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Abstract

This thesis is focused on signal processing techniques applied to the transcription of an excerpt
of a three voice J.S.Bach’s fugue. The ideia is to study and apply some basic signal processing tools
to an audio input signal and retrieve relevant music information that will allow to convert the signal
into a symbolic representation. Music transcription is a complex task. So in order to narrow down
the problem this challenge naturally imposes, it was chosen a piano solo recording of a fugue, which
is a western composition technique based on a strong melodic independance. This introduces several
simplifications like no need for instrument source detection or both harmonic and melodic complex
analysis. The challenges faced in this task involve the computation of the spectrum of the input signal,
rhythm events detection, background spectrum removal, fundamental frequencies detection and pitch
detection.
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1. Introduction

Music transcription involves the translation of an
acoustic signal into a symbolic representation, con-
sisting on musical notes, the respective time events
and the classification of the instruments used. In
other words, it consists on listening to a piece of
music and writing down the musical notation for
that piece. It requires the retrieval of simultaneous
information on several dimensions, like pitch, tim-
ing and instrument to resolve all the sound events
so the goal is usually redefined as being either to no-
tate as many of the constituent sounds as possible
or to transcribe only some well-defined part of the
music signal, for example, the dominant melody, the
chords, bass progression or the musical key. This
allows to perform automatic tasks like song iden-
tification, cover identification, genre/mood classifi-
cation, score following, know as music information
retrieval (MIR). When automatized, music tran-
scription systems can assist musicians and com-
posers to efficiently analyze compositions they only
have in the form of acoustic recordings, and pro-
vide control on flexible mixing, editing, selective
signal coding, sound synthesis or computer-aided
orchestration. However, it also opens the door to
the indept approach of concrete problems on sig-
nal processing with a wide range of applications.
It provides a comprehensive set of descriptors to
populate databases of music metadata, which can

then be used for statistical analysis and content-
based machine-learning approaches, that can also
be applied to more popular fileds such as speach
processing/transofrmation/recognition or physcoa-
coustics and perceptual research. Although mono-
phonic music is considered a solved issue, poli-
phonic transcription, still poses a challenge nowa-
days. Much progress has been made in this area
over the last decades. While newer and more so-
phisticated algorithms perform increasingly better,
they also get considerably complex, computation-
ally expensive and still quite depend on the type of
input. More recent and efficient approaches employ
machine-learning techniques and statistical models.

2. Background
2.1. The Discrete Fourier Transform
The Discrete Fourier Transform (DFT) of a signal
x(n) ∈ CN , with n ∈ Z and n = 0, 1, 2, ..., N − 1, is
defined as:

X(wk) =

N−1∑
n=0

x(tn)e−jwktn =

N−1∑
n=0

x(n)e−j2πkn/N

(1)
where k = 0, 1, 2, ..., N-1, tn = nT is the n-th
sampling instant, wk = 2πk/Nfs is the k-th fre-
quency sample and fs = 1/T is the sampling rate.
The DFT provides a measure of the magnitude and
phase of a complex sinusoid present in the signal x
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on the frequency wk and can be interpreted as the
dot product of the signals x and sk, which deter-
mines the projection coefficients of x on the com-
plex sinusoid cos(wktn) + j sin(wktn). So from the
definition of dot product between two vectors x e y

〈x, y〉 =

N−1∑
n=0

x(n)y(n) (2)

the DFT defined in (1) can also be written as

X(wk) = 〈x, sk〉 =

N−1∑
n=0

x(n)sk(n) (3)

where sk is the transform’s kernel. With the sum of
the projections of x on N -vectors sk, it is possible
to recover the original signal when sk

N−1
k=0 is an or-

thogonal base of CN , which means that the vectors
on the basis of this space are linearly independent.
This is true for

fk = k
fs
N
, k = 0, 1, 2, ..., N − 1 (4)

and the DFT always has an inverse because the
number of samples of the signal is always finite.
The Inverse Discrete Fourier Transform (IDFT) is
computed by the sum of the projections

x(n) =

N−1∑
k=0

X(k)

N
sk(n) (5)

where n = 0, 1, 2, ..., N−1 and X(k)/N corresponds
to the projection coefficients of x in sk. The IDFT
can then be defined as

x(n) =
1

N

N−1∑
k=0

X(wk)ej2πnk/N (6)

where n = 0, 1, 2, ..., N−1. X(wk) is then called the
spectrum of x and can be interpreted as the sum of
the projections of x on the orthogonal basis sk

N−1
k=0

so its IDFT is the recovery of the original signal as
a superposition of its projections on the N complex
sinusoids.

2.2. Windowing
When the period of x does not correspond exactly to
the roots of wk (4) - which is the case in most of the
analysis of acoustic real signals - the energy of the
sinusoid is spread along all the frequency bins. This
effect, designated by spectral leakage is equivalent
to abruptly truncating the sinusoid on its edges.
This effect can be reduced by dividing the signal
into smaller sets of samples and applying a window
function which will soften the signal decay to 0 in
both edges of the window. Considering a sinusoidal
signal x(n)

x(n) = A0 cos(2πk0n/N)

=
A0

2
ej2πk0n/N +

A0

2
e−j2πk0n/N (7)

then the DFT of the windowed signal becomes

X(k) =

N/2−1∑
n=−N/2

w(n)x(n)e−j2πn/k

=
A0

2
W (k − k0) +

A0

2
W (k + k0) (8)

which corresponds to the DFT of the window w(n)
shifted to the frequencies of x(n). This is a property
of the convolution theorem that states that multi-
plying two signals in the frequency domain corre-
sponds to its convolution in the time domain.

The windowing technique used in the computa-
tion of the DFT determines the trade-off between
temporal and frequency resolution which affects the
smoothness of the spectrum and the detectability
of the frequency peaks. The choice of the window
function depends heavily on the size of the win-
dow’s main lobe - which is a characteristic of the
window refers to number of samples in the main
lobe - and its relation to the side lobes amplitude.
Windows with a narrower main lobe K have a bet-
ter frequency resolution ∆f (for a same window size
M)

∆f = K
fs
M

(9)

but tend to have higher side lobes which is a source
of cross-talk between the channels of the FFT. The
main features of some of the most commonly used
windows for audio signal processing are synthesized
in Table 1.

2.3. Fast Fourier Transform

The DFT can be efficiently computed with the Fast
Fourier Transform (FFT) algorithm which is com-
putationally more efficient when N is a power of 2.
For this reason it’s frequent to add zeros at the end
of the digital signal - zero-padd it - prior to the com-
putation of the DFT to optimize the lenght of the
FFT, which corresponds to a signal interpolation
in the frequency domain. For processing real time
varying acoustic signals is also necessary to deter-
mine its frequency distribution over the time. One
way to achieve this is by applying the input signal a
sliding window function with N > Mand comput-
ing its FFT. This approach is refered as Short-time
Fourier Transform (STFT) and can be formally de-
fined by (10)
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Rectangular Hann Hamming Blackman Blackman-Harris

Main lobe width 2ΩM 4ΩM 4ΩM 6ΩM 8ΩM

2 bins 4 bins 4 bins 6 bins 8 bins

Side lobe attenuation -13 dB -31 dB -43 dB -58 dB -92 dB

Side lobe roll-off/octave -6 dB -18 dB -6 dB -18 dB -

Degrees of freedom 1 2 3 4 5

Side lobe attenuation 100% 50% 50% 25% 20%

Table 1: Comparison of the windows Rectangular, Hamming, Blackman and Blackman-Harris.

Xl(k) =

N/2−1∑
n=−N/2

x(n+ lH)w(n)e−j2πkn/N (10)

where l = 0, 1, 2..., w(n) is the window function, l
is the frame number and H is the hop-size, which
correponds to the number of sliding samples of the
window between consecutive frames.

3. Implementation

For transcribing an excerpt of a piano recording,
the signal processing tasks involved computing the
STFT, extract the rhythmic information prior to
any filtering, then remove the background noise
from the spectrum, compute the fundamental fre-
quencies spectrogram and finally detect the melodic
contours from the pitch diagram.

3.1. STFT computation

For the computation of the spectrogram were con-
sidered WAV mono-channel signals sampled at
44100 Hz. The samples are converted into a float-
ing array and normalized so that x ∈ [−1, 1]. In
was used a Hamming window with M = 213 = 8192,
without zero-padding to allow higher frequency res-
olution, and an overlap-factor of 25%, which is less
than the 50% limit for this window but allows the
increase of time resolution. Despite the roll-off of
the side-lobes not overcoming -43 dB, in practise the
Hamming window had a better performance that
the Blackman-Harris windows when it comes to the
compromise between time and frequency resolution
and computational cost. The size of the window
was dimensioned so that the minimum frequency
resolution of the spectrogram ∆f was around 21.5
Hz (A0), which corresponds to the lowest frequency
of the piano.

3.2. Rhythmic information extraction

This task requires the presence of all spectral infor-
mation, including the higher harmonics region, and
for this reason it has to be performed prior to any
spectral filtering. Rhythmic information extraction
requires a vertical analysis of the spectogram and

aims to determine the frames when a new musical
note is played. This is achieved by computing a
simple onset detection funcion (ODF), which de-
termines the difference of energy between adjacent
frames l on a specific frequency band [15]

ODF (l) = E(l)− E(l − 1), l ≥ 1 (11)

where

E(l) =

N−1∑
l=0

x(l)2 (12)

Considering we are only interested in the onsets
- when the energy increases we consider a half wave
rectified ODF given by

ODF ′(l)

{
ODF (l), if ODF (l) > 0

0, otherwise
(13)

Three frequency bands were chosen for this anal-
ysis: the first one between 20 Hz and 200 Hz, the
second between 201 Hz and 1000 Hz and the third
ranging from 1001 Hz to 4000 Hz. The frequencies
used to define the bands were chosed in order to
comprise the frequencies produced by a piano key-
board, ranging from 27.5 Hz to 4186.01 Hz. The
lower band allows the detection of lower notes, such
as the bass, while the higher band provides infor-
mation on notes that somehow have lower energy
on the lower band - such as the missing fundamen-
tals - but do have higher energy on the upper par-
tials. We observe that the lower band in partic-
ular adds serveral false onsets, so the best results
were obained by considering only the two highest
frequency bands. We started by finding the com-
mon onsets between the two higher bands, reduc-
ing the inital 140 values to 37, and then added the
values above averge on both bands (44). This in-
creased the onsets to 52, which is very close to the
real value of 50. It was assumed a lowest time res-
olution of one frame. We conclude we still have
missing onsets (on frame 311, for example), and
false detections as well, as in frame 48. Time onset,
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however, is a fundamental part of the audio tran-
scription process followed here. Without accurate
information on the rhythmic events, the calculation
of the averaged f0 frequencies in the next section
will be compromised. For this reason, the onsets
were ultimately validated by inspection.

3.3. Fundametal frequencies detection
To estimate the background spectrum it was used a
simplified method similar to the spectral whitening
referred in [11]. This filtering consisted on subtract-
ing the average of the spectrum µk in an octave in-
terval with step 100 bins, divide it by the standard
deviation σk and filter out the negative amplitudes
in the spectrum.

Yk =

{
Xk−µk

σk
, if Xk − µk > 0

0, otherwise
(14)

Once we have the rythmic information, the sec-
ond step is to determine which notes are played.
In order to do so, we need to find the fundamental
frequencies for each melodic line from the spectro-
gram. The piano however is an inharmonic instru-
ment. This means its harmonics are not multiples
of the fundamental frequency and their spacing in-
creases with the order of the harmonic instead. One
of the models that describes the behaviour of the
piano partials is [4]

fn = nf0

√
1 +Bn2

1 +B
(15)

where fn is the frequency of the n-th harmonic, f0
is the fundamental frequency and B is the inhar-
monicity coefficient. B is a characteristic parame-
ter of the instrument. It is experimentally deter-
mined and generally takes values between 10-3 and
1-6 [4]. The approach for f0 detection followed here
is based on [13]. The ideia is to determine a set of
f0 candidates selected from the peaks with magni-
tude threshold of -60 dB. Then the f0 candidates
are validated with the partials patterns present in
the spectrogram considering the inharmonicity ef-
fect. So the current partial candidate fn+1 is muti-
plied by a factor fn(n + 1/n) and the next partial
is set as the first match within a positive varying
margin ∆n+1/∆n:

fn+1 = fn
n+ 1

n

∆n+1

∆n
(16)

where

∆n+1

∆n
=

√
1 +Bmax(n+ 1)2

1 +Bmaxn2

corresponds to the search interval for harmonic
fn+1.

This margin is maximized by using an optimized
inharmonicity coefficient, which experimentally was
set to B = 3x10-3, considering at least 15 partials.
All candidates missing the second or third harmon-
ics (octave or fifth) are discarted as well as the fre-
quencies matching less than 4 partials.

Considering each musical note is not expected to
change within a tempo frame, the frequency bins
are considered valid candidates only if the number
of non null points within the tempo frame is larger
than the number of null points. After this step,
the data is converted from bins to the pitches of
the tempered scale resulting the pitch diagram of
Figure 1.

Figure 1: Averaged pitch magnitude spectrogram
in linear units.

3.4. Melodic contour detection
The fundamental frequencies filtering allowed to
significantly reduce the number of potencial pitch
candidates from the initial spectrum. However,
there are still pitches that may correspond to higher
partials or sparse detections, such as echos pro-
duced by previously played notes. In order to de-
termine which pitches are more likely to correspond
to real fundamentals and which ones may even-
tually be discarted, the pitches along each tempo
frame are stored in two buffers P+ and P−, if their
magnitudes are, respectively, above or below the
frame’s average. One step that considerably reduces
the number of potencial partials and improves the
melodic contours detection is considering the octave
information. From the spectrum perspective, both
pitches - the fundamental and the octave - can be
valid played music notes, differing only on the sum
of magnitudes. So the octaves of the pitches in P+

are flagged and added to P− buffer for further pro-
cessing. Taking advantage on the fugues horizontal
independance on the melodic lines, we can expect
each voice contour to span vertically along a rela-
tively limited neighbourhood of pitches, which al-
lows us to predict the most likely next pitch of the
voice path. The ideia is to select the first unpro-
cessed element of P+, define a search interval span-
ning from a perfect forth, both above and below the
reference pitch, and find the closest matching pitch
on the next tempo frame. This process is repeated
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for every frame until a path is found and, once fin-
ished, the processed pitches are removed from P+

and the next P+ candidate is selected for path vali-
dation. The P− buffer stores the secondary pitches
that are used for filling up the path in case there
is no P+ candidate available. In case there are no
pitches available at all - when the fundamental is
missing, for example - it’s allowed a one frame jump,
assuming the current pitch as the next candidate.

4. Results
After computing and adding up all the voice con-
tours, we obtain the diagram of Figure 2.

Figure 2: Melodic transcription of the first four bars
of the Fugue I from J.S.Bach. Peak threshold of -
60 dB, a reference interval of a perfect forth and a
minimum voice lenght limit of 5 notes.

Figure 3: Score of the first four bars of the Fugue I
in C Major from the Well Tempered Clavier BWV
846 (Book I) from J.S.Bach.

The best results were achieved with a peak
threshold of -60 dB, a reference interval of a perfect
fourth and a minimum voice lenght of five notes.
When comparing the resulting transcription dia-
gram of Figure 2 with the original music score (Fig-
ure 3), we conclude the algorithm performs quite
satisfactorily. The approach followed here, based
on the melodical structure of the fugue, revealed to
be enough for the transcription task proposed. The
transcription errors corresponding to missing notes
are mostly due to missing fundamentals (frame 160
for example) which were never detected in the first
place by the algorithm for f0 detection because of
its very low and irregular magnitudes in the original
spectrogram. These results for short duration, low
frequency pitches is an expected consequence of the
time vs. frequency trade-off when dimensioning the
spectrogram: the lower the frequency, the lower will
be its resolution in a log-spectrogram, agravated by
the fact that the fast rhythmic behavior worsens the
accuracy of the onsets.

Another parameter that significantly affects the
transcription results is the search margin size. If
the interval is set to low, we may miss pitches along
the path and if set too high we may end up loosing
track of the real voice contour, by ultimately fol-
lowing only the high amplitude pitches P+. This
results are very senstive to changes in the margin
intervals. For example, if we increase the intervals
to a perfect fifth we will miss out the obvious G5
on frame 313 for B4, simply because this pitch has
higher magnitude caused by the harmonics of B3
played in the previous tempo. As a consequence of
increasing the margin size, we may end up selecting
wrong pitches as well. In frame 40, for example,
the played note corresponds to a D4 but the voice
contour algorithm detects only its second partial
which is inside the perfect fourth interval. So the
algorithm ends up detecting two distinct voice lines
at that frame. One way to fix this, could be to per-
form an octave clean up at the end of the voices
computation for the frames with more than the ex-
pected pitches.

5. Conclusions

The algorithm developed did satisfactorily tran-
scribe the excerpt of the proposed fugue recording
using basic techniques of audio signal processing.
The approach followed here is based on the melod-
ical structure of the fugue, which revealed to be
enough for the transcription task proposed. The
solution implemented has however a quite limited
scope. Firstly, the methodology followed is a sim-
plification of the music transcription problem and is
based on several previous assumptions on the data
to be transcribed, so it’s not generalized to other
composition techniques. This method performs well
for Bach’s fugues, based on a voice independance
and continuity assumption.

This solution also still depends a lot on static
parameterization. The correct dimensioning of the
reference inharmonicity parameter or the threshold
for peak detection are critical for the correct detec-
tion of the fundamental frequencies and the perfor-
mance of the algorithm. The onset detection, for
example, is based on pre-defined frequency bands
that should be dimensioned according to the type
of instruments and frequency span considered for
the audio signal. One critial step on the transcrip-
tion in the computation of the spetrogram. One of
the main challenges when dimensioning the spec-
trogram is the time vs. frequency trade-off. The
STFT performance depends heavily on the choice
of the window type and size. If a signal has a
wide range of frequencies, specially when it con-
cerns the lower frequencies, it requires a very large
N to satisfy the frequency resolution requirements,
which can be computationlly very inefficient and
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definitely compromise the time resolution. This
could be improved by computing a log-spectrogram
with a variable size sliding window, in order to im-
prove the resolution on the lower pitches. Instead
of implementing a pure constant-Q transform, there
are other similar algorithms than allow to improve
the frequency resolution using the more computa-
tionally efficient FFT function. The time-frequency
trade-off also may cause that fundamental frequen-
cies are not detected at all. So this would require
some predictive analysis either on the fundamental
frequencies detection step or in the melody track-
ing. The fundamentals can be detected by matching
the upper partials patterns to a defined fundamen-
tal pitch, while the simultaneous analysis of melody
and harmony would allow to predict the notes with
higher probability in the harmonic context of the
time frame.

So indeed music transcription is quite a challeng-
ing task, specially when dealing with requirements
such as automatization, where no human interac-
tion in the middle steps is expected, and becomes
increasingly more complex with the variety of mu-
sic and instruments that are to be transcribed. In
this sense, the probabilistic methods and machine
learning approaches may perform better on solving
such problems.
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