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Resumo

Com o advento de tecnologias emergentes como a Internet das Coisas, redes de sensores sem fios,

computação em nuvem, Internet móvel e Inteligência Artificial, e a sua introdução no mundo da indústria,

um novo paradigma chegou: a quarta revolução industrial. Com o objectivo de usar estas novas tecnolo-

gias para alcançar a fábrica inteligente, flexı́vel e reconfigurável do futuro, capaz de produzir produtos

customizados e em pequenos lotes de forma eficiente e rentável, alguns sistemas avançados de con-

trolo de manufactura têm sido propostos. Nesta tese, um sistema de manufactura baseado em agentes

computacionais inteligentes foi modelado e testado em simulação com o objectivo de estudar a sua

aplicabilidade para sistema de fabrico da fábrica do futuro.

Um sistema de manufactura flexı́vel foi projetado, com o funcionamento de acordo com um con-

hecido sistema de referência, e um sistema multi-agente composto por 5 tipos de agentes reativos foi

modelado para controlar o seu funcionamento. Os agentes foram modelados usando redes de Petri e a

comunicação entre agentes foi definida através da combinação de Protocolos de Comunicação FIPA.

O sistema foi simulado em cenários estáticos e dinâmicos, tendo a sua performance sido validada

sempre que possı́vel por comparação com resultados de outras abordagens no mesmo sistema de

referência. O comportamento reativo exibido pelo sistema é comparável com o das outras abordagens,

tendo apresentado uma performance melhor que outro sistema para um dos cenários estáticos e uma

performance semelhante para o outro. O sistema respondeu com sucesso a todas as perturbações

dinâmicas simuladas.

Testes experimentais foram realizados para começar a revelar o caminho no que toca à integração

de hardware e implementação de agentes num sistema de produção real.

Palavras-chave: Sistemas baseados em agentes, Controlo de manufactura, Sistemas Multi-

agente, Estudo de simulação, Comunicação entre agentes, Sistema de manufactura flexı́vel.
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Abstract

With the advent of emerging technologies like Big Data, Internet of Things, wireless sensor networks,

cloud computing, mobile Internet and Artificial Intelligence, and their introduction to the manufacturing

environment, a new paradigm arrived to the industry world: the fourth industrial revolution. With the aim

of taking advantage of the new technologies to achieve the smart, flexible and reconfigurable factory

of the future, capable of producing customized and small-lot products efficiently and profitably, some

advanced manufacturing control systems have been proposed. In this thesis, a manufacturing system

based on intelligent computational agents was designed and tested through simulation with a view to

study its applicability as a production system for the factory of the future.

A flexible manufacturing system was designed, and its operation was modelled according to a known

benchmark. A Multi-Agent System composed of 5 types of reactive agents was designed to control its

operation. The agents were modelled using Petri nets and agent communications were defined through

the combination of FIPA Interaction Protocols.

The system was simulated under the conditions of static and dynamic scenarios, having its per-

formance validated whenever possible by comparison with results from other approaches in the same

benchmark. The reactive behaviour performance exhibited by the system was comparable with other ap-

proaches, having presented a better performance than other system for one static scenario and a similar

performance for the other. The system successfully responded to all dynamic perturbations simulated.

Experimental tests were performed to start disclosing the way in terms of hardware integration and

agent implementation in a real production system.

Keywords: Agent-based systems, Manufacturing control, Multi-Agent Systems, Simulation

study, Agent communication, Flexible manufacturing system.
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Chapter 1

Introduction

Over the times, the industry has been evolving to meet the progressive improvement of life quality

that the human society desires. With the aim of providing products with increasingly high-quality and

customization, industry has already faced three revolutionary stages known as industrial revolutions.

With the advent of emerging technologies like Internet of Things (IoT), wireless sensor networks, Big

Data, cloud computing, embedded systems, mobile Internet and Artificial Intelligence (AI), and their

introduction into the manufacturing environment, a new paradigm arrived to the industry world: the

fourth industrial revolution [1].

As a consequence, several initiatives have been put in motion by the main industrial countries all

around the world to implement this new revolutionary technologies and pursue the factory of the future.

The German government started the research program called ”Industrie 4.0”, a similar program called

”Made in Sweden 2013” was started in Sweden, the USA created the Industrial Internet consortium,

China announced ”Made in China 2025”, and many other countries are supporting research initiatives

in the field, like Spain, Canada or Korea [2].

This new industrial stage, widely known as Industry 4.0, identifies with the application of Cyber-

Physical Systems (CPS) in the industrial domain, as a network of interacting software and hardware

devices and systems through the combination of mechatronics and communication and information

techologies. These systems will be able to analyse data and adapt to changes in a way that processes

can become faster, more flexible and efficient at lower costs [3].

With the aim of achieving a smart, flexible and reconfigurable factory, capable of producing cus-

tomized and small-lot products efficiently and profitably, the use of traditional manufacturing control

systems is not enough. These control systems do not exhibit sufficient capabilities of responsiveness,

flexibility and reconfigurability, since they are designed based on centralized and hierarchical control

structures that, despite presenting good production optimization, present weak response to change due

to the rigidity and centralization. Thus, some advanced manufacturing control systems have been pro-

posed, taking advantage of the new technologies to design the smart factory of the future [4].

A very representative case of the advanced manufacturing control systems is the agent-based man-

ufacturing control, which is the scope of this thesis. The agent-based manufacturing control systems
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are based on Multi-Agent Systems (MAS) technology, and consist in an ecosystem of manufacturing

resources defined as intelligent, autonomous and cooperative computational entities, known as agents,

that can negotiate with each other to implement dynamical reconfiguration and decision-making, in order

to achieve their individual goals. In an agent-based manufacturing control system, all the agents are in

the same hierarchy level, being organized in a autonomous, distributed and decentralized architecture

[4].

The distributed character of the behaviour of agents, with each one of them being responsible for one

or very few industrial entities and having its own goals, yields a high flexibility for the system. Moreover,

each agent software is simpler than any global approach and is independent, which allows an easy

addition and removal of industrial entities without changing the network software. This ability to change

fast and easily provides the reconfigurability capacity that motivates the use of agent-based systems in

the manufacturing world.

Figure 1.1 exhibits a simplified example of the operation of a manufacturing system controlled by

agents. Here, the part to be manufactured is represented by a part agent running in an industrial per-

sonal computer (IPC), three computer numerical control (CNC) machines are represented by machine

agents running in the numerical controller of each machine and an automated guided vehicle is rep-

resented by a transport agent running on a programmable logic controller (PLC). In order to complete

the drilling that the part needs, the part agent queries the machine agents to decide which one has

the skills and availability to do the operation and chooses according to the received answers. After the

negotiation, the part agent allocates the job to machine agent #3 and then negotiates with the transport

agent to transport the part to the corresponding machine.

In this chapter, a literature review on the use of multi-agent systems technology in manufacturing is

presented in the first section. In the following section, the objectives and contributions of the thesis will

be stated. At the end of the chapter, the outline of the thesis is given.

Figure 1.1: Application of agents in manufacturing control [5].
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1.1 Multi-Agent Systems in Manufacturing

Throughout the last decades, several different approaches, architectures and platforms regarding MAS

have been introduced and a considerable amount of industrial applications were already implemented

and described in the literature. The main fields of application have been smart production, smart electric

grids, smart logistics and smart healthcare [2], although some authors also have a prospect of other

fields that might benefit from the application of agent technologies, namely traffic control, buildings and

home automation, military and network security [6]. In this work, the focus will be on the manufacturing

industry.

MAS are computational systems composed by interacting intelligent agents which can assume sev-

eral forms and architectures. Agents can represent physical resources or logical objects, originating two

different ways of being set up: the function mapping method, in which different agents are used to rep-

resent different functional modules in manufacturing systems, and the physical mapping method, where

different agents are used to represent different real physical entities [7].

Considering that the agents need to be connected to the manufacturing entities that they are repre-

senting, the interface approach can be classified into three types [8]:

• Coupled approach: Software agents are running remotely and accessing the physical automation

device, which is running a native logic control layer.

• Weak embedded approach: Software agents are directly embed in automation devices, but are

accessing the native logic control layer.

• Strong embedded approach: Software agents are directly embed in automation devices and are

running the logic control of the device, accessing input and output ports.

Furthermore, regarding their functionality and decision-making mechanism, intelligent agents are

classified into the following types [9],[4]:

1. Purely reactive: Agents make decisions using only the present information and discarding histori-

cal data. Direct mapping from situation to action.

2. Logic-based : Agents make decisions through logical deduction.

3. Belief-desire-intention (BDI): Agents are built using symbolic representations of their intentions,

beliefs and desires and the decision-making depends on the manipulation of those.

4. Layered architectures: Agents combined into several software layers where agents from each layer

deal with different abstract levels of the environment.

In the context of the manufacturing industry, it is important to introduce another advanced manu-

facturing control paradigm that has been emerging, called Holonic manufacturing control. The reason

for this is the close relation to agent-based manufacturing control and the fact that it also uses agent

technology in its implementation. The Holonic Manufacturing Systems (HMS) can be explained as a

system of holons, organized in a hierarchical structure and cooperating to achieve the system goals by

3



combining their individual skills and knowledge. In the holonic paradigm, the holon is a concept that can

simultaneously represent a part of a system and a whole system and is composed of two distinct parts

(Figure 1.2): an information processing part, which is made of physical interfaces, control functions and

inter-holon communications; and a logical or physical processing part, depending if the holon is repre-

senting a physical device or a logical activity. The high level layer of the informaton processing part can

be implemented as an agent, using MAS technology for the inter-holon communications.

Figure 1.2: Model of a physical holon [4].

Due to the fact that these two manufacturing paradigms share the same principles of autonomy and

cooperation, the similarities between agents and holons are evident. However, it is important to notice

that they are different concepts with the following main distinctions: (1) agents normally represent soft-

ware components while the holon concept focuses on the integration of software and physical devices;

(2) the holon can be hierarchically composed by several lower-level holons, in contrast with an agent;

(3) the holon is a concept while the agent is simultaneously a concept and a technology, being that the

reason why the holon can be implemented with agent technology [4].

1.1.1 Protocols and Standards

With the development of agent systems, some protocols and standards were created to support and

propel their adoption.

The Foundation for Intelligent Physical Agents (FIPA) organization produced a set of standards cover-

ing agent management, communication and message transport, and also established the Agent Unified

Modelling Language (AUML) to leverage UML for modelling of large-scale agent-based applications [10].

Within the agent communication, the Agent Communication Language (ACL) was defined, standardiz-

ing the messages exchanged between agents. Within the AUML, Protocol Diagrams were introduced

to specify agent interaction protocols (internal behaviour) and agent class diagrams were introduced to

specify its external behaviour [11].

The Contract Net Protocol (CNP) is a high-level task sharing protocol for communication among the

nodes (agents) in a distributed problem solver (MAS). The task distribution is seen as a kind of contract

negotiation where nodes receive tasks, announce them to the contract net, receive bids from other

nodes which are potential contractors and decide who to award the contract to [12].
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Regarding the agent implementation, the IEC 61131-3 standard specifies five PLC programming

languages [13]: the textual programming languages instruction list and structured text, the graphical

programming languages function block diagram and ladder diagram, and the higher level programming

language sequential function chart, and the IEC 61499 specifies the distributed way of designing the

real-time control applications using the dedicated service interface function blocks to exchange mes-

sages between the low level (PLC) and the high level (agents) control modules [14].

1.1.2 Platforms, Frameworks and Simulators

In regard to the matter of the tools used to develop MAS, a large number of platforms, frameworks

and simulators have been developed since the late 90s, targeting the gap between concept design and

implementation.

An extensive survey and comparison of agent platforms can be found in [15]. In [16], a comparative

analysis of 24 multi-agent platforms, frameworks and simulators is presented, evaluating the given tools

in 28 universal criteria. More recently, in [17], a detailed characterization of almost the entire spectrum of

agent-based modelling and simulation tools was presented, covering eighty five toolkits that go from the

typical softwares used to design and develop agent-based systems to several other tools also known to

be used in different fields of the engineering world. In [9], a table with 8 up-to-date and open source se-

lected platforms, frameworks and simulators was compiled, focusing the comparison in the programming

language and the operation system.

Table 1.1 presents a comparison of eight Platforms, Frameworks and Simulators, selected from the

previously mentioned surveys accordingly to its current significance and possible value to this work.

In terms of frameworks, reports of applications using the JAVA Agent DEvelopment Framework

(JADE) [18] have been a recurrent case in the literature, being one of the most widely used platforms for

research purpose [9].
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Table 1.1: Comparison of selected Platforms, Frameworks and Simulators.

Software Type Developer Programming
Language

Operation
System(s)

Communication Standard
Compatibility

JADE Framework Telecom
Italia

Java All that
supports
JVM

ACL (Asyn-
chronous),
MTPs, RMI,
IIOP, HTTP,
WAP

FIPA, CORBA

Agent
Factory

Framework University
College
Dublin

Agent Fac-
tory Agent
Program-
ming Lan-
guage
(AFAPL)

All that
supports
JVM

HTTP Partially FIPA
(agent lifecy-
cle)

Jadex Framework Hamburg
University

Java (plus
use of XML)

Any with
JVM

HTTP FIPA, SOA,
WSDL

JACK Platform AOS Java, JACK
Agent Lan-
guage (JAL)

Windows,
Mac OS ,
Unix

DCI network,
TCP/IP, ACL

FIPA

MASON Simulator George
Mason
University

Java Windows Message ex-
change (event-
driven, platform
defined syntax)

None known

GAMA Simulator IRD/UPMC
Interna-
tional Re-
search Unit
UMMISCO

GAML Windows,
Linux, Mac
OS

ACL (GAML
messages that
represent FIPA
ACL messages)

FIPA, (GIS,
3D capabili-
ties)

NetLogo Simulator Northwestern
University

NetLogo Any with
JVM

Extensions for
message ex-
change(extensions
defined syntax)

None known

Repast Simulator University
of Chicago

Java, C#,
C++, Lisp,
Prolog,
Python

Any with
JVM

Peer-to-Peer None known

1.1.3 Approaches and implementations

With the focus on smart manufacturing solutions, different authors already extensively surveyed the ma-

jor approaches and implementations presented so far. It is the case of Monostori, Vancza and Kumara

[19], Mařı́k and Lažanský [20], Leitão [4], Leitão and Vrba [21], Leitão, Mařı́k and Vrba [6], and Leitão et

al.[2]. Based on the work of the authors previously introduced, it is important to sum up the agent-based

approaches of higher relevance that were presented in the last years.

In 1995, Rockwell Automation developed an agent-based solution to increase the utilization of steel

milling process at the steel rod bar mill of the BHP Billiton in Melbourne, Australia, by assigning jobs to

available rolling stands and cooling boxes instead of using a predefined set of equipment for a particular

recipe as before. It utilizes the Autonomous Cooperative System (ACS) platform that enables to run the
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C++ based agents directly on the PLC of the Logix family together with IEC 61131 control programs.

Furthermore, they introduced the universal runtime interface to allow C++ control agents to access the

sensor and actuator values in the data table of the ControlLogix controller. [22].

The Product-Resource-Order-Staff Architecture (PROSA) is a holonic reference architecture for man-

ufacturing systems based on three types of basic holons: product, order and resource, plus additional

staff holons [23]. The European Union (EU) MASCADA (Manufacturing Control Systems Capable of

Managing Production Change and Disturbances) project had as its main test the development of a

PROSA-based MAS for a section of the painting center in the Daimler-Benz plant in Sindelfingen, Ger-

many. In this project, apart from the 3 basic PROSA agents, 4 other agents were derived from the

PROSA architecture: location, switch, buffer, machine and car agent [24].

Schneider Automation developed, in 2001, a MAS application for the production of engine cylinder

heads in the factory plant of Daimler Chrysler. The application uses agents to represent CNC machines,

shifting tables and work-pieces, implementing a dynamic resource allocation similar to the CNP with the

objective of continuous optimization of the throughput. The agent-based control system allows individual

work-pieces to be directed dynamically around the production area, by auction off the processing steps

that are due first [25].

In the laboratory packing cell of the University of Cambridge, an industrial agent-based control

testbed for assembling Gillette packages into customer-tailored gift boxes was deployed. The approach

considers resource holons that represent the physical components of the system and order holons for

each gift box that must be manufactured. The dynamic resource allocation is ensured by BDI agents

implemented in JACK platform [26].

Another PROSA-based MAS, entitled FABMAS, was installed for the production control of a semi-

conductor wafer fabrication facility. The approach considered a hierarchical organization of the agents,

making the distinction between decision-making agents and staff agents as described by the PROSA

architecture. The agents were designed using the FIPA Standard and the FIPA Abstract Architecture,

and the MAS was implemented on C# using the Microsoft .NET Framework [27].

The PABADIS (Plant Automation BAsed on DIstributed Systems) approach, in the context of the FP5

PABADIS project, targeted a distributed, agent-based manufacturing control. This architecture, devel-

oped and demonstrated at Magdeburg University, consisted of a system of Cooperative Manufacturing

Units (CMUs) and an agency that communicate to achieve decentralized control. In this system, two

types of CMUs were distinguished: Manufacturing CMUs and Logical CMUs; and three types of agents

were defined: Residential Agents, Product Agents and Plant Management Agents [28].

At the Tampere University of Technology in Finland, a framework called ABAS (Actor-Based Assem-

bly Systems) was developed, aiming the 3D simulation and visualization of assembly processes carried

out by autonomous mechatronic devices. These autonomous devices were represented by intelligent

physical agents called actors. Its architecture is composed by the Actors, the Register, the Recruiters

and the Actor Clusters. The Recruiters seek the accomplishment of assembly tasks by recruiting Actors

which were admitted in the ABAS society by the Register, recognizing the ones capable of solving the

required assembly needs and grouping them into clusters [29].
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An example of a laboratorial application of a multi-agent control system for shop-floor assembly

was implemented in the Novaflex manufacturing system at UNINOVA (Instituto de Desenvolvimento de

Novas Tecnologias), Portugal [30]. The system was made of Manufacturing Resource Agents (MRA),

Agent-Machine Interfaces (AMI), Broker Agents (BA) and Coalition Leader Agents (CLA), following the

guidelines of the CoBASA (Coalition Based Approach for Shop Floor Agility) architecture. This archi-

tecture consists of MRAs that are joined into clusters, participate in coalition/consortia regulated by

contracts and interact in order to generate aggregated functionalities that, in some cases, are more

complex than the simple addition of their individual capabilities [31].

Another laboratorial application of a multi-agent manufacturing control system can be found at the

IDIT (Instituto de Desenvolvimento e Inovação Tecnológica), Portugal where a real flexible manufac-

turing system was implemented using the ADACOR holonic architecture. The term ADACOR stands

for ADAptive holonic COntrol aRchitecture and this approach considers four holon classes: product

(PH), task (TH), operational (OH) and supervisor holons (SH). As far as the internal architecture of a

generic ADACOR holon is concerned, it is constituted by a logic control device, organized in the three

components: communication, decision and physical interface, and by a physical resource capable of

performing the manufacturing tasks [32]. In the real system, the logic part of the holons (agents) was

implemented as a Java class in the JADE framework, the messages were encoded using the FIPA ACL

and the rule-based system in the decision component of the holons implemented using the Java Expert

System Shell tool [33].

In the context of EU FP7 GRACE (InteGration of pRocess and quAlity Control using multiagEnt

technology) project, a MAS for integrating process and quality control in the washing machine production

line of Whirlpool in Naples, Italy, was deployed. The system is composed of 4 types of agents: product

type agents (PTAs), product agents (PAs), resource agents (RAs) and independent meta agents (IMAs),

which had their behaviour modelled using Petri nets and their interactions modelled using AUML. Self-

adaptation procedures like the dynamic adaptation of the functional testing plan and the customization

of the on-board controller parameters were designed. The deployment in the factory plant brought

several improvements such as the increase in the production efficiency, the reduction of the production

down-times or the reduction of nonconformities and increase in product quality [34].

An evolution of the ADACOR architecture, called ADACOR2, was developed with the aim of pro-

viding a dynamic control system reconfiguration, through the introduction of a two-dimensional self-

organization model which takes into consideration mechanisms at micro and macro level. At micro level,

behavioural self-organization is acting towards a smooth evolution, whereas at macro level, structural

self-organization makes the system evolve drastically. This system makes use of nervousness stabilizers

analogous to the PID controller to stabilize the self-organization behaviour. An experimental simulation

scenario was deployed in the AIP-PRIMECA (Atelier Inter-Etablissements de Productique et Pôle de

Ressources Informatiques pour la MECAnique) Flexible Manufacturing System (FMS) located at the

University of Valenciennes, validating the improvement in performance [35].

In the context of the PERFoRM (Production harmonizEd Reconfiguration of Flexible Robots and

Machinery) project, a MAS was developed to support the seamless reconfiguration of micro-flow pro-
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duction cell. In the system, two types of agents were defined: Robot agents and Process agents, which

intercommunicate with the robots and the machinery via an OPC-UA (Open Platform Communications

- Unified Architecture) server with the goal of managing the plugging in and out of processes in the cell

and achieve on-the-fly reconfiguration. The system was deployed in a use case prototype with seven

process agents and one robot agent, which validated the proposed approach [36].

Despite the afore mentioned approaches and implementations, a long path still needs to be travelled

in order to have these distributed agent-based approaches fully adopted by industry. The approaches

that reached full industrial implementation are still few and the implemented functionalities are nor-

mally limited. The reasons for this might be related to the fact that real industrial applications require

the integration of a large number of physical automation devices with the software control system and

methodologies to support an easy, transparent and re-usable hardware integration are still missing. Also

the absence of industrial controllers with multi-agent systems capabilities to run the agents directly on

controllers in parallel with the low-level control, rather than on a separate computer, might be part of the

reason. Moreover, these systems are usually referred as performing well in dynamic environments but

more evidence of that needs to be reported in the literature. The evaluation and comparison of man-

ufacturing control systems performance requires the existence of benchmark scenarios and datasets,

together with normalized performance indicators. More teaching and research in this area is needed

so that these necessary tools might be developed. Real proofs about the applicability of these smart

and distributed approaches in industrial automation sites are still necessary to accelerate its industrial

adoption.

1.2 Contributions

The aim of this thesis is to study the applicability of agent-based manufacturing control as a production

control system designed to achieve the smart, flexible and reconfigurable factory. The main focus is the

successful design and simulation of a Multi-Agent System used to demonstrate a flexible manufacturing

system to be implemented in the Industrial Automation Laboratory at Instituto Superior Técnico.

The study starts with the planning of the flexible production system, with operation analogous to a

known benchmark for distributed control systems research, followed by the design of a multi-agent sys-

tem composed of five types of FIPA compliant agents. A combination of three FIPA Interaction Protocols

(FIPA-Request, FIPA-Propose and FIPA-Contract Net) was used to design the agent communication and

two simple rule based systems were tested to ensure the proper decision-making in the assignment of

operations in the system. A simulation study was carried to test the autonomous agent-based system

through static and dynamic scenarios, aiming to validate its performance by comparison with results

from the benchmark, which include an a priori optimization using Mixed Integer Linear Programming

(MILP). Furthermore, the first steps into the implementation were taken. In terms of hardware integra-

tion, a real-time connection between a simulated agent and a real PLC was established. Regarding

software, a demonstrative implementation of agents executing the Contract Net Protocol in the JADE

Platform is presented.
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1.3 Thesis Outline

Chapter 1 presents the scope of this thesis and a literature review on the application of MAS in the

manufacturing industry.

Chapter 2 introduces the flexible manufacturing system benchmark as well as the proposed analo-

gous production system to be the object of study in this work.

Chapter 3 addresses the modelling of the agents and the proposed communication protocols and

algorithms.

Chapter 4 is dedicated to the simulation study, encompassing the explanation of the layout and the

proper description of the static and dynamic scenarios.

Chapter 5 contains the experimental tests, namely the demonstrative implementation of agents and

the connection to a PLC.

Chapter 6 concerns the discussion of the obtained results in the static and dynamic experiences and

a comparison with results from the benchmark, whenever possible.

Chapter 7 presents the conclusions of the work carried out and the proposals for future work based

on experiences started in this thesis.
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Chapter 2

Manufacturing System

With a view to implementing an agent-based manufacturing control system, the manufacturing system

to be controlled must be properly defined.

Considering that the aim is to design a system which is smart, flexible and reconfigurable, and is

capable of producing customized and small-lot products, it is necessary to understand which manufac-

turing system typologies might be adequate for this purpose. From [37], it can be inferred that to produce

customized and small-lot products, the more advantageous manufacturing system typology is likely to

be job shop based.

To help define the manufacturing system that will be the object of this thesis, a survey through

the possible benchmarks found in the literature regarding production systems for agent-related control

research was performed and will be presented in the first section.

Afterwards, a benchmark system combining all the necessary characteristics and with a record of

experimental agent-related implementations will be explained, followed by the definition of the proposed

manufacturing system in the last section.

2.1 Benchmarking

Trentesaux et al. in [38] define benchmarking as ”comparing the output of different systems for a given

set of input data in order to improve the system’s performance”. It is of major importance to have a

comparative element to validate and compare the performance of a system when designing one. This

is the reason why the starting point for the design of the manufacturing system to be the object of this

thesis is the search for an appropriate benchmark. From the literature review presented in the section

1.1.3, the production systems built for research purposes were selected as possible benchmarks:

• Cambridge packing cell, University of Cambridge, England.

• AIP-PRIMECA FMS, University of Valenciennes, France.

• ADACOR FMS, IDIT, Portugal.

• NovaFlex, UNINOVA, Portugal.

11



In Table 2.1, a description of the scenario, the layout and a list of papers and PhD thesis related

to each possible benchmark are provided, so that their operation and research significance may be

assessed.

Table 2.1: Scenario, description and related thesis/papers of each possible benchmark.

Name Scenario Layout Papers/Thesis

Cambridge
Packing Cell

Customer selects any three of
four types of Gillette personal
grooming items, packs them
into one of two box styles
and changes how their order is
packed on the fly.

Three conveyor loops, two dock-
ing stations, one storage area
and one robot.

[26] [39] [40]
[41] [42]

AIP-
PRIMECA
FMS

The cell produces three types of
products (words), using combi-
nations of seven different jobs
(letters),which are made of raw
components. There are five
types of components plus the
plate to produce the specified
letters.

Closed-loop conveyor System,
one loading/unloading unit, one
inspection area, three robots,
one optional manual recovery
unit and one optional robot.

[43] [44] [38]
[45] [46] [35]
[47] [48] [49]
[50] [51]

ADACOR
FMS

In the factory plant, two final
products are produced by as-
sembly of four sub-products that
are manufactured in one of the
manufacturing cells.

One material storage and one
transportation cell, one inspec-
tion cell, one assembly cell
and three flexible manufacturing
cells composed of two CNC’s
and one robot each.

[52] [32] [33]
[53]

NovaFlex A manufacturing cell that as-
sembles a metallic toy watch.

Two assembly robots, one auto-
matic warehouse and one trans-
port system that connects all the
modules.

[31] [30] [54]

If the goal is to control a flexible and reconfigurable production system, there are some required

characteristics concerning its physical configuration that need to be met. In the first place, the conveyor

system needs to be flexible, providing more than one path to travel between the same two points. Thus,

the system will provide material-handling flexibility and machine-sequence flexibility. Next, redundancy

is a key point in this kind of system, being necessary to provide machine flexibility and reconfiguration

of the products machine sequence in case of machine breakdown.

By analysis of the given production systems, it is clear that the AIP-PRIMECA FMS has been the

most used for research purposes in the area of distributed agent-related control systems. Its conveyor

system configuration allows a really flexible routing of jobs inside the production cell, and the existence

of three robots, which provide some operations in common, creates the necessary redundancy for the

production. Furthermore, a benchmark was defined from this production cell, aiming to support bench-

marking on a physical and real-world system and stimulate benchmarking activities internationally [38].

For the previously stated reasons, the AIP-PRIMECA FMS was defined as a benchmark for this the-

sis, directly influencing the design and operation of the proposed manufacturing system.
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In the next section, a detailed description of the AIP-PRIMECA FMS is presented, comprising the

types of products and jobs, required operations for each type of job, operations processing times, trans-

port times and operation parameters.

2.2 AIP-PRIMECA Flexible Manufacturing System

The AIP-PRIMECA FMS is a flexible assembly cell located in the AIP-PRIMECA Center at the University

of Valenciennes. This assembly cell, shown in Figure 2.1, is composed of industrial components such

as conveyors, industrial robots, sensors, actuators and programmable controllers, being an appropri-

ate platform for experimental tests regarding FMS control approaches. Moreover, this cell has already

been modeled as a Flexible Job Shop [38], providing the starting point for the conception of linear and

quadratic programming models and already having inspired the creation of some of those models that

can be used for future comparisons.

Figure 2.1: AIP-PRIMECA cell [49].

In order to explain the operation of this cell, the next four subsections describe the products, the

machines, the conveyor system and the global operation of the system, according to the description

provided by [38].

2.2.1 Products

The smallest elements present in the production cell are the five available components ”Axis comp”,

”I comp”, ”L comp”, ”r comp” and ”screw comp”, plus the ”Plate” where they are placed.

By combination of these components, it is possible to assemble 7 different letters: ”B”, ”E”, ”L”, ”T”,

”A”, ”I” and ”P”. Each letter is a sub-assembly and is denominated job.

The final products proposed to the client are words formed with these jobs and they are three:

”BELT”, ”AIP” and ”LATE”. The client can submit an order with any quantity of each product. A product
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is considered complete when all the jobs that compose it are finished, considering that those jobs can

be manufactured in any order.

The components, jobs and products are shown in Figure 2.2.

Figure 2.2: Components, jobs and products [38].

Each job has its own production sequence, i.e., an ordered list of elementary manufacturing opera-

tions. In this assembly cell, there are eight manufacturing operations: ”Plate loading”, ”Axis mounting”,

”r comp mounting”, ”I comp mounting”, ”L comp mounting”, ”Screw comp mounting”, ”Inspection” and

”Plate unloading”. Table 2.2 shows the production sequence for each type of job.

Table 2.2: Production sequence for each type of job.
”B” ”E” ”L” ”T” ”A” ”I” ”P”

#1 Plate loading Plate loading Plate loading Plate loading Plate loading Plate loading Plate loading

#2 Axis mounting Axis mounting Axis mounting Axis mounting Axis mounting Axis mounting Axis mounting

#3 Axis mounting Axis mounting Axis mounting Axis mounting Axis mounting Axis mounting Axis mounting

#4 Axis mounting Axis mounting Axis mounting r comp mounting Axis mounting I comp mounting r comp mounting

#5 r comp mounting r comp mounting I comp mounting L comp mounting r comp mounting Screw comp mounting L comp mounting

#6 r comp mounting r comp mounting I comp mounting Inspection L comp mounting Inspection Inspection

#7 I comp mounting L comp mounting Screw comp mounting Plate unloading I comp mounting Plate unloading Plate unloading

#8 Screw comp mounting Inspection Screw comp mounting Screw comp mounting

#9 Inspection Plate unloading Inspection Inspection

#10 Plate unloading Plate unloading Plate unloading

2.2.2 Machines

The cell is composed of seven machines, two of which being optional and not used in this work. The

machines are represented in Figure 2.3 with the symbols M1 to M7, being:

• M1: loading/unloading unit.

• M2, M3 and M4: assembly workstations.

• M5: automatic inspection unit.
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• M6: manual recovery unit (not used).

• M7: extra assembly workstation (not used).

The assembly workstations are composed of KUKA Robots responsible for the mounting operations.

Table 2.3 shows the different operations executed by each machine, together with the corresponding

manufacturing processing time of each operation.

Table 2.3: Manufacturing operations processing times.

M1 M2 M3 M4 M5

Plate loading 10

Plate unloading 10

Axis 20 20

r comp 20 20

I comp 20

L comp 20 20

Screw comp 20 20

Inspection 5

2.2.3 Conveyor System

The conveyor system is composed of a main loop, four transversal sections composing multiple inner

loops, several derivations to reach the machines and positioning units in front of machines. The transver-

sal sections are responsible for the material-handling flexibility.

As it can be noticed in Figure 2.3, in the conveyor system there are also transfer gates responsible

for the changes of direction of the jobs, represented in turquoise, and divergent routing nodes in which

routing decisions must be made, represented with the symbols n1 to n11.

The empty plates where jobs are assembled are transported by self-propelled shuttles in the con-

veyor system. Those shuttles are stored in the shuttle storage area whose capacity is assumed unlim-

ited.

The theoretical transportation times between adjacent nodes can be found in [38].

2.2.4 Operation

The jobs are loaded one by one in the loading unit M1. Then, the decision to which machine the job will

go in order to complete its production sequence will be made in the routing nodes, and the job will be

transported to the operating area in front of that machine.

Before each machine stands a job input storage area with capacity limited to one shuttle for all

machines. This area is destined for a job to wait while other job is receiving mounting operations in

the machine. If the operating and the job input storage area of the machines that can execute the next

operation in the production sequence are occupied, the job will circulate around the outer loop of the
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Figure 2.3: AIP-PRIMECA cell layout. (Adapted from [38].)

conveyor system while waiting for a place to get free. The transfer time the shuttle needs to move from

the job input storage area to the operation area in front of the machine is neglected for all machines.

Each assembly workstation has its own supply storage area with all the necessary components for

the mounting operations it executes. This supply is assumed infinite.

After completing all the mounting and inspection operations in the production sequence, the jobs

return to workstation M1 to be unloaded. At each moment, a maximum of ten jobs can be inside the cell

at the same time.
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2.3 Proposed IAL Manufacturing System

The proposed flexible production system was designed with the goal of exploiting some existing re-

sources of the IAL at Instituto Superior Técnico.

In this laboratory, eight stands can be found, called Industrial Automation Stands, each composed of

industrial automation elements like a conveyor belt with image recognition, an elevator, three pneumatic

cylinders, several lights, different types of buttons and even an emergence sensor and an alarm.

Figure 2.4: Industrial Automation Laboratory (IAL).

Considering that those eight stands are placed in groups of four, as it can be seen in Figure 2.4, the

goal was to propose a flexible system with a group of four stands as workstations working simultaneously

and executing some redundant operations between them. In order to make the system feasible, a

manipulator robot would be added to the centre of the four stands, to move the jobs between them,

and a conveyor belt would be placed between the two stands on the right, to transport the jobs from

the outside to the robot and vice-versa. Having the conveyor belt, the manipulator robot, and the four

workstations, some of the industrial automation elements contained in each stand would be used to

emulate the remaining functionalities of the production system.

Since the benchmark presented in the previous section already comprises the required flexibility and

complexity for the design of an agent-based manufacturing control system, the IAL Manufacturing Sys-

tem was designed analogously to the AIP-PRIMECA FMS, so that a direct comparison of performance

can be carried out. Therefore, the products, components, machines, operations, processing times and

transport times of the AIP-PRIMECA FMS will be the same in the IAL Manufacturing System, but with a

different physical configuration.

From the industrial automation elements present on each stand, the conveyor belt, the elevator, the

three pneumatic cylinders and the green, red and yellow lights were selected to integrate the proposed

manufacturing system, providing a sufficient quantity of automation elements to design the required
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global operation of the system. The analogy between the two manufacturing systems is explained in

Table 2.4.

Table 2.4: Analogy between the AIP-PRIMECA FMS and the IAL Manufacturing System.

AIP-PRIMECA FMS IAL Manufacturing System

M1 - Loading/Unloading Unit Conveyor belt

M2 - Assembly robot 1 Workstation B2

M3 - Assembly robot 2 Workstation B3

M4 - Assembly robot 3 Workstation B4

M5 - Automated inspection unit Workstation B5

Three mounting operations of each robot Three pneumatic cylinders of each workstation

Inspection Three cylinders of workstation B5 at the same time

Free workstation Green light

Operation being executed Red light

Job input storage area occupied Yellow light

Conveyor System Four conveyor belts + four elevators of the workstations

The flexible conveyor system was modelled using the conveyor belts and the elevators of the work-

stations as follows:

1. By analysis of the conveyor system layout in Figure 2.3, it can be stated that there are 4 different

paths for a job to go from one machine to another, knowing that while the job is waiting for a free

spot it will go around the outer loop.

2. These paths are defined in the following way for the example of the trip between M2 and M3: if

the job can go directly to machine M3, it follows the shortest way just passing near node n5; if it

only receives the information that there is a free place in the machine after passing it, it will turn

around in the nearest transversal section, which can happen after node n7, defining the second

path, after node n9, defining the third path, or after any of the following nodes, going for a complete

turn around the outer loop and in this way defining the fourth path.

3. These four paths can be defined for all the necessary trips between machines in the same way,

with the exception of the trip between machine M3 and M2, where the shortest way involves the

use of the first transversal section.

4. Having defined these possible paths, the time spent going around the outer loop while waiting for a

free place is modelled in the IAL Manufacturing System as a trip in a closed-loop conveyor system

composed of the four conveyor belts of the workstations.

5. When the job already knows to which machine is going, the path it uses is modelled in the IAL

Manufacturing System by the robot placing the job in one of floors of the elevator of the destination

workstation, being each one of the four possible paths represented by a different elevator floor.
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Table 2.5 presents the transportation times for each one of the necessary trips that happen inside the

manufacturing system. These times were computed by consulting the table of theoretical transportation

times between adjacent nodes presented in [38].

Table 2.5: Transportation times between machines (in seconds).

Path 0 1 2 3

M1-M2 11 27 43 59

M1-M3 21 37 53 69

M2-M4 10 26 42 58

M3-M4 7 23 39 55

M2-M3 13 29 45 61

M3-M2 – 16 32 48

M2-M5 18 36 52 66

M3-M5 15 33 49 63

M4-M5 11 29 45 59

M5-M1 12 28 46 60

The final IAL Manufacturing System layout is depicted in Figure 2.5. Here, the robot stands in the

centre of the four workstations B2, B3, B4 and B5 in which the industrial elements composing each one of

them are clearly identifiable. In each workstation, the conveyor belt and the elevator are positioned closer

to the robot, since they are used to model the operation of the conveyor system from the benchmark

rather than the operation of the workstations itself. Apart from these two automation elements, the

workstations have three pneumatic cylinders each, with the indication of the operation they perform, and

three lights to exhibit their internal state. The conveyor belt placed between workstations B2 and B3 also

contains the same three lights so that its state can be exhibited similarly to the workstations.

Figure 2.5: IAL Manufacturing System layout.
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Chapter 3

Multi-Agent System Architecture

For the control level of the manufacturing system introduced in the previous chapter, a MAS was de-

signed. The application of this system involves a set of distributed, autonomous and cooperative agents

representing each one of the elements of the manufacturing system.

As already mentioned in subsection 1.1.1, the FIPA organization has been promoting agent-based

technology by openly developing specifications supporting interoperability among agents and agent-

based applications. Therefore, the design of the MAS was performed according to the FIPA Specifi-

cations, in order to take advantage of the standardized communication, message transport and agent

management.

In this chapter of the thesis, a set of FIPA compliant agents and agent interactions will be presented in

detail, composing the control architecture of the manufacturing system. As a starting point, a description

of the main FIPA Specifications, with emphasis on agent communication, is provided in the first section.

3.1 FIPA Specifications

The FIPA organization is an IEEE Computer Society standards organization since 2005 that promotes

agent-based technology by developing specifications.

FIPA Specifications represent a collection of standards which are intended to promote the interop-

eration of heterogeneous agents and the services that they can represent. These specifications cover

different categories, namely agent management, agent communication, agent transport, abstract archi-

tecture and applications, among which the core category at the heart of the FIPA MAS model is agent

communication [10].

The first specification worth mentioning is the FIPA Agent Management Specification [55], where the

Agent Management Reference Model is introduced. This reference model can be seen in Figure 3.1

and is important to understand the normative framework within which FIPA agents exist and operate.

Here, the logical components Agent, Agent Platform (AP), Agent Management System (AMS), Directory

Facilitator (DF), Message Transport Service (MTS) and Software establish the reference model for the

creation, registration, location, communication, migration and retirement of agents.
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Still within the scope of the Agent Management Specification, the Agent Life Cycle is defined, con-

taining the following states: Initiated, Active, Waiting, Suspended and Transit.

Figure 3.1: Agent Management Reference Model [55].

Regarding agent communication, in the first place it is important to define the structure of a FIPA

ACL message, which is composed of the Envelope, the Payload, the Message and the Content of the

Message.

In what concerns the Envelope of a FIPA message, it must have the mandatory parameters ”to”,

”from”, ”acl-representation” and ”date”. Furthermore, it can also include the optional parameters ”payload-

length”, ”payload-encoding”, ”received” and ”security-object”.

With a higher importance, the elements that constitute the Message part of a FIPA ACL message

are presented in Table 3.1 [56].

One of the key elements of the Message is the performative, where the purpose of the message is

stated. The performative is chosen from the FIPA Communicative Act Library [57], which is resumed in

Table 3.2.

As to the content of the message, it is encoded in a specific content language. Any language can

be used as a content language, with languages like KIF, Prolog, SQL, FIPA-SL, FIPA-CCL, FIPA-RDF,

FIPA-KIF being more used than others. Also related to the content, in cases of complex conversations

between agents, an ontology containing definitions and relationships between those definitions describ-

ing a particular subject domain might be defined, so that all the agents in the conversation can share

that ontology and understand the content of the messages.

Combining messages with different Communicative Acts in a common pattern originates Interac-

tion Protocols (IP). FIPA already has a set of pre-defined standard IPs that can be useful for a good

amount of agent applications. The FIPA defined IPs are: FIPA-Request, FIPA-Query, FIPA-Request--

When, FIPA-Contract-Net, FIPA-Iterated-Contract-Net, FIPAAuction-English, FIPA-Auction-Dutch, FIPA-

Brokering, FIPA-Recruiting, FIPA-Subscribe and FIPA-Propose.
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Table 3.1: FIPA ACL Message Elements.

Element Description

performative What action the message performs

sender Initiator of the message

receiver Recipient of the message

reply-to Recipient of the message reply

content Content of the message

language Language used to express content

encoding Encoding used for content

ontology Ontology context for content

protocol Protocol message belongs to

conversation-id Conversation message belongs to

reply-with Reply with this expression

in-reply-to Action to which this is a reply

reply-by Time to receive reply by

Table 3.2: FIPA ACL Communicative Acts.

Communicative Acts

accept-proposal agree cancel cfp

confirm disconfirm failure inform

not-understood query-if request propose

query-ref refuse reject-proposal request-when

request-whenever subscribe propagate proxy

From the above mentioned protocols, the FIPA-Contract-Net is specially preponderant for its wide

applicability and known applications. Along with the FIPA-Propose and the FIPA-Request Protocols,

these three IPs will have a relevant role in the agent communication throughout this thesis.

The FIPA CNP (Figure 3.2) is an IP used by an Initiator that wants to explore the best proposal to

make a contract. It starts with a Call For Proposals (CFP) message sent by the Initiator to all the possibly

interested participants, which reply with a Propose or a Refuse message before the stipulated deadline.

Among the proposals, the Initiator chooses the one that fits its goals better and answers that proposal

with an Accept-Proposal message, answering all the others with a Reject-Proposal. The protocol ends

with the chosen participant sending an Inform-done, Inform-result or Failure message to the Initiator.

The Propose Protocol (Figure 3.3) is a very simple IP that only includes a Propose message being

sent from one Initiator to one participant. Having received the proposal, the participant answers positively

with an Accept-Proposal message or negatively with a Reject-Proposal.

The Request Protocol (Figure 3.4 is an IP used by an Initiator to get the participant to perform a

specific action. A Request message specifying the action is sent, being answered with an Agree or a

Refuse message. Then, in case the participant agrees to perform the task, it sends an Inform-done or

an Inform-result message after executing the required action, or a Failure message otherwise.
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Figure 3.2: FIPA Contract Net Interaction Protocol [58].

Figure 3.3: FIPA Propose Interaction Protocol [59].

Having described some important specifications useful to understand certain aspects of the design

of the MAS, it is time to proceed and introduce the control architecture of the system.
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Figure 3.4: FIPA Request Interaction Protocol [60].

3.2 Agents

The agent-based model presented in this thesis was built according to the physical mapping method, by

which different agents are used to represent different real physical entities. Taking this into consideration,

the designed MAS is composed of five different types of reactive agents: (1) Order Agent; (2) Job Agent;

(3) Workstation Agent; (4) Robot Agent; (5) Conveyor Agent. The Order Agents represent the orders

submitted by the clients. The Job Agents represent the jobs that are loaded into the production system,

necessary to complete the orders. The Workstation Agents represent the four workstations B2, B3, B4

and B5. Lastly, the Robot Agent and the Conveyor Agent represent the central robot and the conveyor

belt, respectively.

The creation of five types of agents increases the modularity and flexibility of the system, mapping

each different element to an agent with distinct functions and creating a better representation of the

system at the logical level. The behaviour of each type of agent was modelled by using the Petri nets

formalism [61], which is a tool fit to model and to analyse the behaviour of complex event-driven systems.

The Petri net behavioural models for the five types of agents are presented in Figures 3.5-3.9.

An Order Agent is created for each existing order in the beginning of the production and deals with

the creation and management of the Job Agents that compose it. The first task it executes is to start the

Propose Protocol with the other existing Order Agents, so that, through a simple negotiation algorithm,

they can organize themselves and internally define the order in which they will be produced. After

concluding the Propose stage, the Order Agent sends a group of Request messages to the Conveyor
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Agent, one message for each job it needs to load in the manufacturing system. Whenever the Order

Agent receives an Agree message from the Conveyor Agent, it creates the Job Agent corresponding

to the job that is being loaded. When a job finishes its production, the corresponding Job Agent sends

an Inform-done message to the Order Agent that created it. Once an Order Agent has received all

the Inform-done messages from the Job Agents it created, that order is complete and the Order Agent

terminates.

Figure 3.5: Behavioural model of the Order Agent.

The Job Agent manages the route that its job follows inside the production system, by communicating

with the workstations, the robot and, in the end, with the conveyor belt. When the Job Agent is created,

its job is being loaded in the conveyor belt. When it finishes the loading, the agent starts the CNP

with the workstations and analyses the proposals, in order to find the workstation that will execute the

next operation in its production sequence. If no proposal is received, the job will travel in the closed-

loop conveyor system and the Job Agent will periodically initiate the CNP until a Propose message is

received. The Propose messages contain the state of the workstation, which can be ”Free” or ”CanWait”,

and the Job Agent prioritizes the proposals of ”Free” workstations. As soon as the Job Agent finishes

the negotiation with the workstations, it starts the Request protocol with the Robot Agent, requesting to

be moved from its current location to the right floor of the elevator of the destination workstation. When

it arrives at the workstation, The Job Agent initiates the Request Protocol with the workstation to start
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the operation and repeats it as soon as it ends, to start the next one. In the case of positive answers,

the job continues in that workstation completing the following production steps, in case of a negative

answer, the Job Agent goes back to starting the CNP with the other workstations. After completing all

the operations except the unloading, the Job Agent requests the robot to move the job from the current

workstation to the conveyor belt. When it arrives, asks the Conveyor Agent to exit the production system,

and, when it finishes the unloading, sends the Inform-done message to its corresponding Order Agent

and terminates.

Figure 3.6: Behavioural model of the Job Agent.

The Workstation Agents are created in the beginning of the production, one for each of the four

workstations, and manage the global operation of the workstation, knowing which operations their work-

station can provide. Three states where defined for a workstation and consequently for the Workstation

Agent: ”Free”, when the workstation is empty, ”CanWait”, when the workstation is executing one opera-

tion but the job input storage area is empty, and ”Occupied”, when both the operating area and the job

input storage area are occupied. Regarding its operation, after initializing and registering in the DF, the

Workstation Agent executes two main actions simultaneously: responds to CFP messages from agents

that initiated the CNP and responds to Request messages from agents that are in the workstation area.

When it receives a CFP message, if its state is not ”Occupied” and it can provide that operation, the
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Workstation Agent answers with a Propose message containing its state as content. In case of a posi-

tive answer, it changes its state accordingly. When it receives a Request message, in case it can provide

the required operation, the agent sends an Agree message and executes the operation, in case it does

not provide the operation, the agent sends Refuse and changes its state accordingly.

Figure 3.7: Behavioural model of the Workstation Agent.

The Robot Agent is initialized in the beginning of the production and controls the operation of the

central robot. This agent receives Request messages from the Job Agents, selects one according to its

priorities, in case it has more than one Request in the mailbox, and sends the Agree message to the

selected job. Then, it executes the transport of the job between the places specified in the content of the

Request message and sends the Inform-done message in the end of the task.

The Conveyor Agent is also initialized in the beginning of the production and has a similar function

to the Robot Agent, but for the operation of the conveyor belt. In regard to the operation, it receives

Requests from the Order Agents and from the jobs that finished production, selects one request giving

priority to the jobs that are exiting the production system and moves the conveyor belt in the proper

direction.

The similarities between the behavioural models of the Conveyor Agent and the Robot Agent might

lead to think that they could be the same type of agent. The reasons why two different types of agents

were designed are the fact that in practical terms the agents control very different industrial components,

that require different commands, and the fact that the Conveyor Agent needs to process messages from
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Figure 3.8: Behavioural model of the Robot Agent.

Figure 3.9: Behavioural model of the Conveyor Agent.

different types of agents and even be prepared to process rush orders, while the Robot Agent only needs

to process messages from one type of agent but requires a different analysis of the contents of those

messages. In the case of a practical implementation of the Robot Agent, an analysis and knowledge of

the contents of the messages are required, commanding the robot to do different pre-defined motions.
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3.3 Agent Communication

Along the descriptions of the agents behaviour, the use of some FIPA IPs for the agent communication

was mentioned. The use of such protocols provides substantial help in the design and implementation of

MAS, sparing extra modelling efforts. Furthermore, some agent-related platforms and simulators have

been developed in accordance with the FIPA specifications, exhibiting tools to implement FIPA protocols

in a faster and more efficient way. Table 3.3 summarizes the communications between the different types

of agents.

Table 3.3: Communication protocols.

Agents Communication

Order Agent - Order Agent Propose Protocol

Order Agent - Conveyor Agent Request Protocol

Job Agent - Workstation Agent Contract Net Protocol, Request Protocol

Job Agent - Robot Agent Request Protocol

Job Agent - Conveyor Agent Request Protocol

Job Agent - Order Agent Inform (message only)

Recalling the behavioural model of the Order Agent in Figure 3.5, the Propose Protocol is used as a

means of negotiation between Order Agents, so that they can internally define the order in which they

will be produced. The negotiation pseudo-algorithm is in Algorithm 1.

Algorithm 1 Order Agents negotiation pseudo-algorithm.
1: Send Propose message to other Order Agents with own Due Date as content
2: while t < 1 second do
3: Wait for messages
4: if Receives Propose message then
5: if Due Date > Own Due Date then
6: Send Reject-Proposal
7: else
8: Send Accept-Proposal
9: end if

10: end if
11: end while
12: if At least one Reject-Proposal received then
13: Return to step 1
14: else
15: Send Requests to Conveyor Agent
16: end if

The AUML interaction diagram exemplifying this negotiation for one production scenario where there

are three orders to be produced is represented in Figure 3.10.

The use of the CNP by the Job Agents has a central role in the agent communications. This is due

to the fact that this protocol allows the workstation allocation for each operation the jobs have in their

production sequence. A typical example of the interactions happening in the case where job ”B” needs

to start its production by finding a workstation that can execute operation ”Axis mounting” is shown in

Figure 3.11.
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Figure 3.10: Interaction diagram for the Order Agents negotiation.

Figure 3.11: Interaction diagram for the example of operation ”Axis mouting”.

In the diagram, the use of the different protocols is clearly identified. This succession of messages

is repeated by all Job Agents whenever they need to find a new workstation to execute the following

operation in the production sequence of their job.
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3.4 Decision Rules

A key aspect not mentioned up until now is the decision rules that manage the operation of the agents,

and consequently the global operation of the system. In regard to this matter, two decision rule bases

were defined in this work.

The first one has been presented along the last sections, both in the Petri nets of section 3.2 and

in the interaction diagrams of section 3.3. It relates with the fact that the orders load their jobs by Due

Date order and the jobs choose the proposal from the first workstation that proposes in the Contract

Net, which coincides with the nearest. For instance, workstation B2 is chosen over B3 and B4, and

workstation B3 is chosen over B4. The core lines of this rule base are:

• Jobs are loaded by increasing Due Date order of the orders to which they belong.

• Whenever is possible to load jobs in the manufacturing system, they are immediately loaded.

• When analysing the Proposals from the workstations, the jobs accept the first proposal they re-

ceive.

• Jobs request all the operations that one workstation can provide them before moving to another

workstation.

In addition to this set of decision rules, another rule base was defined and considered to be tested in

the control system. These rules were defined so that a different loading order of jobs could be tested and

with a view to balance the utilization of the workstations. This attempt to balance workstation utilization

is made by having the jobs choosing for the least used workstations whenever they have a choice,

which translates to choosing workstation B4 over workstation B2 or B3 whenever they present the same

conditions to execute an operation. The core lines of the second decision rule base are:

• Jobs are loaded by the order in which their orders are submitted.

• Whenever is possible to load jobs in the manufacturing system, they are immediately loaded.

• When analysing the Proposals from the workstations, the jobs opt for the least used workstations,

specifically B4 over B2 or B3.

• Jobs request all the operations that one workstation can provide them before moving to another

workstation.
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Chapter 4

Simulation

Simulation plays a central role in the design phase of any system, either for evaluation purposes or to

gain an understanding of the system operation.

In order to validate the applicability of the agent-based model presented in the previous section,

the first crucial step is to conduct a rigorous simulation. With this in mind, the first step is to select an

appropriate agent-based simulation software.

The selection of a simulation software should be a thorough process, since the selected software

must present all the required features to allow a proper representation of the system. In the case of

an agent-based simulation, the choice should be even more careful, as the software should provide

adequate conditions to model agents and their interactions, as well as the manufacturing system itself.

In Table 1.1 from subsection 1.1.1, four up-to-date and qualified agent simulators are presented. In

other to conduct the comparison of these softwares, the decisive aspects are the communication and

compatibility, characteristics of utmost importance in the implementation of agents. Considering that the

agent communication in the designed MAS employs FIPA IPs with standardized messages, the selected

simulation software is the GAMA Platform, due to its FIPA compatibility and ability to represent FIPA ACL

messages in GAML, the agent-based language used in GAMA.

GAMA is a modelling and simulation development environment for building spatially explicit agent-

based simulations [62]. In the context of the GAMA environment, a simulation of the IAL Manufacturing

system was created, where all the simulation tests presented in this work took place.

In this chapter, the description of the layout and operation of the developed simulation is presented.

Moreover, a detailed description of the Static and Dynamic Scenarios to be simulated is provided.

4.1 Simulation Layout

A simulation was developed in the agent-based simulation software GAMA, using the comprehensive

agent-oriented language GAML. In GAML, each agent type is defined as a species, and different ex-

periments can be defined for the same group of species within a simulation model. In general terms, a

model written in GAML is structured in three parts [62]:
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1. Model Header: declaration of the name of the model, optional import statements and definition of

the global species (the model species itself).

2. Species declarations: definition of the set of attributes, actions, behaviours and properties of the

population of each different species of agents that populate the model.

3. Experiment declarations: definition of the simulation parameters and the required outputs of each

experiment to be performed.

Thus, the five types of agents considered in this work were defined in GAML as five different species,

specifying the actions and behaviours of each one in accordance with the Petri nets behavioural models

presented in section 3.2 of the previous chapter.

It is important to mention that while in an implementation the agents would be just computational

scripts controlling real industrial elements of the production system, in the case of the simulation in

GAMA the agents have a designated aspect, and so they will appear on the screen as the industrial

elements themselves, in order to compose the simulation model of the manufacturing system. Thereby,

the aspect of each species of agents was defined and can be seen in Table 4.1. These appearances

express the way in which each agent is represented in the simulation of the manufacturing system,

composing the simulation layout.

Table 4.1: Agents representation in the simulation.

Order Agent Job Agent Workstation Agent Robot Agent Conveyor Agent

In the experiment declaration, two displays were drafted as outputs: one with the manufacturing

system simulation model (Figure 4.2) and the other containing some statistical graphics about the pro-

duction (Figure 4.3). These displays appear as tabs in the simulation environment of the GAMA platform.

Moreover, a simulation parameter was set to alternate between the different Static Scenarios that can

be simulated.

Figure 4.1 shows a view of the simulation environment, where the tab with the simulation model is

selected and the different areas are marked in red. These areas are the Parameter View on the upper

left corner, which contains the selection of the Static Scenario, the Output Console on the lower left

corner, where the informations about the operation of the system and the messages sent by the agents

are written, and the simulation area in the centre. Inside the simulation area, indication on the location

of the Order Agents, the operation area, the job input storage area and the area where the agents that

are travelling in the closed-loop conveyor system, while waiting for an available workstation, are placed

is provided.

Regarding the operation of the IAL Manufacturing System model, shown in Figure 4.2, the jobs ap-

pear and are loaded in the conveyor belt, from right to left. Then, they enter in the closed-loop conveyor
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Figure 4.1: IAL Manufacturing System simulation environment.

system composed by the four conveyor belts of the workstations, which is represented by placing them

in the afore mentioned corresponding area. After successfully completing the CNP, the jobs exit that

area and move to one of the elevator floors of the destination workstation, where they stay until the

corresponding transportation time for that path has passed. If the workstation is free, the job proceeds

to the operation area, if an operation is already being executed to another job, the job assumes its place

in the job input storage area. In between workstations the jobs can return to the closed-loop area and,

after concluding the operations in the production sequence, they are unloaded in the conveyor belt, from

left to right.

Figure 4.2: IAL Manufacturing System model in GAMA.
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Whenever a simulation is run, the graphics in the Statistics display (Figure 4.3) are built in real time

and assume its final form in the end of the simulation. The graphics exhibit some data related to the

performance of the manufacturing system during production, namely:

• Time to due date of each order.

• Workstation idle times.

• Number of executions of each operation on each workstation.

• Job throughput times.

• Job waiting times.

• Total Makespan.

By analysis of this data, it is possible to have a better understanding of the performance of each

individual workstation as well as to identify the causes of the waiting times. Furthermore, the value of

Makespan can be used as criteria to measure the quantitative performance of the system and to allow

comparisons to the benchmarks.

Figure 4.3: Statistics display in GAMA.

In terms of simulation step (sample time), a commitment between trying to have the agent commu-

nications happening as instantly as they would happen in an agent platform and not decreasing the

sample time so much that the performance of the simulation could be affected needs to be made. This

is due to the fact that the simulation is refreshed in every step and so the messages are sent with a step

time between them. In this way, considering that the system has its transport and processing times in

seconds and the communications cannot induce any noticeable delay, the defined simulation step was

0.01 seconds.
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4.2 Static Scenarios

In the simulation, the manufacturing control system is tested under different conditions defined in static

and dynamic scenarios.

A static scenario is a production scenario where all the data is known initially, this meaning that

there are no perturbations to be considered. This type of scenario is usually defined as the reference

performance of the system, being used for comparisons with other possible production scenarios that

may involve perturbations.

In this thesis, the static scenarios to be tested were selected considering the amount of available

data for comparisons. Hence, the table of possible static data sets introduced in [38] was considered

and the scenarios C0 and B0 were selected. The data related to each static scenario is presented in

Table 4.2. In this table, the number of shuttles allowed in the production system and the specification

of the orders corresponding to each scenario are provided. This specification comprises the quantity of

each product required and the due date for each order.

The scenario C0 will be the main reference for the operation of the manufacturing system. This

happens once the dynamic scenarios will be simulated under C0 conditions and the differences of per-

formance will be measured in comparison to C0.

Table 4.2: Static Scenarios data.

Scenario No. of shuttles Order # BELT AIP LATE Due date

C0 4
#1 1 - - 382

#2 - 1 - 238

B0 10 #1 - 2 - 327

4.3 Dynamic Scenarios

Real life production system events are dynamic, facing perturbations that cannot be predicted in the

beginning of production. A dynamic scenario is characterized by having certain data that is unknown in

the initial time, generally perturbations.

In order to test the designed control system under the existance of some perturbations, a set of

dynamic scenarios was selected. Once more, these scenarios were mainly selected with a view to com-

paring performances with existing data of the benchmark production system. Nevertheless, attention

was paid to choosing a varied selection of dynamic situations that would test different capabilities of the

system. Taking this into consideration, the dynamic scenario list introduced in [38] was used and the

scenarios #PS5, #PS7, #PS9 and #PS10 were selected. Table 4.3 presents the description of those

scenarios in the context of the AIP-PRIMECA FMS.

The dynamic scenario #PS5 evaluates the capacity of the system to manage the introduction of a

rush order. This situation is very common in the real world, since the client desires are unpredictable
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Table 4.3: Dynamic Scenarios data.

Scenario Description Parameters

#PS5 At a given time, a rush order ap-
pears.

Type of order: AIP. Arrival Time: just after the
end of the production of the fourth job in the
cell. Due date: ASAP.

#PS7 At a given time, a part of the con-
veyor system is due for mainte-
nance in a given time window.

Start time: just after the fourth job is un-
loaded. The conveyor must no longer accept
shuttles, and as soon as it is empty, the main-
tenance starts. Duration (seconds): 25 × To-
tal number of jobs.

#PS9 At a given time, one of the re-
dundant machines will go down
in a given time window.

Machine: M2. Start time: just after the de-
parture of the first shuttle from M2. Duration
(seconds): 25 × Total number of jobs.

#PS10 At a given time, one of the crit-
ical machines will go down in a
given time window.

Machine: M4. Start time: just after the depar-
ture of the second shuttle from M4. Duration
(seconds): 25 × Total number of jobs.

and may evolve over time. As a response to the submitted rush order, the system should prioritize it and

have its jobs skipping the queue to be loaded in the production system.

Scenario #PS7 simulates a maintenance operation in one part of the conveyor system, which makes

that part unavailable to carry jobs. The capacity of the control system to manage a routing change is

tested, with jobs having to opt for an alternative route (in the IAL Manufacturing System this situation is

visible in the different transportation times).

In the scenarios #PS9 and #PS10, two different breakdown situations are evaluated. In the first,

one of the machines that only executes redundant operations will go down. The specified machine is M2

which translates to workstation B2 in the IAL Manufacturing System. This situation causes the production

system to loose production capacity but the production does not need to stop at any moment. In the

case of #PS10, it is a critical machine that goes down in a given time window, leaving the system with

one or more operations that cannot be executed during that time. This situation can cause production

to stop as there will be some jobs that will not find a workstation for certain operations. In the context of

these scenarios, the specified machine is machine M4, equivalent to workstation B4.

The results of the simulation tests under the conditions of the described scenarios will be presented

in chapter 6 of this thesis.
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Chapter 5

Experimental Implementation

The real world presents a variety of new challenges compared to the simulated world. In order to

perform the implementation of a simulated system in the real world, hardware and connectivity issues

need to have a significant focus, since they represent the root of a generous amount of implementation

problems. Some of these problems have its cause in the different proprietary protocols provided by the

hardware automation devices, which make the process of integrating hardware devices complex and

time consuming. However, due to standards like OPC or OPC-UA, which intend to promote hardware

integration at all levels of an industrial facility, this current landscape is changing [63].

With a view to implementing the agent-based system previously introduced and simulated, some

experiences were conducted so that the conditions under which the system would be implemented

could be understood.

The first challenge addressed is the integration of agents with hardware, where the hardware com-

ponent is a PLC from the IAL. A simulation with hardware-in-the-loop was conducted, aiming to connect

one of the simulated agents with the PLC during the simulation time.

Then, the focus will be on the deployment of agents in a real experimental facility, which needs to be

performed by means of an appropriate agent platform.

Lastly, an illustrative example on how the agents would be implemented is presented, approaching

the allocation of workstations through the use of the CNP.

5.1 Hardware integration

The implementation of an agent-based system requires the integration of agents with physical devices.

Recalling section 1.1 of the first chapter, there are mainly two ways of performing this integration: em-

bedding the agent within the physical control device or connecting the agent with the existing control

device in a coupled approach. The reasons to use one of the approaches are related to the ability of

control platforms to host the agents and the required level of control, which can be focused on real-time

control capabilities or on more visualization and adaptation [63].

When dealing with low to medium range industrial PLCs, the chances are that an embedded ap-
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proach will not be really suitable and easy to implement, since the controllers will not provide the neces-

sary programming resources to implement the agents. Thus, a coupled approach might be preferable,

allowing the use of all the existent automation equipments as long as they enable communication be-

tween devices.

In what concerns the technologies to interface automation devices, Table 5.1 summarises some

industrial communication technologies which use has been described in the literature, going from the

traditional serial communication to the modern OPC-UA that considers cloud integration [63][8].

To assess the possibility of implementing the proposed control strategy, a simulation with hardware-

in-the-loop was conducted. The integration of agents and hardware addressed in this simulation was

the connection between one of the simulated agents and one of the existent PLCs in the IAL. The goal

was to have one of the simulated Workstation Agents communicating in real time with a PLC from one of

the automation stands. In this way, the simulation would run normally but one of the Workstation Agents

would instruct the PLC to execute the given operations and wait for it to complete the operations before

proceeding.

In order to perform this experience, a group of PLC variables designated ”Flags” was created to

define the communication channels between the agent and the PLC. Furthermore, the PLC was pro-

grammed in a way that the activation of each variable would originate the execution of the required task

autonomously. The Instruction List source code is presented in Appendix A.

Table 5.2 exhibits the PLC variables to which the agent can access to command the PLC or to consult

the state of the workstation. The first three variables (”Free”, ”JobWaiting” and ”Operating) relate to the

state of the workstation and the other nine represent commands that the agent can give to the PLC.

After instructing the PLC to perform one of the operations ”Axis”, ”rcomp” or ”Lcomp”, the agent uses

the variable ”Operating” to perceive when the operation is concluded and proceeds from that point.

In what concerns the communication technologies, the given PLC is a Saia Burgess Controls R©

PCD3.M3330 that allows Ethernet Communication. As to the GAMA simulation software, it was not

originally conceived for network communications, since it is a simulation environment built to contain

all the simulation components. For this reason, an intermediate software was used and an alternative

communication method was defined between this software and the simulation.

The selected intermediate software was a MATLAB Script. In what concerns the communication

between the simulation and MATLAB, the alternative communication method consists in having both

softwares reading and writing from the same data file, which is a .txt file containing as content the state

of the twelve PLC variables. The scheme of this interface is displayed in Figure 5.1.

Figure 5.1: Interface between a simulation agent and a PLC.
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Table 5.1: Interface Technologies [63][8].

Technology Overview

Serial link
RS232

RS232 is a communication channel where the data is transmitted in a serial-
ized manner according to a proprietary protocol. The communication configu-
ration should be somehow hard coded according to the device communication
protocol, making this way of communication really vendor dependent.

MODBUS MODBUS is a serial communications protocol originally published by Modicon
(now Schneider Electric) in 1979 for use with its PLCs. Following a simple
communication protocol, the access to input and output registers of PLCs is
possible by using serial or Ethernet communication.

PROFIBUS PROFIBUS is the fieldbus-based automation standard of PROFIBUS &
PROFINET International. Via a single bus cable, PROFIBUS links controllers
or control systems with decentralized field devices on the field level and also
enables consistent data exchange with higher ranking communication sys-
tems.

PROFINET PROFINET is an industry technical standard for data communication over In-
dustrial Ethernet, designed to control and collect data from equipment in in-
dustrial systems, with a particular strength in delivering data under tight time
constraints.

EtherCAT EtherCAT (Ethernet for Control Automation Technology) is an Ethernet-based
fieldbus system, invented by Beckhoff Automation. The protocol is standard-
ized in IEC 61158 and is suitable for both hard and soft real-time computing
requirements in automation technology.

OPC-UA OPC-UA (Open Platform Communications - Unified Architecture) is an open,
vendor- and platform-independent standard developed by the OPC Founda-
tion for horizontal communication from machine to machine (M2M) and for
vertical communication from machine all the way to the cloud.

TCP/IP TCP/IP (Transmission Control Protocol/Internet Protocol) is the conceptual
model and set of communications protocols used on the Internet and simi-
lar computer networks. The Internet protocol suite provides end-to-end data
communication specifying how data should be packetized, addressed, trans-
mitted, routed, and received.

CIP The Common Industrial Protocol (CIP) aims a complete integration of control
with information over Internet technologies. It allows users to integrate these
manufacturing applications with enterprise-level Ethernet networks and the
Internet.

CORBA CORBA is based essentially in the Object Request Broker (ORB) concept,
which allows a local client to invoke methods on a remote platform as if they
were local. It is a standard defined by the Object Management Group (OMG)
designed to facilitate the communication of systems that are deployed on di-
verse platforms.

REST Representational State Transfer (REST) is an architectural style that defines a
set of constraints and properties based on HTTP. Web Services that conform
to the REST architectural style, or RESTful web services, provide interoper-
ability between computer systems on the Internet.

USB USB, short for Universal Serial Bus, is an industry standard that was devel-
oped to define cables, connectors and protocols for connection, communi-
cation, and power supply between personal computers and their peripheral
devices.

As to the MATLAB function, it is running a script that periodically updates the values of the variables

from the data file and the PLC to be in accordance with each other. The MATLAB Script pseudo-

algorithm is presented in Algorithm 2 and the complete source code is displayed in Appendix A.
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Table 5.2: PLC variables.

PLC variable Description Address

Free Active if the workstation is Free. F 1087

JobWaiting Active if a job arrived to the job input storage area. F 1087

Operating Active when the workstation is executing one operation. F 1089

Axis Command to perform operation Axis. F 1091

rcomp Command to perform operation rcomp. F 1092

Lcomp Command to perform operation Lcomp. F 1093

ElevadorP0 Command to position the elevator on the floor zero. F 1112

ElevadorP1 Command to position the elevator on the floor one. F 1113

ElevadorP2 Command to position the elevator on the floor two. F 1114

ElevadorP3 Command to position the elevator on the floor three. F 1115

TapeteOnOff Command to switch on the conveyor belt. F 1094 (O 19 to write)

TapeteDirec Command to define the conveyor belt direction. F 1095 (O 20 to write)

The script reads the values of the variables from the PLC, then reads the values of the variables

in the data file and, in case they are different, writes those values in the PLC. Afterwards, reads the

variables from the PLC again and, in case any of them is already changed, writes the states of the PLC

variables in the FILE to update it.

In regard to the interface performance, the simulation has a defined step of 0.01 seconds and the

same sample time was set for the operation of the MATLAB script, aiming at a real time communication

between the simulated agent and the PLC.
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Algorithm 2 Interface MATLAB Script pseudo-algorithm.
1: Define 2 vectors with the addresses to read and the addresses to write in the PLC
2: while stop 6= 0 do
3: for i = 1 : n do
4: V aluesPLC(i)← read value from reading address i
5: end for
6: Open data file to read
7: while i ≤ n do
8: V aluesFILE(i)← read value from line i
9: if V aluesFILE(i) 6= V aluesPLC(i) then

10: Write V aluesFILE(i) in the writing address i
11: end if
12: i = i+ 1
13: end while
14: Close data file
15: for i = 1 : n do
16: V aluesPLC(i)← read value from reading address i
17: if V aluesPLC(i) 6= V aluesFILE(i) then
18: Increase different counter
19: end if
20: end for
21: if different 6= 0 then
22: Open data file to write
23: Write V aluesPLC in the file
24: Close file
25: end if
26: end while

5.2 Agent Development Platform

The development and deployment of MAS requires the implementation of features which are not usu-

ally supported by regular programming languages, such as message transport, yellow and white pages

services, agent life-cycle management services and support to ontologies. In order to simplify the de-

velopment of agent-based applications and save some programming effort, it is important to use an

adequate agent platform which is prepared to implement the afore mentioned features.

In Table 1.1, four up-to-date agent platforms were introduced (Agent Factory, Jadex, JADE and

JACK), which provide different services and agent models and come from different developers and

domains. When it came to choose the most suitable agent platform, some criteria was defined:

• To be an open source platform.

• Existence of good documentation and available support.

• Compatibility with the FIPA Standards.

• Agent management features available.

Analysing the four presented agent platforms, JADE is the one that better fits the criteria, justifying

why it is one of the most widely used platforms for agent-related research purposes.

JADE is an open source platform for peer-to-peer agent based applications that aims to simplify the

development of MAS by providing a set of system services and agents in compliance with the FIPA
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specifications. JADE uses the FIPA-ACL as the communication language to represent messages and

provides the mandatory components defined by FIPA to manage an agent platform, which are the Agent

Communication Channel (ACC), the AMS that provides white pages and agent life-cycle management

services and the DF that provides yellow pages services and the capability of federation within other DFs

on other existing APs. Furthermore, a JADE-based system can be distributed across several machines

which do not need to share the same Operating System, as long as they support the Java Virtual

Machine (JVM) [64].

Figure 5.2 represents the main JADE architectural elements. Agents live on top of a Platform which

is composed by a Main Container (where the AMS and the DF are included) and other optional regular

containers. The AP provides basic services to the agents, such as message delivery, and the containers

can be executed on different hosts, composing a distributed AP. In addition, JADE is prepared to execute

all the necessary communications via TCP/IP, ensuring message transport.

Figure 5.2: The JADE Architecture [64].

The remote management of agents within an AP is performed through the use of a Graphical User In-

terface (GUI), displayed in Figure 5.3 (a), where the agents can be monitored and controlled. Moreover,

JADE provides a set of other graphical tools to support the debugging phase, which can be a complex

process in distributed systems. These tools are the Dummy Agent, which is a monitoring and debugging

tool that allows editing, composing sending and receiving ACL messages from agents, the Introspector

Agent, which allows to monitor and control the life-cycle of a running agent, together with its exchanged

ACL messages and behaviours in execution, and the Sniffer Agent (Figure 5.3 (b)), that allows to track

messages exchanged within a JADE AP using a similar notation to the AUML interaction diagrams.
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(a) (b)

Figure 5.3: JADE Management GUI (a) and JADE Sniffer Agent GUI (b).

5.3 Contract Net Protocol Example

The deployment of the five types of agents that compose the designed MAS in the real experimental

facility through the use of JADE would be the next step in the implementation of the given agent-based

system. However, due to the limited duration of this research work, it was not possible to accomplish the

complete agent deployment.

An illustrative experience on how the agents would be implemented in the experimental facility was

performed, using JADE and two networked computers. The experience portrays the application of the

CNP in the allocation of workstations for each operation contained in the production sequence of a job.

In a regular JADE application, each type of agent is defined as a JAVA class, and programmed by

taking advantage of JADE built-in features like the concept of behaviour to model concurrent tasks and

a library of FIPA Interaction Protocols ready to be used. Regarding the fact that both the simulation soft-

ware GAMA and the platform JADE are compatible with the FIPA ACL for the communications among

agents, the transition from GAMA to JADE in terms of agent programming is facilitated, since all proto-

cols used by the agents in the simulation are promptly available in JADE and thus the structure of the

JAVA classes in JADE would be similar to the structure of each species in GAMA.

Illustrative parts of both the Job Agent and the Workstation Agent were implemented in JADE. The

source code of the corresponding JAVA classes can be consulted in Appendix A.

The programmed operation of the Job Agent goes as follows:

1. The agent gets the operations in the production sequence as start-up arguments.

2. Creates a sequential behaviour that will repeat itself for all the operations in the sequence.

3. The first part of the behaviour comprises requesting to the DF the workstations which provide the

next operation in the production sequence and filling the CFP message to send them.

4. The second part of the behaviour is the execution of the CNP by sending the CFP messages and

by answering the first Propose message that it receives with an Accept-Proposal.
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5. Lastly, after concluding the CNP successfully, the agent waits the corresponding operation pro-

cessing time before proceeding.

6. After completing all the operations read as arguments, the agent terminates.

As to the Workstation Agent, it was programmed as follows:

1. The agent gets the operations which its workstation provides as start-up arguments.

2. The agent registers the operations in the yellow pages (DF).

3. Creates two cyclic behaviours that will repeat themselves until the end of the production.

4. In the first behaviour the agent answers the CFP message with a Propose message in case the

content of that message contains one of the operation its workstation provides.

5. In the second behaviour the agent answers the Accept-Proposal message with an Inform-done

message and becomes unavailable in a waiting mode during the processing time of the operation.

6. Before the Workstation Agent terminates, it de-registers from the DF.

To conduct the experience, JADE was launched in one of the computers, creating the AP, the Main

Container and starting the Remote Agent Management GUI, and three Workstation Agents (”WS2”,

”WS3” and ”WS4”) were created in the ”Main-Container”. Then, using the other computer, a second

container called ”Container-1” was remotely launched in a way it would belong to the same AP. After the

creation of the remote container, it became visible in the Remote Agent Management GUI of the first

computer and a Job Agent ”B” was created.

Figure 5.4 displays a screen-shot of the operation of JADE, where the Remote Agent Management

GUI can be seen in the upper left corner, the command prompt were JADE was launched can be seen

in the lower left corner and the exchanged messages between the Job Agent ”B” and the Workstation

Agents ”WS2”, ”WS3” and ”WS4” can be observed in the Sniffer Agent GUI on the right.

Figure 5.4: Exchanged messages between agents in different computers.
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Looking closely to one section of the exchanged messages, depicted in Figure 5.5, it is possible to

identify the pattern: before initiating the CNP with the workstations, marked by the CFP messages being

sent, the Job Agent sends a Request message to the DF to query the list of workstations that provide the

next operation in the sequence. Then, it can be noticed that the Job Agent answers to the first Propose

message that it receives and the CNP gets concluded with the Inform-done message.

Figure 5.5: Exchanged messages with Job Agent ”B”.

Recalling the MAS model presented in Chapter 3, the agent communications displayed in JADE are

slightly different from the ones designed for the system and presented in the simulation. That relates to

the fact that this illustrative example was not developed with the same depth as the simulation, where

the agents do not get unavailable and always respond to all the messages.

Another section of exchanged messages is displayed in Figure 5.6 for the case of two Job Agents

communicating with the Workstation Agents. In this figure, jobs ”B” and ”E” alternately query the DF to

find which workstations can provide the next operation in their production sequence and start the CNP

afterwards. It can be noticed that in some cases the Propose message from one workstation only arrives

after the conclusion of the CNP with the other. This is due to fact that while a workstation is executing

an operation it does not answer CFP messages, only sending the response after finishing the operation

it is providing.

Further detail on the result of this experiment is provided in the next chapter of this thesis.
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Figure 5.6: Exchanged messages with Job Agent ”B” and ”E”.
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Chapter 6

Results and Discussion

This chapter contains the results from the afore mentioned simulations and experiences performed along

the course of this thesis. To begin with, results from the static simulations are presented and compared

to other control approaches. Then, the results from the dynamic scenarios are presented, where, in two

of them, the behaviour of the system can be compared to the one presented by other control approach in

the benchmark. Finally, the results of the experimental tests performed are presented and commented.

Considering that the results are the operation of a FMS, and that it is of utmost importance to have

a clear view of the workstation allocation along the manufacturing process, Gantt charts will be used to

display the results of the experiences.

As a quantitative performance indicator used for comparisons, the global makespan (Cmax) of the

manufacturing process is considered.

6.1 Static Simulation

6.1.1 Static Scenario C0

The static scenario C0 was the first scenario to be tested and was considered as the reference perfor-

mance of the system. Taking into account that it is composed by two orders (1 ”BELT” and 1 ”AIP”),

this scenario consists of 7 jobs, with between 7 and 10 operations each, and 5 workstations. The Gantt

chart for the performance of the system in this scenario and using rule base 1 is depicted in Figure 6.1

By analysis of the chart, the workstation B2 has a considerably higher utilization rate than worksta-

tions B3 and B4, with 19 operations performed versus 10 of the other workstations. This occurrence

is part of the reasons for the creation and use of a second rule base. Furthermore, a clear sign of an

allocation far from optimal is visible when Job ”E” (in green) and Job ”T” (in cyan) are loaded and, faced

with both workstation B2 and B3 in the same state of operation, choose workstation B2, increasing the

makespan of the global system.

Regarding second rule base, the Gantt chart of the operation of the system for scenario C0 with

rule base 2 is presented in Figure 6.2. Here, a more balanced workstation utilization is evident, with

the workstation B2 having performed 15 operations for 12 of the other two workstations. The overall
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Figure 6.1: Gantt chart for Static Scenario C0 with rule base 1. (Cmax = 446s)

Figure 6.2: Gantt chart for Static Scenario C0 with rule base 2. (Cmax = 438s)

performance of rule base 2 is better than rule base 1 (Cmax = 438s < Cmax = 446s), and no obvious

sign of bad allocation in this configuration is visible.

Considering the differences of performance between the rule bases, the reference performance of

the system was defined as scenario C0 with rule base 2. The operations performed on each workstation

are displayed in Table 6.1.

In the table, a relatively good distribution of ”Axis” and ”rcomp” operations between B2 and B3 is
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Table 6.1: Workstation utilization.

Workstation Axis rcomp Icomp Lcomp Screw

B2 10 3 – 2 –

B3 8 4 – – 0

B4 – – 5 2 5

visible, and an even better division of the ”Lcomp” operations happens between B2 and B4. In what

concerns the operation ”Icomp”, which is an operation provided by B4 only, it was executed 5 times by

B4 as expected. Lastly, operation ”Screw” is the worse balanced operation, since it is executed 5 times

by workstation B4 over 0 of B3. This can be easily explained with the fact that operation ”Screw” always

follows ”Icomp” on the production sequence of the jobs, and considering that ”Icomp” is always executed

in B4 and the Job Agents were designed to request all the operations a workstation can provide before

exiting it, the jobs that need operation ”Screw” always have it done in B4 after ”Icomp”.

To assess the performance of this rule based scheduling system, some results introduced in [38],

regarding simulation and real experiments using the potential fields approach in the AIP-PRIMECA FMS,

were used for comparison. The potential fields approach [44], like the CNP, is also a reactive approach

used in heterarchical control architectures. The first of these results comprises the performance of the

potential fields approach for simulation of static scenario C0 and is presented in the Gantt chart of Figure

6.3.

Analysing the chart and comparing with scenario C0 with rule base 2, it is observable that both

systems executed the exact same workstation allocation. Furthermore, the makespan of the benchmark

is higher (Cmax = 448s), which would mean an improvement percentage of approximately 2% of the

proposed control system over the potential fields approach.

However, this difference in the makespan is caused by the not documented small time intervals

between the unloading of a job and the loading of a new one, visible after the unloading of job ”B” (in

blue), job ”E” (in purple) and job ”T” (in cyan). In addition to not having their cause documented, these

small time intervals are not present in other results of the same author, namely the Gantt chart with the

solution of the MILP presented in Figure 6.5 or the Gantt chart with the result of the dynamic scenario

#PS7 in the real AIP-PRIMECA presented in Figure 6.9.

For this reason, the performance of the proposed control system is considered validated, once it

achieves a workstation allocation similar to the one of a demonstrated distributed control system, but the

improvement percentage over the given system is not to be considered.
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Figure 6.3: Gantt chart for Static Scenario C0 from benchmark [38]. (Cmax = 448s)

6.1.2 Static Scenario B0

In addition to scenario C0, the proposed manufacturing control system was also tested under the con-

ditions of the static scenario B0. This happened for the main purpose of establishing a comparison not

only with experiments using the potential fields approach once more, but also with the performance of

a reactive and optimized hybrid manufacturing control architecture called ORCA (dynamic Architecture

for an Optimized and Reactive Control), introduced in [45], from which the reactive part is also based in

the potential fields approach and the experimental study was also executed in the AIP-PRIMECA FMS.

Scenario B0 contains one order only (2 ”AIP”), which results in a problem of 6 jobs, with 7 or 10

operations each, and 5 workstations. In what concerns the rule bases, the control system had the same

performance for both rule bases under the conditions of this static scenario. This can be justified with

the fact that scenario B0 only contains one order and that, according to both rule bases, in this scenario

all jobs are loaded in the beginning of the production, not leaving space for situations where different

decisions could be made. Thus, the Gantt chart for the static scenario B0 is provided in Figure 6.4,

where, for the purpose of distinguishing the first ”AIP” product from the second, the colours of the last

were faded.

The system has a good performance, with the maximum makespan of Cmax = 326s. In terms of

workstation allocation, the rule base of the proposed MAS control approach is followed and the only
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Figure 6.4: Gantt chart for Static Scenario B0. (Cmax = 326s)

drawback that can be observed is the excess of utilization of workstation B2 compared to B3. If the last

two jobs ”I” and ”P” switched order, that utilization would be more balanced and the global makespan

would be inferior.

Table 6.2 establishes the comparison of the proposed control system with the above mentioned con-

trol approaches, using results introduced in [45]. The first system is once more the potential fields ap-

proach, this time applied to the scenario B0. Then, two results for the ORCA-FMS are presented, since

this hybrid control architecture has two hybridization levels: (1) with the ILP (Integer Linear Program-

ming) solver, only providing the job order (ORCA-FMS 1) and (2) providing also the machine sequence

to be followed (ORCA-FMS 2).

Table 6.2: Makespan for several control approaches under B0 conditions.

Production Cmax (seconds)

Scenario Potential Fields ORCA-FMS 1 ORCA-FMS 2 Proposed MAS

B0 (2×AIP) 345 323 314 326

By analysing the given results, the proposed MAS control system achieved a better performance

in this scenario than the potential fields approach (Cmax = 326s < Cmax = 345s), with a reduction of

makespan in the order of 5.5%. However, as expected, both hybridization levels of the ORCA architecture

demonstrated better performances, due to the presence of the ILP optimization. The first level ORCA-

FMS 1 achieved an almost similar performance, once the ILP only provided the job loading order and

from there the system worked purely reactive. As to the second level ORCA-FMS 2, it achieved the best

performance of all systems, with a reduction of 3.7% relatively to the proposed MAS control system. This

can be easily understood, since with this hybrid control approach, the jobs not only were loaded in the
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optimal order, but also respected the optimal machine sequence, just differing from the optimal solution

in the arrival times.

6.1.3 Static Scenario with loading order from MILP

To conclude the static simulation section of this thesis, one last experiment was performed. Having as

inspiration the operation of the hybrid manufacturing control approach mentioned in the last section and

taking advantage of the MILP formulation and solution of the Flexible Job-Shop Scheduling Problem

(FJSP) instantiated for the AIP-PRIMECA FMS introduced in [38], an hybrid control approach was sim-

ulated. This hybrid approach consisted in using the optimal job loading order provided by MILP as a

starting point for the operation of the proposed reactive MAS control system.

Regarding the MILP, the parameters, variables, constrains and objective function are presented in

Appendix B. As to the solution, it is depicted in the Gantt chart of Figure 6.5, and coincides with the

optimal performance for static scenario C0. (In the chart, the operation ”Lcomp” of job ”P” is missing in

machine M4 between the operation ”Screw” of job ”I” and the operation ”Lcomp” of job ”L”.)

Figure 6.5: Gantt chart for Static Scenario C0 from MILP [38]. (Cmax = 395s)

Thus, the optimal loading order ”I”, ”P”, ”L”, ”B”, ”A”, ”E”, ”T” was inserted in the simulation and the

proposed system acted according to its rule base but upon that initial data. The result of this hybrid

experiment is presented in the Gatt chart of Figure 6.6.

To begin with, a difference can be noticed in the loading of the jobs: while according to the proposed

rule bases the jobs should be loaded whenever the system can receive them, which results in the first

4 jobs being loaded continuously, in the optimal plan the first two jobs are loaded immediately but then
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Figure 6.6: Gantt chart for Static Scenario C0 with loading order from MILP. (Cmax = 435s)

the third and fourth jobs are only loaded with the exact time to enter the system and start receiving

operations, which makes sense with a view to minimize de Work-In-Progress (WIP). Then, the major

difference between the performance of the system and the optimal operation can be observed when job

”E” is loaded: after entering the system and receiving proposals from workstation B2 and B3, which were

both currently operating and in the same state, the job rules make him choose B2, while in an optimal

solution that job would start its manufacturing in B3.

This difference of operation results in an increase of approximately 10% in the global makespan of

the hybrid system compared to the optimal solution (Cmax = 435s > Cmax = 395s).

This comparison is a clear example of the difference between an a priori optimization, where data

from the entire system operation is known initially for the scheduling, and a reactive agent-based system,

where the local decision making of the agents generate schedule solutions differing from the optimal.

6.2 Dynamic Simulation

The dynamic study of this work consisted in testing the proposed control system under the conditions of

4 selected dynamic scenarios explained in Section 4.3.

In order to execute these experiments in the simulation, the perturbations were artificially set to

happen during the course of the simulation. However, none of those was initially known by any of the

agents, which continued acting reactively and making their decisions on-line.

All dynamic scenarios were tested under the same conditions of reference scenario C0 with the rule

base 2, so that the effects of perturbations can be quantified relatively to the reference performance of

the system.
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Furthermore, in some of the experiences a comparison to the performance of the potential fields

approach tested under those dynamic conditions in the AIP-PRIMECA FMS was conducted.

6.2.1 Dynamic Scenario #PS5

The dynamic scenario tests the ability of the system in handling the introduction of a rush order.

Differently from how it was defined in [38] (Table 4.3), a parameter was changed in the course of this

simulation to better exhibit the response of the control system. The change was in the arrival time of the

rush order, which was defined in the table for after the end of the production of the fourth job in the cell.

The reason was the fact that scenario C0 has 7 jobs to be produced, which means that after the end

of production of the fourth job there is no more jobs waiting to be loaded in the manufacturing system.

Thus, the rush order would be just normally loaded in the system and the response of the control system

would not be clear. To avoid this, and to show that the control system has the ability of prioritizing rush

orders against normal orders, the arrival time of the rush order was set to the end of production of the

second job in the system.

Figure 6.7 shows the response of the system to the introduction of the rush order. That order is

submitted immediately after the end of the production of the job ”E” (in green) at t = 229s and it can be

observed that in spite of loading the rest of the jobs that were already waiting to be loaded in the cell

(i.e. job ”I” and job ”P” of order #2), the next jobs loaded were the ”A”, ”I” and ”P” of the rush order (in

faded purple, beige and gray).

The global makespan of the production increased from 438 to 611 with the production of three more

jobs, which translates to a raise of 39.5% in the makespan.

Figure 6.7: Gantt chart for Dynamic Scenario #PS5. (Cmax = 611s)
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6.2.2 Dynamic Scenario #PS7

Scenario #PS7 is a simple dynamic scenario that simulates a maintenance operation in one part of the

conveyor system, indicated in Figure 2.3.

In the context of the IAL Manufacturing System and the proposed control system, this routing change

is only visible in the difference of transportations times. Even so, it is important to test if that routing

change is possible in the case of the simulated IAL Manufacturing System and even in the remote

scenario of an implementation in the real benchmark cell, without modifying the control system.

The maintenance was simulated as a temporary change in the transportation times table, changing to

zero the duration of the shortest path between workstation B5 and the conveyor belt (machines M5 and

M1 in the AIP-PRIMECA), which resulted in the agents deciding for the second path using an alternative

and longer route.

The Gantt chart for the dynamic scenario #PS7 is depicted in Figure 6.8, where the maintenance in

the conveyor system started after the production of job ”L” (in red) at t = 309s. The visible effects of

that route change are the delays in the travels between workstation B5 and the conveyor belt. Without

perturbations that path would take 12 seconds, while going for the second alternative path takes 28

seconds. The reference arrival times at the conveyor belt are represented by the dashed lines in the

Gantt chart and the 16 seconds difference is visible in the chart and in the resulting makespan of Cmax =

454s.

Figure 6.8: Gantt chart for Dynamic Scenario #PS7. (Cmax = 454s)

The behaviour of the system can be compared to the behaviour of the potential fields approach in a

real experiment in the AIP-PRIMECA FMS. Figure 6.9 shows the Gantt chart for the dynamic scenario

#PS7 tested in the physical cell. Unfortunately, the fact that this result comes from the real cell makes it

unsuitable for comparison of performances, since it considers certain waiting times that are neglected in
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the simulations (examples of these waiting times are the time a shuttle needs to move from the job input

storage area to the operation area and the time a shuttle needs to reach the main loop of the conveyor

system before the machine start operating on another job).

However, a parallelism can be established between both performances, since the delays caused by

the maintenance operation are of the same order. In the real cell without perturbations, the time a job

would need to go from machine M5 to machine M1 is near 18 seconds, while in this situation the jobs

need almost 35 seconds for the same path.

Figure 6.9: Gantt chart for Dynamic Scenario #PS7 from benchmark [38]. (Cmax = 548s)

6.2.3 Dynamic Scenario #PS9

Dynamic scenario #PS9 tests a very usual situation of a breakdown in one workstation, which in this

specific case corresponds to a redundant one.

In terms of simulation, workstation B2 was programmed to go down after the departure of the first

job and stay down for 25× 7 = 175s. With the workstation in breakdown, the Workstation Agent refuses

all CFP and Requests messages. Due to this situation, the jobs must wait in the closed-loop conveyor

system for a place in the other available workstations. Given that workstation B2 only executes redundant

operations, no job needs to stop its manufacture, only a delay in the production is expected.

The performance of the control system under this breakdown situation is presented in Figure 6.10.

The breakdown of B2 happened after the execution of 5 operations on job ”B”, at t = 121s. Due to that

unavailability, the global makespan increased to 486s, about 11% higher than the reference scenario.
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Figure 6.10: Gantt chart for Dynamic Scenario #PS9. (Cmax = 486s)

In the chart, it can be observed that job ”L” (in red) was in the job input storage area of workstation

B2 and due to the breakdown had to exit the workstation and wait for a place to complete the same

operations in workstation B3. Furthermore, both jobs ”A” (in purple) and ”I” (in beige”) also went to

workstation B3 during the downtime of B2. When the workstation turned available again, job ”P” (in gray)

was currently waiting in the closed-loop conveyor system for an available workstation and immediately

began its travel towards workstation B2, arriving there at t = 303s.

Similarly to what was introduced for the simulation of reference scenario C0, a Gantt chart with the

simulation performance of the potential fields approach under the conditions of scenario #PS9 in the

AIP-PRIMECA is also available in [38].

The performance is portrayed in Figure 6.11, from where it can be concluded that the proposed

control system had a similar behaviour to the potential fields control approach. This fact is important to,

once more, validate the operation of the designed agent-based manufacturing control system.

In terms of makespan, the proposed system achieved a global makespan 5 seconds inferior (Cmax =

486 < Cmax = 491). Nevertheless, like it was said for the comparison of scenarios C0, the performances

are considered similar since the difference is again justified with the undocumented time intervals be-

tween the unloading of a job and the immediate loading of the next one.
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Figure 6.11: Gantt chart for Dynamic Scenario #PS9 from benchmark [38]. (Cmax = 491s)

6.2.4 Dynamic Scenario #PS10

The last dynamic experience conducted is an extension of scenario #PS9. Dynamic scenario #PS10

also comprises a breakdown situation, but, in this case, of one critical workstation. The temporary

unavailability of a critical workstation, which will cause leaving jobs with no other option for the execution

of a certain operation, is expected to have a considerable higher impact on the system performance than

the previous scenario.

For simulation purposes, workstation B4 was set to break down after the departure of the second

job at t = 191s and stay down for 175s like in scenario #PS9. The Gantt chart for scenario #PS10 is

depicted in Figure 6.12.

The first two jobs, job ”B” (in blue) and job ”E” (in green), managed to complete the operations in

workstation B4 and thus completing their production sequence. As to job ”L” (in red), it already found

workstation B4 unavailable and had to wait in the closed-loop conveyor system for it to become available

and propose again. Due to the breakdown, job ”L”, job ”A” and job ”I” had their production delayed and

all waited for the return to operation of B4 to complete their production steps.

The resulting global makespan was Cmax = 578s, which represents an increase of 32% in respect

to the reference scenario C0. As expected, the impact of a breakdown in one of the critical worksta-

tions caused a considerably higher impact in the makespan of the system than the breakdown in one

redundant one, leading to an increase of 32% in the global makespan against just 11% of the redundant

workstation breakdown.
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Figure 6.12: Gantt chart for Dynamic Scenario #PS10. (Cmax = 578s)

6.3 Experimental implementations

In this section, results from the experimental tests described in 6.3 are presented and discussed. Both

experiments were performed in computers from the IAL at Instituto Superior Técnico, which are Intel

Core i7-4790 CPU @ 3.60GHz with 8,00 GB of RAM and were running Windows 10.

6.3.1 Connection to PLC

The Hardware integration experience consisted in running the simulation with Workstation Agent B2

reading and writing from a data file, so that by action of an intermediary MATLAB script also reading

and writing from the same file and then updating the PLC variables, a real time connection between a

simulated agent and a PLC could be established. The realization of this experience aimed at showing

that is possible, and relatively easy, to integrate hardware with the agent environment, even if the agent

platform is not the best suited for real time operation.

The performance of the simulation was expected to be similar to the reference performance without

hardware integration, which in this case was the static scenario C0 with rule base 1. However, during the

experience, it could be noticed that the simulation time was running slower than the internal clock of the

PLC. The cause for this discrepancy is the lack of enough processing power to run the simulation in real

world time, and so, simulation time was running slower than PLC time. The result was a simulation with

makespan inferior to the reference performance, since in simulation time the operations executed by the

PLC in workstation B2 were faster than the operations executed on the other simulated workstations.

The Gantt chart exhibiting this discrepancy is presented in Figure 6.13.

In practical terms, the simulation model in the GAMA software was programmed with a simulation
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step of 0.01s and in this experience was set to run in real world time, which means with a step duration

of 0.01s. Due to the lack of processing power, the step duration in world time was in average 0.016s

instead of 0.01s. This means that the 20s which the PLC would take to perform an operation in real

world time, in simulation time were closely around 12.5s.

In the Gantt chart of Figure 6.13, the duration of the operations in workstation B2 is inferior to the

20s taken by workstations B3 and B4 to execute the mounting tasks, which results in some differences

in terms of arrival times to the workstations in the comparison with the reference simulation. The main

differences are the exchanges in the ”Inspection” and ”Unloading” order between jobs ”A” (in purple) and

”P” (in gray) and later between jobs ”L” (in red) and ”T” (in cyan). The global makespan is Cmax = 402s.

In order to evaluate if, in case the simulation was running at the same real world time of the PLC, the

performance of the system with the PLC integration would be the same as the reference simulation,

a second experience was realized. The timers in the PLC program were adjusted with a factor of

f = 0.016−0.010
0.010 × 100 = 60%, going from 20 to 32, and the simulation was run again with a view to

having the PLC working in simulation time. The result of this experiment is depicted in the Gantt chart

of Figure 6.14.

Figure 6.13: Gantt chart for Static Scenario C0 in connection to the PLC (1). (Cmax = 402s)

As it can be seen, once the PLC operations were adjusted to the simulation time, the scheduling

was similar to the one presented in the simulation of scenario C0 with rule base 1 (Figure 6.1). This

shows that is possible to integrate hardware and achieve the same workstation allocation as in the pure

simulation. Nevertheless, no conclusions can be drawn regarding the communications induced delays,

since no in-depth study to assess those delays was conducted.

Contrary to what happens in all the simulations presented so far, whenever this experiment is ex-

ecuted, the global makespan value has a small deviation in the order of the second compared to the

previous value. This is caused by the variations in the running time of the simulation, which only high-
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lights the limitations of the simulation software for real time experiments. In what concerns real time

agent-based experiments, a robust and proper agent platform such as JADE is necessary.

Figure 6.14: Gantt chart for Static Scenario C0 in connection to the PLC (2). (Cmax = 446s)

6.3.2 JADE Example

The last experiment to be presented is the simple CNP example implemented in JADE. This illustrative

case was described in section 5.3, where interaction diagrams with the exchanged messages from JADE

were displayed.

The example only comprises the three workstations that execute mounting operations (WS2, WS3

and WS4) and two jobs ”B” and ”E”. First, JADE was launched with the creation of the Workstation

Agents and the Job Agent ”B” only. As soon as the platform was launched, the Job Agent immediately

started production. After 10 seconds, Job Agent ”E” was launched to begin its production sequence too.

The message exchange in the JADE Platform is close to instantaneous and as expected, the opera-

tions were executed in real time with the absence of delays. The Gantt chart with the result of this simple

example is presented in Figure 6.15.

Considering that no transportation times were considered in this example, the global makespan

Cmax = 140s corresponds to the expected, since it is the sum of the duration of 7 operations of job ”B”.

The fact that job ”B” starts its production in workstation B3 is explained by the Job Agent accepting the

first Propose that it receives, which in JADE happen to be workstation B3 instead of B2.

More than the result itself, it is important to highlight the ability of JADE to allow easy and fast de-

velopment of agent-based applications to work efficiently in real time and distributed across different

machines.
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Figure 6.15: Gantt chart for the CNP example in JADE. (Cmax = 140s)

Table 6.3 summarizes all the simulations performed with the corresponding quantitative performance

indicator Cmax). For the cases where comparisons with other approaches were possible, those results

are also presented.

Table 6.3: Summary of all the simulations performed.

Simulation Cmax(s) Comparison Cmax(s)

Static Scenario C0, rule base 1 446

Static Scenario C0, rule base 2 438 Potential Fields Approach 448

Static Scenario B0, rule base 1 and 2 326 Potential Fields Approach 345

ORCA-FMS 1 323

ORCA-FMS 2 314

Static Scenario C0, loading order from MILP 435 MILP 395

Dynamic Scenario #PS5 611

Dynamic Scenario #PS7 454 Potential Fields Approach (real
experiment)

548

Dynamic Scenario #PS9 486 Potential Fields Approach 491

Dynamic Scenario #PS10 578

Static Scenario C0, connection to PLC 402

Static Scenario C0, connection to PLC
(adjusted times)

446

63



Chapter 7

Conclusions

The objective of this thesis was to study the applicability of agent-based manufacturing control as a

production control system designed to achieve the smart, flexible and reconfigurable factory. To achieve

this objective, a Multi-Agent System was designed to demonstrate a flexible production system and a

simulation study was conducted to test the system through static and dynamic scenarios. Moreover, the

preliminary steps into an experimental implementation were taken.

In the first place, a FMS designated IAL Manufacturing System was planned, and its operation was

modelled in accordance with the operation of a known benchmark for research in the field of distributed

control systems, the AIP-PRIMECA FMS. Having defined the production system to be controlled anal-

ogously to a benchmark cell, the results of some experiments conducted in the cell and reported in the

literature were used for direct comparison and validation.

In the design phase, a MAS composed of 5 types of reactive agents (Order Agent, Job Agent,

Workstation Agent, Robot Agent and Conveyor Agent) was introduced and the agents were modelled

using Petri nets. Agent interactions to allow execution of tasks in the system and workstation allocation

were defined through the combination of 3 FIPA Interaction Protocols (FIPA-Request, FIPA-Propose and

FIPA-Contract Net). Furthermore, two decision rule bases were tested to govern the global operation of

the system and the decision-making in the assignment of operations.

In what concerns the simulation study, two static scenarios (B0 and C0) were tested in the static

part and four dynamic scenarios (#PS5, #PS7, #PS9 and #PS10) were tested in the dynamic part. In

addition, a simulation where the jobs were loaded with order given by MILP was also performed as a

hybrid control approach.

The first static simulation was the reference scenario C0, which was tested for both rule bases. The

system achieved better performance for rule base 2 than for rule base 1, which can be explained by the

better workstation utilization balance and the different loading order. In order to validate the behaviour

of the designed control system, a comparison was established with the performance of another reac-

tive distributed control architecture, the Potential Fields approach, through simulation in the benchmark

FMS. Both systems presented a similar behaviour and thus, the proposed control system operation was

validated.
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Apart from scenario C0, static scenario B0 was also tested with the purpose of establishing compar-

isons with the performance of other distributed control systems under different scenarios. For scenario

B0, the proposed control system achieved a better global performance than the Potential Fields ap-

proach and, as expected, had a worse performance than the hybrid manufacturing control architecture

ORCA. Nevertheless, it showed very promising results, considering that ORCA uses an optimization

algorithm.

The static simulation was concluded with the simulation of an hybrid control approach that allowed

to compare the reactive on-line performance of the agents with the optimized schedule given from an

a priori optimization algorithm. The job loading order given by MILP was used in the simulation of the

reference scenario C0 with rule base 2 and its performance was compared to the optimal scheduling.

Despite having the optimal job loading order, the performance of the hybrid approach was still far from

optimal due to its on-line decision making along the production.

The system successfully responded to all dynamic scenarios. In #PS5, the rush order was prioritized

over the other orders and its jobs were immediately loaded in the system. In scenarios #PS7 and #PS9,

the performance of the proposed system was also like the expected and a comparison of behaviour with

the Potential Fields approach through simulation or experimentation in the AIP-PRIMECA was possible,

resulting in similar workstation allocation. As to scenario #PS10, similarly to #PS9 the system managed

to continue the production through the breakdown situation. However, it showed a clearly higher impact

in the global performance due to the fact that the breakdown happened in one critical workstation.

Regarding the experimental tests, a successful connection was established between one simulated

agent and one PLC, disclosing the way in terms of hardware integration. However, no conclusion

could be drawn concerning the real time communication induced delays, since the IAL computer did

not present enough processing power to run the simulation in real time. As to the JADE example, the

way in which the agents would be implemented and would operate in real time was successfully illus-

trated.

After testing the designed agent-based control system under static and dynamic scenarios, the goals

of this thesis can be considered accomplished. The control system presented a reactive behaviour per-

formance comparable with other distributed control architectures introduced in the literature. Yet, a

lack of long term vision over the behaviour of the distributed MAS control architecture can be observed

throughout the simulations in the local decision making of the agents, resulting in workstation allocations

far from optimal. This is a drawback of this type of implementation of agent-based systems for manufac-

turing control: the lack of horizon of the agents driven from the distributed local decision making.

An agent-based system is a promising solution for the control of flexible and reconfigurable systems

that experience dynamic environments and require a very reactive behaviour. However, the optimal

solution of an a priori optimization can always be considered as a way of reducing the lack of horizon

and improving agent decision-making. Reactive and optimized hybrid control architectures are likely to

be composing the control systems for the factories of the future.
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7.1 Future Work

Considering the introductory character of this work in the context of agent-based manufacturing control

approaches, future developments can be done in several topics addressed along the thesis.

To begin with, the complete implementation of the simulated agents in the JADE Platform should

be performed. Together with the implementation, all the possible required restructuring or completion

should be executed, so that the agents are implemented in a way that the control system can be suc-

cessfully used in a real system.

A direct connection between JADE and industrial devices would be the next step. Communication

protocols should be explored so that hardware integration is implemented as direct and efficient as

possible.

In order to provide the agents with more information about the global system and reduce their lack of

horizon, an ontology can be created to allow more complex interactions between agents and more ex-

changed information between workstations and jobs. It would be interesting to develop decision making

algorithms to take advantage of the received system information and improve agents intelligence and

the quality of autonomous decisions.

Lastly, the design of an hybrid system combining a reactive MAS and an optimization algorithm like

MILP would be of great interest, allying an optimal static performance with the ability to react in case of

dynamic perturbations. The design of this hybrid system could be accomplished, for instance, by means

of the creation a supervisor agent in the MAS that would execute MILP and advise other agents to act

in accordance with its solution.
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Appendix A

Source Code

Instruction List program loaded in the PLC:
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Intermediate MATLAB Script source code:
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JAVA class Job Agent source code:
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JAVA class Workstation Agent source code:
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Appendix B

MILP formulation

Notations for parameters:

P set of jobs, P = {1, 2, ..., n}

R set of machines, R = {1, 2, ..., r}

Ij set of operations of the job j, Ij = {1, 2, ..., |Ij |}, j ∈ P

Oij operation i of the job j

Rij set of machines that can perform operation Oij , Rij ∈ R

pij processing time of operation i(i ∈ Iij)

ttr1r2 transportation time from machine r1 to r2

MJ maximum simultaneous jobs in the shop floor

cir input queue capacity of machine r

dj due date of job j, j = 1, ..., n

Notations for variables:

tij completion time of operation Oij(i ∈ Ij), tij ∈ N

µijr a binary variable set to 1 if operation Oij is performed on machine r; 0, otherwise.

bijkl a binary variable set to 1 if operation Oij is performed before operation Okl; 0, otherwise.

trijr1r2 a binary variable set to 1 if job j is transported to machine r2 after performing operation

Oij ; 0, otherwise.

wijr waiting time of operation Oij in the queue of machine r

wvijklr a binary variable set to 1 if operation Oij is waiting for operation Okl in the queue of

machine r; 0, otherwise.

zlj a binary variable set to 1 if job l and job j are in the shop floor in the same time; 0,

otherwise.

Disjunctive constraints: A machine can process one operation at time, and an operation is performed

by only one machine.

tij + pklµklr +BMbijkl ≤ tkl +BM, ∀i, k ∈ I, ∀j, l ∈ P,∀r ∈ Rij (B.1)
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where BM is a large number.

bijkl + bklij ≤ 1 ∀i ∈ Ij , k ∈ Il,∀j, l ∈ P (B.2)

∑
r∈Rij

µijr = 1 ∀i ∈ Ij ,∀j ∈ P (B.3)

Precedence constraints: These constraints insure job’s production sequence.

t(i+1)j ≥ tij + p(i+1)j + w(i+1)jr2 +
∑

r1,r2∈R
ttr1r2trijr1r2 ∀i ∈ Ij ,∀j ∈ P,∀r1, r2 ∈ Rij (B.4)

∑
r1,r2∈R
r16=r2

trijr1r2 ≤ 1, ∀i ∈ Ij ,∀j ∈ P (B.5)

Allocation and transportation relationship: If successive operations of a job are performed on different

machines, there is a transportation operation between those two machines.

µijr1 + µ(i+1)jr2 − 1 ≤ trijr1r2 ∀i ∈ Ij ,∀j ∈ P,∀r1, r2 ∈ Rij , r1 6= r2 (B.6)

µijr1 + µ(i+1)jr2 ≥ (1 + ε)trijr1r2 ∀i ∈ Ij ,∀j ∈ P,∀r1, r2 ∈ Rij , r1 6= r2 (B.7)

where ε is a small number.

Queue capacity of the machine input and FIFO rule: Each machine has a limited queue capacity.

bijkl + wvijklr ≤ 1 ∀i, k ∈ I, ∀j, l ∈ P,∀r ∈ Rij ∩Rkl (B.8)

bijkl − wvklijr ≥ 0 ∀i ∈ Ij ,∀k ∈ Il,∀j, l ∈ P,∀r ∈ Rij ∩Rkl (B.9)

wvijklr + wvklijr ≤ 1 ∀i ∈ Ij ,∀k ∈ Il,∀j, l ∈ P,∀r ∈ Rij ∩Rkl (B.10)

tij−pij+BMbijkl+BMwvklijr ≤ tkl−pkl−wklr+2BM ∀i ∈ Ij ,∀k ∈ Il,∀j, l ∈ P, j 6= l,∀r ∈ Rij∩Rkl

(B.11)

wklr ≤
∑
i∈Ij

j∈P,j 6=l

pijwvklijr ∀k ∈ Il,∀l ∈ P,∀r ∈ Rkl (B.12)

µijr + µklr ≥ 2(wvijklr + wvklijr) ∀i ∈ Ij ,∀k ∈ Ik,∀j, l ∈ P,∀r ∈ Rij ∩Rkl (B.13)

tij +BMbijkl ≤ tkl +BM ∀i ∈ Ij ,∀k ∈ Ik,∀j, l ∈ P (B.14)

tij − pijµijr +BMbijkl ≤ tkl − pklµklr +BM ∀i ∈ Ij ,∀k ∈ Ik,∀j, l ∈ P,∀r ∈ R (B.15)

tij − pijµijr −wijr +BMbijkl ≤ tkl − pklµklr −wklr +BM ∀i ∈ Ij ,∀k ∈ Ik,∀j, l ∈ P,∀r ∈ R (B.16)∑
l∈P,k∈Il

l 6=j

wvijklr ≤ cir − 1, ∀i ∈ Ij ,∀j ∈ P,∀r ∈ Rij ∩Rkl (B.17)

Limitation of the number of jobs in the system: The number of simultaneous jobs in the shop floor
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can be limited by MJ . ∑
l∈P
l 6=j

zlj ≤MJ − 1 ∀j ∈ P (B.18)

zjl ≥ b0luj + b0j0l − 1 ∀j, l ∈ P (B.19)

zjl ≤ 1− b0l0j + bujul j, l ∈ P (B.20)

zjl ≥ b0l0j + bujul − 1 ∀j, l ∈ P (B.21)

Constraints for the type of each variable.

tij ≥ pij ∀i ∈ Ij , j ∈ P (B.22)

bijkl ∈ {0, 1} ∀i ∈ Ij , j ∈ P,∀k ∈ Il, l ∈ P (B.23)

trijrr′ ∈ {0, 1} ∀i ∈ Ij , j ∈ P,∀r, r′ ∈ Rij (B.24)

µijr ∈ {0, 1} ∀i ∈ Ij , j ∈ P,∀r ∈ Rij (B.25)

A valid inequality: The following cut is added to the model to improve the solving.

µklr + µijr − (bijkl + bklij) ≤ 1 ∀i ∈ Ij , k ∈ Il∀j, l ∈ P,∀r ∈ R (B.26)

Quantitative performance: Makespan is the time at which the last job is completed.

Cmax = max∀i∈Ij∀j∈P tij (B.27)

Objective function: The objective function chosen is the minimization of the maximum Makespan.

Minimize Cmax (B.28)
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