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Abstract—Airport and airspace congestion is an inherent
problem worldwide, frequently resulting in substantial flight
delays, re-routings and even cancellations causing very high
expenses for airlines and aircraft operators every day. Special
attention goes to the European airspace which is one of the
most congested airspaces in the world. Its traffic is predicted
to increase considerably over the next years. In this thesis, a
new Genetic Algorithm, namely atfmGA, for solving large-scale
European Air Traffic Flow Management binary problems with
conflict probabilities, integrated in the optimisation Branch-and-
Bound framework SCIP, was developed. For this purpose, the
designed GA, based on problem-specific knowledge, considers the
slot allocation with the economic objective of reducing the delay
cost as well the conflict cost. The atfmGA is able to find quickly
feasible solutions and to provide new upper bounds for the
problem considering more than two millions conflict probabilities.

Index Terms—Air Taffic Flow Management, Slot Allocation,
Binary Integer Programming, Branch and Bound, Genetic Algo-
rithm

I. INTRODUCTION

Airport and airspace congestion is an inherent problem
worldwide, frequently resulting in substantial flight delays,
re-routings and even cancelations causing very high expenses
for airlines and aircraft operators every day. Special attention
goes to the European airspace which is one of the most
congested airspaces in the world. Its traffic is predicted to
increase considerably over the next years [1]. Consequently,
a great number of conflicts between aircrafts emerge in the
en-route area. To avoid such conflicts, an aircraft position
forecast should be used and an Air Traffic Flow Management
(ATFM) must be provided improving the safety and efficiency
of air transportation. This may have significant effects on the
safety and efficiency of air transportation, reducing the need
for controller interventions [2]. However, sources of error in
trajectories spatial and temporal prediction, span a wide range
of factors such as meteorological conditions, human behavior,
take-off time uncertainties, etc. inducing inaccurate forecasts.
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The focus is on deviations of departure time which are the
largest temporal uncertainties on the ground. Distributions of
departure times’ deviation in Europe, show that more than half
of all fights deviate at least five minutes [3]. Therefore, there is
a probability associated to potential conflicts, namely, conflict
probabilities [4]. Allocating alternative departure timeslots
to planned flights can reduce conflict probabilities but also
should not increase flight take-off’s delays significantly. Con-
flict probabilities are computed for all the possible departure
time combinations. Moreover, many flights have conflicts with
multiple other flights. Due to the interconnectedness of proba-
bilistic conflicts between flights and their departure timeslots,
a large scale ATFM assignment problem is to be solved in
order to find the best departure timeslots combination.

In this thesis, a Genetic Algorithm (GA) integrated in
the Branch-and-Bound framework SCIP (Solving Constraint
Integer Programs) is developed to solve ATFM conflict-free
and conflicted problems minimising delay and conflict costs.
This document is organized as follows: Section II the concept
of ATFM is explained. Also, a brief analysis of delays in
Europe is carried out. Section III provides a short description
of the ATFM network model. The mathematical formulations
for ATFM conflict-free and conflicted problems are presented.
Section IV introduces SCIP with special focus on the primal
heuristics incorporation in the Branch-and-Bound framework
solving process. Section V describes the development of the
GA scheme and its integration in SCIP. In Section V the results
obtained are presented. The performance of the deterministic
algorithm that SCIP employs will be compared with the
stochastic method of GA, namely atfmGA. Section VII finishes
the document, drawing some conclusions and suggesting some
future work.

II. AIR TRAFFIC FLOW MANAGEMENT IN EUROPE

The focus of this thesis is on ATFM, more specifically, the
European ATFM network. This service is established with the
objective of contributing to a safe, orderly and expeditions flow
of air traffic by ensuring that the existing network elements
(airspace sectors and airports) capacity are used to the maxi-



mum extend possible and that the traffic volume is compatible
with capacities declared by the appropriate authority with
timely, accurate information for planning and execution of an
economical air transport.

A. Delays in Europe

The use of ATFM regulations by delaying aircraft on the
ground to prevent more traffic than the coordinated capacity
is a daily reality for Air Operators. This ATFM procedure is
as known as Ground Delay Program (GDP) [5]. Its principle
of tactically corresponding demand with capacity by inflicting
delay on the ground is the essence of ATFCM flow control.
It is cheaper, both in fuel and environmental cost-wise, safer
and easier to delay a departure than to allow the aircraft to
become airborne and then impose it a delay either en-route or
on the approach to the destination airport, by speed control,
by holding or by re-clearing the aircraft to non-optimal flight
levels [6]. Thus, ground holding is more cost effective and
more environmental friendly than airborne delay management.

If the capacity of the airspace through which a flight is
planned is reduced, or the number of flights planned through
that airspace in a given time period exceeds the standard
capacity of that portion of airspace, it is then necessary to
delay aircraft on departure to loosen the demand.

Delays result for a large number of reasons such for a lack
of resource, mechanical issues, planned processes, etc...The
figure 1 depicts the causes of departure delay analysed by
EUROCONTROL.

Fig. 1. All causes of delay in Europe with the respective average delay per
flight in 2016 and 2017, source [7]

B. Cost of ATFM Delay

Many implications emerge when introducing delays to air
traffic causing a number of detrimental impacts such as on
customers perception, cost, efficiency and environment. As
this work deals with air traffic flow control, costs incurred
by ATFM are particular relevant. The network average cost of
ATFM delay, per minute was updated in 2014 and is set to the
value of EUR 100, [8], i.e. the cost of an extra minute delay
for an average flight is estimated for all aircraft operating in
Europe at EUR 100. The estimated costs due to ATFM en-
route and airport delay amounted to EUR 932.8 millions in

the last year. The delays and costs increased drastically in the
past 5 years. This is largely due to the increasing number of
flights since then.

III. MODELLING WORK-FLOW AND DATA SET

The Network Flow Environment (NFE) is a tactical ATFM
model software suite of the whole European ATFM network
for pre-flight, re-routing and pre-slot allocation [9]. NFE
allocates ATFM departure slots, i.e. CTOTs, in a similar way
as it is actually applied by CASA’s algorithm in NMOC for the
tactical Demand-Capacity Balancing (DCB) in Europe. When
flights are planned to enter highly congested network elements
along their individual estimated trajectory and there is no
free slots, then departure slots derive in pre-departure ATFM
delays. To handle the European ATFM network, the modelling
approach comprises of network elements, i.e. airports and ATC
sectors.

A. Air Traffic Flow Management Mathematical Formulation
Problem

The model is based on flights, with different starting time
intervals. Thereby, flights are assigned to discrete starting
time intervals whereby departure time-slots are modelled as
decision variables. When a flight departures at specific depar-
ture time-slot the corresponding value of the variable is one,
otherwise is zero. These variables are related to a singular
flight, its respective entry point in a sector and its respective
departure and arrival airports whereby a local discretisation
lies due to the clear separation and delimitation of the network
elements. Due to the fact that the capacity is dependent of time
intervals, an discrete ATFM slot time is specified according to
a selected time-step. Each decision variable is associated with
a fixed route that defines which network elements are capacity-
afflicted by a flight. The problem is characterized by two types
of constraints. On one hand, each flight takes-off once and on
the other hand sector and airport capacities must be fulfilled
for every time interval. The routes specify how much time a
flight takes to the respective sectors and airports. Therefore,
jointly with the starting time intervals, a true assignment of
decision-making variables on network elements’ time-slots
is accomplished. Each airport has individually limited take-
off and landing capacity. The control of air traffic flow is
performed with time-slots allocation, hence holding the aircraft
on the ground as long as it is needed in order to avoid expected
capacity bottlenecks. The amount of delay inflicted on flight’s
take-off requires clear costs for each decision variable and
thus, ultimately, for the total cost. The latter is composed of the
costs of all decision variables. Next, the individual components
of the linear model are presented.

1) Decision Variable: Following the work of Bertsimas and
Stock Patterson (1998) [10], the same binary decision variable
formulation is used. Each variable xf,d for each flight f in a
departure slot d of 15 minutes takes the form,

xf,d =

{
1, if flight f obtains ATFM slot d
0, otherwise.

(1)



2) Delay Cost Coefficient: The costs of start-slots d (also
known as ground-holding costs) wf,d varies for each flight f
and it is measured in dollars $.

3) Start Condition: The departure constraint ensures that
every flight f is assigned to exactly one departure d then we
have the following start condition constraint:∑

d∈D(f)

xf,d = 1, ∀f (2)

4) Capacity Constraints: Sectors and airports have indi-
vidual limited capacity. For a sector, this means that no
more aircraft are allowed to enter at any instant of the fully
congested time interval, until the next timeslot as its capacity
allows. For the airports in turn, it means that in a time interval
no more aircraft may take off than the take-off’s capacity
allows and may not land more planes than the landing’s
capacity allows.

5) Sector Capacity: The coefficient a assigns the flight
f with delay d to the sector s in the particular timeslot t
which corresponds to the Calculated Time Over (CTO) of the
respective flight.

a(s,t),(f,d) =

{
1, if CTOs(f, d) = t

0, otherwise.
(3)

The sum of all sector s incoming flight’s entries assigned to
timeslot t is constrained by the respective capacity c resulting
in the following knapsack constraint, i.e. the sum of decision
variables (traffic demand) must be equal or smaller than the
sector’s capacity.∑

f∈F

∑
d∈D(f)

a(s,t)(f,d) · xf,d ≤ cs, ∀s, t (4)

Airport arrival and departure capacity constraints observe
the same constraint equation as 4 but with different indexing.

The ATFM problem is then formulated as a Binary Problem
with binary decision variables, a cost function and linear
constraints allowing the application of methods of linear
optimisation.

The objective function of the total delay is to be minimised.
Since each flight f is assigned exactly to one ATFM slot, i.e.
departure slot) d, the delay cost ωf,d is afflicted for each flight
only once. The linear objective function Z(x) is the sum of
the delay costs. It is declared by the equation 5.

Z(x) = min

(∑
f

∑
d

ωf,d · xf,d

)
(5)

B. Air Traffic Flow Management with Strategic Deconfliction

The goal of ATC is to manage air traffic on a short-term
horizon by monitoring the traffic and keeping aircraft separated
within a separation minima. The latter is standardized as the
distance of five nautical miles lateral and thousand feet vertical
between all aircraft in the upper space [11]. A conflict between
two airborne aircraft arises when these aircraft converge in

space and time so that they may endanger the minimum
separation like figure 2 illustrates. To resolve conflicts, the
ATCs provide pilots with instructions to perform airborne
manoeuvres. ATCs have workload capacity which impacts
sectors capacity [12]. Depending on the number of converging
aircraft within an ATC sector at a specific time and the current
traffic situation, the mentioned instructions may rule actual
ATC workload. The increasing number of flights in the en-
route area increases the changes of losses of separation minima
consequently the number of conflicts leading to ATCs work
overloading and thus tighten the airspace capacity. ATC often
applies a safety margin controller workload which could be
adapted when conflict forecast is improved [12]. However the
delays’ costs induced by airborne manoeuvres are significantly
lower than those induced by ground holding [1] strategic de-
confliction by allocating ATFM delays can potentially reduce
ATCs workload and ultimately increasing the sector’s capacity.

C. Strategic Deconfliction

The moment when aircraft infringe the separation minima,
a loss of separation occurs. Hence, strategic conflict happens
when two planned trajectories infringe the separation minima
in any point in the future, see figure 2.b. To enable strategic de-
confliction, every planned flight path point is checked against
points of other flights for infringement of the separation
minima [2].

When a flight’s departure is delayed, its trajectory shifts
in time accordingly. Thereby, allocating new departure slots,
can result in new conflicts between flight’s trajectories that
were separated in time beforehand. Delayed flights can only
possibly be in conflict, if they are planned to arrive at the
critical points with a time difference which is a multiple to
the trajectory’s time step. For instance, if flight F1 crosses
a point 15 minutes after flight F2, there is no conflict, see
2.c. Conversely, if flight F2 is delayed 15 minutes, there is a
strategic conflict, see 2.d.

(a) Conflict between two aircraft
converging to a violation of the
minimum separation (indicated
by surrounding circles)

(b) Loss of separation between
two aircraft because of a viola-
tion of the separation minima at
that point in time

(c) Two planned trajectories that
are not in conflict. They are suf-
ficiently separated because they
cross with a time difference

(d) Two planned trajectories that
are in conflict because there is a
future point in time where they
violate the separation minima

Fig. 2. Strategic deconfliction



The components of the ATFM with strategic deconfliction1

are:
1) Conflict cost: Every strategic conflict probability be-

tween two flights f
′

and f
′′

with departure slots xf ′ ,d′ and
xf ′′ ,d′′ has conflict cost kf ′ ,d′ ,f ′′ ,d′′ . This new coefficient
represents the conflict delay cost for each pair of flight. It
is given by the half of the probability of conflict costs of
a pair f

′
and f

′′
for every departure possible departure slot

combination d
′

and d
′′

as equation 6 shows.

kf ′ ,d′ ,f ′′ ,d′′ =
1

2
· Pc(xf ′ ,d′ , xf ′′ ,d′′ ) (6)

The conflict cost term depends on variables of two flights
and therefore forms a quadratic objective. Hence, the objective
function z(x) now consists of both delay and conflict cost and
takes now the form of the equation 7.

(7)

Z(x) = min

(∑
f

∑
d

ωf,d · xf,d

+
∑
f ′

∑
d′

∑
f ′′

∑
d′′

kf ′ ,d′ ,f ′′ ,d′′ · xf ′ ,d′ · xf ′′ ,d′′

)
To linearise the quadratic conflict cost, a surrogate variable

has to replace the product xf ′ ,d′ · xf ′′ ,d′′ and so equation 8
holds:

yf ′ ,d′ ,f ′′ ,d′′ = xf ′ ,d′ · xf ′′ ,d′′ (8)

2) Surrogate Constraint: The linearisation of the conflict
term shown in the equation 8, provides a new constraint,
namely, conflict surrogate (1),

xf ′ ,d′ + xf ′′ ,d′′ − yf ′ ,d′ ,f ′′ ,d′′ ≤ 1 (9)

Where the variables xf ′ ,d′ and xf ′′ ,d′′ are the departure
slots decision variables for a pair of conflicted flights and
yf ′ ,d′ ,f ′′ ,d′′ is the surrogate variable.

Thereby, the objective function takes the linear form:

(10)

Z(x) = min

(∑
f

∑
d

ωf,d · xf,d

+
∑
f ′

∑
d′

∑
f ′′

∑
d′′

kf ′ ,d′ ,f ′′ ,d′′ · yf ′ ,d′ ,f ′′ ,d′′

)
IV. SOLVING BINARY INTEGER PROGRAMMING BY

BRANCH-AND-BOUND

The ATFM problem in Europe, for one day, typically deals
with around 30 000 flights associated to 10 different departure
time-slots resulting, as product between flight movements and
departure time-slots, in 300 000 decision variables and mil-
lions of possible conflicts. The great number of conflicts is due
to the fact that for each pair of flights there are several points
from their trajectories which have conflict probability [2].

1or ATFM conflicted problem

This illustrates the interconnectedness mentioned earlier which
requires a great computational effort for finding solutions.
There is an extremely large number of possible solutions,
around two to the power of 30 000 plus millions of possible
conflicts. ATFM problem is NP-Hard, which means even the
most powerful computing systems take an immense amount of
time to solve the problem to optimality or to near-optimality

A. SCIP - Solving Constraint Integer Programming

Among the available search procedures, a Branch-and-
Bound framework is the one proposed to be used. These
frameworks are widely used in IP problems, but they do not
guarantee to find an optimal solution. However, they do tend
to be significantly more effective than the rounding approach
in improving the upper and lower bound.

The Branch-and-Bound framework to be used is SCIP
(Solving Constraint Integer Programs) developed by the Zuse
Institute Berlin (ZIB). In this framework, Constraint Program-
ming is incorporated in the BIP problem to provide a compact
model and specialized constraints handlers methodologies for
this complex problem. With more than 500 000 lines of code,
SCIP is implemented as C callable library which mimics object
oriented programming. SCIP is freely available in source code
for academic and non-commercial purposes. Among the non-
commercial solvers for MIP, this framework is currently one
of the fastest.

The core of SCIP, is a framework that provides the infras-
tructure to implement adjustable search algorithms incorpo-
rated in the Branch-and-Bound tree search. SCIP is highly
customized and allows the user to have total control of the
solution process. Moreover, SCIP includes a large library of
default algorithms to control the search which are part of
external plug-ins which interact with the framework through
a very detailed interface.

In SCIP 3.2.1 there are 23 primal heuristics implemented at
the user’s disposal. This type of plug-ins are designed to find
feasible solutions in the transformed problem. They can be
viewed as a module of SCIP which is to be integrated in the
SCIP infrastructure. In order to allow a good interplay between
its solution process and the module itself, primal heuristics
have a set of properties settings which defines when modules
are called in the Branch-and-Bound tree search illustrated in
figure 3.

V. GENETIC ALGORITHM

GAs were developed by John Holland and his students and
colleagues at the University of Michigan, most notably David
E. Goldberg and he has been tried on various optimization
problems with a high degree of success. Genetic Algorithm
(GA) is a metaheuristic inspired by the a natural phenomenon
named "survival of the fittest", i.e. individuals with variations
that inherent a survival advantage through improved adapta-
tions to the environment are most likely to survive to the next
generation. This algorithm is sufficiently randomized in nature
performing much better than other search methods such as
random local search [13]. Genetic Algorithms have the ability



Fig. 3. Branch-and-Bound tree search and primal heuristics execution calls
in the SCIP solving process

to deliver a ’good-enough’ solution ’fast-enough’. This makes
GAs attractive for use in solving optimisation problems.

A. Algorithm Scheme

GA starts with a initial set of solutions, each one of them
represented by a chromosome2. This initial set is known as
the initial population. Then, the latter will be reproduced
in the generation loop. In this phase, a new population of
solutions is created. Firstly, the individuals will be subject
to reproduction by using the genetic operators crossover and
mutation originating the new individuals, namely children.
Secondly, according to a replacement strategy, the population
is updated by replacing the previous individuals by the new
ones. Thirdly, by using an appropriate selection strategy an
individual from one population is picked depending on its
fitness and used to form a new offspring. This process repeated
until GA reached the stopping criteria. GA iteratively applies
the generation of new population and the replacement of a
new one.

B. Fitness Landscape Analysis

The effectiveness of a GA will depend on the properties
of the problem’s landscape associated with the instances to
solve, thus it is an important aspect in designing a GA, namely
its search components, i.e. the solution representation, search
operators (selection, crossover and mutation) and the objective
function [13]. The goal of this analysis, is to attempt to predict
the behaviour of the GA’ search components.

The first start-slot has no departure delay associated, the
following start-slots have an increasing departure delay of 15
minutes per start-slot (i.e. the second start-slot has 15 minutes
of departure delay, the third one has 30, and so on) and the
twelfth start-slot correspond to the cancellation of a flight’s
departure. Hence, it is expected that an increasing of the total
delay cost happens if start-slots with high departure delays are
allocated. The figure 4 depicts a sum of the flights delay costs
per start-slot. The first start-slot has zero cumulative delay

2The solution represented by a chromosome is called as individual

cost as no departure delay is associated to it. There is a clear
increasing of costs over the next start-slots until the departure
cancellation start-slot which has the highest cumulative delay
cost of 5.206× 108$.

Fig. 4. Cumulative delay cost per start-slot

C. Solution Representation

The ATFM problem’ solution is represented by binary
variables, each variable dictates if the specific start-slot option
was allocated to a particular flight. The size of the solution is
given by the product of the number of flights and the number
of start-slot options. There are 12 start-slot options. According
to the start constraint 2, only one start-slot option can be
assigned to a given flight as the table I depicts. Thus, in the
encoding space, the solution representation uses the following
encoding variable namely gene.

ϕ(f) = d if the start-slot d is assigned to flight f (11)

Each ϕ(f), i.e. gene, has a value, namely allele, correspond-
ing to the start-slot option dk index within the discrete interval
[1, 12]. In the table I, the flight f1 was allocated to the third
time-slot d3 forming the non-zero binary variable x1,3. By
applying the encoding scheme, the non-zero binary variable
x1,3 is transformed into the gene ϕ(1) which takes the allele
value 3. The same transformation is applied for every non-
zero binary variables of each problem solution in the solution
space or phenotype resulting in one chromosome or individual
flight’s vector in the encoding space or genotype depicted
in the table II. The phenotype is composed by all possible
problem’ solutions represented by binary variables and the
genotype is composed by all possible individuals represented
by integer variables that can span from 1 to 12.

Start-slot options
d1 d2 d3 ... d10 d11 d12

Fl
ig

ht
s

f1 0 0 1 0 0 0
f2 0 0 0 0 0 1
.
.
.

.

.

.
fn 1 0 0 0 0 0

TABLE I
PROBLEM’ SOLUTION VARIABLES



Alleles = dk
ϕ(f)

G
en

es
=

Fl
ig

ht
s ϕ(1) 3

ϕ(2) 12
.
.
.

.

.

.
ϕ(n) 1

TABLE II
FLIGHT’S VECTOR

This transformation ensures that the start constraint 2 is
always satisfied for every flight. Moreover, this representation
reduces the solution vector by ten times resulting in an
encoded vector of size equal to number of flights in the ATFM
problem. Consequently, this reduces the original search space
which GA has to explore in the same scale improving GA’s
efficient. The encoded solution cannot be evaluated by the
objective function and be used to validate the solution against
the capacity constraints within the optimisation problem. The
objective function remains the same. Therefore, a decoder
must be specified to express the solution given by the en-
coding.

To implement a decoder, the allele of the gene must be
read to get the index of the non-zero binary variable. With this
information, it is possible to allocate a non-zero binary variable
into the problem’ solution. Take this example for instance: in
the table II, the gene ϕ(2) has the allele 12 which indicates
that the non-zero binary variable x2,12 must be allocated in the
row 2, column 12 in the problem’ solution matrix. Therefore,
the flight f2 was allocated with a cancelled flight departure
slot.

D. Initial population

An initial population comprised with individuals constituted
by only cancelled flights, i.e. all their alleles are set to the last
start-slot option d12 forming identical vectors with all their
elements’ value set to 12, is to be randomly generated. This
method draws alleles randomly ensuring that each allele has
the same probability to be drawn. The number of genes to
be drawn is also random ensuring a considerable amount of
flights cancelled per individual.

E. Selection strategy

As the size of the population is constant, it allows to with-
draw individuals according to a given selection strategy. The
latter concerns the parents selection for the next generation
with a bias towards better fitness.

1) Roulette Wheel Selection: This strategy assigns to each
individual a selection probability that is proportional to its
relative fitness. Being fi the fitness of the individual pi in the
population P its probability to be select is:

pi =
fi∑n
j=1 fi

(12)

2) Tournament Selection: This strategy consists in selecting
k individuals randomly. The parameter k dictates the number
of contestants in the tournament. A tournament is then applied
to the k members of the group to select the best one as the
figure 5 illustrates. To select µ individuals, the tournament
procedure is performed µ times.

Fig. 5. Tournament selection strategy. In this example, a tournament of size
k = 3 is carry out. Three solutions are selected randomly from the population.
The best individual is then selected. Adapted from source [13]

F. Genetic Operators

Once the selection of individuals to form the parents pop-
ulation is performed, the reproduction phase takes place with
the application of genetic operators such as the crossover and
mutation.

1) Crossover: The function of crossover is to interchange
some genetic material, i.e. characteristics, of the two parents
to generate offspring. Its design mainly depends on the repre-
sentation (encoding) used. Moreover, the performance of this
operator largely depends on the its user-defined parameter,
the crossover rate pc that spans from 0 to 1. This parameter
represents the proportion of parents on which the crossover
will perform. In this work, the n-point crossover and uniform
crossover were implemented

2) The n-point crossover: In the 1-point crossover, a
crossover point k is computed randomly which spans the
chromosome’s length. Then, two segments per chromosome
are formed separated in the kth position and thereafter inter-
changed them resulting in two offspring as the figure 6 depicts.

In the 2-point crossover, two crossover points are computed
randomly and then following the same method as the previous
operator, they interchange genetic material within the two
points as the figure 6 depicts.

Fig. 6. n-Point crossover operator. In the upper part of image it is illustrated
the 1-point crossover and in the bottom part of the figure it is illustrated the
2-point crossover



3) The uniform crossover: In the uniform crossover, two
individuals can be recombined without taking into account the
size of segments. Each element of the offspring is selected
randomly from either parent. Each parent will contribute
equally to generate the offspring as the figure 7 shows.

Fig. 7. The uniform crossover operator

4) Mutation: The function of mutation is to perform in-
dependently small changes in selected individuals of the
population in order to introduce in the offspring’s some new
features (hopefully desirable features) which are not possessed
by its parents. These small changes in the genetic material
of the offspring, maintain and introduce diversity in the
genetic population. Moreover, it allows the GA to explore a
new, maybe better part of the feasible region than the ones
previously considered and consequently escaping from local
minima.

For this problem, a mutation in the discrete representation
is to be implemented. According to [14] the main forms of
mutation for integer representation are the random resetting
mutation and the creep mutation. One more form of mutation
was designed which was obtained by extending the random
resetting one, namely bias resetting mutation.

5) Random resetting mutation: In the random resetting
mutation, a random allele from the set of permissible values S
is assigned to a randomly chosen gene. The set S comprises
the starting-slots and thus S ∈ [1; 12]. All the genes alleles x
are equally likely to be chosen with the probability P (x) = 1

12 .
6) Bias resetting mutation: A new operator was designed

by extending the random resetting one. Instead of setting a
equal probability to all alleles, it is possible to set a distribution
from which the random numbers are drawn. The goal of
using these modelled distribution is to control the likelihood
of the numbers’ drawing in such a way that the first start-
slot options are more likely to be drawn than the last ones
avoiding allocations of start-slots with high delay. The figure
8 shows the probability functions and the cumulative functions
for the start-slot options. With this distribution, it is more likely
to delay less the flights and consequently reducing the delay
costs.

Fig. 8. Half-Normal distributions

7) Creep mutation: This operator scheme was designed for
representations with ordinal attributes and therefore fits in the
encoding of this problem. Its function is to add small positive
or negative values to each gene with a given probability
pi. From a distribution that is symmetric about zero, the
probabilities pi associated with the values to be added are
sampled randomly for each position. Thereby, is more likely
to generate small changes than large ones. To design this
operator a distribution must be chosen and its parameters must
be tuned, hence controlling the distribution from which the
random alleles are drawn. For this purpose, the well known
normal distribution is the one to be used. The figure 9 shows
the normal distribution used in this operator with mean µ = 0
and standard deviation σ = 2.7.

Fig. 9. Normal distributions

G. Replacement strategy
The last step in GA consists in selecting the new solutions

from the union of the current population and the generated
one. A replacement strategy must be specified according the
survival of the fittest natural phenomena. The strategy imple-
mented was the traditional generational replacement proposed
by [15]. This strategy replaces the whole population of size µ.
The offspring population will replace systematically the parent
population. Other strategy is used namely elitism, in which
best individuals from the parents and offsprings population
are chosen to take part of the next generation as it is shown
in the figure 10. This approach provides a faster convergence.
Since this approach applies selection pressure, care should be
take because it could lead to a premature convergence and
consequently to be trapped in a local minima if high elitism
pressure is applied.

Fig. 10. Replacement strategy - Elitism



H. Stopping Criterion

Finally, a suitable criterion to stop the algorithm is to be
implemented. GAs are stochastic algorithms and mostly there
are no guarantees to reach an optimum, hence they may never
stop searching for the best solution. Moreover, this problem
has an unknown optimal objective value. For this algorithm, a
maximum number of generation condition was implemented
as the GA stopping criterion. Therefore, when a given number
of generation is completed, the GA stops its iterative process
and return the best solutions found and its iteration statistics.

I. GA flowchart

The figure 11 illustrates the flowchart of the proposed GA.
The program flow of GA is divided into two main blocks:
Initial Population Creation in which the initial population is
created and the Generational Loop in which the individual are
created and the solutions tried. The latter is subdivided in four
modules, the Selection, the Reproduction, the Evaluation and
the Replacement.

Fig. 11. GA flowchart

VI. RESULTS

A. Solved Scenarios: Conflict-free and Conflicted

A performance assessment of the solver was carried out
using two problem scenarios are used, the scenario conflict-
free and the conflicted scenario. The first one was used to
evaluate the performance of the search operators designed in
the previous chapter. The second is subdivided into 4 different
instances and it will be solved with the most suitable search
operators and the best set of parameter values determined for
the first scenario.

For both scenarios, the corresponding date is 3-06/2014. All
flights that should departure on this day are considered. The
number of flights to be regulated is 26 289. A total of 107
time intervals are included, which corresponds to a time of
26h45min. The 107 time intervals again indicate the period
from the earliest start time of a flight to the latest (planned)
landing time plus the maximum possible delay. The number of
considered sectors amounts to 617. The number of considered
airports is 1 154. This results in a total of 312 975 capacity

restrictions for the sectors and airports for both arrival and
departure time intervals.

The ATFM conflicted scenario represents a huge large-scale
problem. Due to the uncertainties of departure time and the
flight’s routes interconnectedness, there is an huge number of
possible en-route conflicts. For the same date, 93.2% of all
fights have conflict probabilities. In total, this accounts for 16
391 398 flight slot pairs that have conflict probabilities. For
each of those conflicted flight slot pairs, a conflict surrogate
variable and a conflict constraint arises, see 9. Moreover, the
size of the problem becomes immensely large and impractical
to solve. To reduce its size, a minimum probability of conflict
(minProb) can be set. The latter will threshold the conflict
probabilities and thus reduce the problem’ size.

B. GA Performance Assessment

The performance of GA depends on many factors3 asso-
ciated with the selection strategy, the genetic operators, the
replacement strategy and the generation of the initial popu-
lation. Moreover, it also depends of their parameter values.
Hence, adapting the suitable atfmGA strategy and components
along with the most suitable parameter values is very important
because it guides the search process to better results, i.e. it
improves the quality of the solutions. The selected instance
is the full day scenario without conflicts described in VI-A.
Also, every best solution found throughout the experiments, its
UB will be recorded and the optimality gap updated relatively
to the problem known optimal solution 7.595× 103 $. This
gap, will be computed with the obtained atfmGA UB and the
known LB which is the optimal solution. The optimality gap
or just simply gap, is given by the equation 13.

Gap =
UB − LB

min(UB,LB)
× 100% (13)

C. Dynamic Parameters Update

To avoid atfmGA to be stuck in a local minima and
better explore the search space, a Dynamic Parameter Update
(DPU) initialisation was implemented. The figure 12 shows the
dynamic trade-off between exploration and exploitation using
the parameters ElitRatio, Pmutation and PXover. The
parameter ElitRatio dictates the number of best individu-
als found so far will be part of the next population. The other
two are respectively the probability of mutation and crossover.

Computational tests were carried out using this strategy
and an improved atfmGA solution was found with a cost of
1.075× 107 which reduced the gap to 138 828%.

D. GA Performance Rate

A way of measuring the atfmGA performance is by
analysing its successful rate of finding solutions that improve
the UB. Five computational tests using 1000 generations,
Popsize = 100 and dynamic parameter values were executed in
order to evaluate the atfmGA performance rate PR. The latter
takes into account the computational effort by considering

3Excluding the computer and software features in which the GA is tested.



Fig. 12. Dynamic parameter values update ElitRatio, Pmutation and
PXover.

number of solutions that are better than the UB, i.e. num-
ber of improvements, over the number of objective function
evaluations in all the runs. It is computed with the equation
14.

PR =
#Improvements

#Evaluations×#Runs
(14)

With the obtained results from different computational tests,
the performance rate of atfmGA was computed:

PR = 0.63% (15)

This result shows how low is the likelihood in finding
better UBs using atfmGA. A new improved solution was found
1.025× 107. For the best computational test in this experi-
ment, a further analysis was performed to better understand
the search process of atfmGA.

E. ATFM Conflict-free Problem

The comparative results of the best solutions found are now
presented. The key measurement in this study is the delay
cost found by each method. The figure 13 depicts the number
of start-slots allocations for the optimal solution vector and
for the best solution found by atfmGA and its performance
measures summarized in the table III.

Fig. 13. Optimal result and atfmGA best solution found for the ATFM conflict-
free problem

The figure 13 shows that in the optimal solution only a tiny
percentage of flights, respectively 0.126%, is regulated whilst
in the best solution found by atfmGA a significantly percentage
of flights, respectively 46.496%, are regulated which reflects
in an high total delay cost.

Best Solution found

UB [$] Gapbest tUB(s) Regulated Flights

SCIP 7.595× 103 0% 9.53 0.126%

atfmGA 8.550× 106 112 471% 380 468 46.496%
TABLE III

BEST RESULTS FOUND BY SCIP AND atfmGA FOR THE ATFM WITHOUT
CONFLICTS PROBLEM

F. ATFM conflicted problem

The comparative results of the first and best solutions found
are now presented. The figure 14 depicts the number of start-
slots allocated in the optimal solution vector and in the best
solution vector found by atfmGA. Their performance measures
are summarized in the table IV.

Best Solution found

UB [$] Gapbest tUB(s)
Regulated

Flights

SCIP

0.4 8.091× 104 0% 25.70 0.905 %
0.3 2.381× 105 0% 61.50 1.775 %
0.2 6.428× 105 0% 429.13 3.922 %
0.1 - - - -

atfmGA

0.4 1.672× 107 20 559% 263 689s (73.25h) 36.118%
0.3 4.141× 107 17 290% 242 668s (67.408h) 42.733%
0.2 9.403× 107 14 528% 387 232s(107.6h) 37.997%
0.1 1.754× 108 7 225% 20 872s (5.8h) 83.974%

TABLE IV
BEST RESULTS FOUND BY SCIP AND atfmGA FOR THE ATFM WITH

CONFLICTS FOR THE DIFFERENT INSTANCES

Fig. 14. Optimal result and atfmGA best solution found for the different
ATFM with conflicts problem’s instances. For the instance minProb = 0.1,
only the algorithm atfmGA successfully found an UB.

G. GA Incorporated in the SCIP B&B

To leverage the SCIP solution process, atfmGA could be
incorporated in the B&B tree search. SCIP’s module can
be called at different stages of the solving process. For
instance, the atfmGA module heur_atfmGA could be firstly
called in the first deep level (root node) of tree search and
thereafter be re-called in every following deep levels until
SCIP finds the optimal solution. For the ATFM problem with
minProb=0.1, the same properties were used. Per each



depth level, atfmGA will run 500 generations. The result of
the convergence is illustrated in the picture 15. A new UB
was obtained of 1.729× 108 $ and a LB of 2.395× 106 for
a runtime t = 152 136 s (42.26 hours).

Fig. 15. Convergence result of SCIP B&B with GA for the ATFM conflicted
instance minProb=0.1. (the y-axis is represented in a logarithmic scale to
better visualize the convergence)

VII. CONCLUSIONS

Using the final atfmGA structure, computational tests with
high run-times were carried out for the two problem scenarios
and for different instances in order to exploit as must as
possible the performance of the developed algorithm in a feasi-
ble time-frame. The performance of these computational tests
were then compared with SCIP solving process. The results
in regard quality of the best solution and computational time,
showed that atfmGA performs poorly for the problem without
conflicts and for instances of the problem with conflicts. This
was also experienced in [16] in which a GA was developed
to solve a large-scale ATFM problem. Because the solution
space is immensely complex, with multiple local minima and
plateaus a deception in solution space probably exists, i.e. there
might exist a local minimum or group of local minima which
attracts atfmGA way from the global optimum.

One reason that might explain the poor performance of
atfmGA on the conflicted scenario’s instances is the over-
fitting of the parameters for the problem conflicts. A good
combination of parameters values and/or operators for one
problem, might be disastrous for others and even for the same
problems instances this also applies.

However, atfmGA is advantageous in finding quickly solu-
tions. For every instance, the results have shown that atfmGA
always wins the race for the first solution. Moreover, it is able
to find a great number of solutions which could be exploited to
perform a trade-off between delay cost and conflict cost. Also,
atfmGA was able to find feasible solutions for the large-scale
EATFM with 10% of minimum conflict probability and clearly
outperforming SCIP solution process. The Upper Bound found
is 1.7288× 108 $.

For this type of problems, deterministic algorithms such
as Branch-and-Bound seem to be effective. However, for
highly constrained problems with very large instances, the
simplex method employed by SoPlex executed throughout

the nodes of the tree search cannot find the global optimum
and takes a long time to improve the Lower Bounds. Using
SCIP as a framework, one can try to use different available
and already implemented plug-ins such as branching rules,
cutting plane separators, constraint handlers, node selectors,
primal heuristics and so on. Using the plug-ins properties, the
SCIP module can be called in every stage of the tree search
combined with other modules to enhance the solution process
and produce reports for every solving stage. This is one of the
big advantages of using this framework.

To solve problems of this magnitude, the use of parallel
and distributed computing is strongly recommended for the
following reasons: speed up the search, improve the quality of
the solutions and are able to solve large-scale problems such
as the EATFM considering all the conflict probabilities.
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