An integer programming approach to the optimization of bed and operating room occupancy in surgery scheduling

André Manuel de Gouveia e Melo Santos

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisors: Prof. João Miguel da Costa Sousa
 Prof. Susana Margarida da Silva Vieira

Examination Committee

Chairperson: Prof. José Fernando Alves da Silva
Supervisor: Prof. João Miguel da Costa Sousa
Members of the Committee: Prof. Carlos Baptista Cardeira
 Eng. Luís Miguel Nunes Mendes Gomes

November 2018
This is for you, Mom. Without your daily yelling through the phone I’d still be writing my thesis. Love.
Acknowledgments

I would first like to thank my thesis supervisors, Prof. João Sousa and Prof. Susana Vieira who guided my research since the beginning. Their insights were truly valuable.

To Eng. Luís Gomes and Eng. Bruno Dias from EY, whose opinions and teachings contributed to the improvement of this thesis and for providing me with an opportunity to join their team as an intern, allowing me to have an exceptional working experience.

A very special gratitude to the hospital and its administration for supplying the data, for always being available to answer my questions and most of all, for their forward-thinking and will to embrace new technologies in their daily processes.

I thank my fellow colleagues and friends for the sleepless nights we were working together before deadlines, and for all the fun we had in the last five years. We sure had a good run.

I must express my very profound gratitude to my parents and to my girlfriend for providing me with unfailing (monetary) support and continuous encouragement. This accomplishment would not have been possible without them.

And finally, last but by no means least, to all members of my family that throughout my years of study have shown nothing but unconditional support, encouragement and love, without which I would not have come this far. I could not have wished for a better family!

Thanks for all your encouragement!

André Manuel Santos
Resumo

Em qualquer instituição de saúde, o segredo para uma optimização dos recursos está em fazer o balanço entre a qualidade dos serviços prestados e os custos dos mesmos.

Como resultado de uma parceria entre o Instituto Superior Técnico, a EY Portugal e um Hospital (que pediu anonimato), foi desenvolvida uma ferramenta de optimização que agenda cirurgias. Mais especificamente, o objetivo desta ferramenta é minimizar o tempo de ocupação de camas e simultaneamente regularizar o uso diário do bloco operatório, optimizando assim os recursos existentes.

A criação de um sistema de agendamento envolve 3 níveis de decisão: os níveis estratégico, tático e operacional. Esta tese foca-se no último dos níveis, alocando um paciente e respetiva cirurgia a um determinado dia. O hospital em questão forneceu os dados referentes às cirurgias realizadas e os respetivos períodos de internamento. Estes dados foram analisados com o intuito de obter algumas métricas probabilísticas, tais como: o tempo de internamento esperado após cada procedimento ou o tempo de ocupação do bloco operatório para cada procedimento.

Para a resolução deste problema foram utilizados métodos de Programação Inteira. Com um conjunto de cirurgias e um dado período de tempo o programa desenvolve um novo agendamento de cirurgias, respeitando as várias restrições. Os resultados obtidos foram comparados com os dados reais fornecidos pelo hospital provando assim que este programa é capaz de minimizar a ocupação diária máxima de camas no internamento, regularizar a ocupação do bloco operatório e, simultaneamente, ser usado como ferramenta de previsão.

Palavras-chave: Escalonamento de cirurgias, Ocupação do bloco operatório, Gestão de camas, Programação inteira.
Abstract

Health services provided by hospitals are becoming increasingly important over the years. As in any healthcare organization, the key issue in the effective management of resources is to manage tradeoffs between service quality and costs. The development of a scheduling system involves 3 hierarchical decisions levels: the strategic, tactical and operational planning levels. This thesis is focused on the latter, which is the assignment of pairs of surgery/patient to a certain day.

As a result of a partnership between Instituto Superior Técnico, EY Portugal and a hospital (which requested anonymity), it was developed an optimization tool to schedule surgeries. In detail, our model’s objective is to minimize the bed occupation and, at the same time, level the operating room daily use. The hospital permitted the use of data regarding the operations and their respective hospitalization period. This data was analysed in order to extract some probabilistic metrics such as the expected length of hospitalization regarding each procedure, for how long each procedure is expected to occupy the operating room, among others.

An integer programming approach was used to tackle this problem. Given a set of surgeries and a period of time, the model returns a schedule respecting all the constraints. The results obtained were then compared to the real data from the hospital, proving that this model is capable of minimizing the maximum daily occupancy, levelling the operating room occupancy and be used as a prediction tool.

Keywords: Surgery scheduling, Operating room utilization, Bed management, Integer programming.
Contents

Acknowledgments ... v
Resumo .. vii
Abstract .. ix
List of Tables .. xiii
List of Figures .. xv
Nomenclature .. xvii
Glossary .. xix

1 Introduction .. 1
 1.1 Motivation .. 1
 1.2 Problem Statement 2
 1.3 Contributions ... 3
 1.4 Thesis Outline .. 3

2 Process Description .. 5
 2.1 Patient Classification 5
 2.1.1 Admission Category 5
 2.1.2 Surgery Category 6
 2.1.3 Length of stay 6
 2.2 Scheduling System 8
 2.2.1 Surgery Flow .. 10
 2.2.2 Block Occupation Rate 12

3 Data Preparation ... 13
 3.1 Data Selection .. 13
 3.2 Datasets ... 14
 3.2.1 Procedure Dataset 14
 3.2.2 Master Surgical Schedule Dataset 20
 3.2.3 Month Dataset 20
 3.3 Input for the Scheduling Program 21
4 Model Formulation

4.1 Introduction .. 23
4.2 Model Parameters .. 24
4.3 Structural Constraints 25
4.4 Optimization Constraints 25

5 Results ... 29

5.1 Simulation Results .. 30
 5.1.1 Simulation 1 ... 31
 5.1.2 Simulation 2 ... 32
 5.1.3 Simulation 3 ... 33
 5.1.4 Simulation 4 ... 34
 5.1.5 Simulation 5 ... 35
5.2 Discussion .. 36

6 Conclusions .. 39

6.1 Achievements .. 40
6.2 Future Work ... 40

Bibliography ... 41

A Monthly Bed and OR Occupation Results 43
 A.1 January .. 43
 A.2 February .. 44
 A.3 March ... 45
 A.4 May ... 46
 A.5 June ... 46
 A.6 July ... 47
 A.7 August ... 48
 A.8 September ... 48
 A.9 October ... 49
 A.10 November .. 50
 A.11 December .. 50
List of Tables

3.1 Hospital operations dataset. ... 14
3.2 Length of stay - variation through the years. 16
3.3 Length of Stay- statistical analysis. ... 16
3.4 Surgery duration - variation through the years 18
3.5 Procedure Dataset. ... 20
3.6 Master surgical schedule Dataset. ... 20
3.7 Month Dataset. .. 21
List of Figures

2.1 Preoperative length of stay. ... 7
2.2 Schematic for admission and discharge of patients. 7
2.3 An example of a Master Surgical Schedule. 8
2.4 Schematic of the Scheduling System. 10
2.5 Flowchart of offline planning. ... 11
2.6 Operating Block sequence. .. 11
2.7 Operating Block day. ... 12

3.1 Length of stay analysis - 90th Percentil. 15
3.2 Duration analysis - 90th Percentil. 18
3.3 Study of Doctor Variation ... 19

5.1 April- Hospital’s baseline result ... 30
5.2 April-Simulation 1. Bed Analysis .. 31
5.3 April-Simulation 1. OR Analysis .. 31
5.4 April-Simulation 2. Bed Analysis .. 32
5.5 April-Simulation 2. OR Analysis .. 32
5.6 April-Simulation 3. Bed Analysis .. 33
5.7 April-Simulation 3. OR Analysis .. 33
5.8 April-Simulation 4. Bed Analysis .. 34
5.9 April-Simulation 4. OR Analysis .. 34
5.10 April-Simulation 5. Bed Analysis 35
5.11 April-Simulation 5. OR Analysis 35

A.1 Bed analysis for January. .. 43
A.2 OR occupation analysis for January. 44
A.3 Bed analysis for February. ... 44
A.4 OR occupation analysis for February. 44
A.5 Bed analysis for March. .. 45
A.6 OR occupation analysis for March. 45
A.7 Bed analysis for May. .. 46
A.8 OR occupation analysis for May. 46
Nomenclature

Functions

dur_o \quad \text{Expected duration of operation } o \in O.

los_o \quad \text{Expected length of stay of operation } o \in O.

t_d \quad \text{Number of minutes the operating room is open on day } d \in D.

w_{osd} \quad \text{Binary variable. It represents surgeon } s \in S \text{ responsible for the operation } o \in O \text{ working on day } d \in D.

Sets

D \quad \text{Set of days.}

O \quad \text{Set of operations.}

S \quad \text{Set of surgeons.}

Variables

x_{od} \quad \text{Binary decision variable. It represents the operation } o \in O \text{ being schedule on day } d \in D.

y_{od2d} \quad \text{Binary variable. It represents the operation } o \in O \text{ being schedule on day } d_2 \in D \text{ and still occupying a bed on day } d \in D.
Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOR</td>
<td>Block Occupation Rate.</td>
</tr>
<tr>
<td>ICU</td>
<td>Intensive Care Unit.</td>
</tr>
<tr>
<td>IP</td>
<td>Integer Programming.</td>
</tr>
<tr>
<td>LOS</td>
<td>Length of Stay.</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Programming.</td>
</tr>
<tr>
<td>MIP</td>
<td>Mixed-Integer Programming.</td>
</tr>
<tr>
<td>MSS</td>
<td>Master Surgical Schedule.</td>
</tr>
<tr>
<td>PACU</td>
<td>Post-Anaesthesia Care Unit.</td>
</tr>
<tr>
<td>SS</td>
<td>Surgery Scheduling.</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Health services provided by hospitals are becoming increasingly important over the years. As in any healthcare organization, the key issue in the effective management of resources is to manage tradeoffs between service quality and costs. Therefore, maximizing the level of patient's satisfaction while keeping the costs low has been a highly important objective set by the hospitals.

More recently, changes in the needs of healthcare motivated by the increase of the life expectancy, progressive ageing of the population, and especially budget reduction on both public and private hospitals, gave rise to new challenges. A major slice of a hospital's budget and revenues are related to the Operation Rooms (ORs) or can be directly connected with them [1], optimizing their use is in the hospital's best interest. In addition, reducing surgery waiting lists is one of the priorities of the National Health Service, according to Portugal's General Direction of Health (2004).

This thesis is a result of a partnership between Instituto Superior Técnico, EY Portugal and a hospital (which requested anonymity). We were requested by the hospital to develop an optimization tool to schedule surgeries of the orthopaedic speciality taking into consideration its resources, such as surgeons' timetables, bed availability and OR's occupation rate.

1.1 Motivation

Technology has always faced a hard time entering industrial sectors. As a student of Aerospace Engineering, it was studied that in the aeronautics sector, new technology must pass through a series of tests (during many years) to be approved and when it is finally implemented, better technology has already been invented. Airport managers are on the constant search for ways to optimize the number of arrivals and departures. For that, one has to consider on which gate does the aeroplane parks, their schedule, which runways and taxiways they take and other variable. For instance, the work of Ding et al. [2] studies the over-constrained airport gate assignment problem where the objectives are to minimize the number of ungated flights and total walking distances or connection times. The same problem was approached with an integer programming (IP) model by Haghani and Chen [3], proving it was an efficient method for obtaining good solutions for large-scale gate assignment problems in a very reasonable computation
It is no different than what happens in the Health sector. New technologies, procedure techniques and drugs must be tested for months before being approved. The ultimate goal always being the safety and satisfaction of people, whether they be passengers or patients. While at first, society resists these disruptive technologies, now many of them are considered an essential part of the Healthcare system.

In Portugal, the Healthcare industry represents approximately 8% of the gross domestic product. It comes with no surprise that the ageing of the population, the increased demand for chronic care and strained public and private hospitals’ budgets are building up to a large pressure on health care systems to supply quality and efficient services to keep up with the demand [4]. Whether it is a public or private hospital, the pressure can come directly from the patients’ waiting list. In Portugal, people go to a Healthcare facility to be diagnosed. These diagnoses can sometimes reveal that a person, now a patient, needs surgery. Afterwards, the patient is assigned to a waiting list of a local hospital. Hospitals then have a maximum time, which depends on the patient’s priority status, to schedule and perform the surgery. Otherwise, the hospitals incur on a penalty fee. It can be now understood, the direct impact a well-designed scheduling service has on reducing the waiting list and thus reducing the probability of monetary penalties at the end of the year.

1.2 Problem Statement

Every month, the Head Surgeon of the hospital prepares the following month’s surgeries. He does that by taking patients/surgeries from the waiting list and assigning them to a day when the respective doctor is working in the OR. Due to the fact that the Head Surgeon has many years of experience, he knows what combinations of surgeries can be done in a day without leading to OR overtime. No other input than doctor and OR availability is taken into account.

Nevertheless, the dependency between the OR and other downstream units and resources, such as Post-anaesthesia care unit (PACU), beds, nursing staff and others, has been demonstrated. However, the relation between the master surgical schedule (MSS) and the ward it is not so straightforward to predict and is plagued with uncertainties [5]. For example, it may be known that to every patient from a given speciality there is an average length of stay (LOS) but it is not known with certainty how long each patient individually will stay. Because of this uncertainty, MSSs are often developed without explicit consideration for the wards [6].

Moreover, fluctuations in bed occupancy bring avoidable complications. An excessive number of empty beds represent a loss of money by the hospital whereas when bed capacity limit is reached, surgery cancellation or an early discharge may occur. Surgery cancellation leads to unsatisfied patients while early discharges may represent patient readmissions [7].

The problem addressed in this thesis involves the rescheduling of surgeries in the MSS for the orthopaedics surgical speciality. The main objective is twofold: minimize the maximum number of beds occupied in a given period of time and, at the same time, maximize the OR active time.

This leads to the research question of this thesis:
"Is it possible to design an optimization model to reschedule surgeries that leads to the minimization of bed occupancy and, at the same time, to a more levelled operating room utilization?"

1.3 Contributions

The work presented in this dissertation contributes to the area of operational research regarding health services. This thesis is limited to providing, hopefully strong, evidence for the validity of the model here developed. It does so by optimizing the use of beds in the hospital wards and the use of the operating block. The three major contributions from this thesis are:

- The development of an optimization tool to schedule elective surgeries;
- The fact that it is an adjustable tool. It is based on the hospital database so it can be adapted to other hospitals with minor adjustments;
- The developed tool was assessed with real data (and by the hospital administration), presenting better results than the current scheduling strategy used by the hospital.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 compiles information regarding the area of Surgery Scheduling (SS). It explains some of the considerations done about the variables that play a crucial role in SS whilst providing an overview of what has been investigated and implemented in the past decades concerning the optimization and decision support tools involved in MSS. It also provides information about its state-of-the-art framework and the most common approaches to solve the problem. Chapter 3 provides the data involved in SS and how it was handled. The subsequent 2 chapters (chapter 4 and 5) are about the optimization model, the adopted algorithm and the results obtained from its implementation. Finally, the conclusion chapter completes this thesis by summarizing the most important aspects and how this type of problems can continue to be developed in the future.
Chapter 2

Process Description

There are many possible solutions for surgery scheduling (SS), depending on what is the optimization’s main objective. This section is devoted to giving insights in the general clinical care process as well as describing this thesis’ considerations regarding the variables involved in SS. The description of the process will be complemented with the state of the art in this field. This description, although suited for most of the hospitals, is based on the processes of the hospital in which this thesis collected the data.

2.1 Patient Classification

In order to describe the OR planning and the scheduling process, it is essential to introduce the different ways in which the patients can be classified. Three different classifications are presented in this section: type of admission, type of operation and length of stay category.

2.1.1 Admission Category

A lot of different reasons (diagnosis) may cause a patient to require an hospital admission and its corresponding care process might be significantly different depending on the admission motive. For hospitals, a big distinction between the required care process for a patient can be made by labelling an admission with a so-called admission priority. Two major patient classes are considered, namely elective and non-elective patients (also referred as “urgent”). The elective patients arrive on a scheduled basis and their arrival is expected because they were programmed to receive surgery by the MSS, whereas the latter class of patients arrives unexpectedly and a surgery must still be performed on a timely manner.

Due to the fact that the hospital studied in this thesis has a specific OR for the non-elective category, and so, non-elective cases do not interfere (except on rare occasions) with the schedule for the elective cases’ OR, this thesis will only consider the elective cases when reorganizing the MSS.
2.1.2 Surgery Category

Another indicator to distinguish patients is their surgery category. Surgery categories can be divided into two big groups: outpatient surgery and inpatient surgery.

Outpatient surgery, also known as ambulatory surgery or day surgery is surgery that does not require an overnight stay at the hospital. These surgeries do not usually involve extensive intrusion and since patients’ stay in the hospital is reduced, the infection rates are lower when comparing to an inpatient surgery [8]. Differently, inpatient surgery occurs when a surgical procedure is performed with the expectation that the patient remains in the hospital for one or more nights. The surgery category is usually known before it is scheduled. However, some alteration can occur due to anaesthesia overreaction, harder surgery than anticipated and others.

2.1.3 Length of stay

The clinical care process is in general defined as the period between a patient’s admission to the hospital and a patient’s discharge from the hospital. Patients receiving surgery and rehabilitating for at least one night are the main subject of this research and this section will describe the different stages in the inpatient care process and ends with an overview of the global process.

Many of the hospital’s health care services require patients to remain in the hospital for a certain period. From the moment of admittance to the moment of discharge from the hospital is called length of stay (LOS). This means that for the full duration of the stay, the hospital has a bed assigned to the patient. This period is divided into three stages. The preoperative, the perioperative (patient’s surgical procedure) and the postoperative period.

Preoperative care refers to health care provided before a surgical operation. The aim of preoperative care is to do whatever is right to increase the success of the surgery. It includes both physical and psychological preparation, such as, preoperative screenings, drug administration, anaesthesia, attempt to limit preoperational anxiety are just some of the examples. Normally, a patient with a schedule operation (elective) arrives to the hospital on the day of the surgery and gets prepared to undergo the surgery. This depends on the hospital policies. For instance, the hospital in question requires the patient from the first surgery of the day (usually at 8h30) to be admitted the night before in order to minimize the risk of delaying the surgeries throughout the day. A non-elective patient has to go through the same procedure as an elective patient with the addition of a waiting time due to the possible OR or surgeon unavailability, which may last for more than a day. As shown on figure 2.1, elective patients have surgery on the same day of arrival, except for the cases of early morning surgery in which, by hospital policy, it requires a patient to be hospitalized on the night before. Unlike non-elective patients, who can stay until an OR is unoccupied and a surgeon is available to operate them.

The perioperative period begins when the patient is transferred to the operating room table and ends with the transfer of a patient to one of the clinical wards. Identically to the previous phase, it largely depends on the type of surgery being performed. Even though the perioperative stage, compared to the other stages, is typically insignificant, it is one of the most crucial aspects regarding surgeries and
The postoperative period represents the time in which the patient is under hospital care after the surgery. Compared to the 2 other periods, this is usually the longest stage and the one which is responsible for the most of the fluctuation in the global admission period, as it can range from a couple of hours to several weeks. Unlike previous periods, the postoperative one is assumed to be less affected by the patient category and mostly depends on patient physical condition and the surgery’s intensity.

The schematic in figure 2.2 provides a visualization of the patients’ flow through the different wards. First, the patient arrives at a regular clinical ward where a bed is assigned to the patient. There, the patient waits until the OR is ready for the operation. In most cases, after the operation, the patient recovers in a post-anaesthesia care unit (PACU). It is a necessary stage before going back to the clinical wards in order to the hospital’s staff make sure the patient is stable and no post-operative complication appears. Sometimes, when the procedure is highly prone to post-surgery difficulties, the patient is sent to the intensive care unit (ICU) for better observation and monitorization. Eventually, the patient returns to a regular clinical ward and waits for discharge. In this work, we will not differentiate the different types of wards, being, henceforth, referred to as wards.

For the extent of this thesis, we will consider the LOS as the sum of the perioperative and the postoperative periods and ignoring the preoperative period. This assumption is due to the fact that elective surgeries’ patients are admitted on the day of the surgery (apart from the exception of the first patient of the day), thus having a preoperative period of only a few hours.
2.2 Scheduling System

OR managers must face conflicting constraints in order to build schedules which maximize resources utilization while minimizing cancellations and overtime. The development of an SS by the hospital involves 3 hierarchical decisions levels, namely strategic planning, tactical planning and operational planning.

The first one is called strategic planning. Usually, it is created on a yearly basis by the hospital administration and it is where decisions regarding the main goals/budgets and OR active time are made. Yearly, the hospital determines both number and types of surgeries to be performed, the resources required and an estimation of the costs [9]. The works of [10] and [11] prove that long-term (over 1 year) forecasting might be inaccurate, proving that a better solution is found when using the historical data from the previous year. Furthermore, some hospital administrators are more focussed on maximizing the OR efficiency instead of the profits. However, it is still unclear what is the optimum level of OR utilization and what are the trade-offs required to achieve it, although some of these factors have been identified in [12].

The next level is the tactical planning or more commonly known as the MSS. The MSS is defined by Blake and Dexter in [13] as: “a cyclic timetable that defines the number and type of ORs available at a facility, the hours that the ORs will be open and the surgical groups or surgeons who are to be given priority for the OR time”. This can be a weekly, two-weekly or even monthly cyclic timetable.

![Figure 2.3: An example of a Master Surgical Schedule for 1 operating room.](image)

Figure 2.3 is an example of a made-up one weekly MSS for OR number 1. In our case study hospital, the Orthopaedic speciality has their own OR, which means that they can schedule surgeries every day of the week (working days) during OR active time.

The issue in tactical planning is mainly a resource allocation problem, where the number of hours the OR is open, the number of ORs available and the time each surgeon or group of surgeons requests
affect the MSS construction. Kuo et al. [14] developed a linear programming (LP) model whose aim is to determine the optimal MSS to either maximise the receipts or minimize the costs incurred by the hospital. The results of his work revealed that it is possible to increase financial efficiency. However, due to the numerous assumptions made, it MSS could only be applied under ideal circumstances.

Another study, conducted by Santibanez et al. [15], formulated a Mixed-Integer Programming (MIP) model to create an MSS which had with two different objective functions. The first was the relocation of surgical specialities to minimize the maximum daily bed utilization, the other the maximum resources available is known and the objective is to maximize the throughput of patients, in other words, minimize the waiting list/time while respecting the resources constraints.

Lastly, and the most important for the scope of this thesis, is the operational planning. It concerns the schedule of elective patients of each surgical speciality to the respective blocks of the MSS. How long before the surgeries are schedule depends on the hospital's policy. In our hospital in specific, at the beginning of every month, the surgeries are scheduled to the following month, by the head surgeon of each speciality, by picking patients up from the waiting list and assigning them an available slot in the schedule. According to Cardoen et al. [1], this last stage of surgery scheduling (SS) can be divided into two main steps: patients are assigned to ORs on a certain day and then sequenced adequately. In this thesis, we are only interested in the first step, which is assigning surgeries to a specific day of the orthopaedics OR. Works from Fei et al. [16] and Guinet et al. [17] do an operational planning approach whose objective function is to minimize patient satisfaction (waiting list minimization) and OR overtime's costs, respectively. Although both do not take into consideration the number of beds available and the surgeons’ agendas. More recently, Bos [5] developed a model to predict the bed occupancy a certain schedule would create, this way, hospital administration could allocate their downstream resources accordingly.

These three decisions depend on each other since the input for the decisions on one level is based on the decision made on another level. Figure 2.4 presents a schematic of the decision levels.

The above process of creating a preliminary schedule is what is called as an offline scheduling process. In reality, due to daily disturbances, an online operational planning is required to monitor and control the schedule. Although being beyond the extension of this thesis, a brief explanation will be given in the next paragraph. Online scheduling is the process of changing the regular schedule due to an unexpected situation. In other words, during a month there are multiple situations which impact directly the elective schedule. For instance, if too many non-elective cases arrive and need to be operated at the moment, elective surgeries are postponed. If a doctor falls ill and there is no one specialized enough to perform the surgery, then the patient has to be re-scheduled. These are just a few examples of a wide range of possibilities. The on-line scheduling problem has been addressed in very few papers compared to studies about elective and off-line scheduling. In more recent year, papers [19–21] address the problem of elective surgery planning under the uncertainty of emergency patients arrival. Although Xie et all in [19] partly overcome the problem, the resulting plan might not be possible due to some simplifications.

Figure 2.5 helps to clarify the real operational planning process. To plan the surgeries for the month,
the manager/head-surgeon consults the waiting list and starts picking patient/surgeries to fit the surgeon schedule for that month (1). Once this selection is made, the hospital calls the patient to warn them about the date of the surgery and warn them they have some appointments to attend before the surgery, normally, exams and pre-anaesthesia appointment too check if the patient is fit to undergo surgery (2-3). As we approach the surgery date, some adjustments are made such as time of surgery (4). Lastly, the patient is called for admission on the day (or a day before) of the surgery. This process of offline planning is what can be assumed as the perfect real-life scenario. In real life, from the moment patients are scheduled, complication arise and the preliminary schedule has to be modified.

2.2.1 Surgery Flow

Performing surgery in the OR is a multiple stage process (illustrated by figure 2.6). It begins by opening the block and preparing the room according to the surgery being performed and other possible patient's needs (a). Then, the patient can enter in the OR and start receiving the anaesthesia (b). When the patient is properly sedated, the surgeon starts to operate the patient (from c to d). After the surgery ends, the patient has to recover from the anaesthesia and then moves to a recovery room (e) and the OR is considered close. Afterwards, the OR is cleaned and a second surgery can start (a2).

Important to realize that the cleaning stage is an essential stage of this process and a new surgery can only start when this stage ends. In reality, due to delays or cancellations, the next surgery starts some time after, creating extra OR's unused time. One of the most important metrics used to check
the OR’s performance is the turnover time. It is considered as the time from the previous patient out of the OR to next one in the OR including preparation and cleanup. These uncertainties on the duration of the various stages of an operation was studied by Denton et al. [22], by developing a MIP model for surgery rescheduling. The authors, given the stochastic nature of the procedure, estimated the risk of not realizing certain surgeries. These risks were then compared to new schedule developed by the MIP model.
2.2.2 Block Occupation Rate

One commonly used metric in hospitals is the Block Occupation Rate (BOR). It is defined as the rate between the sum of active time in an OR day and the time the OR is open on that day. It must be remembered that the active time of a surgery is the period between the beginning of anaesthesia and the time the OR block closes for cleanup. As a result, the BOR hardly ever is over 85% because in each surgery there is time consumed in cleanup and preparation. In figure 2.7, we can see which parts of an operation counts as effective active time (coloured in green) on a day in the OR. On the said figure, “A” stands for the beginning of the anaesthesia while “B” stands for the block closing.

![Figure 2.7: Simulation of a day in the operating room.](image)

As previously discussed, this metric is the one we would like to optimize. In order to improve it two things can be done:

- Add or remove surgeries;
- Allocate surgeries differently throughout the day.

In this dissertation, we select surgeries from a certain period and reschedule them in order to prove that we can minimize the use of beds and the use of the OR. Unfortunately, since no surgeries are added or removed and deciding the time of day a surgery takes place is outside the scope of this thesis we have no way of improving the BOR. So a new metric to prove the optimization of the OR will be chosen and discussed in more detail on chapter 4.
Chapter 3

Data Preparation

“The key feature of surgery scheduling is the coordination of several and multiple activities in an uncertain environment” [23].

Every element in the process of scheduling a surgery, and consequently a patient, revolves around uncertainty. The duration of a surgical procedure, the time taken to administrate and recover from anaesthesia, the OR cleaning duration and the time a patient takes to recover and have discharge from the hospital are just some of the elements of this environment. Although these elements cannot be controlled or known, they can be predicted with a certain degree of certainty.

In this chapter, we will discuss how to obtain numerical values for these elements from the entire batch of data provided by the hospital.

3.1 Data Selection

We have at our disposal all the data regarding the OR operations (from orthopaedics alone) and their respective hospitalization period from a 3 years period, 2015 to 2017. A total of 5917 entries were analysed and besides the directly extracted data, we have created some datasets containing additional information that was calculated for the purpose of this research. With the intention of clarifying the information used, table 3.1 shows the different fields extracted or calculated from the hospital’s raw data.

Many of the fields are used to exclude entries containing bad data. The field “Status” rules out surgeries that were about to happen but for some reason were cancelled. It can be, for instance, due to time shortage (end of the day surgeries), problems during anaesthesia or other. Surgeries are comprised of procedures, frequently just one, but it happens that secondary procedures are added to the main procedure. It only happens less than 7% of the times, so, since we do not have enough data to study their effects on surgeries with one procedure we decided to exclude them. For every entry we calculated the field “Surgery Duration” as the time difference between “Anaesthesia begin time” and the field ‘OR close time’ and for the field “LOS” the difference between field “Date” and field “Discharge Date”. In the ‘Turnover Duration’ field, we calculated the time between the OR closing (field ‘OR close time’) and the beginning of anaesthesia (field ‘Anaesthesia begin time’) of the next operation taking into consideration
<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of surgery</td>
<td>Ambulatory/Conventional</td>
<td>Extracted</td>
</tr>
<tr>
<td>Category</td>
<td>Elective/Urgent</td>
<td>Extracted</td>
</tr>
<tr>
<td>Procedure</td>
<td>Procedure name of the Procedure</td>
<td>Extracted</td>
</tr>
<tr>
<td>Procedure Type</td>
<td>Principal/Secondary</td>
<td>Extracted</td>
</tr>
<tr>
<td>Date</td>
<td>Date of surgery</td>
<td>Extracted</td>
</tr>
<tr>
<td>Discharge Date</td>
<td>Date of Discharge</td>
<td>Extracted</td>
</tr>
<tr>
<td>Room</td>
<td>OR name</td>
<td>Extracted</td>
</tr>
<tr>
<td>Surgeon</td>
<td>Name of surgeon who performed the surgery</td>
<td>Extracted</td>
</tr>
<tr>
<td>Room</td>
<td>OR name</td>
<td>Extracted</td>
</tr>
<tr>
<td>OR open time</td>
<td>Time when OR starts to get prepared</td>
<td>Extracted</td>
</tr>
<tr>
<td>OR close time</td>
<td>Time when OR closes and cleanup begins</td>
<td>Extracted</td>
</tr>
<tr>
<td>Anaesthesia begin time</td>
<td>Time when the patient receives anaesthesia</td>
<td>Extracted</td>
</tr>
<tr>
<td>Anaesthesia end time</td>
<td>Time when patient recovers from anaesthesia</td>
<td>Extracted</td>
</tr>
<tr>
<td>Surgery begin time</td>
<td>Time when surgeon begins to operate</td>
<td>Extracted</td>
</tr>
<tr>
<td>Surgery end time</td>
<td>Time when surgeon leaves</td>
<td>Extracted</td>
</tr>
<tr>
<td>Status</td>
<td>Performed/Cancelled</td>
<td>Extracted</td>
</tr>
<tr>
<td>Surgery Duration</td>
<td>Length of time in which the patient is present at the OR</td>
<td>Calculated</td>
</tr>
<tr>
<td>Turnover Duration</td>
<td>Length of time in which no patient is present at the OR between two</td>
<td>Calculated</td>
</tr>
<tr>
<td></td>
<td>consecutive operations</td>
<td></td>
</tr>
<tr>
<td>LOS</td>
<td>Length of stay in the hospital after the day of surgery</td>
<td>Calculated</td>
</tr>
</tbody>
</table>

Table 3.1: Important fields extracted and calculated from the hospital operations dataset.

that the operations had to be in the same room (field 'Room') and on the same day (field 'Date').

3.2 Datasets

In this section, we describe the data analysis process performed on the data treated previously to obtain the model’s input parameters. For this reason, we created 3 datasets, namely, the procedure dataset, the MSS dataset and the month dataset. Each dataset is thoroughly explained in their respective subsection.

3.2.1 Procedure Dataset

The first dataset contains the necessary information about a procedure. Unlike the other datasets, it contains historical data. The quantity and quality of the information here provided is of the utmost importance to improve the prediction accuracy of the procedure’s parameters: surgery duration, cleanup time and LOS.

Surgeries are getting more efficient and less invasive throughout the years, even in our analysis from the period of 3 years (2015-2017) we were able to see for the same type of procedure a large decrease
in the length of stay (reflected on table 3.2). Thus, keeping the historic data up-to-date is of extreme importance.

Length of Stay

One of the key characteristics of a procedure is the time it will take for the patient to have a discharge (LOS), as it denotes the duration a bed will be occupied by the patient.

The LOS was one of the parameters we had to calculate. It simply was the difference (in days) between the “Date” (date of the surgery) and the “Discharge Date”. After the calculation, we proceeded to its analysis and found out that, out of the 5917 entries, 284 corresponded to bad data because they were not positive integers. This was due to human distractions when writing the data into the hospital dataset.

After eliminating the said data, we analysed all the LOSs of a certain procedure and obtained a non-symmetrical distribution with a positive skew (left image of figure 3.1). As explained by the hospital head-surgeon, the expected LOS of a procedure should follow a normal distribution, with mean as the expected value of LOS. However, the LOS has a minimum of 0 days but no defined maximum. Now, let us imagine the following scenario: if 10 people have the same surgery and 9 of them stayed between 3 to 5 days hospitalized and a 10th person stayed 25 days. By calculating the mean, we get that this procedure usually takes 6 days of hospitalization which in fact, 90% of the time it takes less. What is trying to be explained here (represented in the following figure) is that by removing the outlier values (above percentile 90th), we obtain a better approximation of a normal distribution and of the true mean value. By analysing the most common procedures, we arrive to the conclusion that by removing the 10% longest LOS values we obtain a more faithful representation of the LOS for that procedure.

Figure 3.1: Difference between analysing all the data from a procedure and only the 90th percentile (LOS).

Figure 3.1 presents an illustration of the non-symmetrical distribution of the data regarding the LOS of a procedure (left image) and an almost normal distribution of the same data without the data over the 90th percentile (right image). Thereupon, the use of a percentile seems fit in order to avoid using values outside the normal spectrum as previously explained. Moreover, in the represented case (and this was not the only one), we see a decrease of almost 1 day on the mean LOS after removing the data outside
the 90th percentile.

Another characteristic to keep in mind is how recent the data is. As mentioned before, the LOS of a procedure decreases through the years, so, whenever possible we should only take into consideration the most recent years or months. By analysing table 3.2, we see a decrease of the mean LOS over the 3 years while keeping the number of performed surgeries almost unchanged.

<table>
<thead>
<tr>
<th>Name</th>
<th>2015</th>
<th></th>
<th>2016</th>
<th></th>
<th>2017</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>LOS</td>
<td>Number</td>
<td>LOS</td>
<td>Number</td>
<td>LOS</td>
</tr>
<tr>
<td>Procedure 1</td>
<td>174</td>
<td>7.19</td>
<td>173</td>
<td>5.35</td>
<td>189</td>
<td>4.86</td>
</tr>
<tr>
<td>Procedure 2</td>
<td>107</td>
<td>5.82</td>
<td>91</td>
<td>4.87</td>
<td>108</td>
<td>4.31</td>
</tr>
<tr>
<td>Procedure 3</td>
<td>93</td>
<td>6.47</td>
<td>90</td>
<td>6.08</td>
<td>124</td>
<td>4.60</td>
</tr>
</tbody>
</table>

Table 3.2: Variation of LOS of procedures through the years.

As a result, we created a set of rules to calculate the mean LOS of a procedure based on the previous analysis:

1. If the procedure has occurred more than 60 times (value defined as sufficient for the use of this rule), use only the data of the 90th percentile. Otherwise, all data will be used;

2. If a procedure has occurred more than 20 times (value defined as sufficient for the use of this rule) in the last year, only the data from that year will be used.

3. Calculate the mean LOS.

<table>
<thead>
<tr>
<th>Name (total)</th>
<th>Mean</th>
<th>Median</th>
<th>Most common (repetitions)</th>
<th>Expected LOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure 1</td>
<td>5.79</td>
<td>5</td>
<td>5 (106); 4 (96)</td>
<td>4.79</td>
</tr>
<tr>
<td>Procedure 2</td>
<td>0.49</td>
<td>0</td>
<td>0 (348); 2 (37)</td>
<td>0.61</td>
</tr>
<tr>
<td>Procedure 3</td>
<td>1.99</td>
<td>2</td>
<td>1 (133); 2 (104)</td>
<td>1.87</td>
</tr>
<tr>
<td>Procedure 4</td>
<td>5.00</td>
<td>5</td>
<td>5 (80); 4 (72)</td>
<td>4.15</td>
</tr>
<tr>
<td>Procedure 5</td>
<td>5.59</td>
<td>5</td>
<td>5 (65); 4 (63)</td>
<td>4.50</td>
</tr>
<tr>
<td>Procedure 6</td>
<td>1.59</td>
<td>1</td>
<td>1 (109); 2 (68)</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Table 3.3: Statistical analysis of some of the procedures.

Table 3.3, compares the statistical values of the procedures (mean, median, mode) with the calculated value of LOS by the set of rules created. Instead of displaying only the mode, we decided to display the two most common values because the mode alone was misleading, in other words, the second most common value for LOS was sometimes as common as the mode. If we had not adopt the use of a percentile our best estimate for an expected value would be the median/mode, but since we obtained an almost normal distribution after applying the rule of the percentile we are better suited with the mean in order to find the most likely values of LOS (which will also apply to the duration which we will study next).
We can see that the mean LOS calculated value is always between the two most common values and usually below (or near) the mean and median values. This corroborates the fact that only using data from the most recent year lowers the LOS of a procedure without it being outside the expected. Since our minimum unit of time (for LOS) is the day, we need to round the values calculated to the unit. Taking into consideration that the described optimization model might be used by the hospital in the future, we decided to round down the calculated LOS because is what the expected LOS will tend to evolve throughout the years.

In this thesis, we will not go as far as scheduling the time of day when the surgery occurs. However, in the future, instead of rounding down the calculated mean, a new approach can be set according to the time of surgery. For instance, if the surgery is set to take place in the late afternoon we could round up the calculated mean.

Durations

The other key characteristic of a procedure is its duration, or in other words, the time the OR is occupied due to that procedure. As explained on chapter 2, this time is composed by the surgery itself and the time it takes to prepare the room and to clean it afterwards.

To calculate the durations of each type of procedure, we took a similar approach to the LOS analysis. The “Surgery Duration” was calculated by measuring the time (in minutes) between “Anaesthesia begin time” and “OR close time” whereas the “Turnover Duration” was calculated by doing the difference (in minutes, as well) between the “Anaesthesia begin time” of the next procedure and the “OR close time” of the procedure we want to calculate. For obvious reasons, the last surgery of the day never has a turnover duration.

Unlike the LOS calculation, the amount of bad data in the turnover duration is significant. This is due to a number of reasons:

1. Whenever a surgery is cancelled there is an hole in the OR schedule. This means the turnover duration for the surgery before increases by the amount of time that hole creates;

2. If we consider 5 daily operations, 20% of the turnover duration data is missing (last surgery of the day);

3. Unlike the LOS calculation, here we are dealing with 6 timestamps (begin OR, begin anaesthesia, begin surgery and their respective endings) which are far more likely to be miswritten by the staff than 2 dates (Date of surgery and Discharge date). These, sometimes, lead to negative or nonsensical durations and need to be removed from the calculations.

For the reasons mentioned above, we found out that 3274 out of 5917 entries (55%) contained mistakes.

Based on figure 3.2, we reach the same conclusion as we did in the case of the LOS: it is a non-symmetrical distribution with a skew, the use of a 90th percentile transform this distribution into an almost symmetrical one (almost normal distribution) and so, in order to predict the duration of a procedure we
are better suited with the mean, rather than the median or mode. Note: The column of values between 200-250 on figure 3.2 (right image) is smaller because the use of the percentile partly removed the data of that column.

Table 3.4: Change of mean duration of procedures through the years. All the durations are in minutes.

<table>
<thead>
<tr>
<th>Name</th>
<th>2015 Number</th>
<th>Duration</th>
<th>2016 Number</th>
<th>Duration</th>
<th>2017 Number</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure 1</td>
<td>189</td>
<td>55.8</td>
<td>190</td>
<td>64.4</td>
<td>207</td>
<td>55.7</td>
</tr>
<tr>
<td>Procedure 2</td>
<td>108</td>
<td>97.7</td>
<td>91</td>
<td>94.1</td>
<td>110</td>
<td>98.1</td>
</tr>
<tr>
<td>Procedure 3</td>
<td>128</td>
<td>38.1</td>
<td>132</td>
<td>35.4</td>
<td>147</td>
<td>45.7</td>
</tr>
</tbody>
</table>

Unlike with the previous conclusion, as we can see in table 3.4, there are fluctuations of the procedure duration through the years. This fluctuations do not show a clear decreasing pattern like the one in the LOS. So, we will follow the same steps to calculate the durations as we do in LOS without the restriction of only focussing in 2017.

Surgeon Variation

Although orthopaedics is already a surgical speciality, there are surgeons with sub-specialities, such as shoulder, knee, hip, etc. This reflects not only on their knowledge of that specific region but in the time they might take to perform a certain surgery. Hence, we readjust the surgery duration according to the surgeon performing it.

In order to implement this specialization analysis, we made sure we had enough data. So the following rules and approach were applied:

1. Surgeon needs to have done more than 15 surgeries of that procedure;
2. Procedure has over 30 entries;
3. Calculate the duration of all the surgeries of that procedure (“Surgery end time” - “Surgery begin time”);
4. Calculate the duration of all the surgeries of that procedure performed by the doctor;

5. Calculate the difference between both;

If a surgeon or procedure does not meet the above requirements, we consider the time the surgeon takes to perform that procedure equal to the mean duration of the procedure.

Figure 3.3: The effects the surgeon has on the mean duration of a surgery.

On figure 3.3, we analyse the mean duration of a certain procedure depending on the surgeon performing it. We conclude that, despite the fact that most of the surgeons did not perform this type of procedure enough times to be considered specialists, there are a few exceptions that corroborate the impact the surgeon has on the duration of the surgery. In other words, surgeon 8 seems to be the most competent and surgeon 20 the least. However, it can happen that surgeon 20 is only called for the most complicated surgeries of a procedure and thus, taking longer to perform them. Nevertheless, whatever the reason might be, surgeon 20 takes longer than the others to perform surgeries of this type of procedure. Moreover, all the surgeons that take 137 minutes (mean procedure duration) to perform the surgery did not meet the the requirements set by the rules.

To summarize, after the analysis of the 3 main characteristics of procedures, we created the Procedure Dataset which is represented on table 3.5. On the “Doctor” column, we observe that in procedure 1, only two surgeons are specialized (Surgeon "C" takes less 20 minutes than the average while surgeon "F" takes 3 minutes more) whereas in procedure 2 no surgeon is specialized (all are expected to perform in the procedure mean duration).
3.2.2 Master Surgical Schedule Dataset

Another information given by the hospital was the doctors’ schedule. From this information we were able to retrieve the number of hours each doctor is assigned to the OR and then create as MSS.

The orthopaedic OR has a 6 week schedule system. For each day of the week there is a surgeon or surgeon group assigned to the morning block and another one to the afternoon block. As it is very common for the same surgeon to be in both blocks of the day, it was considered, in order do simplify the analysis process, that the entire day was considered as a block. Moreover, every week of the 6 weeks schedule the doctors have the same schedule, apart from a free day which may coincide with the day they are supposed to be in the OR. Since it was not specified when did the schedule start we were not able to map the weeks to the corresponding real week, so we had to compile the 6 week schedule into a constant 1 week schedule. Due to these 2 simplifications, it may happen that we overbook a surgeon during a day.

Most of the hospitals (the one in study included), have a rule which states that the doctor who diagnosis a patient is the same one that will perform the surgery. Therefore, the scheduling or rescheduling should be done to the day where that particular surgeon is working in the OR. Even though it is hospital policy, the surgeons sometimes switch shifts with each other and operate at times they were not supposed to (see chapter 2 online scheduling). In our analysis, the perfect scenario was considered, where surgeons only operate in their designated days. When scheduling a surgery, this constrain brings us less flexibility, comparing to what happens in reality.

<table>
<thead>
<tr>
<th>Surgeon</th>
<th>Working days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. A</td>
<td>3;6</td>
</tr>
<tr>
<td>Dr. B</td>
<td>2</td>
</tr>
<tr>
<td>Dr. C</td>
<td>2;5</td>
</tr>
</tbody>
</table>

Table 3.6: Example of the doctors schedule as a dataset.

The dataset shown in 3.6 is a representation of the real schedule in the program. Each doctor is assigned with numbers corresponding to the days of the week they are in the OR. For instance, “Doctor A” works in the OR on Tuesdays and Fridays.

3.2.3 Month Dataset

The month dataset serves as a Patient Admission List. Every month, the head-surgeon goes to the hospital waiting list and picks people until he has the OR monthly schedule completely booked. Instead
of using the hospital’s waiting list, our study retrieved the list of the operations already performed on a certain month and used it as a limited waiting list. By doing so, we can then compare the result of rescheduling in terms of beds and OR active time occupation. Because we only reschedule the operations on a given month without adding extra ones, the mean OR occupation will obviously be the same. Nevertheless, we will have the objective of stabilizing its occupancy throughout the month. This issue will be further discussed on chapter 5.

The dataset itself consists on: the type of procedures to be performed on a given month, the assigned surgeon, the day when the real operation happened and the real LOS of the patient. This last two elements were not used as an input, for the obvious reason that one of the objectives of this thesis is to reschedule a set of past surgeries having in consideration the expected LOS and not the real one. Instead, they will be used as a measure of comparison between the result obtained after the reschedule algorithm and what really happened during the month.

Table 3.7 serves as a representation of the real dataframe used by the program:

<table>
<thead>
<tr>
<th>Name</th>
<th>Surgeon</th>
<th>Real Data</th>
<th>Real LOS (days)</th>
<th>Real Duration (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure 1</td>
<td>Doctor B</td>
<td>2017-05-05</td>
<td>12</td>
<td>156</td>
</tr>
<tr>
<td>Procedure 2</td>
<td>Doctor C</td>
<td>2017-05-06</td>
<td>0</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 3.7: Example of the month operations to be reschedule as a dataset.

3.3 Input for the Scheduling Program

The model used in this thesis required multiple input parameters. Firstly, the waiting list. This translates to the model as the month dataset with the name of the procedure and the surgeon who is suppose to perform the operation. Then, the schedule of that surgeon, i.e. the days he is working in the OR, is added to the input dataset. Lastly, the expected duration and length of stay of the operation completes the input dataset.

As previously mentioned, it is important that all the inputs are up to date. In the future, to have a properly functioning model we must have a feedback system to not only recalculate all the durations and LOSs of the procedure with the most recent data available but also to take into account changes in the surgeons’ schedules.
Chapter 4

Model Formulation

This chapter introduces the modelling approach and methodology. The chapter begins with presentation of the chosen approach to tackle the problem. Then we explain all the variables used and their domains. In the end, the problem requirements will be explained, followed by their formulation as structural constraints.

4.1 Introduction

This thesis’ problem was first tackled as a linear programming (LP) problem. The main reason for it was the fact that some of the work developed in the area, as discussed in chapter 2, used programs and models based on a linear approach. Moreover, LP is used to find the most optimized solution to a problem in which the functions are all linear. Important to remind that, the variables this work is focussed on are:

1. maximization of the mean block occupation rate (BOR);
2. minimization of the bed occupancy.

Regarding the optimization criteria 1, it is impossible to change the BOR significantly just by rescheduling surgeries. In order to increase the BOR, we need to add extra surgeries. For instance, if we are rescheduling for a 2-day period and the BOR is 50% and 70% for the first and second day, respectively, we can reschedule the surgeries in every possible way without significantly changing the mean BOR of that period (60%). Nevertheless, as discussed in section 2.2.2, we can slightly change the BOR if we change the order the surgeries are performed in a day, although, as explained before, the time of the day the surgery is performed is out of the scope of this thesis. To solve this problem, we decided that instead of maximizing the mean BOR we would ensure a more levelled time occupation of the OR. To do this, we transform this optimization parameter into an optimization constraint, which will be one of the inputs the user introduces before running a simulation.

In the real world, criteria 2 does not directly apply. Instead, the main objective is not to minimize the number of beds but to perform the maximum number of operation without exceeding the maximum
number of beds available. For this thesis, we want to prove its usefulness with past data and so, we will focus on rescheduling and not adding extra surgeries. Since we already transform criteria 1 into an input, we thought of doing the same with the second criteria. The main reason that led us to this decision was the fact that not always the scenario with the minimum bed usage is the best one. One doctor may find criteria 1 more important than the second or vice-versa. More important, the optimization of one may lead to a sub-optimal solution of the other. This being said, the fact that instead of an optimization tool, we create one with 2 optimization constraints that are a direct input, allows the user to choose the best option according to the hospital situation.

With this in mind, what at first seemed the best approach (LP model) was discarded and then transformed into an integer programming (IP) approach. An integer programming problem is like an LP problem in which some or all of the variables are restricted to be integers and it has the objective of finding any feasible solution since there is no objective function to optimize [24]. Our IP model will return a possible schedule given the problem’s constraints (structural and optimization) since none objective function is given. All things considered, this approach allows the user to have complete control of the inputs to optimize the schedule and leaves space for an objective function to be added, if necessary, in the future.

The developed IP model in this research was programmed using Python programming language, with a relevant part of the model being complemented by the PuLP library [25].

4.2 Model Parameters

This section lists the sets and variables used on the programming model with the purpose of clarifying the mathematical constrains presented on the following sections.

- **Sets:**
 - D is the set of days of a certain period of time, in the case of this thesis it will always correspond to a month;
 - O is the set of operations to be performed in the period of time corresponding to D;
 - S is the set of surgeons that work on the hospital.

- **Variables:**
 - x_{od} is a binary variable. It represents the operation $o \in O$ being scheduled on day $d \in D$;
 - y_{odzd} is a binary variable. It is a subset of x_{od} and it will be used to calculate the number of beds occupied on a given day;
 - w_{osd} is a binary variable. It represents surgeon $s \in S$ responsible for the operation $o \in O$ working on day $d \in D$.

4.3 Structural Constraints

The first constraint set (equation 4.1) requires that every operation \(o \) is schedule once, and only once, during the time period in study.

\[
\sum_{d \in D} x_{od} = 1, \forall o \in O
\] (4.1)

Equation 4.2, represents the second constraint set which prevents a day in the OR from overbooking. Each day has to respect the number of hours in which the OR will be open, usually from 8h30 to 18h30 during the week and closed during weekends and holidays. Let's consider \(t_d \) as the number of hours the OR is open on day \(d \).

\[
\sum_{o \in O} (x_{od} \times \text{dur}_o) < t_d, \forall d \in D
\] (4.2)

The indices \(o, d \) concern operations and days, respectively, whereas \(O \) and \(D \) are sets of operations and days of the month, respectively. The parameter \(\text{dur}_o \) provides the time operation \(o \) occupies in the OR and the auxiliary variable \(t_d = \begin{cases} 630, & \text{if day } d \text{ weekday except holidays} \\ 0, & \text{otherwise} \end{cases}, d \in D \) (4.3)

represents the number of minutes the OR will be open on day \(d \). We were informed that the OR is only open from 8h30 to 18h30, which means we only have 10 hours (600 minutes) to operate. However, those 10 hours only count up until the end of the last surgery, without including the last cleanup and so, to be fair we added an extra of 30 minutes.

As mentioned before, hospital policies state that the surgeon performing the surgery has to be the same one that diagnosed the patient. On the real world, this policy is not always obeyed, but during the test phase we considered it as a requirement. Equation 4.4 establishes this policy as a constraint and the auxiliary function \(w_{osd} \) is represented in equation 4.5.

\[
\sum_{d \in D} x_{od} \times w_{osd} = 1, \forall o \in O, s \in S
\] (4.4)

\[
w_{osd} = \begin{cases} 1, & \text{if surgeon } s \text{ responsible for operation } o \text{ works on day } d \\ 0, & \text{otherwise} \end{cases}, o \in O, s \in S, d \in D \] (4.5)

4.4 Optimization Constraints

As mentioned in the introduction of this chapter, there were a few problems with the linear formulation of the objective function whether as LOS or as BOR. Additionally, not always the best solution (the desire solution by the surgeons) is the one with the smallest bed occupation or the one with higher BOR. This
being said, instead of creating an optimization program, we created a program which returned a viable solution to a set of parameters introduced by the user. This input parameters were then transformed into constraints (optimization constraints) and integrated in the program. The parameters regard the utilization limits (minimum and maximum) of the two variables this thesis wants to optimize: bed and OR time occupancy.

Constraint set (equation 4.6) is the first optimization constraint mentioned before. Let’s assume that on a given month the maximum capacity reached by this SS is \(N \). If one of the goals is to minimize that number, we can create a special constraint that imposes the number of occupied bed to be below \(N \). In fact, we can create multiple scenarios by changing this value between 0 and \(N \) (has to be a natural number). On one hand, if the value we choose is too close to 0 the problem most likely will not be feasible. On the other hand, if it is close to \(N \) we will not be minimizing much. This results in the following constraint set:

\[
\forall d \in D, \sum_{o \in O} \sum_{d_2 \in D} y_{od_2d} < \max, d_2 \in D, o \in O \tag{4.6}
\]

where \(\max \) is the maximum number of beds we decide for a particular scenario and, for each day \(d \), the binary variable \(y_{od_2d} \) is obtained by:

\[
y_{od_2d} = \begin{cases}
1, & d_2 + \text{los}_o \geq d \\
0, & \text{otherwise} \ (o \in O; d_2, d \in D)
\end{cases} \tag{4.7}
\]

The parameter \(\text{los}_o \) on the previous equation provides the expected length of stay of the patient undergoing operation \(o \). What the equation 4.7 represents is: a patient who had surgery \(o \) on day \(d_2 \) is still occupying a bed on day \(d \).

Occasionally, the head surgeon may want to test the possibility of having a certain number of beds always occupied. So, constraint set 4.8 establishes that minimum number.

\[
\forall d \in D, \sum_{o \in O} \sum_{d_2 \in D} y_{od_2d} > \min \tag{4.8}
\]

where \(\min \) is the minimum number of beds we decide for a particular scenario and, for each day \(d \), the binary variable \(y_{od_2d} \) is the same as equation 4.7. With this in mind, the smaller the gap between the \(\min \) and \(\max \) is, the most likely the program to be infeasible.

In addition to the creation of the constraints which limit the number of beds, we also created the same constraint but for the OR time limitation. As a complement to bed limits, the surgeon could choose the range of values to book the OR. For example, the hospital may want to predict a scenario in which every day of the OR is occupied between 80% and 95%. Although this constraint is possible when scheduling surgeries, it may not always be feasible when rescheduling them. To put it differently, we are dependent upon the surgeries performed in a certain month. If the OR is overbooked, then we can only solve the problem by scheduling it over 100% of the OR. Although this may be true, it goes against constraint set 4.2 which states that the duration of a day does not go beyond the 10-hour limit. To solve
this problem, we decided the maximum percentage of OR booking to always be 100%, and in the cases that scheduling is not possible, we increase the td limit until the problem is feasible.

Taking this into consideration constraint set 4.9 represent the minimum percentage of OR time, min_p, we want our schedule to have.

$$\sum_{o \in O} (x_{od} \times dur_o) > min_p \times t_d, \forall d \in D$$ \hspace{1cm} (4.9)
Chapter 5

Results

This chapter presents and discusses the results obtained by running the mathematical model created for different scenarios. It was divided in 2 parts: section Simulation Results (5.1) displays 5 chosen scenarios and their analysis; on section Discussion (5.2) we present an overall analysis.

We tested our model for every month in 2017, but with the intention of improving the readability and limit the number of graphs with results, only 1 time instance, i.e. month (April), is presented. The rest of the simulation results can be examined on appendix A using the same methodology employed in this chapter/section.

For each simulation, 3 different components are analysed. The past, which illustrates what truly happened in the hospital during the month in question by using real data and the real hospital schedule. Secondly, the output of our model. By using the expected data in the datasets and the schedule from the model we calculated what is expected to happen in that month. And finally, the result component. This last component uses the schedule from our model and combines it with the real data of what happened in the hospital. This allows us to compare what would have happened if the hospital had used the schedule from our model instead of the schedule created by the head-surgeon at that time. Additionally, we can analyse how precise our prediction was by comparing our Prediction curve with the curve of the actual result. On section 5.1, each simulation is composed by the input parameters and two figures, one for the bed and the other for the OR analysis. In each figure, two graphs are shown, one comparing the baseline with our model prediction and the other comparing the model prediction with the final result.

In order to clarify these 3 components, the following terminology was used:

- **Baseline** (grey lines)- Representation of what happened in the hospital during that month;

- **Prediction** (blue lines)- The prediction of what will happen during the month according to our model;

- **Result** (red lines)- Representation of what would have happened if the hospital used the schedule from our model.
5.1 Simulation Results

Our goal by showing the following results is to demonstrate the model's performance and how they change, depending on the introduced input parameters. With this in mind, in the first 2 simulations, we test how the minimum percentage of OR time affects the schedule and then, on simulation 3 and 4 we show how the minimum number of beds influences the schedule. On this 4 simulations, we kept the maximum number of bed as low as possible (6 for April) to keep as distant as possible from the maximum bed occupation that occurred in April (9 beds). The objective of simulation 5, however, is to demonstrate that by reducing the number of days available in a month we can still schedule all surgeries and increasing the Block Occupation Rate (BOR).

In the first place, we analyse what truly happened during the month of April. This way, when discussing the different scenarios we have a base of comparison. In terms of bed occupancy, April behaves without irregularities except for a peak of 9 beds for 2 days (20 and 21). April's Baseline schedule also produces the use of 1 bed during the 7 first days of May, which may or may not raise problems on the next month's schedule. Identically, the use of the OR was also within the normal standard, with one day above the 100% (overtime) and two others below 55% (days 5 and 27). The BOR of this month was 69% and this metric will be essential to analyse scenario 5. It is important to remember that in this Hospital the orthopaedics OR is closed from Friday to Sunday and on April 2017 the hospital closed for holidays on the 14th (Friday), 16th (Sunday) and 25th (Tuesday).

![Bed Occupation](image1.png) ![OR occupation](image2.png)

Figure 5.1: April- Hospital's baseline result

Note: All the calculated data is discrete, with “day” as a unit. However, instead of a bar graph, it was decided to represent the data as a curve. By doing this, we are committing the error of presenting the results as if they were continuous but, at the same time, increasing their clarity and readability.
5.1.1 Simulation 1

Parameters:

- Minimum Beds: 0
- Maximum Beds: 6
- Minimum %OR time: 70%
- Maximum OR time: 630 min

![Bed Occupation](image1)

Figure 5.2: April-Simulation 1. Bed Analysis

![OR occupation](image2)

Figure 5.3: April-Simulation 1. OR Analysis

Scenario 1 simulates a bed usage between 0 and 6 and a percentage of no less than 70% of the OR. The predicted bed occupancy is far below the Baseline approach and the Result curve never exceeds the maximum bed occupancy limit as well. We can also observe that the bed usage never drops below 1 bed. Regarding OR occupation, we obtain in the Prediction curve as well as in the Result curve a more levelled schedule, the latter with 1 day in overtime (same as the Baseline curve).
5.1.2 Simulation 2

Parameters:

- Minimum Beds: 0
- Maximum Beds: 6
- Minimum %OR time: 80%
- Maximum OR time: 630 min

![Bed Occupation Chart]

Figure 5.4: April-Simulation 2. Bed Analysis

![OR Occupation Chart]

Figure 5.5: April-Simulation 2. OR Analysis

Scenario 2 simulates the same bed usage as the previous simulation but with an increase of 10% on the minimum OR occupation, from 70% to 80%. We can see that the problem is still feasible but we obtain worse results. Firstly, the Results curve surpasses the Prediction curve at the end of the month reaching an occupation of 7 beds. Similarly to Scenario 1, the bed usage has a minimum of 1 bed. Secondly, the OR analysis reveals that, even though the Prediction curve is comparable to the one in the previous scenario, the Result curve is slightly less levelled, which by definition is less desirable.
5.1.3 Simulation 3

Parameters:

- Minimum Beds: 1
- Maximum Beds: 6
- Minimum %OR time: 70%
- Maximum OR time: 630 min

The idea behind simulation 3 was to force a minimum of 1 bed throughout the month. Comparing the Prediction curve with both previous scenarios, we observe one less peak at the 6-bed level (3 instead of four). The Result curve, even complying with the maximum allowed, it breaks the minimum threshold set to 1 bed on one day of the month. Regarding the OR utilization, the Prediction curve remains hardly the same, when comparing with previous simulations, but the Result curve shows a 10% overtime in one of the days. It is important to remember that, both the Bed and the OR results are a significant improvement when compared to the Baseline approach.
5.1.4 Simulation 4

Parameters:

- Minimum Beds: 2
- Maximum Beds: 6
- Minimum %OR time: 70%
- Maximum OR time: 630 min

Simulation 4 is an even greater challenge due to the small gap between 2 and 6 beds, in which the program had to schedule the surgeries. Nonetheless, the problem was still feasible. The prediction curve regarding the bed occupancy is the best so far. All the values are between 2 and 6 and by April 30th all beds were vacant. However, the Result curve exceeds the maximum and minimum thresholds on a single day. Moreover, although the OR Prediction curve is well levelled, the Result curve is the worst from the 4 simulation already analysed. It is very similar to the Baseline approach curve.
5.1.5 Simulation 5

Simulation 5 presents a rather different approach from the previous four. Instead of re-scheduling the surgeries throughout the month and thus, keeping the same mean percentage of OR occupation and BOR, we decided to re-schedule the same surgeries but in a limited time horizon. This was obtained by simulating day 26 and 27, the last Wednesday and Thursday, as holidays.

Parameters (for 2 less available days):

- Minimum Beds: 0
- Maximum Beds: 9
- Minimum %OR time: 0%
- Maximum OR time: 630_{min}

![Bed Occupation Graph](image)

Figure 5.10: April-Simulation 5. Bed Analysis

![OR occupation Graph](image)

Figure 5.11: April-Simulation 5. OR Analysis

We can clearly observe that no operations took place on the last 2 days. We chose a maximum of 9 beds available so not to exceed the baseline approach and a minimum of 0 to give the program as much freedom as possible. The minimum OR percentage of time was set to 0% since we will not be focussing on that metric but on the BOR.
The Prediction curve is very similar to the Baseline, with more beds occupied on the beginning of the month and less afterwards. The peak is only during a day instead of a 9 bed occupation for 2 days. Our Result curve, however, never reaches the 9-bed occupation and has only 1 day with 8 beds and none with 0. The OR occupation, on one hand, is the most levelled (mean 95%), which was expected, since we removed two days, we had to fill the others without exceeding the maximum time the OR is open. On the other hand, the OR Result curve presents an excess of use during 5 days (overtime). Nevertheless, we obtained a mean BOR of 75% which is an increment of 6% relative to the baseline approach and freed 2 days where more surgeries could be scheduled.

5.2 Discussion

With the above scenarios, we wanted to impersonate the user and how he can obtain different schedules by altering the input parameters. April was the chosen month, but any of the other 11 months could have been used. More tests were conducted but only the most representative were shown above. However, a minimum of 3 beds, a maximum of 5 or a minimum OR time of 85% were never achieved (using the full month). These limits are only dependent on the type and number of surgeries scheduled for a month. In this chapter, we will not discuss any month in specific, instead, we will do an overall discussion about the results obtained by the optimization model.

The first big achievement to be considered is the bed occupancy. It is clear that, throughout the year, a reduction in the maximum number of beds needed to accommodate the patients was obtained. This represents significant cost savings for the hospital and an extra hand in case the beds on other services get completely full. Also, in some cases, it was possible to ensure a minimum occupation which contributes to a more steady flow of work in the wards, i.e. without so many peak days or idle days. One thing that was not analysed in the previous section was the impact of a more extended occupation of the days following the end of the month. Although it was not the case of April, it may happen our prediction model to overextend which might create a new peak in the following month.

The second goal which was to level the occupation of the operating room was also achieved. It is a fact that by setting a minimum percentage of occupation we were able to achieved more level use of the block, but likewise the Baseline curve, we entered in overtime in some days of our schedules.

On both optimization parameters, the Results curve follows the Prediction curve quite well, proving a high degree of precision on the prediction (qualitative analysis since we did not apply any metric to calculate the precision). Comparing both parameters, we obtained better results when predicting the LOS than surgery duration. Probably owing to the fact that there were more incorrect data regarding the duration than the length of stay and even within a procedure the duration can largely diverge from the expected value.

Lastly, with simulation 5 we prove that the block occupation rate can be improved. The fact that we were able to schedule all the surgeries and obtain 2 available days at the end of the month is also of the utmost importance. The hospital, in this free days, can decide to schedule extra surgeries, can keep them free in case high priority surgeries appear on the waiting list or keep them free for emergency
aspects. Regardless of the choice, it shows progress on the operating room utilization.
Chapter 6

Conclusions

This thesis’ work presents an integer programming model to schedule orthopaedic surgeries whose objectives are: create a schedule which minimizes the number of beds in use during a certain month and level the time usage of the OR during that time. The required data was provided by an hospital, containing detailed information of their surgeries and hospitalizations during a 3 year period (2015-2017). Having such recent data improved the quality of the results since, as explained before, there are continuous improvements on how surgeries are performed and, therefore, reducing the overall length of stay and surgery duration. This being said, it it of the utmost importance to keep improving the data quality and collection to support the operating block management.

The computational results shown in the previous chapter (and the others on Appendix A) confirm the overall success of the integer programming approach. Firstly, as can be seen, the maximum level of bed occupation is lowered, which indicates there are better ways to schedule the surgeries than how it is currently done. Secondly, there is an improvement on the percentage of time the OR is used. It is important to realize that this work is about the rescheduling of surgeries and for this reason, we are at the mercy of the number and types of surgeries scheduled. In other words, we have the same mean occupation rate as the given month, so in the event that the OR is constantly overbooked our results will do the same. However, we hardly ever obtain low rates on time occupation and present a more levelled occupation of the OR. Lastly, comparing our prediction with the true results observe a clear correlation.

The model does not produce an optimal solution, since different runs for the same algorithm (i.e. different values on the initial parameters) lead to different solutions. For this reason, it is up to head-surgeon to analyse the risk of the different outcomes of the program and decide what is the best combination of beds occupied and OR time usage.

Moreover, this technique allows managers and surgeons to better comprehend how a certain schedule affect its downstream units. In fact, with this in mind, the manager can reallocate the resources of said units in order to suit the predicted demand. Consequently, improving the attention given to patients and thus, incrementing their satisfaction.
6.1 Achievements

The main achievements attained in this work were:

- Usable prediction tool. The more precise we can predict how the bed and OR occupancy will look like, the better we can prepare the staff and the downstream units to provide for the daily demand.

- Improved bed occupancy. Our results show it can actually lower the number of beds used by the hospital, which not only saves money but allows the empty beds to be filled by other patients and improving the efficiency of their care.

- Improved operation room time usage. By running several simulations, the user can see how a certain schedule affects the BOR and thus opting to improve the OR performance instead of minimizing the use of beds.

6.2 Future Work

Future research on this subject should/could be pursuit in the following areas:

- Add some extra surgeries to the waiting list (composed by the month's surgeries). This way, we can not only optimize the bed occupation, but also the OR time occupation and the block occupation rate;

- Integrate an online scheduling feature. After the (re)scheduling is done, some uncertainties can be integrated, such as, cancelled surgeries, absent surgeon, etc. The program should maintain the original schedule as much as possible and, at the same time, find a way to minimize the new problems;

- Test the best % of block occupation. In this work, we always kept the OR time occupation between a minimum and the OR daily time (10h). However, with a waiting list, we can study how is the best policy for booking surgeries during the OR day, i.e. underbooking or overbooking;

- The use of an optimization function or other non-linear model. As mentioned previously, the linearisation of the problem made us consider the maximum number of beds as a constraint other than the optimization function;

- Include priority parameters on surgeries. On real life not all elective surgeries have the same urgency. From the moment the patient enters the waiting list, the hospital has a maximum deadline to schedule and perform it, otherwise incurs in penalties, usually monetary.
Bibliography

[23] F. Dexter and R. H. Epstein. Uncertainty in knowing the operating rooms in which cases were performed has little effect on operating room allocations or efficiency. *Anesthesia and Analgesia*, 2003.

Appendix A

Monthly Bed and OR Occupation

Results

This appendix presents the results of running the program for all the months of 2017 (except the ones already on chapter 5). The graphs do not come with its analysis since the logic is the same of the month explained before. When needed, side notes complement the graphs.

A.1 January

Figure A.1: Bed analysis for January. Minimum bed=0; Maximum bed=5.
A.2 February

Figure A.2: OR occupation analysis for January. Minimum %OR time=80; Maximum OR time=630.

Figure A.3: Bed analysis for February. Minimum bed=0; Maximum bed=6.

Figure A.4: OR occupation analysis for February. Minimum %OR time=60; Maximum OR time=660.

Maximum operating block time had to be increased for 720 minutes (+1h) in order to be feasible.
A.3 March

Figure A.5: Bed analysis for March. Minimum bed=1; Maximum bed=6.

Figure A.6: OR occupation analysis for March. Minimum %OR time=70; Maximum OR time=630.
A.4 May

Figure A.7: Bed analysis for May. Minimum bed=0; Maximum bed=5.

Figure A.8: OR occupation analysis for May. Minimum %OR time=70; Maximum OR time=630.

A.5 June

Figure A.9: Bed analysis for June. Minimum bed=0; Maximum bed=5.
A.6 July

Figure A.10: OR occupation analysis for June. Minimum %OR time=80; Maximum OR time=630.

Figure A.11: Bed analysis for July. Minimum bed=0; Maximum bed=8.

Figure A.12: OR occupation analysis for July. Minimum %OR time=85; Maximum OR time=630.
A.7 August

Figure A.13: Bed analysis for August. Minimum bed=0; Maximum bed=7.

Figure A.14: OR occupation analysis for August. Minimum %OR time=70; Maximum OR time=630.

A.8 September

Figure A.15: Bed analysis for September. Minimum bed=0; Maximum bed=7.

September was a transition month. They only operated from Monday to Thursday and in mid-month they changed the master surgical schedule and started operating all weekdays.
Figure A.16: OR occupation analysis for September. Minimum %OR time=60; Maximum OR time=630.

A.9 October

Figure A.17: Bed analysis for October. Minimum bed=0; Maximum bed=5.

Figure A.18: OR occupation analysis for October. Minimum %OR time=70; Maximum OR time=630.
A.10 November

Figure A.19: Bed analysis for November. Minimum bed=0; Maximum bed=7.

Figure A.20: OR occupation analysis for November. Minimum %OR time=70; Maximum OR time=630.

A.11 December

Figure A.21: Bed analysis for December. Minimum bed=0; Maximum bed=7.
Figure A.22: OR occupation analysis for December. Minimum %OR time=70; Maximum OR time=630.