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Abstract—The main purpose of this work is to develop a
localization system based on computer vision to courses that
are delimited by objects. This problem is based on the Formula
Student Driverless competition on which a vehicle without driver
must be able to locate on a cone delimited track.

The developed system uses a 3D camera, which allows to calcu-
late distances. The objects, in this case cones, are detected in the
images through the YOLO system. The distances between cones
are collected, and except for degenerated cases, the collection of
every distances forms a unique map ”signature”.

The possibility of a prior recognition of the course allows
mapping using the ORB-SLAM2 system. Through its post-
processing, the global map of the course is constructed, which
includes the localization of the cones and the distances signatures.

To estimate the course localization of the camera at every
moment, the construction of the local map is based on the
observed objects. The matching between the observed objects
and the ones that are along the course is done using a search
algorithm, which matches the local map with the global map,
based on the distances signatures. Once they are matched, the
localization and orientation of the camera is estimated.

The system was tested using synthetic and real courses which
led to very promising results.

Index Terms—Object Detection on Image, SLAM, Greedy
Algorithms, Graphs, Computer Vision.

I. INTRODUCTION

THE Formula Student Driverless is an international univer-
sity competition in the field of motor sports, in which it is

intended to develop a full-scale competition vehicle capable of
moving autonomously, and without driver, in tests where the
courses are delimited by cones of different colors and sizes.

The possibility of carrying out a recognition walk to the
course of the test, allows its mapping to be carried out. The
collected information can be used to optimize the location
system of the vehicle.

In this work, we intend to estimate the location of the 3-
D camera along the couse, based on the position of specific
objects. Through the mapping of the course made in the
previous recognition and the location of the detected cones that
delimit it, the global map of the course is constructed. This
map corresponds to the collection of all distances between
cones, which constitutes a unique ”signature” for each map,
except for degenerated cases.

For each instance, the cones are detected in the image and
their location is obtained, allowing to construct a local map.
The search of correspondence between the local map and the
global map, based on the distance between objects, give us
the object pairing, allowing us to obtain the localization and
orientation of the camera.

II. PROPOSED SOLUTION

The proposed solution for the problem of localization is
capable of:
• Detecting objects on image;
• Mapping the course;
• Building a Global Map of the course;
• Building a Local Map of each frame;
• Corresponding objects between Local Map to Global

Map;
• Obtaining the camera pose.

A. Object Detection

The YOLO[1][2] is used to perform the identification and
location of objects in image. This system uses a single
convolutional neural network to perform the identification and
location of objects in image. Receives as input an image on
which we want to detect and locate objects. This image is
resized to a specific resolution, and divided into a network
S × S cells, where each one is responsible for estimating B
bounding boxes.

The image is processed by a Convoluted Neuronal Net-
work trained for the detection of specific objects. After this
processing, we obtain the respective bounding boxes defined
by their deviation and size, (tx, ty, tw, th), the probability of
the object contained therein for each class (p1, p2, ..., pC),
and its confidence score (po). This score reflects how secure
the system is that the bounding box contains an object. The
bounding box is defined by:

Bouding Box = (tx, ty, tw, th, po, p1, p2, ..., pC) (1)

It is held the suppression of all resulting detections that have
a confidence score below a certain threshold. The detections,
with scores above the defined threshold, are subsequently used
in the construction of the maps.

B. vSLAM

The simultaneous mapping and localization system used is
the ORB-SLAM2[3], capable of processing information from
stereo or RGB-D cameras.

This vSLAM algorithm presents an architecture divided
into four threads and each one of those are responsible for
performing a specific part of the system processing, which
are:
• Tracking: It tracks the location of the camera in each

frame using the combination of features of the current
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frame with the local map. The reprojection error is
minimized by the application of Motion-only BA.

• Local Mapping: Manages the Local Map, and optimizes
it by performing Local BA.

• Loop Closing: Detects large loops and corrects the accu-
mulated offset by optimizing the position graph.

• Full BA: Bundle Adjustment is applied to the entire map,
obtaining an optimal solution of the structure and motion
of the position graph.

In order to be able to support data from RGB-D and stereo
cameras, this system performs a preprocessing of the acquired
data, obtaining Stereo Keypoints and Monocular Keypoint.

In the case of stereo camera, ORB[4] features (Oriented
FAST and Rotated BRIEF) are extracted from the two RGB
images, and searched for a match between ORB features of
the left image with the right image. If there is correspondence,
they are considered Stereo Keypoints that are defined by 3
coordinates xStereo = (uL, vL, uR) where (uL, vL) are the
coordinates of the ORB feature in the left image, and (uR) is
the horizontal coordinate of the same ORB feature in the right
image. If there is no match, they are considered Monocular
Keypoint and are defined by the ORB features coordinates in
the left image xMono = (uL, vL).

In the case of RGB-D camera, ORB features are acquired
from the RGB image, and associated a depth value to them.
If the depth value is valid, it is considered a Stereo Keypoint.

In order to maintain the coherence of the definition of the
coordinates that characterize this type of point, the coordinates
(uL, vL) correspond to the coordinates of the ORB feature in
the RGB image, and the coordinate (uR) corresponds to the
horizontal coordinate of this feature in a virtual right image,
obtained through the equation 2. In this, d corresponds to the
depth value associated with the coordinates of the ORB feature
in the RGB image, fx corresponds to the horizontal focal
length and b corresponds to the distance between the optical
centers of the projector and the IR camera. If the depth value
is not valid, it is considered a Monocular Keypoint.

uR = uL −
fxb

d
(2)

In case of Stereo Keypoints, these can still be cataloged as
near or distant, taking into account their depth. If the depth
value is less than forty times the value of the distance between
the optical centers, they are considered Close Stereo Keypoints,
which are responsible for obtaining a good estimate of depth,
scale, translation and rotation. If the depth value is higher, they
are considered Far Stereo Keypoints, which allow to obtain a
good estimate of rotation.

The ORB-SLAM2 uses Bundle Adjustment[5], by the
Levenberg-Marquardt method, in three circumstances, which
are the optimization of the orientation and position of the
camera (Motion-only BA), the optimization of a subframe of
Keyframes and their Keypoints observable in a local window
(Local BA), and the optimization of all keyframes and Key-
points present on the map after a loop has been closed (Full
BA).

Fig. 1. Important points to determinate the localization of the cones.

For each sequence processed by ORB-SLAM2, translational
vectors and rotation matrices are obtained for all frames
present in the sequence as well as for Keyframes.

C. Global Map Construction

In order to construct a global map, the mapping of the
course is realized. After processing the sequence with the
ORB-SLAM2 and the YOLO, we obtain the rotation matrices
R and the translation vectors T for each frame and the
bounding boxes where the desired objects were detected.
Through this information, the global map of the scenario is
constructed, which corresponds to a representation in the form
of a complete graph, where each object corresponds to a vertex
and the weight of the edge connecting two vertices is the
distance between the two objects.

Assuming that the bounding box defined by the coordinates
in the RGB image (uleft, vtop, uright, vbottom) is able to
correctly contain the object within it, two 2- D points of the
detections are considered important, which are:

PM2D
=
(uright+uleft

2 ,
vbottom+vtop

2

)
(3)

PB2D
=
(uright+uleft

2 ,
3vbottom+vtop

4

)
(4)

From the depth image, we can get the 3-D points PM3D
e

PB3D
of the 2-D points PM2D

e PB2D
through the equation

6, where fx and fy correspond to the focal length in x and
y respectively, Cx e Cy correspond to the major point offset,
(u, v) corresponds to the vertical and horizontal coordinates
of the 2-D point in the RGB image and d corresponds to Z.
These two 3-D points correspond to the location of a cone
detected in the camera referential.
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0 fy Cy
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 =

udvd
d

 (5)
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X =
(u− Cx)d

fx

Y =
(v − Cy)d

fy

Z = d

(6)

For each frame, a rigid 3-D transformation corresponding
to the rotation and translation obtained by the ORB-SLAM2 is
applied to the points PM3D

and PB3D
of each detection in this

frame, obtaining all detection locations in the same referential.
Two point clouds are obtained, one corresponding to points

PM3D
and the other to points PB3D

. For each of these point
clouds, all locations of the detections are superimposed.

In order to detect the points that define the location of the
objects, for each one of the point clouds its segmentation is
performed taking into account the Euclidean distances between
the points, where considering 2 points a, b ∈ IR3, if the
Euclidean distance between dab = ||a−b||2 =

√∑
i(ai − bi)2

is less than a threshold τd, it is assumed that a and b belong
to the same cluster, that is, they define the location of the
same object. The location of the k object on the map, Pk,
is determined by the average of the points contained in the
cluster Ck:

Pk =
1

N

(
N∑
i=1

Pi

)
, Pi, Pk ∈ IR3, Pi ∈ Ck (7)

Through the locations of the cones associated with the
points PM3D

, an upper triangular matrix of distances MMapG

is created among the various objects, the objects coordinates
in the map PMapGM

and its labels LabelsMapG
, which define

the type of object detected. Through the locations of the Cones
associated with the points PB3D

, only the objects coordinates
in the map PMapGB

.

D. Local Map Construction

The construction of the Local Map resembles to the con-
struction of the Global Map. For each of the frames contained
in the test sequence, the detections performed by YOLO
are obtained, and therefore obtain the points corresponding
to the location of the detected objects, PM3D

and PB3D
.

Unlike the construction of the Global Map, where a process
of overlapping the various locations would subsequently take
place, the construction of the Local Map is done from the
location of the objects obtained in a frame, related to the
camera referential.

Through the locations of the cones associated with the
points PM3D

, we obtain an upper triangular matrix of dis-
tances MMapL

between the various objects in the frame, the
coordinates of the objects in the local map of each PMapLM

and its respective labels LabelsMapL
, which define the type

of object detected.
The location coordinates of the cones associated with the

points PB3D
are listed are listed in PMapLB

.

E. Solution Search

The correspondence between the Global Map and the Local
Map is taken into consideration with the distances between
objects of the Global Map, MMapG

, and Local Map, MMapL
,

as well as their labels, LabelsMapG
and LabelsMapL

.
This problem correspond to the search for a subgraph of

a complete graph, that is, search the resulting graph of the
Local Map in the resulting graph of the Global Map. These
types of problems are classified as NP-Complete[6]. Given the
complexity of this type of problem, a Greedy algorithm was
developed capable of performing a Local Map search on the
Global Map.

In these graphs, each vertex represents an object and each
of these vertices has edges that connects it directly to all other
vertices. Each edge has an associated weight, corresponding
to the distance between objects that the connected vertices
represent. Each vertex is also associated with the type of object
to which it corresponds. This type of object may not be unique
in the graph, since, for example, there may be multiple cones
of the same color and size in the course delimitation. 4

F. Estimate Camera Pose

After matching the location of the local map objects on the
global map, we want to know the location and orientation in
which the camera is located.

This problem corresponds to the Orthogonal Procrustes
[7], whose objective is to find the Rotation R ∈ SO(3)
and the Translation T ∈ IR3 given the points Bi ∈ IR3,
which corresponds to the locations of the objects in the local
map, [PMapLM

;PMapLB
], and the points Ai ∈ IR3, corre-

sponding to the location of the matched objects in the global
map,[PMapGM

;PMapGB
] , satisfying the following equation:

Ai = RBi + T (8)

To obtain R and T , the following least-squares problem is
solved:

minR,T

N∑
i

||Ai −RBi − T ||2 (9)

In order to T , we observe that the translation corresponds
to the difference between the centroids:

T =
1

N

N∑
i

Ai −R
1

N

N∑
i

Bi = Ā−RB̄ (10)

The problem can be rewritten in the form:

minR||Ã−RB̃||2F (11)

Where Ã and B̃ correspond to:

Ã = A− Ā (12)

B̃ = B − B̄ (13)

The solution to this problem is known, corresponding to the
singularity decomposition of the matrix M = B̃ÃT , which
corresponds to:
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Course Green Cones Yellow Cones Camera locations
Campera 241 220 66

KIP 294 256 95
TABLE I

NUMBER OF CONES DELIMIT THE COURSES AND CAMERA LOCATIONS

Fig. 2. Campera Karting course delimited by yellow and green cones. The
blue dotes represent the locations of the camera.

M = UΣV T (14)

From this decomposition, we obtain the solution of the
rotation matrix R for this problem:

R = UΣ′V T (15)

Where Σ′ corresponds to:

Σ′ =

1 0 0
0 1 0
0 0 d

 d = det(UV T ) (16)

Once the rotation matrix R is calculated, the equation 10
is solved, obtaining the vector T . These matrices correspond
to the orientation and translation of the camera in the Global
Map referential

III. RESULTS

Multiple experiments are performed on the search algo-
rithm using synthetic courses, allowing the evaluation of the
matching capability of local map objects, subject to different
noise values, with the global map, as well as location and
orientation error. The trained YOLO is evaluated according to
the detection capability of the cones. The construction of the
global map is tested in the section to assess its consistency
with the scenario.

The developed system is tested using two different scenar-
ios.

A. Solution Search

To test the operation of the search algorithm, two synthetic
tracks were constructed corresponding to the tracks of the
Campera Karting and the International Karting Palmela (KIP).

The table I shows the number of cones that delimit the
two courses and localizations of the camera. On figure 2, is
represented the delimited Campera Karting course delimited.

(a) 3σ = 0.02 (b) 3σ = 0.06

(c) 3σ = 0.10 (d) 3σ = 0.20

Fig. 3. Location error in the KIP course by observing only 3 objects. The
green and red bars represent respectively the correct and wrong pairing.

For both paths, tests are performed with different numbers
of observable objects at each camera location. The chosen
ones are the ones closest to the camera, and their location is
disturbed by Gaussian noise for different values of standard
deviation.

The results for MaxError = 0.10m are presented in the
table II. Each test was performed three times, and presented
their average.

This results demonstrate that the developed search algorithm
allows to obtain a good pairing in situations where there is a
small variation of the location of the objects. In these cases,
the observation of a greater number of objects allows in the
heuristic search to obtain the correct pairing. If the deviation
of the object location is very high, it is impossible to ensure
that the algorithm is able to perform the pairing correctly.

Obtained the results for the pairing of the objects between
the maps, an interpretation of the interference of the various
levels of noise in the estimation of the location and orientation
of the camera was performed. On figures 3 and 4 are presented
the results for the estimation of the location and orientation,
respectively.

In cases where the correct pairing occurs, the estimates of
the location and orientation of the camera in the route have
a low error. On the other hand, a wrong pairing results in a
wrong estimation of the location and orientation of the camera.

B. Object Detection

YOLO has been trained to identify green, yellow, blue and
orange cones. To assess its detection capacity, it was tested
through a sequence containing throughout the images the four
types of trained objects.

In the figure 5 two of the sequence images are displayed
after detecting objects, with the overlapping of their bounding
box and object type.
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Gaussian noise
Without noise 3σ = 0.02 3σ = 0.06 3σ = 0.10 3σ = 0.20

#Objects C W N C W N C W N C W N C W N
3 66 0 0 55 11 0 51 14 1 45 19 3 18 29 19

Campera 4 66 0 0 65 0 1 64 0 2 44 13 9 10 3 53
5 66 0 0 66 0 0 65 0 1 47 0 19 8 0 58
6 66 0 0 66 0 0 65 0 1 43 0 23 1 0 65
3 95 0 0 84 11 0 80 14 1 69 20 6 27 32 36

KIP 4 95 0 0 95 0 0 93 0 2 79 0 16 17 0 78
5 95 0 0 95 0 0 94 0 1 70 0 25 6 0 89
6 95 0 0 95 0 0 95 0 0 58 0 37 3 0 92

MaxError = 0.10m; C: Correct pairings; W: Wrong pairings; N: Solution not found.
TABLE II

RESULTS OF THE TESTS PERFORMED TO THE SEARCH ALGORITHM

Gaussian noise
σ = 0.01 σ = 0.02 σ = 0.03 σ = 0.04 σ = 0.05

#Objects C W N C W N C W N C W N C W N
3 64 2 0 64 2 0 60 5 1 61 4 0 59 7 0

Campera 4 66 0 0 65 0 1 64 0 2 64 0 2 65 0 1
5 66 0 0 66 0 0 65 0 1 65 0 1 65 0 1
6 66 0 0 65 0 1 65 0 1 66 0 0 66 0 0
3 89 6 0 91 4 0 92 3 0 90 5 0 87 7 1

KIP 4 95 0 0 95 0 0 95 0 0 95 0 0 95 0 0
5 95 0 0 94 0 1 94 0 1 95 0 0 95 0 0
6 95 0 0 95 0 0 95 0 0 95 0 0 95 0 0

MaxError = 6σ; C: Correct pairings; W: Wrong pairings; N: Solution not found.
TABLE III

RESULTS OF THE TESTS PERFORMED TO THE SEARCH ALGORITM

Cones #Detected #Missed #Correct #Wrong
Green 729 99.5% 4 0.5% 729 100% 0 0%
Yellow 651 88.8% 82 11.2% 649 99.7% 2 0.3%
Blue 732 99.9% 1 0.1% 732 100% 0 0%
Orange 690 94.1% 43 5.9% 678 98.3% 12 1.7%
Total 2802 95.6% 130 4.4% 2788 99.5% 14 0.5%

TABLE IV
YOLO RESULTS FOR THE DETECTION ON THE CONES

The results, presented in table III-B, show that 95.6% of
all cones throughout the sequence were detected. All the
cones detected in the green and blue colors correspond to
their correct color. For yellow and orange cones, only 0.3 %
and 1.7 % of the detections, respectively, do not match the
corresponding color.

IV. REAL TESTS

In order to test the system in real situations, two scenarios
were constructed. The first scenario consists of only four
cones, each of different color, where it is intended to verify the
operation of the system. In the second scenario, eight cones of
two different colors are positioned, in order to create ambiguity
with respect to the object label.

A. Scenario 1
In this test we consider a scenario consisting of four cones,

each of different color. For the construction of the global
map, a sequence consisting of 60 images was used. After its
processing, we obtained the estimated location of the cones,
represented in the figure 6.

The estimated distances between the various cones are close
to the actual scenario, where the mean error of distances
corresponds to 3.38cm.

Because we do not have the ground truth of the location
and orientation of the camera along the sequence, it is only
possible to perform a subjective interpretation of the location
and orientation estimated. On figure 7 is represented the
estimated localization of the camera along the course.

To evaluate the orientation estimation, on figure 8 is rep-
resented three estimated localizations and orientations, taking
into account the field of vision of the camera, which corre-
sponds to 61.47o, to visually identify the visible objects and
respective position on image.

By the results, we can conclude that the system in this
scenario was able to correctly estimate the camera pose in
88.9% of the images where at least 3 objects were detected.

B. Scenario 2

For the second test we consider a scenario consisting of
eight cones, four of green and four of blue, in order to create
ambiguity with respect to the object label.

For the construction of the global map a sequence consisting
of 350 images was used. The estimate of the location of the
cones is represented in the figure 9.

The pairing results are presented on table V. The search
algorithm was able to match the local maps of 74.8% of the
sequence images. The estimation of location and orientation
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Cones #Tests #Solution found #Solution Not Found #Low detections
Scenario 1 1033 871 84.3% 36 3.5% 126 12.2%
Scenario 2 405 303 74.8% 85 21.0% 17 4.2%

TABLE V
RESULTS FOR THE PAIRING DURING THE 2 SCENARIOS

(a) α, 3σ = 0.02 (b) β, 3σ = 0.02 (c) γ, 3σ = 0.02

(d) α, 3σ = 0.06 (e) β, 3σ = 0.06 (f) γ, 3σ = 0.06

(g) α, 3σ = 0.10 (h) β, 3σ = 0.10 (i) γ, 3σ = 0.10

(j) α, 3σ = 0.20 (k) β, 3σ = 0.20 (l) γ, 3σ = 0.20

Fig. 4. Orientation error in the KIP course by observing only 3 objects

Fig. 5. Sequence images with overlapping of their bounding box and object
type estimated by YOLO

Fig. 6. Estimated location of the cones on scenario 1

Fig. 7. Estimated camera and cones localization on scenario 1. The camera
localizations are represented by black dots, and each cone by a dot of its
respective color.

(d) (e) (f)

Fig. 8. Localization ans orientation error of the camera on scenario 1

are consistent with the test sequence used, allowing to consider
its correct estimation for the 303 images where the pairing of
the cones with the global map occurred.

On figure 10, is represented the estimated localization of the
camera along the course. To evaluate the orientation estima-
tion, on figure 11 is represented three estimated localizations
and orientations

The estimation of location and orientation are consistent
with the test sequence used, allowing to consider its correct
estimation for the 303 images where the pairing of the cones
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Fig. 9. Estimated location of the cones on scenario 2

Fig. 10. Estimated camera and cones localization on scenario 2. The camera
localizations are represented by black dots, and each cone by a dot of its
respective color.

(d) (e) (f)

Fig. 11. Localization ans orientation error of the camera on scenario 2

with the global map occurred.

V. CONCLUSION

The present dissertation focus on the problem of estimation
the camera pose along a previously known course delimited
by multiple equal objects. It is proposed a solution, where
using the distance pattern between observable objects, it is
intended to correspond a local map with a global map through
a developed search algorithm.

Each of the methods presented in the proposed solution were
tested individually to ensure its correct operation. The training
performed to the YOLO algorithm allows to detect cones of
four different colors with a good certainty. The constructed
global maps are close to the actual dimensions. The search
algorithm shows robustness to the presence of small variation
of the distances between objects. On the real situation tests, the
system shows good results on the estimation of the localization
and orientation of the camera.

The tests performed to the developed system show that the
correct estimation of the camera pose at each instant is directly
associated with the correct pairing of local and global maps,
which reinforces the need to construct maps close to the real.
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