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Resumo

Esta tese aborda a problemática das perdas não técnicas na indústria da produção de electricidade com

o foco no consumo ilegal de electricidade por parte de certos consumidores. O objectivo é criar mod-

elos de classificação usando modelação fuzzy para a detecção à base de informação de perdas não-

técnicas. Mais especificamente, um novo processo de agrupamento, Mixed Fuzzy Clustering (MFC),

é utilizado para potenciar tanto os atributos variáveis como os não variáveis no tempo na identificação

de consumidores ilegais. De forma a avaliar o desempenho dos modelos criados, três casos de estudo

são usados considerando diferentes tipos de variáveis baseadas na informação reunida a partir de con-

sumos e questionários de cada consumidor. Para efeitos de comparação, o algoritmo Fuzzy C-Means,

(FCM) foi também utilizado para derivar modelos. Apesar deste algoritmo não ter sido desenvolvido es-

pecificamente para lidar com informação variante no tempo, este tem-se revelado eficaz em diferentes

aplicações, p. ex. processar o consumo energético de um consumidor de forma a caracterizá-lo. Os

melhores classificadores foram construı́dos aplicando o algoritmo FCM à base de dados com atributos

variantes e não variantes no tempo, indicando que o algoritmo MFC não será o mais indicado para lidar

com a variáveis utilizadas. Os modelos desenvolvidos atingiram um bom desempenho na detecção de

perdas não-técnicas, desempenho esse que é representado por uma taxa de positivos verdadeiros a

chegar aos 80% e abaixo de uma taxa de positivos falsos de 21.9%, revelando que a modelação fuzzy

é adequada para a função.

Palavras-chave: perdas não-técnicas, identificadores variantes no tempo, identificadores

não-variantes no tempo, Fuzzy C-Means, Mixed Fuzzy Clustering
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Abstract

This thesis addresses the ever-growing problem of non-technical losses in the electricity industry, with

a focus on illegal consumption behaviour from consumers. The aim of this thesis is to develop clas-

sifying models using fuzzy modelling for data-based detection of Non-Technical Losses (NTLs). More

specifically, a new clustering scheme, Mixed Fuzzy Clustering, is utilized to leverage both time variant

and invariant features (gathered from surveys and electricity consumption records) in the identification

of illegal consumers. To evaluate the performance of the developed models, three use cases are used

considering different types of features based on collected consumption data and consumer surveys. For

comparison purposes, the Fuzzy C-Means algorithm was also used to derive models. Although this al-

gorithm was not specifically developed for dealing with time-variant data, it has proven effective in many

different applications, such as dealing with consumption data for consumer profiling. The best overall

classifiers were computed by applying FCM to the dataset with time variant and invariant features, indi-

cating that the Mixed Fuzzy Clustering algorithm is not best suited to deal with the data features used.

The models developed achieved a good performance in detection of non-technical losses, quantified by

true positive rate of up to 80% under a false positive rate 21.9%, showing that fuzzy modelling is suited

for the task.

Keywords: non-technical losses, time variant feature, time invariant feature, Fuzzy C-Means,

Mixed Fuzzy Clustering
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Chapter 1

Introduction

This thesis addresses the ever-growing problem of non-technical losses in the electricity industry, with

a focus on illegal consumption behaviour from consumers. The aim is to create models for detection of

Non-Technical Losses (NTLs) built from supervised and interpretable techniques. These same models

are computed using time variant and invariant information simultaneously and compared with models

built solely from static or temporal features. This study uses data in different configurations to assess

the potential of Computational Intelligence, more specifically fuzzy clustering and modelling, to discern

between malicious and non malicious behaviour among consumers.

This data was taken from surveys to get static (demographic) information and from meters which

registered temporal information (consumption patterns from both private and commercial users). The

information was used in three distinct structures: in the same format that was taken from the surveys

and meters (raw data), in the form of static indicators and in the form of temporal indicators, both

computed from the raw data. These datasets were used to test the performance of an algorithm which

is capable of handling both time variant and invariant data and has already been used in other fields

yielding promising results.

1.1 Non-technical losses and the electricity industry

Throughout the entire power grid that starts with the production of electrical energy and ends at the

moment of consumption there are power losses expected from any physical process. These can be

estimated by computing the difference between the amount of electricity produced and the amount

consumed by the end user and they are referred to in the literature as transmission and distribution

(T&D) losses.

Since no process is 100% efficient, there are registered dissipations in distribution lines, capacitors,

transformers and in every other device or tool used in the system. Despite the fact that the efficiencies

of these components are measured and tabled, the losses they cause can only be estimated, as the

intensity of load demand, load density and energy patterns fluctuate throughout the day and the ca-
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pability and configuration of the transmission and distribution system vary among installations [1]. By

knowing the amount of power a company produces, the electricity that is billed to the consumer (amount

of electricity that the company registered as consumed) and the energy lost from technical losses even

if estimated, it is possible to ascertain the existence of external power losses. If the resulting balance is

not approximately null then it is a sign of the presence of Non-Technical Losses (NTLs) in the studied

system.

In developed countries, NTLs correspond to a small percentage over the entire T&D losses, 1-2%

out of the total 6% that T&D losses take up from the power generated back in 2000 [2]. However,

NTLs play a more significant role in the electricity industry in developing countries, where it can take up

14% of the entire power generated (this was the case in Bangladesh) [2]. These losses are a result of

consumers trying and succeeding in paying for less power than what they consume. This is frequently

achieved through four distinct methods: fraud by tampering with meters; stealing power from the grid

through illegal connections; billing irregularities by bribing electric company officials [2].

The existence of NTLs is well documented throughout the literature [2, 3, 4, 5, 6], and acknowledged

by the industry as well [7, 8]. It has a significant impact in several points around the globe, like Jamaica

[3], South Africa [2], Tanzania [5], India [5, 4], among others. The worldwide consumption of electricity

has always been steadily increasing, from around 12,500 TWh in 2000 to around 20,000 TWh in 2015

[9]. In 2016, in the United States of America 3700 TWh of electricity were consumed resulting in

390$ billion in revenue [10]. Citing the same governmental body, the estimated losses in the electricity

transmission and distribution averaged around 5% [11]. Considering the aforementioned data, 1-2% out

of the total T&D losses are a result of NTLs in developed countries. Objectively speaking this seemingly

small percentage equals several billion dollars in unpaid bills. In countries like India, where T&D losses

can add up to 40% of the total generated electricity, its costs to electric companies 4,5$ billion every

year [12].

These high costs lead to several negative consequences. Not only are some of the theft procedures

dangerous for the ones executing them (risk of electrocution when bypassing the electric connection

to a meter or when rigging a line from the power source) [6, 2], but they will also impact law abiding.

Since companies produce energy that is not paid for, they end up charging the difference to legitimate

consumers. This forces some to steal electricity because they cannot afford to pay the increased prices.

As prices cannot rise indefinitely, there will be a saturation point where companies will lose money

from NTLs and will not be able to get it back. This is already seen in developing countries where elec-

tricity theft is widespread resulting in significant losses. With less money, maintenance and upgrades

to current grids will be affected. Consequently, the overload of the components forming the distribution

line, due to unmonitored consumption of electricity, will trigger more frequent blackouts (complete loss

of power in a region) and brownouts (voltage supplied to the system falls below the specified operating

range but there is no total loss of power) [3].
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1.2 Detection of non-technical losses

As mentioned before, NTLs have had noteworthy impact in the industry leading to the acknowledgement

of several companies and the attention and interest of researchers. In the last two decades this has cul-

minated in studies focused on techniques and approaches to detect, estimate and analyse NTLs [13].

Overall, the research done can be sorted into three distinct categories: theoretical studies, hardware

solutions and non-hardware solutions.

Theoretical studies

Theoretical studies centre on the use of statistical techniques to find the correlation between socio-

demographic, economic, market variables and electricity fraud. These techniques have the advantage

of producing results that can have a high impact by helping design policy and make decisions to reduce

NTLs. However, these same studies can estimate and find the drivers of aggregate NTLs but are not

adequate when it comes to finding specific cases of theft and faults in metering or billing.

An example of a theoretical study is the paper [5]. It examines the phenomenon of theft in two

distinct developing contexts, Zanzibar, Tanzania, and the Sunderban Islands, India, by looking into the

main factors connected to electricity fraud through surveys and ethnographic fieldwork.

Hardware solutions

Hardware solutions primarily focus on characterizing and deploying equipment (e.g. metering hardware

and infrastructure, signal generation, sensors) that enables the detection or estimation of NTLs. Studies

on metering hardware solutions propose various alternatives which are able to completely disable some

theft options, such as meter reversal and disconnection. However, their implementation on a high

number of households carries elevated costs that companies are, more often than not, not willing to

pay.

In [14] researchers propose a new system based on ARM-Cortex M3 processor to protect the en-

ergy meter from phase line bypassing, neutral line disconnection, whole meter bypassing and meter

tampering.

Solutions on metering infrastructures involve changes on a wider scale than the solutions concerning

metering hardware and may even disrupt the current power grid. For these reasons, the costs involved

are considerably higher and their implementation has to be well coordinated within the utility company.

In [15] threats facing Advanced Metering Infrastructures (AMIs) were studied so that attack tech-

niques could be computed to identify and understand the requirements for a comprehensive intrusion

detection solution. With the threat model established, it was then possible to infer the information that

3



would be required to effectively detect attacks. As an alternative to AMIs, researchers proposed a hy-

brid sensing infrastructure that uses both a centralized intrusion detection system and embedded meter

sensors.

Improvements to inspections and metering systems, such as AMIs composed of smart meters (SM),

would help better alert electricity providers to irregularities and overloads of certain areas in the power

grid [12].

Another solution found in a limited number of studies deals with signal generation and processing.

Despite needing the presence of smart metering systems, these methods can usually detect all types

of NTLs.

One example of this particular approach is presented in [16] where researchers propose the use of

a harmonic signal generator to detect illegal consumers. These signals are introduced into the feeder

to destroy appliances of illegal consumers and their effects are estimated. A cost-benefit analysis for

implementation of the proposed method in India is also evaluated.

Non-hardware solutions

In this category the methodologies propose computational approaches to detect or estimate the pres-

ence of NTLs. Most studies within this field, including this thesis, focus on describing classification

techniques that infer the presence of NTLs from electricity consumption or other data. These methods

require low investment (unlike hardware solutions) and, if the theoretical information is accurate and

extensive, they can detect most types of NTLs. However, the presence of sources of NTLs upon iden-

tification is not guaranteed and these methods might not be capable of identifying individual sources.

Therefore, these algorithms are better used as an add-on to improve the effectiveness of inspection re-

sources. These types of solutions mainly encompass the following techniques: estimation, game theory

and classification.

Some studies focus on estimating the amount of NTLs from a neighbourhood or a household by

using state estimation to gauge irregularities and errors in customers’ demand data or using technical

loss modelling to estimate aggregated NTLs.

Researchers in [17] propose state estimation combined with attacker modelling to tackle the threat

of false data injection enabling the detection of NTLs that would otherwise be undetected by traditional

methods. State estimation is more precise than classification techniques but requires more accurate

and complete data on the distribution network loads.

Game theory based techniques model all members behaviour involved in the chain of consumption,

legitimate consumers, fraudsters and the relationships with the electricity utility. One main disadvantage

of these techniques is the need for solid assumptions on how frauds are carried out, only providing

estimates on the detection capabilities of techniques under those assumptions. However, this leads to

precise detection capabilities.
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A game-theoretic approach is proposed in [18] to model the adversarial nature of the electricity theft

problem. It considers two settings, unregulated monopoly and perfect competition. This framework can

help detect electricity theft through the observation of the power usage behaviour.

Classification algorithms are capable of predicting the presence of electricity fraud at an end-point.

Their effectiveness is reliant on the data used, the type (e.g. electricity consumption, demographic

information) and the form it takes (e.g. information directly taken from surveys and meters, indicators

built from that information), and how fitting the algorithm is for the problem at hand. The studies with

highest impact utilize support vector machines (SVM) to deduce the presence of fraud in a household.

Researchers in [19] propose an approach which uses customer load profile information and one ad-

ditional attribute to expose abnormal behaviour which was regarded in the paper to be highly correlated

with NTL activities. This feature was a credit worthiness rating given by the electrical company Tenaga

Nasional Berhad to its costumers that was influenced by delayed payments and intentionally avoiding

bills. The end result is a shortlist of potential suspects for onsite check-ups, integrating computational

solutions with inspection resources. When applied to a utility company in Malaysia, the end result was

an increase in detection hit-rates from 3% to 60%.

With the vast amount of information that SM provide, data processing and later machine learning

techniques are needed to sort and analyse consumer details such as power consumption (electricity

usage over time), demographic information (e.g. number of people per household, number of bedrooms)

and/or behavioural information (social media activity, religious/political beliefs).

Several studies have been conducted in the areas of electricity consumption profiling and theft clas-

sification. In the case of electricity consumption profiling, the authors of [20] identified and analysed

five lifestyle factors reflecting social and behavioural patterns such as air conditioning and personal

computer and TV usage. In [21], psychological responses and predispositions, for instance acceptance

of policy measures, were studied by applying a cluster analytic approach. As for theft detection, [22]

present a consumption pattern-based energy theft detector that utilizes silhouette plots to distinguish

clear distributions in the database and is able to adapt its performance depending on the aim of the

application by adjusting the detection delay. One of the main issues within NTLs identification is the

data unbalance that is inherent to most experiments done in the field as the number of fraudulent con-

sumers is much smaller than the number of honest customers resulting in standard classifiers to discard

the minority class as it is overwhelmed by the remaining one. To overcome this problem, researches

in [23] tested the individual performance of several suitable classifiers (variations to SVM, path forest

and decision tree) and combinations of them, concluding that the ensembles show slightly better re-

sults at the cost of high computational power. In [24], a clustering-based novelty detection scheme was

proposed which applies fuzzy clustering to extracted indicators from a dataset of legitimate consumers.

This form of clustering, more precisely the Gustafson-Kessel technique, proved to be more effective

in grouping similar consumers creating a more solid base line for a distance-based novelty detection

model to uncover irregular data received from consumers.
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As it has been stated before, the types of data usually available in the energy research field are

static and temporal attributes. Most machine learning techniques focus only on one type, as they are

not appropriate when dealing with the complexity of datasets containing different data types. While

most studies focus on socio-demographic datasets composed only of static or time invariant features,

some, like [25, 26], study the effectiveness of time variant data (electricity consumption over time) in

discerning fraudulent from regular behaviour. In [25] the authors propose a novel inspection algorithm

which is able to detect malicious meters in one inspection step. In [26], power consumption without the

seasonal component is analysed in order to detect fraud and illogical consumption.

So as to introduce a new perspective into this field, a recently proposed method that uses time

variant (spatial component) and invariant (temporal component) data as input was chosen as the ba-

sis for this work. The algorithm, entitled Mixed Fuzzy Clustering (MFC), applies fuzzy clustering to

spatio-temporal data [27] to learn if-then rules for identification of Takagi-Sugeno fuzzy models. The

clustering of temporal attributes has seen increased interest as most real life problems are character-

ized by datasets containing variables that change over time however, studies on cluster analysis of

these features are still limited [28]. Several clustering-based approaches have been proposed to extract

fuzzy rules from data, where each cluster represents a region in the product space that contains enough

information to support the existence of a fuzzy input/output relationship [29].

Fuzzy modelling provides transparent models and linguistic interpretations of the decision-making

process, allowing for a clear understanding of the classification of certain consumers as fraudulent.

Several works in the literature have used fuzzy modelling in the most diverse areas.

In [30], a study on the sustainability of biomass for energy purposes was conducted using fuzzy-set

based methods since, according to researchers, these were proven to be able to handle uncertain and

vague information in environmental topics. Particularly in the paper four input variables were considered

(energy output, energy balance, fertilizers and pesticides). The first two variables were chosen on

the need to include information about the energy dimension of sustainability. The remainder involve

information about the chemical pressure from crop cultivation which should be considered in a process

of sustainability assessment. In [31], a fault detection and isolation solution is proposed with application

to a wind farm benchmark model and the solution relies on a set of piecewise affine Takagi–Sugeno

models, which are identified from the noisy measurements acquired from the simulated wind park. More

specifically, MFC has been used in medical settings for administration of vasopressors, identification of

patients with high risk of mortality and readmissions in intensive care units [32, 33, 34].

1.3 Objectives and Contributions

This thesis analysed three databases Static Consumption Indicators (Static CI), time variant and invari-

ant features (referred to as raw data throughout the document) and Temporal Consumption Indicators.

The main focus was on the application of a method that combined spatio-temporal features to better
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cluster data points, Mixed Fuzzy Clustering, thus creating more precise fuzzy models. In order to create

a basis for comparison, the algorithm Fuzzy C-Means (FCM) was also applied to all three datasets as

this method does not distinguish between temporal and static components. The work done in this thesis

is schematically shown in Fig. 1.1. Throughout the thesis parts of this scheme will be used to better

visualize what is being mentioned and explained. As shown in the picture, three distinct datasets were

used, one containing time variant and invariant features (taken directly from surveys and consumption

records), one containing static indicators and the latter, temporal indicators both built from the time vari-

ant and invariant features. The information provided to us was regarded as information from legitimate

consumers (did not commit theft). Since the goal was the detection of NTL, a set of attack vectors were

computed onto the benign set. This threat model was taken from [56, 22].

Figure 1.1: Graph of the methods applied to each dataset

The results show that the best performing models were computed by applying FCM to the dataset

with time variant and invariant features. FCM also proved to yield good results with the dataset Static

CI while on Temporal CI neither MFC nor FCM proved to be fitting clustering algorithms.

1.4 Outline

Chapter 2 establishes the theoretical background of the algorithms used throughout the thesis. An

overview of fuzzy logic is presented followed by an exposition on the clustering methods and then

the Takagi-Sugeno modelling approach. In chapter 3, the approaches taken to process the gathered

information for the respective algorithms will be described. Depending on whether or not the data had

time varying components, the resulting dataset would take a different configuration. Chapter 4 presents
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the tests done to the three databases each having the two clustering methods applied, and evaluates the

respective results. Chapter 5 analyses and discusses the results observed in the thesis. Conclusions

and future work are drawn in Chapter 6. Appendix A presents a study done on the effects of varying

the importance of misclassified positive cases as a deciding factor to compute a classifier. It is common

for power companies to prioritize the reduction of false positives and thus it is relevant to evaluate how

such concerns would influence the choice of classifiers.
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Chapter 2

Classification models for detection of

Non-Technical Losses

In this chapter the theoretical background of the methodologies used throughout this thesis is presented,

more specifically fuzzy clustering and fuzzy modelling. The concepts of fuzzy logic and fuzzy inference

systems are firstly introduced followed by fuzzy clustering and modelling.

Clustering focuses on grouping information based on their similarity. Data can be grouped into

separate groups (crisp clustering) or present a degree of belonging to all (fuzzy clustering). This the-

sis utilizes fuzzy clustering, more specifically, the algorithms Fuzzy C-Means (FCM) and Mixed Fuzzy

Clustering (MFC).

The partitioned data is then used to create classification models. The information is divided into a

training set which is used to create the classifiers, and an evaluation set which contains different data

points to check whether the trained classifier is able to reproduce the performance shown during train-

ing stage. So as to understand how likely each household is to be presenting an abnormal behaviour

(as opposed to simply present a binary classification), and to keep the resulting classifiers as transpar-

ent and understandable as possible, fuzzy modelling, Takagi-Sugeno (TS) modelling, was chosen to

compute the models. These fuzzy models are described by fuzzy IF-THEN rules which represent local

input-output relations of a nonlinear system. The main feature of a TS fuzzy model is to express the

local dynamics of each fuzzy implication (rule) by a linear system model. The overall fuzzy model of the

system is achieved by combining the linear system models [35].

This chapter begins by explaining Fuzzy Logic, moves on to a description of the theoretical back-

ground of fuzzy clustering and modelling and the respective algorithms used.
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2.1 Fuzzy modelling

2.1.1 Fuzzy logic

Using the approach of classical sets (crisp sets), an element either is or is not a member of a set. This

formulation dates back to Aristotle during Classical Greece [36],

”But on the other hand, there cannot be an intermediate between contradictories, but of one subject

we must either affirm or deny any one predicate.”.

Despite providing a clear distinction between elements of different sets and what might characterize

each grouping, by analysing the elements composing them, Boolean logic cannot solve all problems.

This usually happens when expert knowledge is needed in the classification process, where there is

an uncertainty in the membership degree of each element to any set. To better solve these specific

problems, one can resort to Fuzzy Logic.

Fuzzy Logic was first introduced by [37] as a way to translate human decision making, for example

translating ranges of possibilities between YES and NO, into a language comprehended by computers.

In general terms, fuzzy sets allow their elements to possess a degree of membership to every other

set. A practical demonstration of this concept can be seen when considering, for example, the rule ”a

person is considered tall when their height is at least 180cm” to evaluate two people, one being 181cm

(person A) and another 179cm (person B). While one can more promptly agree that person A is tall,

given the previous rule, the second individual should not be necessarily considered ”small” (opposite

of ”tall”) because they lack 1cm. In other words, it is intuitive to consider a level of belonging to the

group ”tall” where person A would have a much higher degree than person B. This is essentially Fuzzy

Logic. The transition from ”belonging” to ”not belonging” is gradual and is characterized by membership

functions that enable the modelling of linguistic concepts. The degree of membership ranges from 0

(not an element of the set) to 1 (a member of the set). It is worth noting that allowing only the values of

0 and 1 will turn the fuzzy classification into a crisp one.

2.1.2 Fuzzy Inference Systems

A fuzzy inference systems (FIS), also known as fuzzy rule-based systems or fuzzy models, constitute

the process of mapping the inputs (features in the case of fuzzy classification) to the outputs (classes

in the case of fuzzy classification) using fuzzy logic. The purpose of this approach is to compute a

solution by decoding it from expert knowledge and linguistic terms through the use of fuzzy IF-THEN

rules, which form the knowledge base and can effectively model human expertise in a specific field.

These rules take the following structure,

If x is A, Then y is B
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where A and B are linguistic variables defined by fuzzy sets on the universes of discourse x and y

respectively.

A FIS is composed of 4 blocks: fuzzification interface, knowledge base (composed of the rule-base

and database blocks), decision-making unit and defuzzification interface [38] which are schematically

shown in Fig. 2.1

(Crisp)

Fuzzi�cation

Knowledge Base

Database Rule Base

Decision-making Unit

Defuzzi�cation

(Crisp)

(Fuzzy) (Fuzzy)

OutputInput

Figure 2.1: Fuzzy inference system

The first, fuzzification, transforms crisp values into grades of belonging, by means of a member-

ship function, to fuzzy sets expressing linguistic terms. These membership functions are defined in the

database block and together with the if-then rules that form the rule-base block comprise the knowledge

base. The decision-making unit, also known as the inference engine (the core of the FIS) evaluates the

input’s degree of membership to the fuzzy output sets using the fuzzy rules. Depending on the relative

importance of each rule, weight constants can be added to each of them in order to take into consider-

ation this disparity when fuzzy output is calculated. The final stage consists on the defuzzification of the

output by transforming it into a crisp value. The inference engine can reproduce the human decision-

making process by performing approximate reasoning in order to achieve a control strategy. In the case

of the fuzzy classifiers in this thesis, defuzzification is where the fuzzy output is turned into the binary

classification of theft or no theft.

The two most well known types of fuzzy inference methods are the Mamdani and the Takagi-Sugeno-

Kang inference systems.

In Mamdani-type FIS [39] both the antecedent and consequent are fuzzy propositions. As such, the

output of the inference engine has a high degree of interpretability and its final crisp value is obtained

through the defuzzification of the output surface. There are several methods that yield the single value

from the resulting fuzzy set: centroid of the area, largest or smallest value which equals the maximum

of the surface or even the mean value of those representing the surface’s maximum.

The Takagi-Sugeno-Kang method [40] (or simply Takagi-Sugeno (TS) method)used in this thesis has

fuzzy inputs and a crisp output (linear combination of the inputs). The consequence of each fuzzy rule
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is a function, where output of TS systems is generated from a weighted average of the output functions

from the fuzzy rules of the knowledge base.

Both inference systems share several similarities however the main difference lies on the fact that

the output of the TS method is not a membership function, but a crisp number computed by a weighted

average. By not having to handle a membership function as the output of the inference engine to

compute the final crisp value, the computational power required for the process decreases making it

efficient and suitable to work with optimization and adaptive techniques.

The scheme in Fig. 2.2 utilizes a two-rule two-input fuzzy inference system to show different types

of fuzzy system mentioned above. While Type 1 was the first one to be developed, it received some

criticism for the lack of uncertainty associated with it, something that is characteristic of Fuzzy Logic.

Type 2 was then proposed in [41] and addressed the criticism by incorporating uncertainty about the

membership function into fuzzy set theory. This second approach is the Mamdani type fuzzy system

where the output function is determined based on overall fuzzy output. Type 3 is the Takagi-Sugeno

type fuzzy system.
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Figure 2.2: Defuzzification methods in Mamdani fuzzy logic
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2.2 Fuzzy clustering

Cluster analysis or clustering is the task of grouping a set of unlabelled objects in such a way that the

degree of similarity is higher among objects within the same group or cluster (intra-group similarity) than

objects from different clusters (inter-group similarity).

It is one of the key tasks in exploratory data mining, and a common technique for statistical data

analysis, used in many fields such as machine learning [42], pattern recognition [43], image analysis

[44] among others.

2.2.1 Fuzzy C-Means

Fuzzy C-Means (FCM) is an unsupervised partitioning algorithm with frequent implementation in pattern

recognition and image processing problems [44, 43, 45]. It was first proposed in [46] and later improved

in [47]. This method introduces Fuzzy Logic to the hard clustering framework, seen in K-Means [48] for

example, by allowing each data point xj = [xj1, xj1, ..., xjR], R being the number of features in the input

matrix, to belong to all clusters C by means of a membership degree as opposed to hard clustering

where each point can only belong to one cluster.

FCM is an iterative optimization that minimizes the following objective function,

Jm =

N∑
i=1

C∑
j=1

umijd
2
ij(xj , ci) (2.1)

where N is the number of samples, C the number of clusters, m is the fuzzification parameter which

has to range within [1;∞[ and defines how fuzzy or crisp the end clusters will be, umij is the membership

degree of element i to the cluster j, and d2ij(xj , ci) is a similarity measure, commonly viewed as a

proximity measure and thus handled as a distance variable, between the point xj and the cluster centre,

also known as prototype, ci.

The algorithm starts with the initialization of the partition matrix U which is formed with the member-

ship degrees of every element N to every cluster C.

U =


u11 . . . u1C

...
. . .

...

uN1 . . . uNC



This initialization can be performed randomly by giving aleatory belonging values of each point to

every cluster. However, the membership degree has to obey the following constraints
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uij ∈ [0, 1] ∀i; 0 <

N∑
j=1

uij < N ∀i; (2.2)

C∑
i=1

uij = 1 ∀i. (2.3)

Afterwards, through an iterative process the fuzzy partitioning is carried out and the objective function

in 2.1 is optimized. This is done by computing the cluster centres with the equation

ci =

N∑
j=1

umijxj∑N
j=1 u

m
ij

(2.4)

also known as prototypes. These are the mean of all points, weighted by their degree of membership

to the cluster. Next the partition matrix is updated using equation (2.5) which calculates the membership

degree of element i to cluster j.

uij =
1

C∑
k=1

(
d2ij
d2kj

) 1
m−1

(2.5)

Once this is done a stopping condition is checked and if cleared, the iteration stops. In this project,

the cycle halts when max|uz+1
ij − uzij | < ε is verified where z is the iteration step and ε is the stopping

condition.

In the present study, each sample is assigned to each cluster with a certain degree of membership.

This degree is proportional to the distance between the sample and the cluster prototype, which in a

general way can be computed as

d2ij(xj , ci) = ||xj − ci||2 = (xj − ci)TAi(xj − ci) (2.6)

2.2.2 Mixed Fuzzy Clustering

Mixed Fuzzy Clustering is a novel clustering method based on Fuzzy C-Means [33] which allows the

clustering of time variant (remain constant over time) and time invariant (change over time) features

simultaneously. This algorithm aims at providing a solution for dealing with longitudinal misaligned data

where the length of time variant features is different, and to account for misalignment through the use of

Dynamic Time Warping (DTW) distance. This approach clusters the dataset using an augmented form

of the FCM [49]. The main difference between them relies on the distance function. In the augmented

version, a new parameter λ is calculated, weighting the importance to be given to each feature [50].

Each sample xi, with i = 1, ..., n, is characterized by static features or time invariant, xs, and by time

variant features or time-series, Xt:
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xi = (xsi , X
t
i ), (2.7)

where xs is a NxR matrix with N equal to the number of entities and R equal to the number of time

invariant features, and Xt a NxP matrix with P being the number of time variant features. Each entry

of Xt is an array of values, xtip of length Q dependent on p,

xtip = (xti1, x
t
i2, ..., x

t
iQ(p)), (2.8)

The time invariant cluster centres l, also known as the time invariant prototypes l, vsl , and the time

variant cluster centres l, vtl for feature p are calculated through equations (2.9) and (2.10) respectively.

vsl =

N∑
i=1

umli x
s
i∑N

i=1 u
m
li

(2.9)

vtlp =

n∑
i=1

umli x
t
ip∑N

i=1 u
m
li

(2.10)

Each cluster l has its own set of feature weights λ, calculated separately for xt and xs in every

dimension:

λslr =
1( ∑

1<k≤R

N∑
i=1

um
li ||(x

s
ir,v

s
lr)||2

N∑
i=1

um
li ||x

s
ik−v

s
lk||2

+
∑

R<k≤R+P

N∑
i=1

um
li ||(x

s
ir,v

s
lr)

N∑
i=1

um
li δ(x

t
i(k−R)

,vt
l(k−R)

)

) 1
q−1

(2.11)

λtlp =
1( ∑

1<k≤R

N∑
i=1

um
li δ(x

t
ip,v

t
lp)

N∑
i=1

um
li ||x

s
ik−v

s
lk||2

+
∑

R<k≤R+P

∑N
i=1 u

m
li δ(x

t
ip,v

t
lp)

N∑
i=1

um
li δ(x

t
i(k−R)

,vt
l(k−R)

)

) 1
q−1

(2.12)

The variable q offers a degree of feature discrimination and its value ranges from 1 to∞. According

to [50], as q approaches 1, λ will tend to take binary values, meaning one feature will be labelled 1 for

being the most relevant in the computation of the distance between samples and the prototypes. On

the other hand, if q took higher and higher values, the same feature weights will have the same levels

of relevancy thus making the process of feature selection irrelevant.

As previously mentioned, λ alongside a distance function δ was used to compute the distance be-

tween an entity and the time invariant and variant prototypes of a cluster j, through equation (2.13).

d2ji =

R∑
r=1

λsjr||xsir − vsjr||2 +

P∑
p=1

λtjpδ
2(xtip, v

t
jp) (2.13)

The distance function δ between two vectors a and b of same length M , with i = 1, 2, ...,M and
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l = 1, 2, ...,M , is given by:

δ2(a,b) = (a1 − b1)2 + ...+ (aM − bM )2, if EUC

δ2(a,b) = γ(M,M), if DTW
(2.14)

where γ(i, l) = ||ai − bl||2 +min{γ(i− 1, l), γ(i− 1, l − 1), γ(i, l − 1)} and γ(1, 1) = ||a1 − b1||2.

Although the calculation of the distance between a sample and the time invariant is only made

through the Euclidean distance method, the distance to the time variant centres can be done through

either Euclidean distance or Distance Time Warping (DTW). This latter approach fundamentally differs

from the former on how it handles two time series. While Euclidean distance directly compares two

points in the same time instance without considering differences in vector size (either from different

time samples or different start/end recording) or misalignment between them, DTW takes both vectors

and tries to align them so as to minimize their difference thus creating what is called a warping path.

Taking two time series, Q = q1, ..., qm and R = r1, ..., rn, for the computation of DTW, a distance matrix

(mxn) is constructed where each (i, j) matrix element contains the distance value of point qi to point

rj . A warping path is then created as a set of matrix elements that are bound by three rules: boundary

condition, continuity, and monotonicity. The boundary condition dictates that the warping path starts

and finishes in diagonally opposite corner cells of the matrix, namely w1 = (1, 1) and w1 = (m,n). The

continuity constraint restricts the allowable steps to adjacent cells. The monotonicity constraint forces

the points in the warping path to be monotonically spaced in time.

Both distance measures are depicted in Fig.2.3

Figure 2.3: Graphical representation of the difference between Euclidean distance (on the left) and
Dynamic Time Warping (on the right)

One of the inputs to the Mixed Fuzzy Clustering algorithm is the partition matrix U = [uij ] which is

built from the degree of membership of each sample i to each and every cluster j. Given N samples
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and C number of clusters, the matrix will be CxN and each entry is calculated using the equation (2.15)

uij =
1

C∑
g=1

(
d2ji
d2gi

) 1
m−1

(2.15)

and subject to the following constraints

uij ∈ [0, 1] ∀i; 0 <

N∑
i=1

uij < N ∀i, j; (2.16)

C∑
j=1

uij = 1 ∀j; (2.17)

As previously mentioned, this is an augmented version of FCM and as such applies an augmented

form of the objective function

J =
C∑
j=1

N∑
i=1

umijd
2
ji(v

s
j , v

t
jp, xi) (2.18)

2.3 Takagi-Sugeno model for detection of NTLs

A classifier is a mathematical model that assigns a class label to an object, based on the characteristics

of the objects. In particular, a fuzzy classifier [51] is any classifier that uses fuzzy sets or fuzzy logic

during the course of its training or operation. The input data (characteristics of each data point) comes

in the form of a vector containing values for the features considered in the classification problem. In the

field of electricity consumption, whether it is fraud detection or consumption profiling, these features are

frequently related to demographic and/or psychological information, consumption patterns and others.

In this thesis these features take form of raw data (data directly taken from survey and meters without

any feature transformation) or indicators (created by transforming raw data into a smaller set of features

that characterize the same reality differently).

Fuzzy models are transparent “grey box” that allow the approximation of previously unknown non-

linear systems to be modelled using a number of linear and understandable sub-models responsible for

distinct sub-domains. The advantage of using fuzzy models over other non-linear modelling methods,

relies on not only providing transparency but also linguistic interpretation to the decision process in the

form of if-then rules. These may help company employees understand the weight certain pieces of

information have in the final identification of an illegal consumer as these fuzzy rules describe a local

input-output relation. In the case of NTL detection studied in this thesis, it was found that the result-

ing rules were complex and difficult to read as they were dependent on many variables (demographic

features for example) and characterized many clusters. Fuzzy models use a training set in order to dis-

cover potentially predictive relationships between inputs and outputs, and a test set (invariably smaller
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than the training set) to validate said relationships. For the binary classification case, each discriminant

function consists of rules,

Rj : If x1 is Aj1 and ... and xM is AjM

then yj(x) = fj(x), j = 1, 2, ... K
(2.19)

where fj is the consequent function of rule Rj and M = r+q, the number of features used. The

output of the discriminant function yj(x) can be interpreted as a score (or evidence) for the positive

example given the input feature vector x.

The number of rules K of the type Ri and the antecedent fuzzy sets Ajh are determined by fuzzy

clustering in the product space of the input variables. The consequent functions fi(x) are linear func-

tions determined by ordinary-least squares (OLS) in the space of the input and output variables.

The degree of activation of the jth rule is given by

βj =

M∏
h=1

µAjh
(x), (2.20)

where µAjh
(x) : R→ [0; 1].

In the TS model, the overall output is a weighted average of individual rule outputs, βj being the

weight, and the inference is reduced to a simple algebraic expression:

y(x) =

∑K
j=1 βifi(x)∑K

j=1 βi
(2.21)

The output of the system is often continuous but since it needs to identify classes (in this case two

groups, theft and regular consumption) a threshold has to be established. For that, the model uses

the training data to set a threshold that creates the most accurate classifier for that specific set of data

points. This particular model (with the threshold previously set) is then used with the test set to evaluate

its performance.

A sample xj is considered positive if the score is higher than a certain threshold γ, in other words,

yj(xj) > γ.

yj(xj) > γ (2.22)

The performance of the classifier is then judged using metrics such as AUC, Accuracy, TPR and

FPR which all vary in the interval [0, 1]. These metrics will be explained in section 4.1

18



2.4 Fuzzy modelling to detect Non-Technical Losses

Several papers have been published on the implementation of fuzzy modelling regarding the work done

on the detection of NTLs. In [52] researchers apply fuzzy logic to determine a suspicion level of fraud

for each customer. In [53], the authors continue the work of [19] by implementing a FIS in an SVM

based fraud detection model. Using onsite inspection as feedback, while SVM achieved a hit-rate or

True Positive Rate of 60%, adding the FIS as a postprocessing scheme improved the hit rate to 70%. In

[54], after using FCM to cluster consumers with similar electricity usage profiles, a fuzzy classification is

performed to identify anomalies, such as non-technical losses, in consumption patterns of households.

This thesis focused on evaluating classifying models built using fuzzy modelling on both time variant

and invariant features. Although these two variables are traditionally featured in the research pertain-

ing to this field, with demographic features and electricity consumption records, a study has not been

conducted on the use of both to detect NTL. The results gathered helped understand the importance of

considering two distinct sets of features during the classification process.
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Chapter 3

Data and threat model

3.1 Used databases

All methods studied in this project used data from the same source. This information was provided

by the Commission for Energy Regulation who conducted surveys and collected data on the electricity

consumption of around 5,000 Irish homes and businesses from the Summer of 2009 to the Winter

of 2010 and made them available at the Irish Social Science Data Archive (ISSDA) [55]. The survey

information (number of adults and children, type of house, heating provided through gas, ...) will be

referred to as static information or time invariant features while the consumption patterns will be referred

to as time series, time variant features or temporal features.

The clustering algorithms were applied to three distinct datasets, all built from the data provided by

ISSDA. The first dataset was composed of time variant and invariant features taken directly from the

surveys and records of Smart Meters (SM) provided by ISSDA. The remaining two datasets were built

with indicators computed from the data present in the first dataset, surveys and SM records. One of

these two databases had static indicators (indicators with one value per registered day) and the other

had temporal indicators (these were computed during different times of the day allowing for a daily

evolution of each indicator). These were the same indicators but were computed differently.

The algorithm MFC was designed to be applied to datasets containing both static and temporal

features. As such, for the static indicator dataset MFC was not used. As explained in the previous

chapter, FCM does not compute the time variant nature of features such as the electricity consumption

records. So while this algorithm can still be applied onto these features, it was used as a direct way

to compare the influence of each different dataset on the resulting classifiers. The use of FCM also

helped determine the importance of considering the time variant nature of the studied features for the

classification problem as it opposed MFC in its approach to time series.
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3.2 Threat model

Despite the different approaches to the input data, the same attack vectors were computed onto the data

points. For each sample representing a normal household, 8 attacks were applied. For this project, the

provided information by ISSDA was treated as data from legitimate consumers and was used to apply

a threat model which represents distinct ways a consumer might steal from electricity providers. All the

attacks involved manipulating data sent from SM to utility companies, either with the gol of lowering the

average consumption or shifting consumption from periods where tariffs are higher. The idea behind

the application of these attack vectors is to create a flexible model with information regarding the same

consumer interfering with his records through a variety of methods all the while keeping the unaltered

consumption pattern for theft identification. The threat model used was taken from the work [56] which

in turn was based off of [22].

According to [56], the attack procedures can be grouped in two different categories: attacks that

started during the meters data gathering (non zero-day attacks) and attacks which had already started

by the time the information was collected (zero-day attacks). The different attacks and scenarios (zero-

day and non zero-day) are presented below with the first attack, for example, presenting the non

zero-day scenario as h1 and the zero-day scenario as h10. The equations use the following nota-

tion: md,t
i are the meter consumption readings from consumer i in day d for hour t. This results in md

i

= (md,1
i ,md,2

i , ...,md,24
i ) representing the 24 hour vector of metered data of consumer i on day d. All

parameters and variables used in each equation were taken directly from the aforementioned papers.

Although some attacks clearly reduced the average consumption, others focus on lowering consumption

in periods of the day where tariffs are higher (from 18h to 24h).

• h1; h10 : constant random reduction of consumption.

Every data point of the same time period is multiplied by the same constant, which is randomly

chosen within the range [0;1].

h1(md,t
i ) = αmd,t

i , α = random(0.1, 0.8) (3.1)

• h2; h20 : registering zero consumption for a random period of the day; zero day scenario.

A random period of the day, a starting point and duration randomly chosen, is selected to have its
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electrical pattern set to 0.

h2(md,t
i ) = βhmd,t

i

βt =

0, tstart < t < tend

1, else

tstart = random(0, 20)

δ = random(4, 24)

tend = tstart + δ, tend ≤ 24

(3.2)

• h3; h30 : random hourly reduction of consumption.

Each entry belonging to the chosen time window is multiplied by a different randomly picked

constant between [0;1]. This attack model is similar to the first except instead of one common

constant for the whole time period, as mentioned in h1 and h10, each hourly record is combined

with a different constant.

h3(md,t
i ) = γtm

d,t
i , γt = random(0.1, 0.8) (3.3)

• h4; h40 : random hourly consumption pattern with reduced average consumption.

After calculating the average consumption in that period of time, each time sample of said period is

multiplied by a distinct randomly picked constant within [0;1]. This method makes the consumption

profile very different from other consumers with similar demographic characteristics as there are

lower consumption peaks, which are normal at the last hours of each work day. This can be picked

up by utility companies by checking, for example, the difference in consumption peaks between

consumers and difference between daily lows and peaks of the same consumer.

h4(md,t
i ) = γt µ(md

i ) , γt = random(0.1, 0.8) (3.4)

• h5; h50 : constant hourly consumption equal to the average.

The entire daily consumption pattern is replaced by the average of the electricity usage in that

same day. Although the daily average is not changed, as it lowers the consumption during peak

hours (normally from 18h to 24h) it will decrease the monthly bill since these hours tend to have

higher tariffs. This is another attack which can be quickly picked up by companies as consumption

profiles have lows and peaks throughout the day and this attacks changes it to a constant value.

h5(md,t
i ) = µ(md

i ) (3.5)

• h6; h60 : reversed hourly consumption.
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The daily electrical pattern is reversed. Although, this might not change the average consumption

it will move the electricity usage away from periods of high consumption. If the consumer has

similar patterns to others who have high consumption levels at the end of the day for example,

shifting those records to the beginning of the same day (early hours of the morning) means the

consumers will end up paying less since prices are higher when most consumers are active and

lower when they are not.

h6(md,t
i ) = md,24−t

i (3.6)

• h7; h70 : shift of consumption from peak hours to the rest of the day, turning peak hours consump-

tion to the average.

The peak of electricity consumption in each day and the consumption of the following X hours (a

three hour window was used for this project, but different values of X could also have been con-

sidered) are computed and their difference to the average consumption of that day is calculated.

From here, that difference is then distributed over the remaining data points of that day. The reason

behind this model is the same as the previous one, a change in the electricity bill (change in the

consumption during hours when the price is higher) despite maintaining the average consumption.

h7(md,t
i ) =

m
d,t
i − δ m

d,t
i , pstart < t < pend

md,t
i + ε /21, else

pstart is the starting hour of the highest consumption three hour period

pend = pstart + 3

ε =

3∑
j=1

md,pstart+j−1
i

(3.7)

• h8; h80 : change the consumption data so that it copies the one from a consumer with lower

average of electricity consumption.

The electricity pattern of each day is replaced with one from another consumer with lower average.

If during that day the fraudulent consumer is the one with the lowest average, then he does not

alter his record.

h8(md,t
i ) = md,t

r

r is a random consumer with µ(md,t
r ) < µ(md,t

i )
(3.8)

In order to better visualize the effects of the diverse ensemble of attack vectors on a normal con-

sumption pattern the Fig. 3.1 shows the application of the Threat Model onto a specific meter on a

particular day.

24



0 5 10 15 20 25

Hour of the day

0

0.5

1

1.5

2

2.5

3

3.5

E
le

c
tr

ic
it
y
 C

o
n

s
u

m
p

ti
o

n
Meter: 40

Normal Consumption

Attack 1

Attack 2

Attack 3

Attack 4

Attack 5

Attack 6

Attack 7

Attack 8

Figure 3.1: Graphical representation of the Threat Model on Meter 40

3.3 Feature engineering

Since the data for the TS and MFC algorithms had to be in different formats, the way they were pro-

cessed to be ready for computation took distinct approaches.

3.3.1 Static consumption indicators (Static CI)

Rather than just keeping the same characterizing variables from the original set of time variant and

invariant features, indicators were computed to make future models as transparent and interpretable

as possible. These new features reflect changes from past consumption patterns and from other con-

sumers with similar characteristics when comparing answers to the survey. The computed dataset

presents the following information:

• Meter : Serial number that identifies each meter

• Date : The date in which the data was recorded

• Attack : The type of attack each sample is meant to represent (None for normal consumption and

hi for the attack i)

• I1 : Indicator of consumption variation. Ratio between current and past consumption.

The first indicator, I1, is a ratio between the consumption of the last α days and the last β periods

of α days.
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I1(i, d) =

∑α
j=1

∑24
k=1m

d−j,k
i

1
β

∑β
l=1

∑α
j=1

∑24
k=1m

d−j−αβ,k
i

(3.9)

• Ie2 and Ic2 : Indicators of hourly consumption pattern change.

The indicator Iv2 relates the hourly pattern of a day with the mean hourly pattern of the α days

before. If v is the euclidean distance (v = e), changes in absolute consumption will be the most

relevant for the indicator. If v is the Pearson correlation (v = c), changes of dynamic can be

detected.

Iv2 (i, d) = v(md
i , µ(md−1−α

i , ...,md−1
i )) (3.10)

• I3 : Indicator of consumption difference in comparison to consumers with similar characteristics.

I3 portrays the difference of selected consumer to one r ∈ R with highest similarity in terms

of demographic information. Compares the mean consumption of the last β days to the mean

consumption for the same days for the consumers with the most similar characteristics. R are the

τ consumers in 1; 2; ...;N with lowest similarity between their characteristics si.

I3(i, d) =

1
β

∑β
l=1

∑24
k=1m

d−j−β−1,k
i

µ({ 1β
∑β
l=1

∑24
k=1m

d−j−β−1,k
r ∀r ∈ R})

(3.11)

• Ie4 and Ic4 : Indicators of hourly consumption pattern difference in comparison to consumers with

similar characteristics.

The last indicators Ie4 and Ic4 represent the difference in the hourly consumption pattern between

consumer i and others with the highest similarity by relating their mean hourly consumption on the

α days.

Iv4 (i, d) = v(µ(md−α
i , ...,md

i ), µ({(md−α
r , ...,md

r)∀r ∈ R})) (3.12)

Because the data was compiled from a real-life setting, some samples display missing information

in certain variables (this information was represented by NaN ). Three approaches to this problem

were considered: turn all values of NaN into 0; turn all NaN into the average value of the corre-

sponding feature; turn only the NaN entries that characterize the attack models 5 and 50 into 0 and

the rest into the average values. Recalling the explanation given in section 3.2 for the threat model,

these two attack models in particular simulate the replacement of a regular consumption pattern with a

constant consumption sequence. This leads the indicators I2 and I4 (specifically the indicators which

use the Pearson correlation, I2c and I4c ) to present errors (NaN) as they characterize differences with

past consumption patterns and in relation to similar consumers respectively. As these attacks replace

consumption variations with a constant signal, there was no change to be evaluated by these indicators
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hence the NaN values. Since the remaining NaN present in other features throughout the database

cannot be easily explained (therefore resolved promptly), to deal with them, a methodology that disrupts

as little as possible of the modelling process must be implemented. Thus, tests were run to determine

the best course of action when dealing with erroneous data.

The last step in the data processing stage concerns the division of the database into training/testing

sets. Seeing as the data points contain information of the same meter in different occasions of the year,

the division method must ensure that every sample of each meter (from the 5 days in the 4 seasons

of the year), both the normal consumption sample and its corresponding attack samples, has to be in

the same set (either training set or testing set). The distribution between training/testing data is kept at

60%/40% throughout the thesis.

3.3.2 Time variant and invariant features

As the information provided by ISSDA contains data from both households and businesses, an early

selection had to be made due to the entirely distinct consumption behaviours these two sets exhibit and

thus, have to be dealt separately. To that end, the data points concerning private consumers were used

and the ones regarding small and medium sized companies were discarded. The information available

regarding private consumers is separated into two sections: one providing the results from the surveys

and the other one the electricity consumption over the span of those two years.

Each of these two datasets, electrical consumption and survey results, presented different formats

and, therefore, distinct challenges in their analysis.

Electricity consumption data

The electricity patterns of each meter were published in different .txt files, each containing information

regarding distinct groups of meters. The number of recordings varied from meter to meter. Initially, each

was set up to record consumption every 30 minutes (48 recordings per day), except for the days corre-

sponding to the Daylight Saving Time (DST) schedule where they show 50 and 46 points. However, all

meters had missing information throughout the day. Instead of points showing no consumed electricity,

there were periods where the meter itself did not register, only to resume later on. As a result, there

were, for instance, days with around 30 entries out of the 48. A similar procedure to what was used

in [33] was also used in this project to handle absent data. Depending on the ratio between registered

and missing information, the entire electricity record of a specific meter had to be discarded. On the

other hand, if the ratio was above a certain threshold, the amount of data missing was sufficiently small

relatively to the data points registered, the information missing could be filled automatically without com-

promising the database. With this in mind, when assessing the absent entries, these were replaced with

information from the last recorded data point, effectively applying the method Zero Order Hold (ZOH).

This approach has been applied by other researchers [33].
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In order to manipulate a small but representative database due to computational constraints (more

data to analyse would increase computation time), instead of using the complete set of data points from

the two years of electricity records, the same three days of each season of the year (a total of 12 days

per year) were picked from every consumer. Given that the records start at day 195 (July 14th 2009)

and end at day 730 (December 31st 2010), information regarding Spring of the first year, the first month

of Summer of the first year and the last two months of Winter of the second year were not registered

and therefore not evaluated in this project. A time window was then applied to the selected days so

as to provide a record of past behaviours. In spite of having information ranging from two years, the

time window ranged from 5 days prior to each of the three days per season. This decision had in mind

the procedure through which the algorithms from the electricity providers operate to detect fraudulent

consumers, as officials, after deciding to inspect a certain client on a particular day, would only have

access to the user’s past information.

From the selected days (12 days per year) and the days within the respective time windows, if one

was to belong to the DST calendar (a day with one hour added or removed), it would mean the time

series of that day has a different size than the remaining days. This would create differently sized time

series which would have to be handled with DTW. Despite being one of the advantages of using MFC

when dealing with possible misaligned time variant features [32], the computational power needed to

use DTW over Euclidean distance is greatly exacerbated leading to an increase of the time needed

to run the experiments. As a solution, it was decided to discard the information from the added hour

(49th and 50th entries) on the days when the clock would advance 60 minutes or apply ZOH to the last

non 48th entry, when an hour is removed. Although it is adding information to a period of time that

never existed and deleting valid information, the impact on the results from the algorithm is negligible.

In order to keep confidentiality in check, the data was resampled to 24 points per day by adding every

two points of the time series. After analysing the consumption data over a weekly period, the difference

between patterns from weekends and working days was substantial enough to justify discarding the

weekend information from the database. Without this decision, the classification algorithm would end up

comparing very distinct time series within the same time window making the job of discerning between

theft and legitimate behaviour more complex and less accurate.

Survey data

With respect to the surveys, these consisted of 234 questions made to both private and corporate

consumers. However certain questions were directed specifically to one of these groups. This, allied

with the fact that certain variables or household characteristics could more heavily influence electricity

consumption, justified the use of Feature Selection. Applying a rating from 0 (completely irrelevant for

consumer profiling) to 3 (of the highest importance) to all 234 questions, choosing the ones with score

above 1 and removing the ones that showed a skewed distribution in the answers (questions where

over 85% gave the same answer) left 39 variables eligible to be used for the study. Skewed distribution
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in answers would result in some features to not have representation to more than one answer during

tests, specifically when dividing between training and testing data. As a practical example, despite the

fact that washing machines consume a lot of power, since practically every household has one using

this feature to distinguish between consumers is not viable. These 39 variables with the names given

by ISSDA are shown in Tables 3.1 to 3.4.

Table 3.1: Features from survey: respondent information

Feature Description

Age Age of the respondent

Employment Employment status of the respondent

Social class Social class of the respondent

Education Education level of the respondent

Income Income of the respondent before tax

Living situation Living situation (e.g. alone, adults, adults and children)

N adults Number of adults in the household

N children Number of children in the household

Table 3.2: Features from survey: household information

Feature Description

Home type Type of home (e.g. apartment, terraced)

Home age Household age

Bedrooms Number of bedrooms

CLF lightbulbs Fraction of CLF light bulbs (e.g. around a quarter, about half)

Doublegazed windows Fraction of doubleglazed windows

Attic insulated Number of years the attic has been insulated

Externalwalls insulated Insulation of external walls: yes, no, don’t know

Internet Access to the internet

One of the problems that surfaced after analysing the database was that the consumers did not fill

the queries properly. Specifically, when asked to describe the people in the household, if the answer

was ”I live alone”, the person surveyed did not answer 1 to the question related to the number of people

over the age of 15 nor 0 to the question related to the number of people under the age of 15. Instead

these questions show an invalid response. A similar situation happened when no one under the age

of 15 was living in a household with 2 or more adults. Except in this case, the question with invalid

answers was the number of people under the age of 15. Despite the problems created from these

errors, they were mended by manually filling the invalid entries with the appropriate values. Another

question that had analogous but less systematic occurrences was related to the age of the building.
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Table 3.3: Features from survey: heating information

Feature Description

Heat gas Use of gas for heating (YES or NO answer)

Heat oil Use of oil for heating

Heat solidfuel Use of solid fuel for heating

Heat timer Use of timer to control heating

Water heat central Use of central heating to heat water

Water heat electric Use of electric heating to heat water

Water heat gas Use of gas to heat water

Water heat oil Use of gas to heat water

Water heat solidfuel Use of solid fuel to heat water

Table 3.4: Features from survey: appliances information

Feature Description

Tumble dryer Number of tumble dryers in the household

Dishwasher Number of dishwashers in the household

Electric shower 1 Number of electric showers 1 in the household

Electric shower 2 Number of electric showers 2 in the household

Electric cooker Number of electric cookers in the household

Electric heater Number of electric heaters in the household

Standalone freezer Number of standalone freezers in the household

Water pump Number of water pumps in the household

Immersion heater Number of immersion heaters in the household

Tv 21 less Number of TVs smaller than 21” in the household

Tv 21 greater Number of TVs bigger than 21” in the household

Desktop computer Number of desktop computers in the household

Laptop computer Number of laptop computers in the household

Game console Number of gaming consoles in the household
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For this question there is no correlation between the consumers who did not answer like in the previous

situations. Therefore, the samples which presented an invalid entry were discarded. This in conjunction

with the private consumer selection previously mentioned led to a final database of 4233 samples.

3.3.3 Temporal consumption indicators (Temporal CI)

The third dataset was a combination of the last two, it had indicators computed from raw data but

displaying a temporal evolution as opposed to being static. This scheme used the principle behind the

Static CI (developing indicators of electricity consumption instead of feeding raw information directly into

the clustering algorithms) but still contained the temporal nature that is the focal point of this thesis. As

a result, besides the date of each registry and the meter and attack identification, it had the temporal

evolution of the same 4 indicators presented in the first database, I1, Ie2 and Ic2 , I3 and Ie4 and Ic4 . The

recorded evolution spanned from 9 days prior to the selected day (day of the attack in the case of the

non zero-day threat model) to the day itself. The dataset used the threat model with 6 attacks with both

zero-day and non zero-day scenarios. Each of the 6 attacks were computed onto each meter in a set of

1000.
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Chapter 4

Results and discussion

In this chapter, different tests were undertaken in order to evaluate the performance of the modelling

algorithms described in chapter 2 on the different datasets developed. Only FCM was applied to Static

Consumption Indicators since it does not exhibit the temporal nature of the other two sets. MFC was

then tested using the remaining sets, Raw Data and Temporal Consumption Indicators, which possess

the time-related characteristic for which the clustering algorithm was developed for. Likewise, FCM was

tested with these to assess the impact of considering the entries of the temporal datasets as values for

static features. In other words, discarding their time varying essence and treating them as static data.

Firstly, the evaluation metrics used throughout the analysis will be presented with a theoretical

overview on AUC, Accuracy, True Positive Rate, Negative Rate and the specific indexes used for the

assessment of FCM on Static Consumption Indicators. The discussion on the criteria is followed by the

reasoning behind why certain tests and parameters were examined for the three frameworks and then

the conclusions taken from their results.

4.1 Evaluation criteria

Similar tests were performed across the different databases and thus similar metrics were used to eval-

uate the results. With respect to the Static Consumption Indicators dataset, a more thorough evaluation

was done on the application of FCM when compared to the implementation of the same method on the

two other datasets. Because this was the only implementation of a clustering procedure on this dataset,

it was decided to explore several assessment tools in order to determine their viability for subsequent

tests. The simulations done on the three databases were evaluated using the following criteria: Area

Under the Receiver Operating Characteristics Curve (AUC); Accuracy; True Positive Rate (TPR); False

Positive Rate (FPR); Difference between TPR and FPR. More specifically, for the dataset of static indi-

cators, the threshold determination method was studied using indexes such as Youden Index, minimum

distance and testing every possible threshold until one yields the lowest difference between specificity

and sensitivity.
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4.1.1 Receiver operating characteristic

A common tool used for visualizing, organizing and selecting binary classifiers is the Receiver Operating

Characteristic (ROC) graph, Fig. 4.1. In the ROC space, each classifier with a given class distribution

and cost matrix is represented by a point (FP, TP) on the ROC curve. In addition to being a generally

useful graphing method for comparison between classifiers, these curves have properties that make

them especially useful for domains with class unbalance and unequal classification error costs. In a

ROC curve, the true positive rate (TPR), also known as sensitivity or recall, is plotted against the false

positive rate (FPR), calculated through 1 − specificity, for different cut-off points of a parameter, as

seen in Fig. 4.1.

Figure 4.1

The ROC space can be divided in 3 general areas, the diagonal line, the upper triangle and the lower

triangle. If the curve, like the one represented by the letter B in Fig. 4.1, overlaps with the diagonal line

between points (0,0) and (1,1), the line C in Fig. 4.1 also known as chance line, it can be concluded

that the classifier is no better than an algorithm that identifies the samples on a randomly basis. If the

model’s curve is nearer the point (0,1), point A in Fig. 4.1, than the diagonal than the model is better than

random guessing. This point symbolizes a decision threshold that would correctly identify all positive

(TPR = 1) and all negative (FPR = 0 or specificity = 1) samples. The closer the curve of the model

gets to (0,1) the better the classifier. Lastly, if by contrast the curve is further away from the corner point

than the diagonal line (the curve is located in the lower triangle shown in Fig. 4.1) the system is overall

seen as having inadequate prediction power. Despite this, by inverting the classification outcome it is

possible to mirror the respective curve into the upper portion of the ROC space, turning a once regarded

inferior model into an acceptable one.

Each point on the ROC curve represents a sensitivity/specificity pair corresponding to a particular

decision threshold. This results in a distinct confusion matrix, Table 4.1 for each of these points.
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Table 4.1: Confusion Matrix

Predicted

Positive Negative

Actual
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

It is through this table that metrics such as TPR, FPR and accuracy are calculated. All of these

metrics vary between [0, 1] and, as opposed to FPR, the closer they get to 1 the better.

True Positive Rate (TPR) or Sensitivity: True Positive Rate represents the percentage of positive

cases correctly predicted as positive. In other words, the higher TPR, the fewer positive data points will

be misclassified.

TPR =
TP

TP + FN
(4.1)

False Positive Rate (FPR) or 1-Specificity: False Positive Rate represents percentage of negative

cases incorrectly predicted (predicted as positive instead of negative). In other words, the higher FPR,

the more negative data points will be misclassified.

FPR =
FP

FP + TN
(4.2)

Accuracy: Accuracy represents the percentage of ”true” cases (both positive and negative) over all

classified elements.

Accuracy =
TN + TP

TN + TP + FP + FN
(4.3)

Despite evaluating the classifier on its ability to correctly identify positive and negatives classes

within the test sample, accuracy does not take into account skewed class distribution. If a model is

proficient at classifying the minority class but inadequate towards the majority group than accuracy will

be low, since, objectively speaking, the system is misclassifying a high number of true cases. Another

factor relevant to mention is the fact that accuracy does not consider the probability (be it 0.51 or 0.99) of

the prediction, as long as the class with the largest probability estimation is the same as the target, it is

regarded as correct. These points made it so a better criterion had to be used to estimate the predictive

accuracy of classifiers and more precisely compare the different results gathered from the subsequent

tests.

Area Under Curve (AUC)
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Throughout the literature [24, 56, 34, 33, 57, 58], the area of the ROC graph or Area Under Curve

(AUC) has been regarded as a well founded metric to reduce the whole ROC curve into a scalar measure

making it an independent index on the decision threshold. This metric has an important statistical

property: the AUC of a classifier is equivalent to the probability that the classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative instance [59]. The effectiveness of

AUC at interpreting a model classification ability over other metrics such as accuracy has been studied

and proven in the past [60, 61]. AUC is preferably used for comparison of models’ performance [62]

rather than for objective and standalone analysis. However, some have criticised the resounding support

the adoption of this particular index has had throughout the years [63] but such criticism has also been

counterpointed [64] leading to more conscious but still generalized uses of AUC.

Since this criterion is a representation of the whole curve, the values from AUC have a direct transla-

tion to different regions on the ROC space. As it is a unit graph (both axes range from 0 to 1 thus making

its area 1), the value of AUC of a perfect model (the curve of a perfect model follows the y-axis from (0,0)

to (0,1) and then ends at point (1,1)) is the same as the ROC space area, in other words, AUC = 1.

The closer AUC gets to 1 the better the model. With the direct interpretation seen so far, it is easy

to understand that AUC = 0.5 represents the random guessing model and any value of AUC around

this is a sign of poor performance. As for values of AUC < 0.5, these represent models which have

their classifications mixed and inverting them will give a new reversed AUC, AUC’ (AUC ′ = 1 − AUC),

resulting in AUC ′ > 0.5.

4.1.2 Tests on threshold determination

As mentioned above, to get the accuracy, TPR and FPR of a classifier a threshold needs to be defined.

For the first tests developed in this project (analysis done to the Static CI dataset) a study on a few

methodologies was done to understand their differences and determine which one fit best for this case

study. The methods to determine the best threshold for the model relied on the ROC curve, more

specifically, the Youden Index (Youden’s J Statistic) [65] and the minimum distance to the point (0,1),

Fig. 4.2. Beyond these, a more extensive method was used where every possible threshold was

applied and the model with the best balance between accuracy and TPR − FPR was then selected.

This extensive framework (checking every threshold) will serve as baseline to compare the other two.

Since this method takes longer, as it has to survey all possibilities, the purpose of it is to establish if

any of the alternatives, Youden Index or minimum distance, can reach similar conclusions to the point

of replacing checking all thresholds.

The Youden Index, as it was stated previously, is calculated using the following equation,

J = max( Sensitivity + Specificity − 1) (4.4)

= max( TPR− FPR) .
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Figure 4.2: Graphical representation of the performance evaluation methods.

This index defines the maximum potential effectiveness of a particular threshold. The point in the

ROC curve that maximizes this index is the cut-point that optimizes the threshold’s differentiating ability

when equal weight is given to sensitivity and specificity. Its value ranges from -1 (AUC = 0) to 1

(AUC = 1), and is zero when a diagnostic test gives the same proportion of positive results for groups

with and without the data manipulation (AUC = 0.5). In this case the test is irrelevant.

The second method evaluates the distance, d, of the various ROC curve points to (0,1) and is defined

by the following equation

d =
√

(1− Sensitivity)2 + (1− Specificity)2 (4.5)

Since the ideal model’s ROC curve follows the lines that go from point (0,0) to (0,1) and finally to

(1,1), in other words, AUC = 1, the closer a real model’s curve gets to that the better. Therefore, it is

relevant to look for the point in a ROC curve closest to (0,1) thus minimizing d.

4.2 Tests and parameters

4.2.1 Static Consumption Indicators

To the static consumption indicators only FCM was applied as a clustering method.

37



Figure 4.3: Graph of the methods applied to Static CI

There were four main parameters to be chosen in the tests done to this database: optimal number of

clusters and fuzzification parameter, skewed class distribution, best method to deal with invalid entries

in the dataset and lastly the effects of varying the cost associated with FP or FN.

With the intent of setting down the more specific details first, the parametrization of the classifiers

(number of clusters, C, and fuzzy parameter, m) was done first through the use of a grid search. Given

that the threat model presents 17 different samples (one element of non malicious behaviour plus 8

zero-day and 8 non zero-day attacks) the number of clusters was tested for [2 : 19]. On the off chance

that the clustering algorithm could identify more than the 17 scenarios described, the variable C was

set until 19 instead of 17. As for parameter m, it was tested for [1.4 : 0.3 : 3.8].

During the data processing stage, the original database presented errors, null value or Not a Number

(NaN), mostly for features I2c and I4c , which had to be fixed before implementing the algorithms. Three

methods, described in section 3.3.1, were designed to fix them and the best one for the task was to be

found. As a reminder, the methods were: turn all values of NaN into 0; turn all NaN into the average

value of the corresponding feature; turn only the NaN entries that characterize the attack models 5 and

50 into 0 and the remaining NaN into the average values. With the intention of simplifying the document

these techniques will be referred to as Method 1, Method 2 and Method 3, respectively.

Another issue found during this early stage was the uneven ratio between regular/irregular electricity

consumption patterns, for each data point of regular consumption, 16 attacks were computed onto

them. This point in particular (skewed class balance) is common in machine learning and data mining

research. As such, it became a point of interest to assess the influence of balancing techniques in

the final result of the classifiers. The different ratios tested were built by copying the regular samples
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several times until the ratio regular/irregular became what was needed. The original ratio (one sample

of regular consumption to 16 samples of irregular) will also be referred in this thesis as the ratio of 5%.

The different approaches studied reached values of 20% (4 regular samples to 16 attacks), 35% (8

regular samples to 16 attacks) and 47% (13 regular samples to 16 attacks).

These last two issues were combined during tests. This resulted in each specific method for dealing

with NaN to have the four distributions implemented. As mentioned in the previous section, optimizing

the determination of the threshold was also done with Static CI. To determine which approach (Youden

Index, minimum distance or testing all possible thresholds) would result in the best classifier, all three

were applied to each pair of Method/Balance and the accuracy, TPR and FPR were analysed and

compared.

As an additional perspective, in appendix A a study on the relative costs of FP and FN was done

as an alternative to find the optimal threshold for metric such as accuracy, FPR and TPR. In the field

of theft and fraud, the costs of accusing and investigating incorrect cases are significantly high to the

point where companies prioritize a high certainty in the detection of positive cases even if it means not

looking into a few uncertain ones that would be positive. With this in mind, evaluating how would varying

the costs fare in the determination of more appropriate thresholds for the case study.

4.2.2 Time variant and invariant features, raw data

The temporal component characteristic of the consumption patterns influenced the need to use a clus-

tering method that took that into account. As a result, MFC was used. However, this dataset was also

computed so that clustering methods for static features could also be used such as FCM. This was

done to assess the end result of discarding the temporal component of the consumption patterns and

whether that would result in better performing classifiers.
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Figure 4.4: Graph of the methods applied to raw data

Despite the changes made to the original database, which were explained in section 3.3.2, contribut-

ing to a smaller sample size, it was still too large to train models over the several parameters chosen

for the following tests. Not only there were different frameworks for the testing datasets (for example

balancing ratios and a change in the threat model) but the chosen parameters (number of clusters,

fuzzification parameter and feature discrimination parameter) were also tested for wide ranges. This

resulted in extensive simulations that would only get their computing time increased the larger the num-

ber of samples in the datasets. The number of meters and, as a consequence, the number of samples,

influenced the computing time the most. If made too small could hinder the clustering and classification

process as a result. Two sets of meters were then chosen, with 200 and 1000, and they will be referred

throughout this document as 200M and 1000M, respectively. The objective of this thesis is to provide

a solution to the very real problem of identification of electricity theft. As such, the real life scenario

presents an ever increasing amount of information for existing classification programs to sort through

and analyse, meaning, the 1000 meter datasets more closely represents real life cases. Nonetheless,

the hypothesis of overloading classification algorithms with information can be tested by comparing

results from models computed from 1000M with ones built from 200M.

Experimental analysis of fuzzy model parameters

The first set of tests consisted in evaluating the influence of the fuzzification parameter and the feature

discrimination parameter in the final predictive accuracy of the model. For that, the number of clusters

used during clustering and classification did not vary and remained equal to 2. While for the set of

200M a grid search was set up for clustering and classification individually (for each set of clustering
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parameters a grid search was performed for the modelling process), when it came to the 1000 meter

dataset the parameters for classification were kept constant, C = 2 and m = 2. This was done because

the computation time would increase considerably if the same methods were used. In addition to that,

the results from the 200 meter showed that the range of performances on the final models could po-

tentially be kept while maintaining the values of the classification model the same. These initial studies

also focused on evaluating the modelling process when solely applying what is in theory the simplest

attack vector to identify, h5, and the zero-day correspondent h50. This is believed to be true since these

two particular cases change the fluctuating electricity consumption patterns to the daily average. The

results from these two attacks methods were compared to the dataset where all attacks were computed

to both 200M and 1000M. When applying grid search, the fuzzification parameter and the feature weight

discriminant were examined for the values of [1.1 : 0.3 : 3.5] and [2, 10, 50, 100], respectively. The choice

for the values of m was influenced by the paper [66] where researchers claim that tests to determine the

effects of m should be done for values within the range [2, 3.5] where, in theory, the optimal value will lie

within [2.5, 3]. Keeping these findings in mind and understanding that electric fraud case studies were

not in the scope of this study, these tests were done with lower values of the fuzzification parameter,

namely m = [1.1 : 0.3 : 2], to see if they would generate accurate models. The feature discriminant vari-

able was tested in advance for lower values, q < 10, and it as shown that these yielded worse scores

than higher ones. For that reason and the fact that higher values were showing faster simulations,

contributed to the use of high values for this variable.

Balance data in preprocessing

These next tests addressed the mathematical models’ abilities to identify illegal behaviour when pre-

sented with datasets containing only zero-day attacks, non zero-day attacks and both situations. For

these experiments data balancing techniques were also analysed. These techniques consisted in repli-

cating the sample of regular electricity consumption a certain amount of times until a specific balance

between regular and irregular samples was achieved. However, this method carries an inherent prob-

lem, overfitting. If the same sample was repeated too many times, the mathematical model created

from clustering the training data becomes biased towards those specific regular samples and unable

to classify different regular ones as non theft. The end result was three arrays of tests for the dataset

of 200M where the first had no balancing technique applied, the second had the non-malicious sample

replicated twice (leading to ratios of 3 regular samples to 8 attack vectors in zero-day and non zero-day

tables and 3 regular samples to 16 attack vectors in the joint dataset) and the last one had the regular

sample replicated five times. When it came to the 1000 meter dataset, instead of doing grid search

like in the previous experiments, the best models using the 200M were picked and their performances

computed for this larger sample size. Only the unbalanced and the first balancing method were carried

out for 1000M. In all these tests, neither the 200 nor the 1000M sets had grid search performed during

the modelling process. The clustering and modelling parameters were set to the same values. With
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the information gathered from the previous tests it was clear that setting both number of clusters and

fuzziness parameter to 2 during the modelling step would yield suboptimal results. As a consequence,

this new methodology of using the same values for clustering and modelling was implemented to still

see if good results could be obtained while trying to accelerate the simulation time. For the tests with

only zero-day or non zero-day attacks the number of clusters was tested for [2 : 4, 7 : 10]. The data

bases were formatted to only discern between regular and irregular consumption, the attack labels only

display 0 or 1 (two different clusters), and thus C is tested for values between 2 and 4 (there might be

a few attack vectors that might display very distinct patterns so C = [3, 4] was also tested). However,

these datasets contain 8 different attack vectors plus the regular sample and, for that reason, higher

number of clusters had to be examined hence the C = [7 : 10]. As for the dataset with all attacks

vectors, the number of clusters was tested for [2 : 4, 7 : 10, 15 : 19], higher number of attack vectors,

higher number of clusters to be tested. As for the fuzziness parameter, m and the feature discriminant

exponent, q, these were tested for [1.1 : 0.3 : 3.8] and [10, 50, 100, 500], respectively. The two balance

ratios used were equivalent to the ones used in Static CI.

Threat model experiments

Afterwards, the predictive power of models using a slightly different attack vector was evaluated on

three different array of samples, zero-day attacks, non zero-day attacks and both approaches together.

Thus far, the threat model used in this project had followed the work of [24] but for these tests, as a

means of comparison, an identical attack vector to the one presented in [22] was used with the addition

of the zero-days scenario. In [22], the authors formulated a threat model composed of 6 distinct theft

methodologies (the same first 6 non zero-day attacks used in [24] and, as a result, in this project so far).

Researchers in [24] took that 6 vector threat model and added 2 new attacks while also implementing

the zero-day scheme.

In addition to changing the threat model for these experiments, a balancing procedure was also

analysed. It consisted in randomly choosing one attack per meter resulting in a balance of 1 regular

consumption sample to 1 irregular sample. This balance framework was used only for the set of 1000M

since it is the dataset that more closely depicts the situation in current electric companies (high volume

of clients) and the resulting table, with the balance implemented, does not overload the classification

algorithm requiring an impractical amount of time to run completely. For the unbalanced set of tests,

a grid search was applied to the set of 200M for the clustering process, using the same values for

the modelling process, and the best classifiers found were applied to the set of 1000M to examine if

they maintained their capability in a more populated environment. To ascertain these particular models’

relative performance in this new set, a grid search was then applied to 1000M to check the difference

between the best overall models and the best models simulated with 200 meters. In the balanced

scenario a grid search was only applied to the 1000M data. For the datasets with zero-day and non

zero-day attacks separated the number of clusters was examined for [2 : 4, 6 : 8] while for the table
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with both attacks structures it runs through [2 : 4, 6 : 8, 12 : 14]. The fuzziness parameter is tested for

[2 : 0.3 : 3.8] and the feature weight for [10, 50, 100, 500, 1000].

Practical case scenario

Up until this point, all 18 time series (3 distinct time windows per season of the year during the 6

registered seasons) had been used as input to the algorithm so as to provide enough context and

information to what constituted each attack vector. Since it is the consumption patterns that change

with each malicious procedure, not the demographic data, it was thought to be fundamental to include

as many examples of each approach as possible without overloading the program. However, this does

not exactly translate the current reality in the electric industry. Utility companies, once they had spotted a

consumer who might have been illegally altering their consumption patterns, would only have data from

that particular incident and not from other seasons of the year. It is being assumed that these consumers

have made new contracts with the respective company as it has been a concurrent occurrence in several

proven cases. For the next tests a different framework was used to replicate the information electric

companies tend to gather for non-technical losses inspections. As such, instead of 18 time series, only

one was randomly picked for each attack done to a every single meter. Since there are 17 individual

samples per meter (8 zero-day and 8 non zero-day attacks and the non malicious sample) and 18 time

series, each sample ended up having a different time window associated with it. Similarly to the last

test, not only were the two threat models compared but also the approach to 200M and 1000M was the

same (best models found in 200M were tested for 1000M and compared with the best models overall in

the larger set). This was done for an unbalanced set (one non malicious sample to 8 or 6 attack vectors).

A simple set of tests were performed using a balancing scheme to see if, like before, it would improve

results. The regular consumption sample was replicated so that the layouts zero-day, non zero-day and

both together had a ratio of 75/25 (irregular/regular samples). This was projected to be done firstly for

the 200M set and see if the prediction accuracy improved before moving onto the larger set of meters.

As for parameters, for the 8 attack threat model, C was tested for [2 : 4, 8 : 10] and [2 : 4, 8 : 10, 16 : 18],

depending on whether it is for zero and non zero-day attacks or both at the same time. For the other

threat model, C was tested for [2 : 4, 6 : 8] and [2 : 4, 6 : 8, 12 : 14]. In either case both m and q were

tested for [2 : 0.3 : 3.8] and [10, 50, 100, 500] respectively. The value q = 1000 was removed because it

had been used previously to prove that higher q were yielding better performing models but it is a very

high value to be used for this variable according to [32].

Modelling using FCM from raw datasets

To understand the effects of using raw data as opposed to static consumption indicators, it was decided

to use FCM to create classifying models and compare the results with what was done with Static CI.

The unsatisfactory results from past tests using MFC also influenced the desire to implement Fuzzy

C-Means. However, applying FCM to these datasets meant that the temporal component present in the
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data would be lost. Each entry of the time series would be regarded by the clustering algorithm as a

value for another time invariant feature. Using the threat model with 8 attacks and one randomly chosen

time series per sample for 200M and 1000M, tests were run for C = [2 : 9] and C = [2 : 9, 12 : 14]

(depending on the attack dataset) and m = [1.4 : 0.3 : 3.8]. These two parameters had a broader

scrutiny due to the less computationally intensive method used, FCM instead of MFC.

4.2.3 Study of temporal consumption indicators

Similarly to the datasets in the previous section, Temporal CI also contain a temporal component making

it eligible for MFC. And as a way to compare with the first dataset, SCI, and evaluating the impact of the

temporal component in this particular dataset, FCM was also applied.

Figure 4.5: Graph of the methods applied to raw data

MFC with the Temporal Consumption Indicators

Applying the database directly to the MFC algorithm, a grid search was performed where C = [2 :

4, 6 : 8] and C = [2 : 4, 6 : 8, 12 : 14] (depending on the attack dataset), m = [1.4 : 0.3 : 3.8] and

q = [3, 10, 50, 100, 500]. The use of temporal indicators, despite also possessing a time variant nature,

proved to accelerate the simulation time when compared to using raw data directly. Because of this and

the fact that most of the best models were found to have q = 3, a new set of tests were done where q

was set up for lower values, [1.3, 1.8, 2.5, 5, 8]. This test was thought to be relevant since it was the first

time that low values of q were observed to compute the best performing models.
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FCM with the Temporal Consumption Indicators

To serve as a base for comparison not only with the last test but also with the rest experiments with

FCM, Temporal CI were also used to create FCM FM. This particular experiment is relevant since it will

provide a means of comparison between static and temporal indicators and, overall, if in fact there is an

advantage in keeping the time variant nature of certain features. Continuing with the 1000M set, C was

tested for [2 : 9] and C = [2 : 9, 12 : 14] and m for [1.4 : 0.3 : 3.8].

4.3 Results

In the following sections, the main results from the previously presented tests are shown and discussed.

Here only the best models and their evaluation values are presented so as to keep the document brief

and concise. When relevant, more extensive tables will be referred to the corresponding appendixes. In

tables where clustering and/or modelling parameters are shown, they will be displayed with the format

[C m q] and [C m], respectively.

4.3.1 Static consumption indicators

The tests done on the Static CI dataset are presented in the following order: analysis on cluster number

and fuzzy parameter, balancing techniques and NaN solution and study on the relative costs of false

classifications, shown in appendix A.

Modelling using FCM from Static Consumption Indicators

The grid search performed for C and m was applied onto a dataset with no balancing method imple-

mented and with all the errors turned to the average. Table 4.2 presents the results with the models

sorted by their AUC value. The parameter column displays [C m] as the number of clusters and fuzzy

constant, respectively, considered for the specific model. The first five rows show the five worst models

and the remaining show the best (skipped the rest in order to not overload the document). The grid

search done to both parameters resulted in a total of 162 models and from the worst to the best the

AUC only varied 0,04. Given that the range of values for m and especially C was rather extensive, the

impact they had in the overall performance of the classifiers was inconsequential.

In terms of the parameters themselves, it is possible to see a clear predisposition for m where 1.4

and 1.7 yield the best classifiers. As for C, there does not seem be any correlation between either small,

medium or high values and good performance. Although high numbers, such as C = [16, 17, 18], seem

to create better performing models, these also directly correlate to an increase in computation time so

higher performance has to be balanced with practicality.

Taking only these conclusions into consideration, the set of variables to use in further evaluations

would be C = 9 and m = 1.4 since this is the system with the lowest number of clusters in the group of
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best classifiers (balancing performance and computation time). However, this was done to a particular

database, one with Method 2 and no balancing procedure applied. To safely use these values on all

following tests, similar conclusions on the impact of C and m have to be drawn from different datasets.

To this end, another grid search was set up on other data points for these variables. This time C and

m were tested for [8 : 11] and [1.4 : 0.3 : 3.8] respectively. The former results were taken into account

prompting a smaller range for cluster number but the same for fuzzification. These variables were tested

on a dataset with 36% of benign data where Method 3 was applied to deal with NaN . So as to validate

previous claims, analogous trends have to be observed, AUC needs to take similar values overall and

vary from higher to lower numbers as m increases.

By looking at Table 4.3 it is possible to confirm the previously registered tendency with AUC. Not

only do lower values of m create better performing classifiers, but C also continues to show no clear

correlation with AUC values. This metric shows slightly higher numbers overall, but it is still extremely

close to the previous run. Once again, the pair C = 9 and m = 1.4 is amongst the models with highest

AUC. This confirmation makes it so the use of these numbers for these variables on following test is

now justified.

Table 4.2: Table with results from tests done to C = [2 : 19] and m = [1.4 : 0.3 : 3.8] when applying FCM
to the dataset Static CI with Method 2 applied and 5% ratio

Parameters AUC Accuracy TPR FPR TPR-FPR

[4 3,8] 0,741 ± 0 0,680 ± 0 0,679 ± 0 0,298 ± 0 0,380

[9 3,8] 0,742 ± 0 0,677 ± 0 0,675 ± 0 0,295 ± 0 0,381

[11 3,8] 0,742 ± 0 0,677 ± 0 0,675 ± 0 0,293 ± 0 0,382

[7 3,8] 0,743 ± 0 0,677 ± 0 0,675 ± 0 0,292 ± 0 0,383

[7 3,5] 0,743 ± 0 0,682 ± 0 0,681 ± 0 0,298 ± 0 0,382
...

[10 1,4] 0,777 ± 0 0,700 ± 0 0,697 ± 0 0,250 ± 0 0,448

[9 1,4] 0,778 ± 0 0,710 ± 0 0,708 ± 0 0,259 ± 0 0,449

[19 1,7] 0,778 ± 0 0,712 ± 0 0,711 ± 0 0,265 ± 0 0,446

[12 1,7] 0,778 ± 0 0,705 ± 0 0,702 ± 0 0,248 ± 0 0,453

[17 1,7] 0,778 ± 0 0,704 ± 0 0,702 ± 0 0,255 ± 0 0,447

[17 1,4] 0,780 ± 0 0,696 ± 0 0,693 ± 0 0,250 ± 0 0,443

As for the examination of balancing and error fixing methods, the results are shown in Table 4.4.

Overall, there is not a substantial difference in AUC between the three methods for fixingNaN . From the

best to the worst models, the difference does not reach 0.05. Method 2 computed the worst performing

classifiers out of the three, while the remaining two do not show great difference aside from when they

are paired with an unbalanced set (dataset with 5% of benign data). And even in this setting (Method 1

with 5% regular samples and Method 2 with 5%) the difference in AUC and TPR − FPR are just 0.02
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Table 4.3: Table with results from tests done to C = [8 : 11] and m = [1.4 : 0.3 : 3.8] when applying FCM
to the dataset Static CI with Method 3 applied and 36% ratio

Parameters AUC Accuracy TPR FPR TPR-FPR

[10 3,8] 0,766 ± 0 0,704 ± 0 0,693 ± 0 0,276 ± 0 0,416

[11 3,8] 0,767 ± 0 0,707 ± 0 0,702 ± 0 0,283 ± 0 0,419

[11 3,2] 0,768 ± 0 0,709 ± 0 0,707 ± 0 0,287 ± 0 0,420

[9 3,8] 0,768 ± 0 0,706 ± 0 0,697 ± 0 0,278 ± 0 0,419
...

[11 1,7] 0,783 ± 0 0,727 ± 0 0,712 ± 0 0,247 ± 0 0,465

[9 1,4] 0,786 ± 0 0,725 ± 0 0,722 ± 0 0,268 ± 0 0,454

[10 1,7] 0,787 ± 0 0,729 ± 0 0,716 ± 0 0,247 ± 0 0,469

[8 1,7] 0,788 ± 0 0,728 ± 0 0,713 ± 0 0,245 ± 0 0,468

[9 1,7] 0,788 ± 0 0,729 ± 0 0,718 ± 0 0,251 ± 0 0,467

[11 1,4] 0,799 ± 0 0,737 ± 0 0,720 ± 0 0,235 ± 0 0,486

and 0.03, respectively.

When comparing the balancing frameworks, both the original dataset and the one with 36% benign

data consistently yielded the best results across the threeNaN methods. Given that there is an inherent

cost to revise the collected data points to create a more even set (the additional cost being an increase

in computational power since the dataset is larger), working with information as is (no redistribution

needed) seems a fitting choice for this specific database.

As for the methods to find the optimal threshold, no method stands out. To evaluate these, the

metrics accuracy, but primarily TPR − FPR, will be used. The latter exhibits no significant difference

amongst the three despite one of the methods being based on maximizing this metric. The biggest

difference in TPR − FPR for a single pair Method NaN / Balance was 0,014. Because all the three

points (one for each threshold approach) belong to the same ROC curve, the similarity in TPR− FPR

means that the points are considerably close to each other. This can be confirmed in Fig. 4.6 and

Fig. 4.7. With respect to accuracy, the strategy of checking all thresholds consistently lead to more

accurate models contrasting with the Youden Index which computed the less accurate ones out of the

three procedures. It can be concluded that focusing on maximizing TPR−FPR, which is what Youden

index does, may compromise other indicators. It is however worth noting that the difference in accuracy

is not substantial and the maximum registered was 0.025.

With all of this said, the best combination of parameters is Method 1 applied to a database with no

redistribution procedure implemented and with the threshold being computed through the use of mini-

mum distance. Reiterating what has previously been said, using no balance strategy helps in reducing

the cost of simulations and, despite the extensive search of testing every threshold yielding more accu-

rate points (by a small margin) than minimum distance, the added cost (increased computational time)
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is not worth it. As a result, in the following tests, the result tables show classifiers picked using minimum

distance.
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Figure 4.6: ROC curve for dataset with a 20%
distribution and Method 2 applied
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Figure 4.7: ROC curve for dataset with a 47%
distribution and Method 3 applied

4.3.2 Time variant and invariant features

Experimental analysis of fuzzy model parameters, C = 2

Having the number of clusters remain the same, allowed for a more thorough investigation on the

parameter estimation for clustering and modelling

Looking at the two different approaches regarding the modelling parameters it would be reasonable

clear as to which produced better results were it not for the All Attacks set up. For Attack 5 / Attack 50

and Attack 50 models tend to perform better and a grid search was applied to the modelling process, as

opposed to keeping said variables constant. However, for the remaining attack framework the difference

was negligible.

The overall results gathered from this initial assessment, Table 4.5, outright revealed a poor predic-

tive precision from the algorithm. While the 200m set confirmed that models created using solely Attack

50 had the best performance, in 1000M the same could not be said. As it was explained previously, this

attack in particular replaced the daily consumption points with ones equal to the average of that day

from the moment the meter started registering, zero-day scenario. In theory, this was the most distin-

guishable attack and so, the mathematical model would have been able to discern more easily regular

and irregular behaviour, which did not happen. Even in the best situation the results were mediocre.

Looking at the overall outcome of 200M and 1000M, the former built better performing models.

From the table 4.5 it can also be seen that MFC was able to compute better performing models using

the set up with Attack 50 on the 200M dataset than with the other two frameworks on either 200M and

1000M. In theory, this attack specifically produces the most distinguishable pattern out of the 8 attacks,
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Table 4.4: Table with results from tests done to C = [8 : 11] and m = [1.4 : 0.3 : 3.8] when applying FCM
to the dataset of Static CI

Method NaN Balance Method Threshold AUC Accuracy TPR FPR TPR-FPR

Method 1

5%

Minimum Distance 0,790 ± 0 0,732 ± 0 0,731 ± 0 0,263 ± 0 0,469

Youden Index 0,790 ± 0 0,722 ± 0 0,720 ± 0 0,250 ± 0 0,470

All Thresholds 0,790 ± 0 0,747 ± 0 0,749 ± 0 0,286 ± 0 0,464

20%

Minimum Distance 0,780 ± 0 0,723 ± 0 0,724 ± 0 0,279 ± 0 0,445

Youden Index 0,780 ± 0 0,715 ± 0 0,710 ± 0 0,264 ± 0 0,446

All Thresholds 0,780 ± 0 0,724 ± 0 0,725 ± 0 0,280 ± 0 0,445

36%

Minimum Distance 0,789 ± 0 0,731 ± 0 0,724 ± 0 0,258 ± 0 0,466

Youden Index 0,789 ± 0 0,727 ± 0 0,706 ± 0 0,236 ± 0 0,469

All Thresholds 0,789 ± 0 0,734 ± 0 0,749 ± 0 0,291 ± 0 0,458

47%

Minimum Distance 0,776 ± 0 0,716 ± 0 0,682 ± 0 0,244 ± 0 0,438

Youden Index 0,776 ± 0 0,715 ± 0 0,657 ± 0 0,219 ± 0 0,438

All Thresholds 0,776 ± 0 0,715 ± 0 0,713 ± 0 0,282 ± 0 0,431

Method 2

5%

Minimum Distance 0,772 ± 0 0,689 ± 0 0,686 ± 0 0,260 ± 0 0,425

Youden Index 0,772 ± 0 0,650 ± 0 0,641 ± 0 0,213 ± 0 0,428

All Thresholds 0,772 ± 0 0,719 ± 0 0,721 ± 0 0,304 ± 0 0,416

20%

Minimum Distance 0,746 ± 0 0,683 ± 0 0,677 ± 0 0,293 ± 0 0,384

Youden Index 0,746 ± 0 0,663 ± 0 0,642 ± 0 0,252 ± 0 0,390

All Thresholds 0,746 ± 0 0,696 ± 0 0,701 ± 0 0,325 ± 0 0,376

36%

Minimum Distance 0,766 ± 0 0,705 ± 0 0,680 ± 0 0,251 ± 0 0,429

Youden Index 0,766 ± 0 0,697 ± 0 0,648 ± 0 0,215 ± 0 0,433

All Thresholds 0,766 ± 0 0,710 ± 0 0,704 ± 0 0,279 ± 0 0,425

47%

Minimum Distance 0,753 ± 0 0,698 ± 0 0,659 ± 0 0,258 ± 0 0,401

Youden Index 0,753 ± 0 0,696 ± 0 0,615 ± 0 0,211 ± 0 0,404

All Thresholds 0,753 ± 0 0,698 ± 0 0,684 ± 0 0,287 ± 0 0,397

Method 3

5%

Minimum Distance 0,771 ± 0 0,717 ± 0 0,717 ± 0 0,281 ± 0 0,435

Youden Index 0,771 ± 0 0,709 ± 0 0,708 ± 0 0,272 ± 0 0,437

All Thresholds 0,771 ± 0 0,711 ± 0 0,710 ± 0 0,273 ± 0 0,437

20%

Minimum Distance 0,783 ± 0 0,715 ± 0 0,706 ± 0 0,250 ± 0 0,457

Youden Index 0,783 ± 0 0,710 ± 0 0,698 ± 0 0,241 ± 0 0,457

All Thresholds 0,783 ± 0 0,724 ± 0 0,723 ± 0 0,269 ± 0 0,454

36%

Minimum Distance 0,786 ± 0 0,723 ± 0 0,713 ± 0 0,258 ± 0 0,455

Youden Index 0,786 ± 0 0,718 ± 0 0,696 ± 0 0,243 ± 0 0,453

All Thresholds 0,786 ± 0 0,726 ± 0 0,723 ± 0 0,269 ± 0 0,455

47%

Minimum Distance 0,783 ± 0 0,728 ± 0 0,709 ± 0 0,250 ± 0 0,459

Youden Index 0,783 ± 0 0,727 ± 0 0,671 ± 0 0,208 ± 0 0,463

All Thresholds 0,783 ± 0 0,726 ± 0 0,726 ± 0 0,274 ± 0 0,452
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changing the normally irregular profile into a constant equal to the daily average. This might explain the

increased performance when compared to Attack 5 / Attack 50 or All Attacks. Not only did the set up

with Attack 50 on the 200M yield models with higher AUC than than the remaining configurations but it

also had the highest TPR−FPR. However, AUC = 0, 644 was not a good result. Using FCM on Static

CI yielded AUC values of 0, 79.

Table 4.5: Table with results for C = 2 when applying MFC to the raw dataset

Dataset Attacks
Parameters

AUC Accuracy TPR FPR TPR-FPR
Clustering Modelling

200M

Attack 5 / Attack 50

[2 2,3 50] [2 2,9] 0,568 ± 0,004 0,483 ± 0,000 0,342 ± 0,000 0,233 ± 0,000 0,109

[2 2,3 100] [2 2,6] 0,568 ± 0,003 0,494 ± 0,000 0,392 ± 0,000 0,300 ± 0,000 0,092

[2 2,9 50] [2 2,6] 0,570 ± 0,001 0,522 ± 0,000 0,442 ± 0,000 0,317 ± 0,000 0,125

Attack 50

[2 3,2 100] [2 2,6] 0,641 ± 0,000 0,600 ± 0,000 0,467 ± 0,000 0,267 ± 0,000 0,200

[2 1,4 100] [2 1,7] 0,642 ± 0,001 0,600 ± 0,000 0,450 ± 0,000 0,250 ± 0,000 0,200

[2 2,6 100] [2 2,3] 0,644 ± 0,002 0,600 ± 0,000 0,450 ± 0,000 0,250 ± 0,000 0,200

All attacks

[2 1,4 100] [2 1,4] 0,587 ± 0,002 0,617 ± 0,000 0,626 ± 0,000 0,533 ± 0,000 0,093

[2 3,2 100] [2 2,3] 0,587 ± 0,002 0,627 ± 0,000 0,637 ± 0,000 0,533 ± 0,000 0,103

[2 2,6 100] [2 2] 0,588 ± 0,000 0,627 ± 0,000 0,637 ± 0,000 0,533 ± 0,000 0,103

1000M

Attack 5 / Attack 50

[2 1,7 50] [2 2] 0,527 ± 0,000 0,496 ± 0,000 0,427 ± 0,000 0,367 ± 0,000 0,060

[2 2,6 10] [2 2] 0,528 ± 0,000 0,511 ± 0,000 0,495 ± 0,000 0,457 ± 0,000 0,038

[2 1,4 100] [2 2] 0,529 ± 0,000 0,479 ± 0,000 0,380 ± 0,000 0,324 ± 0,000 0,056

Attack 50

[2 1,4 10] [2 2] 0,548 ± 0,000 0,550 ± 0,000 0,413 ± 0,000 0,313 ± 0,000 0,100

[2 1,4 100] [2 2] 0,564 ± 0,000 0,560 ± 0,000 0,373 ± 0,000 0,253 ± 0,000 0,120

[2 1,4 50] [2 2] 0,564 ± 0,000 0,560 ± 0,000 0,373 ± 0,000 0,253 ± 0,000 0,120

All attacks

[2 2,6 50] [2 2] 0,582 ± 0,000 0,550 ± 0,000 0,600 ± 0,000 0,477 ± 0,000 0,123

[2 2,9 100] [2 2] 0,587 ± 0,000 0,560 ± 0,000 0,593 ± 0,000 0,470 ± 0,000 0,123

[2 2,9 50] [2 2] 0,589 ± 0,000 0,560 ± 0,000 0,596 ± 0,000 0,470 ± 0,000 0,126

Balance data in preprocessing

As explained in section 4.2.2, these test evaluate the approaches taken to data balancing. The Table

4.6 gathers the results from the best classifiers when using the 200 meters dataset and also the results

of these same models when applied to the 1000M set. To contextualize these last results, the best

models when using the larger set had to be computed, Table 4.7.

The results from the scenario with 200 meters showed an improvement in model performance when

using balanced datasets. The more balanced the better the results. However, this time, the difference

was consistent enough to exclude the possibility of it being caused by fluctuations from running the

algorithm several times. A similar increasing trend was registered when using the set with 1000 meters

except the increments were more noticeable.

The distinction used for both attack types proved to result in interesting outcomes. As expected,

models based solely on Zero-Day attacks had the best results which clearly contrasted with the ones

from Non Zero-Day attacks. All Attacks, as it is an assembly of both cases, has in between results.

It is worth noting that for the ratio of 1 regular sample to 16 attacks on the 1000M set, Non Zero-Day

50



models showed very low Accuracy. Accuracy evaluates how well a system identifies ”true” cases (True

Positives and True Negatives) and does not take into account skewed class distribution. In other words,

if a model is proficient at classifying the minority class but inadequate towards the majority group than

the Accuracy will be low, since objectively speaking the system is misclassifying a lot of true cases.

The same thing does not happen with AUC. Being unable to identify either class will yield a bad score

with this metric regardless. The low Accuracy values for the mentioned scenario is indicative that these

specific models do not identify the majority class well, theft.

Table 4.6: Results of the best models using a 200M dataset when different balancing techniques are
tested. also applied to 1000M

Dataset Ratio Attacks
Parameters

AUC Accuracy TPR FPR TPR-FPR
Clustering Modelling

200M

1 regular / 16 attacks

Zero-Day [10 2,3 1000] [10 2,3] 0,682 ± 0,018 0,611 ± 0,089 0,605 ± 0,119 0,342 ± 0,153 0,264

Non Zero-Day [4 3,5 50] [4 3,5] 0,519 ± 0,008 0,398 ± 0,029 0,365 ± 0,032 0,333 ± 0,000 0,031

All Attacks [10 3,2 100] [10 3,2] 0,592 ± 0,004 0,846 ± 0,001 0,889 ± 0,002 0,833 ± 0,000 0,055

3 regular / 16 attacks

Zero-Day [9 2,9 500] [9 2,9] 0,699 ± 0,007 0,549 ± 0,096 0,467 ± 0,203 0,233 ± 0,189 0,233

Non Zero-Day [2 2,3 50] [2 2,3] 0,525 ± 0,033 0,609 ± 0,070 0,713 ± 0,380 0,667 ± 0,220 0,046

All Attacks [8 3,8 1000] [8 3,8] 0,598 ± 0,018 0,621 ± 0,068 0,639 ± 0,113 0,475 ± 0,177 0,164

6 regular / 16 attacks

Zero-Day [8 3,8 100] [8 3,8] 0,708 ± 0,012 0,645 ± 0,126 0,590 ± 0,323 0,267 ± 0,189 0,323

Non Zero-Day [3 3,2 500] [3 3,2] 0,528 ± 0,014 0,497 ± 0,026 0,433 ± 0,370 0,400 ± 0,190 0,033

All Attacks [16 2 50] [16 2] 0,585 ± 0,014 0,717 ± 0,094 0,973 ± 0,108 0,967 ± 0,118 0,006

1000M

1 regular / 16 attacks

Zero-Day [9 3,5 500] [9 3,5] 0,601 ± 0,022 0,579 ± 0,059 0,583 ± 0,110 0,457 ± 0,280 0,127

Non Zero-Day [4 3,8 10] [4 3,8] 0,500 ± 0,002 0,116 ± 0,078 0,007 ± 0,002 0,007 ± 0,001 0,000

All Attacks [18 3,5 100] [18 3,5] 0,550 ± 0,014 0,648 ± 0,044 0,661 ± 0,350 0,560 ± 0,140 0,101

3 regular / 16 attacks

Zero-Day [9 2,9 500] [9 2,9] 0,674 ± 0,009 0,654 ± 0,008 0,687 ± 0,002 0,433 ± 0,094 0,253

Non Zero-Day [2 2,3 50] [2 2,3] 0,512 ± 0,012 0,549 ± 0,079 0,596 ± 0,007 0,577 ± 0,022 0,020

All Attacks [8 3,8 1000] [8 3,8] 0,585 ± 0,026 0,667 ± 0,058 0,810 ± 0,005 0,717 ± 0,014 0,094

Table 4.7: Results from the best models when using the 1000M dataset when different balancing tech-
niques are tested

Dataset Ratio Attacks
Parameters

AUC Accuracy TPR FPR TPR-FPR
Clustering Modelling

1000M

1 regular / 16 attacks

Zero-Day [9 2,9 100] [9 2,9] 0,655 ± 0,044 0,719 ± 0,014 0,754 ± 0,130 0,560 ± 0,140 0,194

Non Zero-Day [10 2 50] [10 2] 0,512 ± 0,025 0,298 ± 0,012 0,237 ± 0,010 0,217 ± 0,240 0,020

All Attacks [7 2,6 100] [7 2,6] 0,588 ± 0,019 0,595 ± 0,030 0,599 ± 0,230 0,470 ± 0,070 0,129

3 regular / 16 attacks

Zero-Day [9 1,4 50] [9 1,4] 0,692 ± 0,050 0,683 ± 0,008 0,740 ± 0,106 0,433 ± 0,066 0,306

Non Zero-Day [4 3,5 100] [4 3,5] 0,543 ± 0,022 0,502 ± 0,032 0,458 ± 0,040 0,383 ± 0,210 0,075

All Attacks [7 3,5 500] [7 3,5] 0,620 ± 0,024 0,660 ± 0,003 0,739 ± 0,100 0,550 ± 0,150 0,189

Threat model experiments

In order to understand if introducing less information into the system would yield better results, the

threat model proposed in [22] was used to compute the several malicious patterns for the databases.

Analysing the AUC values from the best models for each situation, presented in Table 4.8, it is possible

to observe that results did not actually improve. However, the scenario with one attack per meter,

Balance 50/50, generated relatively better results for at least one scenario, Zero-Day.
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In general, Non Zero-Day continued to yield the worst models as opposed to Zero-Day, which was

expected. After all, one has the attacks start at the beginning of each time series, making the difference

with regular consumption patterns clearer, while the other is composed of changes done only at the

end of each time series. The Table 4.9 with the best models for 1000M showed worse results than

their counterpart 200M. This difference could be explained by the fact that adding more meters may

in fact add more variability making it harder for the algorithm to distinguish individual attack vectors.

However, this time, the difference was consistent enough to make sense discarding the possibility of

being fluctuations from running the algorithm several times.

For the Unbalanced framework, models created using the dataset with solely Non Zero-Day attacks

showed very poor accuracy. In practical terms this means that the models clearly could not distinguish

between fraudulent and non fraudulent consumers and ended up misclassifying both. This helps under-

stand the reason for the low AUC values as this is an overall evaluation index and the models from Non

Zero-Day are ineffective classifiers. The difference between using Zero-Day or All Attacks was clear

using 200 meters but vanishes as more data is added to the program (with the use of 1000 meters).

Analysing the same models being tested in different datasets proved that each situation had to

be, most likely, dealt separately. Looking at both tables, one could see that the best models in each

framework are not the same and that the best models found using the 200 dataset had worse results in

the 1000M dataset. This change was more noticeable in all metrics aside AUC.

Comparing unbalanced and the 50/50 balance made for the 1000 consumers, the results corroborate

the theoretical improvement of the results. Performances improved across the board, with significant

change to models using Zero-Day attack vectors. Accuracy greatly increased for the Non Zero-Day

dataset and although the same can be said for TPR on the same data points, Zero-Day and All Attacks

registered significant deterioration. Knowing that TPR evaluates the ability of a model to accurately

identify positive cases and that AUC increased for all scenarios, the decrease in TPR proves that the

models became more precise in classifying negative values. This conclusion can be corroborated by

observing the decrease in FPR.

Practical case scenario

The overall results depicted in Table 4.10 show very poor performances in every scenario. Looking at

tests done previously the decline in predictive power when limiting the amount of information used in

this case consumption patterns is very clear. It is plausible to conclude that the algorithm becomes

less adept at distinguishing a particular attack from another with a similar approach when the number

of occurrences that depict the change each attack (the different time series) is lowered.

At first glance, one could assume that the overall predictive precision of the several classification

systems are all practically the same. However, looking closely at accuracy and the other criteria it is

possible to see a very clear distinction between the two attack vectors. From what was registered,

the threat model with 8 attacks frequently presented lower values for this index. The fact that both
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Table 4.8: Table with the best models from 200M applied to the 1000M dataset computed using a new
threat model

Ratio Dataset Attacks
Parameters

AUC Accuracy TPR FPR TPR-FPR
Clustering Modelling

Unbalanced

200M

Zero Day
[8 2,9 500] [8 2,9] 0,726 ± 0,017 0,712 ± 0,069 0,765 ± 0,124 0,450 ± 0,094 0,315

[7 3,8 500] [7 3,8] 0,731 ± 0,006 0,558 ± 0,071 0,472 ± 0,094 0,183 ± 0,000 0,289

Non Zero Day
[2 2 50] [2 2] 0,526 ± 0,009 0,460 ± 0,012 0,392 ± 0,016 0,334 ± 0,000 0,058

[6 3,5 500] [6 3,5] 0,528 ± 0,029 0,583 ± 0,083 0,642 ± 0,145 0,592 ± 0,106 0,050

All attacks
[7 2,9 500] [7 2,9] 0,627 ± 0,005 0,686 ± 0,024 0,775 ± 0,035 0,633 ± 0,035 0,142

[6 2 1000] [6 2] 0,628 ± 0,003 0,601 ± 0,123 0,616 ± 0,189 0,475 ± 0,224 0,141

1000M

Zero Day
[8 2,9 500] [8 2,9] 0,611 ± 0,019 0,634 ± 0,038 0,660 ± 0,054 0,522 ± 0,059 0,138

[7 3,8 500] [7 3,8] 0,617 ± 0,012 0,621 ± 0,076 0,637 ± 0,103 0,475 ± 0,083 0,162

Non Zero Day
[2 2 50] [2 2] 0,506 ± 0,000 0,226 ± 0,000 0,114 ± 0,000 0,100 ± 0,000 0,014

[6 3,5 500] [6 3,5] 0,501 ± 0,002 0,654 ± 0,103 0,714 ± 0,145 0,708 ± 0,153 0,006

All attacks
[7 2,9 500] [7 2,9] 0,588 ± 0,022 0,608 ± 0,044 0,615 ± 0,033 0,477 ±0,035 0,139

[6 2 1000] [6 2] 0,604 ± 0,039 0,681 ± 0,042 0,700 ± 0,035 0,557 ± 0,022 0,144

Balance 50/50 1000M

Zero Day
[4 3,8 100] [4 3,8] 0,719 ± 0,014 0,587 ± 0,087 0,289 ± 0,253 0,113 ± 0,128 0,176

[4 3,2 1000] [4 3,2] 0,723 ± 0,027 0,604 ± 0,018 0,357 ± 0,082 0,148 ± 0,047 0,208

Non Zero Day
[2 2 500] [2 2] 0,526 ± 0,001 0,531 ± 0,002 0,437 ± 0,003 0,404 ± 0,000 0,033

[4 3,8 100] [4 3,8] 0,526 ± 0,007 0,527 ± 0,013 0,675 ± 0,030 0,623 ± 0,024 0,051

All attacks
[4 3,2 1000] [4 3,2] 0,624 ± 0,034 0,585 ± 0,029 0,517 ± 0,042 0,402 ± 0,036 0,115

[4 3,5 1000] [4 3,5] 0,625 ± 0,038 0,577 ± 0,021 0,420 ± 0,042 0,267 ± 0,030 0,153

Table 4.9: Table with the best models from the 1000M dataset computed using a new threat model

Ratio Dataset Attacks
Parameters

AUC Accuracy TPR FPR TPR-FPR
Clustering Modelling

Unbalanced 1000M

Zero Day
[2 2 1000] [2 2] 0,644 ± 0,000 0,698 ± 0,000 0,737 ± 0,000 0,537 ± 0,000 0,201

[8 2 500] [8 2] 0,664 ± 0,004 0,637 ± 0,063 0,646 ± 0,091 0,420 ±0,104 0,226

Non Zero Day
[2 2,3 50] [2 2,3] 0,519 ± 0,005 0,205 ± 0,010 0,081 ± 0,012 0,050 ± 0,000 0,031

[4 2,3 50] [4 2,3] 0,521 ± 0,016 0,523 ± 0,042 0,525 ± 0,063 0,492 ± 0,083 0,033

All attacks
[6 3,8 100] [6 3,8] 0,609 ± 0,020 0,753 ± 0,036 0,785 ± 0,021 0,623 ± 0,037 0,161

[14 3,2 50] [14 3,2] 0,611 ± 0,004 0,611 ± 0,011 0,845 ± 0,010 0,720 ± 0,019 0,125
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attack vectors show similar AUC but different accuracy values can be interpreted as a problem with

class unbalance, a known problem in this project. The accuracy measure does not take into account

this problematic while AUC does. As such, if the models are capable of identifying the majority class

but completely inadequate in identifying the other one, their accuracy will be high, while their AUC will

not. This can be confirmed by observing TPR. High TPR values are common to systems capable of

identifying positive cases which are the majority class.

Using the best models found with 200 meters on the 1000M dataset once again proved each models’

precision varies depending on the set used but comparing the best models for each showed 1000M to

have better perfomring classifiers.

Table 4.10: Table with the best models from 200M applied to the 1000M dataset using only one time
series

Dataset Attacks Threat Model
Parameters

AUC Accuracy TPR FPR TPR-FPR
Clustering Modelling

200M

Zero-Day
6 Attacks [3 2 100] [3 2] 0,558 ± 0,015 0,607 ± 0,069 0,628 ± 0,100 0,517 ± 0,079 0,111

8 Attacks [4 3,5 50] [4 3,5] 0,535 ± 0,024 0,298 ± 0,074 0,233 ± 0,090 0,178 ± 0,097 0,055

Non Zero-Day
6 Attacks [6 2 500] [6 2] 0,519 ± 0,001 0,457 ± 0,037 0,433 ± 0,220 0,400 ± 0,132 0,033

8 Attacks [9 3,8 50] [9 3,8] 0,511 ± 0,000 0,124 ± 0,000 0,015 ± 0,000 0,000 ± 0,000 0,015

All attacks
6 Attacks [3 2,3 50] [3 2,3] 0,529 ± 0,013 0,731 ± 0,037 0,769 ± 0,046 0,717 ± 0,050 0,052

8 Attacks [4 3,2 100] [4 3,2] 0,527 ± 0,015 0,720 ± 0,112 0,748 ± 0,150 0,733 ± 0,114 0,015

1000M

Zero-Day
6 Attacks [3 2 100] [3 2] 0,522 ± 0,039 0,506 ± 0,065 0,502 ± 0,200 0,470 ± 0,210 0,032

8 Attacks [4 3,5 50] [4 3,5] 0,520 ± 0,021 0,476 ± 0,064 0,463 ± 0,200 0,423 ± 0,202 0,040

Non Zero-Day
6 Attacks [6 2 500] [6 2] 0,503 ± 0,001 0,810 ± 0,081 0,934 ± 0,170 0,934 ± 0,180 0,001

8 Attacks [9 3,8 50] [9 3,8] 0,500 ± 0,000 0,111 ± 0,000 0,000 ± 0,000 0,000 ± 0,000 0,000

All attacks
6 Attacks [3 2,3 50] [3 2,3] 0,522 ± 0,002 0,410 ± 0,179 0,390 ± 0,211 0,350 ± 0,200 0,040

8 Attacks [4 3,2 100] [4 3,2] 0,523 ± 0,033 0,650 ± 0,110 0,667 ± 0,140 0,620 ± 0,153 0,047

Table 4.11: Table with the best models 1000M using only one time series

Dataset Attacks Threat Model
Parameters

AUC Accuracy TPR FPR TPR-FPR
Clustering Modelling

1000M

Zero-Day
6 Attacks [8 2,9 10] [8 2,9] 0,548 ± 0,007 0,854 ± 0,068 0,999 ± 0,210 0,960 ± 0,183 0,039

8 Attacks [3 3,5 500] [3 3,5] 0,541 ± 0,030 0,733 ± 0,005 0,792 ± 0,190 0,740 ± 0,181 0,052

Non Zero-Day
6 Attacks [6 2,6 50] [6 2,6] 0,511 ± 0,025 0,370 ± 0,009 0,313 ± 0,130 0,290 ± 0,117 0,023

8 Attacks [9 2,3 10] [9 2,3] 0,505 ± 0,011 0,144 ± 0,102 0,043 ± 0,010 0,039 ± 0,008 0,004

All attacks
6 Attacks [7 2,9 500] [7 2,9] 0,530 ± 0,008 0,568 ± 0,034 0,575 ± 0,040 0,518 ± 0,027 0,057

8 Attacks [8 2,6 500] [8 2,6] 0,555 ± 0,009 0,421 ± 0,105 0,403 ± 0,180 0,293 ± 0,124 0,110

Modelling using FCM from raw datasets

Since it was clear that the best models on a specific dataset would not translate into the best ones on a

different one, this approach was dropped. Instead the best models on 200M and 1000M were directly

compared, assuming they would not be the same which proved to be true.

Going back to the tests done on Static CI, using FCM on raw data yielded similar results. In com-

parison with MFC, FCM produced much better classifying models, as seen in Table 4.12.
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While MFC would repeatedly create worse models when using higher volume of data points, this did

not happen when using FCM. With 1000M, models showed better values across all criteria, having the

biggest difference being registered in AUC. Another point of contrast between the two methodologies

is the performance improvement of the Non Zero-Day scenario with respect to the other two. Unlike

before, this scenario proved to yield accurate classifiers using both set of meters (the best results out

of the three scenarios for 200M). Not only did it have better AUC but the remaining metrics were also

higher.

For the scenario of All Attacks on 200M, multiple models were registered to have the same values

for all evaluation indexes. Analysing the output of these models it is clear that every single one had the

same classification output, meaning, they identified the multiple samples with the same label. No matter

the values for the number of clusters or fuzzification parameter most of their combination produced

models that behaved the same way to the input information, something that is hard to explain and

differs from what has been seen so far in this thesis.

Table 4.12: Table with the best models when applying FCM to raw data of 200 and 1000 meters

Dataset Attacks Parameters AUC Accuracy TPR FPR TPR-FPR

200M

Zero Day
[6 1,7] 0,771 ± 0,032 0,778 ± 0,015 0,800 ± 0,016 0,356 ± 0,043 0,444

[9 1,7] 0,795 ± 0,006 0,785 ± 0,019 0,805 ± 0,023 0,331 ± 0,019 0,473

Non Zero Day
[9 3,8] 0,803 ± 0,000 0,786 ± 0,000 0,814 ± 0,000 0,383 ± 0,000 0,431

[9 1,7] 0,804 ± 0,008 0,758 ± 0,014 0,769 ± 0,017 0,308 ± 0,010 0,460

All attacks
[14 3,5] 0,747 ± 0,000 0,760 ± 0,000 0,765 ± 0,000 0,300 ± 0,000 0,465

[14 3,8] 0,747 ± 0,000 0,760 ± 0,000 0,765 ± 0,000 0,300 ± 0,000 0,465

1000M

Zero Day
[8 1,7] 0,861 ± 0,032 0,799 ± 0,018 0,805 ± 0,018 0,235 ± 0,020 0,570

[7 1,7] 0,871 ± 0,002 0,798 ± 0,009 0,801 ± 0,010 0,219 ± 0,007 0,582

Non Zero Day
[6 1,7] 0,863 ± 0,003 0,806 ± 0,007 0,814 ± 0,009 0,238 ± 0,003 0,576

[9 1,7] 0,863 ± 0,001 0,806 ± 0,004 0,813 ± 0,005 0,236 ± 0,005 0,577

All attacks
[7 1,7] 0,842 ± 0,013 0,792 ± 0,004 0,796 ± 0,005 0,258 ± 0,012 0,538

[13 1,7] 0,844 ± 0,006 0,791 ± 0,003 0,794 ± 0,005 0,256 ± 0,023 0,539

4.3.3 Temporal consumption indicators

MFC with the Temporal Consumption Indicators

Applying MFC to temporal indicators proved to yield better results than using time variant and invariant

features, raw data.

The first tests used the usual ranges for the parameters C, m and q but it was seen that lower values

of q were computing more reliable models than higher ones. Since this had not happened in previous

results, in fact the exact opposite was the norm for almost every scenario run, it was decided to use a

narrower range around smaller values of q. In Table 4.13, the results showed that models had peaked

with the values of q already tested and that smaller ones did not yield better models. In fact, for the
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All Attacks the best ones found were worse than in the previous test, though this might have been an

outlier as there is no reasonable explanation to justify this deviation.

It is interesting to note that, despite having very bad AUC with both tests, Non Zero-Day attacks

produced models with the best accuracy by far. Looking at the output of these models it becomes clear

that they simply classified every single sample as ”fraudulent” which lead to 16 of the 17 samples per

meter being correctly classified. This is another proof that accuracy cannot be solely used to evaluate

the performance of a classifier.

Table 4.13: Table with the best models when applying MFC to Temporal CI to a database of 1000 meters
and varying the range of parameters m and q

Range of m & q Attacks
Parameters

AUC Accuracy TPR FPR TPR-FPR
Clustering Modelling

Same

Zero Day
[7 1,4 3] [7 1,4] 0,643 ± 0,001 0,645 ± 0,008 0,674 ± 0,012 0,532 ± 0,012 0,143

[7 2 3] [7 2] 0,646 ± 0,003 0,546 ± 0,013 0,523 ± 0,022 0,317 ± 0,038 0,206

Non Zero Day
[8 3,8 100] [8 3,8] 0,500 ± 0,000 0,857 ± 0,000 1,000 ± 0,000 1,000 ± 0,000 0,000

[8 3,8 500] [8 3,8] 0,500 ± 0,000 0,857 ± 0,000 1,000 ± 0,000 1,000 ± 0,000 0,000

All attacks
[13 3,5 3] [13 3,5] 0,679 ± 0,000 0,594 ± 0,009 0,587 ± 0,010 0,330 ± 0,014 0,257

[13 3,8 3] [13 3,8] 0,680 ± 0,003 0,611 ± 0,033 0,608 ± 0,041 0,357 ± 0,066 0,251

Focused

Zero Day
[8 1,4 2,5] [8 1,4] 0,648 ± 0,002 0,634 ± 0,002 0,656 ± 0,004 0,502 ± 0,007 0,155

[7 1,4 2,5] [7 1,4] 0,650 ± 0,002 0,567 ± 0,035 0,553 ± 0,003 0,347 ± 0,057 0,206

Non Zero Day
[8 3,8 5] [8 3,8] 0,500 ± 0,000 0,857 ± 0,000 1,000 ± 0,000 1,000 ± 0,000 0,000

[8 3,8 8] [8 3,8] 0,500 ± 0,000 0,857 ± 0,000 1,000 ± 0,000 1,000 ± 0,000 0,000

All attacks
[7 3,2 5] [7 3,2] 0,579 ± 0,001 0,724 ± 0,004 0,760 ± 0,005 0,705 ± 0,007 0,055

[6 3,5 2,5] [6 3,5] 0,581 ± 0,000 0,367 ± 0,000 0,332 ± 0,000 0,207 ± 0,000 0,126

FCM with the Temporal Consumption Indicators

With the intent of being able to compare the three data types used in this work, FCM had to also be

applied to Temporal CI.

Unlike what happened when this algorithm was applied to time variant and invariant features, the

results in Table 4.14 did not show good performances across all scenarios. In fact, Non Zero-Day

attacks had the same classification scores as the one from the previous experiment when MFC was

used. As a consequence, All Attacks evaluation values worsened as it combines Zero-Day attacks

which computed well performing models and Non Zero-Day attacks which computed very bad ones.
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Table 4.14: Table with the best models when applying FCM to Temporal CI to a database of 1000 meters

Attacks Parameters AUC Accuracy TPR FPR TPR-FPR

Zero Day

[2 3,2] 0,868 ± 0,000 0,803 ± 0,000 0,799 ± 0,000 0,170 ± 0,000 0,629

[2 3,5] 0,869 ± 0,000 0,804 ± 0,000 0,800 ± 0,000 0,170 ± 0,000 0,630

[2 3,8] 0,869 ± 0,000 0,804 ± 0,000 0,799 ± 0,000 0,170 ± 0,000 0,629

Non Zero Day

[9 3,2] 0,500 ± 0,000 0,857 ± 0,000 1,000 ± 0,000 1,000 ± 0,000 0,000

[9 3,5] 0,500 ± 0,000 0,857 ± 0,000 1,000 ± 0,000 1,000 ± 0,000 0,000

[9 3,8] 0,500 ± 0,000 0,857 ± 0,000 1,000 ± 0,000 1,000 ± 0,000 0,000

All attacks

[2 2,9] 0,695 ± 0,000 0,695 ± 0,000 0,648 ± 0,000 0,367 ± 0,000 0,281

[2 3,2] 0,696 ± 0,000 0,696 ± 0,000 0,648 ± 0,000 0,367 ± 0,000 0,281

[2 3,5] 0,696 ± 0,000 0,647 ± 0,000 0,648 ± 0,000 0,367 ± 0,000 0,281

4.4 Overall results

Table 4.15 presents a summary of the results gathered from the tests made throughout the thesis. In

each dataset, the All Attacks threat model is highlighted as it represents all possible attack vectors.

Since there is no prior knowledge as to how a fraudulent consumer might interfere with their consump-

tion patterns, All Attacks allows for a more inclusive and intricate threat model that represents all the

forms of meter manipulation studied in this thesis. These reasons make this threat model advantageous

to utility companies as they could introduce any household data and not worry if certain techniques were

missing as this attack vector would include all.

From this global perspective, the difference in performances becomes clear when using MFC or

FCM to cluster data points before applying Takagi-Sugeno modelling. Aside from some outliers, using

Fuzzy C-Means, even in data containing a temporal component, results in more proficient classifying

models. It is then plausible to conclude that maintaining the temporal nature of time variant features at

the clustering stage does not directly translate into more accurate models.

For the most part, Non Zero-Day attacks showed worse results than the other scenarios. This can

be attributed to the fact that the changes in the power consumption only alter the last day of the record.

This fact makes it harder for clustering algorithms to identify certain samples as theft and discern them

from normal consumption. Despite the good results gathered from Zero-Day attacks, the ones from Non

Zero-Day made it so All Attacks frequently computed an average performing set of classifiers since this

set of attacks combines the previous two scenarios.
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Table 4.15: Summarised table

Dataset Model Parameters AUC TPR FPR TPR-FPR

SCI FCM FM
Method 1

0,790 0,731 0,263 0,469

No Balance

Raw Data

MFC FM

Zero-Day
18 Time Series 0,725 0,590 0,267 0,323

1 Time Series 0,558 0,628 0,517 0,111

Non Zero-Day
18 Time Series 0,543 0,458 0,383 0,075

1 Time Series 0,519 0,433 0,400 0,033

All Attacks
18 Time Series 0,620 0,739 0,550 0,189

1 Time Series 0,555 0,403 0,293 0,110

FCM FM

Zero-Day 1 Time Series 0,871 0,800 0,219 0,581

Non zero-day 1 Time Series 0,863 0,813 0,236 0,577

All 1 Time Series 0,844 0,798 0,233 0,565

TCI

MFC FM

Zero-Day 0,646 0,523 0,317 0,206

Non Zero-Day 0,500 1,000 1,000 0,000

All Attacks 0,680 0,608 0,357 0,251

FCM FM

Zero-Day 0,867 0,834 0,240 0,594

Non Zero-Day 0,500 1,000 1,000 0,000

All Attacks 0,692 0,653 0,373 0,280
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4.5 Comparison to previous works

Despite the high values of AUC that were achieved in certain set ups during this thesis, it is necessary

to put the work done into perspective by analysing the results from researchers who applied different

tools.

The authors of [22], developed a consumption pattern-based energy theft detector by applying SVM

to a synthetic attack dataset. This approach resulted in very accurate models, leading others to follow

suit. The threat model seen in [56] was based off of the previously mentioned work. The modifi-

cations made (adding two new attack vectors and differentiating between zero-day and non zero-day

approaches) made this threat model ideal to be used in this thesis. In addition to the revision of the

threat model, the authors tested on the same dataset as the Static CI of this thesis a variety of meth-

ods, including FCM and SVM, being Gustafson-Kessel (GK) fuzzy clustering algorithm the one which

showed the best results. In [53] the authors extended their previous research [19] by integrating human

knowledge and expertise into the SVM-based fraud detection model with the implementation of a FIS.

A seen from the table 4.16, there are clear differences in the evaluation metrics and data used

throughout these works. However, the results found in [56] can be compared to the work done in this

thesis since both used the same dataset from ISSDA and applied the same metrics to evaluate the

resulting classifiers. As for [22] despite having a similar input data (although it was also from ISSDA, the

authors only used the consumption patterns and not the demographic information), the metrics used

were different, only coinciding with FPR, and the threat model was much smaller leading to different

balancing problems. Lastly,[19] not only used a completely different dataset but also only one matching

metric, hit-rate or TPR.

Table 4.16: Comparison between the algorithms used in the thesis and the ones used in the literature

Reference Method Data Type AUC TPR FPR Accuracy DR

Thesis FCM
Raw data 0,844 0,798 0,233 0,790 -

SCI 0,790 0,731 0,263 0,732 -

Viegas [56] GK SCI 0,752 0,643 0,241 - -

Jokar [22] SVM Temporal features - - 0,110 - 0,940

Nagi [53] SVM-FIS Feature extraction - 0,720 - - -

The table shows that as far as AUC is concerned, the model computed from FCM on the raw dataset

was the most accurate and with the highest hit-rate. The Detection Rate (DR) used by [22] is calculated

following the formula

DR =
TP

TN + TP + FP + FN
. (4.6)
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Looking at that equation it is possible to conclude that one model will necessarily have higher ac-

curacy than DR since the numerator of the equation that characterizes the former also contains the

element TN. Since [22] used a smaller threat model, resulting in less attacks or samples from class 1

(as opposed to samples of regular consumption, class 0), it is not correct to immediately assume that

SVM yielded better performing models then any of the algorithms used in this thesis. Nonetheless, the

absolute value of DR indicates a very good classifier for the input data that was used.
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Chapter 5

Conclusions

The goal of this thesis was to identify electricity theft not only through static features (demographic

information) but also through time variant features (power consumption patterns). This was done by as-

sessing the performance of classifiers built with algorithms that took into consideration the time varying

component of crucial information, such as electricity consumption of households over a period of time.

Many fields work with this type of information (time series) and, as such, need proper tools to handle

and take into consideration the temporal nature and the inherent difference between time variant and

invariant features.

The low computational power of FCM allowed for a thorough analysis of the dataset Static CI. The

tests done to this set revealed that turning all NaN values to 0 (Method 1) and applying no balancing

technique resulted in better performing models. Despite exploring more complex ways to deal with

errors in the data and multiple balancing techniques, the simpler approaches ended up yielding the

best outcomes. This was helpful for the following tests as it justified the used of smaller datasets thus

shortening simulation time. As expected, the three threshold finding methods computed very close

points in the ROC curve. Despite choosing the minimum distance method for future tests, as it showed

overall slightly better results, it is believed the other methods would have computed similarly performing

classifiers.

When using raw data and evaluating balance ratios, the conclusions were similar to the Static CI

study. High ratios did not yield good enough results with the current set up (18 time series with a threat

model of 16 attacks) to justify the increase in processing time required to run larger datasets. Overall,

these tests yielded worse results than Static CI. It is possible that an overload of information on the

algorithms could have caused these results. As a consequence, two different approaches were taken

to assess whether this was indeed a problem. First the threat model was changed from 8 attacks to

6, followed by tests with only one time series from the 18 initial ones. The first set of tests (different

threat model) showed an increase, although negligible, in performance in comparison to the balancing

tests. As for the time series reduction tests, these showed a visible deterioration especially when us-

ing zero-day attacks. It was clear that reducing the information allocated to the algorithms regarding
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consumption patterns hindered their ability to correctly discern between theft and regular consumption

despite characterizing the live case scenario of every utility company. Lastly, the impact of the temporal

component of the time series on the final classification was studied by applying FCM which disregards

this component of the data. As previously mentioned, this clustering algorithm takes every column char-

acterizing each sample as values of different features. In other words, instead of taking, for example,

144 entries of a time series as part of a temporal evolution of a household on a particular time window,

the algorithm processes those 144 entries as values for distinct 144 features (for example the static

features that represented the socio-demographic questions of the survey). This approach yielded the

best results out of all the tests done to the three datasets. Although only one time series was used,

the results exceeded all expectations. It is also worth noting that the difference in computational power

when using FCM over MFC is clear. A grid search that can take 30 minutes to an hour, maximum, while

using FCM can take several continuous days using MFC. The fact that the much faster algorithm also

yielded much better results was surprising.

The last dataset, Temporal CI, was used as a middle ground between the other two. It is a database

composed of the temporal evolution of the same indicators as Static CI. The algorithms MFC and FCM

were applied to this dataset without any changes being made to it (for example changing the features

used). While both had unsatisfactory results for the non zero-day scenario, FCM once again showed

better results for the other two (substantial difference in zero-day scenario and a negligible one for all

attacks). It is unclear why FCM performed so poorly for non zero-day. The tests were repeated multiple

times but the outcome was always the same.

Across the three datasets, the best results came from applying FCM to time variant and invariant

features. Keeping the temporal nature of the data might not be necessary for high performing classifiers

and instead doing so may hinder their performance as it might overload the algorithms with unnecessary

information.

5.1 Future Work

The results gathered from the use of MFC were not better than what has already been used in the

field of NTL detection. Due to the ability of handling both time variant and invariant features, further

investigation (with different algorithms and approaches) is required before completely dismissing this

particular method as a viable strategy in electricity fraud identification.

Feature selection

One of the areas targeted in the tests was the number of time series used in the clustering process and

how that affected the end result. However, a comprehensive study on the optimal number to use was

not performed. A feature selection study was also not implemented when choosing the static features

for the datasets of raw information. A smaller amount of time variant and invariant features might yield
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faster simulations which were one of the main issues during this work.

Cross validation

With faster simulations it is then possible to apply cross validation which was not done in this thesis.

This validation method is widely used as it validates the results from each classifier by applying different

data points in each iteration and averaging the results. The more divided the data, the more reliable

the final result and higher the computation time. A smaller original dataset allows for a more extensive

cross validation.

Length of time series

The time window used for the power consumption patterns was set at 5 (excluding weekends since

these present distinct behaviours from working days) before the randomly picked day. The goal was

to get a week worth of data for the algorithm to notice a behavioural change on the last day, in the

case of the non zero-day threat model. Studying the impact that varying the time window has on the

performance of the classifiers might prove useful in understanding the overall weight of the time series

on the detection of of NTLs.

Dynamic Time Warping

This approach was not used and instead another data processing method (zero order hold) was adopted

to deal with irregularities of the time series. Early tests with DTW showed a significant increase in

computation time and since the methods used, in theory, did not compromise the original data, DTW

was applied. However, the research done on this approach [32] shows that MFC yields better results

when applied with DTW to align the input data. As such, it is plausible that this algorithm may improve

the results obtained in this thesis.

Non zero-day attacks

Across all tests, the non zero-day attack vector consistently showed unsatisfactory results. Conse-

quently, the results from classifiers using the All Attacks threat model were compromised and were

worse than the zero-day scenario. As such, studying different methods to improve the results using

the non zero-day threat model would be beneficial and would likely have a significant impact on the

performance of classifiers that use the All Attacks threat model.

Testing and comparing SVM with MFC

Given the results shown in [22], and the recorded improvements when applying FIS to SVM (as shown

in [53]), using the same or a very similar algorithm with the data used in this thesis might prove to give

better results than any of the approaches adopted. If it does not, at the very least it will be possible to

properly compare FCM and MFC to SVM and any variation of the latter.
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Appendix A

Cost analysis for Static Consumption

Indicators using Fuzzy C-Means

One of the main solutions to electricity theft is investing in inspections and monitoring of power users.

In the year 2000, CEMIG (a Brazilian power company) registered losses of $12 million but by investing

$2.1 million on tests and inspections, they were able to recover $6.2 million [2]. In 1999, Malaysian

inspection teams revealed that 587 out of 684 suspected cases were confirmed to have stolen electricity

[67]. However, said inspections are costly so companies want to prioritize a high degree of certainty

before deciding to proceed with an inspection. It may result in some cases of fraud to go unchecked

but will allow utility companies to better manage inspection resources and solely go after those who

are clearly committing theft. To replicate this strategy, it was decided to assess the impact of varying

the importance given to false positives (FP). The bigger the importance of false positives, the more

costly they will be to the company forcing the algorithm to lower their occurrences. Varying FP allows

for different points in the ROC curve to be picked, similar to Youden Index and the minimum distance

method.

A.1 Implementation of the tests on False Positives and False Neg-

atives

As previously mentioned, depending on the application and the desired focus it is possible to focus

on giving priority to lowering the misclassified positive and negative cases with the emphasis on false

positives. The algorithms used allowed for certain “costs” (weights) to be attributed to each entry of

the confusion matrix. For example, for the case where the predicted class is positive and the true

class is negative, the cost nomenclature is read as ”cost of the negative points which are predicted

to be positive”, Cost(P|N). The remaining costs can be seen in table A.1. One of the constraints of

the method is that the weights of False Positive (FP) and False Negative (FN) need to be higher than
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their counterparts (True Positive and True Negative). On the other hand, the relative weights between

FP and FN are not bound and will be placed under scrutiny. To evaluate the influence of giving more

importance to FP rather then FN, and vice versa, two experiments were run. One consisted in keeping

the weight for FP constant at 2 and the weight for FN varying along [2; 8], while the other test consisted

on the opposite, varying FP and maintaining FN.

Table A.1: Confusion Matrix with the respective Cost nomenclature

Predicted

Positve Negative

Actual
Positive Cost (P|P) Cost (N|P)

Negative Cost (P|N) Cost (N|N)

A.2 Results

From Figures A.1 and A.2 it is possible to understand the effects of increasing the amount of non

fraudulent samples when evaluating changing the relative weights of false positives. The more balanced

the dataset, the closer the resulting thresholds get to point (0,0). This is shown when turning only the

NaN entries that characterize the attack models 5 and 50 into 0 and the remaining NaN into the

average values (Method 3) and turning all NaN into the average value of the corresponding feature

(Method 2). Same thing happened with Method 1 but to keep this section brief it was omitted.

In theory, as the weight increases, the program further prioritizes decreasing the amount of FP.

Given the usual shape of a ROC curve, this decrease will lead to points with also lower TP. The goal

then becomes one of balancing the two, amount of FP with TP. In the unbalanced datasets, the increase

in weights leads to a higher decrease of FP than TP. This is the ideal situation where a company that

wants to better reallocate their resources is able to do so without letting many malicious consumers

go unchecked. However, there comes a point where the decrease of FP no longer outweighs the one

registered for TP. This breakpoint usually comes after the points computed using Youden index and

the other previously mentioned methods. After this point, the classification registered from the model

begins to show less and less positive cases but with such a low FPR the chances theses are accurate

are quite high.

On the opposite end, when the weights result in points close or even over the graph point (1,1), the

classifier is identifying every sample as positive which ends with a FPR of 1. This can be easily seen in

the unbalanced dataset where low weights yield practically the same threshold.
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(a) Unbalanced dataset
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(b) Dataset with 20% non fraudulent samples
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(c) Dataset with 36% non fraudulent samples
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(d) Dataset with 47% non fraudulent samples

Figure A.1: Evaluation of FP weights when applying Method 3
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(b) Dataset with 20% non fraudulent samples
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(c) Dataset with 36% non fraudulent samples
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(d) Dataset with 47% non fraudulent samples

Figure A.2: Evaluation of FP weights when applying Method 2
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A.3 Conclusions

If no data balancing technique is used and there is an increased interest in reducing FP by attributing

higher weights to the confusion matrix entry FP, then it is important to have that relative weight high

(4 to 5 times higher) in order to reduce FPR and not compromise TPR. If lower values of FPR are

required it is imperative to acknowledge the compromise in TPR inherent with the increased weights,

and subsequent decrease in FPR.

Balancing techniques cause a drastic change in the results of weight testing. It is then critical to

comprehend said techniques so as to not over weigh FP and cause for FPR and TPR to yield 0.
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