
Fuzzy Modelling for the Detection of Non-Technical
Losses Using Time Variant and Invariant Features

Diogo F. Caridade
IDMEC

Instituto Superior Técnico,
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Abstract—Electricity consumption is steadily increasing every
year. Although modern appliances and industries are becoming
more efficient, improvements in standards of living and popula-
tion growth contribute to the growing demand for electricity. The
increasing need for electricity worldwide has invariably led to an
escalation in instances of electricity theft. Over time, this problem
has been recognised by utility companies and many solutions have
been tested. This thesis proposes the use of fuzzy modelling for
data-based detection of non-technical losses. More specifically,
a new clustering scheme, Mixed Fuzzy Clustering, is utilized
to leverage both time variant and invariant features (gathered
from surveys and electricity consumption records) in the iden-
tification of illegal consumers. To evaluate the performance of
the developed models, three use cases are developed considering
different types of features based on collected consumption data
and consumer surveys. For comparison purposes, the Fuzzy C-
Means algorithm was also used to derive models. Although this
algorithm was not specifically developed for dealing with time-
variant data, it has proven suitable/effective in many different
applications, such as dealing with consumption data for consumer
profiling. The best overall classifiers were computed by applying
FCM to the dataset with time variant and invariant features,
indicating that the Mixed Fuzzy Clustering algorithm is not best
suited to deal with the data features used. The models developed
achieved a good performance in detection of non-technical losses,
quantified by true positive rate of up to 80% under a false positive
rate 21.9%, showing that fuzzy modelling is suited for the task.

Index Terms—time variant feature, time invariant feature,
Fuzzy C-Means, Mixed Fuzzy Clustering

I. INTRODUCTION

Throughout the entire power grid that starts with the
production of electrical energy and ends at the moment
of consumption there are power losses expected from any
physical process. These can be estimated by computing the
difference between the amount of electricity produced and the
amount consumed by the end user and they are referred to in
the literature as transmission and distribution (T&D) losses.
Despite the efficiencies of the components used in these
operations already being measured and tabled, the losses
they cause, Technical Losses (TL), can only be estimated,
as the intensity of load demand, load density and energy
patterns fluctuate throughout the day and the capability and

configuration of the transmission and distribution system
vary among installations [3]. By knowing the amount of
power a company produces, the electricity that is billed to the
consumer (amount of electricity that the company registered
as consumed) and the energy lost from TL even if estimated,
it is possible to ascertain the existence of external power
losses, also known as Non-Technical Losses (NTLs).
The existence of NTLs is well documented throughout the
literature [4, 6, 10], and acknowledged by the industry as
well [19, 20]. It has a significant impact in several points
around the globe, like Jamaica [6], South Africa [4], India
[10], among others.
These high costs lead to several negative consequences. Not
only are some of the theft procedures dangerous for the ones
executing them (risk of electrocution when bypassing the
electric connection to a meter or when rigging a line from
the power source) [4], but they will ultimately end up costing
to law abiding citizens. Since companies produce energy
that is not paid for, they end up charging the difference to
legitimate consumers. This forces some to steal electricity
because they cannot afford to pay the increased prices. The
result is a never ending cycle that perpetuates wrong doing
from otherwise upstanding individuals.
As prices cannot rise indefinitely, there will be a saturation
point where companies will lose money from NTLs and will
not be able to get it back. With less money, maintenance and
upgrades to current grids will be affected. Consequently, the
overload of the components forming the distribution line, due
to unmonitored consumption of electricity, will trigger more
frequent blackouts (complete loss of power in a region) and
brownouts (voltage supplied to the system falls below the
specified operating range but there is no total loss of power)
[6].
This thesis focuses on creating models for detection of NTLs
built from supervised and interpretable techniques using
time variant and invariant information simultaneously (mixed
data). These models are then compared with ones built
solely from static or temporal features, Static Consumption
Indicators (SCI) and Temporal Consumption Indicators (TCI).



As most techniques are not designed to handle both types,
a specific algorithm, Mixed Fuzzy Clustering (MFC), is
used to cluster both data types. To ascertain its performance
MFC is compared with Fuzzy C-Means (FCM), which is
often used with static data. While all datasets are applied to
FCM, only those with a temporal component with used with
MFC. Computing FCM with time variant features results in
the temporal component of the data to be disregarded. This
clarifies the importance of keeping the temporal nature of
the data during clustering and modelling by comparing the
performance of Takagi-Sugeno (TS) fuzzy models built from
MFC and FCM. Better performing models computed using
mixed datasets and MFC would prove the importance of both
data types in the detection of NTLs. The following figure,
Fig. 1 shows how the distribution of algorithms per datasets
was made.

Fig. 1. Graph of the methods applied to each dataset

The rest of this document is organized as follows. Section
II presents the work that has been done in the field of NTL
detection. Section III gives an overview of the theoretical
background of MFC, FCM and TS fuzzy modelling. In Section
IV, the data processing mechanisms as well as the threat
model used are explained. Section V presents the tests done
and the respective results and Section VI discusses the final
conclusions and future work.

II. DETECTION OF NON-TECHNICAL LOSSES

As mentioned before, NTLs have had noteworthy impact
in the industry leading to the acknowledgement of several
companies and the attention and interest of researchers. In
the last two decades this has culminated in studies focused
on techniques and approaches to detect, estimate and analyse
NTLs Overall, the research done can be sorted into three
distinct categories: theoretical studies, hardware solutions and
non-hardware solutions.

Theoretical studies centre on the use of statistical techniques
to find the correlation between socio-demographic, economic,
market variables and electricity fraud. These techniques have
the advantage of producing results that can have a high impact

by helping design policy and make decisions to reduce NTLs.
However, these same studies can estimate and find the drivers
of aggregate NTLs but are not adequate when it comes to
finding specific cases of theft and faults in metering or billing.

Hardware solutions primarily focus on characterizing and
deploying equipment (e.g. metering hardware and infrastruc-
ture, signal generation, sensors) that enables the estimation,
detection or even disarming of NTLs. Whether these solutions
are to be implemented on a local level (households) or a wider
scale (electric grid), the costs associated are generally much
higher when compared with the other solutions.

Non-hardware solutions propose computational approaches
to detect or estimate the presence of NTLs. Most studies
within this field, including this thesis, focus on describing
classification techniques that infer the presence of NTLs
from electricity consumption or other data. These methods
do not carry high costs (unlike hardware solutions) and, if
the theoretical information is accurate and extensive, they
can detect most types of NTLs. However, the presence of
sources of NTLs upon identification is not guaranteed and
these methods might not be capable of identifying individual
sources. Therefore, these algorithms are better used as an add-
on to improve the effectiveness of inspection resources. These
types of solutions mainly encompass the following techniques:
estimation, game theory and classification.

In [2], a consumption pattern-based energy theft detector
is presented which utilizes silhouette plots to distinguish
clear distributions in the database and is able to adapt its
performance depending on the aim of the application by
adjusting the detection delay. One of the main issues within
NTLs identification is the data imbalance that is inherent
to most experiments done in the field as the number of
fraudulent consumers is much smaller than the number of
honest customers resulting in standard classifiers to discard
the minority class as it is overwhelmed by the remaining
one. As it has been stated before, the types of data usually
available in the energy research field are static and temporal
attributes. Most machine learning techniques focus only on
one type, as they are not appropriate when dealing with
the complexity of datasets containing different data types.
While most studies focus on socio-demographic datasets
composed only of static or time invariant features, some,
like [11, 12], study the effectiveness of time variant data
(electricity consumption over time) in discerning fraudulent
from regular behaviour. In [11] the authors propose a novel
inspection algorithm which is able to detect malicious meters
in one inspection step. In [12], power consumption without
the seasonal component is analysed in order to detect fraud
and illogical consumption.

Several clustering-based approaches have been proposed to
extract fuzzy rules from data, where each cluster represents a
region in the product space that contains enough information
to support the existence of a fuzzy input/output relationship
[13]. The clustering of temporal attributes has seen increased
interest as most real life problems are characterized by



datasets containing variables that change over time. However,
studies on cluster analysis of these features are still limited
[14]. So as to introduce a new perspective into the field
of NTL detection, a recently proposed method that uses
time variant (spatial component) and invariant (temporal
component) data as input was chosen as the basis for this
work. The algorithm, entitled Mixed Fuzzy Clustering (MFC),
applies fuzzy clustering to spatio-temporal data [15] to learn
if-then rules for identification of TS fuzzy models. MFC
introduces a generalization of the spatiotemporal concept
to any set of time variant and time invariant features and
its extension to the analysis of multiple time-series. This
algorithm has been used in medical settings for administration
of vasopressors, identification of patients with high risk of
mortality and readmissions in intensive care units [5, 1, 7].

This thesis is an extension of the work done in [7] where
MFC was used to derive TS fuzzy models and this framework
outperformed FCM-based TS fuzzy models and k-Nearest
Neighbors classifiers. The present work applies MFC and FCM
to datasets of electricity consumption and assess whether or
not similar results could be achieved. But while, [7] applied
to datasets containing both time variant and invariant features,
this thesis also implements datasets containing solely one data
type to evaluate if maintaining the temporal component of of
time variant attributes is crucial to better performing models.

III. CLASSIFICATION MODELS FOR DETECTION OF
NON-TECHNICAL LOSSES

In this chapter the theoretical background of the methodolo-
gies used throughout this thesis is presented, more specifically
fuzzy clustering and TS fuzzy modelling.

A. Fuzzy clustering

Cluster analysis or clustering is the task of grouping a
set of unlabelled objects in such a way that the degree of
similarity is higher among objects within the same group or
cluster (intra-group similarity) than objects from different
clusters (inter-group similarity). It is one of the key tasks
in exploratory data mining, and a common technique for
statistical data analysis, used in many fields such as machine
learning, pattern recognition, among others. This thesis
utilizes fuzzy clustering, more specifically, the algorithms
Fuzzy C-Means (FCM) and Mixed Fuzzy Clustering (MFC).

1) Fuzzy C-Means: Fuzzy C-Means (FCM) was initially
proposed in [16]. This method introduces Fuzzy Logic to the
hard clustering framework (K-Means) by allowing each data
point xj = [xj1, xj1, ..., xjR], R being the number of features
in the input matrix, to belong to all clusters C by means of a
membership degree as opposed to hard clustering where each
point can only belong to one cluster.

FCM is an iterative optimization that minimizes the follow-
ing objective function,

Jm =

N∑
i=1

C∑
j=1

umijd
2
ij(xj , ci) (1)

where N is the number of samples, C the number of
clusters, m is the fuzzification parameter which has to range
within [1;∞[ and defines how fuzzy or crisp the end clusters
will be, umij is the membership degree of element i to the
cluster j, and d2ij(xj , ci) is a similarity measure, commonly
viewed as a proximity measure and thus handled as a distance
variable, between the point xj and the cluster centre, also
known as prototype, ci.

The algorithm starts with the initialization of the partition
matrix U which is formed with the membership degrees of
every element N to every cluster C.

U =

u11 . . . u1C
...

. . .
...

uN1 . . . uNC



This initialization can be performed randomly by giving
aleatory belonging values of each point to every cluster.
However, the membership degree has to obey the following
constraints

uij ∈ [0, 1] ∀i; 0 <

N∑
j=1

uij < N ∀i; (2)

C∑
i=1

uij = 1 ∀i. (3)

Afterwards, through an iterative process the fuzzy partition-
ing is carried out and the objective function in 1 is optimized.
This is done by computing the cluster centres with the equation

ci =

N∑
j=1

umijx
s
j∑N

j=1 u
m
ij

(4)

also known as prototypes. These are the mean of all points,
weighted by their degree of membership to the cluster. Next
the partition matrix is updated using equation (5) which
calculates the membership degree of element i to cluster j.

uij =
1

C∑
k=1

(
d2
ij

d2
kj

) 1
m−1

(5)

Once this is done a stopping condition is checked and if
cleared, the iteration stops. In this project, the cycle halts when
max|uz+1

ij − uzij | < ε is verified where z is the iteration step
and ε is the stopping condition.

In the present study, each sample is assigned to each
cluster with a certain degree of membership. This degree is
proportional to the distance between the sample and the cluster
prototype, which in a general way can be computed as



d2ij(xj , ci) = ||xj − ci||2 = (xj − ci)TAi(xj − ci) (6)

where Ai is a positive definite symmetric matrix, usually
equal to the identity matrix in the FCM algorithm.

2) Mixed Fuzzy Clustering: Mixed Fuzzy Clustering is a
novel clustering method based on Fuzzy C-Means [1] which
allows the clustering of time variant (remain constant over
time) and time invariant (change over time) features simultane-
ously. This algorithm aims at providing a solution for dealing
with longitudinal misaligned data where the length of time
variant features is different, and to account for misalignment
through the use of Dynamic Time Warping (DTW) distance.
This approach clusters the dataset using an augmented form of
the FCM [17]. The main difference between them relies on the
distance function. In the augmented version, a new parameter
λ is calculated, weighting the importance to be given to each
feature [18].

Each sample xi, with i = 1, ..., n, is characterized by static
features or time invariant, xs, and by time variant features or
time-series, Xt:

xi = (xsi , X
t
i ), (7)

where xs is a NxR matrix with N equal to the number of
entities and R equal to the number of time invariant features,
and Xt a NxP matrix with P being the number of time
variant features. Each entry of Xt is an array of values, xtip
of length Q dependent on p,

xtip = (xti1, x
t
i2, ..., x

t
iQ(p)), (8)

The time invariant cluster centres l for feature r, also known
as the time invariant prototypes j for feature r, vsjr, and the
time variant cluster centres j, vtjp for feature p are calculated
through equations (9) and (10) respectively.

vsjr =

N∑
i=1

umijx
s
ir∑N

i=1 u
m
ij

(9)

vtjp =

n∑
i=1

umijx
t
ip∑N

i=1 u
m
ij

(10)

Each cluster j has its own set of feature weights λ, calcu-
lated separately for xt and xs in every dimension:

λsjr = 1( ∑
1<k≤R

N∑
i=1

um
ij
||(xs

ir
,vs
jr

)||2

N∑
i=1

um
ij
||xs
ik
−vs
jk
||2

+
∑

R<k≤R+P

N∑
i=1

um
ij
||(xs

ir
,vs
jr

)

N∑
i=1

um
ij
δ(xt

i(k−R)
,vt
j(k−R)

)

) 1
q−1

(11)

λtjp = 1( ∑
1<k≤R

N∑
i=1

um
ij
δ(xt

ip
,vt
jp

)

N∑
i=1

um
ij
||xs
ik
−vs
jk
||2

+
∑

R<k≤R+P

∑N
i=1

um
ij
δ(xt

ip
,vt
jp

)

N∑
i=1

um
ij
δ(xt

i(k−R)
,vt
j(k−R)

)

) 1
q−1

(12)

The variable q offers a degree of feature discrimination
and its value ranges from 1 to ∞. According to [18], as
q approaches 1, λ will tend to take binary values, meaning
one feature will be labelled 1 for being the most relevant
in the computation of the distance between samples and the
prototypes. On the opposite end of the spectrum, was q to take
values approaching infinity, the same feature weights will have
the same levels of relevancy thus making the process of feature
selection irrelevant.

As previously mentioned, λ alongside a distance function δ
was used to compute the distance between an entity and the
time invariant and variant prototypes of a cluster j, through
equation (13).

d2ji =

R∑
r=1

λsjr||xsir − vsjr||2 +
P∑

p=1

λtjpδ
2(xtip, v

t
jp) (13)

The distance function δ between two vectors a and b of
same length M , with i = 1, 2, ...,M and l = 1, 2, ...,M , is
given by:

{
δ2(a,b) = (a1 − b1)2 + ...+ (aM − bM )2, if EUC
δ2(a,b) = γ(M,M), if DTW

(14)
where γ(i, l) = ||ai − bl||2 +min{γ(i − 1, l), γ(i − 1, l −

1), γ(i, l − 1)} and γ(1, 1) = ||a1 − b1||2.
Distance Time Warping (DTW) fundamentally differs from

the former on how it handles two time series. While Euclidean
distance directly compares two points in the same time in-
stance without considering differences in vector size (either
from different time samples or different start/end recording)
or misalignment between them, DTW takes both vectors and
tries to align them so as to minimize their difference thus
creating what is called a warping path.

Both distance measures are depicted in Fig.2

Fig. 2. Graphical representation of the difference between Euclidean distance
(on the left) and Dynamic Time Warping (on the right)

One of the inputs to the Mixed Fuzzy Clustering algorithm
is the partition matrix U = [uij ] which is built from the degree
of membership of each sample i to each and every cluster j.
Given N samples and C number of clusters, the matrix will
be CxN and each entry is calculated using the equation (15)



uij =
1

C∑
g=1

(
d2
ji

d2
gi

) 1
m−1

(15)

and subject to the following constraints

uij ∈ [0, 1] ∀i; 0 <

N∑
i=1

uij < N ∀i, j; (16)

C∑
j=1

uij = 1 ∀j; (17)

As previously mentioned, this is an augmented version of
FCM and as such applies an augmented form of the objective
function

J =

C∑
j=1

N∑
i=1

umijd
2
ji(v

s
j , v

t
jp, xi) (18)

B. Takagi-Sugeno model for detection of NTLs

Takagi-Sugeno fuzzy models are transparent “grey box”
that allow the approximation of previously unknown non-
linear systems to be modelled using a number of linear
and understandable sub-models responsible for distinct sub-
domains. Fuzzy models use a training set in order to discover
potentially predictive relationships between inputs and outputs,
and a test set (invariably smaller than the training set) to
validate said relationships. For the binary classification case,
each discriminant function consists of rules,

Rj : If x1 is Aj1 and ... and xM is AjM

then yj(x) = fj(x), j = 1, 2, ... K
(19)

where fj is the consequent function of rule Rj and M
= r+q, the number of features used. The output of the
discriminant function yj(x) can be interpreted as a score (or
evidence) for the positive example given the input feature
vector x.

The number of rules K of the type Ri and the antecedent
fuzzy sets Ajh are determined by fuzzy clustering in the
product space of the input variables. The consequent functions
fi(x) are linear functions determined by ordinary-least squares
(OLS) in the space of the input and output variables.

The degree of activation of the jth rule is given by

βj =

M∏
h=1

µAjh(x), (20)

where µAjh(x) : R→ [0; 1].
In TS models, the overall output is a weighted average of

individual rule outputs, βj being the weight, and the inference
is reduced to a simple algebraic expression:

y(x) =

∑K
j=1 βifi(x)∑K

j=1 βi
(21)

The output of the system is often continuous but since it
needs to identify classes (in this case two groups, theft and
regular consumption) a threshold has to be established. For
that, the model uses the training data to set a threshold that
creates the most accurate classifier for that specific set of data
points. This particular model (with the threshold previously
set) is then used with the test set to evaluate its performance.

A sample xj is considered positive if the score is higher
than a certain threshold γ, in other words, yj(xj) > γ.

IV. DATA AND THREAT MODEL

A. Databases used

All methods studied in this project used data from the same
source. The databases were provided by the Commission for
Energy Regulation who conducted surveys and collected data
on the electricity consumption of around 5,000 Irish homes
and businesses from the Summer of 2009 to the Winter of
2010 and made them available at the Irish Social Science Data
Archive (ISSDA). The survey information (number of adults
and children, type of house, heating provided through gas,
...) will be referred to as static information or time invariant
features while the consumption patterns will be referred to
as time series or time variant features. After applying all the
preprocessing methods described in the following sections, the
number of samples available was 4233.

1) Electricity consumption data: The data gathered from
the meters presented many missing entries. In cases where
the percentage of missing data of a certain meter exceeded a
certain threshold during the two year recording, the informa-
tion of said meter was completely discarded. In the remaining
instances, in order to fill the gaps in the records, Zero Order
Hold (ZOH) was used. This method replaces missing values
with the value immediately preceding it. Implementing ZOH
allowed for the consumption patterns to have the same number
of entries.

Despite the fact that MFC was designed to deal with
misaligned time series by using DTW distance [5], the com-
putational power needed to compute DTW over Euclidean
distance is greatly exacerbated leading to an increase of the
time needed to run the experiments. For this reason, Euclidean
distance was chosen over DTW distance.

In order to keep confidentiality in check, the data was
resampled to 24 points per day, from the initial 48, by adding
every two points of the time series. After analysing the
consumption data over a weekly period, the difference between
patterns from weekends and working days was substantial
enough to justify discarding the weekend information from the
database. So as to not overload the algorithms with information
18 days from the two year period were picked to apply the
threat model. On each day, a time window was applied so that
the 5 days prior to the chosen day would also be saved for
the analysis.

2) Survey data: With respect to the surveys, these con-
sisted of 234 questions made to both private and corporate
consumers. However certain questions were directed specif-
ically to one of these groups. This, allied with a possible



relative weight between the questions to better characterize
a consumer, justified the use of Feature Selection. Applying a
rating from 0 (completely irrelevant for consumer profiling) to
3 (of the highest importance) to all 234 questions, choosing the
ones with score above 1 and removing the ones that showed a
skewed distribution in the answers (questions where over 85%
gave the same answer) left 39 variables eligible to be used for
the study.

B. Feature engineering

The following sections explain how the datasets SCI and
TCI were built.

1) Static consumption indicators: Rather than just keeping
the same characterizing variables from the original set of time
variant and invariant features, indicators were computed to
make future models as transparent and interpretable as possi-
ble. These new features reflect changes from past consumption
patterns and from other consumers with similar characteristics
when comparing answers to the survey. The computed dataset
presents the following information:

• Meter : Serial number that identifies each meter
• Date : The date in which the data was recorded
• Attack : The type of attack each sample is meant to

represent (None for normal consumption and hi for the
attack i)

• I1 : Indicator of consumption variation. Ratio between
current and past consumption;

• Ie2 and Ic2 : Indicators of hourly consumption pattern
change.

• I3 : Indicator of consumption difference in comparison
to consumers with similar characteristics.

• Ie4 and Ic4 : Indicators of hourly consumption pattern
difference in comparison to consumers with similar char-
acteristics

This dataset displayed null values, NaN , in certain indi-
cators, namely I2c and I4c . Three approaches to this problem
were considered: turn all values of NaN into 0; turn all NaN
into the average value of the corresponding feature; turn only
the NaN entries that characterize the attack models 5 and 50
into 0 and the rest into the average values. In Section V-A
these approaches were evaluated to understand which yielded
the best results.

2) Temporal consumption indicators (Temporal CI): The
third dataset was a combination of the last two, it had
indicators computed from raw data but displaying a temporal
evolution as opposed to being static. This scheme used the
principle behind the SCI (developing indicators of electricity
consumption instead of feeding raw information directly into
the clustering algorithms) but still contained the temporal
nature that is the focal point of this thesis. As a result, besides
the date of each registry and the meter and attack identification,
it had the temporal evolution of the same 4 indicators presented
in the first database, I1, Ie2 and Ic2 , I3 and Ie4 and Ic4 . The
recorded evolution spanned from 9 days prior to the selected
day (day of the attack in the case of the non zero-day threat
model) to the day itself. The dataset used the threat model

with 6 attacks with both zero-day and non zero-day scenarios
for 1000 meters.

C. Threat model

Despite the different approaches to the input data, the same
attack vectors were computed onto the data points. For this
project, the provided information by ISSDA was treated as
data from legitimate consumers and was used to apply a threat
model which represents distinct ways a consumer might steal
from electricity providers. The idea behind the application
of these attack vectors is to create a flexible model with
information regarding the same consumer interfering with his
records through a variety of methods all the while keeping
the unaltered consumption pattern for theft identification. The
threat model used was taken from the work [9] which in turn
was based off of [2].

According to [9], the attack procedures can be grouped in
two different categories: attacks that started during the meters
data gatheringz (non zero-day attacks) and attacks which had
already started by the time the information was collected (zero-
day attacks). The different attacks and scenarios (zero-day
and non zero-day) are presented below. The equations use the
following notation: md,t

i are the meter consumption readings
from consumer i in day d for hour t. This results in md

i

= (md,1
i ,md,2

i , ...,md,24
i ) representing the 24 hour vector of

metered data of consumer i on day d.
• h1; h10 : constant random reduction of consumption.

h1(m
d,t
i ) = αmd,t

i , α = random(0.1, 0.8) (22)

• h2; h20 : registering zero consumption for a random
period of the day; zero day scenario.

h2(m
d,t
i ) = βhmd,t

i

βt =

{
0, tstart < t < tend

1, else

tstart = random(0, 19)

δ = random(4, 24)

tend = tstart + δ

(23)

• h3; h30 : random hourly reduction of consumption; zero
day scenario.

h3(m
d,t
i ) = γtm

d,t
i , γt = random(0.1, 0.8) (24)

• h4; h40 : random hourly consumption pattern with
reduced average consumption; zero day scenario.

h4(m
d,t
i ) = γt µ(m

d
i ) , γt = random(0.1, 0.8)

(25)
• h5; h50 : constant hourly consumption equal to the

average; zero day scenario.
The entire daily consumption pattern is replaced by the
average of the electricity usage in that same day.

h5(m
d,t
i ) = µ(md

i ) (26)



• h6; h60 : reversed hourly consumption; zero day scenario.

h6(m
d,t
i ) = md,24−t

i (27)

• h7; h70 : shift of consumption from peak hours to the
rest of the day, turning peak hours consumption to the
average; zero day scenario.

h7(m
d,t
i ) =

{
md,t

i − δ m
d,t
i , pstart < t < pend

md,t
i + ε /21, else

pstart is the starting hour of the highest consumption
three hour period

pend = pstart + 3

ε =

3∑
j=1

md,pstart+j−1
i

(28)

• h8; h80 : shift the consumption data to one of a legitimate
consumer with lower average of electricity consumption;
zero day scenario.

h8(m
d,t
i ) = md,t

r

r is a random consumer with µ(md,t
r ) < µ(md,t

i )
(29)

V. RESULTS

The simulations done on the three databases were evaluated
using the following criteria: Area Under the Receiver Oper-
ating Characteristics Curve (AUC); Accuracy; True Positive
Rate (TPR); False Positive Rate (FPR); Difference between
TPR and FPR. More specifically, for the dataset of static
indicators, the threshold determination method was studied
using indexes such as Youden Index, minimum distance and
testing every possible threshold until one yields the lowest
difference between specificity and sensitivity. The Fig. 3 shows
the difference between Youden Index, minimum distance and
the meaning behind the values they take.

Fig. 3. Graphical representation of the performance evaluation methods.

A. Static Consumption Indicators

There were four main parameters to be chosen in the tests
done to this database: optimal number of clusters, C, and

fuzzification parameter, m, skewed class distribution, best
method to deal with invalid entries in the SCI dataset.

To determine which values of C and m computed the best
classifier, a grid search was performed where the tested values
were [2 : 19] and [1.4 : 0.3 : 3.8] for C and m respectively.

Since the threat model was applied to each consumer, the
end result was 16 samples of attack to 1 sample of unaltered
consumption. This yields a distinct disparity between the
positive and negative cases of fraud to train the algorithms. To
understand the impact of this fact, different ratio were tested
to understand which resulted in better performing models.
Besides the original set with 5% (1 regular sample to 16
fraudulent ones), 20%, 36% and 47% were also tested

To correct the invalid data in variables I2c and I4c three
methods were tested: turn all values of NaN into 0; turn
all NaN into the average value of the corresponding feature;
turn only the NaN entries that characterize the attack models
5 and 50 into 0 and the remaining NaN into the average
values. With the intention of simplifying the document these
techniques will be referred to as Method 1, Method 2 and
Method 3, respectively.

Lastly, to determine which method (Youden Index, mini-
mum distance or testing all possible thresholds) would result
in the best classifier, all three were applied to each pair
of Method/Balance and the accuracy, TPR and FPR were
analysed and compared.

The results from these experiments showed that low values
of m and high values of C yielded the best classifiers.
Considering the results and the need to choose a small number
of clusters (the higher the value the higher the computational
power need to compute the respective model), C = 9 and
m = 1.4 were the best combination, as seen from the Table I
which summarises the entire grid search test.

TABLE I
TABLE WITH BEST RESULTS FROM THE SEARCH GRID DONE ON SCI

Parameters
AUC Accuracy TPR FPR TPR-FPRModelling

[11 1,7] 0,783 0,727 0,712 0,247 0,465
[9 1,4] 0,786 0,725 0,722 0,268 0,454
[10 1,7] 0,787 0,729 0,716 0,247 0,469
[11 1,4] 0,799 0,737 0,720 0,235 0,486

The model with the parameters C = 9 and m = 1.4
was then used to evaluate balancing ratios, NaN solutions
and threshold specification approaches. Results showed that
both the original dataset and the one with 36% benign data
consistently yielded the best results. Since there is an increase
in computational power needed to run larger datasets, applying
no balancing technique was chosen as the better option. As for
the NaN solution, methods 1 and 3 tied for the most effective
but the difference with Method 2 was negligible. With respect
to threshold calculation, all three methods consistently found
similar points in the Receiver Operating Characteristic (ROC)
curve, as seen in the example of Fig. 4. Since computing
all thresholds to get the best classifier implied an increase



in costs when compared to the other two methods (increased
computational power) and Youden Index computed slightly
less accurate models, minimum distance was chosen as the
standard method to determine the threshold.
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Fig. 4. ROC curve for dataset with a 47% distribution and Method 3 applied

With all of this said, the best combination of parameters
was Method 1 applied to a database with no redistribution
procedure implemented and with the threshold being com-
puted through the use of minimum distance. This combination
resulted in a model with AUC = 0, 79. In the next two
datasets, minimum distance will be used by default as the
threshold study proved no significant difference between the
three methods.

B. Time variant and invariant features

For this dataset several tests and approaches were taken to
assess how MFC varied its outcome and which framework
better suited the algorithm. At the end, FCM was also used
to compare with the results gathered from SCI. Throughout
these tests, the dataset is consistently divided into two groups,
one with 200 meters and the other with 1000. This is done to
determine the impact of different sample sizes in the clustering
and modelling processes. Throughout these experiments, these
two datasets will be referred to as 200M and 1000M. Every
test performed grid search on C, m and q.

1) Experimental analysis of fuzzy model parameters, C =
2: The first experimental test consisted in evaluating the
effects of varying m and q on the models’ performance. For
this test C was kept at 2. The original dataset was divided into
All Attacks, Attack 5 / Attack 50 and Attack 50. As the names
imply, the last two frameworks only had attacks 5 and 50 along
with the legitimate sample so as to simplify the clustering
algorithm even further since these two attacks would, in theory,
be the easiest to identify (they turned the normally irregular
consumption pattern into a constant one equal to the daily
average consumption).

The results showed Attack 50 on the 200M dataset to yield
better classifiers than the other configurations with AUC =
0, 644. However this was less than what transpired from using
FCM on SCI.

2) Balance data in preprocessing: Similarly to what had
been done with SCI, balance ratios were also tested with

this dataset. Two ratios were used, 3 regular samples and 6
regular samples in total over the 16 attacks. The attack vectors
were divided into three sets, Zero-Day, Non Zero-Day and All
Attacks.

Increasing the regular to illegitimate sample ratio did not
improve the results significantly. Although there was a neg-
ligible increase in AUC, this was not much higher than
the standard deviation and therefore can be thought of as
fluctuations in the final results rather than an actual increase in
performance. However, a distinct difference between the three
attack vectors was found where Zero-Day consistently outper-
formed All Attacks and especially Non Zero-Day. This could
be explained by the fact that Zero-Day applied the attacks from
the first day of recording, providing more information for the
algorithm to cluster different patterns. Since All Attacks is a
combination of the other two it is logical that it would present
values of AUC averaging both extremes. It is expected that this
difference in threat models will remain during the following
tests.

3) Threat model experiments: The threat model proposed in
[2] was then used to understand if introducing less information
into the system would yield better results. Aside from this, a
new balancing strategy was adopted where for each regular
sample only one attack would be computed, 50% ratio. The
datasets were also split into Zero-Day, Non Zero-Day and All
Attacks.

In general, Non Zero-Day continued to yield the worst
models as opposed to Zero-Day. The imbalanced sets achieved
better results using 200 meters instead of 1000, where the dif-
ference in AUC reached 0, 07 for Zero-Day. The balanced set,
tested only for 1000M, yielded better results when compared
to the imbalanced counter part. The attack vector containing
all approaches continued to showed similar values of AUC as
in the last test.

4) Practical case scenario: Since it is common for fraud-
ulent consumers to initiate their behaviour with new contracts
with utility providers, companies do not have much informa-
tion on them. Clustering with 18 time series did not accurately
represented that reality. For that reason, the number of time
series was reduced to 1 and both iterations of the threat model
(12 attacks and 16 attacks) were also used for comparison.

Across the board, the results worsened. Aside from Non
Zero-Day which maintained its poor results, both Zero-Day
and All Attacks had their AUC lowered by 0, 1. Comparing
both threat models, although the AUC had similar values, the
accuracy differed, increased accuracy for the threat model with
12 attacks. As for the size of the dataset, 1000M showed better
results even if by a small margin, as seen in Table II. In order
to have a compact table, Attack Vectors and Threat Model are
abbreviated to AV and TM, respectively.

5) Modelling using FCM from raw datasets: The need to
compare the effects of using indicators as opposed to the
original variables and the unsatisfactory results from using
MFC led to the implementation of FCM to this dataset.
However, applying FCM to these datasets meant that the
temporal component present in the data would be lost. Each



TABLE II
TABLE WITH THE BEST MODELS FROM 200M APPLIED TO THE 1000M

DATASET USING ONLY ONE TIME SERIES

Dataset Attacks TM AUC Accuracy TPR-FPR

200M

Zero Day
6 AV 0,558 0,607 0,111
8 AV 0,535 0,298 0,055

Non Zero Day
6 AV 0,519 0,457 0,033
8 AV 0,511 0,124 0,015

All attacks
6 AV 0,529 0,731 0,052
8 AV 0,527 0,720 0,015

1000M

Zero Day
6 AV 0,548 0,854 0,039
8 AV 0,541 0,733 0,052

Non Zero Day
6 AV 0,511 0,370 0,023
8 AV 0,505 0,144 0,004

All attacks
6 AV 0,530 0,568 0,057
8 AV 0,555 0,421 0,110

entry of the time series would be regarded by the clustering
algorithm as a value for another time invariant feature. Given
that no significant change came from using the 12 attack
vector, the threat model used had the original 16.

Going back to the tests done on Static CI, using FCM on raw
data yielded similar results, as seen in Table III. In comparison
with MFC, FCM produced much better classifying models.
While MFC would repeatedly create worse models when using
higher volume of data points, this did not happen when using
FCM. With 1000M, models showed better values across all
criteria, having the biggest difference being registered in AUC.
Another point of contrast between the two methodologies is
the performance improvement of the Non Zero-Day scenario
with respect to the other two. Unlike before, this scenario
proved to yield accurate classifiers using both set of meters
(the best results out of the three scenarios for 200M). Not
only did it have better AUC but the remaining metrics were
also higher.

TABLE III
TABLE WITH THE BEST MODELS WHEN APPLYING FCM TO RAW DATA OF

200 AND 1000 METERS

Dataset Attacks AUC Accuracy TPR-FPR

200M

Zero Day
0,771 0,778 0,444
0,795 0,785 0,473

Non Zero Day
0,803 0,786 0,431
0,804 0,758 0,460

All attacks
0,747 0,760 0,465
0,747 0,760 0,465

1000M

Zero Day
0,861 0,799 0,570
0,871 0,798 0,582

Non Zero Day
0,863 0,806 0,576
0,863 0,806 0,577

All attacks
0,842 0,792 0,538
0,844 0,791 0,539

C. Temporal consumption indicators

Similarly to the datasets in the previous section, TCI also
contain a temporal component making it eligible for MFC.
And as a way to compare with the first dataset, SCI, and
evaluating the impact of the temporal component in this
particular dataset, FCM was also applied.

1) MFC with the Temporal Consumption Indicators: The
use of temporal indicators, despite also possessing a time
variant nature, proved to accelerate the simulation time when
compared to using original data directly.

Aside from Non Zero-Day which showed the worse results
so far, applying MFC to temporal indicators proved to yield
slightly better results than using time variant and invariant
features with AUC reaching values of 0, 680 in the best case
recorded. The only reason the accuracy of Non Zero-Day was
so high relied on the fact that these models classified every
single sample as ”fraudulent” which lead to 16 of the 17
samples per meter being correctly classified.

2) FCM with the Temporal Consumption Indicators: To
serve as a base for comparison not only with the last test
but also with the other experiments done using FCM, TCI
dataset was also used to create FCM fuzzy models. This
particular experiment is relevant since it will provide a means
of comparison between static and temporal indicators and,
overall, if in fact there is an advantage in keeping the time
variant nature of certain features.

Unlike what happened when this algorithm was applied to
time variant and invariant features, the results this time did
not show good performances across all scenarios. In fact, Non
Zero-Day attacks had classification scores identical to the ones
where MFC was used on TCI. As a consequence, All Attacks
evaluation values worsened as it combines Zero-Day attacks
which computed well performing models and Non Zero-Day
attacks which computed very bad ones.

D. Overall results

Table IV presents a summary of the results gathered from
the tests made throughout the thesis. Time series is abbreviated
to TS in the table. In each dataset, the All Attacks threat model
is highlighted as it represents all possible attack vectors.

From this global perspective, the difference in performances
becomes clear when using MFC or FCM to cluster data points
before applying Takagi-Sugeno modelling. Aside from some
outliers, using Fuzzy C-Means, even in data containing a
temporal component, results in more proficient classifying
models. It is then plausible to conclude that maintaining the
temporal nature of time variant features at the clustering stage
does not directly translate into more accurate models.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this thesis was to identify electricity theft
not only through static features (demographic information)
but also through time variant features (power consumption
patterns). This was done by assessing the performance of
classifiers built with algorithms that took into consideration



TABLE IV
SUMMARISED TABLE

Dataset Model Parameters AUC TPR-FPR

SCI FCM FM
Method 1

0,790 0,469No Balance

Raw Data

MFC FM

Zero Day
18 TS 0,725 0,323
1 TS 0,558 0,111

Non Zero Day
18 TS 0,543 0,075
1 TS 0,519 0,033

All Attacks
18 TS 0,620 0,189
1 TS 0,555 0,110

FCM FM
Zero Day 1 TS 0,871 0,581

Non Zero Day 1 TS 0,863 0,577
All Attacks 1 TS 0,844 0,565

TCI

MFC FM
Zero Day 0,646 0,206

Non Zero Day 0,500 0,000
All Attacks 0,680 0,251

FCM FM
Zero Day 0,867 0,594

Non Zero Day 0,500 0,000
All Attacks 0,692 0,280

the time varying component of crucial information, such as
electricity consumption of households over a period of time.

Across the three datasets, the best results came from ap-
plying FCM to time variant and invariant features. Keeping
the temporal nature of the data might not be necessary for
high performing classifiers and instead doing so may hinder
their performance as it might overload the algorithms with
unnecessary information.

Since MFC was designed to operate with DTW distance and
this approach was not used in this thesis, applying it to future
works in this field might yield better results. The algorithm
SVM has proven to compute accurate classifiers, so using it
in a similar framework to what was used in this thesis might
result in better classifiers than the ones found.
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