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Abstract—HVAC (Heating, Ventilation and Air Conditioning)
systems are critical in modern human activity. The increasing
demand for heating and cooling applications increases the num-
ber of HVACs. Based on many studies, these are some of the
most energy consumer systems worldwide. An HVAC is, usually,
a long term investment. It is installed having in account specific
necessities of the building. However, one can find that often HVAC
from commercial consume energy in excess.

A common solution found on literature is to use model
predictive control. However, these solutions maybe not be viable
economically. Here, it is presented an optimal control framework
for the optimization of HVACs. This framework uses data-driven
models to predict the system dynamics in the chosen scenario.

This dissertation shows a start to end case study on Cas-
cais Center, where it is applied an optimal control framework,
aiming to improve energy costs and thermal comfort. In this case,
the optimized variable is the chiller temperature setpoint, using
NSGA-III and PSO meta-heuristics. The models are base on
data-driven predictors, the NARX Neural Network and Takagi-
Sugeno, with improved feature extraction achieved by using PCA.
Hence, it is presented a methodology for variable selection and
feature extraction. The predictors performance is improved based
on data analysis considerations. The results a need for further
work on data acquisition, prediction robustness and thermal
comfort estimation.

Keywords: HVAC, optimization, optimal control, meta-
heuristics, data-driven models, PCA

I. INTRODUCTION

A. Motivation

HVAC (Heating, Ventilation and Air Conditioning) systems
are critical in modern human activity. Society has becom-
ing more dependent on temperature control applications for
reasons like food refrigeration, computation and networking,
more complex industry and manufacturing processes. In all
these cases, the need for these systems is increasing and be-
coming more important in energy consumption pattern around
the world. This reason makes HVAC systems one of the most
interesting to optimize.

The worldwide electrical energy demand increases early,
requiring more and more electrical energy production. In part
because of the appearing of new and more powerful appli-
cations but also because of its preference over other energy
forms. There is a common known world’s effort in reducing
electrical energy demand, implying a need of optimizing the
actual usage.

Australia’s electrical energy regulatory and the University
of Michigan estimated the typical energy consumption pattern

in office buildings of Australia and residential buildings of
United States of America shown in Figure 1.

Fig. 1: Office buildings typical consumption in Australia [1]

The HVAC usage is the highest energy consumption ap-
plication, with 39%. This consumption can’t be isolated, the
increasing usage of another devices can influence the thermal
load, for example, in an office building computers are extra
thermal loads for the cooling system since they produce heat.

In commercial buildings, HVAC systems are very important
in keeping the thermal comfort and the air quality inside.
Its main functions are to control temperature, humidity, air
renewal, filtration of airborne particles and air movement
inside. All these factors influence people’s perception in a non-
linear way, having opposite effects for different people.

In a consumption optimization perspective it is useful to
have a centralized model in charge of controlling the operation
parameters. This allows making use of the most important
principal in a system optimization strategy: consume just the
minimum amount, not an amount needed for a general case of
the same type. This is the reason for using a data dependent
approach for optimizing the system usage.

B. Objectives
The objective for this thesis is to study a methodology to

improve a legacy HVAC system usage in terms of electrical
energy costs and thermal comfort provided. The idea is to
find an optimized chiller setpoint which decreases the energy
consumption and increases the thermal comfort.

II. CASCAIS CENTER

A. Building
The Cascais Center is a building situated in Cascais city. The

building has 7 floors, several public service stores and some
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offices, which belong to the city. This topology of building
concentrate a big amount of people, some working there,
some using the services provided. A photo of Cascais Center
building is shown in Figure 2.

Fig. 2: Cascais Center photo [2]

At bottom floors there are many common areas. There
are 3 stores: Loja do Cidadão, National Insurance and CTT
(Correios de Portugal, SA), a cantine, a computer team open-
space and wide space halls and corridors. In these floors,
there is more people and movement getting in and out of the
building. These spaces are used by workers and also clients
for these stores. At top floors there are office cabinets for non-
public attendance workers. There are less density of people,
separated by different divisions.

B. Thermal Zones

The building has an heterogeneous density of people inside
and on space distribution, implying an heterogeneous influence
on HVAC system dynamics. During dissertation, the focus was
higher on two commercial spaces, the Loja do Cidadão and
the Social Security store.

There are two important concepts to define first, based
on [3] reference definitions. The concepts of thermal zone
and thermal space. A thermal zone is a part of the building
controlled with a single sensor.

Applying these concepts to the Cascais Center case, the
interest is to make the thermal zones of the new system
roughly coincide with the thermal spaces identified empirically
inside the chosen stores. In other words, the Social Security
store is one thermal zone and Loja do Cidadão can be divided
in two thermal zones, with a sensor closer to the air fan and
one closer to people service desk.

Loja do Cidadão and Social Security store are relatively
different when it comes to occupancy dynamics. The office
hours on both stores is presented on Table I.

TABLE I: Cascais Center stores schedule

Store Week Day Schedule
Loja do Cidadão Monday - Friday 09h00m - 18h00m
Social Security Monday - Friday 09h00m - 16h00m

C. HVAC System

The main parts of the HVAC system from Cascais Center
are the chillers and pumps, the air handlers, and the fans. The
chillers and pumps part are common for all building thermal

zones. They define the operation mode for the system, heating
or cooling. These components are presented in Table II.

TABLE II: Nominal power for HVAC modules

Module Nominal Power Heating Nominal Power Cooling
Heat/Cool Chiller 219.7 kW 231.0 kW

Cool Chiller - 150.0 kW
Air Handler 13.2 kW 17.0 kW

New Air Handler 09.9 kW 44.8 kW
Fans 54.0 W/97.0 W/111 W

Notice the indicated values are the nominal power ones,
not fixed ones. Changing conditions or commands change the
energy consumption. For each chiller, there is one setpoint
for the interior water temperature, which later influences the
interior building air temperature.

D. Data Acquirement

To produce a data-driven model, it was acquired the
HVAC system energy consumption and three interior tempera-
tures for the defined thermal zones, with a 5 minutes sampling
period, with a 1 hour sampling period, and meteorological
data. The HVAC energy was acquired by using Fluke 1735
and the interior temperatures by using a TinyTag Tk-4000.
The meteorological data was gently given by meteoblue web-
site [4]. The acquisition periods are presented in Table III.

TABLE III: Periods of data acquisition

Reference First day Last day Operating Mode
April 2017 08/04/2017 16/04/2017 Cooling

September 2017 12/09/2017 19/09/2017 Cooling
January 2018 23/01/2018 05/02/2018 Heating

April 2018 27/03/2018 08/04/2018 Heating
June 2018 19/06/2018 02/07/2018 Cooling

These acquirement periods form a dataset with 30 days on
heating operating mode and 27 days on cooling operating
mode. During the heating period, the chiller setpoint values
were 39oC, 41oC and 42oC. On cooling period, the chiller
setpoint values tested were 7.5oC, 8.0oC, 8.5oC and 9.5oC.

III. OPTIMIZATION

The optimization is the mathematical method to calculate
a chiller setpoint based on given conditions. An optimization
method bases its principle in finding either a minimum or a
maximum for certain set of cost values, based on some criteria
which define dynamics of these costs. The costs values are a
mathematical description on the objective to be optimized. By
doing this, the result is to find which criteria may lead to a
better performance on the selected objectives to optimize.

A. Cost Function

A cost function is a mathematical way to describe the
objectives to achieve. In fact, optimizing the HVAC usage is to
minimize the energy consumption while maximizing the ther-
mal comfort costs. The cost function for these two objectives
will give a 2-dimensional value from the inputs selected as a
metric of how well accomplished are the objectives.
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1) Electrical Energy Cost: The electrical energy cost is
a straightforward calculation once the power evolution is
predicted. It is only considered the active energy price since
the power factor is 0.99 on average, due to an installed power
factor compensation. The energy cost is

CE =

N∑
k=1

[pa[qa(k), t(k)] Ea(k)] (1)

where pa represents the tariff price of energy for the active
power part, qa represents the year quarter, t represents the
time of day and Ea the energy considering just the active
power part. This is the first objective cost. The value of CE

is intended to be minimized after running the algorithm.
2) Thermal Comfort: For the thermal comfort objective,

the case is rather more complex. Thermal comfort depends
on a lot of different variables, which are hard to measure
and easy to have its value changed from day to day. One
important factor in measuring thermal comfort is to measure
a temperature expectation. In Figure 3 represents an interval
for temperature expectation based on exterior temperature.

Fig. 3: Predicted percentage of dissatisfied as a function of
exterior temperature [5]

The reference temperature is considered do be the middle
point on darker grey rectangle for the actual exterior temper-
ature. First, it is defined a comfort value for each sample. As
a first approach, the model is based on an absolute difference
to a reference temperature, described by

CTS(k) = min {|T (k)− Tref | hstore(k), 3} (2)

where T (k) is the actual temperature inside, Tref is the
reference temperature for the room, hstore(k) represents the
state (opened or closed) of the store in a boolean form and
the value 3 is the saturation chosen.

For optimization purposes, it is easier to use the absolute
value, has a direct scale for comfort where 0 is the most
comfortable case and 3 the most uncomfortable one. The
expression for the thermal comfort estimator is

CT = mean(CTS) + std(CTS) (3)

calculated as a function of CTS within a defined time
horizon. The average of the thermal comfort is the base
metric for system performance in this field. But for a period

much longer than the thermal constant from the rooms can be
achieved in a number of different temperature variations. The
standard deviation of the thermal comfort evolution measures
how much it deviates from the average during time. The global
thermal comfort estimator, CT , takes into account these two
factors to better model it and achieve better results.

B. Meta-heuristic Algorithms

The best suited models for this dissertation project are meta-
heuristic ones. Meta-heuristics are mostly based on observed
nature behavior in different situations [6]. These methods pro-
vide a derivative free optimization, a necessary condition when
dealing with data-driven models. In this dissertation, the used
methods are genetic algorithm, with NSGA-III, and particle
swarm optimization, with MOPSO. Both implementations are
available at yarpiz website [?].

C. Pareto Optimization

When using meta-heuristics for multi-objective cost func-
tions, the result is to have a cloud of solution points. There is
a need to select the best solution. The Pareto optimization
is a method to find a smaller set with the most efficient
solutions, a Pareto frontier, which have the best compromise
in between objectives. From this smaller step, the optimal
solution is selected with the case study in mind, as described
on chapter VI-B.

IV. OBSERVERS

The cost function for the optimization process depends upon
the energy consumption and the interior temperature. The
chiller setpoint is a parameter each of these variables, and
consequently, to the cost value itself. The observers keep the
optimization results physically feasible. The method is to use
machine learning techniques, based on supervised learning, to
predict the influence of the selected chiller setpoint on cost
values.

A. Data Pre-Processing

The acquired raw signals, are in different timetables and
with different sampling frequencies. The linear interpolation
is used in order to synchronize it in a unified timetable, useful
into modeling.

Other variables are not acquired in a sensor form, mostly
related to schedules and routines of people working there or
clients there. There is a need to create a signal format for
using this information. For each store there is a boolean value
on each sample, equivalent to the stores’ states opened and
closed. The week day is converted to a variable which can
assume 7 states, representing the 7 days of the week. The
schedule from air handlers follow the same format as store
schedule with one boolean value for each sample, representing
the states ON and OFF. The chiller setpoint is a real number
value on each sample.
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B. Observer Structure

The observer structure defines the sequence of calculations
needed for predicting the output based on input information.
The structure of the observer includes the predictive model, but
may also include some amount of pre-processing, depending
on principles of the model. On a dynamical system, the usual
differences in between observers are in number of inputs and
outputs and the amount of delay on input or previous output
information used on each sample prediction.

1) Operating Mode: Nothing has a higher impact on
HVAC system dynamics than the selected operating mode. The
system reacts differently to the environment when it is either
heating or cooling. The hierarchy of importance on each part
of information extracted is a different one for each operating
mode. This way, for each operating mode, the observers are
implemented separately.

2) Prediction Model: The prediction model is the mathe-
matical model which allows the estimation of a future value
based on past, either from the other variables or the variable
being observed.

The first model is NARX Neural Network (Nonlinear Au-
toregressive Network with Exogenous Inputs), the most widely
used model for energy consumption optimization in HVAC
systems on state of art scientific papers. The diagram of the
NARX model is presented in Figure 4.
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Fig. 4: NARX model diagram

The NARX Neural Network model has 4 different func-
tional parts, represented in the diagram with 4 colored round-
edge rectangles. In this Figure 4 the delay blocks (represented
with Z−m, m ∈ N ) are connecting just one output, but in real
case they are connecting every output. The S(.) represents the
sigmoid function, applied after the sum on all inputs. This is a
tentative to not overload the image with arrows crossing each
other. The used implementation of NARX Neural Network is
from a well tested mathematical software.

The second model considered is Takagi-Sugeno model. The
choice of this model for this dissertation was done because
the model is more robust to data uncertainty than NARX Neu-
ral Network model. The diagram of the model implementation
is presented in Figure 5.
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Fig. 5: Takagi-Sugeno model diagram

Takagi-Sugeno model has 3 functional parts, represented
with 3 colored rectangles. At neuron’s output an activation
operation, in here referred as rule, which can be either AND
or OR operation on the variables. The output layer makes the
defuzification operation. The defuzification operation chosen
in here is base on the center of mass operation, applied on
rule layer output for each neuron in output layer. The used
implementation of the Takagi-Sugeno model was developed
for the dissertation project, using a mathematical software.

3) Input Variables: The first challenge for good observers
modeling is a good set input variable choice. The input
variables are chosen by the quantity and quality of information
which can be extracted to describe system dynamic behavior.
A more intuitive way to think is to choose them by wider
fields of behavior. For this dissertation, the chosen fields
are meteorological data, to characterize dynamics related to
the weather variations, routine data, to characterize the ones
related with people schedules and some typical client behavior
and system command, to characterize the user configuration
input. The process for choosing the inputs is summarized in
Table IV.

Notice that there are some fundamental differences in these
fields. Meteorological and human routine related variables are
variables which characterize the environment around. Further,
in this document, they are referred as environment variables.
The last field is related to user input, referred as command
variables.

The variables are used in a normalize form during super-
vised learning. Table V presents the range considered in each
variable for normalizing into a range of [0,1].

Taking into account the chosen variables, presented on
Table IV, the inputs have dimension 12. For dimensional
reduction, it is used PCA (Principal Component Analysis)
algorithm. The dimension after applying the algorithm is
chosen based on a compromise between the amount of infor-
mation needed to preserve and the complexity of the resulting
observers. The considered dimension in this dissertation is 3
principal components. The algorithm is applied individually
for heating and cooling operating modes.

During dissertation, the observers presented the best results
with 3 principal components. Hence, the input for the ob-
servers is constituted by 3 principal components, to charac-
terize the meteorological and human routine information, and
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TABLE IV: Information extraction variables selection

Variables Reason
Characterize meteorological environment

Exterior
tempera-
ture

Exterior temperature is directly related to the needed energy
for maintaining the desired temperature in each part of
system.

Solar radi-
ation

The solar radiation is an image for predicting future heating
on both interior and exterior temperature.

Humidity Humidity is one of the most important variables for the
human thermal comfort. It can describe also part of HVAC
system’s fluid behavior.

Wind
speed

Wind speed can have influence on system thermal dynamic,
mostly on Winter, since a major part of it is outside on the
roof. Also, some of the visits to the building showed some
store windows opened.

Characterize human routines
Time of
day

The time of the day can be rough estimation to the usual
store occupation, mainly when combined with other vari-
ables such as week day.

Week day The week day is the most important variable in character-
izing the main routines from stores. It includes information
about cyclic behavior, typical from commercial places. This
cyclic behavior includes information like differences on
daily dependent attendance or clients preferred days.

Store
schedules

The store schedule is a boolean variable for each store with
states open and close. It is important in predicting more
accurately the dynamic differences between stores, due to
their different schedules.
Characterize HVAC system commands

Chiller set-
point

The chiller setpoint is the user defined temperature for the
fluid chiller used on chiller. It is the optimized variable.

Air
Handler
schedules

The air handler schedule is represented by a boolean vari-
able for each of them, with ON and OFF states. These
schedules influence on the degree of chiller action on
temperature and evolution of energy consumption.

TABLE V: Normalization limits for considered variables

Variables Minimum value Maximum value
Time of day [HH] 0 24
Exterior temperature [oC] 0 50
Solar radiation [W/m2] 0 1000
Humity [%] 0 100
Wind speed [km/h] 0 75
Day of the week 1 7
Interior temperature [oC] 15 35
Store schedule [Close/Open] 0 1
Hot chiller setpoint [oC] 35 45
Cold chiller setpoint [oC] 5 15
UTAs schedule [OFF/ON] 0 1

the normalized command variables, making a total of 7 input
variables.

4) Dataset Partition: The results achieved when using data-
driven modeling strongly depends upon the dataset partition.
The dataset partition is the division made on the available data
to the train the model, validate it and test it. In this case, the
idea is to model dynamic systems, which make a division in
blocks a better suited one than the random division. An usual
rule of thumb, followed in this dissertation, is to divide roughly
in a quota of 70% for training set and 15% for validation and
test sets. In this dissertation, for a better division, it is used
prior information. This way, there is a higher number different
scenarios in each set, which improves the modeling results.

V. OBSERVER IMPLEMENTATION

There are 6 observer implementations considering both
operating modes. Two of them for predicting power and other

four for predicting temperatures on the three chosen thermal
zones.

A. Power Observer

The power observer aims to predict the average power signal
of the HVAC. The energy consumption is calculated using the
power prediction by multiplying it by the sampling period.

1) Performance Metric: Though the power observer pre-
dicts average power usage, the objective is to predict energy
consumption and its associated costs. Therefore the predicting
performance on power observers are based on how well they
predict these variables. These metrics are applied on observers
for both predicting models and presented in Tables VI and VII.

TABLE VI: NARX observer results table

Operating
Mode Variable Real

Situation
Observer
Prediction Error

Energy [kWh] 36777 37128 0.96%Heating Cost [e] 353.26 354.92 0.47%
Energy [kWh] 34535 35377 2.44%Cooling Cost [e] 340.62 339.72 -0.26%

The real and predicted energy and energy cost are compared
on test set for both operating modes. The errors show a good
adaptation to data on test set. As expected, the errors are higher
on energy than on cost, due a slower variation when compared
to the sampling frequency.

TABLE VII: Takagi-Sugeno observer results table

Operating
Mode Variable Real

Situation
Observer
Prediction Error

Energy [kWh] 36777 41079 11.70%Heating Cost [e] 353.26 395.87 12.06%
Energy [kWh] 34535 44134 27.79%Cooling Cost [e] 340.62 425.04 24.78%

Based on the results from Table VII, the observer using
Takagi-Sugeno prediction model is not able of correctly of
predicting the the energy consumption on the HVAC.

On both prediction models, the results are better on heating
mode than on cooling mode. One reason is that on on heating
mode data, there is a smaller variety of different situations
than on the cooling mode. The 27 days on heating mode data
are divided in two different months with 3 different chiller
setpoints. The 30 days on cooling mode were acquired on 3
different months of the year in two different weather seasons.
During these acquisitions, 4 different chiller setpoints were
tested. Another reason is that the cooling mode depends less
on the setpoint considered, since the second chiller may be
working in parallel during this time, mainly during Summer.

2) Chiller Setpoint Sensitivity: The sensitivity to the chiller
setpoint variation is an influential result on the observer
performance considering th chiller setpoint is defined as the
optimized variable. For evaluating the chiller setpoint extrap-
olation, it is chosen a typical day, from which the results are
compared. On Tables VIII and IX it is presented the variation
on the energy consumption and cost predictions for different
chiller setpoints.
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TABLE VIII: NARX Neural Network power observer sensi-
tivity to chiller setpoint

Heating Cooling
Setpoint

[oC]
Energy
[kWh]

Cost
[e]

Setpoint
[oC]

Energy
[kWh]

Cost
[e]

35.0 15515 148.64 05.0 5283 51.17
37.5 10399 101.03 07.5 5524 53.35
40.0 5102 49.27 10.0 9625 93.43
42.5 7740 75.44 12.5 9626 94.54
45.0 5210 50.08 15.0 9426 94.29

The cost sensitivity to the chiller setpoint variation shows
a behavior opposite to the expected one in Table VIII. For
the heating mode, the cost is expected to increase when the
setpoint increases. On cooling mode, the expected is for the
cost to increase when the setpoint decreases. This is possibly
a result of a bad modeling extrapolation for other setpoints,
not present in the dataset. The cooling mode shows a more
notorious example of the situation described. There is a cost
step evolution on middle range values and a saturation on
values around the frontier setpoints.

TABLE IX: Takagi-Sugeno power observer sensitivity to
chiller setpoint

Heating Cooling
Setpoint

[oC]
Energy
[kWh]

Cost
[e]

Setpoint
[oC]

Energy
[kWh]

Cost
[e]

33 6231 60.09 05 8700 84.58
36 6150 59.31 08 8867 86.26
39 6259 60.38 11 8607 83.65
42 6807 65.64 14 8395 81.59
45 6420 61.92 17 8490 82.53

On Takagi-Sugeno power observer the tendency is the
same. The sensitivity of the energy consumption to the chiller
setpoint variation does not follow the expected variation. For
both cases, there does not seem exist such an influence of the
chiller setpoint on prediction value.

B. Temperature Observers

The temperature observer from Social Security store pre-
dicts the ambiance temperature inside. The temperature ob-
server for Loja do Cidadão predicts the air outputs temperature
and the ambiance temperature. The observers from different
stores are trained separately because their temperature is
controlled on different air handlers on different air handlers,
which implies a different temperature reference in the room.

1) Performance Metric: To evaluate the performance of
temperature observers, a set of empirically metrics were
chosen. These are AAE, average absolute error, ESTD, error
standard deviation, and MAE, maximum absolute error. The
values in percentage of the normalized to the temperature of
25oC. The implementation results are presented on Table X
and XI for both prediction models.

TABLE X: Performance metrics for Social Security store
temperature observer

NARX Neural Network Takagi-Sugeno
Heating Cooling Heating CoolingMetric

[oC] [%] [oC] [%] [oC] [%] [oC] [%]
AAE 0.94 3.74 1.11 4.45 1.06 4.23 1.23 4.93

ESTD 0.91 3.64 1.33 5.34 1.03 4.10 1.69 6.76
MAE 2.66 10.66 3.35 13.40 3.33 13.33 5.13 20.52

The standard deviation is in the same order of magnitude
as the average value. For every observer, the maximum error
is one order of magnitude above the average error. This
shows poor modeling performance on some dynamics. For
the observers from Loja do Cidadão, the result is presented
for each predicted temperature individually on every metric.

TABLE XI: Performance metrics for Loja do Cidadão temper-
ature observer

NARX Neural Network Takagi-Sugeno
Heating Cooling Heating CoolingMetric

[oC] [%] [oC] [%] [oC] [%] [oC] [%]
1.09 4.37 1.30 5.21 1.28 5.13 1.07 4.30AAE 1.13 4.52 1.25 4.99 1.43 5.73 1.04 4.46
1.29 5.17 1.40 5.61 1.44 5.78 1.08 4.32ESTD 1.41 5.65 1.53 6.12 1.67 6.68 1.12 4.46
3.15 12.60 2.03 8.13 4.28 17.13 3.08 12.33MAE 3.48 13.93 3.67 13.68 4.49 17.97 4.06 16.25

For the Loja do Cidadão observer, the same conclusions
form the Social Security observer can be taken. The standard
deviation error has the same order of magnitude as the average
error and, often, an higher value. The maximum is, at least,
the double of the average error for every observer. This result
demonstrates a poor modeling temperature dynamics.

Every NARX Neural Network observer showed a better
performance when compared to the Takagi-Sugeno for the
same variable prediction.

2) Chiller Setpoint Sensibility: The sensitivity to the chiller
setpoint is another important characteristic in temperature
observers. To reduce the complexity of the analysis, only the
sensitivity on temperature observer of Social Security store.

The followed strategy is the same as in power observers
case. There is one chosen day (the same days as before) for
each operating modes in which different setpoints are tested.
In Figure 6, the prediction on temperature signal during one
day for different constant setpoints on heating operating mode
is presented.
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Fig. 6: Predicted temperature signals for different setpoints
during an example day heating mode using NARX Neural
Network
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Notice that the temperature starts at the same point on
every setpoint. The reason is that NARX Neural Network
model strongly depends upon previous instants, which were
the same for all simulation results. In Figure 6, the increasing
of the setpoint does not always correspond to an increase in
temperature, as it would be expected. For instance, for the
setpoint of 45.0oC, the temperature is always lower than for
the 40.0oC. This happens for setpoints which are not a part
of dataset, showing that the dynamic is not well modeled for
them. For the lower values of chiller setpoint (35.0 oC and
37.5oC), the temperature shows an unexpected dynamic. It
shows an horizontal line in every part of day except around
the open and close actions on both stores and on the parts of
day in which the air handlers turn ON and OFF. Though it
would not be compatible with the heating operating mode.

Looking at the exterior temperature, it is easy to identify
samples in which the interior temperature is lower than the
exterior one for the referred setpoints. This dynamic is not
compatible with the heating operating mode. The same simu-
lation is presented for the cold operating mode on Figure 7.
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Fig. 7: Predicted temperature signals for different setpoints
during an example day cooling mode using NARX Neural
Network

In Figure 7, the decreasing of the setpoint does not always
correspond to a decrease in temperature, as it would be
expected. For instance, during a considerable part of the day,
the temperature on setpoint of 5.0oC is the highest value.

It makes sense for the temperature to go down during the
period in which air handlers are turned ON. But is does not
make physical sense to go higher than the exterior temperature,
during night and with the store closed.

On both cases, it can be noticed that on setpoints which are
part of the dataset, the dynamic result is much more coherent
with the schedules from stores and air handlers and the outside
temperature. Many of the tested setpoints are not included in
the acquired data. The influence of exterior meteorological
variables is not well modeled by the observers. This issue
gets more evident if the considered setpoints are outside of
scope of the acquired data.

For the Takagi-Sugeno model, it was applied the same
method. In Figures 8, it is presented the interior temperature
on National Insurance store during a day for different setpoints
on heating mode.
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Fig. 8: Predicted temperature signals for different setpoints
during an example day heating mode using Takagi-Sugeno

The results obtained on Takagi-Sugeno are similar to the
ones obtained for the NARX observers when it comes to
chiller setpoint sensitivity. It is not clear the effect of the
setpoint on temperature. For some setpoints, the temperature
overlaps, which shows that the modeling differences are small
ones. An higher setpoint does not necessarily imply an higher
interior temperature. At this point, there is no clear dynamic
that should be directly excluded like it is on NARX observer.
Despite that, an interesting result is that the setpoint does not
alter the shape of the signal. The setpoint acts as an offset
to the temperature signal, increasing or decreasing the same
value in all samples. This result, despite being coherent, is
not coherent with an highly non-linear system. In Figure 9,
the interior temperature on Social Security store during a day
for different setpoints on cooling mode is presented.
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Fig. 9: Predicted temperature signals for different setpoints
during an example day cooling mode using Takagi-Sugeno

On cooling mode, there is an higher number of overlapped
signals than on heating mode. The same conclusions taken
from the heating case can be taken here. There is no clear
relation of the setpoint with the resulting temperature and
changing it just adds or subtracts a signal offset.

VI. OPTIMIZATION AND OBSERVERS INTEGRATION

Integrating the optimization algorithms with the observers
is not as trivial as it may look. Remember that every result
presented on next chapters depends on performance of every
module described before, but also on how the integration is
done.

In every result presented, there is a definition of as optimiza-
tion scenario, a set of conditions which influence the optimized
chiller setpoint. It includes the operating mode and the input
variables in observers which are not optimized variables. In
this case, every input variables, except for the chiller setpoint.
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The optimization allows choosing for the advised chiller
setpoint within certain limits, different for the heating or
cooling case. It is important to notice that for cooling case, it
might be running 1 or 2 chillers. During the course of work,
the only given access was in one of the two chillers which
are part of the HVAC. On both operating modes, the setpoint
changed is on the same chiller.

A. Optimization Cost Function

The cost function is the mathematical way to calculate a cost
value associated with each optimization scenario. Considering
it, the cost varies with the variation of the chiller setpoint.

The chiller setpoint does not directly relates with any of
the objectives. Instead, it changes the dynamic of the HVAC,
which influences both cost values. For this implementation, the
lack of any realtime sensor makes it necessary to use a models
to predict the dynamics, in order to calculate the energy cost
and thermal comfort. This step executed by using the power
and temperature observers.

The integration of the observers in the optimization algo-
rithm is done through the cost function. The diagram of the
cost function is presented in Figure 10.
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Command
Variables

Meteo
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Routine
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Fig. 10: Cost function diagram

The cost function is divided in three main areas of cal-
culation. The first one for data extraction, done with PCA
algorithm, the second one to predict intermediate dynamics,
using mathematical models and the third one to calculate
the cost, by considering these intermediate values. The PCA
algorithm is applied based on the same vectors calculated
during modeling.

B. Pareto Optimal

The considered method during this dissertation implemen-
tation for selecting the best point from the Pareto frontier
is the Weighting Method, presented at [7]. It consists in
choosing weight values for each objective and giving a certain
intuition of the importance of each objective compared with
each other. In particular, the weights chosen are 40% for the
energy cost and 60% for the thermal comfort one, applied on
points already obtained and belonging to the Pareto Frontier.
Notice both objectives are represented in different orders of
magnitude. For it to result, there is a normalization process
applied before.

VII. RESULTS

The system presents an chiller setpoint based on an op-
timization scenario with a one week duration, starting on a
Monday and ending at a Sunday. The scenarios are tested using
NSGA-III and PSO meta-heuristic. However, is this article,
only the NSGA-III results are presented due to their similarity.
The environment conditions tested are one week from one
from January of 2018 for heating operating mode and one
from June of 2018 for the cooling operating mode.

For the NSGA-III meta-heuristic, the maximum iteration
number is 50 with a population size of 10, randomly ini-
tialized. It is configured with crossover ratio of 0.5 and a
mutation rate of 0.02. On each scenario, it is presented the
graph showing the Pareto solution set, the power and the
temperatures, predicted for the optimal setpoint and the real
one, in which the data was acquired.

1) Heating Mode: The Figure 11 presents a cloud of
10 points, corresponding to the 10 population points. The
orange points are the ones belonging to the Pareto frontier,
with the green one representing the selected one and the other
points are in blue.
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Fig. 11: Pareto set points for NSGA-III optimization on
heating mode from Jan 29 to Feb 05

In the presented case, all population points converged into
points present in the Pareto frontier. The setpoints are the
same as before: 42oC in 29th January and 39oC between 31th

January and 4th February. The switch happened at 17h of the
30th January. The optimal setpoint is 39oC. The power used
during acquisition real and the predicted one with optimal
chiller setpoint is presented in Figure 12.
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Fig. 12: HVAC power on acquired and optimized chiller
setpoints
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The real and optimal chiller setpoints produce similiar en-
ergy costs. The real situation costed 379.61 e. The optimized
setpoint situation have a cost of 397.29 e, an increase of
3.68% in energy cost. The energy costs in the real situation
and the optimized one are closer in this case. The reason is
clear, a significant part of the week, the setpoint is the same for
both situations. The Figure 13 shows the temperature inside
the Social Security store during the same period.
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Fig. 13: Temperature signals on Social Security store for the
acquired and the optimized chiller setpoints

The temperature inside Social Security store presented on
Figure 13 shows a much more coherent dynamic than the
previous situations presented. The duration in which the set-
point is coincident for both situations, there is not an high
error in between both temperatures in terms of values (there
is a dynamic difference, though). For the temperature in first
days presented, there is a big decreasing around the opening
of the store. This is a modeling flaw in the observer, which
considers the effort on the optimized not to be enough to
increase the temperature on the store opening. This is the time
of the day where the most effort is required since there is too
little actuation from the HVAC during night. The resulting
predicting dynamic is not an expected one to happen. In
Figure 14, it is presented the temperature inside Loja do
Cidadão during the same period.
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Fig. 14: Temperature signals on Loja do Cidadão store for the
acquired and the optimized chiller setpoints

The temperature observer showed a better prediction results
in Loja do Cidadão.

2) Cooling Mode: The Figure 15 presents a cloud of
10 points, corresponding to the 10 population points. The
color code is the same as before. The orange points are the

ones belonging to the Pareto frontier, with the green one
representing the selected one and the other points are in blue.
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Fig. 15: Pareto set points for NSGA-III optimization on
cooling mode from Jun 25 to Jul 02

The same happened as the last optimization scenario on
NSGA-III algorithm, the entire population converged to the
Pareto frontier. During the entire duration the setpoint was
8.5oC in real situation. The setpoint which corresponds to the
chosen point is 6.0oC. The Figure 16 presents the power in
the same scenario.
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Fig. 16: HVAC power on acquired and optimized chiller
setpoints

The result is expected, the setpoint is almost the same as
before. The cost of 626.18 e on the real situation compares
with a cost of 346.60 e in the optimized setpoint, a spare
of 44.65%. The temperature inside Social Security store is
presented in Figure 17.
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Fig. 17: Temperature signals on Social Security store for the
acquired and the optimized chiller setpoints

The temperature daily evolution shows an average tem-
perature around 23.5oC during a day. Comparing this with
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the expected comfort temperature observed in Figure 3, it
is a temperature acceptable for the range of temperatures in
Summer. There is an incoherence in results caused by the
observer modeling. By comparing the real situation and the
one on the optimal setpoint, it seems to exist a smaller effort
on the HVAC system for cooling. This result is not an expected
one, notice the chiller setpoint on optimized situation is 5.8oC
instead of 8.5oC. Figure 18 presents the temperature signals
on Loja do Cidadão.
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Fig. 18: Temperature signals on Loja do Cidadão store for the
acquired and the optimized chiller setpoints

The temperature evolution inside Loja do Cidadão is a more
coherent one for the selected chiller setpoint. While it shows a
higher cooling effort by having a lower temperature in almost
all samples during the day, it keeps the average temperature
in near the 23oC.

VIII. CONCLUSIONS

This master thesis presents a method to improve the
HVAC system usage based on open-loop optimal control ap-
plied on the chiller setpoint. It presents a start to end case study
applied to the HVAC from Cascais Center case study. The
results obtained on this implementation are, however, not con-
clusive with either the success or insuccess of the methodology
used. The reason is that, for an optimal optimization method
to work, there is a need of ”good” models. Their performance
revealed, however, not enough for the control strategy to result.
The reason is that, during the data acquisition, there were
constraints in logger devices availability and also in schedule
availability to acquire data on Cascais Center.

This dissertation allowed the comparison on two meta-
heuristic algorithms and two predictive models for the ob-
servers. On the optimization side, the results are similar for
both NSGA-III and PSO. Still, there is an advantage in using
NSGA-III, noticeable on number of iterations to converge. On
the observers side, the NARX Neural Network showed better
results than Takagi-Sugeno. It is important to notice the feature
implementation differences on both, though.

There is an important consideration to be made on the
optimization scenario. It is not realistic to have a short duration
on a setpoint which is only manually changed. Despite that,
the prediction methods improve their results as the predicted
sample gets closer. In an implementation, the prediction is part
of the system, but also of the data, since the meteorological
data is also predicted.

On future work, the improvements should be based on
improving the observers. This can be done by decoupling
data acquired and modeled, simplifying their dynamics. The
thermal comfort can be, also, data-driven modeled, improving
its estimation. On the optimization, a more complete set of
commands (instead of just the chiller setpoint).
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