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Resumo

O congestionamento dos aeroportos e do espaço aéreo é um problema recorrente em todo o mundo,

resultando frequentemente em atrasos substanciais de voos, redireccionamentos e até cancelamentos,

causando custos muito elevados para as companhias aéreas e operadores de aeronaves todos os dias.

Especial atenção vai para o espaço aéreo Europeu o qual é um dos espaços aéreos mais congestionado

do mundo. Preve-se que o tráfego neste espaço vai aumentar consideravelmente nos próximos anos.

Nesta tese desenvolveu-se um novo Algoritmo Genético, designado de atfmGA, para resolver proble-

mas binários de grande escala da Gestão do Tráfego Aéreo Europeu com probabilidades de conflicto,

integrado na framework de Branch and Bound SCIP. Este novo algoritmo é baseado em conhecimento

especı́fico do problema e considera a alocação de atrasos nos voos com o objectivo económico de

reduzir os custos de atrasos como também a redução de custos de conflito. O atfmGA é capaz de en-

contrar soluções admissı́veis rapidamente e novos upper bounds para o problema considerando mais

do que dois milhões de conflictos.

Palavras-chave: Gestão do Tráfego Aéreo Europeu, Alocação de Atrasos, Programação

Binária Inteira, Branch and Bound, Algoritmo Genético
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Abstract

Airport and airspace congestion is an inherent problem worldwide, frequently resulting in substantial

flight delays, re-routings and even cancellations causing very high expenses for airlines and aircraft

operators every day. Special attention goes to the European airspace which is one of the most congested

airspaces in the world. Its traffic is predicted to increase considerably over the next years. In this thesis,

a new Genetic Algorithm, namely atfmGA, for solving large-scale European Air Traffic Flow Management

binary problems with conflict probabilities, integrated in the optimisation framework SCIP, was developed.

For this purpose, the designed GA, based on problem-specific knowledge, considers the slot allocation

with the economic objective of reducing the delay cost as well the conflict cost. The atfmGA is able to

find quickly feasible solutions and to provide new upper bounds for the problem considering more than

two millions conflict probabilities.

Keywords: Air Taffic Flow Management, Slot Allocation, Binary Integer Programming, Branch

and Bound, Genetic Algorithm

ix



x



Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

1 Introduction 1

1.1 Motivation for Solving the European Air Traffic Flow Management . . . . . . . . . . . . . . 1

1.2 Optimisation of the European Air Traffic Flow Management . . . . . . . . . . . . . . . . . 4

1.3 Related Work - Genetic Algorithms in Air Traffic Flow Management . . . . . . . . . . . . . 5

1.4 Objectives and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Air Traffic Flow Management in Europe 9

2.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Organization of Air Traffic Flow Management . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Air Traffic Flow Management Phases . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Network Manager Operations Centre and its Stakeholders . . . . . . . . . . . . . . 12

2.2.3 CASA - Computer Assisted Slot Allocation . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Delays in Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 ATFM Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Air Traffic Influence on ATFM Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.3 Cost of ATFM Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Modelling Work-flow and Data Set 21

3.1 The Network Flow Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Data Preparation and Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.2 Demand-Capacity-Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



3.2 Air Traffic Flow Management Mathematical Formulation Problem . . . . . . . . . . . . . . 24

3.3 Binary Integer Programming Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Air Traffic Flow Management with Strategic Deconfliction . . . . . . . . . . . . . . . . . . . 28

3.4.1 Strategic Deconfliction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.2 Conflict Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.3 Linearisation of the Quadratic Problem . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Solving Binary Integer Programming by Branch-and-Bound 33

4.1 Mathematical Optimisation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Simplex Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.4 Linear Programming Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.5 Branch-and-Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 SCIP - Solving Constraint Integer Programming . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Program Flow of SCIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Primal Heuristic in SCIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Genetic Algorithm 47

5.1 Motivation to Solve the EATFM Problem with a Genetic Algorithm . . . . . . . . . . . . . . 47

5.2 Fundamentals of Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.2 Basic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Genetic Algorithm Available Frameworks and Libraries . . . . . . . . . . . . . . . . . . . . 50

5.4 Development of Genetic Algorithm Program . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.1 Algorithm Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4.2 Fitness Landscape Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.3 Solution Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.4 Initial Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.5 Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4.6 Genetic Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4.7 Replacement Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.8 Stopping Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Genetic Algorithm Integration in SCIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.1 Genetic Algorithm as a SCIP Module . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5.2 Population Data Structure and Solution Flow . . . . . . . . . . . . . . . . . . . . . 65

5.5.3 GA Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xii



6 Results 69

6.1 Solved Scenarios: Conflict-free and Conflicted . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2 GA Start-Slots Allocation Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 GA Performance Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.1 GA Design Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3.3 Online Parameter Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3.4 GA Performance Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.5 Fitness Penalty Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Conflict-free ATFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.1 Optimal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.2 Stochastic Search Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.4.3 Comparative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Conflicted ATFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.1 Optimal Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.5.2 Stochastic Search Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5.3 Comparative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5.4 GA Incorporated in the SCIP B&B . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6 Solving Performance Progress: Breaking Plateaus in the Fitness Landscape . . . . . . . 87

7 Conclusions 89

7.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 93

A Vector Formulation 99

A.1 Variables, Network Elements and Cost Vectors . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2.1 Start Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2.2 Sector Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2.3 Airport Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A.2.4 Surrogate Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

B SCIP Technical Configurations 103

B.1 SCIP and Matlab Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.2 SCIP - MEX Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.2.1 Matlab Executable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.2.2 Data Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.2.3 Parsing ATFM Problem Data from Matlab and its Initialization in SCIP . . . . . . . 106

B.2.4 Generation of the ATFM-LP from the Data . . . . . . . . . . . . . . . . . . . . . . . 108

xiii



xiv



List of Tables

2.1 Estimated cost of ATFM departure delays . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Data needed for a linear programming model involving the allocation of resources to ac-

tivities, source [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 ATFM problem’s terminology for LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Conflict surrogate bitwise operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Hypothetical heuristics properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Statistical data per start-slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Problem’ solution variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Flight’s vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.4 Random search results with and without problem-specific knowledge . . . . . . . . . . . . 58

5.5 atfmGA summary of the features and respective parameters . . . . . . . . . . . . . . . . . 68

6.1 Performance of different experiments of GA components using Roulette Wheel selection

strategy. RR:Random Resetting, BR: Bias Resetting, CM: Creep Mutation. 1-P: One

point, 2-P: Two point, UX: Uniform. Total experiments computational time: 38.4 hours . . 72

6.2 Performance of different experiments of GA components using Tournament selection

strategy. RR:Random Resetting, BR: Bias Resetting, CM: Creep Mutation. 1-P: One

point, 2-P: Two point, UX: Uniform. Total experiments computational time: 112.5 hours . . 73

6.3 Performance assessment for different values of the parameters Probability of Mutation

(Pmutation) and Probability of Crossover (PXover). Total experiments computational time:

104.2 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Performance assessment for different values of the parameter Population Size (PopSize).

Total experiments computational time: 55.4 hours . . . . . . . . . . . . . . . . . . . . . . . 75

6.5 Performance rate assessment of atfmGA . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.6 atfmGA results with and without penalty function . . . . . . . . . . . . . . . . . . . . . . . 80

6.7 ATFM without conflicts optimal results using SCIP solver without atfmGA . . . . . . . . . . 81

6.8 ATFM without conflicts stochastic results using atfmGA . . . . . . . . . . . . . . . . . . . 82

6.9 Best results found by SCIP and atfmGA for the ATFM without conflicts problem . . . . . . 82

6.10 ATFM with conflicts size for different minimum conflict probabilities (minProb) . . . . . . . 83

6.11 ATFM with conflicts optimal results using SCIP solver without GA . . . . . . . . . . . . . . 84

xv



6.12 ATFM with conflict probabilities stochastic results for different instances using GA . . . . . 84

6.13 Best results found by SCIP and atfmGA for the ATFM with conflicts for the different instances 85

6.14 Best found solutions by SCIP and atfmGA for the ATFM conflict-free and conflicted and

its instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B.1 Network elements’ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.2 Flights’ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.3 Conflicts’ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xvi



List of Figures

1.1 Increasing Air Traffic Flow in Europe for different scenarios in the long-run, source [2] . . 1

1.2 Average departure delay per flight in Europe between 2006 and 2017, data’ source:

CODA Digest reports from 2006 to 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 All causes of delay in Europe in 2016 and 2017, source [3] . . . . . . . . . . . . . . . . . 2

1.4 Distributions of departure times’ deviation in Europe in 2016 and 2017 . . . . . . . . . . . 3

2.1 Diagram of Air Navigation Services(ANS), adapted from source [22] . . . . . . . . . . . . 9

2.2 Time line and functions of the ATFCM phases, source [28] . . . . . . . . . . . . . . . . . . 12

2.3 Network Manager Operations Centre system’ structure overview, adapted from source [23] 13

2.4 The map of ATFCM Areas, source [33] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 The map of NM Area of Operations, source [34] . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Scenario for a fictitious Restrited Area at a given period of time, adapted from source [23] 16

2.7 CASA-based ATFCM slot allocation scheme, adapted from source [28] . . . . . . . . . . . 17

2.8 All causes of delay in Europe with the respective average delay per flight in 2016 and

2017, source [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Primary delay causes in Europe with the respective average delay per flight in 2016 and

2017, source [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 Average ATFM en-route and airport delays per flight versus IFR movements, data’ source:

Performance Review Reports from 2011 to 2017 . . . . . . . . . . . . . . . . . . . . . . . 19

2.11 Monthly evolution of ATFM en-route delay per flight from 2015 to 2017 versus IFR move-

ments, data’ source: Performance Review Reports from 2015 to 2017 . . . . . . . . . . . 20

3.1 Scheme of the Network Flow Environment model, source [40] . . . . . . . . . . . . . . . . 22

3.2 NFE airspace model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Aircraft’ separation minima. Both vertical and horizontal separation. No other aircraft can

be inside the cylinder at the same time. Source [1] . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Strategic deconfliction, adapted from [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Distributions of departure times’ deviation in Europe in 2016 and 2017, source [3] . . . . . 29

3.6 Ground (red) vs. airborne (blue) flight predictability, source [42] . . . . . . . . . . . . . . . 30

3.7 Points of two exemplary trajectory segments in a portion of a sector volume, source [8] . . 31

4.1 Example of one iteration using Branch-and-Bound with hypothetical values . . . . . . . . 40

xvii



4.2 Conceptual visualisation of the lower bound and upper bound. The optimality gap is

reducing along time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 MIP solver benchmark (1 thread): Shifted geometric mean of results of Hans Mittelmann

homepage http://plato.asu.edu/ftp/milpc.html on 14/Apr/2017. Unresolved or failed in-

stances are accounted for with the time-frame limit of 2 hours. Source: http://scip.zib.de/

(Posted on 25/Sep/2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Flowchart of SCIP’ solving process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Branch-and-Bound tree search and primal heuristics execution calls in the SCIP solving

process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Local optima and global optimum, source [16] . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 A generation in GAs, source [45] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Typical GA flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 GA generation and replacement principle, source [45] . . . . . . . . . . . . . . . . . . . . 54

5.5 Start-slots options cost per flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Cumulative delay cost per start-slot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.7 Genotype versus phenotype in GAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 Roulette selection strategy. Each spin selects a single individual. The actual problem is

to be minimised and thus individuals with lower fitness values are actually fitter. Adapted

from source [45]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.9 Tournament selection strategy. In this example, a tournament of size γ = 3 is carry out.

Three solutions are selected randomly from the population. The best individual is then

selected. Adapted from source [45] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.10 n-Point crossover operator. In the upper part of image it is illustrated the 1-point crossover

and in the bottom part of the figure it is illustrated the 2-point crossover. . . . . . . . . . . 61

5.11 The uniform crossover operator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.12 Half-Normal distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.13 Normal distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.14 Replacement strategy - Elitism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.15 Interfaces cross-functional flowchart modules . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.16 Population data structure and solution data structure flow . . . . . . . . . . . . . . . . . . 67

5.17 atfmGA flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.1 Example of a representation of the timetable route network for a full day scenario (NFE

Output), source [63] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Allocated start-slots distributions for three different solutions found by atfmGA search . . 70

6.3 Median of the generations runtime and memory usage per generation. As the population

size increases, its memory and generation runtime increases. . . . . . . . . . . . . . . . . 75

6.4 Effect of the ElitRatio on the convergence within 100 generations. Total experiments

computational time: 25 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xviii



6.5 Dynamic parameter values update ElitRatio, Pmutation and PXover. . . . . . . . . . . . 77

6.6 Effect of the ElitRatio on the convergence within 1000 generations. Total experiments

computational time: 15 hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.7 Number of feasible solutions and number of UB improvements of the atfmGA search . . . 80

6.8 Optimal result and atfmGA best solution found for the ATFM without conflicts problem . . 82

6.9 Optimal result and atfmGA best solution found for the different ATFM with conflicts prob-

lem’s instances. For the instance minProb = 0.1, only the algorithm atfmGA successfully

found an UB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.10 Convergence result of SCIP B&B with GA for the ATFM conflict instance minProb=0.2.

(the y-axis is represented in a logarithmic scale to better visualise the convergence) . . . 86

6.11 Convergence result of SCIP B&B with GA for the ATFM conflicted instance minProb=0.1.

(the y-axis is represented in a logarithmic scale to better visualise the convergence) . . . 87

6.12 Overview of atfmGA UB improvements of the ATFM conflict-free problem throughout its

development. (the y-axis is represented in a logarithmic scale to better visualise the

convergence) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xix



xx



Nomenclature

Air Traffic Flow Management Optimisation

c Sector capacity

D Total number of departure slots

d Departure slot

F Total number of flights

f Flights

H Total number of arrival airport

h Arrival airport

i Airport arrival capacity

J Total number of departure airport

j Departure airport

k Conflict cost

o Airport departure capacity

Pc Conflict probability

S Total number of sectors

s Sector

T Total number of sectors time-slots

t Sector time-slot

th Arrival time interval

tj Departure time interval

wfd Delay cost coefficient for each flight in a departure slot

xfd Decision variable for each flight in a departure slot

xxi



y Conflict surrogate variable

Z Cost of the objective function

Genetic Algorithm

γ Size of the tournament selection

µ Number of individuals in a given population

fi Fitness of the individual

κ Crossover point

pc Crossover probability

Pi Individual

pm Mutation probability

Θ Population

ϕ Gene

dk Allele

xxii



Glossary

1-P 1-Point crossover

2-P 2-Point crossover

ACO Ant Colony Optimisation

ADP ATFCM Daily Plan

AFV Average Fitness Value

ANS Air Navigation Services

ASM Air Space Management

ATC Air Traffic Control

ATFCM Air Traffic Flow and Capacity Management. Eu-

ropean ATFM has evolved into the new con-

cept of ATFCM emphasising the need to bal-

ance the management of limited capacity with

the demand of increasing traffic.

ATFM Air Traffic Flow Management

ATM Air Traffic Management

ATS Air Traffic Service

BFit Best Fitness

BF Basic Feasible

BIP Binary Integer Programming

BR Bias Resetting mutation

CASA Computer-Assisted-Slot-Allocation

CDM Collaborative Decision Making

CFMU Central Flow Management Unit

CIP Constraint Integer Programming

CM Creep Mutation

CODA EUROCONTROL Central Office for Delay Anal-

ysis

CPF Corner-Point Feasible

CTOT Calculated Take-Off Time

DCB Demand-Capacity-Balancing

xxiii



DLR German Aerospace Centre

EATMN European Air Traffic Management Network

EA Evolutionary Algorithm

ECAC European Civil Aviation Conference

EC Evolutionary Computation

EOBT Estimated Off-Block Time

ESRA08 European Statistical Reference Area

ETO Estimated Time Over

FMP Flow Management Position

FPFS First-Planed-First-Come

FR Feasibility Rate

GA Genetic Algorithm

GDP Ground Delay Program

IATA International Air Transport Association

IFR Instrument Flight Rules

ILT Institute of Air Transportation Systems

LB Lower Bound

LP Linear Programming

MBFit Median of the Best Fitness

MEX Matlab Executable

MINLP Mixed Integer Non Linear Programming

MIP Mixed Integer Programming

NFE Network Flow Environment

NMOC Network Manager Operation Centre

NM Network Manager

NSGA-II Non-dominated Sorting Genetic Algorithm

PDF Probability Distribution Function

PR Performance Rate

RR Random Resetting mutation

SA Simulated Annealing

SCIP Solving Constraint Integer Programming

SESAR Single European Sky ATFM Research

SES Single European Sky

SGA Simple Genetic Algorithm

STD Standard Deviation

TUHH Technical University of Hamburg

UB Upper Bound

UX Uniform Crossover

xxiv



Chapter 1

Introduction

1.1 Motivation for Solving the European Air Traffic Flow Manage-

ment

Airport and airspace congestion is an inherent problem worldwide, frequently resulting in substantial

flight delays, re-routings and even cancellations causing very high expenses for airlines and aircraft

operators every day. Special attention goes to the European airspace which is one of the most congested

airspaces in the world. Its traffic is predicted to increase considerably over the next years [1]. The

increasing of the travel air traffic flow demand in Europe is illustrated in figure 1.1. It shows an increasing

trend of IFR movements or just simply, number of flights in the European Statistical Reference Area

(ESRA08). Until the year of 2040, four main scenarios with different growth rates are represented. For

all different economical scenarios using different input assumptions1, a growth in the number of flights is

observed.

Figure 1.1: Increasing Air Traffic Flow in Europe for different scenarios in the long-run, source [2]

Consequently, a great number of conflicts between aircraft emerge in the en-route area. To avoid

such conflicts and minimise delays, an aircraft position forecast should be used and an Air Traffic Flow

Management (ATFM) must be provided improving the efficiency and safety of air transportation.

1Such as economic growth, fuel prices, load factors etc.
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One way to measure the efficiency of air transportation is to analyse flights’ delays. In the figure 1.2

it is notable an increasing of departure delay per flight over the past 7 years in Europe and consequently

a decreasing of its efficiency.

Figure 1.2: Average departure delay per flight in Europe between 2006 and 2017, data’ source: CODA
Digest reports from 2006 to 2017

Sources of error in trajectories spatial and temporal prediction, span a wide range of factors such as

meteorological conditions, human behaviour, take-off time uncertainties, etc. inducing inaccurate fore-

casts. The focus is on deviations of departure time which are the largest temporal uncertainties on the

ground. These deviations can be categorised in causes of departure delay facilitating their identification.

The figure 1.3 depicts the causes of departure delay differentiated by EUROCONTROL.

Figure 1.3: All causes of delay in Europe in 2016 and 2017, source [3]

The target is on causes related with ATFM delays (ATFM En-route plus ATFM Airport) which accounts

for about 14% of all causes of departure delay. Distributions of departure times’ deviation in Europe,

show that nearly half of all fights deviate at least five minutes [4]. The figure 1.4 depicts the mentioned
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distribution for the years 2016 and 2017. It’s notable that the fraction of flights delayed raised from 2016

to 2017.

Figure 1.4: Distributions of departure times’ deviation in Europe in 2016 and 2017

Safety is one of the key performance of the air transportation system [5]. To guarantee a safe flight

for each aircraft, air traffic controllers (ATCs) ensure a separation minima standard for all aircraft. When

two aircraft are in a situation that may lead to a violation of separation minima, a conflict occurs [6]. On

a daily basis, these conflicts are solved by ATCs responsible for specific sectors. Hence, the emerging

en-route conflicts increase controller workload and thus tighten sector capacity in order to controllers

be able to solve all conflicts. To improve safety, the Single European Sky ATFM Research (SESAR)

program seeks to reduce the number of conflicts [7]. Because conflicts are dependent of time, improved

separation of aircraft in time reduces conflict potential. For strategic deconfliction, the Network Manager

(NM) could re-allocate departure time-slots while satisfying both sector and airport capacity constraints.

Taking into account the inherent uncertainties of the departure times, it is possible to compute the

probability associated to potential conflicts, namely, conflict probabilities [8]. Conflict probabilities are

computed for all the possible departure time combinations. Moreover, many flights have conflicts with

multiple other flights. One of the aims of this work is a strategically prevention of probabilistic conflicts

in any future point in space and time, by allocating alternative departure time-slots to planned flights,

namely strategic deconfliction, which can reduce conflict probabilities but also should not increase flight

take-off’s delays significantly. As a basis for the deconfliction, actual datasets of planned trajectories

along with the respective conflict probabilities, sector bounds and airport features are aggregated to

model the European ATFM. Consequently, this work develops an ATFM approach that combines strate-

gic probabilistic deconfliction with adherence to system capacities. To achieve both objectives, alter-

native departure timeslots are allocated. Reduce conflict probabilities by departure time-slot allocation

increases delays. Due to the interconnectedness of probabilistic conflicts between flights and their de-

parture timeslots, a large scale ATFM assignment problem is to be solved in order to find the best

departure time-slots combination.
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1.2 Optimisation of the European Air Traffic Flow Management

For these type of problems, a planning (programming) of activities is to be done to obtain an optimal

solution, thus there is the necessity for allocating resources (departure time-slots) to activities (flights)

by choosing the levels of those activities. For this, there is the need to use decision variables associated

to their respective costs, see [9]. Since the nature of the decision is yes-or-no, a Binary Integer Program-

ming (BIP) problem arises with binary decision variables which means that they are restricted to integer

values, namely 0 or 1. Binary problems with n variables have an exponential large number of possible

solutions of 2n. For that reason, it is not possible to check all solutions. Moreover, this BIP problem

is NP-Hard (Non deterministic Polynomial acceptable) which means, it cannot be solved in polynomial

runtime but only in exponential runtime. Thus, computer programs cannot handle them efficiently taking

a long time to run hence there are no such available algorithms that can find optimal solutions for this

problem.

ATFM with deconfliction is to be computed by using BIP allocating several departure time-slots.

This optimisation problem has quadratic conflict cost associated to each conflicted flight pair and linear

capacity constraints associated to sector and aerodrome capacity which bound the feasible region. In

order to solve the problem, there is the need to linearise the quadratic conflict-cost-term [5] because

quadratic functions are non-linear and for that reason they are hard to solve. Unfortunately the non-

linear programming problems can be nonconvex which means that it is not possible to ensure for this

problem that a local minimum is also a global minimum [9]. Thus, the quadratic costs are replaced by

linear conflict cost constraints and surrogate variables.

The European ATFM is modelled by a tactical ATFM model named Network Flow Environment (NFE).

It was implemented at the Institute for Air Transport Systems (ILT) of the German Aerospace Centre

(DLR) of the Technical University of Hamburg-Harburg (TUHH). NFE is based on real traffic data and

involves a realistic approximation of European sector and airport capacity. The ability to allocate de-

parture time-slots to flights throughout the European ATFM network is represented in the model by

binary decision variables by satisfying the objective of optimal delay minimization. These variables are

constrained by sector and airport capacity. The sectors and airports capacity-afflicted by the respec-

tive planned route of the flights, are determined by the mapping of the real flight plans to the network

elements capacities.

The ATFM problem in Europe, for one day, typically deals with around 30.000 flights associated to

10 different departure time-slots resulting, as product between flight movements and departure time-

slots, in 300.000 decision variables and millions of possible conflicts. The great number of conflicts is

due to the fact that for each pair of flights there are several points from their trajectories which have

conflict probability [5]. This illustrates the interconnectedness mentioned earlier which requires a great

computational effort for finding solutions. There is an extremely large number of possible solutions,

around two to the power of 30.000 plus millions of possible conflicts.

To solve such a large BIP problem an algorithmic approach must be used. One option, is to use

Branch-and-Bound methodology. Firstly, this methodology uses LP relaxations to ignore the integer
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constraints that require variables to have integer values. Secondly, solves the problem as a linear pro-

gramming problem by using the Simplex Method and hopefully get an integer solution [10]. Since it has

fewer constraints, its optimal solution provides a lower bound (LB). Because these hopes are almost

always unfulfilled, a backup strategy is necessary. The easiest strategy is to use the simple heuris-

tic rounding which rounds each resulting solution value to its nearest integer value providing an upper

bound (UB). However, there is no guarantee that a relaxed solution is necessarily feasible after it is

rounded. The goal is to do several iterations to try to improve the bounds.

To enhance the Branch-and-Bound process, there is the possibility to incorporate general solution

methods, such as metaheuristics which are capable of dealing with problems that are too large and com-

plicated to be solved by exact algorithms. Among the available metaheuristics, Genetic Algorithm (GA) is

the one proposed to be used. This metaheuristic is inspired by the process of natural selection. Genetic

algorithms are commonly used to generate high-quality solutions to optimisation and search problems

by relying on bio-inspired operators such as mutation, crossover and selection [9]. The advantages of

using this algorithm are the ability to escape from a local minimum and, using the Branch-and-Bound

information, converge to good solutions performing a robust and fast search of a feasible region [9]. The

disadvantage when using GA alone is that there is no way to find the global lower bound without try-

ing every branches (all possible solutions) which requires much more computational effort. Fortunately,

when combining GA in the framework, the lower bounds are computed using SCIP’s Simplex Method,

namely SoPlex, thus making possible to compare with the UB.

1.3 Related Work - Genetic Algorithms in Air Traffic Flow Manage-

ment

In 1990s, the Operational Research community has started to study ATFM problems using different

optimisation approaches on many variants of this problem. Only in 1994, Daniel et al. first shown that

GA can be used in ATFM problems.

Due to the complexity of this problem, the majority of the approaches are not able solve the whole

problem. Hence, it is usually solved partially for simplified instances. For example, the works [12–14]

only solve the problem for the French airspace. The problem’s mathematical model also varies from

study to study. Some models don’t contemplate sectors’ capacity constraints [15] and others don’t

contemplate airports’ capacity constraints [12].

Some ATFM mathematical models using GA present different objective functions. They can be clas-

sified as mono-objective [13, 16, 17], bi-objective [15, 16, 18] and multi-objective [19]. Different GA

schemes have been used in previous works depending on ATFM problem’ structure. For problems

with more than one objective function, the Non-dominated Sorting Genetic Algorithm (NSGA-II) is used

[18, 20]. In [15] a competitive co-evolutionary GA is applied.

For problems with just one objective function, such as in [13], the authors use two different GA

approaches namely, Simple Genetic Algorithm (SGA) and new-recombinators Genetic Algorithm. In the
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work [16], the authors also use two different GA approaches. The first is an hybrid GA which has a flavour

of Simulated Annealing (SA) in the crossover operator in order to speed up the convergence and the

second is close to the former but with an enhanced problem-specific crossover operator. This operator

receives additional information regarding the most congested sectors and then focus on recombinations

in order to smooth the peaks of sectors’ capacity congestion by assigning to flights new departure slots.

The latter mentioned work was the first attempted to solve the whole ATFM problem considering sector

and airport capacity. In this work, an ATFM network with 15 sectors and 24 airports was used to evaluate

the performance of implemented GAs. 3000 flight plans spread over 6 hours were generated randomly.

Two different combinatorial models are tested, one that allocates new routes and departure slots, and

another one that only allocates departure slots.

Other previous work [17] solved the whole ATFM problem with sector and airport capacity constraints

using the BIP model presented by Bertsimas and Patterson. This model uses binary integer variables

and its objective function is minimize the total delays cost of the overall system. The optimisation was

performed by two metaheuristics, a parallel GA and a Simulated Annealing (SA), and Integer Program-

ming (IP). To evaluate the performance of these three approaches, a network model of the National

Air Space (NAS) of United States of America (USA) and a data set with 974 sectors, 905 airports and

thousands of flights of one full day. Results have shown that IP is generally more efficient and provides

better results than the two metaheuristics. Surprisingly, it was used a GA scheme without the mutation

operator which was pointed out to explain the fall short of expectations on GA convergence.

1.4 Objectives and Contribution

1.4.1 Objectives

The goal of this thesis is to find good feasible solutions in an acceptable time-frame reducing delays

and conflict probabilities costs of the European Air Traffic Flow Management problem making use of an

enhanced Branch-and-Bound framework, incorporating Genetic Algorithms into the solving process.

1.4.2 Contributions

One of the contributions of this thesis is the development and incorporation of a stochastic metaheuris-

tic scheme, namely Genetic Algorithm, to enhance the SCIP solving process of the European ATFM

problem with conflict cost. A new GA, namely atfmGA, was developed from another framework code

structure and fully re-engineered to match the problem’s features.

The other contribution, attains the study and comparison of the performances of SCIP and GA.

To make use of GA in the Branch-and-Bound framework it is necessary to do the following steps.

Firstly, select the most suitable GA framework and include it in SCIP. Secondly, adapt it to the problem’

structure to leverage GA’s capabilities. Therefore, it is necessary to customise a SCIP’s modules to

allow a good interplay between GA and Branch-and-Bound’s framework.
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1.5 Thesis Outline

The manuscript is organised as follows:

Chapter 2 - Air Traffic Management in Europe.

In this chapter 2 an historical background and an overview of the ATFM organisation in Europe is pre-

sented. A brief description of the algorithm used to aid the planning of the ATFCM is given. Furthermore,

a short analysis of delays in Europe is carried out.

Chapter 3 - Modelling Work-flow and Data Set

The chapter 3 provides a detailed description of the ATFM network model and associated data. Mathe-

matical formulations of the ATFM without and with strategic conflicts are exposed.

Chapter 4 - Solving Binary Integer Programming by Branch-and-Bound

An introduction of mathematical optimisation theory can be found in chapter 4. Then follows a brief

description of SCIP with special focus on the primal heuristics incorporation in its solving process. The

used interface is described along with data handling from Matlab to SCIP and vice-versa.

Chapter 5 - Genetic Algorithm

The implementation of the GA is described in this core chapter 5. Related works using GA in ATFM

problems are referred. Then, it follows an introduction to GA terminology and concepts. A research on

the available GA frameworks was done before the actual GA development. The remaining part of this

chapter is devoted to GA implementation and its integration in SCIP.

Chapter 6 - Results

In chapter 6 the obtained results are presented. The performances of optimisation tools described in

chapter 4 and 5 are then compared.

Chapter 7 - Conclusions

Last but not least, concluding remarks and future work are presented in chapter 7.
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Chapter 2

Air Traffic Flow Management in

Europe

Before this chapter gets under way, it’s important to clarify some basic terminology. Based on the figure

2.1, ATFM is a component of one of the Air Navigation Services1 (ANS) called Air Traffic Management

(ATM). The service of ATM comprises all the services related to air navigation, which are:

• Air Space Management (ASM);

• Air Traffic Service(s) (ATS);

• Air Traffic Flow Management (ATFM).

Figure 2.1: Diagram of Air Navigation Services(ANS), adapted from source [22]

The function of ASM is to plan and publish the management of airspace, branched into air routes,

civil and military control routes and areas reserve for airports, while at the same time ensuring the safety

1Also known as Air Navigation Services Providers
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and fluidity of traffic. Together, ASM and ATFM support the use of the available airspace effectively,

including airport capacity, by minimising waiting times.

The focus of this thesis is on ATFM, more specifically, the European ATFM network. This service is

established with the objective of contributing to a safe, orderly and expedited flow of air traffic by ensur-

ing that the existing network elements (ATC sector2 and airport) capacity are utilised to the maximum

extend possible and that the traffic volume is compatible with capacities declared by the appropriate ATS

authority with timely, accurate information for planning and execution of an economical air transport, as

close as possible to foreseen flight intention and without discrimination [23].

2.1 Historical Background

In Europe, during the late 1960s, appeared a necessity to organise and co-ordinate the air traffic regard-

ing demand, time and geographical distribution. Until mid 1990s, aircraft position forecast, ATFM and

ASM used to be the responsibility of the Air Traffic Control (ATC) of each ATC sector in an attempt to

regulate traffic flows and to match demand with capacity. However, it was soon realised that flow control

on a regional basis gave rise to problems. As each state tried to protect its airspace without understand-

ing the impact on neighbours and the rest of the network, the airspace gradually grew more restricted,

giving rise to yet more delay. Due to increasing amount of traffic and the untangling of flights between

sectors combined with a restricted airspace, the ATCs were no longer able to cope, at economically

acceptable levels, with peaks in demand resulting in an unmanageable situation.

Consequently, the ATM in Europe had reached its worst performance ever during 1980s. In 1986,

12% of flights were delayed for more than 15 minutes on average and in 1989, 25% of all flights were

delayed for more than 15 minutes [24]. Politicians and their constituents were haunted by television

images of people stranded at airports while they waited for their flights.

It began to appear that the only solution was to carry out flow management centrally so as to make

the best possible use of all the available airspace capacity. The ministers of transport of the Euro-

pean Civil Aviation Conference (ECAC) member states met in Frankfurt in October 1988 to plan the

commencement of a Europe-wide centralised ATFM service [25]. The management of this project was

entrusted to EUROCONTROL3, the European Organization for the Safety of Air Navigation, which set

up the Central Flow Management Unit (CFMU). From 1989, the CFMU gradually took over responsibility

for providing efficient and safe flow management and by 1996, it had taken over responsibility for the

range of ATFM services in Europe previously handled by the regional flow management units.

The forecasts of the increasing air traffic levels and the additional costs every year was a big con-

cern of the EU. In order for the European airspace accommodate the increasing air traffic flows, whilst

cutting costs and improving its performance, the Single European Sky (SES) was established, [26]. This

way, the airspace became organized into functional blocks according to traffic flows instead of national

borders, following common rules and procedures at European level. The European Commission estab-

2Or just simply sector is the smallest area of airspace under specific control.
3EUROCONTROL is an intergovernmental organisation with 41 members that delivers the ATM performance required for the

following years
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lished the centralised function Network Manager (NM), as part of the regulation (EU) No 677/2011, and

nominated EUROCONTROL for this function in July 2011, see [27].

2.2 Organization of Air Traffic Flow Management

At the heart of EUROCONTROL lies the Network Manager Operations Centre (NMOC). NMOC is re-

sponsible for the following operational functions:

• Airspace Data Management: creates, verifies and updates the airspace data system (Environ-

ment);

• Flight Plan Processing: receives flight plans filed by aircraft operators, validating and if necessary

correcting those flight plans (automatically or manually) then redistributing the flight plans to the

aircraft operators and the overflown airspace control centres;

• Air Traffic Flow and Capacity Management4 (ATFCM): Aims to optimise ATC capacity in order to

meet the air traffic demand as effectively as possible, as well as guaranteeing safety and efficiency

in every phase of its activities.

2.2.1 Air Traffic Flow Management Phases

As the figure 2.2 depicts, the ATFCM activities are assigned to four time-related execution phase:

• Strategic phase: takes place at least 6 months prior the day of operations5 and ends approxi-

mately 7 days before. This phase includes flight plan processing, coordination activities and pre-

planning through a Collaborative Decision Making (CDM) process to predict what capacity ANSPs

will need to provide in each of their air traffic control centres avoiding imbalances between capac-

ity and demand for events taking place in the future (large-scale military exercises, major sports

events, etc.) which causes traffic loads and consequently congesting network elements. Bottle-

necks of traffic flows within the European Air Traffic Management Network (EATMN) are identified

[28] and then large scale ATFM plans on the orientation of traffic flows are designed;

• Pre-tactical phase: starts 6 days prior the day of operation, studies the demand for the D-Day,

compares it with the predicted available capacity on that day, and makes any necessary adjust-

ments to the plan that was developed during the Strategic phase by implementing a range of AT-

FCM measures (e.g. re-routing scenarios to flights, manage sector configuration, etc) optimising

the efficiency and balance demand and capacity through an effective organization of resources.

The work methodology is based on a CDM process between NM and their stakeholders [29]. The

output is the ATFCM Daily Plan (ADP) published in preparation for the next phase [22];

4The terms ATFM and ATFCM are roughly identical in most contexts such as in this one.
5Also known as D-day, is the last day of the ATFM routine. In the D-day, the traffic is managed through slot allocation and

re-routing.
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• Tactical phase: is operated on the day of operation. In this phase, traffic rates and capacities are

regularly updated to the ADP. Especially in the case of conflicting network impact, capacity profiles

dynamically oscillate according to traffic complexity patterns. The necessity to adjust the original

plan ADP may result from disturbances such as staffing problems, significant meteorological phe-

nomena, crises, special events, etc. The provision of accurate information is of vital importance in

this phase, since it permits short-term forecasts, including the impact of any event and maximises

the existing capacity without jeopardising safety [28, 29];

• Ad-hoc phase or Post Operational Analysis: is the final step in the ATFCM planning and man-

agement process, in which activities operated collaboratively by controllers and pilots, are enforced

to balance traffic flows within affected airspaces and congested airports. During this phase, an an-

alytical process is carried out that measures, investigates and reports on operational processes

and activities throughout all domains and external units relevant to an ATFCM service for feedback

purposes [28, 29].

Figure 2.2: Time line and functions of the ATFCM phases, source [28]

The focus of this thesis is on the tactical phase. The central development goal of NMOC in this

phase is to apply a Demand-Capacity-Balancing (DCB) process, which includes dynamic airspace man-

agement and pre-flight departure slot allocation [28]. The NMOC manages the flows of 43 states which

participate in ECAC to ensure that user demand (i.e. from the airlines) does not overload the capacities

offered by the airspace infrastructure (i.e. En-route and Terminal Manoeuvring Areas).

2.2.2 Network Manager Operations Centre and its Stakeholders

The NMOC is composed by independent systems each one with different functions assigned, com-

municating internally between them and externally with EUROCONTROL’ stakeholders. The figure 2.3

illustrates the NMOC system’ structure.

The Air Operators (AOs) represent all responsible for a flight under IFR (except the military ones).

They shall file their Flight Plans (FPL) through the Integrated Initial Flight Plan Processing System (IFPS)

and file Planed Flight Data (PFD) to the Pre-Tactical system. The ATS Reporting Offices (AROs) shall

in some cases play the role of interface between NMOC and AOs.
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Figure 2.3: Network Manager Operations Centre system’ structure overview, adapted from source [23]

The Air Traffic Control (ATC) is one of the existing Air Traffic Services (ATS), see figure 2.1, respon-

sible for the safety of all aircraft on the ground or in the air. The Flow Management Position (FMP) is

one of the EUROCONTROL stakeholders which ensures the necessary interface between local ATFCM

partners (i.e. ATCs, AOs and airports) and NMOC on matters concerning the provision of the air traffic

flow and capacity management service. The FMP shall provide the NMOC with relevant ATFM data to

enable it to carry out its responsibilities in all phases of ATFCM operations, see [30]. FMPs and AOs are

informed of the ATFM measures taken by NMOC.

The IFPS shall collect the FPL and check against the airspace structure in the system [31]. To

adhere to sector and airport capacities, any inconsistencies need to be resolved before the FPL can be

accepted. A copy of every accepted FPL with or without changes is then sent to the NMOC’s Tactical

system and to all the ATC units in Europe affected by that particular flight. In order to guarantee this

service to all European ATC units, the NMOC has two IFPS Units working in parallel, one in Haren,

Belgium and another in Brétigny, France acting as contingency sites for each other.

The ATS Environment (ENV) is the common airspace data repository feeding operational systems

and enabling aeronautical data services. All EUROCONTROL member states provide the NMOC with

their airspace data, which is then used to create a 3D model of the airspace structure. The ENV data

contains both static data such as sector boundaries and air routes (e.g. the maximum capacity for each

airport and sector), as well as dynamic data such as default ATC capacities (e.g. the number of runways

available, availability of air traffic controllers, etc) and air-route availability based on military airspace

usage [32].

The Pre-Tactical system is responsible for the pre-tactical phase refining the details of the original

forecast over time. It uses a tool as support named PREDICT which provides a fairly accurate overview

of the traffic loading on the day of operations, sector configurations and a Tactical-like environment in

which ATFCM measures can be simulated off-line enabling to study the operations overall effect [30].

This tool receives as input PFDs and ENV data and produces as output the ATFCM Daly Plan (ADP)

published one day before the day of operations. The ADP is a set of ATFCM measures that will be in

force in European airspace on the following day.
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The Enhanced Tactical Flow Management System (ETFMS) is located in the very heart of the in-

teraction between the ETFMS system, AOs and ATC. It is responsible for the tactical phase which is

overruled by short-term slot allocation, in this context ATFM slot6. ATFM slots comprise tactically Calcu-

lated Take-Off Times (CTOTs) for which a flight departs on time within 5 minutes before and 10 minutes

after the CTOT [29]. The slot allocation is implemented for departures from ATFCM area or from ATFCM

Adjacent area when entering ATFCM area. A map in figure 2.4 illustrates the areas’ boundaries.

Figure 2.4: The map of ATFCM Areas, source [33]

The Estimated Off-Block Time (EOBT) reveals the true time the AO expects the aircraft to be ready

to depart. Whether the aircraft is permitted to depart at this time depends on the effect of any flow

restrictions placed on the airports and the airspace through which the flight’s route is planned [22]. One

of the usual ATFM measures is to apply a regulation7, i.e. to limit the maximum rate of aircraft entering

either a regulated volume of airspace or airport over a specific period of time due to flow restrictions.

A flight affected by an ATFM regulation is assigned to a new take-off time, i.e. an ATFM slot, in an

automated process using Computer-Assisted-Slot-Allocation (CASA) system under the principle First-

Planed-First-Served (FPFS)8. Consequently, regulated flights which are delayed on the ground for longer

time, suffer an ATFM delay. Thereby, CASA enables ATC to inflict ATFM delays to aircraft in order to

adhere the airborne capacity.

The ETFMS has two main functions.

• The calculation of the traffic demand in every airspace sector within the NM area of operations,

see figure 2.5, using the FPL information received from the IFPS.

• Using the CASA heuristic algorithm, the complex process of calculation, allocation and distribution

6Also known as a ‘departure slot’, ‘CTOT’, or just ‘slot’. ATFM slots shall not be mistaken with airport departure and arrival
slots. Airport slots constitute planned time frames of 15 minutes length, negotiated within a slot conference on the basis of an
airports capacity benchmark value [28].

7Also known as ATFM regulation
8Adapted from the rule First-Come-First-Served (FCFS)
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of slot lists. These lists have ATFM slots applied to the set of flights being restricted according to

DCB requirements. This process is shortly described below.

Figure 2.5: The map of NM Area of Operations, source [34]

2.2.3 CASA - Computer Assisted Slot Allocation

An initial Slot Allocation List (SAL), is built and managed for each resource (i.e., an en-route sector or

an airport). This list consists in an empty slot allocation list with a number of slots function on the rate

of acceptance (e.g. flight/hour) assigned over a sub-period [29]. In the example illustrated in the figure

2.6, a SAL was prepared for the fictitious Restricted Area ABC123. With a flow rate of 24 flights per 1

hour, the list has 6 empty slots for the upcoming flights separated from one another by 2,5 minutes over

the sub-period 09:45z to 10:00z.

Then, CASA is fed with flight data (i.e. FPLs from IFPS), assigns an Estimated Take-Off Time (ETOT)

for each flight based on the EBOT plus the taxi-time9 at the departure aerodrome. This way, it is possible

to calculate and assign for each flight the Estimated Time Over (ETO) for the point of entry at each

entering sector in the planned route [22]. Subsequently, CASA pre-allocates the time-slots to flights in

the respective slot lists in accordance with the principle FPFS10 as close to their ETO as possible, i.e. it

sequences them in the order they would have arrived at the airspace in the absence of any restriction.

In the given example, in the figure 2.6, 5 initial flights (F1, F2, F3, F4 and F5) were assign to 5 different

time-slots accordingly to their ETO. When CASA receives new flight data, the time-slot is pre-allocated

as close to the requested ETO the restricted location as it is available:

• if that time-slot is free, it is assigned to the new flight which thus suffers no delay. In the same

example a new flight F6 with an ETO in between the ETOs of the flights F2 and F3, is assigned to

the third slot because there was one free slot;
9Time from the start of motion of an aircraft, under engine power, until the cessation of motion at the completion of a flight,

minus flight time.
10This principle refers to the flight’s ETO based on the FPL.
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Figure 2.6: Scenario for a fictitious Restrited Area at a given period of time, adapted from source [23]

• if that time-slot is already pre-allocated to a flight which is planned to enter the restricted location

after the new flight, then the latter takes the slot. Another new flight, F7, is assigned to the last slot

of the list because the latter enters the congested location first than fight F5 which is out of this

SAL.

Airports and sectors have declared capacities, and although flow managers will try to match capacity

with demand, when the number of aircraft in a slot list exceeds capacity, a regulation is activated. The

flight F5 was not allocated in this time-slot thus activating a regulation, so it will get the next available one,

i.e. an ATFM slot allocated is allocated to F5, and hence suffers a ATFM delay equal to the difference in

slot times. From this, the respective CTOT is determined. This process often leads to a chain reaction

of slot changes as new flights enter the time-slot list. To guarantee an optimal tactical reaction on ATFM

restrictions, at the earliest two hours before the EOBT of each flight, named Slot Issue Time 1 (SIT1),

see figure 2.7, the ATFM slot needs to be allocated to the flight and a message containing the respective

time-slot allocation information is sent to the AOs and ATC [29]. To do so, at the earliest 3 hours before

EOBT of each flight subject to ATFCM, its FPL must be sent to the IFPS to be filed [29]. If the flight

doesn’t comply with these timings, a range of mechanisms will act to compensate for the respective

flaw.

The figure 2.7 depicts an exemplary slot allocation process of the flight F5 from the previous example

planned to enter a regulated sector volume at an ETO at 09:58z. The flight is now declared as ATFM-

restricted with a CTO at 10:28z, suffering an ATFM delay of 30 minutes. EOBT and ETOT times are

going to be shifted accordingly. To comply with this slot, the flight must take off within a -5 to +10

minute slot window, that is, between 10:23z and 10:38z. Since a single flight might enter more than one

regulated entity, the delay caused by the most penalising one (the one which causes the highest delay)

along its planned 4D trajectory, is forced in all the others, rather than the ETO [29]. The actual delay also
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Figure 2.7: CASA-based ATFCM slot allocation scheme, adapted from source [28]

reflects a proportion of unpredictable delay originated by airport operations, airline scheduling, weather,

etc.

2.3 Delays in Europe

The use of ATFM regulations by delaying aircraft on the ground to prevent more traffic than the coordi-

nated capacity is a daily reality for AOs. This ATFM procedure is as known as Ground Delay Program

(GDP) [35]. Its principle of tactically corresponding demand with capacity by inflicting delay on the

ground is the essence of ATFCM flow control. It is cheaper, both in fuel and environmental cost-wise,

safer and easier to delay a departure than to allow the aircraft to become airborne and then impose it

a delay either en-route or on the approach to the destination airport, by speed control, by holding or by

re-clearing the aircraft to non-optimal flight levels [36]. Thus, ground holding is more cost effective and

more environmental friendly than airborne delay management.

If the capacity of the airspace through which a flight is planned is reduced, or the number of flights

planned through that airspace in a given time period exceeds the standard capacity of that portion of

airspace, it is then necessary to delay aircraft on departure to loosen the demand.

But what is delay? Accordingly to EUROCONTROL in [37] ”delay is the time lapse which occurs

when a planned event does not happen at the planned time”. Depending on personal preferences and

history, measuring delay can be done in different perspectives such as whether the lateness is measured

on departure or arrival. As mentioned before, the focus of this work is on deviations of departure times

on the ground, i.e. the delay is measured on departure.

Delays result for a large number of reasons such for a lack of resource, mechanical issues, planned

processes, etc. In order to provide means of comparison and to enable ATM partners to them commu-

nicate issues associated with delayed departures, a standard set of delay definitions was introduced by

the International Air Transport Association (IATA). The figure 2.8 depicts the causes of departure delay

analysed by EUROCONTROL.

It is notable in the above figure that, by far, the most meaningful cause of delay is ”reactionary11”. This
11Also known as secondary or rotation delay
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Figure 2.8: All causes of delay in Europe with the respective average delay per flight in 2016 and 2017,
source [3]

cause refers to all delays which may be directly attributed to an initial delay [22]. In 2017, this accounted

for about 44% of the total amount of delays or around 5,5 minutes per flight. The other causes can

be categorised in the same group as known as ”primary delays” which is defined as delay that affects

the initiation of the flight [37]. These delays are unaffected by any earlier or accumulated delay unlike

reactionary delays. The figure 2.9 illustrates the primary causes of delay analysed by EUROCONTROL.

Figure 2.9: Primary delay causes in Europe with the respective average delay per flight in 2016 and
2017, source [3]

2.3.1 ATFM Capacity

The main contributor to aviation delay in Europe is a lack of ATC capacity. To evaluate ATC capacity,

causes related with flow management delays must analysed such as:

• ATFM en-route: delay caused by regulations based on traffic volume to protect en-route ATC
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sectors from overload;

• ATFM airport: delay caused by regulations based on traffic volume on destination or departure

airports to protect them from overload.

By analysing the data in figures 2.8 and 2.9, in total these two causes account for about 14% of all

causes of departure delay and 26% of all primary causes in 2017. Other causes related with en-route

and airport staffing and disruptions of ATC capacity accounts for 16%, [38]. This means general capacity

issues in Europe accounted for 42% of delays during the year. The influence of weather on en-route and

airport operations collectively total 32.7% of delays [38], which means, the bulk of airspace interruptions

are clearly derived from controllable factors.

2.3.2 Air Traffic Influence on ATFM Delay

The figure 2.10 depicts the evolution of ATFM en-route and airport delays over the past years.

Figure 2.10: Average ATFM en-route and airport delays per flight versus IFR movements, data’ source:
Performance Review Reports from 2011 to 2017

It is noteworthy that the increasing of ATFM en-route and airport delays goes along with growth of

IFR movements, i.e. more traffic and demand leads to more delays. This phenomena is clearly notable

if we look to the evolution of the en-route ATFM delay throughout the months’ years in figure 2.11.

A seasonal pattern peaking of number of flights in summer is clearly visible. Particularly the months

of July, August and September of 2017 had the highest monthly traffic ever recorded, each amounting

more than one million flights. The busiest period for the European airline industry is undoubtedly in the

summer, specifically for the month of Jul-2017, there were on average 33 721 flights per day [38], the

highest of the year. However, during the highest demand period, en-route ATFM delay also reached its

yearly peak at 1.98 minutes per movement.
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Figure 2.11: Monthly evolution of ATFM en-route delay per flight from 2015 to 2017 versus IFR move-
ments, data’ source: Performance Review Reports from 2015 to 2017

2.3.3 Cost of ATFM Delay

Many implications emerge when introducing delays to air traffic causing a number of detrimental impacts

such as on customers perception, cost, efficiency and environment. As this work deals with air traffic

flow control, costs incurred by ATFM are particular relevant. The network average cost of ATFM delay,

per minute was updated in 2014 and is set to the value of EUR 100 [39], i.e. the cost of an extra minute

delay for an average flight is estimated for all aircraft operating in Europe at EUR 100. Using the data

from figure 2.10 it is possible to compute the total costs associated with ATFM en-route and airport

delays presented in the table 2.1.

Year
ATFM Delays (M min.)

Estimated cost of ATFM delays

(EUR 2014 Prices) in millions of euros

En-Route Airport Total En-route Airport Total

2014 4.2 6.3 10.6 422.4 633.6 1056.0

2015 5.1 7.7 12.8 507.0 770.3 1277.3

2016 7.6 7.6 15.2 760 .0 760.0 1520.0

2017 9.7 9.3 19.0 964.6 932.8 1897.4

Table 2.1: Estimated cost of ATFM departure delays

The estimated costs due to ATFM en-route and airport delay amounted to EUR 932.8 millions in

the last year. The delays and costs increased drastically in the past 5 years. This is largely due to the

increasing number of flights since then.
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Chapter 3

Modelling Work-flow and Data Set

In this chapter, the network model of EATFM is presented in the section 3.1. In the following sections,

the mathematical optimisation model is depicted. Firstly, in section 3.2, the ATFM problem with only

delay costs is presented. Secondly, in section 3.4 the ATFM problem with strategic deconfliction is also

presented.

3.1 The Network Flow Environment

The Network Flow Environment (NFE) is a tactical ATFM model software suite of the whole European

ATFM network for pre-flight, re-routing and pre-slot allocation [40]. NFE allocates ATFM departure slots,

i.e. CTOTs, in a similar way as it is actually applied by CASA’s algorithm in NMOC for the tactical

Demand-Capacity Balancing (DCB) in Europe. When flights are planned to enter highly congested net-

work elements along their individual estimated trajectory and there is no free slots, then departure slots

derive in pre-departure ATFM delays. To handle the European ATFM network, the modelling approach

comprises of network elements, i.e. airports and ATC sectors.

NFE consists in two functional blocks illustrated as horizontal process flows of sub-modules in figure

3.1:

• Data Preparation and Processing;

• Demand-Capacity-Balancing (DCB and slot allocation).

3.1.1 Data Preparation and Processing

In this section, data is extracted from several different sources. The Eurocontrol Demand Data Reposi-

tory (DDR2) and the European AIS database (EAD) serve as data sources of environmental data types

(airspaces, navigational data, ATS route data, capacity and regulation data). The traffic data used in this

work contains estimated flight plans provided by the DDR2.
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Figure 3.1: Scheme of the Network Flow Environment model, source [40]

Data Extraction

The Data Extraction Module (DEM) stands at the beginning of the NFE data preparation and processing

section. This module is responsible for the extraction of all data types according to initial settings, like

day of choice and geographical area of interest. The Initial Flight Plan Processing Zone (IFPZ) delimited

by the most outer white line in the figure 2.4, represents the default setting, containing a wider area

including Europe and some of its neighbouring states.

Most of the airspace model provided is depicted in figure 3.2.a. It contains 617 sector volumes,

representing approximately 30 000 traffic flows, i.e. flights, of the EATMN. The traffic flows within the

airspace model can be visualised in figure 3.2.b. The model contains realistic sectors with capacities

and closed boundaries defined.

The used flight plan data contains elapsed flight time, air route indicator, navigational point infor-

mation including origin and destination airports, flight level indicator and ETOs. NFE applies estimated

flight plan profiles according to tactical ATFCM operations to generate demand profiles for each network

element.

Data Processing

The Data Processing Module (DPM) is called after the flight plan data filter for the generation of specific

traffic scenarios without demand uncertainties. This module is capable of generating realistic demand

time-constrained scenarios, for which a subset of flight plans are extracted, e.g. with an EOBT within a

given period of time. Thereafter, the DPM completes every point profile by adding:

• additional points for every minute;

• geographical coordinates to each point according to AIRAC-conform navigation data;

• the sector profile;

• adverse impact location (e.g. weather convective events) information.
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(a) Airspace static sector model, source [40] (b) Airspace model with traffic flows, source [28]

Figure 3.2: NFE airspace model

To determine sector entry times and conflicts accurately, point profiles are generated with a time-step

of 1 minute, although the specified ATFM slot time-step of the model is 15 minutes.

NFE also applies tactical pre-flight re-routing according to initiated routing scenarios during tactical

NM. Flights planned to enter highly congested sectors or being assigned to high ATFM departure delay

are proposed to be re-routed. Nevertheless, the present study is not integrating pre-flight re-routing as

tactical ATFM measure.

3.1.2 Demand-Capacity-Balancing

Capacity Module

The Capacity Module (CAP) generates nominal capacities for airports and ATC sectors. These capaci-

ties are valid for time periods according to DCB time-step and thus, determining the length of a computed

ATFM slot. This value is set to 15 minutes by default. ATC sector capacities are provided by the DDR2

database. NFE generates quickly nominal sector capacity vectors according to sector design guidelines

adjusting its capacity values during adverse impacts. The airports runways capacities are generated

by means of a process simulation model which receives individual airport data concerning the number

of runways, aircraft mix and airport weather. This model covers high demand network of airports for

which service capacities are generated according to individual service values and respective flow-delay-

functionalities [40]. For this work, historic capacities profiles are used in order to provide a most realistic

network input.
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Mathematical Optimisation Model

The allocation of departure slots according to an overall system delay minimisation is performed by a

binary-integer optimisation module, which is able to handle large scale ATFM problems in an acceptable

amount of computation time. The slot allocation problem is implemented in MATLAB and applies pre-

compiled libraries of the SCIP (Solving Constraint Integer Programs) 3.2.1 software framework together

with the SoPlex linear programming solver. SCIP is interfaced within NFE‘s computational work-flow via

an adaptation of the OPTimization Interface (OPTI) [28].

3.2 Air Traffic Flow Management Mathematical Formulation Prob-

lem

Considering a set of tasks that need to be processed, and a set of agents that are able to process these

tasks. A limited amount of a single resource is available to each of the agents, and each task requires a

particular amount of this resource when it is processed by a particular agent. The resource consumption

may depend on which agent processes a given task. The Generalised Assignment Problem is then the

problem of assigning each task (time-slot) to exactly one agent (flight), so that the total cost of processing

all tasks is minimised and no agent exceeds its resource capacity.

The model is based on aircraft’s spatial-temporal movements, i.e. flights, with different starting time

intervals. Thereby, flights are assigned to discrete starting time intervals whereby departure time-slots

are modelled as decision variables. When a flight departures at specific departure time-slot the corre-

sponding value of the variable is one, otherwise is zero. These variables are related to a singular flight,

its respective entry point in a sector and its respective departure and arrival airports whereby a local

discretisation lies due to the clear separation and delimitation of the network elements. Due to the fact

that the capacity is dependent of time intervals, the time is discretised, i.e. an ATFM slot is specified

according to the selected temporal granularity.

Each decision variable is associated with a fixed route that defines which network elements are

capacity-afflicted by a flight. The routes specify how much time a flight takes to the respective sectors

and airports. Therefore, jointly with the starting time intervals, a true assignment of decision-making

variables on network elements’ timeslots is accomplished.

Each airport has individually limited take-off and landing capacity. The control of air traffic flow is

performed with time-slots allocation, hence holding the aircraft on the ground as long as it is needed

in order to avoid expected capacity bottlenecks due to flight’s route. The amount of delay inflicted on

flight’s take-off requires clear costs for each decision variable and thus, ultimately, for the total cost. The

latter is composed of the costs of all decision variables. In the following, the individual components of

the linear model are presented.
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Decision Variable

Following the work of Bertsimas and Stock Patterson (1998) [21], the same binary decision variable

formulation is used. Each variable xf,d for each flight f in a departure slot d of 15 minutes takes the

form,

xf,d =

1, if flight f obtains ATFM slot d

0, otherwise.
(3.1)

Delay Cost Coefficient

The costs of start-slots d (also known as ground-holding costs) wf,d varies for each flight f and it is

measured in dollars $.

Flight Times CTOT and CTO

After the allocation of an ATFM slot causing a delay d in a flight f , the latter had been given a new

take-off time in the departure airport j, i.e. a new CTOT. It can be given by the sum of the Estimated

Take Off-Time (ETOT) with ATFM delay inflicted:

CTOTj = ETOT + d (3.2)

In the en-route phase, the entry point of the flight f in the sector s, i.e. the new Calculated Time

Over CTOs is going to be shifted accordingly and it can be obtained by the sum of the new take-off time

CTOTj with the ETOs in the sector s:

CTOTs(f, d) = CTOTj + ETOs = ETOT + d+ ETOs (3.3)

Constrains

The problem is characterised by two types of constraints. On one hand, each flight takes-off once and

on the other hand sector and airport capacities must be fulfilled for every time interval.

Start Condition

The departure constraint ensures that every flight f is assigned to exactly one departure d then we have

the following set partitioning constraint:

∑
d∈D(f)

xf,d = 1, ∀f (3.4)
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Capacity Constraints

Sectors and airports have individual limited capacity. For a sector, this means that no more aircraft are

allowed to enter at any instant of the fully congested time interval, until the next time-slot as its capacity

allows. For the airports in turn, it means that in a time interval no more aircraft may take off than the

take-off’s capacity allows and may not land more planes than the landing’s capacity allows. Airport

capacity is build in NFE via individual runway capacity. The partial capacities of other airport elements,

such as the terminal, are neglected.

Sector Capacity

The coefficient a assigns the flight f with delay d to the sector s in the particular time-slot t which

corresponds to the Calculated Time Over (CTO) of the respective flight.

a(s,t),(f,d) =

1, if CTOs(f, d) = t

0, otherwise.
(3.5)

The sum of all sector s incoming flight’s entries assigned to timeslot t is constrained by the respec-

tive capacity c resulting in the following knapsack constraint, i.e. the sum of decision variables (traffic

demand) must be equal or smaller than the sector’s capacity.

∑
f∈F

∑
d∈D(f)

a(s,t)(f,d) · xf,d ≤ cs, ∀s, t (3.6)

Airport Capacity

For the arrival airport capacity:

The coefficient r assigns the flight f arrival with delay d to the departure airport h in the particular

departure time-slot th which corresponds to the CTOh of the respective flight.

r(h,th),(f,d) =

1, if CTOh(f, d) = th

0, otherwise.
(3.7)

The sum of all airport h incoming flight’s departures assigned to time-slot th is constrained by the

respective departure capacity o resulting in the following knapsack constraint, i.e. the sum of decision

variables (traffic demand) must be equal or smaller than the destination airport’s departure capacity.

∑
f∈F

∑
d∈D(f)

r(h,th)(f,d) · xf,d ≤ ih, ∀j, t (3.8)

For the departure airport capacity:

The coefficient p assigns the flight f arrival with delay d to the destination airport j in the particular

arrival time-slot tj which corresponds to the CTOj of the respective flight.
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p(j,tj),(f,d) =

1, if CTOj(f, d) = tj

0, otherwise.
(3.9)

The sum of all airport j incoming flight’s arrivals assigned to time-slot tj is constrained by the respec-

tive arrival capacity o resulting in the following knapsack constraint, i.e. the sum of decision variables

(traffic demand) must be equal or smaller than the destination airport’s arrival capacity.

∑
f∈F

∑
d∈D(f)

p(j,tj)(f,d) · xf,d ≤ oj , ∀j, t (3.10)

The delay must not be negative, i.e. premature departure times are not assigned and thus,

d ≥ 0 ∀d ∈ D(f) (3.11)

3.3 Binary Integer Programming Model

The ATFM problem is formulated as a Binary Problem with binary decision variables, a cost function and

linear constraints allowing the application of methods of linear optimisation. Therefore, it was modelled

within NFE a binary integer programming (BIP) optimisation which determines how to allocate departure

slots according to an overall system delay minimisation.

The objective function of the total delay is to be minimised. Since each flight f is assigned exactly to

one ATFM slot, i.e. departure slot d, the delay cost ωf,d is afflicted for each flight only once. The linear

objective function Z(x) is the sum of the delay costs. It is declared by the equation 3.12.

Z(x) = min

(∑
f

∑
d

ωf,d · xf,d

)
(3.12)

In vector formulation,

Z(x) = min
x

w>x (3.13)

The linear problem with binary decision variables (see equation 3.1) contains the cost function (see

equation 3.13), the starting condition (see equation 3.4) and the capacity restriction (see equations 3.6,

3.8 and 3.10). The cost function is allowed under the constraints.

min
x

w>x

subject to Gx = e

Ax ≤ c

Rx ≤ i

Px ≤ o

and x ∈ [0, 1]

(3.14)
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3.4 Air Traffic Flow Management with Strategic Deconfliction

The goal of ATC is to manage air traffic on a short-term horizon by monitoring the traffic and keeping

aircraft separated within a separation minima. The latter is standardized as the distance of five nauti-

cal miles lateral and thousand feet vertical between all aircraft in the upper space [7] as the figure 3.3

depicts. A conflict between two airborne aircraft arises when these aircraft converge in space and time

so that they may endanger the minimum separation like figure 3.4 illustrates. To resolve conflicts, i.e., to

prevent predicted losses of separation between aircraft, the ATCs provide pilots with instructions to per-

form airborne manoeuvres. The latter involve changes in the speed, heading or flight level consequently

inducing costs due to fuel consumptions.

ATCs have workload capacity, i.e. the physical and mental work that controllers must undertake

to safely conduct air traffic under their jurisdiction through en-route airspace [41], which impacts sec-

tors capacity [22]. Depending on the number of converging aircraft within an ATC sector at a specific

time and the current traffic situation, the mentioned instructions may rule actual ATC workload. The

increasing number of flights in the en-route area increases the changes of losses of separation minima

consequently the number of conflicts leading to ATCs work overloading and thus tighten the airspace

capacity. ATC often applies a safety margin controller workload which could be adapted when conflict

forecast is improved [22]. However the delays’ costs induced by airborne manoeuvres are significantly

lower than those induced by ground holding [1] strategic deconfliction by allocating ATFM delays can

potentially reduce ATCs workload and ultimately increasing the sector’s capacity.

Figure 3.3: Aircraft’ separation minima. Both vertical and horizontal separation. No other aircraft can be
inside the cylinder at the same time. Source [1]

3.4.1 Strategic Deconfliction

The moment when aircraft infringe the separation minima, a loss of separation occurs. Hence, strategic

conflict happens when two planned trajectories infringe the separation minima in any point in the future,

see figure 3.4.b. To enable strategic deconfliction, every planned flight path point is checked against

points of other flights for infringement of the separation minima [5].

When a flight’s departure is delayed, its trajectory shifts in time accordingly. Thereby, allocating

new departure slots, can result in new conflicts between flight’s trajectories that were separated in time

beforehand. Delayed flights can only possibly be in conflict, if they are planned to arrive at the critical

points with a time difference which is a multiple to the trajectory’s time step. For instance, if flight F1

crosses a point 15 minutes after flight F2, there is no conflict, see 3.4.c. Conversely, if flight F2 is delayed

15 minutes, there is a strategic conflict, see 3.4.d.
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(a) Conflict between two aircraft converging to a vi-
olation of the minimum separation (indicated by sur-
rounding circles)

(b) Loss of separation between two aircraft because
of a violation of the separation minima at that point
in time

(c) Two planned trajectories that are not in conflict.
They are sufficiently separated because they cross
with a time difference

(d) Two planned trajectories that are in conflict be-
cause there is a future point in time where they vio-
late the separation minima

Figure 3.4: Strategic deconfliction, adapted from [5]

3.4.2 Conflict Probabilities

Precise prediction of conflicts, specially for large look-ahead times are hard to obtain due to inexact

forecasts of aircraft positions. Besides ATFM delays, there are still many others factors such as meteo-

rological conditions, human behaviour, mechanical issues, etc which can deteriorate flight’s punctuality

deviating the scheduled departure time. These departure times deviations are the largest temporal un-

certainties on the ground. Distributions of departure times’ deviation in Europe, show that nearly 40% of

all fights deviate at least five minutes and delays greater than 15 minutes are on rising since last year,

see the figure 3.5 which depicts the departure deviation distribution for the years 2016 and 2017.

Figure 3.5: Distributions of departure times’ deviation in Europe in 2016 and 2017, source [3]

Within just a period of time of 5 minutes, a commercial jet aircraft at typical cruise speed can cover

a distance of more than 40 nautical miles, accounting for eight times the lateral en-route separation

of 5 nautical miles. To measure uncertainties of departure times, a probability associated to potential
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conflicts on the day of operation is computed, namely, conflict probabilities. Understanding the latter at

this planning timing, allows assessing the potential for strategic trajectory deconfliction and flight plan

pre-processing to increase flight safety [8]. Trajectory forecast before take-off is uncertain due to ground

and airborne temporal uncertainties. These uncertainties are larger before the actual take-off than after.

Consequently, the error of ground predictions are larger than the airborne ones as the figure 3.6 depicts.

Figure 3.6: Ground (red) vs. airborne (blue) flight predictability, source [42]

Accurate take-off time prediction is of vital importance to be able to compute trajectory forecast

with diminished errors [42]. Thereby, statistical departure time are chosen to represent all stochastic

deviations from the planned trajectories without considering spatio-temporal airborne deviations. The

latter are considered to be deterministic.

Uncertainty in time prediction of trajectories are represented by departure time uncertainty. Probabil-

ities for deviations from planned departure time are inferred from respective statistics about planned and

actual departure times. The probabilities for different departure times are given by the planned departure

times and the probabilities for deviations from the planned departure time. Conflicts are spread in space,

therefore potential conflicts between trajectories and the involved point pair are analysed geometrically.

If the minimum separation is violated but there is a separation in time, there is still a conflict potential due

to the stochastic character of the departure times. All potential conflicts with a maximum time difference

of 120 minutes are taken into account. The conflict geometry in space and time can be described by the

combination of all conflicted point pairs. The figure 3.7 illustrates two exemplary trajectory segments for

two flights with the respective conflicted point pairs for every 10th conflict.

Point pairs from two flights are represented and the ones conflicted are linked with green lines show-

ing the conflicted space and forming the conflict geometry. In this example, the peripheral points have

fewer conflicts than the central points. The latter have more conflicts because the trajectories are cross-

ing each other. The planned arrival time difference or each point point pair the planned arrival time

difference is known from flight times and planned departure times. A spatio-temporal interpretation of

potential conflicts yields exactly which trajectory points are in conflict with each others with their respec-

tive time difference. This is done by computing a conflicted time window, i.e. the conflicted time frames,

which constitutes the set of all local time difference between the conflicted points from two flights’ tra-
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Figure 3.7: Points of two exemplary trajectory segments in a portion of a sector volume, source [8]

jectories. The conflicted time frames are combined with their departure time probabilities to compute

strategic conflict probabilities.

In a nutshell, strategic conflict probabilities are the sum of the joint probabilities of conflicted departure

time combinations within a time window.

3.4.3 Linearisation of the Quadratic Problem

ATFM with deconfliction is to be computed by using BIP allocating several departure timeslots. This

optimisation problem has now quadratic conflict cost associated to each conflicted flight pair and the

same linear capacity constraints associated to sector and aerodrome capacity.

Conflict cost

Every strategic conflict probability between two flights f
′

and f
′′

with departure slots d
′

and d
′′

has

conflict cost kf ′ ,d′ ,f ′′ ,d′′ . This new coefficient represents the conflict delay cost for each pair of flight. It

is given by the half of the probability of conflict costs of a pair f
′

and f
′′

for every departure possible

departure slot combination d
′

and d
′′

as equation 3.15 shows.

kf ′ ,d′ ,f ′′ ,d′′ =
1

2
· Pc(xf ′ ,d′ , xf ′′ ,d′′ ) (3.15)

The conflict cost term depends on variables of two flights and therefore forms a quadratic objective.

Hence, the objective function z(x) now consists of both delay and conflict cost and takes now the form

of the equation 3.16.

Z(x) = min

(∑
f

∑
d

ωf,d · xf,d +
∑
f ′

∑
d′

∑
f ′′

∑
d′′

kf ′ ,d′ ,f ′′ ,d′′ · xf ′ ,d′ · xf ′′ ,d′′

)
(3.16)

Quadratic Term Linearisation

In order to solve the problem, there is the need to linearise the quadratic conflict-cost-term [8] because

quadratic functions are non-linear and for that reason they are hard to solve. Unfortunately the non-linear
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programming problems are non-convex which means that it is not possible to ensure for this problem

that a local minimum is also a global minimum [9]. Thus, the quadratic costs are replaced by linear

conflict cost constraints and surrogate variables.

To linearise the quadratic conflict cost, a surrogate variable has to replace the product xf ′ ,d′ · xf ′′ ,d′′

and so equation 3.17 holds:

yf ′ ,d′ ,f ′′ ,d′′ = xf ′ ,d′ · xf ′′ ,d′′ (3.17)

Surrogate Constraint

The linearisation of the conflict term shown in the equation 3.17, provides a new constraint, namely,

conflict surrogate (3.18),

xf ′ ,d′ + xf ′′ ,d′′ − yf ′ ,d′ ,f ′′ ,d′′ ≤ 1 (3.18)

Where the variables xf ′ ,d′ and xf ′′ ,d′′ are the departure slots decision variables for a pair of conflicted

flights and yf ′ ,d′ ,f ′′ ,d′′ is the surrogate variable.

Thereby, the objective function takes the linear form:

Z(x) = min

(∑
f

∑
d

ωf,d · xf,d +
∑
f ′

∑
d′

∑
f ′′

∑
d′′

kf ′ ,d′ ,f ′′ ,d′′ · yf ′ ,d′ ,f ′′ ,d′′

)
(3.19)

And the final binary optimisation problem is:

min
x

w>x + ky

subject to Gx = e

Ax ≤ c

Rx ≤ i

Px ≤ o

Bx + My ≤ i and x,y ∈ [0, 1]

(3.20)

3.5 Discussion

Within the software suite NFE, two formulations of the EATFM binary optimisation problem were mod-

elled. The formulation 3.14 only observes delay costs in its objective function along with respective

constraints however, the formulation 3.20 observes both delay costs and conflict costs in its objective

funtion. Due to non-linearity nature of the conflict term in the objective function 3.16, the latter for-

mulation was linearised given rise to another variable namely, surrogate variable in equation 3.17 and a

another constraint namely, surrogate constraint in equation 3.18. These last two new elements introduce

a great amount of information to the model. These formulations will serve as basis for the optimisation

techniques used in this thesis exposed in the next two chapters.
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Chapter 4

Solving Binary Integer Programming

by Branch-and-Bound

This chapter aims to introduce optimisation theory and the framework SCIP. In the section 4.1, concepts

such as Linear Programming, Simplex Method, Integer Programming, Branch-and-Bound and LP relax-

ation are presented. Thereafter, in section 4.2 the framework SCIP is presented as one optimisation

framework to solve the ATFM problem.

Problem Dimension and Complexity

Binary problems with n variables have an exponential large number of possible solutions of 2n. For that

reason, it is not possible to check all solutions. Such problems are intractable1, i.e. there is no existing

polynomial-time algorithm that can solve them. Moreover, this BIP problem is proven to be NP-Hard

[16, 43] (Non deterministic Polynomial acceptable) which means, it requires exponential runtime to be

solved in optimality. Thus, computer programs cannot handle them efficiently taking a long time to run

hence, there are some problems for which optimal solutions can’t be found.

The ATFM problem in Europe, for one day, typically deals with around 30.000 flights associated with

10 different departure time-slots resulting, as product between flight movements and departure time-

slots, in 300.000 decision variables and millions of possible conflicts. The great number of conflicts

is due to the fact that for each pair of flights there are several points from their trajectories which have

conflict probability [5]. There is an extremely large number of possible solutions, around two to the power

of 30.000 plus millions of possible conflicts. This illustrates the interconnectedness mentioned earlier

which requires a great computational effort for finding solutions.

1Or difficult

33



4.1 Mathematical Optimisation Theory

The development of mathematical optimisation has been ranked among the most important scientific

advances of the mid-20th century. Thanks to the progress in this science field many thousands or

millions of euros for many companies or businesses have been saved all around the world. Moreover,

its use has been spreading rapidly in other sectors of society improving their efficiency.

4.1.1 Linear Programming

Linear Programming (LP) makes use of a mathematical model to describe the problem of concern. In a

LP model, all its mathematical functions are required to be linear. Using these functions, a planning of

activities in order to obtain an optimal result, i.e. a best result that reaches the specific goal according

to the mathematical model, among all feasible alternatives is to be programmed.

The most frequent type of application of LP involves the general problem of allocating limited re-

sources among competing activities. More precisely, this problem concerns selecting the level of certain

activities that contest for scarce resources that are necessary to accomplish those activities. The de-

cision making of activity levels dictates the quantity of each resource that will be consumed by each

activity. The variety of situations to which this application is used is in fact diverse, stretching several

science and business fields. However, all of these situations share a common ingredient that is to say,

the need for allocating resources to activities by choosing the levels of those activities.

The components of LP along with their interpretation for the general problem of allocating resources

to activities is described below.

Z = value of overall measure of performance.

xj = level of activity j for j = 1, 2, ..., n.

cj = increase in Z that would result from each unit increase in level of activity j.

bi = amount of resource i which is available for allocation to activities for i = 1, 2, ...,m.

aij = amount of resource i consumed by each unit of activity j.

Due to the decision making nature of this type of problems, the levels of activities xj are named the

decision variables. The table 4.1 shows in a structured way, the data involved in a LP model. The values

of cj , bi and aij are the input constants for the model.

Therefore, a linear optimisation problem basically consists of decision variables xj , a objective func-

tion 4.1, functional constraints 4.2 and non-negativity constraints 4.3. The decision variables may take

values within a defined range and thus determine the problem-specific decision options. They are linked

by coefficients aij with the individual constraints. A constraint limits the admissible values bi of the linked

decision variables. In addition, the decision variables with their cost coefficients cj form the objective

function 4.1. The objective function value of a solution is the value of overall measure of performance

to the linear problem which is determined by the sum of the decision value solution values multiplied by
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Resource

Resource usage per unit of activity
Amount of

resource available
Activity

1 2 ... n

1 a11 a12 ... a1n b1

2 a21 a22 ... a2n b2

.

.

.

... ... ... ...

.

.

.

m am1 am2 ... amn bm

Contribution to Z per

unit of activity
c1 cn ... cn

Table 4.1: Data needed for a linear programming model involving the allocation of resources to activities,
source [9]

their cost coefficients cj . The linear problem in standard form consists then of linear constraints and a

linear cost function.

(P.1)

Maximise Z = z(x1, ..., xn) = c1x1 + c2x2 + ...+ cnxn (4.1)

subject to a11x1 + a12x2 + ...+ a1nxn ≤ b1 (4.2)

a21x1 + a22x2 + ...+ a2nxn ≤ b2
...

am1x1 + am2x2 + ...+ amnxn ≤ bm

and x1 ≥ 0, x2 ≥ 0, ..., xn ≥ 0 (4.3)

ATFM Linear Programming

The ATFM problem has a similar structure of the standard LP with some variations. For the present

problem, the objective function is to be minimised 3.19 rather than maximised and there is one more

type of constraint, the start constraint 3.4.

Now that the necessary LP terminology and notation is clarified, it is time to associate those to the

ATFM problem’s terms. The table 4.2 summarizes the mentioned association. The resources time-

slots d are limited by the sector capacities c, airport o departure and i arrival capacities and they are

to be allocated to all flights (F ) activities flights f . Thereby, the corresponding level of activity is xf,d

responsible for the allocation to time-slot d in flight f . To evaluate the quality of the solutions, the overall

performance is measured in terms of delay costs and the conflict costs.
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ATFM Problem General Problem

Time-slots d Resources

Sector capacities c,

Airport o departure and i arrival

capacities

m resources

Flights f Activities

F n activities

Allocation of time-slot d

in flight f , xf,d
level of activity j, xj

Delay/conflict cost
Overall measure of performance

Z

Table 4.2: ATFM problem’s terminology for LP

Terminology of the solutions

The set of values for the decision variables xf,d is called a solution, regardless of whether it is a desirable

or even an allowable choice. Different types of solutions are then differentiated:

• Feasible solution: is a solution for which all the constraints are satisfied;

• Infeasible solution: is a solution for which at least one constraint is violated;

• Optimal solution: is a feasible solution that has the most favourable value of the objective func-

tion.

The most favourable value is the largest value if the objective function is to be maximised, whereas

it is the smallest value if the objective function is to be minimised. The latter is the case in the present

problem. Therefore, the goal of linear optimisation is to find the best feasible solution, as measured by

the value of the objective function.

Assumption of LP

All the assumptions of LP actually are implicit in the model formulation in 4.1. According to [9], they are:

• Proportionality: all the constants and decision variables are proportional in the same level;

• Additivity: every function in a LP model is the sum of the individual contributions of the respective

activities.

• Divisibility: in a LP problem, decision variables are allowed to have any values, including non-

integer values, that satisfy the functional and non-negativity constraints. So it is assumed that the

activities can be run at fractional levels.

• Certainty: the values assigned to each parameter of a LP model are assumed to be a known

constant.
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4.1.2 Simplex Method

Linear optimisation problems such as the ATFM problem generally have many possible solutions as

stated in the beginning of this chapter. Therefore, it is impractical to compute the objective function

value of all solutions in order to select the best from the feasible ones. To improve the search for

the best solution, an efficient way to find quickly the optimal solution, namely simplex algorithm, was

developed in 1947 by George B. Dantzig.

The simplex method is an algebraic procedure with underlying concepts of geometry developed to

operate on linear programs in the standard form like in P.1. The algorithm searches adjacent vertices,

namely Corner-Point Feasible (CPF) solutions, of the feasible solution set, namely polyhedron, in se-

quence so that at each vertex the objective function improves or is unchanged [9]. It is only possible to

apply the simplex method in a problem only and only if it complies with the following requirements:

• The problem must have feasible solutions;

• The problem must have a bounded feasible region;

• The problem with a bounded feasible region must allow that every feasible solution can be repre-

sented as a convex combination2 of the CPF solutions.

Due to the convexity of the polyhedron, it is guaranteed that the connecting line lies between any

point and the optimal point within the polyhedron. If there is a path between any CPFs solutions of the

polyhedron and the optimal vertex, i.e. the optimal CPF solution, it follows that there exists an adjacent

CPF solution with a better objective function value. For every LP problem that has feasible solutions

and a bounded feasible region, three key properties of the polyhedron convexity, and therefore the CPF

solutions, hold:

• Property 1: If there is exactly one optimal solution, then it must be CPF solution. If there are

multiple optimal solutions, then at least two must be adjacent CPF solutions;

• Property 2: Since the optimal solution is a basic solution or is located on a vertex of the polyhedron

there are only a finite number of CPF solutions;

• Property 3: If a CPF solution has no adjacent CPF solutions that are better, then there are no

better CPF solutions anywhere in the feasible region. Therefore, accordingly to property 1, a CPF

solution is guaranteed to be an optimal solution.

The simplex algorithm consists of three main steps:

1. Determining a feasible solution as a starting point, namely Basic Feasible (BF) solution. Whenever

possible, the simplex method chooses the origin (in which all the decision variables are equal to

zero) as the BF solution. This eliminates the need to use algebraic procedures to find a starting

feasible solution, specially when there are too many variables;

2A weighted average of two or more solutions (vectors) where the weights are nonnegative and sum to 1 [9]
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2. Locating an adjacent base corner with an improved objective function value. The simplex method

moves along the edges of the feasible region and only checks the adjacent CPF solutions. The

directions of these movements are determined by the rate of the solution improvement, i.e. the

direction of the movement in which the solution has the highest rate of improvement, is the one

chosen to search for a better CPF solution;

3. Finding the optimal solution by iteratively repeating the second step. The way that the simplex

method finds the optimal solution is by applying optimality tests. The latter makes use of the third

polyhedron geometric properties to find others CPF solutions. This test, dictates that if a CPF

solution has no adjacent CPF solutions that are better, then it must be an optimal solution. The

simplex therefore terminates if no adjacent CPFs with improved objective function value are found.

Using a computer, the simplex finds an optimal solution tremendously fast due to the fact that it only

focus on CPF solutions which represent a very small minority of the feasible region. The optimality

test reduces even more the search time because it doesn’t require to examine all the CPFs thanks to

their adjacency property. The simplex algorithm of Dantzig, creates the simplex tableau in the solution

process, which is based on the simplex coefficient matrix. The tableau is fully updated in each iteration

of the algorithm. In the so called revised simplex algorithm, only the base matrix is updated, which is

much smaller than the entire simplex tableau. Furthermore, the revised simplex facilitates the use of

sparse matrices. This avoids many arithmetic operations with null elements when updating the tableau.

4.1.3 Integer Programming

One key limitation that prevents many more applications is the assumption of divisibility, which requires

that non-integer values be permissible for decision variables. In many practical problems, the decision

variables actually make sense only if they have integer values. For example, it is often necessary to

assign people, machines, and vehicles to activities in integer quantities. If requiring integer values is

the only way in which a problem deviates from a linear programming formulation, then it is an Integer

Programming (IP) problem.

The mathematical model for integer programming is the linear programming model in P.1 with the

one additional restriction that the variables must have integer values.

Binary Integer Programming

However, there are wide range of problems which have to face yes-or-no decisions, thereby a slightly

different model must be used namely Binary Integer Programming (BIP). For these type of problems, a

planning of activities is to be done to obtain an optimal solution, thus there is the necessity for allocating

resources (time-slots) to activities (flights) by choosing the levels of those activities. For this, there is

the need to use decision variables associated to their respective costs, see [9]. Since the nature of the

decision is yes-or-no, a BIP problem arises with binary decision variables which means that they are

restricted to integer values, namely, 0 or 1. Thus, the ith yes-or-no decision would be represented by xi

such that:
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xi =

1, if decision i is yes

0, if decision i is no
(4.4)

4.1.4 Linear Programming Relaxation

Because LP problems are easier to solve than IP problems, algorithms to solve the latter incorporate

the Simplex Method. This is called LP relaxation which is the LP obtained by deleting from the current

IP problem the constraints that require variable to have integer values [9].

There are three main determining factors of computational difficult for solving an IP problem:

• Number of integer variables. For a BIP problem with n variables have 2n solutions to be considered

and thus an exponential growth of the difficulty of the problem arises;

• Number of constraints. In some cases, increasing the number of constraints can possibly decrease

the computational time;

To solve a BIP, three main steps could be done:

1. Apply LP relaxation. The integer variables are now non-integer;

2. Apply Simplex Method;

3. Rounding the non-integer values to integers in the resulting solution.

However, there are two hazards which deserve a considerable awareness when solving a BIP prob-

lem. Firstly, the optimal solution from the relaxed problem, i.e. the LP problem, is not necessarily feasible

after it is rounded. It is difficult to perceive in which way the rounding should be done to retain feasibility.

In some situations changing the value of some decision variables after rounding is necessary in order

to retain feasibility. However, in this problem there are too many variables and constraints thus it’s ex-

tremely difficult to apply such a procedure. Secondly, there is no guarantee that the rounded solution

will be the optimal integer solution. In fact, it may even be far from optimal in terms of the value of the

objective function.

Because of these two hazards, a better approach for dealing with BIP problems that are too large to

be solved is to use one of the available heuristic algorithms. Although these algorithms are somewhat

efficient for large problems, they are not guarantee to find an optimal solution.

4.1.5 Branch-and-Bound

To solve such a large BIP problem an algorithmic approach must be used. One option, is to use Branch-

and-Bound methodology. Firstly, this methodology uses LP relaxations to ignore the integer constraints

that require variables to have integer values. Secondly, solves the problem as a linear programming

problem by using the Simplex Method. Since it has fewer constraints, its optimal solution provides

a lower bound (LB). The easiest strategy is to use the simple heuristic rounding which rounds each
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resulting solution value to its nearest integer value providing an upper bound (UB). However, there is no

guarantee that a relaxed solution is necessarily feasible after it is rounded. The goal is to do several

iterations to try to improve the bounds. Take this simplified example for instance:

minimise f(x)

subject to Ax ≤ B

and x is a vector of binary variables xi, for i = 1, 2, ..., n.

(4.5)

The objective function f(x) is linear and it is bounded by the constraint Ax ≤ B. Applying the

Branch-and-Bound technique just for one iteration, different bounds are obtained as shown in the Figure

4.1.

Figure 4.1: Example of one iteration using Branch-and-Bound with hypothetical values

Hypothetically, the first incumbent for the whole problem is Z∗ = 100 which represents the UB of the

”worst” solution. The LB is the optimal solution for the relaxation of the whole BIP problem therefore

the optimal solution which observes integrability can not be better. In the iteration shown in 4.1, the

variable x1 is fixed to 0 on the left node and to 1 on the right node, and subsequently two branches are

obtained with different bounds. The branch on the right which x1 is fixed to 1, improved the UB from 100

to 98. The branch on the left which x1 is fixed to 0, improved the LB from 10 to 12. From the respective

branches, we update the incumbent to Z∗ = 98 and the global lower bound to LB = 12. The difference

between the UB and LB namely, optimality gap, was reduced like shown in the Figure 4.2.

To reduce even more the optimality gap (i.e. decrease the UB and increase the LB), it is necessary

to do several iterations until the UB and the LB meet each other at the optimal solution. Therefore, the

main goal is to find good feasible solutions in between the optimality gap in an acceptable time-frame.

LP relaxation weak lower bounds

The linearisation of the conflict term exposed in the previous chapter on page 32 equation (3.17), pro-

vides a new constraint, namely, conflict surrogate (4.6),

x1 + x2 − y ≤ 1 (4.6)
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Figure 4.2: Conceptual visualisation of the lower bound and upper bound. The optimality gap is reducing
along time.

Where the variables x1 and x2 are the decision variables, for two different flights and y is the surrogate

variable, i.e. the conflict variable, which represents the quadratic conflict term of the objective function.

This constraint is handled by the optimisation framework to be used which follows the logical conjunction

operation. The truth table of this operation is adapted to the ATFM problem, which is to be minimised,

as it follows in the table 4.3.

x1 x2 y

0 0 0

1 0 0

0 1 0

1 1 1

Table 4.3: Conflict surrogate bitwise operation

Accordingly to the above truth table, the surrogate variable takes the value one if and only if both of

decision variables value is one. In another words, there is a conflict if and only if two flights allocated

to their respective departure slots have a probability of conflict. Using the LP relaxation, the inequality

(4.6) can take the following result:

x1 =
1

2
and x2 =

1

2

then y = 0

(4.7)

This linearisation provides weak lower bounds. This means that conflict cost of relaxed conflicts might
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not be taken into account. Therefore, one option is to use cutting planes in the available framework to

improve the lower bounds [9].

4.2 SCIP - Solving Constraint Integer Programming

Even though this BIP problem is bounded, a very large number of solutions can be found in the feasible

region, thus it is imperative to use a smart and structured search procedure so that only a tiny fraction

of the feasible solutions actually need to be examined. Among the available search procedures, a

Branch-and-Bound framework is the one proposed to be used. These frameworks are widely used in IP

problems, but they do not guarantee to find an optimal solution. However, they do tend to be significantly

more effective than the rounding approach in improving the UB and the LB.

The Branch-and-Bound framework to be used is SCIP (Solving Constraint Integer Programs) devel-

oped by the Zuse Institute Berlin (ZIB). In this framework, Constraint Programming is incorporated in

the BIP problem to provide a compact model and specialised constraints handlers methodologies for

this complex problem. With more than 500 000 lines of code, SCIP is implemented as C callable library

which mimics object oriented programming. It is used for Constraint Integer Programming (CIP), mixed

integer programming (MIP) and mixed integer non-linear programming (MINLP). SCIP is freely available

in source code for academic and non-commercial purposes. Among the non-commercial solvers for MIP,

this framework is currently one of the fastest, see figure 4.3.

Figure 4.3: MIP solver benchmark (1 thread): Shifted geometric mean of results of Hans Mittelmann
homepage http://plato.asu.edu/ftp/milpc.html on 14/Apr/2017. Unresolved or failed instances are ac-
counted for with the time-frame limit of 2 hours. Source: http://scip.zib.de/ (Posted on 25/Sep/2017).

It allows a total control of the solution process and the access of detailed information down to the core

of the solver. For a more detailed description of SCIP, please refer to the comprehensive documentation

on the homepage [44]. SCIP has a modular structure, so most of the functionality is provided by C++

wrapper classes for user plug-ins.
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4.2.1 Program Flow of SCIP

The solution process of a problem solved with SCIP, involves various stages until it finds the optimal

solution. The stage in which SCIP is located is always clear and the different modules can only be called

up in appropriate stages. The solution process of SCIP for a linear problem is shown in figure 4.4. The

individual stages of the solution process are described below.

Figure 4.4: Flowchart of SCIP’

solving process

Problem Specification: Before the actual solution process the

user has to specify his problem. A SCIP-LP object is created to

which constraints and variables are added. The variables are linked

by means of coefficients with the constraints.

Transform problem: After calling the SCIPsolve(scip) solution

function with the scip object as input, firstly a copy of the problem

that created the transformed problem is created. From now on, all

operations are performed on the transformed problem. The purpose

is that the original problem is not changed and the validity of the

solution is therefore always verifiable on the original problem.

Pre-solving: At the beginning of the solution, this stage is

started to simplify the problem. There is a variety of methods avail-

able. For example, unnecessary variables and constraints are re-

moved from the problem.

Primal Heuristics: In this stage, methods based on experience

on looking for a valid solution are used. Although it is possible to find

a solution very quickly, finding an acceptable solution is not guaran-

teed. In the course of the solution process, primal heuristics can

always be called.

LP Solving: SCIP sends the scip object in the next step to

the solver SoPlex. The latter solves the linear problem using the

revised Simplex Method and writes the optimal solution and the dual

variables in the scip object.

Optimal Solution: SCIP stops its solution process when the

optimal solution was found or a termination condition which defines

when to stop the solution process was satisfied.
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4.2.2 Primal Heuristic in SCIP

The core of SCIP, is a framework that provides the infrastructure to implement adjustable search algo-

rithms incorporated in the Branch-and-Bound tree search. SCIP is highly customised and allows the

user to have total control of the solution process. Moreover, SCIP includes a large library of default

algorithms to control the search which are part of external plug-ins which interacts with the framework

through a very detailed interface. The goal of those plug-ins is to allow the user to enrich the SCIP

solution process. SCIP 3.2.1 offers more than one hundred available plug-ins ready to be used which

can be combined to enhance the solution process. The main advantage of using this plug-in approach

is that facilitates the implementation of SCIP self-contained solver components.

Among all of them, the primal heuristic user plug-in is of interest. In SCIP 3.2.1 there are 23 primal

heuristics implemented at the user’s disposal. This type of plug-ins are designed to find feasible solutions

in the transformed problem. They can be viewed as a module of SCIP which is to be integrated in the

SCIP infrastructure. In order to allow a good interplay between its solution process and the module itself,

primal heuristics have a set of properties settings which defines when modules are called in the Branch-

and-Bound tree search. Therefore, the user has total control of when to call its module by choosing a

combination of properties. The most relevant properties are described below

• Priority (priority): Prioritises the calling of the activated primal heuristics;

• Frequency (freq): Defines the ”jump” from a depth level to another one;

• Frequency offset (freqofs): Defines the depth level of the branching tree at which the primal

heuristic is called for the first time;

• Maximum depth (maxdepth): Defines the maximum depth at which the primal heuristic is called;

• Timing (timing): Defines the entry point of the primal heuristic in the solving process.

To better understand how these properties influence the solving process, three hypothetical primal

heuristics with the respective properties set are exemplified in the table 4.4.

Primal heuristics settings

Properties Heuristic 1 Heuristic 2 Heuristic 3

priority 100 200 50

freq 0 1 8

freqofs 0 2 2

maxdepth 0 10 ”no limit”

timing ”before node” ”after node” ”during loop”

Table 4.4: Hypothetical heuristics properties

The respective primal heuristics execution calls in the solving process can be visualised for the same

branch-and-bound tree search of an hypothetical problem illustrated in the figure 4.5. In the figure, it
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is possible to visualise some of the different levels k of the tree search. The latter, is represented by

branches that connects the nodes. Each node fixes a set of variables and solves a different sub-problem

of the original one. Each sub-problem is solved by the LP solving loop represented in the left side of

the figure. In the first level, k = 0, namely the root node, the first LP relaxation is solved. The above

heuristics execution calls are identified by colour shapes in the same figure.

Figure 4.5: Branch-and-Bound tree search and primal heuristics execution calls in the SCIP solving
process

The primal heuristic 1, represented with a red triangle, is only executed once in the entire tree search

because its frequency and frequency offset properties are set to zero. Its timing property is set to

”before node” which means that before the solving of the first LP relaxation, the heuristic 1 is executed.

The primal heuristic 2, represented with a green circle, is called for the first time in the level k = 1

because its frequency offset property is set to 1. Due to its frequency set to 2, it means that it will be

called every two levels of the tree search. The last call will happen at level k = 9 because its maximum

depth is set to 10. Its timing property is set to ”after node” which means that its called after the sub-

problem LP relaxation is solved.

Finally, the primal heuristic 3, represented with a blue square is called for the first time in the level

k = 2 because its frequency offset property is set to 2. Due to its frequency set to 8, it means that it will

be called every eight levels of the tree search. Since its maximum depth is set to ”no limit”, the primal

heuristic will be repeatedly called until the last level k = n of the tree search. Its timing property is set to

”during loop” which means that its called inside the sub-problem LP solving loop.

The priority property, as its name implies, prioritises the primal heuristics in each node. Therefore,

in case the exemplified heuristics were to be activated in the same problem and run in the same node,

the heuristic 2 would be first one to be called followed by heuristic 1 and finally heuristic 3.
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4.3 Discussion

The branch-and-bound employed by SCIP allows to totally control the solution process and to access

detailed information down to the guts of its solver. Therefore, it is possible to implement new heuristics

as SCIP modules and incorporate them in the solution process and call them in any moment as many

times in the tree search shown in the figure 4.5. Taking advantage of this optimisation software suite, a

metaheuristic is to be implemented as a module of SCIP to improve even further the problem’s known

UBs. This implementation will be depicted in the next chapter.
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Chapter 5

Genetic Algorithm

During the 1980s and 1990s, the trend shifted towards the development of nature-inspired evolution-

ary metaheuristics, known as Evolutionary Algorithms (EAs). These metaheuristics comprise a great

variety of different concepts and paradigms such as Genetic Algorithms (GAs), capable of producing

sub-optimal solutions to NP-hard problems in a comparatively shorter amount of time.

GAs were developed by John Holland and his students and colleagues at the University of Michigan,

most notably David E. Goldberg has been tried on various optimisation problems with a high degree

of success. Genetic Algorithm (GA) is a metaheuristic inspired by the natural phenomenon named

’survival of the fittest’, i.e. individuals with variations that inherent a survival advantage through improved

adaptations to the environment are most likely to survive to the next generation.

Genetic Algorithms are sufficiently randomized in nature performing much better than other search

methods such as random local search in which various random solutions are tried keeping track of the

best so far, as they exploit historical information as well [45].

5.1 Motivation to Solve the EATFM Problem with a Genetic Algo-

rithm

Genetic Algorithms have the ability to deliver a ’good-enough’ solution ’fast-enough’. This makes GAs

attractive for use in solving optimisation problems. The reasons why GAs are needed are as follows. As

mentioned in the chapter, ATFM problem is NP-Hard, which means even the most powerful computing

systems take an immense amount of time to solve the problem to optimality or to near-optimality. In such

a scenario, GAs prove to be an efficient tool to provide usable near-optimal solutions in a short amount

of time.

Traditional calculus based methods work by starting at a random point and by moving in the direction

of the gradient, until the top of the hill is reached. This technique is efficient and works very well for

single-peaked objective functions like the cost function in linear regression. But, in most real-world

situations, a very complex problem arises called as landscapes, which are made of many peaks and

many valleys, which causes such methods to fail, as they suffer from an inherent tendency of getting
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stuck at the local optima, see figure 5.1.

Figure 5.1: Local optima and global optimum, source [16]

GAs have several advantages over other metaheuristics such as:

• Search efficiently in problem with large spaces and large number of parameters involved;

• Robust with respect to the complexity of the search problem;

• Use a population of solutions instead of searching only one solution at a time.

However, they also present some limitations such as:

• Fitness values are calculated repeatedly which might be computationally expensive for some prob-

lems;

• Due to their stochastic nature, there are no guarantees on the optimality or the quality of the

solution;

• A good understanding of the problem is required in order to properly implement, otherwise GA may

not converge to the optimal or near-optimal solution.

5.2 Fundamentals of Genetic Algorithm

This section classifies GAs and introduces the basic terminology required to understand them. GA

metaheuristic can be classified as according to some criteria such as:

• Nature inspired: it is based on the concepts of natural selection and genetics;

• Memory usage: it uses a memory that contains some information extracted on-line during the

search which is limited to the population of solutions;
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• Stochastic: different final solutions may be obtained from the same initial solution;

• Population-based search: in this algorithm a whole population of solutions is evolved;

• Iterative: start with a population of solutions and transform it at each iteration using some search

operators.

5.2.1 Terminology

Before beginning a discussion on GA structure, it is essential to be familiar with the evolutionary algo-

rithms’ terminology.

1. Population: It is a subset of all the possible solutions in an encoded form to the given problem.

2. Individual or chromosome: is one such encoded solution to the given problem.

3. Gene: is one element position of an individual.

4. Allele: a variant of a gene, i.e. the value of a symbol in a specified position of the genotype.

5. Genotype: represents the population in the computation space in which the solutions are repre-

sented in a way which can be easily understood and manipulated using a computing system.

6. Phenotype: represents the population in the actual problem’ solution space in which solutions are

represented in a way they can be read by the actual mathematical model’s objective function.

7. Decoding and Encoding: decoding is a process of transforming a solution from the genotype to

the phenotype space, while encoding is a process of transforming an individual/chromosome from

the phenotype to genotype space.

8. Fitness: An objective function associates a fitness value with every individual indicating its suit-

ability to the problem.

9. Genetic Operators: these operators are responsible for altering the genetic composition of the

individual. These include crossover and mutation which mimic the living beings’ reproduction

process.

5.2.2 Basic Structure

A basic structure of GA is to be described. GA starts with a set of initial solutions, namely initial popula-

tion, which are represented by individuals. Using a selection technique, an individual from the population

is picked depending on its fitness to be part of the parents population. The latter are subjected to repro-

duction by applying crossover and mutation operators to generate new offsprings which are constructed

from the different attributes of individuals belonging to the current population. Finally, the resulting off-

springs replace the existing individuals in the population and the process repeats iteratively. The figure

5.2 illustrates one iteration or generation of the described algorithm.
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Figure 5.2: A generation in GAs, source [45]

A generalized pseudo-code for a GA is shown in the following algorithm scheme.

Algorithm 1 Template of the Genetic Algorithm
procedure GA

initialize population
evaluate initial population
while stopping criteria is reached do

parents selection
crossover
mutation
evaluate offsprings
population replacement
find best

end while
return best individual

end procedure

5.3 Genetic Algorithm Available Frameworks and Libraries

In this section, the motivations for using a software framework for GA are outlined.

According to Talbi, there are three main approaches for the development of a GA framework.

• From scratch: One can develop it from scratch by creating the data-structure and designing every

function of the program;

• Only code reuse: Reused third-party code available either as free individual programs or as

already designed libraries. This allows a more flexible coding since the user calls the libraries at

his will offering a greater control;

• Framework usage: Both design and code are reused programs available. Frameworks usually

offer greater range of features options. With this approach there is no need to call user’s code,

instead the framework calls it. The latter controls the overall program’s flow control allowing exten-

sibility of the framework functionalities. However, the user should not modify the source code.

In order to redo as little code as possible to deal with different optimisation problems the best ap-
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proach is to reuse both design patterns1 and code. Useful design patterns related to a specific domain

are in general implemented frameworks. Therefore, a suitable framework with design pattern related to

metaheuristics, more specifically to Evolutionary Computation (EC), is to be used to implement a GA

and to be included in SCIP for the ATFM problem.

Several metaheuristic’s frameworks have been proposed in the literature. They mainly focus on a

given metaheuristic family such as EAs. In the Web, there exists several libraries for ECs along its

source code level available to any user. In order to choose the most suitable framework, some criteria

must be met such as:

• Accessibility and documentation support: only non-commercial open source software suites

are regarded. Moreover, the framework code should be well documented;

• Maintainability: it is important for a framework to be updated to keep up with the most recent

developments such as new versions of the standard for the programming language C++.

• Programming language preference and complexity: due to the fact that the problem is mod-

elled inside SCIP optimisation suite which in turn is programmed in C and has wrappers classes2

for C++, frameworks implemented in C or C++ are preferred avoiding having to write a new inter-

face. Also, programming language complexity must be taken into account since the author of this

work is a novice in C++.

• Maximum design and code reuse: the framework must provide for the user a whole architecture

design of the GA implementation approach and at the same time to reduce the necessity to redo

code i.e., to develop the minimal problem-specific code. Thereby, the framework must simplify

considerably the development of GA and reduce its development time;

• Flexibility and adaptability: because GA implementation is problem-specific, the framework must

allow for the user to easily add new features or change existing ones without implicating other

components. Furthermore, the framework must allow a good integration in SCIP.

• Robustness: the execution of the algorithms must be robust to guarantee the reliability and the

quality of the results;

• User friendliness and efficiency: The framework must be easy use and does not incorporate an

additional cost in terms of time or space complexity. Moreover, it must preserve the efficiency of a

special-purpose implementation.

According with the above criteria, an exhausting search was made and the most promising frame-

works and libraries were identified. Among them, two powerful frameworks stand out such as Evolving

Objects3 and Open BEAGLE which are free software, designed to provide an EC environment that is

programmed in C++, generic, robust, user friendly and efficient.

1The invariant part of solution methods to standard problem belonging to a specific domain are captured into special compo-
nents named design patterns [46]

2Is a term meaning a class that ”wraps around” a resource i.e., that manages the resource.
3Population based metaheurisctis module of Paradiseo, a software framework for metaheuristics
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Unfortunately, Evolving Objects is not maintained, the latest documentation update was back in 2012.

It is also not recently used, the last found project that used Evolving Objects was in 2011 on a multi-

objective optimisation problem by Liefooghe et al.. Therefore, maintainability is compromised.

Open BEAGLE framework has several versions being the most powerful one an alpha version re-

leased in 2010. Since then few maintenance efforts have been made and nowadays its project is aban-

doned supported by a poor documentation. There exists a stabilised version, however it is not updated

since 2012. Once again, maintainability is compromised. Also, there are very few projects using this

framework.

A better way to reuse the code of existing metaheuristics is through libraries [48]. The code reuse

through libraries is better because these libraries are often well tried, tested, and documented, thus more

reliable allowing a better maintainability and efficiency [45]. Others less complex and free frameworks

and libraries were identified, such as GALGO 2.0 [49], jMetalCpp [50], OpenGA and GAlib.

• GALGO 2.0 although its simplicity, this set of template libraries doesn’t allow chromosomes repre-

sentation with more than 64 bits per string, precluding the pretended data structure implementation

with thousands of bits (each bit representing a ATFM delay slot per flight) per chromosome;

• jMetalCpp is a framework with several metaheuristics libraries formerly developed in Java lan-

guage and in 2012 a C++ version was released being often maintained. Unfortunately this version

is poorly documented. Furthermore, only two applications using this framework written in C++ were

found [51] and [52], integrated in a completely different environment from SCIP. Thus a possible

integration of this framework in SCIP is not recommended;

• OpenGA is a free C++ library for GA [53]. It was recently developed in 2017 and it allows a

great flexible customisation of the chromosomes and the GA operators. The library is placed in

a single file which makes it easy to read. However, it is not well documented and there are still

no successful GA implementation in the literature using this framework and thus implementation

uncertainties arise;

• GAlib is another free C++ library for GA [54] well documented with many different applications in

the literature such as in vehicle routing [55], in cutting stock problem [56], in travelling salesmen

problem [57], computer networks [58], etc. This framework was developed in the 1990’s and its

source code was recently maintained. However, an investigation on Web forums about GAlib

integration in the most recent compilers suggest that GAlib’s libraries are prone to linking errors.

Moreover, mailing lists intended for GAlib users to help each other is not active and unresponsive.

This can greatly hinder its integration in SCIP.

The inherent difficulties of using the mentioned framework’s libraries due to language complexity

with steep learning curves, lack of documentation and users support represent majors drawbacks to

GA implementation. For this matter, a simple GA program was identified namely simpleGA [59]. This

program consists in a simple GA program originally written in C by Dennis Cormier and Sita Raghavan

[60] and adapted to C++ by John Burkardt in 2014. The whole program is placed in a single file and
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every functions are well commented which makes it easy to read and to comprehend. This approach

allows a maximum flexibility and adaptability having total control of the program flow.

5.4 Development of Genetic Algorithm Program

SimpleGA is a very simple real-coded GA with few simple features. The code is designed for maximisa-

tion problems where the objective function takes positive values only. There is no distinction between the

objective value and the fitness of the individual. Regarding GA operators, the program uses proportional

selection, elitist model, one point crossover and uniform mutation. The code does not make use of any

graphics or even screen output, and should be highly portable between platforms.

From this code foundation a more complex and robust GA was modified and extended to match the

problem’ structure in the SCIP framework.

5.4.1 Algorithm Scheme

GA starts with an initial set of solutions, each one of them represented by a chromosome4. This initial

set is known as the initial population. Then, the latter will be reproduced in the generation loop. In this

phase, a new population of solutions is created. Firstly, the individuals will be subject to reproduction by

using the genetic operators crossover and mutation originating the new individuals, namely offsprings.

Secondly, according to a replacement strategy, the population is updated by replacing the previous

individuals by the new ones. Thirdly, by using an appropriate selection strategy an individual from one

population is picked depending on its fitness and used to form a new offspring. This process is repeated

until GA reached the stopping criteria. Figure 5.3 shows the flowchart of a typical GA.

Figure 5.3: Typical GA flowchart

GA iteratively applies the generation of new population and the replacement of a new one, see figure

5.4. This is possible because the history of the previous search, i.e. the populations of the previous

4The solution represented by a chromosome is called as individual
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generations, is stored in a memory which can be used in the generation of the new population and the

replacement of the old one.

Figure 5.4: GA generation and replacement principle, source [45]

5.4.2 Fitness Landscape Analysis

Before the designing of GA gets under way, it is essential to study the problem’s fitness landscape. The

effectiveness of a GA will depend on the properties of the problem’s landscape associated with the in-

stances to solve, thus it is an important aspect in designing a GA, namely its search components, i.e. the

solution representation, search operators (selection, crossover and mutation) and the objective function

[45]. The goal of this analysis, is to attempt to predict the behaviour of the GA’ search components.

Furthermore, this study provides a better understanding of the search operators’ run over the search

space.

Data from the 3rd day of June of 2014 was used to perform this analysis. Conflict costs are not

taken into account for this analysis. The figure 5.5 illustrates a plot of all the 315 468 data points which

represent all the start-slot options’ delay costs per flight. Looking into all delay costs in the same figure,

it is possible to notice an increasing of delay costs over the start-slots for every flight. The minimum

value of a delay cost is 0 $ which is located in the first start-slot option and the maximum is 114 500 $

which is located in the twelfth start-slot. The table 5.1 shows the mean value and variance of the delay

cost across all flights per start-slot. It also shows the minimum and maximum delay cost per start-slot.

By inspecting these statistics, it is noticeable that all the delay costs’ statistical measures increase with

the start-slots options.

Start-slot Options

1 2 3 4 5 6 7 8 9 10 11 12

Mean 0 339.60 1019.37 2161.58 3303.79 4901.88 6499.96 8650.8 10401.7 12871.3 15340.8 19801.6

Variance 0 19542.7 207548 1.028× 106 2.472× 106 5.601× 106 9.990× 106 1.712× 107 2.616× 107 4.047× 107 5.790× 107 2.832× 108

Minimum 0 160 430 845 1260 1825 2390 3070 3750 4597.5 5445 6200

Maximum 0 970 3050 6645 10240 15320 20400 26625 32850 40767.500 48685 114500

Table 5.1: Statistical data per start-slot

Recapping from the previous chapter, the first start-slot has no departure delay associated, the

following start-slots have an increasing departure delay of 15 minutes per start-slot (i.e. the second

start-slot has 15 minutes of departure delay, the third one has 30 minutes, and so on) and the twelfth
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Figure 5.5: Start-slots options cost per flight

start-slot corresponds to the cancellation of a flight’s departure. Hence, it is expected that an increasing

of the total delay cost happens if start-slots with high departure delays are allocated. The figure 5.6

depicts a sum of the flights delay costs per start-slot in which also with the statistical data in table 5.1

it is possible to confirm the previous thought. The first start-slot has zero cumulative delay cost as no

departure delay is associated to it. There is a clear increasing of costs over the next start-slots until the

departure cancellation start-slot which has the highest cumulative delay cost of 5.206× 108$.

Figure 5.6: Cumulative delay cost per start-slot

Having these informations in mind, the GA design can proceed.

5.4.3 Solution Representation

In GAs, the genotype represents the individual while the phenotype represents the solution. Therefore,

the genotype must be decoded to generate the phenotype. The reproduction acts on the genotype level

using the genetic operators while the fitness function will use the phenotype of the associated individual

to evaluate it and compute its fitness, see figure 5.7.
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Figure 5.7: Genotype versus phenotype in GAs

Designing any GA needs an encoding scheme, i.e. a representation, of a solution. This is a funda-

mental design question in a development of a GA. The encoding plays a major role in the efficiency and

effectiveness of a GA. It has been observed that improper representation can lead to poor performance

of the GA. The encoding must be suitable and relevant to the tackled optimisation problem and for this

reason it is highly problem problem specific. To define this representation, it must be taken into account

how the solution will be evaluated and how the genetic operators will operate the individuals. According

to Talbi, a representation must have the following requirements:

• Completeness: All solutions associated with problem must be represented;

• Connexity: A search path must exist between any two solutions of the search space and any

solution in it can be attained;

• Efficiency: The representation must be easy to manipulate by the genetic operators. The time

and space complexities of the operators dealing with the representation must be reduced.

To comply with these requirements, a linear representation structure was chosen to represent the

problem’ solution space. The ATFM problem’ solution is represented by binary variables, each variable

dictates if the specific start-slot option was allocated to a particular flight. The size of the solution is

given by the product of the number of flights and the number of start-slot options. There are 12 start-slot

options. According to the set partitioning constraint 3.4, only one start-slot option can be assigned to a

given flight as the table 5.2 depicts. Thus, in the encoding space, the solution representation uses the

following encoding variable, namely gene.

ϕ(f) = d if the start-slot d is assigned to flight f (5.1)

Each ϕ(f), i.e. gene, has a value, designated as allele, corresponding to the start-slot option dk

index within the discrete interval [1, 12]. In the table 5.2, the flight f1 was allocated to the third time-

slot d3 forming the non-zero binary variable x1,3. By applying the encoding scheme, the non-zero binary

variable x1,3 is transformed into the gene ϕ(1) which takes the allele value 3. The same transformation is

applied for every non-zero binary variables of each problem solution in the solution space or phenotype

resulting in one chromosome or individual flight’s vector in the encoding space or genotype depicted
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in the table 5.3. The phenotype is composed by all possible problem’ solutions represented by binary

variables and the genotype is composed by all possible individuals represented by integer variables that

can span from 1 to 12.

Start-slot options

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

Fl
ig

ht
s

f1 0 0 1 0 0 0 0 0 0 0 0 0

f2 0 0 0 0 0 0 0 0 0 0 0 1

.

.

.

.

.

.

fn 1 0 0 0 0 0 0 0 0 0 0 0

Table 5.2: Problem’ solution variables

Alleles = dk

ϕ(f)

G
en

es
=

Fl
ig
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ϕ(1) 3

ϕ(2) 12

.

.

.

.

.

.

ϕ(n) 1

Table 5.3: Flight’s vector

Using this encoding, all the three requirements are satisfied. This transformation ensures that the

start constraint is always satisfied for every flight. Moreover, this representation reduces the solution

vector by ten times resulting in an encoded vector of size equal to number of flights in the ATFM prob-

lem. Consequently, this reduces the original search space which GA has to explore in the same scale

improving GA’s efficient.

The mapping between the phenotype and the genotype is done in an indirect fashion, i.e. the en-

coding is not actually a complete solution for the problem [45], it only represents the non-zero binary

variables. For this reason, the encoded solution cannot be evaluated by the objective function and be

used to validate the solution against the capacity constraints within the optimisation problem. The ob-

jective function remains the same. Therefore, a decoder must be specified to express the solution given

by the encoding.

To implement a decoder, the allele of the gene must be read to get the index of the non-zero binary

variable. With this information, it is possible to allocate a non-zero binary variable into the problem’

solution. Take this example for instance: in the table 5.3, the gene ϕ(2) has the allele 12 which indicates

that the non-zero binary variable x2,12 must be allocated in the row 2, column 12 in the problem’ solution

variables. Therefore, the flight f2 was allocated with a cancelled flight departure slot. The same decoding

scheme is applied for all the other flights resulting in the problem’ solution which can be evaluated by

the optimisation problem’s objective solution and validated against its capacity constraints.

In conclusion, choosing a proper representation, having a proper definition of the mappings between

the phenotype and genotype spaces is essential for the success of a GA.

5.4.4 Initial Population

GA starts from an initial population of solutions before starting its iterative process. This step plays a

crucial role in the effectiveness of the algorithm and its efficiency.

Two main strategies can be used to generate the initial solution: random and greedy strategies. The
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former draws random alleles to the genes and is known to create diverse and not so fit individuals and the

latter generates fit individuals from just one individual with low computation costs but compromises the

population diversity. A trade-off between the quality and the diversity of solutions, and the computational

time must be taken into account according to the criteria [45].

In the generation of the initial population, the most important criterion is diversification. If the initial

population is not well diversified, a premature convergence might occur [45, 61]. Therefore, strategies

that promote population’s diversity are favoured. For this algorithm, a method of random generation of

individual was implemented. This method makes use of two main features:

• Death penalty function: only the feasible individuals will take part of the initial population;

• Problem-specific knowledge: Due to the fact that this problem is highly constrained, it is very

hard to find feasible solutions using a random search method. Thus, there is the need to intro-

duce some problem’s knowledge in this method. The more flights in network the more en-route

interconnections there will be responsible for toughen the solution’s feasibility. Hence, by can-

celling some flights it is possible to reduce the number of en-route flights consequently reducing

the interconnectivity and easing the search for feasible solutions.

So, an initial population comprised with individuals constituted by only cancelled flights, i.e. all their

alleles are set to the last start-slot option d12 forming identical vectors with all their elements’ value

set to 12, is to be randomly generated. This method draws alleles randomly ensuring that each allele

has the same probability to be drawn. The number of genes to be drawn is also random ensuring a

considerable amount of flights cancelled per individual. By analysing the result of 10 runs in the table

5.4 it is observable a great reduction in the computational time of the population initialisation. However,

if we look into the fitness values results, these individuals present bad fitness values due to high number

of cancelled flights which increased from 220 003 to 1 636 265.

t(s) Best Fit Worst Fit Mean Fit #Cancelled

Without problem

specific knowledge
612.3 1.83× 108 1.88× 108 1.86× 108 220003

With problem

specific knowledge
29.9 1.98× 108 5.16× 108 3.82× 108 1 636 265

Table 5.4: Random search results with and without problem-specific knowledge

5.4.5 Selection Strategy

As the size of the population is constant, it allows to withdraw individuals according to a given selection

strategy. The latter concerns the parents selection for the next generation with a bias towards better

fitness.
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The main principle of selection is “the fitter is an individual, the higher is its chance of being parent.”

This principle inflicts a selection pressure on the individuals which is responsible to drive the population

to better solutions. However, worst individuals, i.e. unfit individuals, should not be discarded because

they may have useful genetic material. Therefore, they have some chance to be selected. To determine

such an individual’s ranking from the best to the worst it is necessary to accomplish a fitness assign-

ment upon the candidates individuals. Two different fitness assignment to the candidates individuals

approaches are studied in this work:

• Proportional: in which absolute fitnesses are assigned;

• Rank-based: in which relative fitnesses are assigned.

After the individual’s ranking is done, they are selected according to their fitness by means of a

chosen selection strategy. Two different strategies are applied for each fitness assignment approach

respectively.

Roulette Wheel Selection

This strategy assigns to each individual a selection probability that is proportional to its relative fitness.

Being fi the fitness of the individual Pi in the population Θ its probability to be select is:

Pi =
fi∑n
j=1 fi

(5.2)

To better understand this strategy, one can visualise a pie graph in the figure 5.8 where each indi-

vidual is assigned a pie’ slice on the graph which corresponds to its fitness. Around the pie, an outer

roulette wheel is set. The selection of µ individuals is performed by µ independent roulette wheel’ spins.

Each spin will select just one individual. Fitter individuals have bigger slices, thus more chances to be

chosen.

Figure 5.8: Roulette selection strategy. Each spin selects a single individual. The actual problem is to
be minimised and thus individuals with lower fitness values are actually fitter. Adapted from source [45].
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Tournament Selection

This strategy consists in selecting k individuals randomly. The parameter k dictates the number of

contestants in the tournament. A tournament is then applied to the k members of the group to select the

best one as the figure 5.9 illustrates. To select µ individuals, the tournament procedure is performed µ

times.

Figure 5.9: Tournament selection strategy. In this example, a tournament of size γ = 3 is carry out. Three
solutions are selected randomly from the population. The best individual is then selected. Adapted from
source [45]

5.4.6 Genetic Operators

Once the selection of individuals to form the parents population is performed, the reproduction phase

takes place with the application of genetic operators such as the crossover and mutation.

Crossover

The function of crossover is to interchange some genetic material, i.e. characteristics, of the two parents

to generate offspring. Its design mainly depends on the representation (encoding) used. According to

Talbi, when designing this genetic operator two aspects must be taken into account:

• Heritability: the crossover operator should inherit genetic material from both parents. If two iden-

tical individuals generate identical offspring the crossover is a pure recombination operator, i.e. it

has a strong heritability;

• Validity: the crossover operator should produce valid solutions. This aspect is very difficult to fulfil

because this optimisation problem is highly constrained shrinking the whole solution space to a

feasible subset.

Moreover, the performance of this operator largely depends on its user-defined parameter, the

crossover rate pc that spans from 0 to 1. This parameter represents the proportion of parents on which

the crossover will perform. In the literature, there are several proposed crossover operators. In this work,

some of them are studied and implemented such as the n-point crossover and uniform crossover.
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The n-point crossover

This is the generalised form of a group of different crossover operators, each one differentiating by the

number of crossing points which originates segments of the chromosome5 ready to be interchanged

among the parents’ chromosomes.

In the 1-point crossover, a crossover point κ is computed randomly which spans the chromosome’s

length. Then, two segments per chromosome are formed separated in the κth position and thereafter

interchanged them resulting in two offspring as the figure 5.10 depicts.

In the 2-point crossover, two crossover points are computed randomly and then following the same

method as the previous operator, they interchange genetic material within the two points as the figure

5.10 depicts.

Figure 5.10: n-Point crossover operator. In the upper part of image it is illustrated the 1-point crossover
and in the bottom part of the figure it is illustrated the 2-point crossover.

The uniform crossover

In the uniform crossover, two individuals can be recombined without taking into account the size of

segments. Each element of the offspring is selected randomly from either parent. Each parent will

contribute equally to generate the offspring as the figure 5.11 shows.

Figure 5.11: The uniform crossover operator.

Mutation

The function of mutation is to perform independently small changes in selected individuals of the popu-

lation in order to introduce in the offspring’s some new features (hopefully desirable features) which are

not possessed by its parents. These small changes in the genetic material of the offspring, maintain and

introduce diversity in the genetic population. Moreover, it allows the GA to explore a new, maybe better

5Or individual
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part of the feasible region than the ones previously considered and consequently escaping from local

minima.

According to the literature, mutation should be performed in a low rate. This rate is controlled by the

user-defined parameter pm which defines the probability to mutate each gene of the chromosome. Thus,

small values are recommended for this parameter. According to Talbi, when designing the mutation

operator three aspects must be taken into account:

• Ergodicity: it should allow every solution of the search space to be reached;

• Validity: it should produce valid solutions. This aspect is very difficult to fulfil because this optimi-

sation problem is highly constrained shrinking the whole solution space to a feasible subset;

• Locality: is the effect on phenotype when performing a change in the genotype [45]. The mutation

operator should have a strong locality, i.e. it should generate minimal changes in the genotype

and consequently reveal small changes in the phenotype. Its impact is crucial and should be

controllable. If a small change in the genotype produces a great perturbation in the phenotype

the mutation is said to have a weak locality and possibly making the search to converge toward a

random search in the landscape.

For this problem, a mutation in the discrete representation is to be implemented. In the literature,

there are several proposed mutation operators for integer representation. According to [61] the main

forms of mutation for integer representation are the random resetting mutation and the creep mutation.

One more form of mutation was designed which was obtained by extending the random resetting one,

namely bias resetting mutation.

Random resetting mutation

In the random resetting mutation, a random allele from the set of permissible values Ω is assigned to a

randomly chosen gene. The set Ω comprises the starting-slots and thus Ω ∈ [1; 12]. All the genes alleles

x are equally likely to be chosen with the probability P (dk) = 1
12 .

Bias resetting mutation

A new operator was designed by extending the random resetting one. Instead of setting a equal prob-

ability to all alleles, it is possible to set a distribution from which the random numbers are drawn. The

goal of using these modelled distribution is to control the likelihood of the numbers’ drawing in such a

way that the first start-slot options are more likely to be drawn than the last ones avoiding allocations of

start-slots with high delay. For that purpose, the following distribution was modelled.

Half-normal distribution

The half-normal distribution is a special case of the folded normal distribution by setting the mean to

zero. The equation 5.3 depicts its probability distribution function (PDF).
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fX(x) =

√
2

σ
√
π

exp

(
− x2

2σ2

)
x ≥ 0 (5.3)

Where the mean is µ = 0 and the scalar parameter σ is to be tuned according to the mentioned

preference. The figure 5.12 shows the probability functions and the cumulative functions for the start-

slot options. With this distribution, it is more likely to delay less the flights and consequently reducing the

delay costs.

Figure 5.12: Half-Normal distributions.

Creep mutation

This operator scheme was designed for representations with ordinal attributes and therefore fits in the

encoding of this problem. Its function is to add small positive or negative values to each gene with a

given probability pi. From a distribution that is symmetric about zero, the probabilities pi associated with

the values to be added are sampled randomly for each position. Thereby, is more likely to generate

small changes than large ones.

To design this operator a distribution must be chosen and its parameters must be tuned, hence

controlling the distribution from which the random alleles are drawn. For this purpose, the well known

normal distribution is the one to be used. The figure shows the normal distribution used in this operator

with mean µ = 0 and standard deviation σ = 2.7.

5.4.7 Replacement Strategy

The last step in GA consists in selecting the new solutions from the union of the current population and

the generated one. A replacement strategy must be specified according the survival of the fittest natural

phenomena. Therefore, this phase concerns the survivor selection which updates the population with

the new offspring which compete with old individuals for their place in the next generation. The strat-

egy implemented was the traditional generational replacement proposed by J.H.Holland. This strategy

replaces the whole population of size µ. The offspring population will replace systematically the parent

population.
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Figure 5.13: Normal distributions.

Other strategy is used namely elitism, in which best individuals from the parents and offsprings

population are chosen to take part of the next generation as it is shown in the figure 5.14. This approach

provides a faster convergence. Since this approach applies selection pressure, care should be take

because it could lead to a premature convergence and consequently to be trapped in a local minima if

high elitism pressure is applied.

Figure 5.14: Replacement strategy - Elitism.

5.4.8 Stopping Criterion

Finally, a suitable criterion to stop the algorithm is to be implemented. GAs are stochastic algorithms

and mostly there are no guarantees to reach an optimum, hence they may never stop searching for the

best solution. Moreover, one of the problems has an unknown optimal objective value.

To ensure GA’s termination, a static procedure was chosen. In such a procedure, the algorithm

stops its search certainly and the end of the search is defined a priori. A variety of this type of stopping

criteria spans in the literature such as: the population diversity drops under a given threshold, maximum

time elapsed by the CPU, maximum number of generations and so on. For this algorithm, a maximum

number of generation condition was implemented as the GA stopping criterion. Therefore, when a given
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number of generation is completed, the GA stops its iterative process and returns the best solutions

found and its iteration’ statistics.

5.5 Genetic Algorithm Integration in SCIP

In this section, the integration in SCIP of a GA, namely atfmGA, using the problem’ structure will be

explained.

5.5.1 Genetic Algorithm as a SCIP Module

Thanks to SCIP’s user defined plug-in approach, the integration of new code is facilitated. To start

implementing the GA in SCIP, its algorithm was coded inside the execution method of the primal heuristic

plug-in. The latter, executes atfmGA functions which are used in the execution method, within the SCIP’

solution process every time it is called.

Then, it is necessary to create the SCIP heuristic, designated as heur atfmGA, and include it in

SCIP’s data structure object so that SCIP can use the callback functions to execute the heur atfmGA.

Figure 5.15 shows a scheme of all interfaces used. The NFE data which comprises the flights and the

network elements’ data can be found in Matlab data files. In scipmex interface, the NFE data is used as

input. In order to create the problem data structure and consequently the ATFM problem in SCIP such as

the variables, constraints and the objective function. The main function of this interface is executed when

the mex file AllocateSlotsNFE is called in Matlab after being compiled by the mex compiler explained

in section B.2. It is crucial to include the source code and the header file of atfmGA in order to compile

the former. Inside SCIP, heur atfmGA runs the algorithm according to the primal heuristic properties

with a population data structure defined in atfmGA by making use of its functions, i.e. the GA operators

described in the previous sections. It is possible to tune the atfmGA parameters such as the population

size, probability of mutation, crossover and so on in atfmGA’s header file. After the solution process is

completed, scipmex writes the solver’ statistics and returns the best solution found in form of a vector of

start-slots along with its objective value.

The user has total control of the SCIP’ solution process by choosing the combinations of properties’

settings of all modules being used which SCIP offers to match his/her necessities. Thereafter, it is

possible to control when and at what frequencies the atfmGA is called in the solution process.

5.5.2 Population Data Structure and Solution Flow

As explained in the subsection 5.4.3 there are two different solution representations, the genotype of

flights and the phenotype of variables. In order to handle these two different representation, two data

structure are used in this algorithm. In the genotype, a data structure namely population, is used. It

comprises vectors of size nFLIGHTS named individuals, and a variable which represents its fitness

named fitness. The individuals vector elements consist of the delay for each flight. In the phenotype,

the solutions are stored in the so called SCIP solution storage in which only the non repeated feasible
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Figure 5.15: Interfaces cross-functional flowchart modules

solutions are stored within a fitness ranking list, i.e. a list which sorts the unique feasible solutions

from the fittest to the most unfit. There are three different denominations for the population structure

depending in which stage they are depicted in figure 5.16. In the first stage of GA, an initial population

is created. During its creation, the individuals are decoded and checked for feasibility. The feasible

solutions decoded from the feasible individuals are added to the SCIP solution storage. When a certain

number of feasible solutions is reached, the initial population gets updated with encoded individuals from

the SCIP solution storage. This way, only feasible individuals take part of the initial population ready to

enter the generational loop.

In the generational loop, the initial population becomes the parents of the first generation. After the

reproduction stage, new individuals are ”born” by genetically modifying the population of parents and

consequently becoming the children population. The children feasibility is checked and the ones which

are feasible are the ones that are going to take part of the SCIP solution storage if and only if their

objective value are better than the objective values of the last element in the storage.

Then, follows the selection stage and a new parents population is created replacing completely the

previous parents population. Due to the elitism scheme, the top solutions in the SCIP solution storage

are encoded to take part of the new parents population in every generation.

5.5.3 GA Flowchart

The figure 5.17 illustrates the flowchart of the proposed GA. The program flow of GA is divided into two

main blocks: Initial Population Creation in which the initial population is created and the Generational

Loop in which the individual are created and the solutions tried. The latter is subdivided in four modules,
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Figure 5.16: Population data structure and solution data structure flow

the Selection, the Reproduction, the Evaluation and the Replacement. The encoding of the solutions

and the decoding of the individuals is accomplished by the functions CreateIndividualFromSol() and

CreateSolFromIndividual() respectively.

In the Initial Population block, the function CreateRandomIndividual() applies the random reset-

ting mutation to generate random alleles in the individuals genes. Then, CreateSolFromIndividual()

decodes the individual to the solution space to make it possible to evaluate them using the SCIP func-

tion SCIPtrySol(). If the solution is feasible, it is stored in the SCIP solution storage incrementing the

number of feasible solutions nSol, otherwise it is deleted. This process is repeated until the number of

feasible solutions is equal to the size of the population. After the stopping criteria is reached, the feasi-

ble solutions are encoded using the function CreateIndividualFromSol() and thus creating the initial

population. To speed-up this process, a considerable number of start-slot d12 is drawn and consequently

cancelling flights. By doing this, it is easier to find feasible solutions since less flights are entering in the

network. However, the solutions have an high cost.

It follows the Generational Loop block in which the initial population becomes the parents of the first

generation. In the Selection sub-block, the function Tournament() selects the children with a selection

pressure towards to the fittest individuals to become the parents of the current generation. Then, the

parents will mate in the Reproduction sub-block. Firstly, the Crossover unites pairs of parents which will

mate, originating two children per pair. Secondly, the resulting children will then be mutated in some of

their genes using Mutation() function. In order to evaluate the resulting children, they must be decoded

into the solution space. Thereafter, the SCIP function SCIPsolGetOrigObj() evaluates each children

assigning to each one of them the respective fitness value. Then, their feasibility is checked and if they

are feasible they will be stored in the SCIP solution storage incrementing nSols, otherwise they are

deleted.

Finally, the function Elitism() partially replaces the children population by the top individuals found

so far encoded from the solutions sols sorted in the SCIP solution storage. This loop continues until the

stopping criterion is reached, i.e. the loop will break when the number of generation reaches its maxi-

mum allowed, MAXGEN. Ended the search, it returns the best solutions found and its iterative statistics.
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Figure 5.17: atfmGA flowchart

5.6 Discussion

To develop this algorithm in an efficient and timely manner, a GA framework was proposed to be used.

Firstly an investigation on the available frameworks was carried out. Unfortunately, many of those frame-

works are outdated and abandoned by their own developers. Due to time constraints and interface limi-

tations, a decision of reuse code of a simple GA was made in section 5.3. From that base code, a more

robust GA was to be developed.

After the development of the atfmGA throughout the sections of this chapter, a GA was integrated

in SCIP ready to be used at any level of the branch-and-bound tree search. Due to the immense and

complex search space of the EATFM problem, it was ”impossible in any ways” to produce a visual repre-

sentation of it. Although, it was possible to represent its fitness landscape in the 5.4.2. To implement the

atfmGA components such as the bias resetting and the generation of the initial population, the fitness

landscape knowledge was taken into account to improve the solutions.

The algorithm components to be tested in the next chapter are summarised in the table 5.5.

Solution

Representation

Initial

Population

Selection

Strategy
Crossover Mutation

Replacement

Strategy

Stopping

Criterion

Features Integer

Random with

problem specific

knowledge

Roulette wheel
1-Point (1-P) Random Resetting (RR)

Elitism
Number of

iterations
2-Point (2-P) Bias Resetting (BR)

Tournament Uniform (UX) Creep (CM)

Parameters -

Population

size

(PopSize)

Tournament

size

(TournSize)

Probability of

crossover

(PXover)

Probability of

mutation

(PMutation)

Elitism

ratio

(ElitRatio)

Maximum number

of generations

(MaxGen)

Table 5.5: atfmGA summary of the features and respective parameters
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Chapter 6

Results

The performance of the developed GA, namely atfmGA, inside the SCIP module heur atfmGA will be

assessed for different scenarios and instances which are described in section 6.1. It follows the atfmGA

performance assessment in section 6.3. Firstly, experiments of atfmGA operators combinations de-

signed in section 5.4 are evaluated against each experiment. Secondly, a sensitive analysis is performed

on the chosen operators parameters. The last two sections are devoted to the optimal and stochastic

solving results of the ATFM problem with and without conflicts. The latter, is sub-divided in 4 different

instances. Due to the fact that SCIP is not able to find Upper Bounds (UBs) for the large scale ATFM

problem with conflicts, atfmGA is to be used to provide UBs and thus be able to compute an optimality

gap which measures how far the UB found by atfmGA is from the Lower Bound (LB) found by SCIP.

The huge search space size of the problem combined with the stochastic nature of GA search method

strongly complicates the search for feasible solutions. Further adjustments on the atfmGA namely, the

implementation of an on-line dynamic parameter update scheme and a fitness penalty function, was

accomplished to try to overcome obstacles found. Finally, the results of a novel GA integration in SCIP

are presented.

6.1 Solved Scenarios: Conflict-free and Conflicted

To carry out the performance assessment of the solver, two main scenarios are used, the conflict-free

scenario and the conflicted scenario. The first one will be used to evaluate the performance of the search

operators designed in the previous chapter. The second is subdivided into 4 different instances and it

will be solved with the most suitable search operators and the best set of parameter values determined

for the first scenario.

For both scenarios, the corresponding date is 3-06/2014 (see Chapter 3). All flights that should

departure on this day are considered. The number of flights to be regulated is 26 289. A total of 107 time

intervals are included, which corresponds to a time of 26h45min. The 107 time intervals again indicate

the period from the earliest start time of a flight to the latest (planned) landing time plus the maximum

possible delay. The number of considered sectors amounts to 617. The number of considered airports

69



is 1 154. This results in a total of 312 975 capacity restrictions for the sectors and airports for both arrival

and departure time intervals. Figure 6.1 shows an example of trajectories in one full day.

Figure 6.1: Example of a representation of the timetable route network for a full day scenario (NFE
Output), source [63]

6.2 GA Start-Slots Allocation Mechanics

To make the atfmGA start-slot allocation mechanics clear to the reader, a visualisation of how the allo-

cated start-slots are to be distributed throughout the generations is presented. The figure 6.2 depicts

three distinct solutions found by atfmGA in three different moments of the search.

Figure 6.2: Allocated start-slots distributions for three different solutions found by atfmGA search

The blue one represents a solution found in the creation of the initial population resulted from the
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random slots allocation in which lots of flights are cancelled and hence, the solution has high delay cost.

After a certain number of generations, in the search mid-term, the biased stochastic search method

which atfmGA employs, allocates more start-slots with lower delay costs and consequently the distri-

bution is shifted to the left as it can be seen in the picture by comparing the blue distribution and the

green one. In the end of the search, the best solution presents a distribution even more shifted to left

characterized by a majority number of slots allocated in the first start-slots and thus, the solution has

lower delay cost than the previous two.

6.3 GA Performance Assessment

The performance of GA depends on many factors1 associated with the selection strategy, the genetic op-

erators, the replacement strategy and the generation of the initial population. Moreover, it also depends

of their parameter values. Hence, adapting the suitable atfmGA strategy and components along with the

most suitable parameter values is very important because it guides the search process to better results,

i.e. it improves the quality of the solutions. This can be accomplished by executing experiments using

different components and parameters. Then, statistical analysis will be applied to evaluate the obtained

results. For all the different experiments, 10 computational tests per experiment are to be carry out to

derive statistical results. The selected instance is the full day scenario without conflicts described in 6.1.

Also, every best solution found throughout the experiments, its UB will be recorded and the optimality

gap updated relatively to the problem known optimal solution 7.595× 103 $. This gap, will be computed

with the obtained atfmGA UB and the known LB which is the optimal solution. The optimality gap or just

simply gap, is given by the equation 6.1.

Gap =
UB − LB

min(UB,LB)
× 100% (6.1)

To run all the proposed experiments, the availability of 5 different computers in the computers room in

”Laboratórios de Controlo, Automação e Informática Industrial” of ”Mecânica III” plus the personal com-

puter of the author were taken advantage. The computational tests were ran on Windows 10 operating

system with Intel 3.30Ghz processors and 8 GBs of installed RAM memory. In two of the computers,

extra 8GBs were installed to be able to run SCIP solver for the ATFM problem with 10% of minimum

probability of conflict.

6.3.1 GA Design Performance

To evaluate the performance of the designed GA components, several computational tests were con-

ducted to assess which combination of GA components among the search operators, could produce

the best results. To assess their performance, the Best Fitness (BF) and the Mean of the Best Fitness

(MBF) of the individuals are used. The latter, represents the average of the best individuals found each

1Excluding the computer and software features in which the GA is tested.
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trial for one experiment. For these experiments, the atfmGA parameters described in Chapter 5 were

fixed to the following values:

• MaxGen = 100;

• PXover = 0.9;

• PMutation = 0.1;

• PopSize = 100;

• ElitRatio = 0.1.

The goal of the following experiments is to find the best combination of GA operators (selection,

crossover and mutation) evaluating each combination by MBF and BF as performance indicators. Re-

garding the decision criterion, MBF has more weight in the final decision than the BF. The results can

be seen in the tables 6.1 and 6.2.

Crossover

×107 1-P 2-P UX

M
ut

at
io

n

RR
BF 12.371 11.924 10.271

MBF 17.120 17.101 17.690

BR
BF 3.314 3.216 3.229

MBF 6.048 5.239 5.297

CM
BF 7.315 8.121 5.215

MBF 10.210 10.129 10.011

atfmGA BF

3.216× 107 $

SCIP best solution

7.595× 103 $

Gap

423 336%

Table 6.1: Performance of different experiments of GA components using Roulette Wheel selection
strategy. RR:Random Resetting, BR: Bias Resetting, CM: Creep Mutation. 1-P: One point, 2-P: Two
point, UX: Uniform. Total experiments computational time: 38.4 hours

Analysing the tables, it is noticeable that the operator Bias Resetting outperforms the others mutation

operators. The combination Roulette Wheel selection (RR), Bias Resetting (BR) mutation and Two-Point

(2-P) crossover was the one which produced the best MBF 5.239× 107. Although, the combination

Tournament selection with 4 contestants (TournSize=4), BR mutation and 1-Point (1-P) crossover pro-

duced the best result 3.157× 107 its MBF is considerable worse than the first combination mentioned.

So far, the last mentioned result is the best solution found so far by atfmGA with a optimality gap (or just

gap) of 415 678%. Therefore, it was concluded that the best combination of search operators is Roulette

Wheel selection combined with Bias Resetting mutation and Two-Point crossover.
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Crossover

TournSize = 2 TournSize = 3 TournSize = 4

×107 1-P 2-P UX 1-P 2-P UX 1-P 2-P UX

M
ut

at
io

n

RR
BF 10.224 11.991 10.290 12.924 10.218 10.221 11.219 11.231 11.321

MBF 13.227 14.952 14.152 16.234 16.291 15.129 15.213 15.210 14.188

BR
BF 5.413 4.219 4.211 4.621 3.371 4.951 3.157 4.326 6.951

MBF 7.321 7.223 5.941 6.552 8.106 7.703 7.258 8.213 10.703

CM
BF 7.011 6.438 8.318 8.121 7.438 9.318 7.319 3.438 8.521

MBF 10.121 9.213 13.241 10.311 9.123 11.310 11.311 8.216 12.821

atfmGA BF: 3.157× 107 $ SCIP UB: 7.593× 103 $ Optimality gap: 415 678%

Table 6.2: Performance of different experiments of GA components using Tournament selection strategy.
RR:Random Resetting, BR: Bias Resetting, CM: Creep Mutation. 1-P: One point, 2-P: Two point, UX:
Uniform. Total experiments computational time: 112.5 hours

6.3.2 Sensitivity Analysis

After the exhaustive performance assessment of the GA components, there is the need to ”tune” their

respective parameters. The latter may have a considerable influence on the efficiency and effectiveness

of the search. Moreover, it is not obvious to define a priori which parameter setting should be use due

to the random nature of this type of metaheuristic. They are problem-specific regarding its structure and

instance to deal with. Thus, unfortunately, an universally optimal parameter values set for a given GA

does not exist [45].

To ”tune” the GA parameters, an off-line sensitivity analysis on the parameters Pmutation, PXover

and PopSize was performed in order to ”feel” which of their values produce the best results. A sequential

one-by-one parameter ”tuning” is to be done however, it does not guarantee to find the optimal setting.

To overcome this drawback, a huge number of experiments needs to be done in order to cover different

combination values for all the parameters. Furthermore, due to the ”stochasticity” of GA, several trials

per experiment need to be executed to validate their performance. To perform such a procedure, a

great deal of time and computational cost is needed and consequently, this procedure will not be carried

out in this work due to time constraints. Instead, the parameters Pmutation and PXover are tested

in a combinatorial way however, PopSize is tested at a time and their optimal values are determined

empirically.

Probability of Crossover Vs Probability of Mutation

These two parameters are responsible for how many alleles should be drawn (see 5.4.3), i.e. how many

start-slots will be allocated. The bigger the probability of crossover (PXover) is, the bigger the number

of individuals will mate and thus, a greater amount of flight vectors will be interchanged and vice-versa.

The bigger the probability of mutation Pmutation is, the bigger the number of individual’s genes will
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be mutated, i.e. a greater amount of new start-slots will be allocated into flights. For the crossover

and mutation parameters, the same performance assessment was applied and the same evaluation

parameters BF and MBF are used. Furthermore, an average of the BF found in each set of experiments

per parameter value was computed. The goal of these experiments is to find the best combination

of Pmutation and PXover parameter values using the same decision criterion in 6.3.1. The table 6.3

depicts the results obtained.

PXover Average

PMutation BF×107 0.6 0.7 0.8 0.9 0.99

P
M
u
t
a
t
i
o
n

0.2
BF 6.214 6.001 6.219 6.012 5.299 5.949× 107

MBF 7.921 6.679 7.569 7.918 6.473 -

0.15
BF 6.012 7.421 5.243 4.921 4.913 5.702× 107

MBF 6.712 8.386 7.783 7.735 5.853 -

0.1
BF 5.141 3.215 7.341 6.097 4.837 5.326× 107

MBF 6.727 5.685 8.465 7.197 7.537 -

0.05
BF 3.378 3.490 3.571 3.251 3.180 3.374× 107

MBF 4.950 4.890 4.867 4.738 4.026 -

0.01
BF 3.195 5.216 7.213 4.100 3.975 4.740× 107

MBF 9.155 9.701 8.898 7.746 7.975 -

Average

PXover BF
4.788× 107 5.069× 107 5.917× 107 4.876× 107 4.441× 107

Table 6.3: Performance assessment for different values of the parameters Probability of Mutation
(Pmutation) and Probability of Crossover (PXover). Total experiments computational time: 104.2 hours

By inspecting the BF average of the Pmutation on the last column, it is notable the decreasing values

while reducing the mutation parameter value, reaching its minimum 3.374× 107 at Pmutation = 0.05.

For the crossover parameter, it is notable an increasing of the BF average until PXover = 0.8 and then a

decreasing until PXover = 0.99 reaching its minimum 4.441× 107. Looking at the BF values, using the

combination of parameters values 0.05 and 0.99 it was obtained the best result 3.180× 107. Thus, for

the next experiments these parameters will be fixed to Pmutation = 0.05 and PXover = 0.99.

Population size

For the population size parameter, the same performance assessment was applied but introducing more

performance measures such as the Average Fitness Value (AFV) and the Standard Deviation (STD) of

the individual fitnesses. Moreover, the runtime of each generation using different population size and

the memory usage are also important factors for the decision making. The goal is to find the appropriate

population size to solve the current problem. The table 6.4 depicts the results obtained. This parameter

74



is closely related with the population diversity. The bigger the population is, the more space for different

individuals it will have and, as a consequence, increases its diversity and vice-versa. Nevertheless, the

evaluation computational time and the memory size associated with the population must be taken into

account. Thus, a trade-off between diversity and computational requirements is to be done.

PopSize

×107 10 50 100 200 500 1000

BF 10.922 3.153 3.186 3.334 3.532 2.241

MBF 12.271 3.911 3.813 4.502 5.822 4.982

AFV 7.646 6.822 6.165 5.969 6.838 6.761

STD 1.641 1.039 9.871 1.141 1.567 1.230

atfmGA BF

2.241× 107 $

SCIP UB

7.595× 103 $

Gap

294 963%

Table 6.4: Performance assessment for different values of the parameter Population Size (PopSize).
Total experiments computational time: 55.4 hours

Analysing the table 6.4, one can notice that for PopSize = 1000 the best BF was obtained 2.241× 107.

This was the best result found so far by atfmGA reducing the gap to 294 963%. However, as the figure

6.3 shows, using such a population augments drastically the generation runtime and the memory usage.

The biggest drawback of using large populations is indeed the generation runtime. For PopSize = 1000,

it takes almost 200 seconds to accomplish just one iteration, almost 10 times more than with populations

of size PopSize = 100. For that reason, it is not worth it to use such a large population. Looking to the

other results in 6.4, good results were obtained using PopSize = 50 and PopSize = 100. Although,

with the former parameter value a better BF was obtained, using the latter lower AFV and STD were

observed. Hence, the population size of PopSize = 100 will be continued to be used in the following

experiments.

Figure 6.3: Median of the generations runtime and memory usage per generation. As the population
size increases, its memory and generation runtime increases.
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6.3.3 Online Parameter Initialisation

The last parameter to be tuned ElitRatio is very important regarding the GA convergence and it is

closely related with one of the fundamental questions in the Evolutionary Algorithms (EA) community.

How much should a EA explore and exploit? ”Exploration and exploitation are the two cornerstones of

problem solving by search” [64]. The terms exploration and exploitation have been playing an important

role in describing the working of an algorithm. According to Schippers and Eiben in 1998, the search

operators crossover and mutation are responsible for the algorithm’s exploration in the search space

whilst the selection operator is responsible for the algorithm’s exploitation of the problem’ solutions.

These two cornerstones can be seen as methods of traversing the problem space being both of them

used in conjunction. GA should explore the problem space through crossover and mutation but it should

do so by favouring solutions near to other good solutions. This can be accomplished by using biased

selection strategies with or without a flavour of elitism. The trick is in finding the right balance. One

can go too far into exploitation and it will get stuck in local minima or go too far to exploration and it will

waste time on solutions that are less likely to be good. In this GA scheme, elitism is the main driver of

exploitation in the search space. It guarantees that the best individuals will take part in the population

of the the next generation. The rest of the individuals in the population are subject to exploration en-

charged by the GA search operators.

To do a performance assessment to this parameter, two types of experiments are carried out. One

evaluates different static values of this parameter, the other evaluates an on-line parameter initialisation

of ElitRatio, Pmutation and PXover throughout the GA iterations. The goal of these experiments, is to

find the right amount of elite solutions that will take place in each generation and consequently evaluate

the balance between exploration and exploitation.

The figure 6.4 illustrates the convergence of different experiments with different values of ElitRatio

in the short run (MaxGen=100). One can notice that, for ElitRatio = 0, which means that elitism is

disabled, the convergence stops sooner than the other experiments using different ElitRatio values.

When elitism is enabled it is noticeable that the curves are shifted to the left, which means that the better

solutions are found faster. However, for some experiments using elitism such as ElitRatio = 0.2 and

ElitRatio = 0.4, the algorithm stopped to improve the solutions quite early but it was able to find better

solutions than without elitism. For higher values of ElitRatio, the algorithm seems to converge finely

in the short run.

Dynamic Parameters Update

To avoid atfmGA to be stuck in a local minima and better explore the search space, a Dynamic Parameter

Update (DPU) initialisation was implemented. The figure 6.5 shows the dynamic trade-off between

exploration and exploitation using the parameters ElitRatio, Pmutation and PXover.

Throughout the generations, two distinct search phases arise namely, the exploration and exploration

phases. In the first quarter of the generations the mutation and crossover operators are more active

due to high Pmutation and PXover values and thus intensifying the exploration whilst the elitism only
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Figure 6.4: Effect of the ElitRatio on the convergence within 100 generations. Total experiments
computational time: 25 hours.

Figure 6.5: Dynamic parameter values update ElitRatio, Pmutation and PXover.

guarantees 2% of the best individuals. After the first 25% of the generation, these parameters change

linearly along the generations. The Pmutation and PXover decrease while ElitRatio increases. The

exploration phase is overruled by the exploitation phase exactly after the first 50 % of generations. When

the search hits 75% of the generations elapsed, the parameters values stabilize into the values shown

in the picture 6.5.

Extending the horizon of the search, one can notice in the figure 6.6 that the algorithm, using very

low and very high ElitRatio values, doesn’t improve the UBs, i.e. the best solution so far, after few

generations. These results indicate that too much exploration doesn’t improve the UBs because the

algorithm spends too much time to try different solutions that are less likely to be good, ignoring the

information about the best individuals already gathered and thus it is not able to improve them. On the

other hand, even though in the short run high ElitRatio values seemed to be promising, too much

exploitation like in the experiment using ElitRatio = 0.8, causes the algorithm to converge to local

minima and get stuck at that point. So a trade-off between exploration and exploitation was found using
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dynamic parameters values. In the picture 6.6, the yellow curve presents a total different behaviour

from the other two. In the beginning (first 250 generations) the dynamic parameters curve presents a

similar behaviour to the blue curve due to the fact that these two experiments have high exploration

rates, i.e. high Pmutation and PXover values. After the first quarter of generations, the ElitRatio

begins to increase and the exploration parameters decrease allowing the GA to start to exploit the

diverse individuals which were found by the search operators. In the last quarter of the search, the

exploitation dominates and the yellow curve presents a similar behaviour to the red one with some slight

UB improvements. In the end of this computational test an improved atfmGA BF was found with a cost

of 1.075× 107 which reduced the gap to 138 828%.

Figure 6.6: Effect of the ElitRatio on the convergence within 1000 generations. Total experiments
computational time: 15 hours

6.3.4 GA Performance Rate

Another way of measuring the atfmGA performance is by analysing its successful rate of finding fitter

individuals which improved the best individual found so far which means, in the solution space wise,

solutions that improve the UB. Five computational tests using 1000 generations, Popsize = 100 and

dynamic parameter values were executed in order to evaluate the atfmGA performance rate PR. The

latter takes into account the computational effort by considering number of solutions that are better than

the UB, i.e. number of improvements, over the number of objective function evaluations in all the runs.

It is computed with the equation 6.2.

PR =
#Improvements

#Evaluations×#Runs
(6.2)

The feasibility rate FR is also computed to assess the atfmGA likelihood in finding feasible solutions.

It represents the number of feasible solutions over the number of objective function evaluations like in

the equation 6.3.
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FR =
#Feasible

#Evaluations
(6.3)

The median of the number of solution evaluations, feasible solutions found, improvements and the

BF obtained per each computation test are computed and also used to assess its performance. The

table depicts the results obtained.

MBF [$] t(s) #Evaluations #Feasible #Improvements FR PR

1.248× 107 19 231 75 621 20 182 479 26.69% 0.63%

atfmGA BF

1.025× 107 $

SCIP best solution

7.595× 103 $

Gap

134 828%

Table 6.5: Performance rate assessment of atfmGA

The results show that, on average, atfmGA finds feasible solutions with a FR = 26.69% for all solution

evaluations. The performance rate, is:

PR = 0.63% (6.4)

This result shows how low is the likelihood in finding better UBs using atfmGA. Therefore, it was

concluded that the search for better UBs using a biased stochastic guided search method is extremely

hard. Nevertheless, a new improved BF was found 1.025× 107$. For the best computational test in

this experiment, a further analysis was performed to better understand the search process of atfmGA.

Figure 6.7 illustrates three graphs of the best computation test. The graph on top, shows the number

of found feasible solutions per generation. The other two graphs are on the bottom being the blue

one (y-axis on the left) the representation of the evolution of the total number of found feasible solutions

throughout the generations and the green one (y-axis on the right) the representation of the total number

of improvements, i.e. the number of solutions which improved the UB. With the last graph one can

compute the atfmGA performance rate per generation for this simulation.

It is of interest to know how does the number of found feasible solutions evolves throughout the

generations. On the graph on top, one can notice that in the first few generations, a great amount of

feasible solutions are found. This is explained by the fact that the initial solutions before the generational

loop have plenty of cancelled flights and thus it is easier to find feasible solutions by allocating some start-

slots other then the cancelled one. The number of found feasible solutions, reaches its minimum at half

way of the exploration phase and the curves of the graphs below remain constant. Due to high numbers

of draw start-slots in this phase, the search is mainly random and thus, atfmGA has difficulties in finding

feasible solutions. However, this random search improves the population diversity which will be exploited

in the next search phase. After the first quarter of the generations, the exploration rate decreases and the

exploitation rate increases. Consequently, the number of feasible solutions and improvements increases

which starts to intensify after the first half of the search. This acceleration ceases at the last quarter of
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Figure 6.7: Number of feasible solutions and number of UB improvements of the atfmGA search

the search in which the search is now exploring with low exploration rates allocating fewer start-slots and

fully exploiting only the best solutions which are stored in the SCIP feasible solution storage. Looking at

the green graph, the number of improvements continues to increase which is very promising for the next

computational tests!

6.3.5 Fitness Penalty Function

To reduce the total evaluation time, an experiment was carried out. Because not all individuals are fit,

one could apply a fitness threshold of evaluation acceptance. For this purpose, a simple fitness penalty

function was implemented as follows. Instead of evaluating all the individuals in each population, only

the ones with better fitness than the UB are worthy to be evaluated. By setting this penalty function,

the number of evaluations and consequently the total runtime are expected to be reduced. For the

same scenario using the dynamic linear parameters with a PopSize=100, a simulation with the same

computational time was performed and then fairly compared with the best solution found within this

time-frame. The comparative results are shown in the table 6.6.

ATFM

Without Conflicts
UB [$] Gap t(s) #Generations #Evaluations #Feasible #Improvements PR

Without

penalty function
1.025× 107 134 828% 19 231 1 000 85 933 21 468 508 0.591%

With

penalty function
1.429× 107 188 029% 19 231 1 656 81 050 471 471 0.581%

Table 6.6: atfmGA results with and without penalty function

Analysing the table, in the same runtime of 19 231s, atfmGA with penalty function can elapse 1 656

generations more than the without penalty function. The amount of evaluations per generation reduced

and thus, atfmGA can save computational time, respectively 3 582s (≈ 1 hour) in 1 000 generations.
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Yet, the UB deteriorated from 1.025× 107 to 1.429× 107. The number of feasible solutions and im-

proved solutions are the same which were reduced significantly, respectively to 471, and consequently

decreasing its PR to 0.581%. These facts penalizes strongly this approach. Taking into account these

results, the fitness penalty function strategy will not take part of the atfmGA structure.

After the GA components have been chosen, their parameters tuned and a convergence strategy

implemented, the final structure of atfmGA is closed. It is now the time to test out the enhanced GA for

higher computational times.

6.4 Conflict-free ATFM

The scenario without conflicts doesn’t contemplate any en-route potential conflicts and thus, the goal of

solving this scenario is purely the minimisation of the delay cost.

6.4.1 Optimal Results

In exact optimisation methods, the efficiency in terms of search time is the main indicator to evaluate the

performances of the algorithms as they guarantee the global optimality of solutions. The SCIP solver

employs B&B tree search and for each node the relaxed problem is solved by SoPlex using the simplex

method.

UB [$] LB [$] Gap t(s) #Node #LP iterations #Evaluations #Feasible #Improvements PR

ATFM

without conflicts
7.595× 103 7.595× 103 0% 9.53 1 23 688 23 688 1 1 0.004%

Table 6.7: ATFM without conflicts optimal results using SCIP solver without atfmGA

SCIP is able to solve this scenario to optimality which means that the UB and LB met each other

in the root node after 23 688 LP iterations in 9.53s and thus reducing the optimality gap to 0% proving

that the optimal solution with cost 7.595× 103 $ was found. SoPlex simplex method has a very low

PR however it is extremely fast in finding the optimal solution thanks to LP relaxation which allows the

algorithm to freely move through fractional variables exploring the CFPs of the polyhedron always guided

towards to the optimal value.

6.4.2 Stochastic Search Results

In order to run atfmGA module in SCIP before the B&B branching, it must be called before the root node,

recap the sub-section 4.2.2. For that, its properties settings are set to priority = 999999, freq = 0,

freqofs = 0, maxdepth = 0 and timing = ”before node”. The best result obtained is shown in the table

6.8.

The results for this scenario shows that for 20 000 generations which took 380 468 seconds (more

than 4 days) the best result obtained by atfmGA was 8.550× 106 $ which is very far way from the

optimal solution with a optimality gap of 112 471%. The AFV of all 4 150 615 individuals evaluations
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UB [$] LB [$] Gap t(s) #Node #Generations #Evaluations #Feasible #Improved PR

ATFM

Without Conflicts
8.550× 106 7.595× 103 112 471% 951 170 - 10 000 4 150 615 861 700 20 850 0.502%

Table 6.8: ATFM without conflicts stochastic results using atfmGA

was 10.319 × 106 $. It is worth to point out that the share of time spent on evaluating the solutions is

a main drawback for the simulations runtime. Each solution evaluation takes 0.1702s. Computing the

total time it was found out that for this simulation 282 573s (≈78,5 hours) were spend in evaluating the

solutions which represents 74.27% of the total runtime. However, atfmGA is excellent in finding a large

number of feasible solutions. In total, 861 700 feasible solutions were found and 20 850 improved the

UB with a PR = 0.502%

6.4.3 Comparative Results

The comparative results of the best solutions found are now presented. The key measurement in this

study is the delay cost found by each method. The figure 6.8 depicts the number of start-slots allocations

for the optimal solution vector and for the best solution found by atfmGA and its performance measures

summarized in the table 6.9.

Figure 6.8: Optimal result and atfmGA best solution found for the ATFM without conflicts problem

1st Solution found Best Solution found

Solution [$] t1st(s) Gap1st Regulated Flights UB [$] Gapbest tUB(s) Regulated Flights

SCIP 7.595× 103 9.53 0% 0.126% 7.595× 103 0% 9.53 0.126%

atfmGA 5.162× 108 0.24 679 648% 92.320% 8.550× 106 112 471% 380 468 (105.69h) 46.496%

Table 6.9: Best results found by SCIP and atfmGA for the ATFM without conflicts problem

The table 6.9 shows that atfmGA is the first to find the first solution in 0.24s whilst SCIP manages it

in 9.53s. However, the quality of the first atfmGA solution is very poor with a first optimality gap of Gap1st

= 6 796 476% due to the fact that 92.32% of the flights are regulated.

Analysing the figure 6.8 and the table 6.9 one can notice that in the optimal solution only a tiny

percentage of flights, respectively 0.126%, is regulated whilst in the best solution found by atfmGA a
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significantly percentage of flights, respectively 46.496%, are regulated which reflects in an high total

delay cost.

6.5 Conflicted ATFM

The scenario with conflicts contemplates conflict probabilities and thus, now the goal of solving this

problem is the minimisation of the delay cost and the conflict cost.

The ATFM scenario with conflicts represents an huge large-scale problem. Due to the uncertainties

of departure time and the flight’s routes interconnectedness, there is an huge number of possible en-

route conflicts. For the same date, 93.2% of all fights have conflict probabilities. In total, this accounts for

16 391 398 flight slot pairs that have conflict probabilities. For each of those conflicted flight slot pairs, a

conflict surrogate variable and a conflict constraint arises, see 3.18. Consequently, the problem’ search

space becomes incredibly constrained. Moreover, the size of the problem becomes immensely large

and impractical to solve. To reduce its size, a minimum probability of conflict (minProb) can be set. The

latter will threshold the conflict probabilities and thus reduce the problem’ size. The table 6.10 shows the

size of the problem for different minProb thresholds.

minProb
Number of

conflicts

SCIP Solution

Memory (MB)
tcheck(s)

0.5 7 239 3.8 0.172

0.4 30 439 3.9 0.179

0.3 109 212 5.6 0.215

0.2 379 374 8.0 0.288

0.1 2 177 695 28.6 0.811

0 16 381 398 401.0 -

Table 6.10: ATFM with conflicts size for different minimum conflict probabilities (minProb)

The above table shows that when the minProb decreases, the size of the problem increases. Since

more variables are added to the solution vector, the size of the latter also increases. Also, the computa-

tional time to check the feasibility of the solution (done by SCIPtrySol) increases. Solving the problem

for such a large instance using a population-based metaheuristic like GA can become impractical if the

used computer to run simulations lacks of RAM memory. Due to this computational cost constraint, the

instance with all the conflicts will not be solved in this work. Instead, four other different instances of

the ATFM with conflicts scenario will be solved being the minProb=0.4, 0.3, 0.2 and 0.1 the respective

thresholds applied for each instance.

6.5.1 Optimal Results

The same SCIP solver was used to solve the four different instances of the ATFM with conflict probabili-

ties. The results are depicted in the table 6.11.
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ATFM with conflicts

minProb=0.4 minProb=0.3 minProb=0.2 minProb=0.1

UB [$] 6.091× 104 2.381× 105 6.428× 105 -

LB [$] 6.091× 104 2.381× 105 6.428× 105 2.395× 106

Gap 0 0 0 -

t(s) 25.79 62.83 452.86 100 213

#Node 1 2 26 2

#LP iterations 47 373 74 298 113 532 1 114 865

#Evalutations 47 373 74 298 113 532 1 114 865

#Feasible 2 7 15 0

#Improvements 2 7 14 0

PR 0.004% 0.009% 0.012% -

Table 6.11: ATFM with conflicts optimal results using SCIP solver without GA

The results obtained show that SCIP is able to find optimal solutions for instances minProb = 0.4,

0.3 and 0.2. However, it cannot find integer solutions for the instance minProb = 0.1, i.e. any feasible

solutions were found. The LB found by SoPlex for a runtime of 100 213s (27.84h) was 2.395× 106.

6.5.2 Stochastic Search Results

The same atfmGA module properties in 6.4.2 were used to run the following simulations. The best

results obtained are presented in the table 6.12.

ATFM

With Conflicts
UB [$] LB [$] Gap t(s) #Node #Generations #Evaluations #Feasible #Improved PR

minProb = 0.4 1.672× 107 8.091× 104 20 559% 263 739s (73.26h) - 15 000 768 700 112 243 1803 0.235%

minProb = 0.3 4.141× 107 2.381× 105 17 290% 242 810s (67.45h) - 10 000 339 961 2 412 1 391 0.409%

minProb = 0.2 9.403× 107 6.428× 105 14 528% 387 782 (107.6h) - 10000 552 422 93 006 1 540 0.279%

minProb = 0.1 1.754× 108 2.395× 106 7 225% 246 456s (68.46h) - 1500 22 049 16 2 0.009%

Table 6.12: ATFM with conflict probabilities stochastic results for different instances using GA

For all the instances, atfmGA was able to find UBs. Although the computational time is high, atfmGA

achieved to find UBs for the instance minProb = 0.1 for which SCIP has never did.

6.5.3 Comparative Results

The comparative results of the first and best solutions found are now presented. The figure 6.9 depicts

the number of start-slots allocated in the optimal solution vector and in the best solution vector found by

atfmGA. Their performance measures are summarised in the table 6.13.

Once again, atfmGA has proven that it can find the first solution faster than SCIP however badly the

solutions are.
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1st Solution found Best Solution found

minProb Solution [$] t1st(s) Gap1st
Regulated

Flights
UB [$] Gapbest tUB(s)

Regulated

Flights

SCIP

0.4 8.332× 104 11.04 3.16 % 1.305% 8.091× 104 0% 25.70 0.905 %

0.3 2.444× 105 15.67 3.13 % 2.654 % 2.381× 105 0% 61.50 1.775 %

0.2 6.794× 105 25.06 6.72 % 4.174 % 6.428× 105 0% 429.13 3.922 %

0.1 - - - - - - - -

atfmGA

0.4 5.121× 108 1.56 647 509 % 99 741 % 1.672× 107 20 559% 263 689s (73.25h) 36.118%

0.3 5.111× 108 1.87 209 200 % 99 821 % 4.141× 107 17 290% 242 668s (67.408h) 42.733%

0.2 5.107× 108 5.10 75 066 % 99.214 % 9.403× 107 14 528% 387 232s(107.6h) 37.997%

0.1 4.627× 108 22.09 19 223 % 98.502 % 1.754× 108 7 225% 20 872s (5.8h) 83.974%

Table 6.13: Best results found by SCIP and atfmGA for the ATFM with conflicts for the different instances

Figure 6.9: Optimal result and atfmGA best solution found for the different ATFM with conflicts problem’s
instances. For the instance minProb = 0.1, only the algorithm atfmGA successfully found an UB.

6.5.4 GA Incorporated in the SCIP B&B

To leverage the SCIP’ solution process, atfmGA could be incorporated in the B&B tree search. This

combination can bring good improvements such as:

• Improvement of the effectiveness of heuristics search methods;

• Allows the design of more efficient exact methods.

In this work, a demonstration of how a GA could be integrated in a B&B tree search will be performed.

Two conflicted scenarios with minProb=0.2 and 0.1, will be used for this purpose.

Recapping the section 4.2.2, one can call a SCIP’s module at different stages of the solving process.

For instance, the atfmGA module heur atfmGA could be firstly called in the first deep level (root node)

of tree search and thereafter be re-called in every following deep levels until SCIP finds the optimal

solution. For this purpose, the properties of heur atfmGA are set to:
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• priority = 999999;

• freq = 1;

• freqofs = 0;

• maxdepth = ”no limit”

• timing = ”before node”

The goal of this experiment is to solve the problem to optimality using GA integrated in the SCIP

B&B. Since SCIP already solves it to optimality in a few hundred of seconds, the number of generations

should be low to avoid a long runtime. Therefore, atfmGA will run just one generation each time it is

called. The previous best found static parameters are now used. In SCIP settings, was activated one

heuristic namely simplerounding to provide solutions (UBs) to atfmGA in the tree search. This heuristic

iterates over the set of fractional variables of a LP-feasible point. Then, it performs ”roundings” on the

fractional variables. The resulting solution will be integral and may be feasible.

Figure 6.10 illustrates the convergence result for the same instance. The optimality gap can be

observed as the distance between the UB and the LB. In the beginning, GA creates the initial population

and stores the feasible ones in the SCIP feasible solution storage. Around 180s of simulation time, the

SCIP heuristic simplerounding found a very good UB and stores it in the SCIP storage. The moment

when GA is called once again in the next deep level, it doesn’t have to create the initial population over

again since it has at its disposal feasible solutions in SCIP storage. Thereby, from this deep level on,

GA will run with the solution found by simplerounding which can improve other individuals and hopefully

vice-versa. After almost 1000 seconds, SCIP stops its solving process because the UB and the LB met

each other. Hence, the optimal solution was found (see table 6.11).

Figure 6.10: Convergence result of SCIP B&B with GA for the ATFM conflict instance minProb=0.2. (the
y-axis is represented in a logarithmic scale to better visualise the convergence)

For the ATFM problem with minProb=0.1, the same properties were used. Per each depth level,

atfmGA will run 500 generations. The result of the convergence is illustrated in the picture 6.11. A new

UB was obtained of 1.729× 108 $ and a previously obtained LB of 2.395× 106 for a runtime t = 152 136

s (42.26 hours).
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Figure 6.11: Convergence result of SCIP B&B with GA for the ATFM conflicted instance minProb=0.1.
(the y-axis is represented in a logarithmic scale to better visualise the convergence)

6.6 Solving Performance Progress: Breaking Plateaus in the Fit-

ness Landscape

Throughout the development of this algorithm, better solutions were incrementally found breaking plateaus

of the fitness landscape represented in 5.4.2. The term plateau is a geographical metaphor used to

characterize the flatness of the search space [45]. To break or escape from these flat regions, different

approaches must be tested. In this work several approaches were tried. Some of them performed well,

while others didn’t. Looking back to the first version of atfmGA which had the most basic operators such

as Random Resetting mutation and 1-Point crossover without elitism, a clear progress of the GA solving

performance for the problem scenario conflict-free was recorded and illustrated in the figure 6.12.

Figure 6.12: Overview of atfmGA UB improvements of the ATFM conflict-free problem throughout its
development. (the y-axis is represented in a logarithmic scale to better visualise the convergence)
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Different improvement stages of this exhaustive search for the solution with lower cost were high-

lighted. The first significant improvement attained with the introduction of the Uniform Crossover op-

erator. However, another plateau was reached. The operator Bias Resetting mutation proved to be

outstanding in breaking flat regions pushing alleles to start-slots with lower delays. Yet, another plateau

was encountered. A sensitivity analysis for the atfmGA parameters was carried out. A new local minima

was reached by running generations with large population. Nonetheless, due to the great computational

time in using this population size, this approach was abandoned. Finally, an on-line parameters ini-

tialisation fashion, namely Dynamic Performance Update (DPU), was implemented producing excellent

results. Using the latest developed idea, long computational tests were executed. To try to improve even

further the solution quality, a penalty function was implement. Unfortunately, against the expectations,

this approach failed in improving the known atfmGA best solution found.

The highlights go to the incredible reduction of the optimality gap from 1 628 735% to 86 917%. After

all these attempts, the best solutions found for each solved problem’ scenarios are summarised in the

table.

Conflicted

Conflict-free minProb=0.4 minProb=0.3 minProb=0.2 minProb=0.1

atfmGA [$] 6.609× 106 1.672× 107 4.141× 107 9.505× 107 1.754× 108

SCIP [$] 7.595× 103 8.091× 104 2.381× 105 6.428× 105 -

Table 6.14: Best found solutions by SCIP and atfmGA for the ATFM conflict-free and conflicted and its
instances
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Chapter 7

Conclusions

In this thesis, a new Genetic Algorithm, namely atfmGA, for solving large-scale European Air Traffic Flow

Management binary problems with conflict probabilities, integrated in the optimisation framework SCIP,

was developed. For this purpose, the designed GA, based on problem-specific knowledge, considers

the optimisation problem’s non-convexity as well the economic objective in the cost function.

The existing Air Traffic Control in Europe was described in Chapter 2 as the basis of the model in

Chapter 3. The airspace and airports can only handle a limited number of flights per period. If these are

limited by disruptions, their capacities are reduced and security can only be guaranteed for fewer flights.

In order to prevent an overload of the limited capacities by the previously scheduled flights, the latter is

assigned a delay. Thus, the use of airspaces and airports is postponed by some flights to a later date,

where no more congestion threatens.

The problem of assigning a delay to flights was formulated in Chapter 3 as a linear optimisation

problem with a total delay to be minimised. In this formulation, every possibility of delaying a flight was

represented by a binary decision variable. The atfmGA was implemented in the Branch-and-Bound

framework SCIP. So that the solver of the latter can be executed from Matlab with the problem data, a

programming interface in which SCIP is implemented namely, Matlab Executable (MEX), was provided

and described in Chapter 4.

The development of the atfmGA is described in Chapter 5. The question of whether it would be

worthy to use an Evolutionary Computing framework with implemented functions ready to be used was

addressed. It was concluded that, an easy to read, already coded and well documented framework

should be used to match the author’s programming expertise. The simpleGA program was the one

chosen to serve as an evolutionary computing basis structure for a more complex and robust GA.

Before the actual atfmGA development, an analysis of the problem’s fitness landscape was per-

formed to serve as input knowledge in the design of the GA operators. These informations proved to be

valuable in the performance of the GA components such as in the generation of the initial population and

the mutation operator. In order to enable mutation and crossover operations in an efficient manner, an

integer representation, namely genotype, of the solution space was implemented. This representation

allows to draw any value in the genotype efficiently without incurring in any violation of the start condition
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constraint. Moreover, it decreases the size of the solution by 10 times consequently reducing the com-

putational time of the variable’s values drawing. Several genetic operators were designed in Chapter 5

and their performance assessed in the consequent Chapter 6.

The integration of atfmGA as a SCIP’s module was not an easy task. Several difficulties were encoun-

tered throughout this integration specially in the implementation of the data structure and the encoding

and decoding scheme. Memory management problems also arose leading to exponential increments

of memory due to bad memory allocation. The problems were identified and with the help of the SCIP

mailing list, which is very available and helpful, the adversities were surpassed.

In the Chapter 6, the genetic operators which better performed in the tested instance were the chosen

ones to integrate the final structure of atfmGA followed by a sensitivity analysis to respective parameters.

Additional small modifications, such as dynamic parameter update and a penalty function, in the algo-

rithm structure were realized to improve even further the quality of solutions. The dynamic parameter

values proved to be beneficial in the search for even better solutions. Yet, the penalty function didn’t

improve the best solution found by atfmGA. The performance assessment was very time consuming,

more than 470 hours were spend on ”tuning” the algorithm.

Using the final atfmGA structure, computational tests with high run-times were carried out for the two

problem scenarios and for different instances in order to exploit as must as possible the performance of

the developed algorithm in a feasible time-frame. The performance of these computational tests were

then compared with SCIP optimal solving process. The results in regard quality of the best solution

and computational time, showed that atfmGA performs poorly for the problem without conflicts and

for instances of the problem with conflicts. This was also experienced in [17] in which a GA was to

solve a large-scale ATFM problem. Because the solution space is immensely complex, with multiple

local minima and plateaus a deception in solution space probably exists, i.e. there might exist a local

minimum or group of local minima which attracts atfmGA way from the global optimum.

One reason that might explain the poor performance of atfmGA on the conflicted scenario’s instances

is the over-fitting of the parameters for the problem conflicts. A good combination of parameters values

and/or operators for one problem, might be disastrous for others and even for the same problems in-

stances this also applies.

However, atfmGA is advantageous in finding quickly solutions. For every instances, the results have

shown that atfmGA always wins the race for the first solution. Moreover, it is able to find a great number

of solutions which could be exploited to perform a trade-off between delay cost and conflict cost. Also,

atfmGA was able to find feasible solutions for the large-scale EATFM with 10% of minimum conflict

probability and clearly outperforming SCIP optimal solution process. The UB found is 1.7288× 108 $.

7.1 Achievements

The major achievements of the present work was:

• The novel implementation of a genetic algorithm in SCIP framework used in the European Air

Traffic Flow Management problem;
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• The discovery of Upper Bounds for the European Air Traffic Flow Management problem with 10%

of minimum conflict probability.

7.2 Outlook

Pointing out the high importance of the developed operators performance assessment and their re-

spective parameter sensibility analysis and analysing the portion of time spent in this regard, it truly

corresponded to about 80%, indicating the great effort that this process demands. One could continue

to run more computational tests, e.g. the distribution of the Bias Resetting operator could be ”tuned”.

Therefore, ”globalise” a Genetic Algorithm scheme for solving large-scale problems creates a discus-

sion topic that should also consider the trade-off between the algorithm performance and expertise time

demand, since every problem has different features, and, as a consequence, the search operators have

to observe problem-specific knowledge in order to improve their performance. Possibly, seeking the an-

swer for this question will guide the subject to the meta-optimisation and machine learning field, in which

Genetic Algorithm theory is part of. All these facts motivate further research regarding the best combi-

nation of GA search strategies for solving large problems, e.g. adaptive on-line parameters initialisation

and exploring the advantage of machine learning and artificial intelligence. Nevertheless, one must have

in mind that the stochastic un-guided method towards to the global optimum that GA employs not always

produce satisfactory results being non-convex large-scale problems part of this kind of situations.

For this type of problems, deterministic algorithms such as Branch-and-Bound seem to be effective.

However, for highly constrained problems with very large instances, the simplex method employed by

SoPlex executed throughout the nodes of the tree search cannot find the global optimum and takes a

long time to improve the Lower Bounds. To overcome this adversity, a research in deterministic methods

applied for this problem needs to be carried out. Using SCIP as a framework, one can try to use different

available and already implemented plug-ins such as branching rules, cutting plane separators, constraint

handlers, node selectors, primal heuristics and so on. Using the plug-ins properties, the SCIP module

can be called in every stage of the tree search combined with other modules to enhance the solution

process and produce reports for every solving stage. This is one of the big advantages of using this

framework.

In this work, a novel GA integration in the Branch-and-Bound tree search was implemented. However,

this implementation is not yet fully functional and robust. Because the Branch-and-Bound algorithm fixes

variables throughout the nodes, one must pay special attention to these fixed variables. If the value of

the latter is changed at any time in the tree search the solution containing the same variable will be

infeasible once it is evaluated. Code was written to handle this case but failed in capturing the fixed

variables.

The developed SCIP module atfmGA can be incorporated in the simulation tool R-NEST used by

EUROCONTROL to simulate the European Air Traffic Flow Management which uses a similar work-flow

used in this work. This incorporation can possibly enhance the simulations carried out nowadays using

CASA to help to deliver the best ATFM service to the European network in the SES.
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The main drawback of computation time measure is that it depends on the computer characteristics

such as the hardware (e.g., processor, memories:RAM and cache), operating systems, language and

compilers on which GA is executed. Also, the atfmGA functions which generate random numbers are not

truly random, but pseudo-random. One may try to use different random numbers functions generators

to assess their performance on the search for better UBs.

Finally, one last remark on using GA for such large problems. Optimisation problems are more and

more complex and their resource requirement, such as the CPU and memory, are ever increasing. To

solve problems of this magnitude, the use of parallel and distributed computing is strongly recommended

for the following reasons: speed up the search, improve the quality of the solutions and are able to solve

large-scale problems such as the EATFM considering all the conflict probabilities.

92



Bibliography

[1] T. Lehouillier, F. Soumis, J. Omer, and C. Allignol. Measuring the interactions between air traf-

fic control and flow management using a simulation-based framework. Computers & Indus-

trial Engineering, 99:269–279, 2016. ISSN 03608352. doi: 10.1016/j.cie.2016.07.025. URL

http://linkinghub.elsevier.com/retrieve/pii/S0360835216302601.

[2] EUROCONTROL. European Aviation in 2040 - Challenges of Growth. pages 1–

92, 2018. URL https://www.eurocontrol.int/sites/default/files/content/documents/

official-documents/reports/challenges-of-growth-annex-1-25092018.pdf.

[3] EUROCONTROL. CODA Digest 2017. Technical report, 2018. URL https://www.eurocontrol.

int/sites/default/files/publication/files/coda-digest-annual-2017.pdf.

[4] EUROCONTROL. CODA Digest 2015. pages 1–34, 2016. URL http://www.eurocontrol.int/

publications/coda-digest-2015.

[5] J. Berling, A. Lau, and V. Gollnick. European Air Traffic Flow Management with Strategic Deconflic-

tion. International Conference of the German, Austrian and Swiss Operations Research Societies

2015, 2015.

[6] ICAO. Doc 4444 Air Traffic Management -Procedures for Air Navigation Services (PANS-ATM).

16 edition, 2016. ISBN 9789292580810. URL http://flightservicebureau.org/wp-content/

uploads/2017/03/ICAO-Doc4444-Pans-Atm-16thEdition-2016-OPSGROUP.pdf.

[7] EUROCONTROL. SESAR 2020 Concept Of Operations Step 1. 01 edition, 2017. URL

https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=

080166e5b6d2b912{&}appId=PPGMS.

[8] J. Berling, A. Lau, and V. Gollnick. Strategic Conflict Probabilities in the European Air Traffic Man-

agement Network. Deutscher Luft und Raumfahrtkongress 2016, 2016.

[9] S. F. Hillier and G. J. Lieberman. Integer Programming. In Introduction to Operations Research

10th Ed, McGraw-Hill Education, pages 474–546, 2015.

[10] R. J. Vanderbei. Linear Programming: Foundations and Extensions, volume 49. 1998. ISBN

0000000000. doi: 10.1057/palgrave.jors.2600987. URL http://link.springer.com/10.1057/

palgrave.jors.2600987.

93

http://linkinghub.elsevier.com/retrieve/pii/S0360835216302601
https://www.eurocontrol.int/sites/default/files/content/documents/official-documents/reports/challenges-of-growth-annex-1-25092018.pdf
https://www.eurocontrol.int/sites/default/files/content/documents/official-documents/reports/challenges-of-growth-annex-1-25092018.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/coda-digest-annual-2017.pdf
https://www.eurocontrol.int/sites/default/files/publication/files/coda-digest-annual-2017.pdf
http://www.eurocontrol.int/publications/coda-digest-2015
http://www.eurocontrol.int/publications/coda-digest-2015
http://flightservicebureau.org/wp-content/uploads/2017/03/ICAO-Doc4444-Pans-Atm-16thEdition-2016-OPSGROUP.pdf
http://flightservicebureau.org/wp-content/uploads/2017/03/ICAO-Doc4444-Pans-Atm-16thEdition-2016-OPSGROUP.pdf
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b6d2b912{&}appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5b6d2b912{&}appId=PPGMS
http://link.springer.com/10.1057/palgrave.jors.2600987
http://link.springer.com/10.1057/palgrave.jors.2600987


[11] D. Daniel, J.-m. Alliot, and M. Schoenauer. Genetic algorithms for air traffic assignment. 11th Eu-

ropean Conference on Artificial Intelligence, (May):1–6, 1994. URL https://www.researchgate.

net/publication/2489370{_}Genetic{_}Algorithms{_}for{_}Air{_}Traffic{_}Assignment.

[12] D. Delahaye, S. Oussedik, S. Puechmorel, D. Delahaye, S. Oussedik, S. Puechmorel, D. Daniel,

A. E. Belin, A. Galli, and A. E. Belin. Airspace congestion smoothing by multi-objective

genetic algorithm. 20th Annual ACM Symposium on Applied Computing, pages 907–912,

2005. URL https://hal-enac.archives-ouvertes.fr/file/index/docid/1004145/filename/

Delahaye{_}SAC2005.pdf.

[13] S. Oussedik and D. Delahaye. Reduction of Air Traffic Congestion by Genetic Algorithms. Parallel

Problem Solving from Nature, pages 855–864, 1998. doi: 10.1007/bfb0056927.

[14] N. Durand, C. Allignol, and N. Barnier. A ground holding model for aircraft deconfliction. IEEE,

2010. URL https://hal-enac.archives-ouvertes.fr/hal-00938499/document.

[15] X. Zhang, Y. Zhou, B. Liu, and Z. Wang. The Air Traffic Flow Management with Dynamic Capac-

ity and Co-evolutionary Genetic Algorithm. IEEE Intelligent Transportation Systems Conference,

pages 580–585, 2007. doi: 10.1109/itsc.2007.4357707.

[16] D. Daniel and A. Odoni. Airspace Congestion Smoothing by Stochastic Optimization. In IN PRO-

CEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON EVOLUTIONARY PROGRAM-

MING. NATURAL SELECTION INC, pages 163—-176. 1997. doi: 10.1.1.23.7802. URL http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4143{&}rep=rep1{&}type=pdf.

[17] J. Rios and J. Lohn. A Comparison of Optimization Approaches for Nationwide Traffic Flow

Management. AIAA Guidance, Navigation, and Control Conference, 2009. URL https://www.

aviationsystems.arc.nasa.gov/publications/2009/AF2009189.pdf.

[18] G. Marceau, P. Sav, and M. Schoenauer. Strategic Planning in Air Traffic Control as a Multi-objective

Stochastic Optimization Problem. 2013. URL https://arxiv.org/pdf/1309.3917.pdf.

[19] W. Tian and M. Hu. Study of Air Traffic Flow Management Optimization Model and Algorithm

Based on Multi-Objective Programming. Second International Conference on Computer Modeling

and Simulation, 2010. doi: 10.1109/ICCMS.2010.20. URL https://www.computer.org/csdl/

proceedings/iccms/2010/5642/02/05421094.pdf.

[20] R. Fadil, B. Abou, E. Majd, H. Rahil, H. E. Ghazi, and N. Kaabouch. Multi-objective optimiza-

tion approach for air traffic flow management. International Workshop on Transportation and Sup-

ply Chain Engineering (IWTSCE’16), 00005:1–5, 2017. doi: https://doi.org/10.1051/matecconf/

201710500005. URL https://www.matec-conferences.org/articles/matecconf/pdf/2017/

19/matecconf{_}iwtsce2017{_}00005.pdf.

[21] D. Bertsimas and S. S. Patterson. The Air Traffic Flow Management Problem with Enroute Capaci-

ties. Operation Research, (1987):406–422, 1998.

94

https://www.researchgate.net/publication/2489370{_}Genetic{_}Algorithms{_}for{_}Air{_}Traffic{_}Assignment
https://www.researchgate.net/publication/2489370{_}Genetic{_}Algorithms{_}for{_}Air{_}Traffic{_}Assignment
https://hal-enac.archives-ouvertes.fr/file/index/docid/1004145/filename/Delahaye{_}SAC2005.pdf
https://hal-enac.archives-ouvertes.fr/file/index/docid/1004145/filename/Delahaye{_}SAC2005.pdf
https://hal-enac.archives-ouvertes.fr/hal-00938499/document
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4143{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.4143{&}rep=rep1{&}type=pdf
https://www.aviationsystems.arc.nasa.gov/publications/2009/AF2009189.pdf
https://www.aviationsystems.arc.nasa.gov/publications/2009/AF2009189.pdf
https://arxiv.org/pdf/1309.3917.pdf
https://www.computer.org/csdl/proceedings/iccms/2010/5642/02/05421094.pdf
https://www.computer.org/csdl/proceedings/iccms/2010/5642/02/05421094.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2017/19/matecconf{_}iwtsce2017{_}00005.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2017/19/matecconf{_}iwtsce2017{_}00005.pdf


[22] M. Baumgartner, A. Cook, N. Dennis, B. V. Houtte, A. Majumdar, N. Pilon, G. Tanner, and

V. Williams. European Air Traffic Management: Principles, Practice and Research. page 255,

2007.

[23] W. Phillipp and F. Gainche. Air traffic flow manament in Europe. Advanced Technologies for Air

Traffic Flow Management., 198(Lecture Notes in Control and Information Sciences), 1994.

[24] EUROCONTROL Editorial Team. Twenty Years of European Air Traffic Flow Man-

agement. 2015. URL https://www.eurocontrol.int/central-flow-management/

building-20-years-central-flow-management.

[25] E. Parliament. Minutes of Procedings of the Sitting of Monday, 13 November 1995. Official Journal

of European Communities, 38, 1995. URL https://eur-lex.europa.eu/legal-content/EN/TXT/

PDF/?uri=OJ:C:1995:323:FULL{&}from=EN.

[26] D.-G. f. E. and Transport and T. D.-G. for Energy. Single Europe European sky

Report of the high-level group. Technical Report November, European Commission,

2000. URL https://web.archive.org/web/20110519234028/http://ec.europa.eu/transport/

air{_}portal/traffic{_}management/ses/doc/history/hlgreport{_}en.pdf.

[27] C. R. (EU). 15.7.2011. Official Journal of the European Union, (2):1–29, 2011. URL https:

//eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:185:0001:0029:EN:PDF.

[28] A. Lau, J. Berling, F. Linke, V. Gollnick, and K. Nachtigall. Large-Scale Network Slot Allocation

with Dynamic Time Horizons. {ATM2015} 11th USA/Europe Air Traffic Management Research and

Development Seminar, 2015.

[29] EUROCONTROL. ATFCM users manual, 2018. URL https://www.eurocontrol.

int/sites/default/files/content/documents/nm/network-operations/HANDBOOK/

atfcm-users-manual-current.pdf.

[30] EUROCONTROL. ATFCM Operating Procedures for Flow Management Position, 2014.

URL https://www.eurocontrol.int/sites/default/files/content/documents/nm/

network-operations/HANDBOOK/atfcm-ops-procedures-fmp-current.pdf.

[31] B. Houot. Network Manager - IFPS users manual. 2018. URL https://www.eurocontrol.

int/sites/default/files/content/documents/nm/network-operations/HANDBOOK/

ifps-users-manual-next.pdf.

[32] N. O. Handbook. Provision of cacd data. 2017. URL https://www.eurocontrol.

int/sites/default/files/content/documents/nm/network-operations/HANDBOOK/

provision-CACD-data-current.pdf.
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Appendix A

Vector Formulation

A.1 Variables, Network Elements and Cost Vectors

The decision variables, the delay costs, the sector and airport both arrival and departure capacities can

be summarized in vectors.

• Vector of decision variables: For each flight f there is a column vector xf with all possible delays

d = 1, ..., D per flight,

xf = [xf,1 ... xf,D] ∈ ZD (A.1)

The complete vector of decision variables consists in the set of vector of all possible delays of all

flights f = 1, ..., F ,

x = [x1 ... xF] ∈ ZF.D (A.2)

Jointly with the number of flights F and the number of ATFM slots D, the decision vector x has the

length n = F.D.

• Delay cost vector: For each flight f there is a column vectorwf with all possible delays d = 1, ..., D

per flight which contains:

wf = [wf,1 ... wf,D]> ∈ ZD (A.3)

The complete vector of decision variables consists in the set of vector of all possible delays of all

flights f = 1, ..., F ,

w = [w1 ... wF]> ∈ ZF.D (A.4)

The vector of delay costs w is analogous to x.
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• Sector capacity vector:

For each time interval t, there is a column vector ct which contains the sector capacitances ct,s of

all sectors in this time interval,

ct = [ct,1 ... ct,S ]> ∈ ZS (A.5)

The complete sector capacity vector consists in the sector capacity vectors for each interval t =

1, ..., T ,

c = [c1 ... cT]> ∈ ZS.T (A.6)

Jointly with the number of sectors S and the number of time intervals T , the sector capacity vector

c has the length m = S.T .

• Airport capacity vector: For each arrival th and departure tj time interval, there are column vec-

tors ith and otj which contain respectively the airport arrival ith,h and departure otj,j capacitances

of all airports in this time interval,

For arrivals:

ith = [ith,1 ... ith,H ]> ∈ ZH (A.7)

For departures:

otj = [otj ,1 ... otj ,J ]> ∈ ZJ (A.8)

The complete airport capacity vector consists in the airport capacity vectors for both arrival and

departure’s time interval th = 1, ..., Th and tj = 1, ..., Tj respectively,

For arrivals:

i = [I1 ... iTh
]> ∈ ZH.Th (A.9)

For departures:

o = [O1 ... oTj
]> ∈ ZJ.Tj (A.10)

Jointly with the number of airports1 B and the number of timeslots2 T , the airport capacity vectors

for both arrival i and departure o have the length l = B.T .

1The total number of arrival airports H and departure airports J is the same and so, this number is simply represented by B
2The total number of arrival timeslots Th and departure timeslots Tj is the same and so, this number is simply represented by

T
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A.2 Constraints

A.2.1 Start Condition

To be able to write this constrain in a vector formulation two new coefficients were introduced in the

equation.

D(f)∑
d=0

gf,(f.d) · xf,d = ef , ∀s, t (A.11)

On the left hand side of the equation the coefficient gf,(f.d) is always equal to one. On the right hand

side the coefficient ef is also equal to one.

The coefficients g can be written in a matrix G ∈ F × (F.D). Every coefficient g in line of Gf is one

for every elements of xf (see definition A.1). The coefficients e ∈ F . Thus, resulting in the equation

A.12:

Gx = e (A.12)

A.2.2 Sector Capacity

With the coefficients a of the matrix A ∈ (S.T × F.D), the decision vector x and the capacity vector c,

the capacity’s constrain can be written in matrix notation formulate as it follows:

Ax = c (A.13)

A.2.3 Airport Capacity

Arrivals

With the coefficients r of the matrix R ∈ (H.T × F.D), the decision vector x and the capacity vector i,

the capacity’s constrain can be written in matrix notation formulate as it follows:

Rx = i (A.14)

Departures

With the coefficients p of the matrix P ∈ (A.T × F.D), the decision vector x and the capacity vector o,

the capacity’s constrain can be written in matrix notation formulate as it follows:

Px = o (A.15)

A.2.4 Surrogate Constraints

In a vector form:
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Bx + My ≤ i (A.16)
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Appendix B

SCIP Technical Configurations

B.1 SCIP and Matlab Data

To prepare for implementation in SCIP, this section describes the data structures of it. The problem to be

solved is created in SCIP in a data structure of type SCIP. The variables and constraints are added to the

problem. To associate the variables with the constraints, the variables are added with their coefficients to

the constraints, e.g. when a start-slot variable has a flight entering a capacity time window, the variable

is added to the constraint with coefficient 1. All data types contain a variety of management data, such

as the elapsed time, the number of solutions or the solving status.

• Problem’s object: The basic data object in SCIP is the scip structure. All variables, constraints,

coefficients, settings, information about the solution process, etc are stored in the scip structure.

• Variables: The basis of the data object SCIP and the linear programming are the variables

SCIP Var. There are several types of variables in SCIP, but in this work only the variables of

type binary are used. Each variable has a LB and an UB. Of course, for the binary variables,

these bounds are zero and one respectively. Furthermore, the variables are initialized with their

cost coefficients. Firstly a variable is created using the SCIPcreateVarBasic() method and then

added to the SCIP problem using the SCIPaddVar() function. The functions are called with various

parameters. The variables are accessed via pointers SCIP VAR*.

• Constraints: The constraints in SCIP are managed by the constraint handlers. A constraint han-

dler is responsible for testing for feasibility, adding new constraints to the LP, managing the dual

variables, etc. [44]. In this work, the setppc1 constraint handler is used for the start condition (= 1),

the knapsack constraint handler for the capacity constraint (≤ c) and conflict surrogate constraints.

1Setppc stands for set partitioning (start condition = 1) set packing and set covering constraints
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B.2 SCIP - MEX Interface

Matlab offers a programming interface to call a program from external code just like a normal Matlab

function. The Opti-Toolbox2 provides such an interface named Matlab executable function3 (MEX) with

integrated SCIP libraries. With MEX functionality, programs from C/C ++ or Fortran can be called like a

separate function. Also, the source code and a makefile for the SCIP-MEX are included.

B.2.1 Matlab Executable

To transfer the data to the solver, a so-called MEX file is created. The mentioned file can only be created

in Matlab. To create a MEX file, the source code must include the Matlab libraries of the programming

interface. To build MEX, Matlab offers a build script. The latter calls a compiler that generates the MEX

file from the program code. It is also possible to integrate runtime libraries. Furthermore, a so-called

gateway is needed, which processes the input and output arguments in the code. The input arguments

started by MEX in Matlab are defined as a pointer array. The position in the argument list is equal to the

index in the pointer array. The Matlab data is converted to data structures of the programming language

used, in this case C, using methods of the inserted Matlab libraries.

ATFM - MEX

The solver of the ATFM problem works with the framework SCIP. An adapted interface based on Opti-

Toolbox provides a basis for integrating SCIP into a MEX file. It provides a makefile of MEX, which

can be built, a guide to the build process and a source code of its implementation. In order to their

functionality become available for the solution process, SCIP libraries are integrated in the source code.

Furthermore, runtime libraries are integrated by external programs because they are required by SCIP.

The interface with Matlab is re-implemented to accept the ATFM problem. The generation of the problem

with SCIP is also newly implemented. From the source code, a MEX function is built by means of an

external compiler4. The MEX functions can be called in Matlab with the command scip() with the

respective input arguments. To solve the linear ATFM problem, it must first be created from the NFE

data. In order to be able to create it in SCIP, the required data is passed as arguments to the MEX

function scip(). The SCIP-MEX creates a linear problem and solves it later.

NFE Data Structure

The database for the ATFM problem is provided by the NFE developed at ILT. This section describes the

existing data structures from which the ATFM-LP is generated in SCIP. The NFE data consists in:

• Time steps: The model time is set from the earliest start time to the latest landing time of all

included aircraft movements, plus the maximum possible ground holdings. For the application of

2OPTimization Interface Toolbox is a free MATLAB toolbox for constructing and solving linear, nonlinear, continuous and discrete
optimization problems. https://www.inverseproblem.co.nz/OPTI/

3Matlab EXecutable: https://www.mathworks.com/help/matlab/ref/mex.html
4The ATFM-MEX is built with the Microsoft Visual Studio 2013 Compiler (https://visualstudio.microsoft.com/vs/)
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linear optimization, discrete time segments are generated. The Matlab variable t.mod consists of

the time steps (1, ..., T ) from the first start time to the last possible landing time;

• Profile Points: The routes of the flights are stored in so-called point profiles, i.e. planned trajecto-

ries. It contains all the locations where a flight overflies on its route, including flight’s duration. For

each flight, the departure (ADEP) and destination (ADES) aerodromes as well as the ETOT are

available;

• Calculated Time Over(CTOs): The overflight times, in 15 minutes time step, over the sectors are

calculated from the profile points. These are stored in the matrix ft (flight time). The matrix links

the flights with the sectors in a way that the rows represent the flights and the columns the sectors.

When a flight enters in a sector, the flight duration is stored in the element where the flight row and

sector column match. Sectors that are not on the route are marked with NaN5;

• Capacities: Sectors and both aerodrome departure (D) and arrival (A) capacities are stored in

matrix form. The capacities indicate the maximum number of entries for each time step.

B.2.2 Data Treatment

The data from NFE must be processed in advance. The individual steps are explained in the following

section.

Non-Regulated Flights

In the model, some flights are exempted. These flights do not receive an ATFM slot, but start at their

scheduled departure time (ETOT). They will not be included in the SCIP linear problem. Instead, their

capacity requirements are calculated in the sectors entering by the planned trajectories. Thereby, the

capacity available in SCIP for scheduling is the nominal capacity minus the capacity required by the

unregulated flights. There are three types of non-regulated flights:

• Flights starting outside the ATFM zone;

• Flights to which one airport can not be assigned;

• Flights that start before the scenario-relevant time period.

Selection of solution-relevant sectors and flights

Only the sectors, departure and destination aerodromes where traffic demand exists are considered.

The indexing is adjusted accordingly, so that the remaining flights are mapped to the remaining capaci-

ties.

5NaN stands for ”not a number”
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Routes (assignment of variables to constraints)

To create the linear problem in SCIP, there should be a data structure that can be interpreted as quickly

and conveniently as possible. Matlab’s existing flight time matrix ft which contains NaNs for non-entering

sectors. It is unsuitable for rapid processing in C because firstly all sectors (and not just those sectors of

the planned trajectory) need to be checked for one flight and secondly the NaNs in C have no equivalent6.

Two matrices are created: The SectorProfile.Route matrix contains all flights routes and, in turn,

the indices of the respective entering sectors, the ”Sector Profiles”. The other matrix is the SectorPro-

file.Time contains the ETO times to the sectors.

Capacities

The existing capacities in the NFE are influenced by two factors before being handed over to SCIP. First,

the capacity requirements of non-regulated but existing flights are deducted.

Delay Costs of ATFM slots

Every aircraft’s take-off induce certain costs. This is implemented in the work as follows. The matrix cost

contains the delay costs of each flight for each possible delay and respective cancellation. Consequently,

the variables that inflict a certain delay to an aircraft take-off will be passed into SCIP with their respective

cost coefficients.

Conflict Probability Costs of ATFM

The conflict probabilities are handled by an huge square matrix, each entry representing a conflict cost

for a pair of flights in their respective time-slots delays. Because only a small set of the flights have actual

conflict probabilities, to be precise 16 391 398 pair of flights points have conflict probability different than

zero, the matrix ConflictedMatrix is a immensely sparse with a density7 of 0.0312% and a sparsity8 of

99.9608%. Due to memory limitations, only the upper half of matrix is treated since it is a square matrix

and thus, the other half is symmetric which have the same conflicted flights. A conflict cost can be

arbitrary defined to compute the conflict probability cost given by the product between conflict probability

and conflict cost. Now that the conflict probabilities cost are defined, flights can be afflicted with different

conflict costs depending on their respective conflict probability.

B.2.3 Parsing ATFM Problem Data from Matlab and its Initialization in SCIP

This sub-chapter describes how to pass the data of the Matlab problem to the solver’s MEX and how to

construct the linear ATFM problem. The input data and the generation of the linear ATFM problem from

the same data is also described.
6Since the flight time can also be zero, the only way to handle the matrix ft in SCIP would be to set the flight time to the

maximum value for all NaNs
7The sparse matrix density is calculated as follows 100%× number of non−zero elements

number of elements
8The sparse matrix sparsity is calculated as follows 100%− density
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SCIP and Matlab data

It follows the specification of the input arguments for the ATFM solver and its correspondent data in SCIP.

The MEX of the solver is started in Matlab with the function scipmex() with the arguments exposed in

tables with its respective description. The Matlab data input corresponds respectively to the data in SCIP

as the tables B.1, B.2 and B.3 show.

The dataset related with the network elements consists in its available quantities and its capacities.

It also contains the number of time-slots and the maximum number of sectors which one flight is allowed

to enter in its route. The mentioned data is exposed in the table B.1.

Matlab SCIP Dimension Description

- nT - Number of time-slots

- nSECTORS - Number of sectors

- nADR - Number of aerodromes

t *T nT Indexes of the time-slots

C *Csec nT × nSECTORS Sector capacities for all time-slots

D *Cdep nT × nADR Departure aerodrome capacities for all time-slots

A *Cdes nT × nADR Destination aerodrome capacities for all time-slots

maxEnrouteS MAX SECTORS ON ROUTE - Maximum numbers of sectors on one flight route

Table B.1: Network elements’ data

The dataset related with the intrinsic flights, maps each flight position to the entering sector in a

particular time-slot. It also assigns each flight to its respective departure and destination aerodrome and

to the time-slot of departure/arrival. It consists in the number of flights for each scenario, its delay costs

for each start-slot option and all its ETOs to the network elements for the initialDelay scenario. In this

work, a zero initial delay scenario is considered. The number of start-slots options, i.e. ATFM departure

delays, is also contemplated in this dataset. It is set to 12 and it consists in the maximum number of

delays MAX DELAY = 10 plus the on time start-slot, i.e. no departure delay, and the cancelled flight

start-slot which once allocated to a flight its departure is cancelled. The mentioned data is exposed in

the table B.2.

Matlab SCIP Dimension Description

- nFLIGHTS - Number of flights

- nSTARTSLOTSOPTS - Number of start slots options

initialDelay *Xzero nFLIGHTS × 1 Start zero delays vector

depT *Tdep nFLIGHTS × 1 Estimated departure times

arrT *Tarr nFLIGHTS × 1 Estimated arrival times

sectorProfileRouteOptimizer *SectorProfileRoute nFLIGHTS ×MAX SECTORS ON ROUTE All sectors en-route enters for all flights.

sectorProfileTime *SectorProfileTime nFLIGHTS ×MAX SECTORS ON ROUTE All entry times in sectors (CTOs) en-route for all flights

adep *FlightDeparture nFLIGHTS × 1 Indexes of the departure aerodromes in which flights have departed

ades *FlightDestination nFLIGHTS × 1 Indexes of the destination aerodromes in which flights have arrived

cost *FlightSlotCost nFLIGTHS × nSTARTSLOTSOPTS Cost of all start-slots (delay slots) per flight

Table B.2: Flights’ data

The conflicts’ dataset is represented by a large square sparse matrix, namely conflicted matrix. It

consists in conflict probabilities for all possible conflicts between flights for every time-slots, see table
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B.3. Matlab gets the information of the non-zero elements, i.e. their ith row and the j column indices.

Then, Matlab passes to scipmex through the MEX function mxGetlr the sparse array which contains the

non-zero elements information.

Matlab SCIP Dimension Description

ConflictedMatrix *conflictedMatrix (nFLIGHTS × (nSTARTSLOTSOPTS − 1))2 Conflict probability

conflictCost conflictCost - Cost of each conflict

Table B.3: Conflicts’ data

SCIP Output Arguments

SCIP outputs a solution vector xScip, which contains all start-slots options assigned to flights. For each

flight, a start-slot option is assigned and marked with a 1.

B.2.4 Generation of the ATFM-LP from the Data

When the ATFM-MEX is called in Matlab, the programmed sequence starts running in the main source

file scipmex.cpp. First, the main function mexFunction()9 is invoked and reads out all Matlab input data

listed and generates C data structures from them. Finally, the actual SCIP process begins.

First, the SCIPcreate(&scip) function is used to create a scip object, in which all information, con-

straints, variables, heuristics, etc. are stored. The solution is then prepared by loading the default plug-

ins, creating an empty linear problem in the scip-struct, and allocating memory for the data structures.

The generation of the actual ATFM problem is explained next.

Create and Add ATFM Variables

The variables are first created in SCIP and then added. First, all variables are created as a struct of type

SCIP Var using the SCIPcreateVarBasic() method. The variables are generated as binary variables

and each receive their cost coefficient.

There are two types of variables in this problem:

• Flight Variables: The flight variables are generated as binary variables and each receive their

delay cost coefficient FlightSlotCost(f, d). Using the method SCIPaddVar(f,d) the variables

are added to the problem one by one per flight. This step is accomplished by using two nested

loops. The outer loop runs with index f over the number of flights (nFLIGHTS). The inner loop runs

with index d over the number of possible start-slots (MAX DELAY + 1)10. In each iteration, a

variable vars(f, d) is created using the SCIPcreateVarBasic() function and then added to the

problem using the SCIPaddVar() function. When the computation is complete, the function outputs

a SCIP OKAY. This signals to SCIP that the function has completed correctly.
9Is the entry point C/C++ MEX function built with C Matrix API. More information, see

https://www.mathworks.com/help/matlab/apiref/mexfunction.html
10Matlab uses 1-based indexing, whereas C uses 0-based indexing. The index of a Matlab array is subtracted by 1, when the

element is called the first time in a function-chain
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• Surrogate Variables: The surrogate variables are generated as binary variables and each receive

their conflict cost coefficient from the conflict probabilities sparce matrix and the defined conflict

cost. This step is accomplished by using two nested loops over the conflict probability matrix

elements. Because each element of this matrix represents pair of two variables vars(f1,d1)

and vars(f2,d2), i.e. two flights f1 and f2 with their respective departure time-slots d1 and d2,

it is possible two check for every existing conflict. If a pair of flights is in conflict, the conflicted

matrix element has an associated conflict probability, otherwise the element is a NaN. Thereby,

the outer loop runs with the vars(f1,d1) element’s index, i.e. runs through the columns of the

conflicted matrix, over the number of elements of the same. If there is a different number of non-

zero elements in the current column than in the previous column, there is at least one conflict in the

current column. The inner loop runs with the conflict’s row-index over the current column and get

the conflicted flights and their respective conflicted departure time-slots. Only the conflicts of the

upper triangle are taking into account. If vars(f1,d1) and vars(f2,d2) exist, then these variables

will be used to create and add the respective conflict surrogate. In each iteration, a surrogate

variable qobj is created using the SCIPcreateVarBasic() function and then added to the problem

using the SCIPaddVar() function with respective conflict probability cost. When the computation is

complete, the function outputs a SCIP OKAY. This signals to SCIP that the function has completed

correctly.

Create and Add ATFM Constraints

After all variables have been created and added to the scip problem, the constraints (of type SCIP Cons)

are created. For the constraints, memory is first allocated. Then the constraints are created and added

to the scip problem.

There are three type of constraints in this problem:

• Start Constraint: using SCIPcreateAndAddAllSetppcCons() method, every flight is subject to

this type of constraint;

• Knapsack: using SCIPcreateAndAddAllKnapsackCons() method, every network element for all

their respective time-slots is subject to this type of constraint;

• Surrogate: using createAndAddConflict() function, every conflicted pair of flights with their re-

spective conflicted departure time-slots is subject to this type of constraint.

Link Variables to Constraints

At the implementation time described here, all variables and constraints have been created and added

to the scip problem. In a LP, variables are columns and the rows of the constraints are inside. In SCIP,

the variables are linked to the constraints. This is realized by adding a coefficient and a variable together

to a constraint. The constraint now consists of a variable with its coefficients. However, the coefficients

are not stored in the variable.

109



As each aircraft can only be at a particular location at a specific time at one time, coefficients of the

ATFM problem set to one, are added to the capacity time-slot afflicted constraint of that network element

as an entry count. However, if a flight enters in more than one network element in a time interval less

than the network element’s time-step (15 mins), the same flight can count network element’s entries for

more than one network element’s capacity constraint for the same start-slot d. In a loop, all coefficients

are successively added to the respective constraints.

The variable will be linked to the constraints in which the flight f is linked to the delay d. When all the

variables are linked to the respective capacity afflicted constraints, the creation of the ATFM problem is

complete.
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