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Abstract — Low voltage distribution grid characterization 

often lacks information on customer’s phase connectivity. This 

leads to obvious ineffectiveness in maintaining phase-load balance, 

which, in turn, may cause several operation inefficiencies such as 

increased energy losses and unnecessary voltage imbalances. Yet, 

with the deployment of smart metering and the consequent 

availability of energy consumption data of pre-defined time-

resolution, phase connectivity information might be possible to 

estimate, if data on per-phase aggregate energy measurements are 

available at substation sites with the same time-resolution. In this 

thesis, a set of data analytics tutorial approaches to identify the 

underlying customer phase-connectivity from time series of energy 

consumption and their aggregated per-phase energy 

measurements were studied. Based on the study, a new method, 

which applies Multivariate Linear Regression, is then 

implemented and compared with state-of-the-art methods based 

on Principal Component Analysis. Comparisons were carried out 

with experimentation (i) in laboratorial conditions where 

aggregated per-phase energy measurements data is built to 

replicate typical grid losses, random noise, energy theft, and clock 

skew and also synchronization errors, but also (ii) with real-world 

data provided for a specific location by Portugal’s incumbent EDP 

Distribuição. Results have shown that the new Multivariate Linear 

Regression method consistently presented better performance 

than the state-of-the-art methods, both in extreme laboratorial 

and near-real world conditions. 

 

Index Terms — Phase Identification, Low Voltage Smart Grids, 

Smart Meters, Multivariate Linear Regression, Principal 

Component Analysist. 

I.  INTRODUCTION 

HASE identification is a critical input to the grander 

problem of phase load balancing [1]. As electricity is 

usually generated and distributed as three-phases separated by 

120º AC voltage, households mostly draw from a single phase, 

and maintaining phase load balance in substation transformers 

is paramount to achieve network efficiency and prolonging the 

life time of assets [2], [3]. 

As consumers become more technology and environmentally 

conscious, power utility companies face the challenge of 

managing revenue recession while meeting the demands of their 

customers in a progressively more complex and dynamic 

distribution network [4]. 

In fact, rapid growth in Distributed Energy Resources (DERs), 

primarily solar, and plug in devices, such as electrical vehicles, 

due to indorsement by governments through lighter taxation, is 

requiring a more active management of the distribution network 
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as an answer to more frequent network configuration changes 

[5]–[7]. 

Utilities are responding to these challenges by seeking 

increased efficiency while innovating, namely by investing 

heavily into smart grids which allow the implementation of 

analytics solutions to augment Automated Metering 

Infrastructure (AMI) productivity. Actually, it is forecasted that 

global investment in analytics solutions and integration services 

with this goal will amount to $10.1 billion through 2021 [8]. 

However, despite these investments, many important 

applications for network control and optimization such as 3-

phase power flow optimization, volt-VAR control, distribution 

network state estimation, reconfiguration and restoration and 

load balancing, still rely on the network connectivity model and 

phase connectivity being known [9]. While the connectivity 

model is mostly reliable, phase connectivity information is 

often erroneous or missing. This is due to repairs, maintenance 

and common phase balancing projects that do not update phase 

connectivity information [2], [10]. 

Whereas distribution grid configuration and phase load 

balancing are key to reduce power loss and integrating DERs, 

incorrectly classifying the phase of a household or cable may 

lead to further unbalancing and possible overloads, which may 

lead to higher copper losses, voltage drops or equipment 

damage and consequent service interruption [2], [11], [12]. 

Historically, solving the phase identification problem relied on 

hardware-based methods. These however, require additional 

equipment or workforce to operate it, which can became a 

costly solution [13]. On the other hand, recent studies have 

taken a data analytical approach to solve the phase 

identification problem. Several machine-learning algorithms 

have been proposed, nevertheless the proposed methods tend to 

be computationally intensive and complex to implement. Thus, 

this paper seeks to present a novel and simpler method for phase 

identification, utilizing Multivariate Linear Regression (MLR) 

while comparing its performance to the state-of-the-art method 

proposed in [1], which utilizes Principal Component Analysis 

(PCA). 

The paper is organized as follows. In Section II, the predictive 

models implemented in this paper are presented. In Section III 

the methodology to generate simulation data for the phase 

identification problem is explained. In Section IV, the 

application of the methodology is illustrated with simulated 

data and the quality of the results obtained is discussed. In 

Section V, the paper is concluded. 
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II.  PREDICTIVE MODELS FOR PHASE IDENTIFICATION 

In this section, the proposed method to infer customer phase 

connectivity is described and detail on the benchmark method 

for comparison (PCA) is given. 

A.  Multivariate Linear Regression (MLR) 

In statistics, linear regression is used when considering the 

linear relationship between one or more scalar dependent (or 

response) variables 𝑦 and one or more independent (or 

explanatory) variables 𝑥 [14]. 

Its application is often categorized in two comprehensive 

groups: 

1. Prediction or forecasting: utilizing the linear 

regression to fit a model through a dataset and then 

predict the dependent variable for a new input set of 

𝑥’s; 

2. Quantifying relationship between variables: identify 

which subsets of 𝑥’s contribute to explaining 𝑦, and 

how strongly. 

Different linear regression applications are distinguished 

based on the number of dependent and independent variables, 

which determines the model name: 

1. Simple Linear Regression: One y and one x, a single 

independent variable is used to predict the behavior of 

the dependent variable; 

2. Multiple Linear Regression: One y and multiple x’s, 

using more than one explanatory variable to explain 

the response variable; 

3. Multivariate Linear Regression (also referred to as 

Multivariate Multiple Linear Regression): Multiple 

y’s and multiple x’s, relationship between different 

explanatory variables and possibly correlated 

independent variables to measure the influence of each 

of the dependent variables on each response variable. 

The basic model for a Linear Regression is given by: 

 𝑦𝑖 = 𝛽01 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜀𝑖 (1) 

Where 𝛽𝑖 represents the parameter vector and 𝛽0 is the constant 

offset term, εi corresponds to the error or noise and xi
Tβ is the 

inner product of vectors 𝑥𝑖 and β. 

Specifically, MLR is the implementation that best fits the 

problem discussed in this paper. For every set of 𝑥’s there is a 

corresponding set of 𝑦’s measured, related by different 

parameters, which can be expressed in matrix form by: 

 𝑌 = 𝑋𝛣 + 𝛦 (2) 

Where the 𝑛 dependent values measured for the 𝑝 independent 

variables are given by: 

 

𝑌 = (

𝑦11 ⋯ 𝑦1𝑝

⋮ ⋱ ⋮
𝑦𝑛1 ⋯ 𝑦𝑛𝑝

) =
𝑦1

′

⋮
𝑦𝑛

′
 (3) 

 

And the dependent variables are stacks in the 𝑋 matrix as 

follows: 

 

𝑋 = (
 1   
 1   
 1   

𝑥11 ⋯ 𝑥1𝑞

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑞

) (4) 

Summarizing the model dimensions, 𝑌 is ( 𝑛 × 𝑝 ), 𝑋 is ( 𝑛 ×
( 𝑞 + 1 )) and Β is ( 𝑞 + 1 ). 

The employment of MLR is based on some assumptions that 

lead to good estimates: 

1. 𝐸(𝜖𝑖) = 0, the expected value for the error is zero; 

2. 𝑐𝑜𝑣(𝑦𝑖) =  Σ, each row of 𝑌 has the same covariance 

matrix; 

3. 𝑐𝑜𝑣(𝑦𝑖 , 𝑦𝑗) = 0, rows of 𝑌 are uncorrelated with each 

other 

However, these assumptions will be challenged in the 

implementation of the model to solve the phase connectivity 

problem when noise is added. 

In order to find Β, Ordinary Least Squares (OLS) approach is 

one of the more common approaches for fitting the linear 

regression model. Considered one of the simplest methods and 

computationally straightforward, OLS minimizes the sum of 

the squared residuals, and the formula is given by: 

 𝛣 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (5) 

B.  Principal Component Analysis (PCA) 

In order to establish a basis for performance comparison, a 

basic implementation of PCA was also developed, following 

the work of Satya et al. [1]. 

PCA is widely spread as a tool for multivariate analysis. It is 

a statistical procedure that aims to obtain linearly uncorrelated 

variables, nominated principal components, from a dataset of 

observations of possibly correlated data by means of an 

orthogonal transformation. PCA is applied by eigenvalue 

decomposition of a covariance matrix or Singular Value 

Decomposition (SVD) of a data matrix. It is considered to be 

the simplest of multivariate analysis based on eigenvectors. 

The objective of network model identification with PCA is 

to obtain the true data subspace and constrained subspaces from 

a data matrix Z, where Z is a ( 𝑛 × 𝑚 ) matrix with 𝑛 number 

of nodes or meters, including aggregated measures, and 𝑚 

number of measurements or samples per node. 

The 𝑛 variables are linearly related, with 𝑝 linear 

relationships, given by: 

 𝐶𝑍 = 0 (6) 

Where 𝐶 is the ( 𝑝 × 𝑛 ) constraint matrix. 

These subspaces are obtained from the eigenvectors of the 

covariance matrix 𝑆𝑍 = 𝑍𝑍𝑇 , which can be attained by using 

the SVD of Z, such that: 

 𝑆𝑉𝐷(𝑍) = 𝑈1𝑆1𝑉1
𝑇 + 𝑈2𝑆2𝑉2

𝑇 (7) 

Where 𝑈1 and 𝑈2 are the set of orthogonal eigenvectors 

corresponding to the (𝑛 − 𝑝) largest and 𝑝 smallest 

eigenvectors of 𝑆𝑧 respectively, with 𝑝 dependent variables and 

(𝑛 − 𝑝) independent variables, and 𝑆1 and 𝑆2 are diagonal 

matrixes with the singular values of Z. 

In [15], it has been shown that the subspace 𝑆𝑅 covered by 

the rows of 𝑈2
𝑇  and 𝐶 are equivalent: 

 𝑆𝑅(𝑈2
𝑇)~𝑆𝑅(𝐶) (8) 

Therefore, by replacing 𝐶 in (7) the following relationship is 

obtained: 
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 𝑈2
𝑇𝑍 = 0 (9) 

However, given that the constraint matrix suffers from 

rotational ambiguity, the estimated constrained matrix �̂� is not 

unique and may not be the correct solution that represents the 

physical interpretation of the problem: 

 𝑈2
𝑇𝑍 = �̂�𝑍 = 𝑄�̂�𝑍 = 0 (10) 

Where 𝑄 is a non-singular matrix. 

To achieve a unique solution, a regression model can be 

obtained by subdividing variables into dependent and 

independent variables: 

 𝑍 = [
𝑍𝑑

𝑍𝑖
] (11) 

Where 𝑍𝑑 represents the first rows of the Z matrix with the 𝑝 

dependent variables and 𝑍𝑖 the ( 𝑛 − 𝑝 ) last rows with the 

independent variables. 

Also, the constraint matrix �̂� can be partitioned as well into 

a ( 𝑛𝑑 × 𝑛𝑑 )–dimension  �̂�𝑑 matrix and a ( 𝑛𝑑 × 𝑛𝑖 )–

dimension  �̂�𝑖 matrix: 

 
�̂� =  [

�̂�𝑑

�̂�𝑖

] 
(12) 

Consequently, from (10) it is possible to obtain: 

 �̂�𝑑𝑍𝑑 + �̂�𝑖𝑍𝑖 = 0 (13) 

Finally, since 𝑈2𝑑 is of full rank, (13) can be expressed in 

terms of the regression matrix relating the dependent and 

independent variables so that: 

 𝑍𝑑 = −(�̂�𝑑)−1�̂�𝑖𝑍𝑖 = �̂�𝑍𝑖 (14) 

Where �̂� is the ( 𝑛𝑑 × 𝑛𝑖  )–dimensional regression matrix, 

proven to be unique in [15]. 

In conclusion, the regression matrix using PCA is given by: 

 �̂� = −(�̂�𝑑)−1�̂�𝑖 (15) 

C.  Time complexity of the algorithms 

Although accuracy of the algorithms to correctly identify 

customer-to-phase connectivity is the principal performance 

measure employed in this work, it is relevant to refer to the time 

complexity of the algorithms. 

In computer science, time complexity, usually presented with 

the O-notation, is a formal measure to estimate the time it takes 

for the algorithm to run. 

Considering 𝑛 as the number of nodes and 𝑚 as the number 

of measurements per node, when applying the MLR algorithm 

it takes: 

 𝑂(𝑛2𝑚) to multiply 𝑋𝑇𝑋 

 𝑂(𝑛𝑚) to multiply 𝑋𝑇𝑌 

 𝑂(𝑛3) to compute the Cholesky factorization of 𝑋𝑇𝑋 

and use that to compute (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

Since in most of the simulations 𝑚 > 𝑛, 𝑂(𝑛2𝑚) 

asymptotically dominates over other computations and 

therefore it is considered the time complexity for applying OLS 

with MLR. 

Complementary, in [1], the time complexity of the PCA 

algorithm is demonstrated to be 𝑂(𝑛𝑚2), due to the Singular 

Value Decomposition (SVD) of Z which is the most expensive 

step. 

Thus, taking into consideration that usually the number of 

measurements 𝑚 is greater than the number of customers 𝑛, 

although very similar in complexity, the MLR algorithm is 

proven to be better performant in an ideal implementation. 

III.  METHODOLOGY 

In order to accomplish the scope of this work, the algorithms 

in analysis were implemented in R Studio [16] programming 

language, in a computer with Windows 10 – 64bit , CPU @ 

2.30GHz and 12,0GB RAM. 

Firstly, the program starts by importing consumer daily 

profiles’ input data from a text file into the application 

environment. Necessary data cleansing is performed and a data 

table with daily consumer profiles is built. 

Secondly, a phase is randomly attributed to each client, 

following a uniform distribution, and aggregated phase totals 

are calculated, simulating secondary substation readings. 

Afterwards, different types of errors or noise are introduced 

to the aggregated phase totals, and true customer phase is 

hidden. 

Subsequently, true customer smart meter readings and 

erroneous data simulating secondary substation phase totals are 

then fed to both MLR and PCA algorithms which compute the 

customers’ attributed phase. 

Finally, algorithm accuracy is then calculated based on 

whether the algorithm correctly predicts customer-to-phase 

allocation. 

A.  Smart meter and secondary substation load measurements 

For the development of this paper, centered on the time-

series of energy measurements from both consumer smart 

meters and secondary substation readings, a sample of daily 

consumer load profiles has been provided by an energy 

company for an undisclosed location. 

Ideally, in real world situations, input data will be supplied 

including secondary substation readings with phase totals 

aggregated per phase. However, since this work is developed 

under laboratorial conditions and because known information 

does not include secondary substation readings, these need to 

be simulated following the methodology introduced in the 

previous section and detailed subsequently. 

Input data consisted of 1623 daily consumer load profiles, 

each with a total of 96 readings, measured every 15 minutes. 

The time series of load measurements is in kW. Where 

information was unavailable, it was considered null. 

In order to create consumer profiles which spawn more than 

one day, daily load profiles were grouped together, depending 

on the number of customers and necessary number of days to 

achieve the target number of measurements per number of 

clients’ ratio. Fig. 1 represents the load diagrams for a sample 

of two customers, spawning over three consecutive days. 
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Fig. 1. Sample daily load profiles for 2 clients and 3 days. It is possible to 

observe in Client 2’s second day of readings, between 12:00 and 18:00, an 

example of the missing data which may arise due to mechanical faults, human 

error, fraudulent behavior, instrument error or changes in system behavior [17]. 

Subsequently, customer phase was randomly allocated 

following a uniform distribution and load profiles were 

aggregated according to their new allocated phase. Fig. 2 

simulates the readings from a secondary substation. 

 
Fig. 2. Simulated secondary substations load measurements for each phase. 

This representation, where the readings on the secondary 

substation are exactly equal to the sum of the readings on the 

smart meters, would only be accurate if there were no errors and 

no noise. However, in practice, such errors are unavoidable and 

thus the following section explores different types of errors 

considered in the simulations. 

B.  Noise modeling 

In order to test the robustness of both algorithms under non-

ideal situations, we introduced several types of errors: 

1) Meter accuracy class: Electricity smart meters 

inherently have an accuracy class, result of its design, build 

quality and other factors. Understandably, a higher quality 

measuring meter will provide better accuracy but have 

significantly increasing costs for the utilities company. Thus, 

standards are defined to stipulate the minimum accuracy ratings 

required for smart meters [18]. 

ANSI C12.20 states that for smart/electronic meters must 

have at the very least 0.5 accuracy class, while IEC/AS 

Standard 62053 describes the requirements for 0.5, 1 and 2 

accuracy classes. In this work, 0.5 accuracy class meters were 

considered as a reference for the typical error which means 

readings must be in the range of ± 0.5% of the true value. 

This error may be approximately modeled by multiplying 

every reading with a random value following a Gaussian 

distribution with mean 1 and standard deviation 1/3 of meter 

accuracy, such that 99.7% of simulated errors fall within the 

defined 0.5 accuracy class. 

2) Clock asynchronism: Next, two types of clock errors 

were introduced, commonly modelled together but, in this 

exercise, simulated independently. 

Firstly, clock asynchronism is a result of clocking the load at 

different points in time and thus the measurement of total load 

for a given time is not exactly the sum of smart meter readings 

for that time interval. Unlike the meter accuracy error, clock 

asynchronism does not change with time. 

In an effort to increase efficiency in existing smart grid 

infrastructure, utilities are progressively more dependent on 

high quality data that must be synchronized with very high 

accuracy for control and protection as well as data analytics 

solutions. Multiple applications such as measurement systems, 

fault locators or protection relays require microsecond precision 

from substation readings. Synchronous sampling is critical as it 

can introduce errors in solutions but for customer end-points 

requirements are not so strict and thus small synchronization 

errors can influence phase identification models [19]. 

Following V. Arya et al. [2] implementation, to simulate 

clock asynchronism, each meter is made erroneous by adding a 

random Gaussian walk. Instead of clocking the load after every 

Δt units, the k𝑡ℎ measurement clocks the load for the time 

interval [𝑇𝐾−1, 𝑇𝐾] where T𝐾 = 𝑇𝐾−1 + 𝛮(𝜇 = Δt, σ =
fΔt), f ϵ [0, 2.23]%. In summary, in this simulation, all clocks 

considered must have a maximum (3𝜎) of ±1 min asynchronism 

which, taking into account readings are measured every 15 

minutes, corresponds to 6.67%. 

3) Clock skew: Introducing the second type of clock 

error, clock skew occurs when each smart meter’s internal clock 

runs at a different frequency from that of the true clock which, 

in this smart grid application may be considered as the 

substation clock. 

Usually, a single clock signal is used to synchronize all clock 

frequencies. However, one disadvantage associated with this 

technique is that each microprocessor in smart meters may 

receive the signal at different points in the chip. Moreover, 

several factors may contribute for causing clock skew such as 

electromagnetic propagation delays, buffer delays in the 

distribution network, differences in temperature, variations in 

the manufacturing process, power supply variations and 

different load capacitance [20]. 

In this simulation, in order to compute the frequency of each 

meter’s clock in comparison to the substation clock, a random 

shift in frequency is introduced following a Gaussian 

distribution so that it lies in the interval 
[−fΔt, fΔt], f ϵ [0, 30]%. 

Although a maximum shift in frequency of 30% is considered 

as the base case, this is a very high skew error since the skew 

error for a real clock usually lies in the order of milliseconds 

[2]. 

4) Copper losses: Low voltage distribution networks 

enable the transmission of electric energy from secondary 

substations to customers in independent households through 

large and complex networks. These networks consist of not only 

overhead lines or buried cables but also other equipment such 
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as transformers. As previously stated, the hard fact is that there 

are always losses in the network and thus the generated electric 

energy does not match with the total energy supplied to 

consumers. Losses may be classified as technical or commercial 

losses [21]. 

In this segment, technical copper losses were introduced 

which can be due to energy dissipated in the conductors and 

equipment used for transmission, transformation or 

distribution. In the European Union, is it estimated that around 

4% of total generated energy is wasted due to distribution losses 

[22]. 

Copper losses, due to resistance along the wirelines or 

internal wiring within the transformers, scale with current 

squared time resistance (I2R) and the majority of distribution 

line losses occur within the primary and secondary distribution 

lines. 

In this simulation, the base case is considered to have copper 

losses in the [2%, 10%] interval, varying quadratically with 

load.  

5) Missing Clients: Another type of network losses may 

be due to commercial losses. In low voltage distribution 

networks, customers have to pay their electricity bills according 

to their unit consumption and their particular needs, depending 

upon the contracted tariff. Specifically in smart grids, the 

devices used to measure power consumption for billing 

purposes and network control are smart meters. 

Although smart meters are harder to tamper with than 

electromechanical KWh meters, billions of dollars are lost 

every year to electricity theft. There are multiple ways of 

sabotaging energy measurement such as unauthorized 

extensions of loads, tampering the meter readings by 

mechanical jerks, placement of powerful magnets or disturbing 

the disc rotation with foreign matters, stopping the meters by 

remote control, changing of terminal wiring, changing current 

transformer ratio or even some involuntary actions such as 

improper testing and calibration of meters [23]. 

While in developed countries secure networks experience 

only around 1-3% electricity theft, developing countries have 

been shown to have much higher theft percentages [24]. 

In our simulation, a sample of 5 random customer load 

profiles were added to the substation totals in order to simulate 

energy theft. Considering an example of 100 clients, this 

corresponds to 5%. 

Predictively, introducing missing clients’ error, will have a 

great impact on phase identification algorithms because it 

introduces a variation in substation totals that is in no way 

dependent on given customer readings. 

C.  Model implementation and performance measures 

This section explains how the MLR and PCA algorithms 

were applied to the problem of phase identification and 

implemented in RStudio. 

Firstly, the model for MLR is presented. The output is matrix 

X, with dimension 3 by 𝑛 customers which gives the probability 

of each client being connected to each of the 3 phases. 

 𝑋 = 𝑔𝑖𝑛𝑣(𝑡(𝑃) × 𝑃, 𝑡𝑜𝑙 = 0) × 𝑡(𝑃)) × 𝐵 (16) 

Where 𝑃 represents the table with 𝑚 readings by 𝑛 

customers, corresponding to smart meter readings in each 

customers’ household and B is composed of 𝑚 readings by 3 

phases, corresponding to load totals in each phase per 

measurement. 

In this simulation, the pseudo-inverse with zero tolerance 

was utilized to compute the matrix inverse, allowing for 

collinearity and also to allow to run simulations with less 

readings than number of clients. Also, 𝑡( ) symbolizes the 

transpose of a given matrix. 

Now, the model for PCA is detailed: 

 𝑋 = 𝑡(−𝑔𝑖𝑛𝑣(𝐶𝑑, 𝑡𝑜𝑙 = 0) × 𝐶𝑖) (17) 

Where, 𝐶𝑑 corresponds to the first 3 columns of the 𝑈2 

matrix and 𝐶𝑖 to all other columns, considering that  𝑈2 is the 

table corresponding to the last 3 columns of the matrix S given 

by: 

 𝑆 = 𝑠𝑣𝑑(𝑍 × 𝑡(𝑍)) (18) 

Where Z corresponds to a table with 𝑛 customers plus 3 by  

𝑚 readings and 𝑠𝑣𝑑 computes the singular value 

decomposition. It should be noted that in order to compute the 

inverse, in this model the pseudo-inverse was also applied. 

Usually, when comparing algorithms, two ways to evaluate 

performance are frequently utilized. The first one and 

theoretically most important is algorithm accuracy. Secondly, 

processing speed may also have a relevant importance when 

working with big data such that a slow execution may even 

compromise real word application of such algorithms. 

Algorithm accuracy in the context of this work basically 

answers the question of how good each algorithm is at correctly 

inferring customer phase connectivity and is calculated by 

computing the subsequent formula. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝑝ℎ𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑖𝑒𝑛𝑡𝑠
 

(19) 

Moreover, in order to present more consistent results, Monte-

Carlo simulations were conducted with varying numbers of runs 

in the [20,50] interval. Considering several simulations, the 

algorithm accuracy is finally considered the average of all runs, 

given by: 

 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝛴 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑒𝑟 𝑟𝑢𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
 

(20) 

In the next section, where results will be presented and 

analyzed, when the term “accuracy” is referred to actually it 

means the average accuracy for the simulated Monte-Carlo 

runs. 

IV.    SIMULATION RESULTS 

In this section, we summarize the main results of the 

performed experiments. 

A.  Noiseless 

The first simulation compares the perfomance of both MLR 

and PCA at infering phase connectivity in an ideal situation 

where there is no noise added to the problem and thus the totals 

per phase and per point in time match exactly with the sum of 

all smart meter readings for that time period. 

Average algorithm accuracy results are displayed in Fig. 3. 
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Fig. 3. Average model accuracy for 20 runs without adding errors. 

Evidently, both algorithms achieve 100% accuracy as soon 

as the number of readings per number of clients’ ratio is unitary. 

On the other hand, we observe significant differences between 

0 and 1 ratio where MLR’s accuracy increases linearly with 

increasing number of readings while PCA is still random. Note 

that 33.33% accuracy corresponds to the probability of 

correctly guessing the phase at random since there are 3 phases. 

B.  Meter accuracy class 

Next, the typical meter accuracy error is included, 

considering 99.5% accuracy class meters. Although 0.5% meter 

accuracy error is rather small, it has a slight impact in total 

model accuracy as can be observed in Fig. 4. In order to achieve 

approximately 100% meter accuracy, instead of having a 

number of readings per number of client’s ratio of 1, we now 

need around 1.7 ratio. 

Still, both algorithms show roughly the same progression as 

in the noiseless case. 

 
Fig. 4. Average model accuracy for 20 runs with 0.5% smart meter accuracy 

error. 

In order to determine the algorithms’ sensitivity to increasing 

meter accuracy error, results are now presented in the model 

sensitivity chart displayed in Fig. 5. 

 
Fig. 5. Model sensitivity to variable meter accuracy for 50 runs and 100 clients. 

One can perceive that MLR’s accuracy significantly 

improves when increasing the number of readings from 100 to 

300 while PCA seems to show approximately the same linear 

downwards trend regardless. In fact, given 3 times the number 

of readings versus clients, MLR never drops below 96% 

accuracy whereas PCA’s accuracy progressively declines until 

reaching 70% for a 90% meter accuracy class. 

C.  Clock asynchronism 

Introducing the first of the clock errors, results are presented 

for smart meters with a maximum clock asynchronism of 45 

seconds. 

 
Fig. 6. Average model accuracy for 20 runs with maximum 45 seconds clock 

asynchronism. 

It is clear from the results that MLR suffers little from the 

simulation of a typical clock asynchronism error. Alternatively, 

PCA starts to deteriorate its performance, only achieving 100% 

accuracy when the number of readings is more than 12 times 

the number of clients, given 100 customers. 

To confirm the previous results, each algorithms’ sensitivity 

to clock asynchronism error was then computed and results 

shown in Fig. 7. In fact, results were in accordance with the 

previous experiment. Moreover, the outcome is similar to the 

previous sensitivity analysis on meter accuracy error. MLR’s 

accuracy improves when the number of readings increases but 

PCA’s behavior keeps declining when error increases, although 

more erratically. 
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Fig. 7. Model sensitivity to variable clock asynchronism for 20 runs and 100 

clients. 

D.  Clock skew 

The second of clock errors is now presented. Considering 

clock skew errors, Fig. 8 illustrates the results of applying a 

maximum of 5% skew error. 

 
Fig. 8. Average model accuracy for 20 runs with 5% clock skew error. 

This result highlights that both models achieve 100% 

accuracy when the number of readings surpasses the number of 

clients, even including 5% clock skew error. These findings 

support the notion that MLR and PCA phase identification 

models are not influenced by clock skew errors. 

To confirm this assumption, each model’s sensitivity was 

plotted in Fig. 9. 

 
Fig. 9. Model sensitivity to variable clock skew error for 100 clients. 

The results revealed tie well with the aforementioned 

proposition. This appears to be a case of the error having no 

impact on the correlation between household readings and total 

load measured at substations because it is constant over time for 

each smart meter. 

E.  Copper losses 

The following step in the methodology is adding technical 

copper losses to substation totals to infer the influence of this 

factor in each models accuracy. Results are provided in Fig. 10. 

 
Fig. 10. Average model accuracy for 20 runs with 2% to 10% copper losses, 

varying quadratically with load. 

Following the addition of copper losses, MLR algorithm 

shows improving results with increasing number of readings, 

reaching nearly 100% accuracy as the ratio approaches 5. Then 

again, PCA’s performance shows a significant negative impact, 

averaging around 90% accuracy. 

Each algorithm’s sensitivity to increasing copper losses is 

presented in Fig. 11. 

 
Fig. 11. Model sensitivity to variable copper losses for 20 runs and 100 clients. 

Once again, while adding noise to PCA dramatically affects 

its performance, MLR shows only a minor loss of under 5% in 

algorithm accuracy when the number of readings per number of 

clients increases to more than three. 

F.  Copper losses 

The final section on isolated errors presents the results for 

testing the data with five missing clients. 
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Fig. 12. Average model accuracy for 20 runs with 5 missing clients. 

As previously discussed, removing information on clients 

that only contribute to substation totals and are not fed to the 

algorithms as smart meter readings has a significant impact on 

both algorithms performance. However, as has been the case, 

MLR recovers to nearly 100% accuracy when the number of 

readings increases to 500 whereas PCA suffers significantly, 

hovering around 66% accuracy. 

Fig. 13 illustrates each model’s sensitivity to an increasing 

number of missing clients, showing that for each customer 

scraped from the input data algorithm accuracy shows a 

visible drop. Nevertheless, keeping consistent with results, 

MLR is much less volatile, even though it drops for the first 

time below 90% accuracy. 

 
Fig. 13. Model sensitivity to variable number of missing clients for 20 runs and 

100 clients. 

G.  All errors simultaneously 

Finally, in order to test the robustness of each algorithm 

under laboratorial conditions simulating real world conditions 

as closely as possible, both algorithms were tested under all 

types of error simultaneously. 

The next figure illustrates total load per phase, given 3 

different plots: 1) Client’s total per phase without any errors in 

red, 2) Total errors included in the simulation in green and 3) 

the substation phase totals fed to the algorithms in blue, 

corresponding to the sum of client readings plus errors. 

 
Fig. 14. Total load per phase considering all types of errors. 

It is possible to observe from Fig. 14 that total errors are 

clearly visible even when only typical values, close to reality, 

are applied. 

The ensuing Fig. 15 plots each model’s accuracy when all 

typical errors are included. 

 
Fig. 15. Average model accuracy for 50 runs with all types of errors. 

Excitingly, considering the cumulative effect of all noises 

included, MLR’s performance at inferring phase connectivity 

shows stellar results. With laboratorial conditions as close as 

possible to real world data, and maybe some scenarios even 

more demanding, MLR shows promising results, achieving 

98% accuracy with just 5 times the number of readings per 

number of clients’ ratio. 

On the other hand, PCA’s accuracy hovers close to 60%, and 

thus, with this simple execution, appears limited for real world 

implementation. 

Interestingly, an inflection in MLR’s accuracy when the 

number of readings nears the number of clients has become 

evident. Although this effect has been noted in most simulations 

before, in this example its influence is unavoidable. A possible 

explanation for this behavior may be that as the number of 

variables nears the number of available equations, the model is 

increasingly restricted and thus cannot compute the optimal 

solution. Another possible explanation for this is the application 

of pseudo-inverse with zero tolerance to compute the algorithm. 

Nonetheless, if this algorithm is to be implemented in a real 

world scenario, further research should be done to investigate 

the root cause for this inconsistency and possibly deliver a 

solution. 
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V.    CONCLUSION 

In this dissertation, a new method which applies Multivariate 

Linear Regression for estimating the customers’ phase 

connectivity was presented, analyzed and its performance 

compared with a state-of-the-art alternative methods that use 

Principal Component Analysis techniques. Utilizing real-world 

data provided by EDP Distribuição for smart meters for a 

specific location and computing per-phase aggregated phase 

totals under laboratorial conditions, both algorithms’ 

implementations discarded the need for introducing relaxations 

or for preprocessing the raw data. 

For experimentations without introducing noise, both 

algorithms always achieve 100% accuracy when the number of 

readings is greater than or equal to the number of smart meters. 

However, since in the real-world losses and errors are 

unavoidable, Monte-Carlo simulations were run with substation 

data built to replicate typical grid losses, random noise, energy 

theft, clock skew and clock synchronization errors. 

When simulating near-world conditions, Multivariate Linear 

Regression model successively presented a better performance, 

consistently achieving 100% accuracy when testing the 

different types of errors both independently and 

simultaneously. On the other hand, Principal Component 

Analysis suffered particularly from energy theft and copper 

losses, lowering its accuracy to close to 60% when all errors 

were considered simultaneously. 

In order to further assess the robustness of MLR, a simulation 

with very high error values was performed and, extraordinarily, 

it still manages to output over 90% accuracy which further 

increases the confidence in this algorithm for inferring customer 

phase connectivity in the presence of different kinds of noises. 

In addition to delivering better results, MLR’s 

implementation simplicity is a significant advantage in the 

business context. Moreover, given the fact that the phase 

identification algorithms presented have a low time complexity, 

with each simulation in the order of tens of milliseconds, it 

means a transfer to practice can be attained. 

For future works, it would be important to characterize the 

real business implementation scenario, in order to identify the 

average number of readings and the average number of clients 

that are available and, with that information, assess the expected 

model accuracy. Ideally, given real world secondary substation 

readings and its connected customers smart meter data, MLR’s 

performance may be assessed without the need to develop error 

scenarios. 

Additionally, it would be relevant to test and compare both 

models, in similar conditions as tested in this dissertation, but 

after preprocessing the raw data. If the expected increase of 

accuracy is significant enough, an increase of implementation 

complexity in real business applications could be justified. 

Finally, in order to perfect MLR algorithm’s efficiency, 

further research should be led to investigate the drop in 

accuracy when the number of readings to number of client’s 

ratio is unitary. 
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