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Resumo

O principal objetivo desta tese é estudar e propor uma nova alternativa ao patching de redes móveis.

A solução implementada faz uso de drones para responder ao problema e foca-se no processo de es-

colha das melhores posições para os drones. Foi desenvolvido um algoritmo genético para superar

este desafio que tira partido da distribuição não uniforme das necessidades de tráfego dos vários uti-

lizadores da rede. Os drones tiram partido de estações base mais distantes para fornecer cobertura

e capacidade numa determinada zona. Foi desenvolvido um simulador para avaliar a qualidade das

posições retornadas pelo algoritmo. Esta provou ser uma maneira eficaz de calcular as posições dos

drones. Foram utilizadas duas métricas para comparar o novo algoritmo contra soluções já existentes: o

número de utilizadores servidos, e o débito binário total que é servido. Quando comparado com outras

soluções, o novo algoritmo mostrou conseguir manter o número de utilizadores servidos sem grandes

alterações, e melhorar até 24% o débito binário fornecido.

Palavras-chave: Patch de rede, UAV, LTE, Algoritmo Genético.
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Abstract

The main goal of this thesis is to study and propose a new approach to network patching in mobile

networks. The developed solution implements network patching making use of UAVs. The biggest

challenge is to define the best positions to deploy the UAVs. A genetic algorithm was developed to

tackle this problem. The developed algorithm takes advantage of the non-uniform distribution of data

rate requirements among users to better position the UAVs. The UAVs make use of distant base stations

to provide extra coverage or capacity in a given area. A simulator was developed to access the quality

of the positions. The developed algorithm showed to be an effective way to compute the positions of

the UAVs. Two metrics were analyzed to measure the effectiveness of the algorithm: the number of

served users, and the total data rate served. Compared to another existing solutions, the algorithm was

able to keep the number of served users in every scenario tested, and increase up to 24% the data rate

provided.

Keywords: Network Patching, UAV, LTE, Genetic Algorithm.
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Chapter 1

Introduction

This chapter is an introduction to the work of this thesis. It will be shown why is important to study this

subject and what are its implications on some of the application scenarios.

1.1 Technological Concept

If we consider last years evolution of the telecommunications systems, we must acknowledge that this

technology has grown at a very fast pace and has had a massive adoption by the general population all

around the globe. In 2017 there were already 7.8 billion mobile subscribers worldwide, and that number

is expected to grow up to 9.1 billion by 2023 [1]. If we realize that the world population is under the 8

billion mark, these numbers become even more staggering.

As internet continues to evolve and grow, users are more than ever expecting to access it everywhere.

Proof of that is the increasing demand for data traffic on mobile. As we can see from Figure 1.1, there is

an exponential increase in the demand for mobile data traffic, in particular on the smartphones.

The demand for faster and better telecommunications systems does not come solely from the private

market. Public security entities grow ever more dependent on communications to efficiently operate. In

2017, in Portugal, failures on SIRESP, the national emergency network operator, were pointed out as

a big contributing factor for public disasters with fires. That year, the exposure of base stations and

network connecting cables to fire lead to the breakdown of communications between public security

entities. So it is important to develop either more resilient systems to these kind of situations, or better

solutions for replacing the network elements that are more exposed.

As this is a very competitive market, telecommunications operators are permanently working for

increasing their coverage, their capacity and for keeping the network with as close as possible to 100%

availability. There are however a number of factors that can compromise these goals:

• Environmental Factors: Meteorologic/Natural events such as floods, earthquakes or fires that

destroy or compromise some parts of the network. Usually these events cause a temporary lack

of coverage in certain geographic places.
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Figure 1.1: Global Mobile Traffic (ExaBytes per Month). Extracted from [1].

• Usage Peaks: Since network components are often expensive, engineers design the network for

a certain amount of users in a specific area. However, sometimes there are special events that

gather an unusual amount of people in a relative small space. That can cause lack of capacity in

a cell.

• Components Breakdown: Some components of the network sometimes stop working properly

causing disturbances on the telecommunications operation.

Some of these outages are predictable and can be planned ahead. In these cases operators develop

dedicated projects to compensate for these expected failures. These operations are expensive and

consume human resources, so it is important to keep investigating new and more efficient ways to solve

these outages.

1.2 Solution Overview

It is possible to divide outages into two categories: expected and unexpected. The first is the case

of a social event like a music festival or a sports competition, the other may be a flood or a fire. The

compensation of an outage that is a result of such events is called a network patch. There are currently

several ways to correct network outages, these vary in the amount of resources and time they require.

The simplest techniques involve tilting the existing antennas of base stations in order to optimize

the coverage and capacity of a certain cell. Tilting can be mechanical, where the antenna physically

changes its orientation; or electrical, where the antenna’s radiation pattern is modified. This method is

not very time or resource consuming, but is rather limited in its effect, since there is not an increment to

2



the network resources in that area.

Another way to compensate for outages is to deploy more base stations to a certain area. This

is a very time and resource consuming operation, it requires the engineers to know the geographical

specifications, and to make good guesses on where the users will be. After all the planning is finished,

base stations have to be moved to the site, which is also a rather expensive operation.

Overall, these approaches are non-adaptive over time, the planning takes place without knowing

where the users will be and they are time and resource consuming. Taking this in consideration, due

to their capability to freely move and deploy on-demand, drones are currently expected to help alleviate

some of these problems in the future. In this work, the terms drone and Unmanned Aerial Vehicle (UAV)

are used interchangeably.

The use of UAVs in telecommunication patches allows engineers to re-frame a problem that has

always existed. With this new tool, it is possible to radically change the position of the antennas in real

time. Consequently, if from one moment to another an important change in user positioning or traffic

patterns takes place, we should use the maximum information possible about current user locations and

traffic characteristics to relocate the UAVs. Currently, only the positioning of the users is used to chose

the positions of UAVs, but since this process will be taking place in real-time, there are other factors that

could help achieve a bigger network efficiency. One of those cases is the required data throughput that

users are demanding at a particular moment.

Intuitively, if one user is requiring more resources, we should be able to approximate an UAV from

her/him in order to improve its Signal to Noise Ratio (SNR), thus increasing the overall satisfaction of the

users. It is important to keep in mind that the purpose of this work is not to make an extended study of

the fairness of this approach. The driver of this work is to improve the signal of users that require a large

amount of resources, specially in those situations where we do not need to compromise on the quality

of service of users who need less resources.

The problem of finding the best position for the UAVs can be formulated in an optimization problem.

Since there are several factors that we want to optimize, this work uses a genetic algorithm to tackle the

problem.

1.3 Objectives

The main goal for this thesis is to analyze the current solutions for mobile networking patching and

propose a solution that outperforms these methods. The proposed solution is to be tested and compared

against some other solutions currently available. One specific goal is to analyze the effectiveness of a

genetic algorithm to calculate the positions of the drones.

The new algorithm should not serve less users and should increase the data rate available for the

individual users.
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1.4 Contributions

This work implements a genetic algorithm for determining the position of UAVs. These UAVs will be

providing mobile service for users.

The developed solution is compared against other algorithms for UAV placement. To achieve that,

the algorithms are simulated, and the results compared.

1.5 Thesis Outline

This Thesis is divided into 5 chapters. The second chapter is meant to give some information on the

main topics approached in this thesis. It begins by addressing the Long Term Evolution (LTE), explaining

its main characteristics, architecture and services provided. Then, UAVs are addressed. There are

some general considerations about them, a proposal of how we can classify them and a discussion

of the roll they can have on this problem. After this, the Genetic Algorithm (GA) are presented. Their

main components and their evolution processes are explained. In the end of this chapter, the K-Means

Algorithm is presented. This algorithm was already proposed to tackle this problem and will serve as a

baseline for the thesis.

Chapter 3 intends to explain the proposed solution. Firstly with the systems global architecture, and

then focusing on their main components and explaining how they would be implemented. On the second

half of this chapter, all the implementations made for this work are explored. The specific decisions

relating the implementations are presented and the chapter ends with the description of the simulator

developed to test the proposed solution.

Chapter 4 depicts the experiments performed. All the configurations of the simulator are showed and

discussed. Then, a broader discussion on the results is made.

This thesis ends in the chapter 5 with a global discussion of the work. The main achievements are

presented, and some future work on this subject is proposed.
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Chapter 2

Background and Related Work

This chapter is going to address background and related work on three topics that concur for this thesis:

LTE, UAVs and GAs. Firstly, LTE communications will be addressed, starting with a brief evolution

of this technology, followed by a description of its main components. Then, the UAV universe will be

addressed, from its evolution, to their current applications. It will be shown why UAVs are a promising

tool for increasing the resilience of mobile telecommunications networks. Finally, GAs will be explored,

explaining the main components and operators of these type of algorithms.

2.1 LTE Fundamentals

This section was mainly based on [2], [3], [4], [5] and [6]. It addresses the LTE, first with a brief evolution

of this technology, then the architecture is explained, then the main mechanisms of the radio interface

are explored. After that, the scheduling of radio resources is analyzed and before ending with the

mechanisms of relaying, we describe the main factors that have implications in link capacity and the

services that are provided in LTE’s network.

2.1.1 Mobile Technology Evolution

To fully understand the LTE-Advanced network, it is useful to know some of the evolution of modern

telecommunications networks. In 1979, the first commercial cellular network (1G) was launched in

Japan. This analog technology was later implemented in several countries such as US, UK and Canada.

Because this system was analog, it had a very low spectrum efficiency for today’s standards, and was

targeted almost exclusively for business users.

The Global System for Mobile Communications (GSM) was firstly deployed in 1987. This was the

first digital cellular network, and became the standard for the 2nd generation (2G) of cellular systems.

This system allowed the introduction of telecommunications as a consumer product for the first time.

The shift to digital allowed the improvement of modulation, voice codecs and security. This second

generation also implemented for the first time Time-Division Multiple Access (TDMA) to serve multiple
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subscribers. Qualcomm developed Interim Standard 95 (IS-95) and also brought Code Division Multiple

Access (CDMA) to the 2G in North America and Korea.

In 1998 the 3rd Generation Partnership Project (3GPP) and 3GPP2 were founded to evolve CDMA

and create the 3rd generation (3G) cellular standard. While 3GPP has worked standardization around

GSM network, 3GPP2 continued to evolve the IS-95 network. This system was designed taking into

consideration the user’s demand for high data rates because of the use of Internet on the mobile phones.

The data rate for this standard increased over time, going from the 384/128 kbps for downlink (DL) and

uplink (UL) in the Universal Mobile Telecommunications System (UMTS) to the 28/11 Mbps in High

Speed Packet Access (HSPA).

As the CDMA based network began to reach the limit for accomodating the demand for wireless

data traffic, 3GPP decided to develop a standard based on a new access technology, the LTE. This

standard adopted Orthogonal Frequency Division Multiplexing (OFDM) instead of CDMA for multiple

access techonology, and used Multiple-Input Multiple-Output (MIMO) techonologies to increase even

further the spectral efficiency.

In March 2008, 3GPP started to enhance the LTE in order to meet the International Mobile Telecom-

munications (ITU) requirements for the fourth generation (4G) evolution. This generation is called the

LTE-Advanced and required at least the following techniques: carrier agregation, advanced MIMO, wire-

less relays, Enhanced Inter-Cell Interference coordination (eICIC), and Coordinated Multipoint (CoMP)

transmission/reception. Initial LTE requirements demanded a peak data rate of 100/50 Mbps, however,

this requirement was exceeded and the system is capable of providing 300/75 Mbps.

Currently there is a lot of research into the next generation, the fifth generation (5G). There is still a lot

of uncertainty about the details of this new technology. However, 5G is expected to provide a significant

increase in speed and a significant reduction in latency. It is also the first time Internet of Things (IoT) is

being seriously considered in the standard definition. Service providers will have to build their networks

in order to deal with the increased demands of network capacity distribution, traffic management and

operations optimization. Many countries have already started to make way for this new technology, the

Autoridade Nacional de Comunicações (ANACOM) for example, has already defined the road map for

the release of specific bandwidths where 5G will operate [7].

The evolution of the number of subscribers by technology is showed in Figure 2.1. As one can see

the first generations of mobile networks have virtually disappeared. Ericsson predicts that clients will

continue to abandon subscriptions based on GSM alone and embrace LTE and 5G services.

2.1.2 LTE Architecture

Figure 2.2 shows the High Level Architecture of the LTE system, composed of three main components:

the User Equipment (UE), the Evolved UMTS Terrestrial Radio Access Network (E-UTRAN) and the

Evolved Packet Core (EPC).

The UE is any device where the data stream terminates. Each UE needs a Universal Integrated

Circuit Card (UICC) that runs an application known as the Universal Subscriber Identity Module (USIM),
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Figure 2.1: Mobile Subscribers By Technology (billions). Extracted from [1].

Figure 2.2: LTE architecture. Adapted from [3].

which stores user-specific data such as the user’s phone number and home network identity. The USIM

is also responsible for carrying out several security-related calculations, using secure keys that the smart

card stores.

The Figure 2.3 shows the E-UTRAN architecture which handles the radio communications between

the mobile and the evolved packet core. This element has just one component, the evolved Node B

(eNB).

Each mobile is allocated to only one eNB at a time, and each eNB is responsible for controlling the

mobiles in one or more cells. The eNB has two main functions. Firstly, the eNB sends radio transmis-

sions to all its mobiles on the downlink and receives transmissions from them on the uplink, using analog

and digital signal processing functions on the LTE air interface. Secondly, the eNB controls the low-level

operations of all its mobiles, by sending them signalling messages, such as handover commands, that

relate to those radio transmissions.

Each eNB has two interfaces with the rest of the network. One is used to communicate with the

EPC. The other is not mandatory, and is used to communicate directly with other eNBs for signalling and

packet forwarding during handover. The latter interface allows to bypass the EPC to minimize the flow

of control data.
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Figure 2.3: E-UTRAN architecture.

Figure 2.4 shows the main components of the EPC. The Home Subscriber Server (HSS) is a central

database that contains information about all the network operator’s subscribers.

The Packet Data Network Gateway (P-GW) is the EPC point of contact with the outside world. From

here data packets are sent to the internet or the IP multimedia subsystem.

Figure 2.4: EPC architecture. Adapted from [3].

The Serving Gateway (S-GW) is responsible for routing and forwarding the data between the base

station and the P-GW. Each S-GW serves all the mobiles of a certain geographic region, if a mobile

changes geographic region it’s reassign another S-GW.

The Mobility Management Entity (MME) controls the high-level operation of the mobile such as se-

curity and the management of data streams that are unrelated to radio communications. As the S-GW,

the MME is responsible for a certain geographic region and mobiles are assign to MMEs according to

their geographic coordinates.

2.1.3 LTE Protocol Stack

To better understand the functions each element in the LTE network performs it is important to know

which protocols they implement. Figure 2.5 represents the protocols present in these elements. There
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is a division between the Non-Access Stratum and the Access Stratum. Furthermore, the protocols are

divided to whether they belong to the control plane or the user plane.

Figure 2.5: LTE’s Protocol Stack. Extracted from [8].

• PHY: the Physical Layer is responsible for handling the Orthogonal Frequency-Division Multiple

Access (OFDMA) operations, the modulations and the coding of different control and traffic chan-

nels. It incorporates reference signals which are used for channel estimation and equalization;

• MAC: the Medium Access Control is in charge of the multiplexing/dedmultiplexing of RLC Packet

Data Units (PDUs), the scheduling information reporting, error correction through Hybrid ARQ,

local channel prioritization and padding;

• RLC: the Radio Link Control makes error correction through Automatic Repeat reQuest (ARQ),

segmentation according to the size of the transport block and protocol error detection and recovery;

• PDCP: the Packet Data Convergence Protocol is in charge of header compression, in-sequence

delivery and re-transmission of PDCP Session Data Units (SDUs) for acknowledge mode radio

bearers at handover and ciphering and integrity protection;

• RRC: the Radio Resource Control is in charge of broadcast system information related to Non-

Access Stratum (NAS) and Access Stratum (AS), establishment, maintenance, and release of

RRC connection, security functions including key management, mobility functions, QoS manage-

ment functions, UE measurement reporting and control of the reporting and NAS direct message

transfer between UE and NAS;

• NAS: the Non Access Stratum is responsible for connection/session management between UE

and the core network, authentication, registration and location registration management.
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2.1.4 LTE Radio Interface

In this section the main mechanisms of the LTE radio channel will be explored. We will briefly discuss

OFDMA, MIMO and resource blocks.

OFDM was one of the technologies that helped increase the spectral efficiency of modern LTE. This

technique works by dividing the available bandwidth in a group of orthogonal sub-carriers. In Figure 2.6

it is represented a single sub-carrier on the left and on the right the full OFDM signal. As one can see,

these sub-carriers are generated in a way that in every peak of any of them in the frequency spectrum,

the contribution of all the others sub-carriers is zero. This technique allows a dramatically reduction of

the guard band between the sub-carrier’s frequencies.

Figure 2.6: Single Carrier (Left). Full OFDM signal (Right). Extracted from [9].

This modulation transmits smaller symbols in each carrier and with a longer duration in time. Overall,

this modulation achieves a higher bandwidth efficiency because it sends several symbols at the same

time, and each transmitted symbol has a higher endurance against bad environment conditions, such

as high frequency attenuation, inter-symbol interference and multipath interference.

LTE uses OFDMA in the DL, a variation of OFDM, where one does not allocate all the sub-carriers

to the same user, instead, the sub-carriers are distributed between the users. This means, that in LTE,

users are assigned resources in the time and frequency domains.

In the UL LTE uses Single Carrier Frequency Division Multiple Access (SC-FDMA). We can see this

as a special case of OFDMA where the signal is pre modulated before being modulated in OFDMA.

Each UE pre modulates their signal with a silent Fourier coefficient and the final result is a single carrier

signal. The reason this type of modulation is used in the uplink lies in the fact that the resulting signal

has a lower Peak to Average Power Ratio (PAPR), allowing for the UE to save energy resources.

Another technique that is broadly used in LTE is MIMO. This means that instead of having only one

antenna, there will be multiple antennas that can be used for different purposes. As illustrated in Figure

2.7, MIMO can be used in 4 configurations to improve different channel characteristics.

Firstly, it can be used to increase signal diversity, where the multiple antennas transmit the same

signal to the same destination. This configuration allows a more reliable and error free communication

with the destination. Secondly, it can be used for multiplexing, where the two antennas send different

signals to the same destination in order to increase the final data rate to the destination. Thirdly, it can

be used in Space Division Multiple Access (SDMA), where the two antennas send different signals to

different users. This configuration increases the capacity of a cell. Lastly, it can be used for beaming,

where the antennas emit special signals that, when combined, allow to increase the coverage of the cell.
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Figure 2.7: MIMO Configurations. (a) Diversity for more reliable communications, (b) Multiplexing for
higher data rates, (c) SDMA for improved cell capacity, (d) Beaming for improved coverage. Adapted
from [6].

MIMO initially was used in a 2x2 antennas configuration, but currently there are commercial applica-

tions with a greater order of MIMO. With the arrival of 5G it is expected that Massive MIMO becomes

available. This advance is already being deployed, and enabling systems to use up to 96 or 128 anten-

nas.

Resource allocation in LTE is based on Resource Blocks (RB), which is the minimum allocation a

UE can get. Figure 2.8 shows the structure of a RB. The smallest unit of a RB is the Resource Element

(RE) which translates to using one sub-carrier (15 kHz) to transmit one radio symbol. One RB uses 12

sub-carriers during 0,5 ms. In 0,5 ms it is possible to transmit 6 or 7 symbols, depending on the cyclic

prefix, which leads to one RB having 7× 12 = 84 symbols.

Depending on the modulation used, one symbol is equivalent to transmit two, four or six physical

channel bits. The modulation is chosen taking into account several factors, the most important being the

quality of the physical channel. The Base Station (BS) chooses the modulation based on the Channel

Quality indicator (CQI) sent by the UE, which is selected taking into consideration the radio channel, but

also the UE’s capacity to correct the signal it gets. This means that a UE in the same radio conditions

as another may have a more efficient correcting algorithm, allowing it to announce a higher CQI. In the

Table 2.1 it is the modulation used in each CQI.

Since every mobile operator has to adapt the standards to their specific environment, LTE defined

several supported bandwidths described in the Table 2.2. One may notice that in every configuration

operators have to leave a guard band on the limits of the bandwidth. This guard band is used to prevent

interference between spectral domains.

LTE can be deployed using various Radio Frequency (RF) channel configurations. There are 27

bands specified for Frequency Division Duplex (FDD) and 12 bands for Time Division Duplex (TDD).

LTE can coexist with the previous 3GPP technologies, so some bands can be used simultaneously by
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Figure 2.8: Structure of a Resource Block. Adapted from [10].

Table 2.1: CQI Index.

CQI Index Modulation code rate × 1024 Efficiency (Bits per Symbol)

0 - - -

1 QPSK 78 0.1523

2 QPSK 120 0.2344

3 QPSK 193 0.3770

4 QPSK 308 0.6016

5 QPSK 449 0.8770

6 QPSK 602 1.1758

7 16QAM 378 1.4766

8 16QAM 490 1.9141

9 16QAM 616 2.4063

10 64QAM 466 2.7305

11 64QAM 567 3.3223

12 64QAM 666 3.9023

13 64QAM 772 4.5234

14 64QAM 873 5.1152

15 64QAM 948 5.5547

LTE and by other technologies. In Europe, mobile operators have over 600 MHz of spectrum available

for LTE, including the 800 (LTE800), 900, 1 800 (LTE1800), 2 100 and 2 600 MHz bands (LTE2600).
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Table 2.2: Cell Bandwidth.

Total Bandwidth #Resource Blocks #Sub-carriers Occupied Bandwidth Usual Guard Bands

1.4 MHz 6 72 1.08 MHz 2×0.16 MHz

3 MHz 15 180 2.7 MHz 2×0.15 MHz

5 MHz 25 300 4.5 MHz 2×0.25 MHz

10 MHz 50 600 9 MHz 2×0.5 MHz

15 MHz 75 900 13.5 MHz 2×0.75 MHz

20 MHz 100 1200 18 MHz 2×1 MHz

In Portugal, ANACOM issued an auction for some of the listed bands to be used to deploy LTE. The

three major network operators in Portugal (MEO and NOS, Vodafone) bought the rights to use 29 of

the 39 lots under auction. Table 2.3 compiles the bands each operator owns. These values take the 6

MHz bandwidth that some operators already had in the 1 800 MHz band for GSM1800 into account. In

Europe, FDD is the most used duplex mode, so the frequencies presented in Table 2.1 are related to

this mode.

Table 2.3: Frequency Bands Owned By Operators. Compiled from [11] and [12].

Band [MHz] Owner Total Spectrum [MHz] Uplink Band [MHz] Downlink Band [MHz]

800

MEO

2 x 10

832 – 842 791 – 801

Vodafone 842 – 852 801 – 811

NOS 852 – 862 811 – 821

1800

MEO

2 x 20

1 710 – 1 730 1 805 – 1 825

Vodafone 1 730 – 1 750 1 825 – 1 845

NOS 1 750 – 1 770 1 845 – 1 865

2600

MEO 2 510 – 2 530 2 630 – 2 650

Vodafone 2 530 – 2 550 2 650 – 2 670

NOS 2 550 – 2 570 2 670 – 2 690

Lower frequency bands are currently used by mobile operators to provide LTE coverage. On the

other hand, higher frequency bands have a small coverage area due to the fact that signal attenuation

increases with frequency. However, these bands are also important, because they are used to increase

network capacity. In the specific case of LTE in Portugal, the 2 600 MHz and 1 800 MHz bands provide

up to 20 MHz or 14 MHz of additional capacity, respectively.

2.1.5 LTE Scheduler

This section also considers the information in [13].

One important component of the LTE system is the scheduler. Since in LTE resources can be allo-

cated both in frequency and time domains, this component is responsible for distributing the RBs by the

UEs. In the Figure 2.9 it is represented an example of how the resources can be allocated.
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This component is not standardized, which means that each operator defines the way they want

to distribute the resources. Despite the operators being able to choose how RBs are allocated, these

allocation policies can be divided in three types:

• Type 0: Policies are of type 0 when the BS collects the resource blocks into Resource Block

Groups (RBG), which are assigned individually using a bitmap;

• Type 1: These policies can assign individual resource blocks within a group, but have less flexibility

over the assignment of the groups themselves. Allocation type 1 might be suitable in environments

with severe frequency-dependent fading, in which the frequency resolution of type 0 might be too

coarse;

• Type 2: This type is used when UEs require a constant number of RBs for a certain amount of

time, the BS gives a continuous allocation of Virtual Resource Blocks (VRBs).

Figure 2.9: Resource Block Allocation. Adapted from [10].

These are some examples of generic schedulers:

• Maximum Throughput Scheduler: The network tries to exploit channel variations to maximize

the cell throughput. This scheduler starts by satisfying completely the users who have the best

channel conditions. As a result of this policy, the users end up with very unbalanced resource

allocation, which may lead to a starvation of some users.

• Blind Equal Throughput Scheduler: This policy distributes the resources in a Round Robin

approach. The main disadvantage of this scheduler is that it distributes the resources in a very
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inefficient way. This scheduler also creates large discrepancies in the service distribution. Users

with the same number of resource blocks but different distances to the BS will get very different

throughputs.

• Proportional Fair Scheduler: This scheduler tries to balance the two previous schedulers by

allocating resources taking into account both the maximum rate achievable by a UE, and the av-

erage rate the UEs get. This scheduler tries to achieve a situation where all users end up with a

throughput closer to the global average.

Mobile operators can then build more complex and proprietary allocation policies trying to improve

user throughput, user delay, user fairness and other operator specific metrics. The scheduler takes as

input several indicators about their UEs in order to make the decisions about resource allocation. One

of those indicators is the CQI which, as discussed, is also used to define the signal modulation.

2.1.6 Capacity

Considering resource allocation is organized in RBs, this is also the way LTE’s capacity is measured.

Moreover, to translate the number of RBs available into the number of users the system can serve it is

important to know how many resource blocks each user needs. The number of RBs available is depen-

dent on the available bandwidth (Table 2.2), which is a result of assuming each RB is composed of 12

sub-carriers and each sub-carrier occupies 15 KHz. An approximate relation between LTE’s bandwidth

and the number of resource blocks is given by the expression:

NRB =
Bch[kHz]

BRB[kHz]
×
PBch[%]

100
, (2.1)

where:

• NRB : number of RB;

• Bch[kHz]: channel’s bandwidth ;

• BRB[kHz]: RB’s bandwidth, which is 180 kHz;

• PBch[%]: channel’s bandwidth used percentage, ∼ 90%.

Once the number of RBs each user gets is known, we have to assess the amount of information

each resource block can transport to compute the throughput. This quantity depends on the modulation

used, which depends on the quality of the radio channel. This constrains will result in a different spectral

efficiency for every user. Claude Shannon defined a theoretical maximum for the spectral efficiency:

Rb,max[bit/s/Hz] = log2(1 + ρN ), (2.2)

where:

• Rb,max[bit/s/Hz]: maximum data rate per hertz;
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• ρN : SNR (in linear units).

This is a theoretical value. Figure 2.10 shows the exact relation between the SNR and the obtained

throughput depending on the used modulation. As expected, each modulation requires a minimum level

of SNR to be usable, and none of the modulations can reach the Shannon curve (in black), which is the

theoretical value we use.

Figure 2.10: Throughput per SNR by modulation. Retrieved from [14]
.

2.1.7 Services and Performance Parameters

Mobile networks give support to many services and the throughput requirements are very different from

one to another. In the Figure 2.11 there is an illustration of the prevalence of these different services.

The high demand for services that consume a big amount of data was already clear in 2017 with video

being 55% of all mobile data consumption, however, Ericsson predicts that this trend will keep increasing

up to 75% in 2023.

Figure 2.11: Traffic by service. Retrieved from [1].

3GPP divided services into 4 classes: Conversational, Streaming, Interactive and Background. Table

16



2.4 presents the main characteristics/requirements of the services in these categories. These classes

are used to prioritize the data flows, allowing eNBs to treat data traffic differently, even if it is originated

in the same device.

Table 2.4: Service Requirements. Adapted from [6].

Service Real-Time Symmetric Delay Buffer Example

Conversational Yes Yes Minimum, Fixed No Voice

Streaming Yes No Minimum, Variable Yes Video

Interactive No No Moderate, Variable Yes Web Browsing

Background No No High, Variable Yes E-mail

A good network planning should take these categorization into account, studying what kind of ser-

vices will be more required by the users. One way to predict the different demands is to assess what kind

of mobile terminals will be more used in a cell. For example, if the cell is near a stadium or a garden,

probably there will be more mobile phones than tablets, if it is an office area probably there will be a

large amount of computers using mobile services. Since some kinds of services are much more used in

certain devices than others, it is possible to make a global estimation of service usage in a cell. Figure

2.12 is a good illustration of the different consumer habits by device.

Figure 2.12: Average mobile data traffic volumes by application category and device type. Retrieved
from [15].

Once the distribution of demands by service is estimated, it is important to know exactly how much

these services will be consuming. In the Table 2.5 there are some examples of some services, their

service class, and their approximate minimum, medium and maximum throughput.
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Table 2.5: Throughput By Service. Extracted from [16].

Service Service Class
Throughput [kbps/s]

min med max

VoIP Conversational 8 32 64

E-mail Background 10 100 1333

M2M
Smart Meters Background - 200 -

e-Health Interactive - 200 -

File Sharing Interactive 200 1600 4 444

Video Streaming Streaming 500 5000 10 000

2.1.8 Relaying

Relaying is the technique in which by the addition of network nodes we complement the network of

eNBs. This allows expansion of coverage or increase of capacity. Early relays were functioning as

simple repeaters. Compared with the deployment of a full base station they had lower costs, since they

involved no baseband processing, no backhaul network installation nor subscription fees for access to

the fixed public network. However, they presented some disadvantages: they repeated and amplified

interference, and, since they operated independently from the radio access network, they required a

separate Operation and Maintenance functionality.

Modern relays in 4G designated Relay Nodes (RNs), are network nodes connected wirelessly to

a source eNB. Since they are under the full control of the radio access network, they allow similar

monitoring and remote control capabilities as for an eNB. The drawback of this control is the additional

delay introduced.

Figure 2.13 shows the terminology relating RNs that 3GPP introduced:

• Donor eNodeB/cell: The source eNodeB/cell from which the NR receives its signal.

• Relay cell: The coverage area of the RN.

• Backhaul link: The link between the donor eNodeB and the RN.

• Access link. The link between the RN and a UE.

• Direct link. The link between the donor eNodeB and a UE.

• Inband/outband. An inband RN uses the same carrier frequency for the backhaul link as for the

access link; otherwise, the RN is said to be outband.

• Half/full duplex. A half-duplex RN cannot receive on the backhaul link at the same time as trans-

mitting on the access link, and vice versa, whereas a full-duplex RN has sufficient antenna isolation

to be able to operate without this restriction. This distinction applies to inband RNs only, since out-

band RNs are always full-duplex.
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• Donor and coverage antennas. At the RN, the donor antenna(s) are used for the backhaul link,

while the coverage antenna(s) are used for the access link. In some cases, the physical donor and

coverage antennas may be the same.

Figure 2.13: Relay Terminology. Extracted from [2].

Backhaul’s link on inband RNs consume radio resources, thus reducing the capacity of the RN. When

RNs operate in half-duplex, there are also other complications for the system design. On the other hand,

outband relaying with full-duplex operation increases the relay cell capacity and simplifies the system

design. This comes at the expenses of the system cost since the last configuration requires two isolated

antennas, and the availability of a second carrier frequency.

Overall, the main benefits of installing a RN over an eNB are the reduction of the infrastructure and

the operational costs. RNs do not require any wired or microwave backhaul connection to the network,

avoiding a significant part of the network’s CAPital EXPenditure (CAPEX) and OPerational EXPenditure

(OPEX).

RNs can belong to one of three categories, depending on the functionality layers they provide. Layer

1 RNs are simple repeaters and may include some baseband processing such as Forward Error Cor-

rection (FEC). Layer 2 RNs provide Medium Access Control (MAC) functions such as scheduling. Layer

3 RNs have their own PCI signalled by the PSS/SSS, and all of Layer 1 and Layer 2 functions are

supported by the RN.

In Figure 2.14 are illustrated examples of some use cases for relaying. Relays can be used for cell

coverage extension, where the RN is placed near a cell coverage limit to extend the coverage of the cell;

they can be used for outdoor capacity boost, where the RN is placed inside the cell limits to provide a

capacity boost in particular areas of the cell (hotspots), in which there are an unusual number of users;

they can be used to provide indoor coverage enhancement where the RN is placed inside buildings;

they can be used for dead spot mitigation, where the RN is used for filling coverage holes inside the

macro network; they can be used for temporary deployments to provide an extra coverage or capacity in

situations like special events or emergency deployments; and finally, they can be used for group mobility,

where the RN is placed inside a bus or a boat to provide service to passengers. Since the RN is capable

of using a more powerful signal, operations like handover are more efficient and users spend less battery

on their devices.
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Figure 2.14: Relay use cases: (a) cell coverage extension; (b) capacity boost; (c) indoor coverage
enhancement; (d) dead spot mitigation. Extracted from [2].

2.2 UAVs

This section will address UAVs. Beginning with some general considerations about the topic, then

proposing a categorization for these devices and finally explaining how they can be applied in a telecom-

munications scenario.

2.2.1 UAVs General Considerations

UAVs have been seeing a rapid technological advancement in the last years. This is largely explained

by the high amount of applications these devices can have. Usually UAVs are adapted to the specific

task at hands, which makes them highly specialized and efficient tools. This is the reason why there are

so many different types of drones. Recently UAVs have become object of high interest for the general

population due to their recreational utilities, and for businesses because of their versatility. This has

caused a boom in the UAV market, banalizing the technology.

UAVs are being studied and built since as early as prior to the ending of the World War I [17].

Although at this point a remote pilot was still necessary. Nowadays, almost all the control functions of

an UAV can be delegated to an auto-pilot.

Modern UAV controller systems are turning possible the collaboration between several drones, mak-

ing them aware of neighboring drones so they can work together to serve a joint purpose. Depending

on the complexity of the collaboration, some centralized controller may be needed.

The deployment of UAVs in different telecommunications scenarios seems promising. Harvard Busi-

ness Review [18] launched a video giving some examples of areas where they believe UAV deployment

is promising to reduce operational costs and times. The examples portrait uses going from cell tower

inspections, to deployment of cell-drones to increase mobile network operation.
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2.2.2 UAV Types

In [19] authors revised the literature on UAV, creating a comprehensive revision of literature on this topic.

Although categorizing drones is not easy because of their very disparate characteristics, they were able

to categorize UAV into two important classes: Heavier-than-air, and Lighter-than-air. The first class was

then divided by Wing types and Rotor types. Figure 2.15 shows this categorization. The next paragraphs

notes the main differences between these different types.

Figure 2.15: UAV Types. Adapted from [19].

All the rotor type UAVs use rotors to propel themselves in the air. They differ in the amount of rotors,

which results in different degrees of stability, rotor redundancy and in the amount of time they can stay in

the air due to battery capacity. Comparing to the other categories they are one of the most agile type of

drone, capable of changing direction and speed very fast, but also the ones that consume more energy

to stay in the air.

The fixed-wing UAVs, compared to multi-rotor drones, are a lot more energy efficient and can glide

even after their rotors stop. This makes them safer and capable of maintaining themselves in the air for

a longer period of time. However, this type of UAV requires a larger space for take-off and landing, and

they are unable to hover over a specific location.

The flapping-wing UAVs are usually a hand size. They generate lifting and forward force by flapping

their wings in an bird like way. However, usually they are not able to carry a lot of weight.

The Lighter-than-air type of drone uses a compartment filled with hot hair or helium to generate lifting

force. There are several systems that can be applied in this kind of drones to give them manoeuvrability.

Among them are rotors and ionic propellers.

2.2.3 Applying UAVs in Telecommunication Networks

Applying UAVs to telecommunications seems to be a logical step, in [20] the authors studied the use

of UAVs in emergency scenarios. Although they conclude that UAVs are generally a good fit for these
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scenarios, they raise relevant questions about power consumption in these peculiar situations where

basic infrastructures may be compromised.

In [21] the authors studied the relaying in tactical situations, proclaiming increases by a factor of two

in throughput, and by 67% in connectivity when compared to the ad hoc ground network without using

UAVs.

In [22] and [23] the authors focused on studying the impact of altitude in the UAV performance

assuming the drone-cells are isolated from other base stations. The altitude of the drone is responsible

for an important trade-off between achieving a Line of Sight (LOS) radio channel with the users, which is

more probable with higher altitudes, and achieving a lower path loss, which is lower at smaller distances,

hence, lower UAV’s altitudes.

In [24] the integration of drone-cells in the existing LTE network is addressed, making the case that

this is not a simple task, and ending up suggesting a multi-tier approach to this problem where high level

UAVs, flying at a higher altitude, give support to lower level UAVs. They also envision a decoupling of this

activity (UAV deployment) from the current network providers, and becoming themselves infrastructure

providers and mobile virtual network operators providing services to the current network operators.

In [25] a clustering algorithm of type K-Means is used for addressing the problem of UAV localization

in a scenario where UAVs and fixed based stations coexist. This paper simulates, discusses and com-

pares scenarios where there are only macrocells, planned or random picocells, and finally a scenario

where UAVs are deployed alongside macrocells.

2.3 Genetic Algorithms

A GA is a meta-heuristic algorithm. These type of algorithms are generally used to solve optimization

problems. They use a combination of random choices and knowledge of previous results to address

the search space. GA, more specifically, is a type of algorithm that takes advantage of the principles of

nature’s genetic evolution to do this. This type of algorithms have been being studied since the 1950s.

Since they were discovered they have been used to solve a wide range of optimization problems. This

section is based in [26] and [27].

2.3.1 Components

Many of the mechanisms used in these type of algorithms are stochastic, which presents a challenge

to the analysis of those mechanisms. There are many decisions relating the implementation of such

algorithms that divide the scientific community.

The higher level component of genetic evolution is the generation. Generations are composed of

individuals. Those individuals have genetic material that determines the characteristics/traits of each

individual. This genetic material is organized into chromosomes and genes, one individual has one

or a group of chromosomes, which are composed of genes. The gene is the most basic component of

genetics, this structure stores the information about one specific trait of its individual. Making an analogy,
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if it were a human, the individual would be a specific person, and a gene would encode a specific trait of

that person, for example it’s hair color. According to the value in that gene the person would be blond,

brunette or red haired.

In order to develop a specific genetic algorithm, we have to be able to frame our problem in a way that

we can represent it with these basic components. We must decide which part of our problem will be the

individual, what will be a chromosome, how many will there be and what information will encode each

gene. This task should not be underrated since it is known that the chosen representation will directly

impact the performance of the algorithm. Given the same problem, different authors will advocate for

different representations for the sake of two things: convergence speed and the ability to avoid locally

optimal solutions. This trade-off will be better explored further ahead, but sometimes it is as hard to

choose the best representation as it is to solve the original problem.

2.3.2 Evolution

Before one can understand how the evolution to the optimal solution works, one needs to understand

what is fitness. In nature, fitness is defined as the level of adaptation of a certain individual to its

environment. In the end, the more fit an individual is, the more likely it is to have a longer life, to

reproduce and to generate descendents. It is called natural selection to the process of elimination of

lesser fit individuals, although to be fair, they are not exactly eliminated, they simply are not chosen

to reproduce, and so in the coming generations, their specific combination of characteristics seizes to

exist. In the genetic algorithms world, the fitness value is a representation of how well a certain solution

responds to the initial problem. The bigger its fitness value the closer it is to being the optimal solution.

The design of this ranking tool, is one of the most difficult challenges in designing GAs.

The main genetic operators are the following:

• selection, how we choose individuals to reproduce;

• crossover, how does the mixing of genetic material between two parents happen;

• mutation, the random process of changing gene values.

All of these processes represent trade-offs that will be explored further ahead. That said, it is impor-

tant to notice that they are non consensual, and each one of these processes can be, and is still, object

of study by the scientific community.

Figure 2.16 shows the genetic evolution process which starts with a random group of individuals,

the first generation. Then we iterate the following process to generate the subsequent generations.

Choose two individuals from the previous generation, crossover their genetic material to generate a new

individual, randomly mutate its genes and add this individual to the new generation. Every generation

has the same number of individuals so we iterate this process until the next generation has the same

number of individuals as the first generation.

To fully understand the subtleties of the referred operators we should better understand what is

convergence speed and local optimum in the context of genetic algorithms. The convergence speed is
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Figure 2.16: Evolution Process.

the required number of iterations/generations we need to reach a stable value of fitness. In theory, one

can use this parameter to know when to stop iterating generations. In every generation one can search

for the best adapted solution, and if its value of fitness is unchanged for a large number of iterations one

can assume the optimal solution has been reached and stop iterating. Putting aside for a moment other

important factors, the time needed for this to happen is directly connected to the search space being

addressed. The larger the number of possible options for an individual, the longer it will take to reach

this optimal solution. Returning to the human analogy, this is the same as saying that the bigger the

color palette for hair color, the more iterations will be needed to reach the final solution.

Besides the convergence speed to the solution, it is important to reflect on the quality of the solution

one gets. In general, there is no certainty that a genetic algorithm will find the best solution. By definition

this is a stochastic algorithm, and so, it is possible that the algorithm converges to a local optimum by

chance and is not able to detect that it is in a local optimum. However, there are ways to improve the

odds of finding this perfect solution. One of them is to make an effort to design the genetic operators in

a way that the generations are kept with a fair amount of diversity, making sure that solutions with a low

value of fitness are not deleted as soon as they appear because they may be, globally, a bad fit for the

problem, but they may contain some of the genes present in the global optimum.
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2.3.3 Operators

The next subsections will address the various operators present in the a genetic algorithm.

Selection Operator

The selection operator intends to simulate the mating behavior of the individuals. This process is de-

signed to distribute the selection probabilities to the different individuals. In nature, the more fit an animal

is, the more likely it is to be chosen by a different gender individual to mate. The problem is that there

is no absolute rule to chose a matting partner in nature. Moreover, that seems to be a good thing over-

all, since this allows for lesser fit animals to reproduce anyway, keeping the generations with a relative

degree of variability. This variability seems to be one of the main factors behind adaptation to an ever

changing environment.

To create a new generation, we need to choose pairs of individuals of a previous generation to

crossover and generate a new individual. There are several ways we can use to select the elements

to be used in this process. According to [28] it is possible to name some categories for this selection

methods. These categories define how one should distribute the selection probabilities.

Taking that into consideration, a selection method can be dynamic, meaning the selection probabil-

ities are proportional to the actual fitness-values; or it can be static meaning the individual is selected

according to its position in the fitness ranking.

A selection method can be preservative, which attributes a non-zero probability to every element in

a generation, meaning that every element has the possibility to reproduce; or extinctive which dictates

that some elements are excluded right away from the reproduction operation.

When a selection method is extinctive, it can be left or right extinctive. If the elements with zero

probability are the low performers, we are in the presence of a right extinctive selection. If the elements

with zero probability are the top performers we are in the presence of a left extinctive selection. Although

this last category may seem counter productive, it is very useful if one wants to make sure that the

generations are kept with a certain degree of variability, thus preventing the algorithm to converge too

soon to a local optimum.

Aside from the distribution of probabilities, it is possible to define a selection method as being elitist

or pure. In the elitist method, some of the top performers skip the reproduction process and are directly

included in the next generation.

Fitness Function

In nature, the fitness of an individual is its capability of enduring its environment. In genetic algorithms,

the fitness function is the ranking tool used to distinguish the individuals that better answer to the initial

problem, from those who do it worse. The more accurate the fitness function is, the best our final solution

will be.

There are several phenomenons that can turn a fitness function inaccurate. In some situations there

may be no known fitness function that correctly assesses the individual’s fitness; some simplifications of
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the fitness function may be required in order to keep its complexity between some defined limits; noisy

information can disturb the accuracy of the fitness function.

Crossover Operator

Another important aspect of the reproduction is how the genes of the two parents are mixed up in order

to generate offspring. It is important not to forget that the issues surrounding this operation are different

whether a binary representation is used or not.

When a binary representation is used, the simplest way to implement this operation is to choose

a random point in the chromosome and all of the genes before that point are copied from one parent,

and all the others are copied from the other parent. This implementation is overall correct, however,

there are some things to consider, since there are some combinations that are not possible with this

implementation. For example, it is not possible to combine 11*****1 with ****11** to create a 11**11*1.

Another effect of this implementation is that some genes are treated differently from all the others. For

example, every segment exchanged has the top genes of the parents. This means that a priori one

can tell that the first gene will be from one parent, and the last is from the other. This is the reason

some people choose to implement a two point crossover operation. In this case, two points of the chain

are chosen and the segments between them are exchanged. Lastly, it is important to check if it makes

sense, in a specific implementation, to allow a gene to be cut in half in this operation.

Although these considerations are specific to a binary representation, some of them are still valid

in other representations. In these other representations there may be specific considerations to make,

there may be the case where a specific crossover creates a descendent that doesn’t make sense, or it

is not valid. In these cases, the crossover operation may be a very specific and different operation.

Mutation Operator

The last important operator in GA is the mutation. Along with crossover it is the main instrument of

disruption and innovation in an evolution process. This operator is one of the things that keeps the

evolution process from finding a local optimum. The balance of amount of mutation and crossover is

extremely important to the convergence speed/global optimum trade off.

2.3.4 Stop Conditions

There is one more factor of GAs that needs to be addressed, which is the stopping condition. There

are several ways that can be used to define this condition. Firstly, one can impose a limit to the number

of iterations the algorithm runs. Then, one can impose a limit to the time the algorithm is running. And

finally the algorithm can stop when the chance of achieving a significant change in the fitness values is

very low.

The first two options require a knowledge about the problem to allow the estimation of a reasonable

maximum number of iterations or time. This means that these values will vary for each GA.
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The third option is adaptive, this means that depending on the specific GA it will yield a different stop

condition. However, determining the chance of achieving a significant change is also not an easy task.

According to [29] the concept of convergence can be divided in two. In can be genotypical or phe-

notypical. In the first, the alleles are evaluated, and if ε % of the population has the same value on that

allele, they consider the population to have converged and stop iterating. Of course ε has to be high

and pre-determined. In the second the stopping condition uses, for example, the fitness value, which is

dependent on the phenotype, and when it reaches a pre-determined ε it stops iterating.

2.4 K-Means Drone Disposition Algorithm

K-Means is a well known clustering algorithm, which works by minimizing the distance of all the points/UEs

to the clusters’ centroids coordinates. However, it is possible hat this algorithm finds local optima, and

there are several factors that can contribute to making this local optima as close as possible to the global

optimum. That is the reason why there are some possible variations in its implementation. One of the

things that is known to affect the probability of finding the optimal solution is the initialization. For this

reason this work implements a variation of K-Means called K-Means++. This algorithm will be used as

a baseline for the GA, and the specific implementation details were based in [30], [25] and [31].

This solution wishes to assign all UEs in U to K clusters, where U are the coordinates of the UEs

U = {u1, u2, ..., un}. Given a set of points X = {x1, x2, ..., xn}, a Voronoi region is defined as

ri = {w ∈W :‖ w, xi ‖<‖ w, xj ‖ ∀j 6= i}, (2.3)

where ‖ . ‖ denotes the Euclidean distance, and W is the set of points that make up our scenario.

The UE cluster si ⊂ U is the set of UEs which are located inside of the associated Voronoi cell

si = U ∩ ri. (2.4)

The centroid of si is defined as the mean coordinates of the UEs belonging to the cluster, which is

defined as

µi =

∑
u∈si u

| si |
. (2.5)

The goal is to select the points X which generate Voroni regions and UE clusters such that

min

K∑
i=1

∑
u∈si

‖ u, µi ‖, (2.6)

The general flow of the algorithm is depicted in Figure 2.17. The major difference between K-Means

and K-Means++ is in the initialization. While in the first the initial position of clusters is chosen at random,

in the second they are chosen in a way that they are the farthest away possible from each other. To

achieve this result, the first cluster takes the coordinates of one random point. Then, we recursively

choose the point that is farthest away from any cluster to be the next cluster.
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Figure 2.17: K-Means++ high level architecture.

One of the parameters defined in the initialization process is the number of clusters. Since the end

goal is to use the cluster’s coordinates for drone positions, we will try to create clusters with a number of

UEs which drones can fully serve. Since K-Means generates clusters with expected N/K UEs, where

N is the total number of UEs and K is the number of clusters, then K = N/M , where M is the drone’s

capacity. Let D be the number of available drones, since D 6= K a final step will be required to select

the clusters that will be used as drone coordinates.

After initialization, K-Means iterates through all UEs recursively and allocates UEs to the closest

cluster, every time an allocation like this takes place, the coordinates of the clusters are updated to be

the mean value of the coordinates of all it’s UEs. This process is represented in Figure 2.17, but is

divided into two sub-processes: the Optimal-Transfer (OPTRA) and the Quick-Transfer (QTRAN). The

detailed steps of this two processes can be found in [30], but in short, in the OPTRA stage the position

of UEs is compared against all clusters and in the QTRAN the UE’s position is only compared with the

two closest clusters.

In the Figure 2.18 we can see the evolution of the algorithm. Each color represents a cluster, the

smaller dots are the UEs and they are represented in the color of their final cluster. Each big dot

represents the position of the cluster’s centroid in one of the iterations. The last iteration, with the final

positions, has a black square on it.

Returning to Figure 2.17, the last step of K-Means++ algorithm before terminating is the selection of

the clusters to become drone’s positions. This process is necessary because it is assumed the algorithm

will be used in a situation where it is not possible to offload all UEs from the macrocell to the drones. If

that is not the case, simpler algorithms could be used. In order to maximize the efficiency of the drones,

we should select those clusters serving more UEs, and those furthest away from the macrocell. This is

the same as saying that since we are spending resources in deploying a drone, we want it to be used at

full capacity, either serving more UEs or providing a better signal to UEs further away from a macrocell.

To achieve this goal, the clusters must be ordered by relevance. Therefore two values are determined

for each cluster j: the cardinality of cluster j and the distance of j’s centroid to the nearest macrocell.

These values are used to create two ordered sets of clusters. Next, nj is used to denote the position

of cluster j in the set ordered by j’s cardinality and dj to denote the position of j in the set ordered

by the distance of j’s centroid to the nearest macrocell. Finally, a weighted sum of these two scores is

generated as vj = αnj+(1−α)dj , where 0 <= α <= 1 is the weighting factor. Once vj is calculated, the
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Figure 2.18: Evolution of K-Means++ Algorithm.

clusters are ordered by this quantity and the first D cluster’s centroids are selected to be the coordinates

of the drones. The result of this selection process is depicted in Figure 2.19 where the clusters repre-

sented in black are ignored and don’t become UAV coordinates. As expected, since in this simulation

there was a BS in the right side of the scenario, the colored clusters, that become UAV coordinates, are

the ones that have a bigger amount of users, and/or are furthest away from the base station.

Figure 2.19: Cluster selection of K-Means++ Algorithm.

The time complexity of the K-Means algorithm is given by O(MNKI), where M is the number of

points, N is the number of dimensions, K the number of clusters, and I the number of iterations.
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Chapter 3

Optimization of Relay UAV Placement

3.1 System’s Architecture

Figure 3.1 shows the general architecture of the proposed solution. The first thing to take into consid-

eration is that, although there are two representations of the eNB, the functions they perform can be

performed on the same eNB.

Figure 3.1: Architecture of the system.

In order to control the positioning of the UAVs the network would need an UAV Controller which would

be located in the donor eNB. This element is the one that knows the UAV current coordinates, and, upon

receiving the desired UAV Positions, can instruct the UAVs to move accordingly.

The decision about the UAV coordinates would take place in a cloud based service. This would allow

the network operator to dynamically allocate resources to the application running the algorithm. The

amount of processing resources the algorithm needs will depend on the amount of users being served

at a current time, so, it is useful to dynamically change this configuration.

The GA is the algorithm chosen to perform the decisions about the UAV coordinates. In order to

achieve this result, the algorithm needs three elements: the UE positions, the UE Data Rate (DR)

requirements and the BS Positions.
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In LTE, the resource allocation for each user works by increasing the number of RBs allocated to

a UE until either the user is satisfied, or the scheduler maximizes the RBs to that user. Because of

this policy, when a user requests service, the network does not know right away what is the DR that a

UE needs. This is a metric that is constantly being adapted throughout time. In order to perform this

estimation, a DR Estimator would be installed in the eNBs which would be constantly predicting the DR

each user needs. The position of the UEs would also be estimated in the eNB, either by triangulation,

or by receiving that information from the UE.

Finally, the UEs connect either to the assigned UAV or, if the UAVs run out of RBs, to the nearest

BS. The RRC and DR Estimation for a certain user is located in its corresponding servicing eNB, and

the UAV Controller is the the eNB that is coordinating the UAV operation.

Figure 3.2 shows the cycle that would guide the system. Beginning in the UE, this element starts by

informing the network that it needs service and sends its coordinates. The DR Estimator, based on that

request, and if applicable, on the previous requests from that UE, calculates or corrects the UE position

and estimates the DR requirements of that UE. After the information about the UEs is complete, the DR

Estimator sends that data to the cloud to be analyzed by the GA. The GA computes the new positions for

the UAVs and sends them to the UAV Controller. The UAVs are then ordered to change their positions.

With this reallocation, the radio conditions of the UEs change and the cycle begins again with the UEs

either informing they don’t need service anymore or asking for more resources.

Figure 3.2: System Cycle.
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3.2 Genetic Drone Disposition Algorithm

In the following subsections there will be a discussion of the implementation decisions relating the Ge-

netic Algorithm.

3.2.1 Genetic Structure

As discussed in 2.3.1 the genetic algorithm is divided into 4 structural components: genes, chromo-

somes, individuals and generations. Figure 3.3 shows the logical bridge between the elements of the

problem and the genetic elements.

Figure 3.3: Genetic Structure Representation.

The genes should implement the most simple characteristic of the problem, which in our case is the

coordinates of a single drone. The coordinates are represented in bits, and the implementation makes

it possible to choose the level of granularity we want for our coordinates. This translates into changing

the number of bits used to represent each coordinate. In Figure 3.4 there is an example of two different

options for the coordinates representation. On the left, a two bits representation was chosen, and, on

the right, a 3 bits representation was chosen. This means the yellow dot is represented by 1001 and

the blue by 101100. Besides the obvious control of memory consumption, these different configurations

allow a manipulation of the trade-off between the convergence time and the precision of the algorithm.

In this case, the more bits are used, the more likely it is to get the perfect solution, since with less bits

the perfect coordinates may not be possible to represent. However, since there are more options to go

through, the more time consuming it becomes. In order to make the configuration more user friendly,

the configuration file does not require the number of bits for every coordinate. Instead, it asks for the

delta between two consecutive positions. From there, it calculates the number of bits necessary to fulfill

that requirement. Requiring the delta instead of the number of bits, allows the user to be more sensible

about what makes sense in the context of the telecommunications area.

The chromosome is the structure that holds the different genes. Every chromosome has the same

number of genes, and since each gene encodes one drone, the number of genes will be equal to the

number of drones. In our problem, each individual would have one and only one chromosome. This is

why there is no formal distinction between these two structures.
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Figure 3.4: Coordinates representation with 2 bits on the left and 3 bits in the right.

The generation represents the population at any given moment and the number of individuals in each

generation is also configurable.

3.2.2 Selection Implementation

The selection method implemented in this implementation is dynamic, because the selection probabil-

ities are proportional to the actual fitness values, and not to the position of the individual in the fitness

ranking. The selection is preservative, since every individual has a non-zero probability of being se-

lected to reproduce, and is elitist because the top performing individuals (champions) are automatically

selected to be in the next generation. The number of champions is an entry parameter.

As one can see from Figure 2.16, in order to iterate through generations it is necessary to recursively

chose pairs of individuals to generate one descendent. This procedure starts by ranking all individuals by

their fitness, then the algorithm chooses elements from the previous generation taking into consideration

their fitness. They are randomly selected, although the probability of being chosen is directly proportional

to their fitness values.

This selection is achieved by assigning to each individual a value of relative fitness:

fi =
Fi∑
i=0 Fi

, (3.1)

where:

• F : absolute fitness value;

• f : relative fitness value.

After the selection process, the two chromosomes are crossedover and generate descendants.
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3.2.3 Fitness Functions

The fitness function is used by the GA to classify the individuals. The goal is to improve the overall

number of serviced users, and maximize the DR they can obtain. To achieve this, the algorithm runs

the Telco Module for every individual and then uses the results that this module produces to classify the

UAV configurations. The Telco Module will be further explored in the next section.

Three different fitness functions are implemented:

• Served Users: classifies the configurations by the number of UEs being serviced at the same time;

• Total DR: that returns the sum of DR obtain by all UEs;

• Proportion: the sum of the proportion, obtained by each user, between the required DR and the

obtained DR:

Fi =
∑ DRobt

DRreq
, (3.2)

where:

– DRobt: Obtained Data Rate by a user;

– DRreq: Required Data Rate by a user.

The goal of the Proportion fitness function is to compromise between the two first metrics. This will

make the algorithm prefer a disposition where the UEs with low requirements get some DR and then

the UEs with high requirements are satisfied, to a disposition where the UEs with high requirements are

fully satisfied before the UEs with low requirements are assigned some service.

3.2.4 Crossover Implementation

The crossover is the operation that joins the two different chromosomes, one from each parent, in

order to create the new individual. As illustrated in Figure 3.5, the algorithm randomly chooses a point

in the gene sequence to perform the crossover. All the genes before this point will come from one

parent and all of the following will be from the other parent. As described in Section 2.3.3, it would be

possible to implement a more complex crossover process. However, since the number of genes in each

chromosome will be kept relatively small, it was not necessary.

Figure 3.5: Crossover illustration.
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There are two ways of implementing this operation. The first uses two parents to generate two

descendants, and the second uses two parents to generate one descendant. This work implements the

second option. Referencing Figure 3.5 again, in this example the algorithm chose the bottom of the

blue chromosome and the top of the yellow chromosome to generate one child. The top of the blue

chromosome and the bottom of the yellow are not used to generate another child.

3.2.5 Mutation Implementation

Mutation is an important contributor to environment adaptation. This is the mechanism that uses appar-

ently random processes to create variability and, as previously discussed, variability is very important to

generate adaptability. It is clear that mutation is important, however, it is not so obvious what is the opti-

mum amount of mutation. In order to not hard code the amount of mutation in the algorithm, the amount

of mutation is an input parameter. This parameter is divided into two sub-parameters: the mutation rate

and the mutation span.

The mutation operation is applied right after a new individual is created, after the crossover. The

mutation rate is translated in a probability of that new chromosome being mutated. The other important

factor in mutation is how different should one let the mutated gene become. Preliminary experiments

allowed to understand that if that quantity is too big, in our case, if we let the coordinates take any value,

the algorithm tends to take much longer to converge to the final solution. This is why the algorithm

implements a mutation span, illustrated in Figure 3.6, that only lets the coordinates change within a

pre-defined range.

Figure 3.6: Mutation Span.

3.2.6 Implemented Stop Conditions

There are several ways to implement the stopping conditions for the algorithm. This work implements

a stopping condition that counts the number of iterations performed, and when a pre-defined threshold

is achieved the algorithm stops. One of the other options considered was stopping the algorithm taking
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into consideration the values of fitness of the previous generations. However, this methods could require

adding complexity to the algorithm, and since the preliminary results indicated that the first option was

sufficient, this was the chosen approach.

To arrive at this conclusion, several tests were performed on the genetic algorithm with multiple

combinations of genetic parameters. In every test the conclusion was that it was possible to determine

an iteration, beyond which any significant change was unlikely.

3.3 Telecom Model

Figure 3.7 shows the architecture of the algorithm that implements the telecom model. This algorithm

starts by receiving the coordinates of all the UEs, all the UAVs and all BSs. Then it iterates through all

UEs and assigns them to the available UAVs in order to allocate all of their capacity. The remaining UEs

will be serviced by the BSs.

Figure 3.7: Telecom Model Architecture.

The algorithm implements two different schedulers for resource allocation, one for the allocation of

resources in the UAV, and another for the resource allocation in the BS.
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Figure 3.8 (a) shows the architecture of the UAV scheduler. This scheduler is a Maximum Throughput

Scheduler. Since we want to maximize the UAV usage, the algorithm starts by ordering the UEs by data

rate, serving the most greedy UEs first. For each UE, it will find the closest UAV with available resource

blocks, and allocate RBs until either the UE data rate requirements are met, or the drone runs out of

resource blocks.

Figure 3.8 (b) shows the architecture of the BS scheduler. This scheduler is a Blind Equal Through-

put Scheduler which means it will implement a Round Robin Resource allocation, providing an equal

number of RBs for every UE. It starts by assigning UEs to the closest BS, then it allocates one RB at

a time to every UE until either the UE data rate requirements are met, or the BS runs out of resource

blocks.

(a) Drone Scheduler (b) Base Station Scheduler

Figure 3.8: Resource Allocation Schedulers.

It is important for both of these schedulers to make a prediction of how much data rate the UEs are

going to obtain. There are mainly three links that need to be addressed for this porpuse. The first one is

the link that will offload the UAVs (Backhaul Link), this link will be in LoS, and will be assumed to have

enough capacity to offload the UAV necessities. Then, the Direct Link will either be provided in LoS by an

UAV, or, in most cases, by NLoS by the BS. The following subsection will discuss both implementations.

Propagation Models

The goal of this sub-section is to describe how one can arrive at the data rate a UE obtains. This sub-

section is based in [6] and is implemented in the Telecommunications Module. To arrive at this value

one needs to calculate some quantities, the first one is the available power at the receiver, which can be

obtained as:
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Pr[dBm] = Pt[dBm] +Gt[dBi] +Gr[dBi] − Lp[dB], (3.3)

where:

• Pt[dBm]: transmit power;

• Gt[dBi]: gain of the transmitting antenna;

• Gr[dBi]: gain of the receiving antenna;

• Lp[dB]: path loss.

The gains strongly depend on the type of the antenna. While for transmitting antennas the gain

ranges from 15 to 21 dBi, the receiving antennas generally present gains from -5 dBi up to 10 dBi. The

used gains in the simulator were respectively 15 dBi and 0 dBi. As for the transmit power, values range

from 43 up to 48 dBm. We assumed BSs transmitted at 48 dBm and the UAVs transmitted at 43 dBm.

The path loss for the LoS links, considering the average power decay, is given by:

Lp[dB] = 32.44 + 20 log(d[km]) + 20 log(f[MHz]) + 10 apd log(dkm), (3.4)

where:

• d[km]: distance;

• f[MHz]: frequency;

• apd: average power decay, 2.

For the NLoS links the path loss can be calculated using the Okumura-Hata model, since the scenario

presents itself as an urban or suburban. The deployment of drones intends to increase capacity, so it is

expected that operators choose to use the frequency bands that give the most capacity, the 1800 MHz

and the 2600 MHz. Since Okumura-Hata only models scenarios with frequencies ranging from 150 MHz

to 2000 MHz, we opted to use the extension COST 231 to Hata’s model which models scenarios with

frequencies raging from 1.5 GHz to 2 GHz, which includes the two higher frequency bands. According

to this model, the path loss can be calculated from:

Lp[dB] = 46.30 + 33.90 log(f[MHz])− 13.82 log(hbe[m])

+ [44.9− 6.55 log(hbe[m])] log(d[Km])

−Hmu[dB] + Cm[dB]

−
∑

correctionfactors,

where hbe[m] is the effective height of BS antenna;

Cm[dB] =

0, smallcity;

3, urbancentres;

(3.5)
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Hmu[dB] =


[1.10 log(f[MHz])− 0.7]hm[m] − [1.56 log(f[MHz])− 0.8], smallcitty;

8.29 log2(1.54 hm[m])− 1.0, f ≤ 200MHz, large city;

3.20 log2(11.75 hm[m])− 4.97, f ≥ 400MHz, large city;

(3.6)

where hm[m] is the UE’s height.

To apply this model to an area that is somehow open spaced, we applied the correction factor for

quasi open areas Kop, which for our transmitting frequencies yields 23 dB.

Link Capacity

An estimation of the data rate obtain by the UE can be obtained by:

rb = Bav[kHz] ×Rb,max[bit/s/Hz], (3.7)

where:

• Bav[kHz]: is the available bandwidth for a specific UE;

• Rb,max[bit/s/Hz]: maximum data rate per hertz.

As mentioned in the subsection 2.1.6 the Rb,max can be calculated by 2.2, and the Bav is a result

of the amount of resource blocks allocated to the UE. Manipulating the expression 2.1 we arrive at the

UE’s available bandwidth given by:

Bav[kHz] = NRB ×BRB[kHz] ×
100

PBch[%]
, (3.8)

where PBch[%] is the maximum data rate per hertz.

The Signal to Noise Ratio (ρN ), is a function of the signal power received and the noise and interfer-

ence:

ρN =
Pr[W ]

N[W ] + I[W ]
, (3.9)

where:

• Pr[w]: power received;

• N[W ]: thermal noise;

• I[W ]: interference.

We will assume a very low interference in comparison with the thermal noise due to the LoS and an

efficient management of radio resources.

Finally, the thermal noise is given by:

40



N[W ] = K[m2 kg s−2 K−1]T[K]Bav[Hz], (3.10)

where:

• K[m2 kg s−2 K−1]: boltzmann constant, 1.38064852x10−23 m2 kg s−2 K−1;

• T[K]: temperature = 25.

3.4 Simulator

Figure 3.9 illustrates the general architecture of the developed simulator which was completely devel-

oped in Java. The blocks in blue are algorithms and will be addressed individually in the following

sections. Initially, the simulator creates the UE disposition inside the scenario dimensions. The scenario

is a rectangle with customizable dimensions, and the first task of the simulator is to generate positions

and data rate requirements for UEs; this creates a UE disposition. Once that is done, the UE disposi-

tion is used by two algorithms which output a drone disposition each. The end goal is to compare the

performance of these two drone dispositions.

Figure 3.9: Simulator’s architecture.

In order to compare the two drone dispositions, the simulator calls the Telco Module that receives the

position of the drones and calculates the quality of signal received by each UE. With these parameters

is possible to estimate the resulting data rate for each UE.
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3.5 Simulator’s General Components

The simulator’s scenario is composed of a rectangle with customizable dimensions. This is the area

where UEs are deployed. A UE has a set of coordinates and a data rate requirement, all UEs are

assumed to be consuming network resources. In a real situation, not all UEs are using the network at

the same time, so, from the simulator’s point of view, it is as if those UEs don’t exist. The drones will also

be deployed inside this window. It is also possible to include a representation of one or multiple Base

Stations (BS)/macrocells, however, the coordinates of these elements may be outside this window to

include the possibility of the existing BSs being farther away. These BSs will serve the users that cannot

be served by the UAVs.

The simulator assumes the existence of fixed based stations that will provide the Backhaul link for

the UAVs. Both the BSs and the relay UAVs are assumed to be able to use the full bandwidth assigned

for the LTE’s operation. The relays are Outband and Full Duplex since they can communicate with the

UEs and the Donor BS at the same time.

This work intends to make use of the different data rate requirements of UEs to more efficiently deploy

the relay drones. The Table 2.5 shows the expected data rates for the different services the network may

provide. We have decided to implement three categories of data rates for UEs: low demand, medium

demand and high demand, and they will respectively be represented by 32 kbps/s, 200 kbps/s and 5

Mbps/s.

3.6 UE Disposition Algorithm

Representing the UEs uniformly distributed in the ground would be unrealistic since in reality there are

some areas that have a bigger density of people than others. Taking that into consideration, the simulator

uses a Poisson distribution to generate the UE’s positions. It assumes some UEs will be agglomerated

in small groups, or hotspots, and then distributes the remaining UEs uniformly throughout the scenario.

Figure 3.10 depicts the architecture of this process.

This algorithm starts by randomly generating coordinates for the hotspots and UE coordinates within

the hotspot radius. Once all hotspots are generated, the remaining UEs are generated uniformly in the

scenario. As one can see in Figure 3.11, the algorithm receives as arguments the total number of UEs,

the number of hotspots, the radius of the hotspots [m] and the average number of UEs per hotspot.

The number of UEs in each hotspot will be the result of a Poisson distribution with the average

provided as an input argument.

For the distribution of DR requirements, two possible implementations were considered: Uniformly

Distributed and Non-Uniformly Distributed. In the first case, the three possible levels for DR are dis-

tributed uniformly throughout the scenario.

In the second case, a random point is chosen from one of the corners of the scenario, then three

circles with different radii are drawn around that point, as it is depicted in Figure 3.12 (a). These will

represent areas of a certain type of data rate requirement, one for each of the three possible values.
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Figure 3.10: Poisson UE Disposition Algorithm Architecture.

When a user falls in one of those areas, it will be more probably assigned the respective data rate. The

radiuses of these circles are chosen in a way so that every colored area has the same area. If a UE is

inside one of those areas it has 50% probability of getting the level corresponding to that area and 50%

probability of getting a random level of DR. If a user is not inside any the colored areas, it has equal

probability of getting one of the three levels.

The Non-Uniform User Disposition was implemented to more realistically represent data rate re-

quirements throughout the scenario. The assumption is that there are areas in the space that constitute

hotspots, where the UEs require higher data rate. This can happen, for example, because there is some

event happening in a specific place, or because there are groups of people more prone to require large

amounts of data rate.

The output of this process is a list of UEs, each containing two coordinates and a data rate re-

quirement in bit/s. Figure 3.12 (b) shows an example of an output from the UE Disposition Algorithm

Non-Uniformly Distributed. This configuration has 300 UEs, 5 hotspots and, on average, each hotspot

has 20 UEs. The color of the points represents the different data rate requirements of each UE: red UEs

have the higher data rate requirements, the green UEs have the lower data rate requirements and the

yellow UEs have a medium data rate requirements.
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Figure 3.11: Poisson UE Disposition Arguments and Outputs.

(a) Data Rate Areas (b) User Disposition Example

Figure 3.12: User Disposition.
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Chapter 4

Simulation Results

This chapter presents the simulation results of this work. First, all the experiments relating the tuning of

the GA will be shown, these experiments allowed to set the GA’s parameters. Then, all the parameters

for the scenario and user disposition are presented and justified. Finally, the results are shown and

discussed.

4.1 Configurations

In order to properly deploy the simulations, the simulator requires the input of some specifications. The

specifications are divided into categories and in the following tables (one for each category) there is the

name, unit and description of every such configuration. In some cases, the value of the configuration is

transversal to every simulation. In those cases, the used value is also depicted.

Scenario Configurations

Table 4.1 shows the possible scenario configurations. This allows for the configuration of the dimensions

of the rectangular box where UEs and UAVs will be deployed. The only elements that can be outside

this range are the BS/macrocells. The coordinates for these elements are defined in the Macrocell

Configurations.

Table 4.1: Scenario Configurations.

Name Unit Description

X dimension m x maximum value for the scenario

Y dimension m y maximum value for the scenario

Macrocell Configurations

Table 4.2 shows the possible macrocell configurations. This configuration contains the coordinates of

every macrocell. The transmit power can also be overrun here, but this parameter is not mandatory and
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is 48 dBm by default.

Table 4.2: Macrocell Configurations.

Name Unit Description

X coordinate m x coordinate of macrocell

Y coordinate m y coordinate of macrocell

Power dBm transmit power of the macrocell antenna

Drone Configurations

Table 4.3 shows the possible drone configurations. There is a drone capacity entry, however, it is im-

portant to stress that the drone capacity is calculated in run time depending on the users’ data rate

requirements. This variable is used to select the number of clusters to be calculated in the K-means++

algorithm.

Table 4.3: Drone Configurations.

Name Unit Description

Quantity - Number of available drones

Capacity - Number of users each drone can serve

User Disposition Configurations

Table 4.4 shows the possible user disposition configurations. These configurations are used for the

Uniform User Disposition and the Non-Uniform User Disposition. The hotspots are areas where there

will be a greater concentration of UEs and the size and concentration of UEs can defined here. The

average parameter will be used by a Poisson Distribution to define the number of users in each hotspot.

Table 4.4: User Disposition Configurations.

Name Unit Description

Quantity - Total number of users

H quantity - Total number of hotspots

H radius m Hotspot’s radius

Average - Average number of users per hotspot

Telco Configurations

Table 4.5 shows the possible configurations for the telco model. The values depicted for the Frequency

and Bandwidth were selected according to the Table 2.3, and we decided to use one of the LTE’s

bandwidths that provide higher capacity, more specifically the 1800 band, because those bands are the

more likely to be used in these kind of scenarios.
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Table 4.5: Telco Configurations.

Name Unit Description Value

Transmission Power dBm Antenna’s transmission power 23

Transmission Gain dBi Transmission antenna’s gain 15

Reception Gain dBi Reception antenna’s gain 0

Frequency kHz Signal’s central frequency 890 000

Bandwidth kHz Signal’s bandwidth 20 000

Temperature K Temperature 303.15

GA Configurations

Table 4.6 shows the possible genetic algorithm configurations. These values were obtained via experi-

mentation. The Size parameter was also determined experimentally. This should always yield a seven

bit per coordinate value, but, since one can only know which size yields that number of bits when the

size of the scenario is known, this parameter was left blank here.

Table 4.6: Genetic Configurations.

Name Unit Description Value

Mutation Rate % Probability of gene mutation 30

Mutation Span % Possible variability on mutation 50

Population Size - Number of individuals in each generation 50

# Champions - Number of individuals to pass unchanged onto next generation 3

Size m Distance between two consecutive positions -

4.2 GA Experimental Parameters

The results of a GA are dependent on the right configuration of its parameters. Since there is no rule to

define these values, this section explains how they were obtained experimentally.

4.2.1 Evolution

Before performing any relevant simulation, some preliminary results were assessed. The first testes as-

sessed the variation of the fitness from iteration to iteration. Figure 4.1 shows a representative example

of the evolution of the GA.

These results are aligned with the theoretical expectations, since the fitness value increases quickly

in the first generations, but then, as time passes, the algorithm converges to the optimum solution more

slowly. As one can see, the algorithm reaches its final result around iteration 300. This number of

iteration was used as reference for the following experiments.
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Figure 4.1: Fitness Value Variation over Time.

4.2.2 Mutation Rate

The first parameter to be defined was the mutation rate. Figure 4.2 shows the variation of the number of

generations necessary to reach the final solution.

To obtain these values, the algorithm was run 20 times during 300 generations. It was assumed that

at that point the algorithm had reached its final value. Then, the progress of the fitness value of each

generation was evaluated and the first generation to achieve a fitness value different in no more than

1% than available in generation 300 was considered to be the first generation with the final value.

Figure 4.2: Convergence Speed Variation with the Mutation Rate.

As expected, the results indicate that a certain degree of mutation is useful to find the optimal solution

faster. However, from a certain point onward, mutation has no effect, or has even a negative effect

in the speed of convergence of the GA. This negative effect of high mutation rates can be explained

by the algorithm not being allowed to properly converge to the right solution. Taking this results into

consideration, the mutation rate was set to 30%.
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4.2.3 Population Size

A similar experimental method to the mutation rate was made for determining the appropriate population

size. Figure 4.3 shows the results of that experience.

Figure 4.3: Convergence Speed Variation with the Population Size.

The results of this experiment reinforce the necessity of a minimum of population size to guarantee

diversity. However, from a certain point onward, increasing the population size doesn’t seem to affect

the convergence speed of the algorithm. Taking these results into consideration, the population size was

set to 50.

4.2.4 Number of Bits per Coordinate

The number of bits per coordinate determines the difference between two consecutive positions in the

scenario. Table 4.7 shows this distance for different values of this parameter in a scenario with 300m x

300m. The smaller that distance, the more precise we expect the algorithm to become. In order to set

this parameter correctly, two experiments were conducted. The first was similar to the ones performed

for the population size and the mutation rate, which intends to study how fast the algorithm converges.

The other experiment was to study the impact of this parameter in the correctness of the answer. For

this last experiment, the algorithm was also run 20 times for 300 generations and the final fitness value

was analyzed. Figure 4.4 and Figure 4.5 show the results of these tests.

The range of tested values ends in 7 bits per coordinate, because a distance smaller than 2 meters

is not so relevant from the telecommunications perspective.

As expected, the algorithm converges at lower speeds with the increase of the number of bits per

coordinate. This effect can be explained with the increase in possible position values for the drones’s

coordinates, making it less likely for the best drone configuration to appear early on.

The values of algorithm accuracy also increase with the increase of the number of bits per coordinate.

These results confirm the expectations, with increases in the order of 2% for every extra bit.

Taking both tests into consideration, the number of bits per coordinate was set to 7.
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Table 4.7: Distance between consecutive coordinates for different values of number of bits per coordi-
nate.

Number of Bits Distance (m)

2 75

3 37.5

4 18.75

5 9.375

6 4.6875

7 2.34375

Figure 4.4: Convergence Speed Variation with the Number of Bits per Coordinate.

4.3 Simulations Description

In all the simulations both the GA and the K-Means++ were deployed. From this point on, the refer-

ences to comparing the two algorithms, should be understood as the comparison between these two

algorithms.

The scenario had a 300m x 300m dimensions, yielding a 90 000 m2 area. All simulations deployed

two macrocell BS at the coordinates (150, 400) and (400, 150) and had 5 UAVs available.

Two performance metrics were evaluated:

• Served DR: this is the sum of all the DR obtained by each UE;

• Served Users: this is the sum of all UEs which were allocated at least one RB.

The first goal of the simulations was to understand the impact of the two possible UE’s disposition

regarding how DR is distributed throughout the UEs. To achieve that, both the Uniform and Non-Uniform

Distributions were tested. The difference between these two configurations is depicted in 3.6.

The second goal of the simulations was to understand how different amounts of UEs affect the

effectiveness of the two algorithms. To address that, two different amounts of UEs were deployed:
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Figure 4.5: Final Fitness Value Variation with the Number of Bits per Coordinate.

• Limit Case: the number of UEs is expected to fully consume, or even marginally exceed the

network resources;

• Excess Case: the number of UEs clearly exceeds the limit that the network is able to serve.

The limit case had 150 UEs in total, 5 hotspots, each hotspot had a 40 meters radius and on average

15 UEs. The Excess Case had 230 UEs, 5 hotspots, each hotspot had a 40 meters radius, and on

average 20 UEs.

The third goal was to compare the performance of the two algorithms. The K-Means++ worked as

a baseline. The GA has three possible fitness functions, as depicted in 3.2.3. The last goal of the

simulations was to find the fitness function that yields the best results, and compare those results with

the baseline.

Every combination of these possibilities was tested over 1000 Monte Carlo trials. Each trial followed

these steps:

1. Create User Disposition

2. Run K-Means++ Algorithm

3. Run Genetic Algorithm

4. Run Telecom Module in both results

The results provided by the Telecom Module were analyzed, and the averages were computed with

a level of significance of 95%.

4.4 Served Users Comparison

Table 4.8 and 4.9 show the results of the simulations for the number of served users.

Starting by analyzing the Non-Uniform scenario in the Limit case, all the fitness functions of the GA

are good enough to assign service to all UEs, showing to be around 9% better than the K-Means++.
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Table 4.8: Served Users by Algorithm in the Non-Uniform distribution.

Served Users

Scenario Algorithm Average C. L. (95%)

Limit

K-Means++ 136.91 2.4307

GA

Served Users 150 (+8.73%) 0

Served DR 150 (+8.73%) 0

Proportion 150 (+8.73%) 0

Excess

K-Means++ 225.4 0.5805

GA

Served Users 230 (+3.07%) 0.3453

Served DR 219.51 (-3.92%) 0.3453

Proportion 229.98 (+3.06%) 0.0184

Table 4.9: Served Users by Algorithm in the Uniform distribution.

Served Users

Scenario Algorithm Average C. L. (95%)

Limit

K-Means++ 141,56 1,1932

GA

Served Users 150 (+5.63%) 0

Served DR 150 (+5.63%) 0

Proportion 150 (+5.63%) 0

Excess

K-Means++ 215,59 0,6630

GA

Served Users 229,98 (+6.26%) 0,0159

Served DR 210,64 (-2.15%) 0,5654

Proportion 229,9 (+6.22%) 0,0394

In the Excess case, the AG was not always better than the K-Means++. In fact, it is possible to see

that trying to maximize the global data rate leads to a starvation of some users since there are UEs who

don’t get any service assigned. However, for this metric, in this scenario, the other two fitness functions

are very close to one another and around 3% or 6% better than K-Means++, depending on the way

users are distributed in the scenario.

Comparing the Uniform and Non-Uniform distributions, it is obvious that in the Uniform scenario, the

GA is not much better than the K-Means. The remaining conclusions are similar for both distributions.

4.5 Data Rate Comparison

The Table 4.10 and 4.11 show the results obtained for the served data rate. This value is obtained by

summing the obtained data rate from all users.

When one looks at the Non-Uniform distribution results, the first thing to take notice is that, when

the GA is using the Served Users fitness function, the results of this metric are very similar to the
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Table 4.10: Served Data Rate by Algorithm in the Non-Uniform distribution.

Served DR [bit/s] Served DR [%]

Scenario Algorithm Average C. L. (95%) Average C. L. (95%)

Limit

K-Means++ 2427205440 33531035.93 73.96 1.0216

GA

Served Users 2437485884 30176476.36 74.27 (+0.31%) 0.9195

Served DR 3238186945 2809427.52 98.67 (+24.71%) 0.0856

Proportion 3216277558 3121521.93 97.99 (+24.04%) 0.0951

Excess

K-Means++ 2808253150 23788282.68 50.92 0.4313

GA

Served Users 2856064736 4439842.48 51.79 (+0.87%) 0.0805

Served DR 3560569954 4439842.46 64.56 (+13.64%) 0,3074

Proportion 3087416760 10004990.21 55.98 (+5.06%) 0.1814

Table 4.11: Served Data Rate by Algorithm in the Uniform distribution.

Served DR [bit/s] Served DR [%]

Scenario Algorithm Average C. L. (95%) Average C. L. (95%)

Limit

K-Means++ 2551410483 15326588,07 83,94 0,4605

GA

Served Users 2363379351 17054811,48 77,80 (-6.14%) 0,5556

Served DR 3035138097 13508925,32 99,08 (15.14%) 0,1185

Proportion 3000172608 12790525,51 98,83 (14.88%) 0,1429

Excess

K-Means++ 2883848357 15603552,54 61,83 0,3739

GA

Served Users 2830697170 10441104,35 60,71 (-1.11%) 0,2994

Served DR 3411952986 3451926,188 73,27 (11.45%) 0,2682

Proportion 3017640540 5678871,112 64,97 (+3.14%) 0,2403

K-Means++. However, the other two configurations of the GA outperform the K-Means by more than

24% in the Limit Scenario and by 5% or 13% in the Excess Scenario, depending on the chosen fitness

function.

Just like in the Served Users Metric, when the algorithms are applied on the Uniform scenario, the

difference between the two algorithms becomes less relevant. In some cases, for this UE disposition,

the GA is even worse than the K-Means. However, it is always possible to find two fitness functions that

yield better results than the K-Means.

As a final remark, it is visible that going from the Limit to the Excess Scenario, the amount of unser-

viced data rate becomes more and more significant, reducing the gap between the two algorithms.

4.6 Results Analysis

Regarding the results about GA parameterization, the experiments that were made show that the algo-

rithm generally behaves as expected with the change of parameters.
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The variations performed on the mutation rate indicate the correct implementation of the trade off

between the convergence speed/global optimum discovery. This is specially obvious for low values of

mutation rate for which the algorithm seems to be taking more time to converge to the local optimum

due to a lack of variety in the population pool. However, it would be to expect that the algorithm also

took more time to converge with high levels of mutation, since it would then not be able to converge.

The results for the variation of the population size on the convergence speed are also aligned with

the theoretical expectations, since low values of population size do not seem to guarantee sufficient

variability to rapidly find the global optimal solution. This increase in speed of convergence for this

parameter is obtained by trying more options in every iteration.

The number of bits per coordinate also impacts the correctness of the solution as one would expect.

With more bits per coordinate comes more precision in the determination of the coordinates, and thus, a

more correct solution for the problem. This increase in precision also means there will be more options

to be explored, and so, it is with no surprise that the time the algorithm takes to converge to the final

solution also increases.

These experiments, aside from allowing to determine the best parameters, also let us confirm the

correctness of the functioning of the GA.

As for the comparison of the results between the K-Means++ and the Genetic Algorithm, these results

show that the GA has a better performance for almost every scenario. However, there is an important

trade-off to consider, which is the balance between having a higher global data rate being consumed,

versus having every user with access to the telecommunications service.

If one considers only the Limit Scenario, the fitness function that yields the best results is the Served

DR, which maximizes the total data rate serviced by the network. This happens because the perfor-

mance of the three fitness functions are similar in the number of serviced users metric and the Served

DR fitness function is slightly better than the Proportion in the Served DR metric.

However, if one considers the Excess Scenario, the Served DR fitness function is no longer the

obvious choice. Now the trade-off mentioned before is more evident. This fitness function yields now

the worst results in the Served Users metric, worse than the K-Means++ algorithm. For this scenario,

the wisest choice would be the Proportion fitness function, which compromises a little bit in Served DR,

but keeps a high number of Served Users.

Taking this into consideration, the best fitness function would be the Proportion, since it improves the

overall UE satisfaction, without compromising the number of served users. Table 4.12 summarizes the

results for this fitness function.

These results show that in the best case scenario, the GA outperforms the K-Means by 24%. This

is the case where the DR distribution is Non-Uniform, and the amount of data traffic is in the limits of

the network capacity. When the DR is equally distributed, the K-Means improves its results and the

difference is not so significant. Another relevant conclusion is that when the amount of unserviced DR

increases too much (the Excess cases), the difference between the two algorithms also becomes less

expressive.

The main conclusion of all these simulations is that if the fitness function is properly chosen, even in
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Table 4.12: Summary of the most significant results.

Served Users Served DR [%]

UE Disposition Scenario Algorithm Average Average

Non-Uniform

Limit
K-Means++ 136.91 73.96

GA - Proportion 150 (+8.73%) 97.99 (+24.04%)

Excess
K-Means++ 225.4 51.79

GA - Proportion 229.98 (+3.06%) 55.98 (+5.06%)

Uniform

Limit
K-Means++ 141.56 83.96

GA - Proportion 150 (+5.63%) 98.83 (+14.88%)

Excess
K-Means++ 215.59 61.83

GA - Proportion 229.9 (+6.22%) 64.97 (+3.14%)

the worst case scenarios, the GA outperforms the K-Means.
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Chapter 5

Conclusions

This thesis proposes a new solution for the optimization of telecommunications network patching using

UAV relays. The related work was studied, analyzed and opportunities for improvement were identi-

fied. This proposed solution seeks to deploy UAVs to increase the capacity of the network meeting as

much as possible the data rate requirements of the mobile users. The algorithm chosen to perform the

optimization of UAV placement was a GA.

The various implementation options for these type of algorithm were analyzed and the tests per-

formed to the functioning of the algorithm yielded expected results, showing that the implementation

is functionally correct. Every configuration of the GA was analyzed and tested in order to tune this

algorithm.

In order to evaluate the new approach, a baseline algorithm was also implemented. The chosen

algorithm was the K-Means++. The preliminary tests of this algorithm also showed that the algorithm

was performing as one would expect.

Two different user dispositions were used to compare the two algorithms. The GA showed to be

better in both dispositions, in particular in the Non-Uniform disposition. Two different numbers of UEs

were tested. The GA showed better results in both cases, while being particularly good in the Limit case,

the case where the number of UEs is expected to fully consume, or even marginally exceed the network

resources.

Two metrics were used to measure the quality of the algorithms: the number of Served Users and

the Served DR. The GA proved to be able to not compromise the quality of any of them in detriment

of the other. The GA was capable to keep the Served Users and still outperform the K-Means++ in the

Served DR.

As for future work, it would be interesting to perform some extensions to this analysis. First, it would

be useful to develop a better method to go from one state of UAV positions to another. For now the

algorithm does not take into consideration the effort to change the positions of the UAVs. The GA could

be changed to take into consideration this factor. This could result in lower quality UAV positioning,

trading off with the amount of time the UAVs could stay in the air by reducing the effort needed to

reallocate.
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Another factor that was not fully addressed in this thesis is the frequency management necessary

to deploy this solution. Some simplifications were made, specifically, assuming that every drone could

make use of the full allocated spectrum. This is not exactly accurate because the drones may be

relatively close to each other, causing interference if the frequencies used are not well chosen.

Thirdly, it would be interesting to deploy this solution in a more complex simulator to better evaluate

the interactions between UAVs, UEs and eNBs. The previous point is a good example of a factor that a

more complex simulator would not leave simplified.

It would also be interesting to evaluate the performance of other network indicators besides the

number of served users and the average data rate per user. For example how would the delay be

affected by a deployment of this type? And what would be the lifetime of UE’s batteries when they are

closer to the antennas?

Finally, it is important to better study the link between the UAVs and its serving BS. It is important

to access the feasibility and trade-off of using the same frequencies as the ones used in the normal

telecommunications operation, or if it would be better to use specific frequencies.
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