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Abstract

The main goal of this thesis is to study and propose a new approach to network patching in mobile
networks. The developed solution implements network patching making use of UAVs. The biggest
challenge is to define the best positions to deploy the UAVs. A genetic algorithm was developed to
tackle this problem. This algorithm takes advantage of the non-uniform distribution of data rate
requirements among users to better position the UAVs. The UAVs make use of distant base stations
to provide extra coverage or capacity in a given area. A simulator was developed to access the quality
of the positions. The developed algorithm showed to be an effective way to compute the positions of
the UAVs. Two metrics were analyzed to measure the effectiveness of the algorithm: the number of
served users, and the total data rate served. Compared to other existing solutions, the algorithm was
able to keep the number of served users in every scenario tested, and increase up to 24% the data rate
provided. Keywords: Network Patching, UAV, LTE, Genetic Algorithm.

1. Introduction
If we consider the evolution of the telecommunica-
tions systems in the last years, we must acknowl-
edge that this technology has grown at a very fast
pace and has had a massive adoption by the gen-
eral population all around the globe. In 2017 there
were already 7.8 billion mobile subscribers world-
wide, and that number is expected to grow up to
9.1 billion by 2023 [15]. If we realize that the world
population is under the 8 billion mark, these num-
bers become even more staggering.

The demand for faster and better telecommunica-
tions systems does not come solely from the private
market. Public security entities grow ever more de-
pendent on communications to efficiently operate.
So it is important to develop either more resilient
systems to these kind of situations, or better solu-
tions for replacing the network elements that are
more exposed.

As this is a very competitive market, telecom-
munications operators are permanently working for
increasing their coverage, their capacity and their
availability. There are however a number of factors
that can compromise these goals:

• Environmental Factors: Meteoro-
logic/Natural events that destroy or com-
promise some parts of the network. These
events can cause a temporary lack of coverage.

• Usage Peaks: Engineers design the network
for a certain amount of users in a specific area.

Sometimes there are special events that gather
an unusual amount of people in a relative small
space. That can cause lack of capacity in a cell.

• Components Breakdown: Some compo-
nents of the network sometimes stop working
properly causing disturbances on the telecom-
munications operation.

1.1. Solution Overview
There are several ways to correct network outages.
The simplest techniques involve tilting the existing
antennas of base stations in order to optimize the
coverage and capacity of a certain cell. This method
is rather limited in its effect, since there is not an
increment to the network resources in that area.

Another way to compensate for outages is to de-
ploy more base stations. This is a time and resource
consuming operation.

Overall, these approaches are non-adaptive over
time, the planning takes place without knowing
where the users will be and they are time and re-
source consuming. Considering this, due to their
capability to freely move and deploy on-demand,
drones are expected to help alleviate some of these
problems in the future. In this work, the terms
drone and UAV are used interchangeably.

The use of UAVs in telecommunication patches
allows engineers to re-frame a problem that has al-
ways existed. With this new tool, it is possible to
radically change the position of the antennas in real
time. Currently, only the positioning of the users is
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used to chose the positions of UAVs, but since this
process will be taking place in real-time, there are
other factors that could help achieve a bigger net-
work efficiency. One of those cases is the required
data throughput that users are demanding at a par-
ticular moment.

The driver of this work is to improve the signal
of users that require a large amount of resources,
specially in those situations where we do not need
to compromise on the quality of service of users who
need less resources.

The problem of finding the best position for the
UAVs can be formulated in an optimization prob-
lem. Since there are various factors that we want
to optimize, this work uses a genetic algorithm to
tackle the problem.

2. Background
This section is going to address background and re-
lated work on three topics that concur for this the-
sis: LTE, UAVs and GAs.

2.1. LTE Fundamentals
This section was mainly based on [18], [6], [19], [10]
and [12].

2.1.1 LTE Architecture

Figure 1 shows the High Level Architecture of the
LTE system, composed of three main components:
the UE, the E-UTRAN and the EPC.

Figure 1: LTE architecture. Adapted from [6].

Figure 2 shows the E-UTRAN architecture which
handles the radio communications between the mo-
bile and the evolved packet core. This element has
just one component, the eNB.

Figure 2: E-UTRAN architecture.

Each mobile is allocated to only one eNB at a
time, and each eNB is responsible for controlling the
mobiles in one or more cells. The eNB has two main
functions: (1) sends radio transmissions to all its
mobiles on the downlink and receives transmissions

from them on the uplink; and (2) controls the low-
level operations of all its mobiles that relate to those
radio transmissions.

Figure 3 shows the main components of the EPC.
The HSS is a central database that contains in-
formation about all the network operator’s sub-
scribers.

The P-GW is the EPC point of contact with the
outside world. From here data packets are sent to
the internet or the IP multimedia subsystem.

Figure 3: EPC architecture. Adapted from [6].

The S-GW is responsible for routing and forward-
ing the data between the base station and the P-
GW. Each S-GW serves all the mobiles of a certain
geographic region.

The MME controls the high-level operation of
the mobile such as security and the management
of data streams that are unrelated to radio commu-
nications. As the S-GW, the MME is responsible
for a certain geographic region.

2.1.2 LTE Radio Interface

OFDM works by dividing the available bandwidth
in a group of orthogonal sub-carriers. These sub-
carriers are generated in a way that in every peak
of any of them in the frequency spectrum, the con-
tribution of all the others sub-carriers is zero. This
technique allows a dramatically reduction of the
guard band between the sub-carrier’s frequencies.

LTE uses OFDMA in the DL, a variation of
OFDM, where users are assigned resources in the
time and frequency domains.

In the UL, LTE uses SC-FDMA. We can see this
as a special case of OFDMA where the signal is pre
modulated before being modulated in OFDMA.

Another technique that is broadly used in LTE
is MIMO. This means that there will be multiple
antennas that can be used for different purposes.

Resource allocation in LTE is based on RB, which
is the minimum allocation a UE can get. The small-
est unit of a RB is the RE which translates to using
one sub-carrier (15 kHz) to transmit one radio sym-
bol. One RB uses 12 sub-carriers during 0,5 ms. In
0,5 ms it is possible to transmit 6 or 7 symbols, de-
pending on the cyclic prefix, which leads to one RB
having 7× 12 = 84 symbols.
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Depending on the modulation used, one symbol
is equivalent to transmit two, four or six physical
channel bits. The modulation is chosen taking into
account several factors(e.g., the quality of the phys-
ical channel).

LTE can be deployed using various RF channel
configurations. There are 27 bands specified for
FDD and 12 bands for TDD. LTE can coexist with
the previous 3GPP technologies. In Europe, mobile
operators have over 600 MHz of spectrum available
for LTE, including the 800 (LTE800), 900, 1 800
(LTE1800), 2 100 and 2 600 MHz bands (LTE2600).

2.1.3 LTE Scheduler

This section also considers the information in [8].
One important component of the LTE system is

the scheduler. Since in LTE resources can be al-
located both in frequency and time domains, this
component is responsible for distributing the RBs
by the UEs.

These are some examples of generic schedulers:

• Maximum Throughput Scheduler: The
network tries to exploit channel variations to
maximize the cell throughput. This scheduler
starts by satisfying completely the users who
have the best channel conditions.

• Blind Equal Throughput Scheduler: This
policy distributes the resources in a Round
Robin approach.

• Proportional Fair Scheduler: This sched-
uler tries to balance the two previous sched-
ulers by allocating resources taking into ac-
count both the maximum rate achievable by
a UE, and the average rate the UEs get.

2.1.4 Capacity

An approximate relation between LTE’s bandwidth
and the number of resource blocks available is given
by the expression:

NRB =
Bch[kHz]

BRB[kHz]
×
PBch[%]

100
, (1)

where:

• NRB : number of RB;

• Bch[kHz]: channel’s bandwidth ;

• BRB[kHz]: RB’s bandwidth, which is 180 kHz;

• PBch[%]: channel’s bandwidth used percentage,
∼ 90%.

Once the number of RBs each user gets is known,
we have to assess the amount of information each re-
source block can transport to compute the through-
put. This quantity depends on the modulation

used, which depends on the quality of the radio
channel. This constrains will result in a different
spectral efficiency for every user, being the theoret-
ical maximum defined by Claude Shannon:

Rb,max[bit/s/Hz] = log2(1 + ρN ), (2)

where:

• Rb,max[bit/s/Hz]: maximum data rate per hertz;

• ρN : SNR (in linear units).

2.1.5 Services and Performance Parameters

3GPP divided services into 4 classes: Conver-
sational, Streaming, Interactive and Background.
These classes are used to prioritize the data flows,
allowing eNBs to treat data traffic differently.

In Table 1 there are examples of some services,
their service class, and their approximate minimum,
medium and maximum throughput.

Table 1: Throughput By Service. Extracted from
[17].

Service Service Class

Throughput

[kbps/s]

min med max

VoIP Conversational 8 32 64

E-mail Background 10 100 1333

Smart Meters Background - 200 -

File Sharing Interactive 200 1600 4 444

Video Streaming Streaming 500 5000 10 000

2.1.6 Relaying

Relaying is the technique in which, by the addition
of network nodes we complement the network of
eNBs. This allows expansion of coverage or increase
of capacity.

Modern relays in 4G designated RN, are network
nodes connected wirelessly to a source eNB. Since
they are under the full control of the radio access
network, they allow similar monitoring and remote
control capabilities as for an eNB.

This is the terminology relating RNs that 3GPP
introduced:

• Donor eNodeB/cell: The source eN-
odeB/cell from which the NR receives its sig-
nal.

• Relay cell: The coverage area of the RN.

• Backhaul link: The link between the donor
eNodeB and the RN.

• Access link. The link between the RN and a
UE.

• Direct link. The link between the donor eN-
odeB and a UE.
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• Inband/outband. An inband RN uses the
same carrier frequency for the backhaul link as
for the access link; otherwise, the RN is said to
be outband.

• Half/full duplex. A half-duplex RN cannot
receive on the backhaul link at the same time as
transmitting on the access link, and vice versa,
whereas a full-duplex RN has sufficient antenna
isolation to be able to operate without this re-
striction. This distinction applies to inband
RNs only, since outband RNs are always full-
duplex.

• Donor and coverage antennas. At the RN,
the donor antenna(s) are used for the backhaul
link, while the coverage antenna(s) are used for
the access link. In some cases, the physical
donor and coverage antennas may be the same.

Backhaul’s link on inband RNs consume radio
resources, thus reducing the capacity of the RN.
When RNs operate in half-duplex, there are also
other complications for the system design. Out-
band relaying with full-duplex operation increases
the relay cell capacity and simplifies the system de-
sign. This increases the system cost since the last
configuration requires two isolated antennas, and
the availability of a second carrier frequency.

RNs can belong to one of three categories, de-
pending on the functionality layers they provide.
Layer 1 RNs are simple repeaters and may include
some baseband processing such as FEC. Layer 2
RNs provide Medium Access Control (MAC) func-
tions such as scheduling. Layer 3 RNs have their
own PCI signalled by the PSS/SSS, and all of Layer
1 and Layer 2 functions are supported by the RN.

2.2. UAVs
UAVs are adapted to the specific task at hands,
which makes them highly specialized and efficient
tools.

Almost all the control functions of an UAV can
be delegated to an auto-pilot and modern UAV con-
troller systems are turning possible the collabora-
tion between several drones. Some centralized con-
troller may be needed.

Applying UAVs to telecommunications seems to
be a logical step, in [11] the authors studied the use
of UAVs in emergency scenarios. UAVs are gen-
erally a good fit for these scenarios, however, the
authors raise relevant questions about power con-
sumption in these peculiar situations where basic
infrastructures may be compromised.

In [16] the authors studied the relaying in tactical
situations, proclaiming increases by a factor of two
in throughput, and by 67% in connectivity when
compared to the ad hoc ground network without
using UAVs.

In [1] and [5] the authors focused on studying
the impact of altitude in the UAV performance as-
suming the drone-cells are isolated from other base
stations. The altitude of the drone is responsible
for an important trade-off between achieving a LoS
radio channel with the users, which is more prob-
able with higher altitudes, and achieving a lower
path loss, which is lower at smaller distances, hence,
lower UAV’s altitudes.

In [4] the integration of drone-cells in the exist-
ing LTE network is addressed, making the case that
this is not a simple task, and ending up suggesting a
multi-tier approach to this problem where high level
UAVs, flying at a higher altitude, give support to
lower level UAVs. They also envision a decoupling
of this activity (UAV deployment) from the current
network providers, and becoming themselves infras-
tructure providers and mobile virtual network op-
erators providing services to the current network
operators.

In [7] a clustering algorithm of type K-Means is
used for addressing the problem of UAV localization
in a scenario where UAVs and fixed based stations
coexist.

2.3. Genetic Algorithms
A GA is a meta-heuristic algorithm, which is gener-
ally used to solve optimization problems. They use
a combination of random choices and knowledge of
previous results to address the search space. This
section is based in [14] and [13].

2.3.1 Components

The higher level component of genetic evolution is
the generation. Generations are composed of indi-
viduals that have genetic material which determines
their characteristics/traits. This genetic material is
organized into chromosomes and genes, one indi-
vidual has one or a group of chromosomes, which
are composed of genes. The gene is the most basic
component of genetics, this structure stores the in-
formation about one specific trait of the individual.

Developing a specific genetic algorithm, requires
being able to frame our problem in a way that we
can represent it with these basic components. This
task should not be underrated since it is known that
the chosen representation will directly impact the
performance of the algorithm. Different authors
will advocate for different representations for the
sake of two things: convergence speed and the abil-
ity to avoid locally optimal solutions.

2.3.2 Evolution

In nature, the fitness of an individual is defined as
the level of adaptation to a certain environment.
The more fit an individual is, the more likely it is
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to have a longer life, to reproduce and to gener-
ate descendents. It is called natural selection to
the process of elimination of lesser fit individuals.
In the genetic algorithms world, the fitness value is
a representation of how well a certain solution re-
sponds to the initial problem. The design of this
ranking tool, is one of the most difficult challenges
in designing GAs.

The main genetic operators are the following:

• selection, how we choose individuals to repro-
duce;

• crossover, how does the mixing of genetic ma-
terial between two parents happen;

• mutation, the random process of changing
gene values.

Figure 4 shows the genetic evolution process
which starts with a random group of individuals,
the first generation. Then we iterate the follow-
ing process to generate the subsequent generations.
Choose two individuals from the previous genera-
tion, crossover their genetic material to generate a
new individual, randomly mutate its genes and add
this individual to the new generation. This process
is iterated until the next generation has the same
number of individuals as the previous.

Figure 4: Evolution Process.

In the GA context, convergence speed is the re-
quired number of iterations/generations we need to
reach a stable value of fitness. In theory, one can
use this parameter to know when to stop iterating
generations. In every generation one can search for
the best adapted solution, and if its value of fitness
is unchanged for a large number of iterations one

can assume the optimal solution has been reached
and stop iterating. The time needed for this to hap-
pen is directly connected to the search space being
addressed. The larger the number of possible op-
tions for an individual, the longer it will take to
reach this optimal solution.

There is no certainty that a genetic algorithm
will find the best solution. By definition this is a
stochastic algorithm, and so, it is possible that the
algorithm converges to a local optimum. However,
there are ways to improve the odds of finding this
perfect solution. One of them is to make an effort to
design the genetic operators in a way that the gen-
erations are kept with a fair amount of diversity,
making sure that solutions with a low value of fit-
ness are not deleted as soon as they appear because
they may be, globally, a bad fit for the problem, but
they may contain some of the genes present in the
global optimum.

2.3.3 Operators

The next subsections will address the various oper-
ators present in the a genetic algorithm.

Selection Operator

The selection operator intends to simulate the
mating behavior of the individuals. This process
is designed to distribute the selection probabilities
to the different individuals.

To create a new generation, we need to choose
pairs of individuals of a previous generation to
crossover and generate a new individual. According
to [3] it is possible to name some categories for this
selection methods.

A selection method can be dynamic, meaning the
selection probabilities are proportional to the ac-
tual fitness-values; or it can be static meaning the
individual is selected according to its position in the
fitness ranking.

A selection method can be preservative, which at-
tributes a non-zero probability to every element in a
generation; or extinctive which dictates that some
elements are excluded right away from the repro-
duction operation.

When a selection method is extinctive, it can be
right extinctive, if the elements with zero probabil-
ity are the low performers, or left extinctive, if the
elements with zero probability are the top perform-
ers. Although this last category may seem counter
productive, it is very useful if one wants to make
sure that the generations are kept with a certain
degree of variability, thus preventing the algorithm
to converge too soon to a local optimum.

Aside from the distribution of probabilities, it is
possible to define a selection method as being eli-
tist or pure. In the elitist method, some of the top
performers skip the reproduction process and are
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directly included in the next generation.
Fitness Function
In genetic algorithms, the fitness function is the

ranking tool used to distinguish the individuals that
better answer to the initial problem, from those who
do it worse. The more accurate the fitness function
is, the best our final solution will be.
Crossover Operator
When a binary representation is used, the sim-

plest way to implement the crossover is to choose
a random point in the chromosome and all of the
genes before that point are copied from one parent,
and all the others are copied from the other parent.
However, it is possible to implement a two point
crossover operation. In this case, two points of the
chain are chosen and the segments between them
are exchanged. Lastly, it is important to check if it
makes sense, in a specific implementation, to allow
a gene to be cut in half in this operation.
Mutation Operator
Along with crossover mutation is the main instru-

ment of disruption and innovation in an evolution
process. The balance of amount of mutation and
crossover is extremely important to the convergence
speed/global optimum trade off.

2.3.4 Stop Conditions

Firstly, one can impose a limit to the number of
iterations the algorithm runs. Then, one can impose
a limit to the time the algorithm is running. And
finally the algorithm can stop when the chance of
achieving a significant change in the fitness values
is very low.

2.4. K-Means Drone Disposition Algorithm
K-Means is a well known clustering algorithm,
which works by minimizing the distance of all the
points/UEs to the clusters’ centroids coordinates.
This work implements a variation of K-Means called
K-Means++. This algorithm will be used as a base-
line for the GA, and the specific implementation
details were based in [9], [7] and [2].

The time complexity of the K-Means algorithm
is given by O(MNKI), where M is the number
of points, N is the number of dimensions, K the
number of clusters, and I the number of iterations.

3. Implementation
This section describes the implementation decisions
of this work.

3.1. System’s Architecture
Figure 5 shows the general architecture of the pro-
posed solution.

In order to control the positioning of the UAVs
the network would need an UAV Controller which
would be located in the donor eNB. This element
is the one that knows the UAV current coordinates,

Figure 5: Architecture of the system.

and, upon receiving the desired UAV Positions, can
instruct the UAVs to move accordingly.

The decision about the UAV coordinates would
take place in a cloud based service. The GA is the
algorithm chosen to perform the decisions about the
UAV coordinates. UEs connect either to the as-
signed UAV or, if the UAVs run out of RBs, to
the nearest BS. The RRC and DR Estimation for a
certain user is located in its corresponding servicing
eNB, and the UAV Controller is in the eNB that is
coordinating the UAV operation.

3.2. Genetic Drone Disposition Algorithm
As discussed in 2.3.1 the genetic algorithm is di-
vided into 4 structural components: genes, chromo-
somes, individuals and generations.

In this work, the genes implement the coordinates
of a single drone. The coordinates are represented
in bits, and the implementation makes it possible to
choose the level of granularity we want for our coor-
dinates. This translates into changing the number
of bits used to represent each coordinate.

Every chromosome has the same number of genes,
and since each gene encodes one drone, the number
of genes will be equal to the number of drones. In
our problem, each individual would have only one
chromosome. This is why there is no distinction
between these two structures.

The generation represents the population at any
given moment and the number of individuals in each
generation is also configurable.

The selection method implemented is dynamic,
preservative and elitist. The number of champions
is an entry parameter.

The selection process is achieved by assigning to
each individual a value of relative fitness:

fi =
Fi∑
i=0 Fi

, (3)

where:

• F : absolute fitness value;

• f : relative fitness value.

After the selection process, the two chromosomes
are crossedover and generate descendants.

The fitness function is used by the GA to clas-
sify the individuals. The algorithm runs the Telco
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Module for every individual and then uses these re-
sults to classify the UAV configurations. The Telco
Module will be further explored.

Three different fitness functions are implemented:

• Served Users: number of UEs being serviced at
the same time;

• Total DR: that returns the sum of DR obtain
by all UEs;

• Proportion: the sum of the proportion, ob-
tained by each user, between the required DR
and the obtained DR:

Fi =
∑ DRobt

DRreq
, (4)

where:

– DRobt: Obtained Data Rate by a user;

– DRreq: Required Data Rate by a user.

For the crossover the algorithm randomly chooses
a point in the gene sequence to perform the
crossover. All the genes before this point will come
from one parent and all of the following will be from
the other parent.

There are two ways of implementing this opera-
tion: (1) two parents are used to generate two de-
scendants, and (2) two parents are used to generate
one descendant. This work implements the second
option.

Mutation is divided into two sub-parameters: the
mutation rate and the mutation span.

The mutation operation is applied right after a
new individual is created. The mutation rate is the
probability of that new chromosome being mutated.
The mutation span is how different should the mu-
tated gene become.

This work implements a stop condition that
counts the number of iterations performed, and
when a pre-defined threshold is achieved the algo-
rithm stops.

3.3. Telecom Model
Figure 6 shows the architecture of the algorithm
that implements the telecom model. This algorithm
starts by receiving the coordinates of all the UEs,
all the UAVs and all BSs. Then it iterates through
all UEs and assigns them to the available UAVs in
order to allocate all of their capacity. The remain-
ing UEs will be serviced by the BSs.

Figure 7 (a) shows the architecture of the UAV
scheduler. This scheduler is a Maximum Through-
put Scheduler.

Figure 7 (b) shows the architecture of the BS
scheduler. This scheduler is a Blind Equal Through-
put Scheduler.

Figure 6: Telecom Model Architecture.

(a) Drone Scheduler (b) Base Station Scheduler

Figure 7: Resource Allocation Schedulers.

It is important for both of these schedulers to
make a prediction of how much data rate the UEs
are going to obtain. There are mainly three links
that need to be addressed for this purpose: (1) the
Backhaul Link, which will be in LoS, and will be as-
sumed to have enough capacity to offload the UAVs’
necessities, (2) the Direct Link in LoS by an UAV
and (3)the Direct Link in NLoS by the BS. The
following subsection will discuss both implementa-
tions.

3.3.1 Propagation Models

The goal of this sub-section is to describe how to ar-
rive at the data rate a UE obtains. This sub-section
is based in [12] and is implemented in the Telecom-
munications Module. To arrive at this value one
needs to calculate some quantities, the first one is
the available power at the receiver, which can be
obtained as:

Pr[dBm] = Pt[dBm] +Gt[dBi] +Gr[dBi]−Lp[dB], (5)

where:
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• Pt[dBm]: transmit power;

• Gt[dBi]: gain of the transmitting antenna;

• Gr[dBi]: gain of the receiving antenna;

• Lp[dB]: path loss.

The used gains in the simulator were respectively
15 dBi and 0 dBi. We assumed BSs transmitted at
48 dBm and the UAVs transmitted at 43 dBm.

The path loss for the LoS links, considering the
average power decay, is given by:

Lp[dB] = 32.44+20 log(d[km])+20 log(f[MHz])+10 apd log(dkm),
(6)

where:

• d[km]: distance;

• f[MHz]: frequency;

• apd: average power decay, 2.

For the NLoS links the path loss can be calcu-
lated using the Okumura-Hata model. The deploy-
ment of drones intends to increase capacity, so it
is expected that operators choose to use the fre-
quency bands that give the most capacity, the 1800
MHz and the 2600 MHz. Since Okumura-Hata only
models scenarios with frequencies ranging from 150
MHz to 2000 MHz, we opted to use the extension
COST 231 to Hata’s model which models scenarios
with frequencies ranging from 1.5 GHz to 2 GHz.
According to this model, the path loss can be cal-
culated from:

Lp[dB] = 46.30 + 33.90 log(f[MHz])

− 13.82 log(hbe[m])

+ [44.9− 6.55 log(hbe[m])] log(d[Km])

−Hmu[dB] + Cm[dB]

−
∑

correctionfactors,

where hbe[m] is the effective height of BS antenna;

Cm[dB] =

{
0, smallcity;

3, urbancentres;
(7)

Hmu[dB] =



[1.10 log(f[MHz])− 0.7]hm[m]

−[1.56 log(f[MHz])− 0.8],

smallcitty;

8.29 log2(1.54 hm[m])− 1.0,

f ≤ 200MHz,

large city;

3.20 log2(11.75 hm[m])− 4.97,

f ≥ 400MHz,

large city;

(8)

where hm[m] is the UE’s height.
To apply this model to an area that is somehow

open spaced, we applied the correction factor for
quasi open areas Kop, which for our transmitting
frequencies yields 23 dB.

3.3.2 Link Capacity

An estimation of the data rate obtain by the UE
can be obtained by:

rb = Bav[kHz] ×Rb,max[bit/s/Hz], (9)

where:

• Bav[kHz]: is the available bandwidth for a spe-
cific UE;

• Rb,max[bit/s/Hz]: maximum data rate per hertz.

As mentioned before the Rb,max can be calcu-
lated by the expression 2, and the Bav is a result
of the amount of resource blocks allocated to the
UE. Manipulating the expression 1 we arrive at the
UE’s available bandwidth given by:

Bav[kHz] = NRB ×BRB[kHz] ×
100

PBch[%]
, (10)

where PBch[%] is the maximum data rate per
hertz.

The Signal to Noise Ratio (ρN ), is a function of
the signal power received and the noise and inter-
ference:

ρN =
Pr[W ]

N[W ] + I[W ]
, (11)

where:

• Pr[w]: power received;

• N[W ]: thermal noise;

• I[W ]: interference.

We will assume a very low interference in com-
parison with the thermal noise due to the LoS and
an efficient management of radio resources.

Finally, the thermal noise is given by:

N[W ] = K[m2 kg s−2 K−1]T[K]Bav[Hz], (12)

where:

• K[m2 kg s−2 K−1]: boltzmann constant,
1.38064852x10−23 m2 kg s−2 K−1;

• T[K]: temperature = 25.
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3.4. Simulator

The Figure 8 illustrates the general architecture of
the developed simulator. Initially, the simulator
creates the UE disposition inside the scenario di-
mensions. Once that is done, the UE disposition
is used by two algorithms which output a drone
disposition each. The end goal is to compare the
performance of these two drone dispositions.

Figure 8: Simulator’s architecture.

In order to compare the two drone dispositions,
the simulator calls the Telco Module.

3.4.1 Simulator’s General Components

The simulator’s scenario is composed of a rectan-
gle with customizable dimensions. This is the area
where UEs are deployed. A UE has a set of coordi-
nates and a data rate requirement. The drones will
also be deployed inside this window. It is also pos-
sible to include a representation of multiple Base
Stations (BS)/macrocells.

The simulator assumes the existence of fixed
based stations that will provide the Backhaul link
for the UAVs. The relays are Outband and Full
Duplex since they can communicate with the UEs
and the Donor BS at the same time.

We have decided to implement three categories of
data rates for UEs: low demand, medium demand
and high demand, and they will respectively be rep-
resented by 32 kbps/s, 200 kbps/s and 5 Mbps/s.

3.4.2 UE Disposition Algorithm

The simulator uses a Poisson distribution to gener-
ate the UE’s positions. It assumes some UEs will be
agglomerated in small groups, or hotspots, and then
distributes the remaining UEs uniformly through-
out the scenario. Figure 9 depicts the architecture
of this process.

The number of UEs in each hotspot will be the re-
sult of a Poisson distribution with the average pro-
vided as an input argument.

For the distribution of DR requirements, two pos-
sible implementations were considered: Uniformly
Distributed and Non-Uniformly Distributed. In the

Figure 9: Poisson UE Disposition Algorithm Archi-
tecture.

first case, the three possible levels for DR are dis-
tributed uniformly throughout the scenario. In the
second case, a random point is chosen from one of
the corners of the scenario, then three circles with
different radii are drawn around that point, as it is
depicted in Figure 10 (a). These will represent areas
of a certain type of data rate requirement. When
a user falls in one of those areas, it will be more
probably assigned the respective data rate. If a UE
is inside one of those areas it has 50% probability
of getting the level corresponding to that area and
50% probability of getting a random level of DR.
If a user is not inside any the colored areas, it has
equal probability of getting one of the three levels.

The output of this process is a list of UEs, each
containing two coordinates and a data rate require-
ment in bit/s. Figure 10 (b) shows an example of
an output from the UE Disposition Algorithm Non-
Uniformly Distributed. This configuration has 300
UEs, 5 hotspots and, on average, each hotspot has
20 UEs. The color of the points represents the dif-
ferent data rate requirements of each UE: red UEs
have the higher data rate requirements, the green
UEs have the lower data rate requirements and the
yellow UEs have a medium data rate requirements.

(a) Data Rate Areas (b) User Disposition Ex-
ample

Figure 10: User Disposition.
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4. Results
This section starts by presenting some of the possi-
ble configurations of the simulator and presents the
simulation results of this work.

4.1. GA Experimental Parameters
The results of a GA are dependent on the right con-
figuration of its parameters. Several experiments
were performed to determine these values. These
experiments yielded that at generation 300 the fit-
ness value was unlikely to significantly change, the
mutation rate should be set to 30 %, the popula-
tion size to 50 individuals and the number of bits
per coordinate at 7.

4.2. Simulations Description
In all the simulations both the GA and the K-
Means++ were deployed. The references to com-
paring the two algorithms, should be understood as
the comparison between these two algorithms.

The scenario had a 300m x 300m dimensions,
yielding a 90 000 m2 area. All simulations deployed
two macrocell BS at the coordinates (150, 400) and
(400, 150) and had 5 UAVs available.

Two performance metrics were evaluated:

• Served DR: this is the sum of all the DR ob-
tained by each UE;

• Served Users: this is the sum of all UEs
which were allocated at least one RB.

The first goal of the simulations was to under-
stand the impact of the two possible UE’s dispo-
sition regarding how DR is distributed throughout
the UEs. Both the Uniform and Non-Uniform Dis-
tributions were tested.

The second goal of the simulations was to un-
derstand how different amounts of UEs affect the
effectiveness of the two algorithms. Two different
amounts of UEs were deployed:

• Limit Case: the number of UEs is expected
to fully consume, or even marginally exceed the
network resources;

• Excess Case: the number of UEs clearly ex-
ceeds the limit that the network is able to serve.

The limit case had 150 UEs in total, 5 hotspots,
each hotspot had a 40 meters radius and on average
15 UEs. The Excess Case had 230 UEs, 5 hotspots,
each hotspot had a 40 meters radius, and on average
20 UEs.

The third goal was to compare the performance
of the two algorithms. The K-Means++ worked as
a baseline. The last goal of the simulations was to
find the fitness function that yields the best results,
and compare those results with the baseline.

Every combination of these possibilities was
tested over 1000 Monte Carlo trials.

The results provided by the Telecom Module were
analyzed, and the averages were computed with a
level of significance of 95%.

4.3. Served Users Comparison
Tables 2 and 3 show the results of the simulations
for the number of served users.

Table 2: Served Users by Algorithm in the Non-
Uniform distribution.

Served Users

Users Algorithm Average

Limit

K-Means++ 136.91

GA

Served Users 150 (+8.73%)

Served DR 150 (+8.73%)

Proportion 150 (+8.73%)

Excess

K-Means++ 225.4

GA

Served Users 230 (+3.07%)

Served DR 219.51 (-3.92%)

Proportion 229.98 (+3.06%)

Table 3: Served Users by Algorithm in the Uniform
distribution.

Served Users

Users Algorithm Average

Limit

K-Means++ 141,56

GA

Served Users 150 (+5.63%)

Served DR 150 (+5.63%)

Proportion 150 (+5.63%)

Excess

K-Means++ 215,59

GA

Served Users 229,98(+6.26%)

Served DR 210,64 (-2.15%)

Proportion 229,9 (+6.22%)

4.4. Data Rate Comparison
Tables 4 and 5 show the results obtained for the
served data rate.

Table 4: Served Data Rate by Algorithm in the
Non-Uniform distribution.

Served DR Served Users

Users Algorithm Average [bit/s] Average

Limit

K-Means++ 2427205440 73.96

GA

Served Users 2437485884 74.27 (+0.31%)

Served DR 3238186945 98.67 (+24.71%)

Proportion 3216277558 97.99 (+24.04%)

Excess

K-Means++ 2808253150 50.92

GA

Served Users 2856064736 51.79 (+0.87%)

Served DR 3560569954 64.56 (+13.64%)

Proportion 3087416760 55.98 (+5.06%)

4.5. Results Analysis
Comparing the results between the K-Means++
and the Genetic Algorithm, these results show that
the GA has a better performance for almost every
scenario. It is however important to consider the
trade-off between having a higher global data rate
being consumed, and having every user with access
to the telecommunications service.

If one considers only the Limit Scenario, the fit-
ness function that yields the best results is the
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Table 5: Served Data Rate by Algorithm in the
Non-Uniform distribution.

Served DR Served Users

Users Algorithm Average [bit/s] Average

Limit

K-Means++ 2551410483 83,94

GA

Served Users 2363379351 77,80 (-6.14%)

Served DR 3035138097 99,08 (15.14%)

Proportion 3000172608 98,83 (14.88%)

Excess

K-Means++ 2883848357 61,83

GA

Served Users 2830697170 60,71 (-1.11%)

Served DR 3411952986 73,27 (11.45%)

Proportion 3017640540 64,97 (+3.14%)

Served DR, which maximizes the total data rate
serviced by the network. This happens because the
performance of the three fitness functions are simi-
lar in the number of serviced users metric and the
Served DR fitness function is slightly better than
the Proportion in the Served DR metric.

However, if one considers the Excess Scenario,
the Served DR fitness function is no longer the
obvious choice since it yields now the worst re-
sults in the Served Users metric, worse than the
K-Means++ algorithm. For this scenario, the wis-
est choice would be the Proportion fitness function,
which compromises a little bit in Served DR, but
keeps a high number of Served Users.

Taking this into consideration, the best fitness
function would be the Proportion.

These results show that in the best case scenario,
the GA outperforms the K-Means by 24%. Another
relevant conclusion is that when the amount of un-
serviced DR increases too much (the Excess cases),
the difference between the two algorithms also be-
comes less expressive.

The big conclusion of all these simulations is that
if the fitness function is properly chosen, even in
the worst case scenarios, the GA outperforms the
K-Means.

5. Conclusions
In this thesis two different user dispositions were
used to compare the two algorithms. The GA
showed to be better in both dispositions, in partic-
ular in the Non-Uniform disposition. Two different
quantity of UEs were tested. The GA remains bet-
ter in both cases, and is particularly good in the
Limit case.

Two metrics were used to measure the quality of
the algorithms: the number of Served Users and the
Served DR. The GA was capable to keep the Served
Users and still outperform the K-Means++ in the
Served DR.

As for future work, it would be interesting to
perform some extensions to this analysis. First, it
would be useful to develop a better method to go
from one state of UAV positions to another. This
could result in lower quality UAV positioning, trad-
ing off with the amount of time the UAVs could stay

in the air by reducing the effort needed to reallocate.
It would also be interesting to evaluate the per-

formance of other network indicators besides the
number of served users and the average data rate
per user. For example how would the delay be af-
fected by a deployment of this type? And what
would be the lifetime of UE’s batteries when they
are closer to the antennas?

Finally, it is important to better study the link
between the UAVs and its serving BS. It is impor-
tant to access the feasibility and trade-off of using
the same frequencies as the ones used in the nor-
mal telecommunications operation, or if it would
be better to use specific frequencies.
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