U
C

B(
0.

01
)

U
C

B(
0.

05
)

U
C

B(
0.

1)
U

C
B(

0.
5)

U
C

B(
1)

U
C

B(
5)

U
C

B(
10

)

EB
C

70

75

80

85

V
(b

0
)

Optimized
Executed

(b) 2m precision on GPS availability

Figure A.3: CubeBaffle map with initial position in (35, 20, 5)m.
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Figure A.4: CubeBaffle map with initial position in (65, 20, 5)m.
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A.2 Results during the optimization process

In the following figures, the strategies among the ones described in Section 4.2 that achieved the best

and the worst overall performances in the simulations regarding the parameter tuning are presented for

each of the eight case studies considered. The first column graphs represent the evolution of the value of

the initial belief state V (b0) optimized and executed along the trials. The data is organized as the average

being the mark, while the extremes of the vertical lines represent the standard deviation. Additionally,

the second and third columns are plots of 1000 trajectories simulated at the end of the 50000 trials in the

xy plane and yz plane, respectively.
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Figure A.5: Best (UCB√
(·) − up) and worst (EBC − down) strategies for WallBaffle map with initial

position in (10, 25, 5)m and 10m precision on GPS availability.
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Figure A.6: Best (EBCMP − up) and worst (EBC− down) strategies for WallBaffle map with initial position
in (50, 25, 5)m and 10m precision on GPS availability.
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Figure A.7: Best (UCBMP − up) and worst (EBC− down) strategies for WallBaffle map with initial position
in (10, 25, 5)m and 2m precision on GPS availability.
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Figure A.8: Best (UCBMP − up) and worst (DWD − down) strategies for WallBaffle map with initial
position in (50, 25, 5)m and 2m precision on GPS availability.
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Figure A.9: Best (DWD − up) and worst (EBC − down) strategies for CubeBaffle map with initial position
in (35, 20, 5)m and 2m precision on GPS availability.
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Figure A.10: Best (EBCMP − up) and worst (DWD − down) strategies for CubeBaffle map with initial
position in (65, 20, 5)m and 2m precision on GPS availability.
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Figure A.11: Best (DWD − up) and worst (UCB√
(·) − down) strategies for CubeBaffle map with initial

position in (35, 20, 5)m and 1m precision on GPS availability.
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Figure A.12: Best (EBCMP − up) and worst (DWD − down) strategies for CubeBaffle map with initial
position in (65, 20, 5)m and 1m precision on GPS availability.
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