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Abstract

This work presents a web-based machine learning tool to facilitate biologists work of building
species distribution models. The DeepData web-based tool takes into account the way biologists deal

with species distribution models nowadays.

Biologists mostly use probabilistic algorithms, such as

maximum entropy, generalized linear models and generalized addictive models. We propose the use
of machine learning algorithms, such as classification and regression trees, random forest and support
vector machines. Other steps involved in the species distribution models, such as data preparation and
model evaluation, are also discussed. A concrete explanation of the use of the web-based tool is made,
as well as the details of implementation and evaluation.
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1. Introduction

The world’s oceans face increasing pressure from
human influences. Marine ecosystems are uti-
lized by several economic sectors, namely commer-
cial and recreational fishing, tourism and passen-
ger transportation. Species are vulnerable to im-
pacts from all these activities due to competition
with fisheries, habitat degradation and disturbance
[16, 17).

Given its high levels of biodiversity and wealth of
resources, spatial planning is recognized as an es-
sential tool for effective management of all human
activities occurring in the deep sea and to ensure a
sustainable exploitation of its resources [11]. The
success of spatial planning and the design of pro-
tected areas rely on a good understanding of the
spatial distribution patterns of species. Through
research and monitoring of species, datasets are cre-
ated in order to help understanding and managing
ecosystems by the characterization of the species
habitats. With a reliable dataset consisting of loca-
tions where species have been observed, a pattern
of the suitable conditions of each species can be in-
ferred. As a result, one can try to infer where each
species occurs and does not occur without having
to sample the whole ocean. This information can
then be used to infer the status of the species. Yet,
extensive sampling programs for the deep-sea are
costly and technically challenging, in comparison to
shallow inshore waters, where spatial planning is a
much easier task.

Species distribution models (SDMs) explore these
relations between environmental and species, to

predict the distribution of species across geographic
space. As technology evolves, new methods appear
for biologists to model species’ distributions.

In order to to help biologists with these new ap-
proaches, and as a way to facilitate their use, our
aim is to develop a web-based machine learning
tool. Nowadays, biologists have to program the
species distribution models, which can sometimes
be hard as it is not their area of expertise.

2. Background

Species distributions models (SDMs) assume that
species distributions depend on the physical envi-
ronment. The concept that species distribution de-
pends on the environment is known as an ecologi-
cal niche. Therefore, this area of study is also re-
ferred to as ecological niche models. An ecological
niche describes how an organism or population re-
sponds to the distribution of resources and competi-
tors, and how in turn it alters those same factors.
According to the ecological niche theory, species are
constrained by their tolerance to environmental fac-
tors [15].

SDMs try to understand this ecological niche so
that it is possible to explain the environment that
each species depends on. By projecting this envi-
ronment into geographic space, it is possible to es-
timate species’ geographic distribution, predicting
where the species could survive. Species distribu-
tion models are a very useful mechanism to monitor
the variations in habitat suitability of species, im-
pacts of climate change and studies of species de-
limitation [29]. To do this, SDMs use species oc-



currence data and environmental data. By interpo-
lating both datasets, SDM finds a pattern that de-
scribes the ecological niche. Model usefulness and
robustness is influenced by the selection of variables
and modeling methods and how the relation be-
tween environmental and geographic factors is han-
dled [10]. The SDM creation is composed of 3 main
steps: (i) data pre-processing, (ii) model selection
and training and (iii) model evaluation.

The SDM creation requires that each step is per-
formed multiple times as evaluation is done and
knowledge is gained, leading to a better fit of the
SDM. There is no known right way to create a SDM,
only main steps that serve as guidelines.

2.1. Data pre-processing

SDMs relate occurrence’s data with environmental
data that is thought to determine the species dis-
tribution. Therefore, SDMs assume that the occur-
rence’s data covers the species full ecological range.
One of the problems of SDMs is having enough oc-
currence’s records, as well as accurate and relevant
environmental variables at a sufficiently high spatial
resolution.

Regarding occurrence data, the coordinates of
the location data need to be accurate so that the
species/environment association is reliable. Even
taking into account this precaution, occurrence’s
data might be biased towards the accessibility of
sampling locations. Data may be lacking for remote
areas.

There are two types of occurrences data: presence
only and presence/absence. Presence only refers to
only having the location of where the species are
present. Presence/absence refers to when we have
the location of both where the species are present
and are absent. When dealing with absence, we
have to be careful because they can mean that an
habitat is unsuitable or it is suitable but unoccupied
(maybe because it is inaccessible). This type of data
is also tricky to get, because the fact that a species is
not detected in a location at a moment in time, does
not mean it does not exist there. When absence
data is not available, it can be inferred based on
the presence data, generating pseudo-absence.

Environmental data need to be in grid type for-
mat, where each environmental variable is divided
into grid cells representing its value for a location
at some resolution. To predict the values of the un-
known cells, it is used spatial interpolation, which
is possible due to spatial autocorrelation '. Spatial
autocorrelation states that the closer together two
locations are, the more similar are their measures
of species occurrences [4, 7]. This similarity is due
to biotic processes, such as reproduction, predator-

ISpatial autocorrelation can be assessed through Moran's
I measure [22].

prey interactions, food availability, etc. This simi-
larity phenomenon leads to dependence among sam-
ples decaying with distance, which violates the as-
sumption of independence of data. Also leads to
underestimation of variance and overestimation of
significance of effects.

The success of the prevision depends mostly on
the quality of the information used, both of species
and environment, because it cannot be biased and it
is the base of the learning process. Therefore, pre-
processing is the part that takes the longest, and is
done various times along the whole process.

2.2. Model selection
Models for prediction need to balance specific fit to
the training data against the generality that enables
reliable prediction to new cases.

The considered statistical algorithms are:

e Generalized Linear Models (GLMs) [g],
e Generalized Addictive Models (GAMs) [13],
e Maximum Entropy (MaxEnt) [28].

Moreover, the considered machine learning algo-
rithms are:

e Random Forests (RFs) [3],
e Support Vector Machine (SVM) [5],
o Artificial Neural Network (ANN) [25].

While MaxEnt is a presence-only model, the re-
maining ones are presence-absence models.

2.3. Model evaluation

Assessing the model performance [26, 12, 2] helps
determining its suitability and the aspects that need
improvement. Without a relevant accuracy assess-
ment, the model has no value. It also allows com-
paring different models.

The response of the model can be either quanti-
tative (continuous responses) or qualitative (cate-
gorical responses), requiring different analysis.

Regarding qualitative response variables, perfor-
mance can be assessed by constructing a confusion
matrix. From the confusion matrix various mea-
sures of performance can be derived such as:

e Accuracy,

e Sensitivity,

e Specificity,

e Kappa statistic.

The accuracy measures the proportion of cor-
rectly predicted instances. The problem with ac-
curacy is that it is prevalence sensitive. Other mea-
sures, such as sensitivity, which measures the pro-
portion of observed presences that are predicted as



such, and specificity, which measures the propor-
tion of observed absences that are predicted as such,
are independent of prevalence. The Kappa statistic
assesses the extent to which models predict occur-
rence at a rate higher than expected by chance.

A disadvantage of these metrics is that they
are threshold dependent. By using categorical re-
sponses, a threshold must be defined to classify an
instance as one class or another.

A prevalence and threshold independent measure
is the relative operating characteristic (ROC) curve.
The ROC curve is a graphical measure that de-
scribes the compromise made between sensitivity
and false positive as the decision threshold varies.
False positive measures the proportion of observed
absences that are predicted as present. By know-
ing the number of observed presences, if we have
the sensitivity measure we know the number of cor-
rectly predicted presences and we infer the num-
ber of absences that were incorrectly predicted as
presences. Similarly, by knowing the number of ob-
served absences, if we have the false positive mea-
sure we know number of incorrectly predicted pres-
ences and we deduct the number of correctly pre-
dicted absences. Therefore, the ROC Curve de-
scribes the whole model.

The Area Under the ROC Curve (AUC) is used
as a global metric predicting the overall discrimi-
natory ability of the model. The AUC is the prob-
ability that a randomly chosen presence site will
be ranked above a randomly chosen absence site.
When no absence is available, such as with Max-
Ent, then the AUC is the probability that a ran-
domly chosen presence site will be ranked above a
randomly chosen background site.

Regarding quantitative response variables, the er-
ror of the model can be evaluated by:

e Mean absolute error (MAE),
e Mean square error (MSE),
e Root mean square error (RMSE).

MAE measures the average magnitude of the er-
ror, without considering their distance. MSE and
RMSE give more weight to large error, because of
the square. The fact that RMSE uses the root
makes it easier to interpret its value.

Error assessment can also be done visually by:

e Residual vs fitted plot,

e Partial residuals plot,

Quantile-quantile plot,

Scale location plot,

Residual leverage plot,

e Partial dependence plots.

A residual is the difference between the observed
and the predicted. If the residual is not random,
then it means that something is missing in the
model. This plot tests the assumptions of whether
the relationship between your variables is linear and
whether there is equal variance along the regres-
sion line. Partial residuals represent the residual of
a variable in regards to the occurrences after sub-
tracting the contribution of the other variables.

The quantile-quantile plots (QQplots), which lets
us assess if the data follows some theoretical distri-
bution. Scale location plots are used to evaluate
spatial correlation. These plots show if residuals
are spread equally along the ranges of predictors.
Residual leverage plots are used to asses influential
data points, i.e points whose inclusion or exclusion
produce different results on the model. Finally, par-
tial dependence plots allow the visualization of the
relationship between the occurrences and each envi-
ronmental variable, while accounting for the effect
of the other variables.

A way to measure how much unexplained vari-
ance there is in our model is by using deviance.
Since deviance on its own does not say much, we
use it when comparing a model that perfectly fits
the data and the model that we are testing. Then
we evaluate if the reduction on deviance by adding
or removing variables is significant.

3. Implementation

DeepData’s architecture is described in Magda Re-
sende’s thesis [30]. This work introduced some
changes which are explained in this section.

3.1. Tool architecture
Data from World Ocean Atlas 2013, European Ma-
rine Observation and Data Network, Ocean Bio-
geographic Information System and World Regis-
ter of Marine Species datasets, concerning the ge-
ographic space of the Azores EZZ, is already in-
cluded in DeepData as the environmental variables
are commonly used to model species distribution
models and as a way to allow the user to experiment
DeepData without having to insert data. Concern-
ing World Register of Marine Species dataset, it is
not used to model the species distribution model
but to give information about the taxonomy of the
specie that is being modelled.

The existing database is composed of the follow-
ing tables:

e Condicoes_ambientais_quarto_grau, which
stores the environmental variables (tempera-
ture, salinity, silicate, nitrate, phosphate, den-
sity, conductivity, dissolved oxygen, apparent
oxygen saturation and apparent oxygen utiliza-
tion) associated to its latitude, longitude,



depth, source and decade.

e Ocorre_quarto_grau, which stores infor-
mation about the species’ occurrences. It
associates the species name from table
Taxonomia Espécie with its latitude,
longitude, depth, source, decade, year and
month.

e Taxonomia Reino, which stores the species’
kingdom.

e Taxonomia Filo, which associated the species
kingdom with its phylum.

e Taxonomia_Classe, which associated the

species phylum with its class.

e Taxonomia Ordem, which associated the species
class with its order.

e Taxonomia Famimilia, which associated the
species order with its family.

e Taxonomia_Género, which associated the

species family with its genus.

e Taxonomia Espécie, which associated the
species genus with its species.

of the published work on SDMs used the R soft-
ware. Ecologists tend to use R while computer en-
gineers tend to use python, because R has been es-
tablished for a long time and includes a broader
range of methods employed in ecological analysis
as well as numerous routines for data exploration
[20]. Python has the advantage that it is better for
deployment, and therefore it is used to implement
other parts of the application, including fetching the
data from the database needed for computing the
SDM.

DeepData allows the user to select the inputs of
the main categories:

e Species,

e Environmental variables,

Model parameters,

Pre-processing parameters,

Evaluation parameters.

The species can be selected through the taxon-
omy hierarchy, or by directly selecting the species
name. The user can also choose either to generate
pseudo-absences or not.

To generate pseudo-absences, we start by classi-
fying the background as suitable or unsuitable ac-
cording to the environmental conditions of the pres-

To table table Condicoes ambientais quarto-grawy e localities. From the unsuitable background we

were added the primary keys resx and resy, mean-
ing the resolution of the latitude and longitude,
respectively. This change was made to prevent
the situation when data of a variable is uploaded
with different resolutions and have the same
coordinates. For example, if a variable is uploaded
with a resolution of 1° and then with a resolution
of 0.5°, both starting at the same coordinates, e.g.
(—34°,32°), then all the coordinates of the first
upload belong to the second upload as well.

Changes to the table Ocorre_quarto_grau were
also made. This table stores information about
the species’ occurrences. The primary keys
latitude, longitude, profundidade and fonte
no longer refer to the primary keys latitude,
longitude, profundidade and fonte from the
table Condicoes_ambientais_quarto_grau. This
change allows for the existence of species data that
do not necessarily match the environmental data.

A new table Indice was created, to store
the characteristics of each variable, namely name,
decade, resx and resy, to make DeepData load
faster.

3.2. Tool implementation

For the implementation of the species distribution
models, the software used was R. Although python
is also commonly used for machine learning, most

can:
e Define a minimum distance to the presences.
e Select the pseudo-absences at random.

e Select the pseudo-absences with k-means clus-
tering, i.e. taking into account the distance to
between each pseudo-absence.

For the environmental variables, the user can se-
lect oceanic variables, which can have different reso-
lutions, and terrain variables. DeepData also allows
the selection of various oceanic and terrain vari-
ables, and the definition of the oceanic zone. The
oceanic zone can be:

e QOcean surface, meaning that only 0 to 5 meters
of depth is considered.

e Ocean floor, meaning that only 5500 to 5400
meters of depth is considered.

e Average depth of the species occurrence, mean-
ing depth values are prioritized by number of
occurrences of the species.

The interval of the ocean floor is much larger
than the interval of the ocean surface, since spatial
variation in environmental variables decreases with



depth [6]. There is also the possibility to calculate
the Morans’l correlation coefficient. Given the en-
vironmental data, Morans’l evaluates whether the
pattern expressed is clustered, dispersed or random.
A clustered spatial pattern means most of the val-
ues are concentrated to nearby locations or adja-
cent together. A random spatial pattern means the
distribution of the values is homogeneous or inde-
pendent. A dispersed spatial pattern means that
each value from its neighboring values is located far
from each other in a uniformed manner.

DeepData also measures the collinearity between
variables. Collinearity refers to the existence of
correlated environmental variables, which can lead
to biased models due to inflated variances. Small
changes in the data set can strongly affect results
and so the SDM tends to be unstable (high vari-
ance) and the relative importance of the variables
is difficult to assess [9]. Only checking the collinear-
ity between pairs of variables can be limiting, so the
variance inflation factor (VIF) quantifies the extent
of correlation between one variable and the other
remaining variables. For variance inflation factors
larger than 3, which means that the standard er-
ror is 1.7 times larger than if the variables were not
correlated, the modelling process stops and a pop-
up appears asking the user whether he/she wants
to remove any variable or not. If the user chooses
to maintain all the variables then the collinearity is
not verified again, while if the user chooses to re-
move some, then the collinearity is verified for the
remaining.

DeepData allows the specification of the model
parameters.

In order to compute generalized addictive models,
DeepData allows the specification of the family of
the distribution, which can be:

e Binomial, in the case of presence-absence data,
which is used as default.

e Poisson, in the case of count data.

e Gaussian, in the case of count data with a nor-
mal distribution.

It also allows the specification of the link function,
in accordance with the family. Smoothness of fit
of each variable can also be controlled, differing on
the basis used to represent the smooth function.
Possible splines are:

e Thin plate spline, which is used as default,
e Duchon spline,

e Cubic spline,

Spline on the sphere,

P-splines,

e Random effects,
e No smoothing.

For computing MaxEnt, DeepData allows upload-
ing a background file, which must be composed
of the latitude and longitude. If no file is given,
DeepData randomly selects 10000 points of the co-
ordinate space to be used as background.

For computing random forests, DeepData allows
tuning the following parameters:

e Number of trees to grow. This should not be
set to a number too small, to ensure that every
input row gets predicted at least a few times.
Default is set to 500.

e Minimum size of the terminal nodes. Set-
ting this parameter to a large number causes
smaller trees to be grown (and thus take less
time). The default values are 1 for classifica-
tion and 5 for regression.

e Maximum number of terminal nodes that the
trees can have. If not given, trees are grown
as much as possible (subject to limits by node
size).

For computing neural networks, the structure can
be defined by first indicating the number of layers,
which corresponds to the sum of the input layer,
hidden layers and output layers. Afterwards, the
number of perceptrons for each layer is defined.
Note that neural networks do not have any default
structure.

For computing support vector machines, the ker-
nel can be defined as:

e Linear, which is the default value,
e Polynomial,

e Radial basis,

e Sigmoid.

For the modelling phase, the application allows
cross-validation to be performed. DeepData allows
the user to select one of the following methods:

e Holdout, which separates the dataset into train
set and test set according to the fraction, being
the train set larger than the test set. Training
is performed as many times as there are test
partitions.

e Leave one out, which separates the data in
three sections and at each repetition uses two
for training and one for testing.

e K-fold, which separates the data in k folds and
trains the model over the k number of combi-
nations.



e Years separation, which separates the data ac-
cording to the years selected for train and test,
with the constraint that each year can only be
either train or test.

Regarding the model evaluation, the user has to
select the metric to compute the binary map thresh-
old and the confusion matrix. DeepData allows this
threshold to be defined by:

e SES, which is the threshold value or range
in values that maximizes sensitivity equal to
specificity.

e Kappa, which is the threshold value or range
in values with the maximum Kappa statistic.

e TSS, which is the threshold value or range in
values that maximizes sensitivity plus speci-
ficity.

e LW, which is the minimum prediction proba-
bility for the occurrence (presence) records.

e ROC, which is the threshold value or range in
values where the ROC curve is closest to point
(0,1).

e CCR, which is the threshold value or range in
values with the maximum number of presence
and absence records correctly identified.

e No omission, which is the threshold value or
range in values with no omission error, mean-
ing no false positives (predicting absences in-
correctly).

e Prevalence, which is the threshold value or
range in values with the modeled prevalence
closest to the observed prevalence.

While the first three metrics (SES, Kappa and
TSS) can be applied to all models, the last metrics
(No Omission and Prevalence) can only be applied
to MaxEnt. The remaining metrics (LW, ROC and
CRR) can be applied to all models except MaxEnt,
i.e. GAM, GLM, RF, ANN and SVM.

If more than one model is selected, then an en-
semble model is computed additionally to the mod-
els selected. Ensemble models [31] use multiple
learning models to obtain better predictive perfor-
mance than the performance of a single model. A
single model can have biases and inaccuracies that
affect the reliability. By combining the decisions of
different models, these effects can be reduced, im-
proving the overall performance. This is due to the
fact that correct answers are reinforced while incor-
rect ones then to be blended. This ensemble can be
done by:

e Voting,

Averaging,

Weighted AUC,

Weighted Kappa,

Weighted Sensitivity,

Weighted Specificity,

Weighted Proportion correct.

In voting, each model does a prediction to each
data point. Each of these predictions is considered a
vote. Then the final prediction, meaning the predic-
tion of the ensemble, corresponds to the majority.

Averaging method is similar to maximum voting,
but instead of the final prediction being the major-
ity, it is the average of all the single predictions.

In weighted average, instead of being a simple
average of the predictions, it gives a weight to each
prediction. This weight defines the importance of
each model, which can be accessed through some
evaluation metric, such as accuracy, kappa statistic,
sensitivity, specificity or proportion correct.

For all models DeepData returns the thresh-
old, accuracy, omission rate, sensitivity, specificity,
proportion of correctly predicted occurrences and
kappa statistic of the best model. To access the
overall variation of each model of the cross valida-
tion, the mean accuracy and mean threshold and
corresponding standard deviations are presented. It
also return the calculated VIF of each variable and
the number of presences used.

DeepData returns a zip file, with model evalua-
tion plots, specific to each model. In the zip file
there is always a png file with the name of the file
which plots the predicted occurrence values over the
environmental space.

For the GAM model, DeepData returns a zip with
also:

e Residuals.png, which is composed of: nor-
mal QQplot, residuals vs linear predictors, his-
togram of residuals and response vs fitted val-
ues.

e Patial dependence_plots.png, which plots
the component smooth functions of the model,
in the scale of the linear predictor.

e Gam_uncertainty.png, which plots the stan-
dard error estimates returned for each predic-
tion over the environmental space.

e Akaike’s Information Criterion, which is
not on the zip file, but on the evaluation re-
sults.txt.

For the RF model, DeepData returns a zip file
containing also:



e Variable_importance.png, when more than
one variable is used to do the modelling.
Plots each variable importance according to
the mean decrease in accuracy and the mean
decrease in node purity.

e Effect_variable.png, which plots the
marginal effect of a variable on the predicted
occurrence.

For the MaxEnt model, DeepData returns a zip
with also:

e Species_omission.png, which shows how
testing and training omission and predicted
area vary with the choice of cumulative thresh-
old.

e Species_roc.png, which plots the ROC curve.

e Species_(number of repetition)_(name of
the variable) .png, which plots the response
curves of a variable for each repetition.

e Species_(number of repetition)_(name of
the variable)_only.png, which plots the
response curve corresponding to a model that
only uses the variable, disregarding other
variables.

e Maxent.html, which opens an html page with
all the above plots and explanation. Also, in-
formation about the statistical significance of
the prediction and analysis of variable contri-
bution is provided.

Regarding the ensemble model, DeepData creates
the Rplots.png which plots the predicted occur-
rence values of the ensemble method over the en-
vironmental space. Finally, a file with a plot with
the used presences, called the Pplots.png, is also
generated.

4. Results

In order to show the usefulness of the DeepData
tool, we selected papers, whose data we have access
to, and tried to obtain the same results. Two pa-
pers were examined, the first regarding the use of
MaxEnt, and the second regarding the use of Random
Forest and Generalized addictive model.

4.1. First case study
4.1.1 Problem description

The first paper selected is entitled ”Habitat mod-
elling of crabeater seals (Lobodon carcinophaga) in
the Weddell Sea using the multivariate approach
Maxent” [24], which uses MaxEnt to identify suit-
able habitat conditions to the crabeater seal.
Regarding species occurrence data, fifteen
crabeater seals of both sexes and different age
classes were equipped with satellite-linked dive
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Figure 1: Probability of presence of crabeater seals
for each month.

recorders (SDRs) between 28 January and 6 Febru-
ary 1998. Regarding enviromental variables, a set of
13 environmental variables was used to analyze the
habitat preferences of crabeater seals: sea ice con-
centration, sea ice thickness, sea ice freezing rate,
water surface and bottom temperature, surface and
bottom salinity, surface and bottom zonal current
velocity, surface and bottom meridional current ve-
locity, slope, and distance to shelf break.

Prior to model building the seal location data
were subsampled to diminish potential biases.
Therefore, only location data from February, March
and April 1998 were used for modelling. All data
can be found on pangaea [23].

4.1.2 Tool testing

Both species occurrence and environmental data of
each month were loaded into DeepData. To recreate
the paper, the tool configurations were:

e Not to generate pseudo absences, since MaxEnt
only uses presences.

e Use average depth of species occurrence.
e Not to calculate moran’s I.
e Use MaxEnt, with the background file loaded.

e Use holdout with fraction of 80% and repeat of
20.

This model was used with all variables loaded
to verify the influence of each environmental vari-
able contributing to the model by a measure called
permutation importance and identify the variables
that mattered most concerning the seal distribu-
tion. Jackknife test was also used to analyze the rel-
ative importance of each variable. from the 13 vari-
ables, slope, bottom zonal current velocity and bot-
tom meridional current velocity did not contribute
more than 5 % to neither monthly model and there-
fore they were omitted from the final model.

Regarding the models evaluation, AUC values are
high, showing that the predictions are far from ran-
dom. While standard deviations are low, meaning
there is a high degree of uniformity between the
repetitions.



4.2. Second case study
4.2.1 Problem description

The second paper selected is entitled ”Population
Estimates of Trindade Petrel (Pterodroma armin-
joniana) by Ensemble Nesting Habitat Modelling”
[19], which uses ensemble model to identify suitable
habitat conditions to the Trindade Petrel.

Regarding occurrence data, 411 nests were iden-
tified between 2000 and 2007 and, afterwards, be-
tween September and November of 2014. Regarding
environmental variables, a set of 5 environmental
variables was used: elevation, slope, flow length,
aspect and insulation.

To create the ensemble model, it starts by
testing which models best fit the data, so
that the best 3 models are used on the
ensemble model. The tested models are:
textttGAM, GLM, Multiple adaptive regression
splines, RF, Generalized boosted model, ANN,
MaxEnt Phillips and MaxEnt Tsuruoka. The dif-
ference between the two variants of MaxEnt is the
package that implements each of them. While
MaxEnt Tsuruoka only uses an R package, MaxEnt
Phillips uses a java software which is called within
an R package.

4.2.2 Tool testing

The models the allows for the use of: GAM, GLM, RF,
ANN and MaxEnt Phillips.

Both species occurrence and environmental data
were loaded into the tool. To recreate the paper,
the tool configurations were:

Do this 20 times:

e Generate pseudo absences,
maxent uses presences.

since only

e Use average depth of species occurrence.
e Not to calculate moran’s I.

e Use GLM.

e Use GAM, with binomial family.

e Use MaxEnt, with default values.

e Use RF, with classification and min node
size of 5.

e Use ANN, with 1 layer with 8 nodes.

e Use holdout with fraction of 80% and re-
peat of 3.

Since the ensemble model considers one more
model that the tool cannot produce, the final dis-
tribution cannot be achieved. By examining the
partial dependence plots we can see that the over-
all tendency for the two models are the same. These
plots cannot be directly compared to the response
curves plots of the paper.
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Figure 2: Spatial distribution of Trindade Petrel for
each model.

5. Conclusions and future work

In this work, we present a web-based machine learn-
ing tool that allows a simple and efficient way of
creating species distribution models, conserving the
user domain knowledge and allowing it to exper-
iment different variable combinations and differ-
ent models, while turning it more efficient as the
user does not have to think about programming.
It has options for all parts of the modelling pro-
cess: (i) data pre-processing, (ii) model selection
and (iii) model evaluation. Furthermore, it allows
to load data of species and environmental data con-
cerning the Azores Exclusive Economic Zone. Fur-
thermore, allows the user to insert its own data of
both species and environmental variables.

The developed tool provides a comprehensive in-
terface to perform the entire modelling process us-
ing different state-of-the-art approaches. Nowa-
days, the two most used software tools for SDM
modelling are MaxEnt and R [21]. The approaches
used by these tools are quite different. While Max-
Ent uses a click approach, R uses a syntax driven
approach. Our tool is the balance between click
and syntax driven approaches. By displaying the
available options, the user clicks on the desired op-
tions and the tool generates the syntax for the R
software. Omne concern with the click approach is
that it works like a ’black-box’ software, meaning
that the details are hidden from the user. This the-
sis provides a full specification of all default options
and options available for all its processes, so that
the user is fully conscious of the model.

Although the interface is mostly composed of
click options, flexibility is not compromised. Each
modelling phase has its own options allowing great
tuning, while making it easier for inexperienced
users. It also allows multiple SDMs to be fitted and
compared simultaneously. This makes comparison
between different models possible because both pre-
processing and evaluation methods that are applied
are the same.

The major limitation of the DeepData tool is that



it does not take into account that some users might
want to use data that is private. Most of the stud-
ies use data that belongs to the government and
therefore data that is not for public use.

One way to resolve this problem is to create infor-
mation access control. Information access control is
composed of authentication and authorization. Au-
thentication is concerned with confirming that the
user is who it says, while authorization is concerned
with the level of access each user is granted.

Another very important and increasing problem
is climate change. Successful conservation strate-
gies will require an understanding of climate change
and the ability to predict the future. There are two
ways of dealing with climate change [1]:

e Mechanistic SDM, which uses physiological in-
formation about species to determine the range
of environmental conditions that species can
tolerate. Then, these tolerances are mapped
into geographical space corresponding to the
predicted species distribution.

e Climate envelope models, also known as cor-
relative SDM, which rely on statistical cor-
relations between occurrence data and envi-
ronmental variables to outline a range (enve-
lope) of environmental conditions within which
species can exist. Data used for training and
testing have a time period different from the
data used to project the specie distribution.

Since mechanistic SDMs parameters are not de-
rived from the current distribution of the species,
the results are independent of the current climate.
Therefore, these models have a more accurate un-
derstanding of the relationship between climate and
the species life cycle. The problem with mechanis-
tic SDMs is that the type of data it uses is hard to
get and that it does not account for non-climatic
influences such as biotic interactions.

With climate envelope models, even if biotic in-
teractions are not directly modeled, by considering
empirical data of the species distribution, which is
constrained by non-climatic variables, these interac-
tions are indirectly considered [27]. So, non-climatic
variables are indirectly taken into account. Stud-
ies were made to evaluate the accuracy of climate
envelope models compared to mechanistic SDMs
14, 18].

To implement climate envelope models, we have
to allow the selection of the time period for the
desired projection of species distributions.
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