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Abstract

Angiogenesis or the formation of new blood vessels from existing ones plays a key role in
physiological processes. Many existing pathologies are associated with its deregulation and the
comprehension of the molecular mechanisms triggered in endothelial cells (EC) during
angiogenesis remains an open field of research.

Blood flow and Vascular Endothelial Growth Factor (VEGF) have antagonist functions and
modulate the polarity machinery of EC in retina angiogenesis to grow inwards and outwards, in
the direction of the flow respectively. Franco hypothesize that Blood Flow and VEGF compete to
determine the axis of polarization through Par3/Par6/aPKC (Par) complex. A microfluidic device
was modelled and fabricated at INESC-MN Cleanroom facilities to test this hypothesis. The device
simultaneously generates a VEGF gradient and a shear stress gradient, to evaluate the response
of competing stimulus in cell polarization.

The influence of both shear stress and VEGF gradient on EC was simulated using a CFD
commercial code. Averaged cross section velocities from 0.1 mm. s™* to 20 mm/s were imposed
to the flow. As example, for an average cross velocity, U, of 20 mm.s~! the EC maximum shear
stress for transient conditions was found to be 2,5 Pa and the transient regime establishment time
in the VEGF gradient generator (GG) at the membrane pores was seen to be below 4 s.

The PDMS microfluidic device was fabricated by soft lithography and mechanically sealed.
The experimental results determination of average flow velocity and concentration profile
exhibited concordance with simulated.
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Resumo

A angiogénese ou criagdo de novos vasos sanguineos a partir de vasos existentes
desempenha um papel crucial nos processos fisiolégicos. Varias patologias sdo associadas com
a sua desregulacdo e a compreensao dos mecanismos moleculares despoletados nas células
endoteliais (EC) durante a angiogénese permanece uma area de ativa investigagao.

O fluxo sanguineo e o fator de crescimento endotelial vascular (VEGF) possuem fungdes
antagonistas e modulam a polaridade das EC na angiogénese da retina que crescem,
respetivamente, para montante ou jusante. Franco (2016) propde que o fluxo sanguineo e VEGF
modulam a diregdo de polarizagdo através do complexo Par3/Par6/aPKC (Par). Foi fabricado e
dimensionado um dispositivo microfluidico nas instalagbes de sala limpa do INESC-MN para
testar esta hipotese. O dispositivo gera simultaneamente um gradiente de VEGF e um gradiente
de tensdo de corte que sdo estimulos antagonistas na polarizagéo celular.

A influéncia de tensdo de corte e gradiente de VEGF nas EC foi simulado com recurso a
cédigo comercial de CFD. As velocidades médias de escoamento impostas na secgéo foram de
0.1 mm.s~! até 20 mm.s~1. Para uma velocidade média da secgdo de 20 mm.s™! a tensdo de
corte maxima encontrada foi 2.5 Pa e o tempo de estabelecimento de regime transiente para o
gerador de gradiente de VEGF (GG) nos poros da membrana foi inferior a 4 s.

O dispositivo foi fabricado com recurso a Soft Lithography e selagem mecanica. A medigao
das velocidades médias da secgao e do perfil de concentragédo exibiram concordancia com as
simulagdes.

Palavras-Chave

Integracdo de Dispositivos Microfluidicos, Soft Lithography, Simulagdo Multi-Fisica

vii



viii



Contents

ACKNOWIEAGIMENTS .....eeeiieiieiie it et et r e e e e e e esaebbe e e e e e e s s ann s ennbrees iii
Y o111 o PSSP %
=TT vii
1070701 (=Y o1 (= PSSP iX
LISt Of FIQUIES ....eeeieteee ettt et e et e et e e e e enreeaeeans Xi
I o) N =1 o] L= PSR XVii
List of Abbreviations and SYmMDbOIS........ccooiciiiiiiii e Xviii
T INIPOAUCHION ... 1
1.1 Research MotiVation ... e 1
1.2 ODJECHVES. ..ttt ettt e e et a e e ee e e 1
1.3 THESIS OULINE.....ceiiiiciiiiie e e e e e e e e s e e e e e s s e eneenrrrees 2
2 State Of thE At ... e ————— 3
2.1 Anatomy and ANGIOGENESIS. ... ..uurrrriiriiiiriiiiiiee e errrr e e e e e e s e e sennnreeeaae s 3
211 EYE ANAIOMY ...t 3
212 ANGIOGENESIS ....eeeeieiiiieiiiiiiiie e s e e e e s e e sttt e e e e s s e rrr e e e e e e e a e a e e e 4
2.2 MiCrofluidiC DEVICES ......ueeeiiiieiiie ittt ettt ettt et e e e s e sanbee s 8
221  Applications of Microfluidic DEVICES ........ccceerrriiiiiiiiiiiei e 8
2.2.2  Characterization of Microfluidic DeVICES.........cccoeeeiiiiiiiiiiiiii e 10
2.2.3  Mixing Techniques in MiCrofluidiCs.........covoeeeeiiiiiiiiii e 11
2.3 Microfabrication Techniques for Microfluidic DevViCes......cccccccvveeiiiieeeeeeiiiniiiiieeee 12
2.3.1  Fabrication of elastomeric microfluidic devices .........cccccoriiiiiiiiii e 13
2.3.2 Bonding TEChNIQUES........ccooumrreiieeaiiiiiiie et e e e e e e e e e snneeeeas 17
2.4 Physical Principles of MiCrofluidiCs ........ccceuieiiiiiiiiiii et 19
241  BaSiC CONCEPLS ..oueiiiiiiiiiee ettt ettt e et e et e e et e e ee sab e e e e e e e e eneeee s seees 19
242  GOVErNING EQUALIONS ....cuuieiiiiiiiieaeitii e ettt e eee e st e et e e e s sebee e e enrneeeenes 23
2.5  Final ConSIAErations ..........occeeeeiiiiiiiiiiit ettt e re et e e eebee s 26
3 Materials and MEthOdS. . ......coouiiiiiiiii e 29
3.1 Microfluidic DEVICE OVEIVIEW........ceiiiiiiiii ettt et e sneeee s 29
3.2 Microfluidic TEChNOIOGY.......uueeiiiiiiiie ettt ettt 29
3.2.1 MASK DESIGN ..eeeeiiiieiiiiiiie ettt re e ettt bbb e e e e e e e e e 30
3.2.2  Hardmask patterning ... 32
3.2.3  PDMS MOIAING ... eeeiieiiieee ettt ettt ettt s ennaee s 34
3.24  Replica MOIdiNG......coooeeeeiiiieei et 36



3.3 Assembly TEChNIQUES .......ccceerieiiee ettt e e e e e e e 37

T A 1 = B S {10101 F=1 (o o AP 38

3.5 Experimental SELUP.......coui i 39

3.5.1  Generation of stable gradient using dye solution.............cccccooiiiiiiiiiiiiiennen. 39

3.5.2 Generation of a stable shear Stress .......cceeeiiviiiiiieiiiii e, 41

3.6 FINal CONSIAEIALIONS ... .cocvvueiiieee ettt ettt er e e e e e e et r e e e et e e e e s e era e e eesbaes 42

N o Y U E3=T g Yo [T o 1< o) o 45
4.1 Microfluidic TEChNOIOGY.....cciiiieeiiiiiiiie ittt 45

411 Hardmask patterning ........ccccoeeeiieiiiiiii e 46

412 PDMS MOIdING ......outiiieiieiiiiiiiiei ettt e e 47

41.3 Replica molding and ASSEMDIY........cccceomiiiiiiiiie e 49

O O o B IR [ U1 F= 1 [o o W 51

421 Pressure BalanCe........couciciuiiiiiieiei ettt 51

4.2.2  Characteristic DiffUSION TIME .......coiiereeieeieieieei e e s s 52

4.2.3  Gradient Generator — Pore DiffUSION..........eevieeeeieiiiiiiiieiie e e e e 53

424  Gradient Generator - Mixer EffiCienCy ........ccccoviiiiiiiiiii e 59

L T Y 1= Y= |G 1 (= 1= TP 63

4.3  Experimental Validation ..........cueeeeiiiiiiiiiiiiiii e e 70

4.3.1  Concentration gradient determination ...........ccceociiiiiiii e 70

4.3.2 Flow rate MeasUrEmMENt. ......cocuucieeeiiiiiiii i e e e e en e enaas 76

5 Conclusions and FULUIE WOTIK......cuuueiieeeeeeiiiiie et et ereree s e er e e ettt s e e s et e e eseraasserraneeeeerras 79
(SR 2 (= (=1 (=Y 0 (o1 =T 83
F N o 1§ 1= == PR 87
(€1 o T8 o o o] (o J PO SRTRF TR 87
RESUITS @NA DiSCUSSION ... .coeuuiiieiiii et et r e e e e et e e s et s s et e s aasesenassenasesanessebsennnss 88



List of Figures

Figure 2.1 — (a) Structure of the human eyeball (Tortora et al. 2010). (b) Structure of the human
and mice eyeball anatomy (Veleri et al. 2015). .....cooiiiiiiii e 3
Figure 2.2 — Genesis of vascular system (A — Vasculogenesis; B - Angiogenesis) (Lamalice et
= I 00 SRR 5
Figure 2.3 — Cellular mechanism of cellular sprouting (Herbert et al. 2012). ........ccccceeiiiieenne 6
Figure 2.4 — (a) Schematic representation of pillar extension with three different results. (b)
Intussusceptive pillars in the CAM imaged with scanning electron microscopy and confocal
microscopy. (c) Finite element models of bifurcating vessels in the chick CAM where pillar
extension emerged in low shear stress zone (De Spiegelaere et al. 2012).......ccceevveeeeeiiieenen 7
Figure 2.5 — (a) Major steps of EC migration and (b) major signaling events associated to each

step (Lamalice et al. 2007). ... .coeiieereieiieeeee e e 8
Figure 2.6 — Commercially available microreactors solutions. (a) 5-layer glass micro reactor
from Micronit (2017). (b) Microreactor explorer kit from Sigma-Aldrich (2017). .......ccccvvecvieeenee. 9

Figure 2.7 -Commercially available microfluidic analytics solutions. (a) Vetscan LOC rotor
based blood analyzer from Abaxis (1995). (b) LOC in-vitro molecular diagnostics from Magnomics
201 1 ) T PSP 9

Figure 2.8 — (a) Schematic illustration of integrated microfluidic device composed by
microbioreactors, breadboard, reservoir, bubble trap, physical sensors, and electrochemical
biosensors. (b) Photograph of the PDMS integrated microfluidic device (B).(Zhang et al. 2017)

Figure 2.9 — Schematic of the (a) side view, (b) vertical sectional view and (d) perfusion system
of the liver-on-a-chip. (c) Photograph of the channel with the PCL material. H. Lee and Cho (2016)

Figure 2.10 — (i) Stream splitting and recombination technique (Lin et al. 2015). (ii) Staggered
herringbone mixer (SHM) created by Kwak with detailed pattern structures and flow directions (a),
mixing quality over 2.5 cycles on SHM for different conditions (b) and top view images of SHMs
efficiency after 1 cycle (c) (Kwak et al. 2016). .......oeuiiiiiiiiaiiiie et 11

Figure 2.11 — (i) Schematic diagram of a single micro stirrer in the fluidic device (Ryu et al.
2004). (i) T-junction with two pulsatile inlets with 90° phase difference simulation (a) and
experimental results (b) (Ward et al. 2016). (iii) Schematic of the reversible optofluidic mixer with
no mixing when ultraviolet (UV) is off (a) and mixed at the presence of UV due to the
photosensitive water turns into the droplets, causing the mixing between two oil phases (b)

(Venancio-Marques €t al. 20713). ....ccoeririiiie ettt 12
Figure 2.12 — Chemical structure of PDMS. ........cooi i s 13
Figure 2.13 — Hardmask (glass substrate with thin flim layer of Aluminium), master mold (silica

substrate with SU-8 PR layer) and PDMS microfluidic device. (Silverio et al. 2017) ................. 14

Figure 2.14 — Pattern transfer with photolithography: (a) deposition of functional layer; (b)
coating photoresist (positive or negative); (c) photolithography (dark field mask or clear field

Xi



mask); (d) developing photoresist; (e) selective etching; (f) structure is transferred to functional
[ayer (NQUYIN €t @l. 2002). .......eoeiiiiiiiee ettt ettt st e e ese e e s e nee e e s bbe e e e s e enes 15
Figure 2.15 — Fabrication of the master mold by photolithography. (Silverio et al. 2017)...... 16
Figure 2.16 — Schematic of fabrication steps adopted in replica molding. (Silverio et al. 2017)

Figure 2.17 — Microfluidic devices require bonding / sealing of componentes, connection to
pumping peripherals and electrical connection to actuators or sensors (Temiz et al. 2015). .....17
Figure 2.18 — (a) PDMS on Glass microfluidic device for local delivery of a protein solution in
a confined surface (Temiz et al. 2015). (b) Hybrid SU-8/PDMS self-assembling flexible microfluidic
device at middle (Jamal et al. 2011). (c) Insertion of tubings in molded PDMS layers on a DNA
purification chip at right (Hong et al. 2004).........coiiiiiiiiiaiii e e 18
Figure 2.19 — (a) Mechanical lock based contact with electric socket at left (Yang et al. 2003).
(b) Elastomeric frame with vacuum manifold at tubings inlet (Cooksey et al. 2009). ................. 18
Figure 2.20 — (a) Reversible sealing by magnetic clamping (Tkachenko et al. 2009). (b) PDMS
sealing of overflow microfluidics achieved by selective surface wettability (Ruiz et al. 2012). ...19
Figure 2.21 - Bernoulli’s law: energy conservation along a streamline. P is the pressure, and

U is the velocity (Berthier et al. 2006). .......ccuuiiieiieiiiiiie e ee e 20
Figure 2.22 - Different patterns of laminar and transitional flows behind a cylinder (Berthier et
Al 2006)..... ettt e b e e e e et e e Ee e e e e e be e e e abbe bttt e ne e et eaneeeeeerreeaenane 21
Figure 2.23 — Velocity profile in rectangular duct (Berthier et al. 2006). ........ccccocceeeeeiinnenns 21

Figure 2.24 - A sketch of the current density field pv flowing through an arbitrarily shaped
region. Any infinitesimal area da is associated with an outward pointing unit vector n
perpendicular to the local surface. The current through the area da is given by the product of da
and the projection pv.n of the current density on the surface unit vector. (Adapted from (Bruus
200 ) TR U SPRPRRPR 25

Figure 3.1 — Individual component systems of the microfluidic device: (a) Shear Stress
generator (SS), (b) PETE membrane and (c) Gradient Generator (GG). (d) Global view of
microfluidic device reversible setup. (e)Section view of microfluidic device reversible assembly.
(f) Section view of GG microfluidic device irreversible assembly. ........ccccocceeviiiiininiccnieeeee 30

Figure 3.2 — Top view of GG mask schematic, at left global view, at top right middle inlet detail
and at bottom right column spacing detail. ... s 31

Figure 3.3 — Top view of SS mask schematic, at left global view, at top right column spacing
detail and at bottom right outlet detail. ..o s 32

Figure 3.4 - Disco DAD 321 Dicing Saw (DISCO™ 2011). and 5 = 5 cm2 glass sample at right.
(c) MKC ultrasonic baths MKC22. (GUYSON™ 2017). .....ccoueierrriieiesiesee st sreessesreesieseeeesees 32

Figure 3.5 — (a) Nordiko 7000 broad ion milling system (Nordiko™ 2014). (b) Dektak 3030
profilometer at right (Dektak™ 20071). .....ccccurrerreeirieiieiesies e iesee e ee e e sre e e sbesreeeenneaneeas 33

Figure 3.6 — (@) Vacuum Bake/Vapor Prime System, Yield Engineering Systems (Yield
Engineering Systems™ 2017). (b) SGV 88 series track system C&D Semiconductor Services

Xii



(C&D Semiconductor Services™ 2017). Direct Writer Laser (DWL) lithography 2.0 system
Lasarray, (c) global view and (d) sample holder in detail. .......cccccceeeiiiiiiiiie e, 33
Figure 3.7 — (a) Wet bench in clean room. (b) Olympus BH3-MJL optical microscope
(OlYMPUS™ 2000) . ....veeeeereeeeteeretesees e s e ssesssesseessessesseesteasse e tessesseasseessessesreesseasseessensesnennnes 34
Figure 3.8 — (a) JelLight UV cleaning machine 144AX (JeLight™ 2015). (b) Stuart digital
hotplate SD160 (Stuart™ 2017). (c) FASTER BSC-EN laminar flow hood (FASTER™ 2017)...35
Figure 3.9 — (a) Laurell WS-650-23 Spin Coater at left (Laurel™ 2017). (b) MicroChem SU-8
50 (MicroChem™ 2000). .......cceeieereeirieieieseetiestisseeseeseessesseeseesteases e sesseseesseessessesseeseesresessennes 35
Figure 3.10 — (a) UV 800W Curing Flood Lamp from UV technology limited (UV-light
Technology™ 2017). (b) Sigma-Aldrich Poly(glycidyl methacrylate) (Sigma-Aldrich™ 2017). (c)
Profilometer — Tencor Alpha Step 200 at right (Tenkor™ 2015). ......ccceeeeeeiiieriereiieereiesiseeeens 36
Figure 3.11 — (a) Scientech laboratory balance SA-80 (Scientech™ 2017). Sylgard® 184 Pack
with elastomer (b) curing agent (Dow Corning™ 2017b) and (c) silicone elastomer base (Dow

COMNING™ 207178). ... ccteeeeeeieeiese st te e ettt e sre et e s et et e e te e s teeaeensesaeeaseesseseesreeseeesbeeneneeenennsas 36
Figure 3.12 — (a) Bel-Art vacuum desiccator (Bel-Art™ 2017). (b) Memmert Universal Oven
(MEMMEI™ 2007). ... eeeeeereeeeie et etese et e s s e et e sre e e s e e e e s te e s s e et e sesaeenseessesaesteeseeasbaesseneennennns 37
Figure 3.13 — (a) Schematic of micromilling fabrication processes. (adapted from Silverio and
Freitas 2018). (b) Micromilling machine of INESC-MN. ........c.cccciiiiiiiiiiniii e 37
Figure 3.14 — (a) SterliTech PETE Membrane Filters ((SterliTech™ 2017)). (b) Harrick Plasma
Cleaner PDC 002 (Harrick PIasma™ 2017). .....cccccerieeieiiieeiic e ceesteeee s avenneas 38

Figure 3.15 —(a) Rayner's blue concentrated dye (Rayner's™ 2011). (b) Olympus XC30
camera (Olympus™ 2017) coupled with inverted microscope model from Olympus. (c) Syringe
pump from NE-300 SyringePump.com (SyringePump.com™ 2017)......ccccevvereerriieviereiinenieiinns 39

Figure 3.16 — (a) Schematic illustrating the standard experimental setup for GG microfluidic
device at left. (b) Images taken with microscope field of view at right. .........ccccceeeeeiiinn 40

Figure 3.17 — Experimental setup for the gradient generation determination, microfluidic device
zoomed at left and global overview at right. ........ccooeiiiiii e 41

Figure 3.18 — Experimental setup for flow estimation in Shear Stress Generator with

diMensioNs 4500 X 100 UIM2Z........oeeiiiieeiiiiiee e e e r e s s e e enrr e e e e e e e s airrreaaeanaaas 42
Figure 3.19 — Experimental setup for flow estimation in Shear Gradient Generator with
dimensions 3000 X 100 UIM2Z........oeeiiiiieiiiieie e e e a e e e anrrre e e e e e e s e irrr e e e e e s eas 42

Figure 4.1 — Top view of microfluidic device. The hydraulic circuit model simplification is
defined by section of the Microfluidic device. In red GG sections, in grey the SS sections and in
yellow the PETE MeEMDIane. .......coooo e e 45

Figure 4.2 — (a) Microfluidic technology auxiliary components (Hardmask, SU-8 mold and
PDMS microfluidic device) for SS. (b) Hardmask, SU-8 mold and PDMS microfluidic device for

Figure 4.3 — Al deposit in glass SUDSEraCt. .........uuiiiiiiiiii e e 46

Figure 4.4 — Glass substract after photolithography and some structure details at optical
microscope for GG (2) @nd SS (D). ....eeeeiieeiieiiiie e 47

Xiii



Figure 4.5 — Glass substract after aluminium wet etching and some details at optical
microscope respectively for GG (a) and SS (d). Hardmask after photoresist strip and some details
at optical microscope respectively for GG (b) and SS (e). Hardmasks final aspect respectively for
(T (o) IE=Ta e IS XN () TSP PSR 47

Figure 4.6 — Profilometer measurement in GG sample at left. Profilometer tip in SS sample

structure border at middle. GG sample detail on the mixer area at right. ...........cccceeiiiiiinnnn 48
Figure 4.7 — (a) PDMS scaffold composed by SU-8 mold and pocketed PMMA plate. GG (b)
and SS (c)SU-8 resist molds on Si substrate coupled with PMMA plate. .......cccccoeiviiieiiiininnnns 49

Figure 4.8 — (a) Schematic on the last version of PMMA holder with microfluidic device. Top
view of the (b) initial version and (c) Last version of PMMA holder. .........ccccoeviiiiiiiiiiiiiiienns 49
Figure 4.9 — Top view of the PMMA microfluidic device holder ((a) — bottom plate, (b) — Middle
plate, (c) — Top plate). The plates have through holes for bolt tightening and only the top plate
has access holes for microfluidic device inlets and outlets. .........cccoeciiiini e 50
Figure 4.10 — (a) First version of microfluidic device with major leakage. (b) Third and last
version of microfluidic device with minor leakage iSSUES. ........c.occceeieiiiiiiiiiii e 50
Figure 4.11 — (a) Side view schematic of the GG PDMS structures bonding to PETE membrane
(b) SS PDMS structure bonded to PETE membrane and glass substrate. (c) GG PDMS structure
bonded to PETE membrane and glass substrate at right. ........ccccooeiiii 51
Figure 4.12 — (a) Side view of GG and membrane detail in red. (b) Travelling distances scheme
of x1 and x2 in GG schematic. (c) Travelling times scheme of t1c and t2d for a mixed transport
ruled initially by convection and afterwards by diffusion in GG. (d) Travelling time scheme of t1d +
2d for a mixed transport ruled by diffusion in GG. ........ccooocoiiiiiiii e 53
Figure 4.13 - Top View of Gradient Generator (Left — Zoom In | Right — Global).................. 54
Figure 4.14 — (a) Side View schematic and zoom in of GG with PDMS system, PETE
membrane and glass surface where the channel saliences represent the membrane pores (b) 3D
View of GG CFD model and boundary conditions. .........cccceveiiiiiiiiiiiien e 56
Figure 4.15 — Computation of the overall diffusion time at the membrane pore. The “particle
arrival times” are the times required to guaranty 95% of concentration in the paths inlet-bottom
channel t1, pore top- pore bottom t2 and inlet-pore bottom tcomp. .......ccccoeeeeiiiiiiiiiiiiiiii e, 57
Figure 4.16 — Vertical velocity profile at GG mid channel using numerical approximation (White
1991) at left. Velocity field on the model region of interest at middle. Vertical velocity profile at GG
at the model inlet, mid-section and outlet comparison with imposed conditions at right. Note that
the previous results considered a profile mean velocity of 20 mm.s — 1. .....ccccvveeeereeeiiiiiinnnn, 57
Figure 4.17 — Pressure surface on the model region of interest at left. Vertical velocity profile
at GG at the model inlet, mid-section and outlet comparison with imposed conditions at right. Note
that the previous results considered a profile mean velocity of 20 mm.s — 1. ....cccceeevveccinnnenenn. 58
Figure 4.18 — Concentration profiles at the pore bottom, pore middle, channel bottom wall and
channel center. The computation was made considering the channel bottom and pore bottom. (a)
Scenario 1: U =0.1mm.s —1&D =1Xx10 —9m2.s — 1. (c) Scenario 2: U = 0.lmm.s —1&D =

Xiv



5x 10 —11m2.s — 1. (b) Scenario 3: U = 20mm.s —1 & D =1 X 10 —9m2.s — 1. (d) Scenario 4:
U=20mm.s—1&D =5XT0—=11mM2.S — Lu ittt e e e e 58
Figure 4.19 - 2D View of Gradient Generator CFD model and boundary conditions. ........... 60
Figure 4.20 — (a) Top view of velocity profile of GG. (b) Spanwise velocity profile at GG mixer
exit and membrane entrance. (c) Top view of velocity profile of GG at mixer exit. (d) Top view of
velocity profile of GG at membrane entrance. Note that the previous results considered a profile
MeaN VEIOCIY OF 20 711118 — L...uiiiiiiii ettt e e e s eae e e e e e e senae s 61
Figure 4.21 — Top view of pressure profile of GG. Note that the previous results considered a
profile mean velocity Of 20 mMIM.S — L. ....uiiieiieicccc e e e 62
Figure 4.22 — The following results are obtained for inlets concentration of c/1 =1:2,cI2 =
1: 20 and cI3 = 1:200. (a) Top view of concentration profile of GG. (b) Spanwise concentration
profile at GG mixer exit and membrane entrance. (a) and (b) considered a profile mean velocity
of 20mm.s—1 and for a VEGF diffusion coefficient 5x 10 —11m2.s — 1. (c) Top view of
concentration profile of GG. (d) Spanwise concentration profile at GG mixer exit and membrane
entrance. (c) and (d) considered a profile mean velocity of 0,1 mm. s — 1 and for a small molecule
diffusion COEffiCient 1 X 10 — 92,8 — L. .uiieciieieie et e et se e sreeeeneeeens 62
Figure 4.23 - Top View of Shear Stress Generator (Left — Zoom In | Right — Global). .......... 63
Figure 4.24 - 3D View of Shear Stress Generator CFD model and boundary conditions......64
Figure 4.25 — (a) Top view of SS with 1D cuts at 15 ym height. (b) Front view cut of shear
stress. (c) Parametrization of shear stressina cell. .....cccccceeeeiiiii e, 64
Figure 4.26 - Cell disposition (a) and Cell spacing (b) schemes. ........ccccceviiiiiiiiiiiiienn. 65
Figure 4.27 - Top view of Shear Stress Generator in 7 configurations of cell disposition and
(o2= | ST o= T o o AU PTP 65
Figure 4.28 - Bar charts of shear stress parameters analysis in mesh size parametrization with
average values and standard deviation. ... 67
Figure 4.29 - Bar charts of shear stress analysis for different cell configurations. ................ 69
Figure 4.30 — (a) Image light intensity obtained for GG with DI water in all inlets at mixer exit
in zone 1 (10). (b) Image light intensity obtained for GG with dye solution with concentration 1:20
iN Al INIEIS IN ZONE 1 (T1). 1 eeeeeeeeie ettt e enr e e e e e e s ibne e e e e e e e e e e e s anne 70
Figure 4.31 - Parametrization of relative light intensity with solution concentration. ............. 71
Figure 4.32 — Image alignment in mixer outlet (zones 1,2 and 3) and membrane entrance
(zones 4, 5 and 6). The coloured dash lines were slightly misaligned in the scheme to favour
[TV 12 11 L] o 1RO PPTP 72
Figure 4.33 — Concentration gradient determination in the mixer based on the relative light
intensity for inlets with concentration (cI1 = 1:1; cI2 = 1:10 ; ¢/3 = 1: 100). Parametrization on
velocity from top to bottom (U = 0.1 ; 20.0mm.s — 1). Measurement taken at mixer exit and
membrane entrance, respectively left and right images..........ocooeiiiiiii e 74
Figure 4.34 — Concentration gradient determination in the mixer based on the relative light
intensity for inlets with concentration (cI1 = 1:2 ; cI2 = 1: 20 ; ¢I3 = 1: 200). Parametrization on

XV



velocity from top to bottom (U = 0.1 ; 20.0mm.s — 1). Measurement taken at mixer exit and

membrane entrance, respectively left and right images........c.ocooeiiiiii e 75
Figure A.1 —INESC-MN group picture taken in 2017-10-23. ......cccoeriiiiieeiiieee e 87
Figure A.2 — 3D representation of water and VEGF-A molecules. ........cccooveeriiriniciinennenn. 88

Figure A.3 — Concentration gradient determination in the mixer based on the relative light
intensity for an inlet with concentration (Left Inlet 1:1 | Middle Inlet 1:10 | Right Inlet 1:100).
Parametrization on velocity from top to bottom (U =0.1; 1.5; 10.5; 20.0mm.s — 1).
Measurement taken at mixer exit and membrane entrance, respectively left and right images. 89

Figure A.4 — Concentration gradient determination in the mixer based on the relative light
intensity for an inlet with concentration (Left Inlet 1:2 | Middle Inlet 1:20 | Right Inlet 1:200).
Parametrization on velocity from top to bottom (U=0.1; 1.5; 10.5; 20.0mm.s — 1).
Measurement taken at mixer exit and membrane entrance, respectively left and right images. 90

Xvi



List of Tables

Table 2.1 — Physico-Chemical properties of PDMS. (Tabeling 2005)........cccccveevieeeiiiieeannne 14
Table 3.1 — Summary of mask types, features and characteristic features. ........ccccc.o.......... 31
Table 3.2 — Inlet concentration and flow rates for the calibration step (left) and for the gradient
determination (FIGNL). ......o oo ettt e e sre e e e 41
Table 3.3 — Microchannel average velocity, individual inlet flow rate and estimated filling time
FOIr 1ML VOIUME. ..ottt e et e e et e e e st e e e e sne e e e enneeens 42
Table 4.1 — SU-8 on the Silica Substrate profilometer assessment points on SS sample in top
picture and on GG sample in bottom picture. The pink arrow indicates the order and place of the
SAMPIE ODSEIVALIONS. ....iiiiiiieie it r e et e e s s r bbb e e e e e e s srnbbseeee e s s s annnabbbeeeaneean 48
Table 4.2 — Parameters of the microfluidic device. .........ccccveiiiiii e 51
Table 4.3 — Pressure drop computation and average wall shear stress for enables a pressure

DAIANCE ..o 52
Table 4.4 — CFD simulation time estimate. .........ooocoiiiiii e 53
Table 4.5 — Reynolds Number computation for limit cases. .......ccccoeveeeeiiiiiiiniiiiiccieeeee 54
Table 4.6 — Dimensional analysis of the flOW. ........ccccceiiiiii e 55
Table 4.7 — Computation of effective diffusive time in membrane pores bottom................... 58
Table 4.8 — Reynolds Number computation for limit cases. .......ccccoeceeeeiiiiiiiniiiieeeee 63
Table 4.9 — Cell configurations in shear stress CFD model. ........ccccccevviiieiiiiiiiiiiiiiieee s 65
Table 4.10 - Resume table of simulation parameters in mesh size parametrization. ............ 66

Table 4.11 — Shear stress parametrization for mesh size analysis on Coarse, Normal and Fine
meshes. Last two columns refer respectively to Chi-square inverse cumulative distribution
function and condition verification with a 95% confidence. .........ccccovvvviiiiiiiiei e, 67

Table 4.12 - Resume table of simulation parameters in cell disposition parametrization. .....68

Table 4.13 — Shear stress parametrization for different cell configurations. .........c.c.ccccc...... 68
Table 4.14 — Mean values and standard deviations for relative intensity..........cccccceeiieennee 70
Table 4.15 — Model fit parameter and interval of confidence. .......cccccocceeeiiiiiiiiiiinceeees 71

Table 4.16 — Relative uncertainty of concentration determination for the six zones of GG and

fIQUIES COTTESPONAENCE. ... .ueiiiiiieiiie ettt ettt et s et e e e rbe e e e e nee e e s abbbe e e s e e anrneeas 76
Table 4.17 - Flow estimation in Shear Stress Generator. ......ccccccecceciviiieeiiiiiic e, 76
Table 4.18 - Flow estimation in Gradient Generator. .........cccccceeeeiiiiieeeieen e 77
Table A.1 — Diffusion coefficient computation of water and VEGF-A molecules.................... 88

XVii



List of Abbreviations and Symbols

CFD — Computational Fluid Dynamics
PDMS — Polydimethylsiloxane

EC — Endothelial Cell

SS — Shear Stress

GG — Gradient Generator

XViii



1 Introduction

1.1 Research Motivation

In the last two decades, the development of microfluidic device for cellular applications has become
generalized due to the easiness and low cost of fabrication, use of reagents at a lower scale, an
improved control of parameters and dissemination of multi-physics simulations that can predict more
accurately the behavior of traditional cell culture techniques. Presently the design of microfluidic
platforms is becoming multi-disciplinary to meet higher requirements of researchers to manipulate
cellular microenvironment.

In this context the emergence of organ-on-a-chip applications enables further research of living cells
in physiological environment with organ and tissue models, by mimicking the parameters and stimulus-
response relationships as also spatiotemporal dynamics. These microfluidic devices allow the
incorporation of actuators and sensors that probe and recreate, the complex and dynamic relationships
between cells and their local environment allowing the isolation of genetic disease determinants and
cellular function modulators.

This project aimed the development of a microfluidic device based on polydimethylsiloxane (PDMS)
for biomedical analysis, in a joint collaboration between Instituto de Engenharia de Sistemas e
Computadores — Microssistemas & Nanotecnologias (INESC-MN) and Instituto de Medicina Molecular
(IMM). The biomedical model of IMM aims to the use of Endothelial Cells, genetically modified in the
Par3/Par6/aPKC (Par) complex modulation that plays multiple roles in several cell polarisation events.

The microfluidic device was designed to control simultaneously a VEGF gradient and a shear stress
gradient experienced by a group of EC to evaluate the response of competing stimulus in cell
polarization.

1.2 Objectives

The aim of this work consists in the fabrication and design of a microfluidic device which could
simultaneously generate VEGF gradient and shear stress gradient to evaluate the response of
competing stimulus in cell polarization.

The specific objectives of this work were the following:

¢ Draw and design small improvement to existing microfluidic device.

¢ Define conditions/parameters and simulate the microchannels flow.

e Use the Soft Lithography in microfabrication process of the device.

e Integrate PET membrane between the 2 PDMS devices.

¢ Simultaneously generate a concentration gradient and uniform shear stress in the EC in the
Gradient Concentration (GG) and Shear Stress (SS) generators, respectively.

e Implement an experimental setup to access the microfluidic device for the flow rate and
concentration gradient generated.



1.3 Thesis Outline

The present work focuses on the given themes: Anatomy and Angiogenesis, Microfluidic Technology
with focus on concentration gradient and shear stress generation. These themes were approached on
each of the present chapters.

Chapter 2 describes in detail the state of the art on Anatomy and Angiogenesis and Microfluidic
Technology. Its last section refers to specific concepts required to design the microfluidic device.

The description of the materials and the methodologies used during this work is performed on
Chapter 3.

Finally, Chapter 4 comprises the discussion of the main results obtained, from the microfabricarion
process to the analysis of the flow rate and concentration gradient generated.

The main conclusion withdrawn from the present work and future work improvements are proposed

on Chapter 5.



2 State of the Art

For a comprehensive understanding of the microfluidic design directed towards endothelial cell study
a theoretical introduction on broad topics is required. Section 2.1 presents a brief introduction on the
eye anatomy and angiogenesis to present the main molecular pathways and anatomical restrictions
imposed on “in vivo” conditions. Through section 2.2 of this chapter the state of the art of microfluidic
device technology is reported ranging from fabrication to application. Finally, in section 2.4, the basic
principles of microfluidics are deepened, namely, in the areas of fluid mechanics, focusing in the laminar

and creeping flow regimes, and in mass transport.
2.1 Anatomy and Angiogenesis

Angiogenesis is an important process for the constitution of new blood vessels from existing ones
and plays a crucial role in organogenesis and advanced embryonic and fetal development (Drake 2003).
Disturbances in physiological angiogenesis mechanisms have a role in pathogenicity of some diseases
such cancers, obesity and atherosclerosis. Research and study in angiogenesis has the potential to find
cures to such diseases. The eye cornea is an avascular tissue, whose vessels can be simultaneously
studied non-invasively with in vivo corneal angiogenic assays in animal models and in histological
samples (Z. Tahergorabi et al. 2012). A brief overview of the eye anatomy and angiogenesis processes
and molecular cues is required to understand the chemotactic and mechanotactic modulation of

angiogenesis in simpler ex vivo models that motivates the present microfluidic design.
2.1.1 Eye Anatomy

The adult human eyeball measures about 25 mm (Tortora et al. 2010) and is divided into three layers:
fibrous tunic, vascular tunic, and retina (Figure 2.1 (a)). The fibrous tunic is the outer coat of the eyeball.
It consists of an anterior cornea and a posterior sclera. The vascular tunic is the middle layer of the
eyeball and is composed of the choroid, ciliary body, and iris. The choroid is a

Figure 2.1 — (a) Structure of the human eyeball (Tortora et al. 2010). (b) Structure of the human
and mice eyeball anatomy (Veleri et al. 2015).



thin membrane that lines most of the internal surface of the sclera. It contains many blood vessels that
help nourish the retina. The third and inner coat of the eyeball, the retina, lines the posterior three-
quarters of the eyeball and is the beginning of the visual pathway. It has two layers: the neural layer and
the pigmented layer. The neural layer is a multilayered outgrowth of the brain. The pigmented layer of
the retina is a sheet of melanin-containing epithelial cells located between the choroid and the neural
part of the retina.

The adult mice eyeball measures about 2.5 mm (Henriksson et al. 2009) in diameter and present
some differences regarding human eyeball size and anatomy (Figure 2.1 (b)). Nevertheless, the
phylogeny proximity between species, the easy optical access to retinal vasculature and reproducibility
make mice the best animal model for scalable basic biology studies of the angiogenesis.

2.1.2 Angiogenesis

Angiogenesis is the growth of blood vessels from the existing vasculature. It occurs throughout life
in any physiological condition, being more prominent during gestation. All metabolically active tissue in
the body are within a few hundred micrometers range from a blood capillary, which is formed by the
process of angiogenesis. Capillaries are needed in all tissues for diffusion exchange of nutrients and
metabolites.

Endothelial cell migration is essential to angiogenesis. This motile process is directionally regulated
by chemotactic, haptotactic, and mechanotactic stimuli and involves the degradation of the extracellular
matrix (ECM) to enable progression of the migrating cells. It requires the activation of several signaling
pathways that converge on cytoskeletal remodeling. Finally, it follows a series of events in which the
endothelial cells extend, contract, and throw their rear toward the front and progress forward.

2.1.2.1 Genesis of cardiovascular system

Through embryonic development, the cardiovascular system is the first organ system to be formed
(Lamalice et al. 2007). During this process, mesodermal cells differentiate into hemangioblasts leading
to the formation of primitive blood islands (Figure 2.2 A). Then, the peripheral hemangioblasts
differentiate into angioblasts, the precursors of endothelial cells. Following chemotactic and haptotactic
activation, ECs migrate allowing the fusion of the blood islands and their remodeling into tubular
structures, giving rise to the first primitive vascular plexus. These vascular plexuses remodel into larger
vessels, through the process of vasculogenesis, which leads to vascularization of the embryo. In
contrast to vasculogenesis, angiogenesis is a heovascularization process by which new blood vessels
form from preexisting ones (Figure 2.2 B).

Angiogenesis is required in many physiological and pathological conditions and is regulated by a
tight balance of pro- and antiangiogenic agents that trigger a cascade of events in which the migration
of capillary EC play a crucial role. Cell culture systems enable the comprehension of basic cellular and
molecular mechanisms but to capture the EC migration in physiologic context, an animal model is
required, eg. zebra-fish and mouse embryo.
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Figure 2.2 — Genesis of vascular system (A — Vasculogenesis; B - Angiogenesis) (Lamalice et al.
2007).

2.1.2.2 Angiogenic Process

Sprouting angiogenesis and intussusceptive angiogenesis both occur in utero and in adults.
Sprouting angiogenesis is characterized by sprouts composed of ECs, which usually grow toward an
angiogenic stimulus such as VEGFA and add blood vessels to portions of tissues previously devoid of
blood vessels. On the other hand, intussusceptive angiogenesis involves formation of blood vessels by
a splitting process in which elements of interstitial tissues invade existing vessels, forming transvascular
tissue pillars that expand in low shear stress areas. Both types of angiogenesis are thought to occur in
virtually all tissues and organs.

2.1.2.3 Sprouting Angiogenesis

Sprouting angiogenesis is initiated in poorly perfused tissues when oxygen sensing mechanisms
detect a level of hypoxia that demands the formation of new blood vessels to satisfy the metabolic
requirements of parenchymal cells.

In the absence of pro-angiogenic stimuli, endothelial cells (EC) are retained in a quiescent state. In
addition, EC homeostasis is maintained by low-level autocrine vascular endothelial growth factor A
(VEGFA) signaling (Figure 2.3 — a) (Ingber 2003).

The basic steps of sprouting angiogenesis include enzymatic degradation of capillary basement
membrane, EC proliferation, directed migration of EC, tubulogenesis (EC tube formation), vessel fusion,
vessel pruning, and pericyte stabilization.

During angiogenesis, elevated levels of exogenous pro-angiogenic factors (such as VEGFA and
VEGFC) and of VEGF receptor 2 (VEGFR2) or VEGFRS3 signaling select ‘tip cells’ (TC; blue) for
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Figure 2.3 — Cellular mechanism of cellular sprouting (Herbert et al. 2012).

sprouting. By contrast, Delta-like 4—Notch signaling laterally inhibits TC fate in adjacent EC. TC
sprouting behavior is facilitated by the vascular endothelial cadherin-mediated loosening of EC-EC
junctions, matrix metalloproteinase-mediated degradation of extracellular matrix (ECM) and the
detachment of pericytes (purple) (Figure 2.3 —b).

Invasive TC sprouting is guided by gradients of pro-angiogenic growth factors and various
environmental guidance cues, such as semaphorins and ephrins. During sprout elongation, TC are
trailed by endothelial ‘stalk cells’ (SC; yellow), which maintain connectivity with parental vessels and
initiate partitioning-defective 3 (PAR3)-mediated vascular lumen morphogenesis. Expression of
VEGFR1 and activation of Notch, Roundabout homologue 4 and WNT signaling in SC repress TC
behavior to maintain the hierarchical organization of sprouting EC. Nevertheless, TC and SC may also
shuffle and exchange positions during angiogenic sprouting. Upon contact with other vessels, TC
behavior is repressed, and vessels fuse by the process of anastomosis, which is assisted by associated
myeloid cells (Figure 2.3 —c).

Nascent perfused vessels are subsequently stabilized by the platelet-derived growth factor B-
mediated recruitment of supporting pericytes, the strengthening of EC-EC contacts and the deposition
of an ECM to re-establish a quiescent endothelial phenotype (Figure 2.3 —d).

The key signaling pathways and the molecular mechanisms of lumen morphogenesis and EC tip
selection are active fields of fundamental science research (Herbert et al. 2012).

2.1.2.4 Intussusceptive Angiogenesis

Intussusceptive angiogenesis is a dynamic intravascular process capable of dramatically modifying
the structure of the microcirculation. The distinctive structural feature of intussusceptive angiogenesis is
the intussusceptive pillar - a cylindrical microstructure that spans the lumen of small vessels and
capillaries. The extension of the intussusceptive pillar appears to be a mechanism for pruning redundant



Figure 2.4 — (a) Schematic representation of pillar extension with three different results. (b)
Intussusceptive pillars in the CAM imaged with scanning electron microscopy and confocal
microscopy. (c) Finite element models of bifurcating vessels in the chick CAM where pillar extension
emerged in low shear stress zone (De Spiegelaere et al. 2012).

or inefficient vessels, modifying the branch angle of bifurcating vessels and duplicating existing vessels
(Figure 2.4 (a)). Despite the biological importance and therapeutic potential, intussusceptive
angiogenesis remains a mystery, in part, because it is an intravascular process that is unseen by
conventional light microscopy.

Intussusceptive pillar form preferentially in low shear stress areas oriented orthogonally to the
bifurcation plane of branching vessels. Finite element models of animal models suggest that shear
stress has an ideal range of triggering in the intussusceptive pillar (Figure 2.4 (c)). Its location could
indicate the presence of blood-borne elements, such as endothelial progenitor cells, to microcirculation
areas undergoing active angiogenesis. Intussusceptive angiogenesis can be stimulated in the chick
chorioallantoic membrane (CAM) with application of VEGF-A, and there is little doubt that many growth
factors and signaling systems are involved (Makanya et al. 2005)(C. Y. Lee et al. 2011).

2.1.2.5 Endothelial cell migration

EC migration involves three major mechanisms, namely chemotaxis or the directional migration

toward a gradient of soluble chemoattractants; haptotaxis which is the directional migration toward a
gradient of immobilized ligands; and mechanotaxis or the directional migration generated by mechanical
forces (Li et al. 2005).
Growth factors such as VEGF and basic fibroblast growth factor (bFGF) drive EC by chemotaxis,
whereas haptotaxis is associated with increased EC migration activation in response to integrins binding
with ECM component (Giroux et al. 1999)(Klemke et al. 1997). Mechanotaxis, which is initiated by fluid
shear stress, modulates several steps of migration including extension at the leading edge, adhesion to
the matrix, and release of adhesions at the rear (Li et al. 2005).
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(Lamalice et al. 2007).

EC migration can be divided in 6 sequential events (Figure 2.5 (a)):

0] Cdc42 dependent sensing of the motile stimuli by filopodia;

(i) cellular extension involving the Rac1-dependent formation of protruding lamellipodia;
(iii) attachment of the protrusions to the extracellular matrix at focal adhesions;

(iv) stress fiber—mediated contraction of the cell body allowing forward progression;

(v) rear release by stress fiber—mediated traction forces;

(vi) recycling of the adhesive and signaling components.

The major signaling events associated with each of these 6 steps are indicated in Figure 2.5 (b).
Vascular wall shear stress varies along arterial tree, which is determined by flow velocity characteristics,
ranges between 1 an 7 Pa (Theodoros et al. 2005). To study the effects of mechanotaxis and chemotaxis
in EC a review on available microfluidic device solutions is addressed in the following section.

2.2 Microfluidic Devices

2.2.1 Applications of Microfluidic Devices

Microfluidic devices, also known as Biological Micro-Electro-Mechanical Systems (bioMEMS) are
related to the manipulation and analysis of minute volumes. MEMS development over the past four
decades allowed the miniaturization and appearance of novel analytical approaches of conventional
laboratory processes to handle fluids in large scale laboratories at a submillimeter scale mainly in life
sciences (Rosa 2010). The reduction of consumed reagents and samples and automation of processes
(e.g. reagent / sample actuation, mixing, separation, filtration, reaction, control, monitoring, etc.) together

with the integration of micro-to-nano elements (e.g. mechanical or electronic sensors and actuators)



Figure 2.6 — Commercially available microreactors solutions. (a) 5-layer glass micro reactor from
Micronit (2017). (b) Microreactor explorer kit from Sigma-Aldrich (2017).

contribute for an overall high throughput and low cost devices (Silverio et al. 2017) (Samiei et al. 2016).

Amongst the life science applications of microfluidics devices three fields stand out:
biotransformation, analytics and cellular assays. Biotransformation consists in the miniaturization of
chemical or biological reactors handling liquids under controlled conditions (e.g. temperature, pH, etc.)
to produce and concentrate a molecule of interest. Examples of microreactors can been seen in Figure
2.6.

Analytics concerns about the characterization of the molecule of analysis (e.g. biomolecules,
proteins, nucleic acids, etc.) meeting high precision liquid manipulation and the fully automation and
portability of complex analytical protocols (Figure 2.7). Some microfluidic clusters and commercial
applications start emerging like the FastGene Project (Elveflow 2011) for Ebola detection, Abaxis for
blood analyzer (electrolyte, immunoassay, and blood gas) (Abaxis 1995) and Magnomics (Magnomics
2013) for multiple pathogen detection in bovines.

Cellular assays aim to replicate adequate media conditions that enable viability and activity managing
control parameters (e.g. pH, temperature, gas levels (0,, C0,, etc.), nutrition and metabolite removal).
Organ-on-a-chip are miniaturized microfluidic platforms for cellular assays designed to reproduce
physiological and biological parameters of organ and tissue models (Figure 2.8). These platforms can
fill the gap between conventional planar, static cultures used for preclinical animal models in drug
screening and have the potential for personalized medicine applications. Zhang et al. (2017) developed
an integrated automated modular PDMS microfluidic platform that incorporates physical and
electrochemical immunobiosensors and miniaturized microscopes for human liver-cancer and heart-

liver-on-chips.

Figure 2.7 -Commercially available microfluidic analytics solutions. (a) Vetscan LOC rotor based
blood analyzer from Abaxis (1995). (b) LOC in-vitro molecular diagnostics from Magnomics (2013).
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Figure 2.8 — (a) Schematic illustration of integrated microfluidic device composed by
microbioreactors, breadboard, reservoir, bubble trap, physical sensors, and electrochemical

biosensors. (b) Photograph of the PDMS integrated microfluidic device (B).(Zhang et al. 2017)

H. Lee and Cho (2016) developed a 3D bioprinting method that enables a one-step fabrication of
Organ-on-a-chip without a secondary cell-seeding process that showed promising results in hepatocytes
which exhibited enhanced liver function (Figure 2.9).

2.2.2 Characterization of Microfluidic Devices

According to the main liquid propulsion principle Stetten, Mark, and Haeberle (2010) divide
microfluidic platforms in 5 groups: capillary, pressure driven, centrifugal, electrokinectic and acoustic
systems (Stetten et al. 2010). The platform used in the work presented here is pressure driven.

A pressure driven laminar flow platform is characterized by liquid transport mechanism based in
pressure gradient that leads to hydrodynamically stable laminar flow profiles in microchannels. Pressure
source implementation can be internal or external and induced by syringes, pumps, pneumatic
displacement of membranes, amongst others in a batch-wise or continuous mode.

Due to the laminarity of the flow in the microchannels over a wide range of flow rates and channel
dimensions, pressure driven platforms enable assays implementation with: predictable velocity profiles,
controllable diffusion mixing and stable phase arrangements (co-flowing streams). These platforms are
suitable for continuous processing of samples enabling online monitoring of desired parameters and
require the connection of a pressure source to the (disposable) chip.
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Figure 2.9 — Schematic of the (a) side view, (b) vertical sectional view and (d) perfusion system of
the liver-on-a-chip. (c) Photograph of the channel with the PCL material. H. Lee and Cho (2016)
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One of the key properties of PDMS is that it can be sealed to itself or to other substrates both in
reversible or irreversible manner. Furthermore, PDMS can be casted in almost any shape and openings
for fluidic and electrical connections which can be easily achieved through punching or cutting after
curing.

Reusability, ease of clean and high pressure sealing resistance of microfluidic devices are attractive
features for cell studies in research laboratories but difficult to reconcile. Some techniques like
mechanical or magnetic clumping could be used to fulfill these requirements.

2.2.3 Mixing Techniques in Microfluidics

In microfluidic devices mixing presents a challenge due to its particular laminar flow nature, derived
from low Reynolds numbers. The mixing enhancement techniques can be classified in passive mixing
and active mixing (Ward et al. 2016).

Passive mixing techniques are easy to integrate but difficult to control after fabrication. These mixing
techniques explore Taylor dispersion effect described in section 2.4.2.4 and include stream splitting and
recombination, slanted wells or patterned grooves, hydrophobicity or surface modification and
multiphase mixing enhancement. The T-junction system is the simpler one and relies solely in the
diffusion transport of the concurrent inlets in the developing zone. The dilution network relies on the
creation of several stream splitting and recombination levels to create a concentration profile at the
mixer outlet less independent of flow rate(Figure 2.10 (i)). Kwak et al., (2016) tested a slanted well to
create a complex concentration profiles with the convection-diffusion flow dependency on the 3D
geometry (Figure 2.10 (ii)).

Active mixer techniques are more difficult to integrate and require external components to operate.
These techniques include microstirrers, acoustic waves, flow pulsation, optofluidic enhancement,

thermal enhancement and electrokinectic mixing enhancement.

T-junction Dilution network

(i)
Figure 2.10 — (i) Stream splitting and recombination technique (Lin et al. 2015). (i) Staggered

herringbone mixer (SHM) created by Kwak with detailed pattern structures and flow directions (a),
mixing quality over 2.5 cycles on SHM for different conditions (b) and top view images of SHMs
efficiency after 1 cycle (c) (Kwak et al. 2016).
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T-junction with two pulsatile inlets with 90° phase difference simulation (a) and experimental results (b)
(Ward et al. 2016). (iii) Schematic of the reversible optofluidic mixer with no mixing when ultraviolet (UV)
is off (a) and mixed at the presence of UV due to the photosensitive water turns into the droplets, causing
the mixing between two oil phases (b) (Venancio-Marques et al. 2013).

Ryu, Shaikh, Goluch, Fan, & Liu, (2004) a microstirrer that used a rotor to enhance the mixing of the
inlets of a T-junction (Figure 2.11 (i)). Ward & Fan, (2016) imposed two pulsatile inlets with a 90° phase
shift to enhance the diffusion, that reduced the distance required for the mixing and exhibited at a given
developing distance a concentration profile less sensible to the phase of the inlet flow (Figure 2.11 (ii)).
Venancio-Marques, Barbaud, & Baigl, (2012) created a system with 3 inlets with different immiscible
phases in which one is constituted by photosensitive water solution. This system is activated when UV-
light is used in the water that disrupts the balance and promote diffusion through the creation of water
droplets that exhibit spanwise movement in the chamber and enable the solutions complete mixing in a
small number of chambers (Figure 2.11 (iii)).

2.3 Microfabrication Techniques for Microfluidic Devices

The comprehensive design of microfluidic devices is a technically challenging task that is limited by
the fabrication techniques and materials chosen. Fabrication techniques used for silicon-based
microfluidic devices are mostly based in Micro-Electro-Mechanical-Systems (MEMS) methods, that
adopted well established techniques in the integrated circuit (IC) industry (Silverio et al. 2017). This way
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the first generation of microfluidics use inorganic materials (Silica and Glass) that compose “rigid”
substrates.

The second generation of microfluidic devices resorts to polymeric materials, (thermoplastic e.g.
(polymethyl methacrylate (PMMA)) and elastomers (e.g. polydimethylsiloxane (PDMS)). These
materials compose “flexible” substrates that are simpler to process, more functional (transparent,
biocompatible, etc.) and present a rapid and inexpensive prototyping solution. The increasingly
sophistication of microfluidic techniques has evolved to include composite materials and modular
configurations.

Lately the synergy between fundamental material development and new microfluidic capabilities has
also expanded the fabrication strategies 3D (bio)printed composites (including particles and fibers) and
organoids (Hou et al. 2017) in what it is likely to constitute the third generation of microfluidic devices.

2.3.1 Fabrication of elastomeric microfluidic devices

PDMS has become the most commonly used elastomer in rapid prototyping of microfluidic devices
due to its simplicity and strong sealing to a myriad of materials, and additional useful properties like low
cost, low toxicity, transparency from visible to near ultraviolet wavelengths and chemical inertness.

PDMS belongs to the group of siloxanes, where the skeletal atoms consist of an inorganic siloxane
group and bear side groups of methyl (Figure 2.12). The repeating unit, the simplest repetitive structure,
is [-Si(CH;),0 —]. PDMS has low interfacial free energy which is susceptible to protein adhesion. This
protein fouling in PDMS can be tackled manipulating interfacial free energy with plasma treatment. Table
2.1 summarize its most important properties.

PDMS is permeable to gas and although gas permeability enables quick filling and therefore make it
suitable for cell assays, it is also permeable to non-polar solutes which makes it inadmissible for some
applications, eg cell signaling assays where some molecules can be absorbed. Despite having a low
interfacial free energy, PDMS surface exhibits some fluorescence and some protein adsorption due to
its hydrophobic nature specially in aqueous environments which can be solved with additional surface
treatments. Additionally, properties of reticulated PDMS change with time which make aging effects
difficult to anticipate.

CH; CH;y CH;

|
CH;—Si—0 - Si—0{—Si—CH;,

CHJ C- H:} n C'H 3

Figure 2.12 — Chemical structure of PDMS.
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Figure 2.13 — Hardmask (glass substrate with thin flim layer of Aluminium), master mold (silica
Substrate with SU-8 PR layer) and PDMS microfluidic device. (Silverio et al. 2017)

Table 2.1 — Physico-Chemical properties of PDMS. (Tabeling 2005).

Property Characteristic

Density ~ 0.9 kg/m?
Optical Transparent, between 300 nm and 2200 nm
Electrical Insulating, breaking field 20 kV.cm™!

Mechanical Elastomeric, Young's modulus ~ 750 kPa

Thermal Insulating, thermal conductivity ~ 0.2 W.m 1. K1

Interfacial Low surface energy (= 20 mN.m™1)

Permeability Permeable to gas, apolar organic solvents, nearly impermeable to water

Reactivity Inert, oxidizable by a plasma

Toxicity Non-toxic

Microfabrication of a PDMS microfluidic device is composed by three main steps: hardmask
patterning, master mold fabrication (both photolithography processes) and replica micromolding that
lead to the production of several components (Figure 2.13). The hardmask defines the 2D geometry of
the master mold and the photoresist (PR) coating and spinning defines the master mold height. Final
geometry of the microfluidic device is defined when the elastomer is poured and cured in the master
mold.

Hardmask is a metallic thin film layer (e.g. aluminium) in a transparent substrate (e.g. glass).
Hardmask patterning is a LASER lithography process that used a positive photoresist in this project.

Lithography is a key technique for the fabrication of microscale structures. According to the type of
energy beam it can be subdivided in photolithography, X-ray lithography, electron lithography or ion
lithography (Nguyin et al. 2002). The comprehension of the lithography process is essential to
understand the fabrication of microfluidic devices with more emphasis to photolithography that resorts
to UV-light. This process is composed by three steps (Figure 2.14):

1. Positioning process which comprises:
a. Design of geometric pattern on a computer-aided design (CAD) software;
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Figure 2.14 — Pattern transfer with photolithography: (a) deposition of functional layer; (b) coating
photoresist (positive or negative); (c) photolithography (dark field mask or clear field mask); (d)
developing photoresist; (e) selective etching; (f) structure is transferred to functional layer (Nguyin et
al. 2002).

b. Mask making to define the light pattern (that can be absent in case the process is
maskless (e.g. LASER lithography));
c. Photoresist (PR light sensitive polymer) coating of the wafer adjusted to the desired
thickness;
2. Exposure process: consisting in light (UV, LASER or electrons) exposition to the PR to define
the geometric pattern and whom exposition time is defined by its energy absorption;
3. Development process: depending on PR type the geometric patternis revealed by dissolving
the soluble parts where:
a. Negative PR when exposed to light becomes insoluble to developer solution
b. Positive PR when exposed to light becomes soluble.

The minimum feature size (m.f.s.) depends on light wavelength, mask positioning and removal and
PR development pattern.

After defining the hardmask, the process fabrication continues with soft lithography. It consists in
several steps detailed below.

In this project the PR used was SU-8 that is a negative PR. The pre-treatment starts with a cleaning
process followed with a thermal treatment to prevent any entrapped humidity at the surface (Figure 2.15
(a)). The PR is then dispensed and evenly distributed to the desired thickness by adjusting the time and
spinning velocity of coating according to the kinematic viscosity (temperature dependent) of the PR
(Figure 2.15 (b)). A soft-bake step is required to evaporate PR solvents and prevent later shrinkage and
cracking of the PR coating (Figure 2.15 (c)). The soft-bake duration and temperature is adjusted
according to the PR formulation and coating thickness. The PR coating is exposed to UV light through
the hardmask to define the desired 2D pattern in the mold (Figure 2.15 (d)). The UV light energy
exposure and duration is dependent on PR formulation, thickness and substrate material. To harden the
insoluble regions of PR to the developer solution, a post-exposure bake step is performed (Figure 2.15
(e)). A slow cooling step is very important to avoid cracks due to thermal stresses. The development
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Figure 2.15 — Fabrication of the master mold by photolithography. (Silverio et al. 2017)

step is made to dissolve PR soluble regions and its duration depends both on PR dissolution rate and
agitation conditions (Figure 2.15 (f)). The substrate is washed with isopropyl alcohol where the formation
of white precipitate indicates an under-development. Finally, a final rinse with deionized water and blow
drying (Figure 2.15 (g)). Master mold reusability can be extended using a final hard-baking step (Figure
2.15 (g)) that must be performed in similar manner as the previous bake steps.

The master mold can be reused several times in a method which is suitable for rapid prototyping and
low-cost applications.In As replica molding the prepolymer is crosslinked with the curing agent in a
weight ratio of 10:1. The process starts with mixing of the parts to cure and a degassing process to
remove bubbles formed previously. Finally, the mixture is poured over the master mold structure (e.g. a
silica wafer with an inverse PR (e.g. SU-8) structure of the channel) and then cured at relatively “low”
temperature (60°C to 80°C for several hours) (Figure 2.16). The cured structures can be peeled from
the master mold and further bonded to a planar structure (clean glass, silica or another piece of activated
PDMS) that will form the microchannel structures. The sealed channel can withstand pressure up to

L5y

—

@ PoMS molding template @ PDMS

b

a)

Add prepolymer and cure Peel away PDMS

Figure 2.16 — Schematic of fabrication steps adopted in replica molding. (Silverio et al. 2017)
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5 bar (Nguyin et al. 2002). The resolution of this technique can be less than 10 nm (Nguyin et al. 2002)
but due to shrinkage related with aging phenomena values above 5 um are commonly accepted as
minimum feature size (m.f.s.) (Tabeling 2005).

2.3.2 Bonding Techniques

The assembly of more complex microfluidic device components requires a three-step controlled
process which can be divided into: bonding or sealing; supply of liquid, reagent and sample; and
connection with electronic or microelectronic components (Figure 2.17).

Sealing in microfluidic devices is essential to maintain samples, solvents and reagents within defined
volumes, to prevent uncontrolled spreading and evaporation of liquids along wettable areas from chips,
to reduce contamination and biohazards, and to isolate and protect structures from dust or physical
impacts (Temiz et al. 2015).

Sealing strategies can be subdivided based on conformal materials (PDMS), non-conformal
polymers (plastics), hard materials such as glass and silicon, intermediate adhesive layers, and recently
new prototyping technologies. Due to the scope of the present work only PDMS substrates sealing
techniques will be addressed focusing on the possibility of process reversibility.

Amongst reversible techniques simple passive mechanical or heat treatment sealing can be suitable
for low pressure flows, whilst the inclusion of microfluidic networks, valves and pumps resort to
irreversible self-sealing of PDMS. Surface treatments can also be applied to replica molding technique
in which PDMS surface layer can be exposed to a 0, plasma treatment where the device components
(e.g. Silicon or Glass substrates) are placed in contact with PDMS. This assembly can create complex
3D microfluidic networks connecting multilayers by microfluidic vias. Jamal (2011) demonstrated a
hybrid SU-8/PDMS self-assembly microfluidic device that spontaneously curve PDMS microfluidic
network in cylindrical flow paths (Figure 2.18). Alternatively, the adhesive layer can be patterned to form
the microfluidic layer that can be achieved through UV-curing adhesives, SU-8 and parylene.

BONDING | SEALING FLUIDIC CONNECTIONS

PDMS,

thermoplastics silicon, glass:

Brefging

CONMECTIONS

Figure 2.17 — Microfluidic devices require bonding / sealing of componentes, connection to
pumping peripherals and electrical connection to actuators or sensors (Temiz et al. 2015).
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Figure 2.18 — (a) PDMS on Glass microfluidic device for local delivery of a protein solution in a
confined surface (Temiz et al. 2015). (b) Hybrid SU-8/PDMS self-assembling flexible microfluidic
device at middle (Jamal et al. 2011). (c) Insertion of tubings in molded PDMS layers on a DNA
purification chip at right (Hong et al. 2004).

Reusability, ease of clean and high pressure sealing resistance of microfluidic devices are attractive
features for cell studies in research laboratories but difficult to reconcile. Some techniques like
mechanical or magnetic clumping could be used to fulfill these requirements.

Yang (2003) resorted to electrical socket to enable easy mechanical locking that withstand a limit
pressure of 200 kPa (Figure 2.19 (a)). Cooksey (2009) developed a PDMS-based vacuum manifold that
applies a negative pressure on the manifold and the chip that withstand a 100 kPa liquid pressure. The
conformal contact between PDMS manifold and PMMA chip allows hundreds of fluidic interfaces
simultaneously (Figure 2.19 (b)).

Tkachenko (2009) developed a reusable magnetic clumping microfluidic device system capable to
withstand up to 40 kPa (Figure 2.20 (a)). Ruiz (2012) developed an elegant system capable of the

Ome-touch
lock

Module cover
Silicone lube
Acrylic module
Screw valve
Fluidic chip
Chip guide

Lead spring

(b)
Figure 2.19 — (a) Mechanical lock based contact with electric socket at left (Yang et al. 2003). (b)
Elastomeric frame with vacuum manifold at tubings inlet (Cooksey et al. 2009).
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Figure 2.20 — (a) Reversible sealing by magnetic clamping (Tkachenko et al. 2009). (b) PDMS
sealing of overflow microfluidics achieved by selective surface wettability (Ruiz et al. 2012).

solution during the sealing ideal for cell growth and with solution handling with a pipette. The latter was
achieved using surface wettability at cell chambers (Figure 2.20 (b)).

2.4 Physical Principles of Microfluidics

A comprehensive knowledge on the physical mechanisms that rule the flow in microfluidic devices is
required to enable an assertive design. Flow analysis, however, requires a multi-physics approach and
the consideration of interactions due to scaling effects. Therefore, the exposition of fluid mechanics and
mass transport principles is made in this section.

2.4.1 Basic Concepts

2.4.1.1 The continuum approximation

In fluid mechanics and mass transport, properties like velocity, density and concentration vary at a
molecular level, however to enable its modeling it is acceptable to consider the fluid as “continuous”.
The range of volumes found in microfluidics range from 1 picoliter (100 um)? to 1 mililiter (1 cm)3.0ne
picoliter contains approximately 3 * 1013 molecules of water enough to consider their average properties.
Typically, for most properties the continuum approximation doesn’t break until the scale of molecular
diameters is reached.

Therefore, the validity of the continuum hypothesis can be accepted, since it assumes that the
macroscopic properties of the fluid are similar to a perfectly continuous fluid, although is composed by
molecules.

This way, quantities such as momentum, energy and mass implicated in a small volume of fluid
containing a sufficiently large number of molecules are to be defined as a result of the sum of the
corresponding quantities for the molecules in the volume (Wei-Cheng et al. 2009).

2.4.1.2 Bernoulli’s Principle

A common approximation used in hydraulics is the Bernoulli’s principle (Bernoulli 1738) that can
relate pressure, velocity and height in a steady motion of an ideal fluid. This form can be derived
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assuming the energy conservation along a streamline between two cross sections imposing one
dimensional flow. Microflows in capillaries and microchannels are suitable for the Bernoulli’s principle
application if the flow is mainly one dimensional, the fluid incompressible and boundaries rigid (Figure

2.21). Global energy per unit volume ( 2.1 ) composed by kinetic (%pUiZ), potential (pgz;) and pressure
components (P;) and the energy loss per unit volume between two points.

E, = E, + AP E; = ZpU? +pgz; +P, (2.1)

Combining the expressions of ( 2.1 ) the final form ( 2.2 ) is obtained.

AP=P,—P, ~pUZ + pgz, = pUE + pgz, + AP (2.2)

2.4.1.3 Laminar and Creeping Flow

Microfluidics present almost always smooth laminar flow, that is characterized by parallel
streamlines. Turbulent flow, however is characterized by its stochastic nature and the presence of
eddies that disrupt parallel streamlines (Figure 2.22). The dimensionless number Reynolds number (Re)
determines the ration between inertia (convective forces) and viscous forces and is defined by ( 2.3 ),
where D, (m) is the hydraulic radius, U (m.s~1) the average velocity of the flow, p (kg.m=2) is the fluid
density, n (Pa.s) is the viscosity and v (m?2.s71) the kinematic viscosity.

UD, DU
Re = -t = 2n2P (2.3)
v
4Acs

The hydraulic diameter is equal to D, = (m), where A, (m?) is the cross section area of the

Py
channel and B, (m) is the wetted perimeter of the channel.

The Reynolds number can be used to predict the transition between laminar to turbulent regimes
usually associated for Re ~ 2100 in cylindrical channels. For most of microfluidic systems laminar
regimes are observed since this value is low (Re < 10). Creeping flow, also referred to as the Stokes
flow problem, is the generic name given to flows with a very low Reynolds number approaching zero
(Re « 1) and represents a limiting case of laminar flow which occurs when viscous forces completely
dominate inertia forces (Shah et al. 1978).

Rigid walls

Streamline

Figure 2.21 - Bernoulli’s law: energy conservation along a streamline. P is the pressure, and U is
the velocity (Berthier et al. 2006).
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Figure 2.22 - Different patterns of laminar and transitional flows behind a cylinder (Berthier et al.
2006).

A Poiseuille flow occurs when the flow of a Newtonian fluid is steady, fully developed and pressure
driven. The no-slip condition imposes zero fluid velocity in the vicinity of the wall due to the influence of
viscous forces.

Therefore, the velocity profile for Poiseuille flow is paraboloid (Figure 2.23) and the maximum velocity
is achieved in the center of the channel. In a rectangular channel the velocity profile can be approximated
by ( 2.4 ) (Shah et al. 1978), where u,,,, is the maximum velocity, a and b the channel dimensions and

s and r the exponents. The approximation is dependent on the aspect ratio a« = S and the final values

are generally close to 2 for ¢ < 0.5 and yield exponents s and r larger than 2 ( 2.5 ). The integration
over the duct cross section velocity field results in ( 2.6 ) whose ratio is comprised between 1.5 to 2.

_ xS yT
w6, y) = tmeel1 - (2) 111 (5) 1 (2.4)
s=174+05%xa1* (2.5)

2 <1

g <l

T3

" zrosx(a-d)a sl

. a 3,(1_3
Unay S+1 1r+1 (26)

U S r

Pressure is dimensionally an energy-per-unit volume (J.m~%). Along the flow occurs a redistribution
of energy between pressure, inertia and gravity. The dissipative term due to friction at the wall is given
by (2.7 ), where f is the dimensionless Fanning friction factor and L the duct length. For rectangular

/ =~
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e |
4 >/
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s
'
-

Figure 2.23 — Velocity profile in rectangular duct (Berthier et al. 2006).
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ducts the friction factor depending on the aspect ratio («) is given by the numeric approximation (2.8 )
(Shah et al. 1978).

PL 1
AP =f— GPU?) (27)

24
f= Re (1—1.3553a + 1.9467a? — 1.7012a® + 0.9564a* — 0.2537a>) (2.8)

In a fully developed flow, the wall shear stress can be obtained using the Bernoulli approach (2.2 )
along the pipe axis, using as dissipative term the friction and dividing the volume to yeld ( 2.9 ).

_ Ry xAP
T2L

(2.9)

T

2.4.1.4 Diffusion

Diffusion is the process by which a concentrated group of particles in a volume will spread out over
time by Brownian motion, so that the average concentration of particles throughout the volume is
constant (Beebe et al. 2002).

Microfluidic systems can combine diffusive transport with convective flow of the bulk fluid. The
diffusion coefficient, D, (m?/s), given by Einstein law ( 2.10 ) for any particle depends on the hydraulic
radius of the particle R,, (m), the dynamic viscosity of the fluid n(kg.s~*.m™1), the absolute temperature
T (K) and the Boltzmann’s constant kg (m2.kg.s=2.K~1). The dependence of particle hydraulic radius

is dependent on the square root of the molecular weight (R, « (m)i) so the diffusion coefficient for a
large protein has about one or two orders of magnitude.
kT
«= 6mnR,,

(2.10)

Mass transport associated to diffusive transport is given by Fick’s first law for steady state, binary
ideals solutions with low concentrations and constant density ( 2.11 ), where ¢ (mol/m?) is the particle

concentration and ]Z”f ! (kg.m™2.s71) the linear variation of the diffusive flux.

; dc kgT
aiff _ _p 9¢ _ ks 2.11
@ De 0x 6mnRy ( )

From the simplified mass transfer equation, the transient state can be derived (Fick’'s second law)
which at one dimension is given by (2.12).
2
g _p 9% (2.12)
ot % 0x2
The diffusion of a small concentration burst of a substance in a solvent in a 1D geometry could be
approximated to a Dirac dependent on x axis distance for initial condition. Solving the differential

equation on time given the initial condition, results on ( 2.14 ) where the argument denominator
represents the characteristic diffusion length x, =~ v4Dt.

c(x, o) = ¢o0(t) (2.13)

x2

Co X
1Dt 2.14
=e ( )

clx, t) =

22



In aqueous diluted solutions for polymer and proteins, D, is comprised between
107 and 10719 m2.s~1 (Cussler 2007).

2.4.2 Governing equations

2.4.2.1 Continuity equation — Incompressible Fluids

The continuity equation entails the first fundamental equation of fluid mechanics and expresses the
conservation of mass in classical mechanics. Considering a mass balance over an infinitesimal volume
element Ax4yAz fixed in space, and arranging the expression to obtain the equation the equation of
continuity, results in (2.15).

6p=—(V.pv) (2.15)

The vector pv is the mass flux, and its divergence is the net rate of mass efflux per unit volume. In
microfluidic systems, p can be assumed constant in space and time due to low flow velocities, fluid is
incompressible and there is a phase maintenance (Bruus 2006) simplifying the continuity equation (
2.16).

Vv =0 (2.16)

2.4.2.2 The Navier-Stokes equation — Incompressible fluids

The behaviour of the fluid particles in the system which they make part of can be explained fluid
mechanics equations and can be further deduced by several approaches. One of these approaches is
the starts from the Navier-Stokes equation, which describes the motion of fluids, liquids or gases. These
equations consider that changes in momentum in infinitesimal volumes of fluid are simply the sum of
dissipative viscous forces (friction), the differences in pressure, gravity and other forces acting inside
the fluid, which is incompressible under laminar flow conditions with low Reynolds number (2.17 ).

p(d,v + WV)v) =—Vp + NV + f (2.17)

In this equation it can be pointed that the term on the left side of the equation is related to inertia,
more precisely the first term is associated with the unstable acceleration and the second, the convective
acceleration, and the terms on the right side correspond to the pressure gradient, viscosity and other
forces, respectively.

2.4.2.3 Time-independent phenomena

The analysis of convective diffusive transport in microchannel considers incompressible fluid flow,
and convective/diffusive transport of a passively advected scalar field are governed by the continuity,
Navier-Stokes and species transport equations.

In this sense and since the whole basis of the simulation system used throughout the project to solve
and obtain the velocity and concentration profiles simultaneously is based on the same principles, the
following topics will be addressed in a detailed way.
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2.4.2.4 Convective-Diffusion equation

Considering an arbitrarily shaped, but fixed, region (2 in the fluid (Figure 2.24).
The total mass M (£, t) inside 2 can be defined as an integral volume over the density p, where it

has written the infinitesimal integration volume as dr.

M2, t) = jdratp(r, t) (2.18)

Respecting mass conservation principle, M(£, t) can only vary if mass is flowing into or out from the
region 2 through its surface d/2. The mass current density ] in any point in space is given by ( 2.19 ),
where v(r) is the Eulerian velocity field.

Jr,) = p(r,)v(r, 1) (2.19)

Considering the continuity equation and the Navier-Stokes equation for a homogeneous liquid with
density p(r) and momentum density p(r)v(r), the concept of the convection-diffusion equation is now
extended to the case of a solution where several fluids are mixed each with density p,, defined as the
actual mass per volume in the solution. The total density of the fluid is referred p, and the fluid velocity
v is also described in terms of the total momentum density of the solution. Combining the continuity
equation ( 2.15 ) for several homogeneous solutions contributions ( 2.20 ) to density still hold for
heterogeneous solution (2.21).

p(r) = Zapa(r) (2.20)

6p+ (V.pv)=0 (2.21)

The concentration ¢, (, t) of the solute is defined as the density fraction ( 2.22 ).
The mass current density J, for solute « must be written in terms of a convection current density,

comv associated to the global velocity field v of the solution, and a diffusion current density ]Z”f 7 due to
the random motion of the solute relative to the solution.

o7t
ey () =’; ((r t)) (2.22)
Ja=1&m + 3" = copv +15" (2.23)

The continuity equation for the solute density c,p and with the extra current density ]Z”f / added to
the flux through the surface, can be calculated by ( 2.24 ). This equation can be true for arbitrary 2 if the
integrands are identical ( 2.25 ), which with ( 2.21 ) can be reduced to (2.26 ).

jdr@t(cap) = —jda n. (c,pv(r,t) +]Ziff) = —jdr V. (cppv(r,t) +]Ziff) (2.24)
8e(cap) = V. (capv(r,t) +J57) (2.25)
plS.ca +v.Vc,] = —V. 3! (2.26)

In this sense, the diffusion current density is non-zero simply when gradients in the density of the
solute is present. For weak solutions, it is only expected the lowest order gradients to play a role, which
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Figure 2.24 - A sketch of the current density field pv flowing through an arbitrarily shaped region.
Any infinitesimal area da is associated with an outward pointing unit vector n perpendicular to the local
surface. The current through the area da is given by the product of da and the projection pv.n of the
current density on the surface unit vector. (Adapted from (Bruus 2007)).

is expressed by Fick'slaw (2.11). Inserting Fick's law into ( 2.26 ), it is obtained the convection-diffusion
equation for the concentration ¢, of solutes in weak solutions having a velocity field v, where the
constant D,, corresponds to the diffusion constant for solute or in the solvent (Bruus 2007) in ( 2.27 ).

8:¢q +1.Ve, = D,. Ve, (2.27)

Although there are several methods, such as the finite difference and the finite volume methods, for
spatially discretizing differential equations over a solution domain the most common method for solving
fluidic problems is the Finite Element Method (FEM). In this project, FEM was considered to solve this
system of partial differential equations.

2.4.2.5 Diffusion of momentum and Navier-Stokes

Convection-diffusion flow in the GG is responsible for the mass transport in GG so identifying the
influence of momentum diffusion is further investigated. This way, identifying the momentum diffusion
in the Navier-Stokes equation, that decelerates Poiseuille flow, where the Navier-Stokes equation can
be admitted in a simpler form (2.28 ).

P8V, = V20, (2.28)

The momentum density pv,, results from the diffusion equation from ( 2.12 ) into the form ( 2.29 ),
where the kinematic viscosity v(m?.s™1) ( 2.30 ) is assumed as the diffusion constant for momentum.

Similarly with the (2.14 ), there is a momentum diffusion time T, for diffusion where the characteristic
length a can be the the microchannel radius (2.31).

— 2

P&V = Vv, (2.29)

n

v=-—
> (2.30)

2
T, =L (2.31)

v

Consequently, the dimensionless ratio of the diffusivity v of momentum relative to the diffusivity D of
mass results on the number, denoting as the Schmidt number (Sc) ( 2.32 ). The Schmidt number
associated with an intrinsic property of the solution, in contrast to the Reynolds number which due to its
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dependence on the velocity is a property of the flow (Bruus 2007). In the context, the Péclet number
(Pe) is the product of the Reynolds number and the Schmidt number ( 2.33 ).

v_nm
SC=B=p_D (2.32)
L
Pe=%=Re.SC (2.33)

The Peclet number is a dimensionless number relevant in this study, because it relates the rate of
advection of a flow to its rate of diffusion. Thus, it is possible to establish a relationship between

molecular diffusion time, 747 = Z—Zand the typical hydrodynamic transport time, .., = Ui of a system.
avg

For the canonical example of a simple diffusing species in uniform Poiseuille flow through a uniform
circular pipe with no-flux boundary conditions the effective diffusion coefficient is computed. The
concentration is assumed to be governed by the linear convective-diffusion equation and concentration
and velocity written by a cross-sectional average quantities the effective diffusivity can be determined
by (2.34).

1 2
= — 2.34
Degy = D(1+ 7= Pe?) (2.34)

For high Peclet number (Pe > 1000) the diffusion can be ignored, and a pure convection flow
dispersion is observed (Huysmans et al. 2005). For low Peclet number (Pe < 1000) a convection-
diffusion flow dispersion is observed with the increasing influence of the diffusive component that leads
to the increase of the bandwidth dependent on time by ( 2.35).

Terr = 4y IN(2)/Degyt (2.35)

2.5 Final Considerations

A comprehensive review on the basic principles required to understand the present work were briefly
reported. In the first section of this chapter a quick eye anatomy review was made to understand the
reasons that make corneal epithelial cells of mice embryos suitable for this type of study. Afterwards the
different types of angiogenesis processes were defined to support its importance in physiological
conditions and to present the molecular pathway role of two (out of three) major mechanisms,
mechanotaxis and chemotaxis, that rule EC migration that provided the motivation for this study.

In the second chapter section the basic the basic physical principles of fluid mechanics and mass
transport are described and further deepened to understand the interaction between convection and
diffusion in flow. The application of Bernoulli’s principle is fundamental to compute the pressure loss
along the flow and understand the pressure balance in the microfluidic device. The effect of Taylor
dispersion is described to report the effect of shear stress in the effective diffusion coefficient dependent
on the Peclet number.

In the third section of this chapter a brief state of the art is made from fabrication to applications of
microfluidic device technology. The overview of the applications and characterization of microfluidic
devices is made initially to introduce the technology followed by the microfabrication techniques focusing
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in soft lithography and PDMS-PDMS bonding. Finally, a brief overview of mixing technique strategies
employed are presented to support the gradient generator design.

The state of the art review enables a clearer comprehension of the methodologies adopted in the
microfluidic device and methods used for its fabrication and testing.
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3 Materials and Methods

Following the considerations made in section 2, the microfluidic device was fabricated by soft
lithography techniques, mounted, characterized experimentally in the biolab and numerically in CFD
models. The microfabrication of a PDMS microfluidic device is composed by three main steps: hardmask
patterning, master mold fabrication and replica micromolding. The microfluidic design, fabrication and
validation processes required are presented along the next three sections.

Sections 3.2 and 3.3 detail, respectively, microfabrication and bonding processes required for the
creation of the microfluidic device. Section 3.4 discretizes the design process and respective
assumptions made in the CFD commercial code required for the recreation of suitable models.

Section 3.5 describes the experimental setup conceived to test the microfluidic device and compares
it with the idealized conditions simulated in the CFD commercial code. Additionally, the methods
required for the CFD analysis are discriminated.

3.1 Microfluidic Device Overview

To enable microfluidic device global behavior and individual component testing two setups were
considered. A reversible bonding to meet IMM requirements and an irreversible bonding to enable
separate component assessment. A presentation of the individual components and both setups is
presented in this section to provide a comprehensive view.

The components that compose the microfluidic device are the Shear Stress generator (SS) and
Gradient Generator (GG) systems that have a U-shaped form to be produced in PDMS and a PETE
membrane to be placed at the intersection of this channels.

The reversible assembly is composed by the placement from bottom to top of SS, PETE membrane
and GG whose individual components are presented in Figure 3.1 (a), (b) and (c), respectively. The
reversible assembly is depicted in Figure 3.1 (d) and (e). The cells are to be expanded in the PETE
membrane facing the SS channel.

The irreversible assembly systems were made replacing one of the device systems for a glass
substrate permanently bonded to the remaining device system and PETE membrane which is depicted
in Figure 3.1 (f).

3.2 Microfluidic Technology

The microfabrication process was followed at Instituto de Engenharia de Sistemas e Computadores
- Microsistemas & Nanotecnologias (INESC-MN) facilities, which comprises a 250 m? ISO 4 cleanroom
for wafer processing according to ISO 14644-1:2015 standard classification. This standard set the air
quality parameters (air particles) that are controlled by High Efficiency Particulate Air Filter (HEPA) that
filters particles up to 0.3um. The reproducibility of all the process are ensured by datasheet and initial
training provided by INESC-MN investigators and process engineers.
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Figure 3.1 — Individual component systems of the microfluidic device: (a) Shear Stress generator
(SS), (b) PETE membrane and (c) Gradient Generator (GG). (d) Global view of microfluidic device
reversible setup. (e)Section view of microfluidic device reversible assembly. (f) Section view of GG

microfluidic device irreversible assembly.

3.2.1 Mask Design

The mask design was made in a Computer-Aided Design (CAD) software, AutoCAD® 2017 software

according to the INESC-MN good practices:

mask substrate dimension;

5 mm safety margins derived from global fabrication process;

alignment markers;

appropriate dimension of mask elements based on the minimum feature size of the
microfabrication process;

several layers according to the microfluidic device component;

auxiliary elements such as text or dimensions to clarify the drawing.

In the present work, three types of mask design were made, each set with its own specifications and

dimensions, according to project requirements. The microfluidic device is composed by the following
three elements: the Shear stress generator (SS), the Gradient generator (GG) and the PETE membrane.
Table 3.1 summarizes the various SS and GG mask design types and respective characteristic

dimensions and features developed during this work.
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Table 3.1 — Summary of mask types, features and characteristic features.

Model Structure Length Width Height Pillar Diameter
L{pm] W [um] H [um] ¢ [pm]
I GG 40000 3000 100 NA
] GG 40000 3000 100 100
i SS 22100 4500 100 NA
v SS 22100 4500 100 100

During the design phase of all structures, the creation of auxiliary elements, such as a scale (or ruler
along the length of the microchannel) and larger structures for inlet and outlet are considered good
practices. The scale and alignment markers along the microchannel provide component alignment not
only during structure handling but also for hole drilling and connector insertion in PDMS structure.
Although the present mask design doesn’t have a scale, the inclusion of pillar elements equally spaced
provide both orientation alignment as well visual auxiliary markers. During the design phase extra care
is required when inverting mask. Due to the scale of work the unit measures should be micrometers.

3.2.1.1 Gradient Generator

The GG schematic is presented in Figure 3.2 and has external dimensions that fit substrates common
work dimension (5 x 5 cm?) and the external structural elements (a margin of at least 0.5 ¢m) to provide
safe handling, peeling and puncture of the PDMS system. The GG is composed by eight alignment
marks, three inlets with diameter ¢, = 1500um, one outlet ¢, = 1500um, six levels of stream splitting
with W, = 100 um width and L, = 18100 um long and a channel with W = 3000 ym width and L, =
22300 um long. The inclusion of two lines of pillars with diameter ¢. = 100um and longitudinal and
transversal spacing of S, = 742 um and S,, = 1125 um is necessary to avoid PDMS channel ablation.

3.2.1.2 Shear Stress Generator

The SS schematic is presented in Figure 3.3 and has the same external dimensions and external
structural elements describe in the previous section. The SS is composed by eight alignment marks,
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Figure 3.2 — Top view of GG mask schematic, at left global view, at top right middle inlet detail and
at bottom right column spacing detail.
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Figure 3.3 — Top view of SS mask schematic, at left global view, at top right column spacing detail

and at bottom right outlet detail.

one inlet and outlet with diameter ¢, = ¢, = 2000um, an inlet and outlet developing zones with
dimensions W, = W, = 2000 um width and L; = L, = 5525 um long and a central channel with W =
4500 um width and L, = 11665 um long. The inclusion of two lines of columns with diameter ¢, =
100um, coincident with the SS, and longitudinal and transversal spacing of S, = 742 um and S, =
1125 um, to avoid PDMS channel ablation.

3.2.2 Hardmask patterning

To fabricate the master mold that provides the scaffold for PDMS microfluidic device a previous step
of hardmask patterning is required. The hardmask patterning can be further subdivided in five steps: (1)
glass substrate dicing cleaning and preparation, (2) Aluminum deposition, (3) photolithography, (4)
Aluminum wet etching and (5) PR strip.

1) The glass substrate dicing, cleaning and preparation is made in the Wet bench of the grey area.
The glass substrate used as holder, with dimensions 50 x 50 mm? and diced in DISCO DAD 321
(Figure 3.4 (a)), was washed consecutively during 30 min in Acetone, isopropyl alcohol (IPA),
deionized (DI) water in a ultrasound bath at 65°C in MKC22™ (Figure 3.4 (c)) followed by a blow
dry. In this step additional care should be taken to avoid the persistence of glue residues.

Figure 3.4 - Disco DAD 321 Dicing Saw (DISCO™ 2011). and 5 = 5 cm? glass sample at right. (c)
MKC ultrasonic baths MKC22. (Guyson™ 2017).
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Figure 3.5 — (a) Nordiko 7000 broad ion milling system (Nordiko™ 2014). (b) Dektak 3030
profilometer at right (Dektak™ 2001).

2) The Aluminum deposition is performed in a clean room environment. The glass is fixed with duct
tape, then placed at Nordiko™ 7000 (Figure 3.5), with the following program Mod 4 Function 8,
2 kW power, air flux of 50.0 sccm and pressure of 2.9 mTorr with the run 20212. After the
deposition the duct tape is removed, and the substrate checked at a profilometer to access the
thickness of the sample (Figure 3.5).

(c)

Figure 3.6 — (a) Vacuum Bake/Vapor Prime System, Yield Engineering Systems (Yield Engineering
Systems™ 2017). (b) SGV 88 series track system C&D Semiconductor Services (C&D Semiconductor
Services™ 2017). Direct Writer Laser (DWL) lithography 2.0 system Lasarray, (c) global view and (d)
sample holder in detail.
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Figure 3.7 — (a) Wet bench in clean room. (b) Olympus BH3-MJL optical microscope (Olympus™
2000) .

3) The photolithography starts by a simultaneous “one-stop” substrate dehydration and
hexamethyldisiloxane (HMDS) deposition. It is performed in Vapor Prime Oven for 30 min, with
a 5 min spraying HMDS and baking to improve the adhesion of the resist (an organic compound)
to the substrate (a non-organic substrate) in Vacuum Bake/Vapor Prime System, Yield
Engineering Systems™, Inc (Figure 3.6 (a)). The 1.5 um of positive PR coating was done at a
SGV™ 88 series track system (Figure 3.6 (b)) with the recipe 6/2 at coating track, spinning for
5 s at 0.8 krpm, followed by 30s at 2.6 krpm and a final soft-bake at 85°C for 1 min. The sample
was exposed in Direct Writer Laser (DWL™) lithography 2.0 system (Figure 3.6 (c)), using a
90 mW power, 422 nm wavelength laser (near Ultraviolet light (UV)) with energy indicator of 65
and focus +30. The development step was made is done at a SGV™ 88 series track system
(Figure 3.6 (b)) with the recipe 6/2 at coating track, baking at 110°C for 1 min, cooling for 30 s
and a development for 1 min. To verify a correct development the sample was checked in the
Olympus™ microscope BH3-MJL (Figure 3.7 (b)).

4) The Aluminum wet etching was performed at the wet bench of the clean room. The Aluminum
etchant is TechniEtch™ Al 80 MOS at room temperature for 3.5min and agitation with
ultrasounds (Figure 3.7) followed by a DI water washing and compressed air drying.

5) The PR strip was performed in the wet bench of the grey area. The glass substrate cleaning was
made with Microstrip™ 3001, 65°C and ultrasounds bath (Figure 3.4 (c)) for 20 min. A final
washing was made using IPA, DI water and a compressed air drying.

3.2.3 PDMS molding

PDMS molding requires the fabrication of a master mold that was performed in the biolab facility.
The process is composed by several steps. Starts with the Silica substrate cleaning and preparation,
followed by a dehydration bake, SU-8 pouring and substrate spinning, a pre-bake and soft bake, an UV
exposure with the previous hardmask, a post-exposure bake, a development step and final cleanup.
Apart from the Silica substrate cleaning and preparation that is performed in the wet bench of the grey
area, the remaining steps are done in the biolab facilities.
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Figure 3.8 — (a) JeLight UV cleaning machine 144AX (JeLight™ 2015). (b) Stuart digital hotplate
SD160 (Stuart™ 2017). (c) FASTER BSC-EN laminar flow hood (FASTER™ 2017).

The Silica substrate was washed consecutively during 30 min in Alconox solution, deionized (DI)
water in a ultrasound bath at 60°C in MKC22™ (Figure 3.4 (c)) followed by a blow dry and an UVO
cleaning (Figure 3.8 (a)) during 15 min.

A dehydration bake was performed in a hotplate (Figure 3.8 (b)) at 110°C during 5 min followed by a
cooling step to room temperature.

The SU-8 50 negative resist (MicroChem, n.d.) Figure 3.9) pouring on the Silica substrate and two
spinning steps were performed. The first one was performed at rotational speed of 500 rpm during 10s
and with rotational acceleration of 100 rpm/s and the second one at rotational speed of 1200 rpm during
30s and with rotational acceleration of 300 rpm/s to ensure a SU-8 resist thickness of 100 um.

In the hotplate (Figure 3.8), a pre-bake step of 10 min at 65°C was conducted, followed by a post-
bake of 30 min at 95°C and finishing with a cooling step of 10 min.

An UV-exposure (Figure 3.10) was made on the SU-8 on Silica substrate protected by the hardmask
used in the previous section. The two samples were aligned and fixed using duct tape to the polymer
holder. The exposure was made at during 74 s with a 5.95 mW.cm™? radiance.

A post-exposure bake was done in the hotplate (Figure 3.8), with a pre-heat of step of 1 min at 652C
was conducted, followed by a post-exposure bake of 10 min at 105°C and finishing with a cooling step
of 10 min.

The development of the SU-8 mold was performed with Polyglycidyl methacrylate (PGMA Figure
3.10) during 10 min with manual agitation, followed by an IPA rinse a blow air dry. The samples were

(b)
Figure 3.9 — (a) Laurell WS-650-23 Spin Coater at left (Laurell™ 2017). (b) MicroChem SU-8 50
(MicroChem™ 2000).

35



Figure 3.10 — (a) UV 800W Curing Flood Lamp from UV technology limited (UV-light Technology™
2017). (b) Sigma-Aldrich Poly(glycidyl methacrylate) (Sigma-Aldrich™ 2017). (c) Profilometer — Tencor
Alpha Step 200 at right (Tenkor™ 2015).

placed at the profilometer (Figure 3.10) to assess the effective thickness of the SU-8 resist on the Silica
substrate.

3.2.4 Replica Molding

The PDMS devices for SS and GG were prepared in a mold consisting of two SU-8 molds onto 2” Si
plus one PMMA plate for mold thickness. The SU-8 mold is fabricated by soft lithography and the PMMA
plate is fabricated by micromilling.

The PDMS molding is composed by the following steps who can be performed in parallel starting
with PDMS preparation, mold cleaning, scaffold assembly, scaffold filling, baking and peeling and mold
cleaning. Except for the mold cleaning step that is performed in the wet bench, the remaining steps are
done in the biolab facilities.

The PDMS molding starts with the PDMS formulation Sylgard™ 184, which is composed by a liquid
silicon rubber base and a curing agent. The base and curing agent were measured (Figure 3.11) in a
10: 1 ratio by weight, according to the Sylgard 184 silicone elastomer datasheet (Figure 3.11), and mixed
thoroughly by hand for about 1 min. The mixture was degassed in a vacuum desiccator (Figure 3.12
(a)) until all air bubbles were removed.

The Silica mold substrate was washed consecutively using IPA and DI water followed by a blow dry.

The master mold was assembled with duct tape to a micromachined PMMA plate to ensure the
correct PDMS height and lateral dimensions (scaffold). The PDMS was poured over the scaffold after

®)
Figure 3.11 — (a) Scientech laboratory balance SA-80 (Scientech™ 2017). Sylgard® 184 Pack with
elastomer (b) curing agent (Dow Corning™ 2017b) and (c) silicone elastomer base (Dow Corning™
2017a).
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Figure 3.12 — (a) Bel-Art vacuum desiccator (Bel-Art™ 2017). (b) Memmert Universal Oven
(Memmert™ 2007).

degassing and placed in the oven at 70°C for 2 h (Figure 3.12 (b)). After curing the elastomer, the
crosslinked PDMS was removed from the scaffold using a cutter and tweezers paying extra care to the
borders to avoid PDMS residues in the scaffold. Using a needle with size equal to or below the metal
connectors used, holes in the PDMS at the inlet and outlet areas were made in the GG by turning gently
to stick and remove.

The Silica mold substrate was first cleaned, removing persistent PDMS residues from the peeling
and washed consecutively using IPA and DI water followed by a blow dry to enable further use.

3.3 Assembly Techniques

For testing purpose, two types of microfluidic assemblies were considered to ensure the constitution
of a reversible assembly that fit the needs of the final device and an irreversible assembly that could
provide the maintenance of the laboratorial conditions required for its complete study.

Micromilling is a subtractive fabrication process that relies in rotating cutting tools to remove the bulk
material. The cutting tools (e.g. endmill or drill) move along a worktable with the workpiece in the XY
directions (horizontal plane) and a spindle to secure, rotate and positioning the cutting tool in the Z
direction (vertical direction) (Figure 3.13 (a)). For a micrometric scale the milling control is a CNC
(computer numeric control) that enables automation, repeatability and precision. The geometric patterns
can be configured through the conversion of a CAD drawing to make directly the microfluidic channels
or the molds used in other fabrication techniques.

Spindle
controller

M’“’"‘

w“““ o”

(a) ' (b)
Figure 3.13 — (a) Schematic of micromilling fabrication processes. (adapted from Silverio and
Freitas 2018). (b) Micromilling machine of INESC-MN.

37



(a) (b)
Figure 3.14 — (a) SterliTech PETE Membrane Filters ((SterliTech™ 2017)). (b) Harrick Plasma
Cleaner PDC 002 (Harrick Plasma™ 2017).

The irreversible assembly accomplished by bonding in the UVO cleaner while the reversible
assembly is achieved by mechanical sealing of the PMMA holder micromachined.

For irreversible assembly microfluidic device, the PDMS structures were washed consecutively using
IPA and DI water followed by a blow dry. Afterwards, GG and PETE membrane (Figure 3.14 (a)) were
placed at the Plasma Cleaner (Figure 3.14 (b)) during 45 s at medium intensity with the contact surface
for bonding facing up. The exposed surfaces were aligned and placed in contact to match the final
mounting. A secondary surface plasma treatment was repeated to bond the coupled components (GG
and PETE membrane) to SS. The device was stored for 24 h prior to use to enable an effective bonding.

The reversible assembly microfluidic device consisted in a previous washing step consecutively
using IPA and DI water followed by a blow dry. A second step of alignment of SS, PETE, GG in the
PMMA holder and finally, the components were mechanical sealed tightening a set of screws.

3.4 CFD Simulation

Presently available CFD solutions are a valuable tool to predict for simulate microfluidic devices
behavior that contribute for its efficient and optimized design.

Several solutions are only possible due to the incorporation of complex channel geometries whose
optimization is possible at a numerical level. These solutions avoid the fabrication of all iterative steps
taken to achieve the final design with the right geometry, material properties, boundary conditions and
numerical discretization it is possible to predict at some extent the behavior of the microfluidic device.

These models reproduce a compromise between the computing power required and the accuracy
gain. This way model simplifications are acceptable provided that experimental validation is made, and
the dominant physical effects are included on analysis assumptions.

To compute the shear stresses and concentration gradients experienced by the EC on the
microfluidic device through the project, CFD commercial software was used. The microchannel was
designed in the software or imported from CAD Software and was used to define both Subdomain and
Boundary Settings. After, simulation computation its results were adjusted in post-processing. The
simulations were computed in a laptop with an Intel(R) Core(TM) i7 CPU Q 740 with 4 cores processors
with 1.73GHz each.
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According to this experimental setup, two model types must be considered, one with mass transport
to access the concentration gradient sensed by the EC through the PETE membrane pores and
concentration profile along an alignment and other to study the shear stress distribution along the EC
for a given flow according to a determined cell distribution. Four models were used to study the transient
pore diffusion which took approximately 4 h for model. Sixteen CFD models were used to study the
concentration profile gradient along alignments that took approximately 6 min each. Eight CFD models
were used to access the wall shear stress in EC which took 12 h for computation.

3.5 Experimental Setup

As referred in section 2.1.2.5 chemotaxis plays a role in the EC migration modulating the direction
toward a gradient of soluble chemoattractant. In this context, one of the objectives of this study was the
creation of a steady-state gradient, to validate the effect of the molecular gradient along the
microchannel width extension of the GG.

3.5.1 Generation of stable gradient using dye solution

To obtain the generation of gradients in the microchannel of the microfluidic structure, initially a
computational fluid dynamics simulation was made in a CFD commercial software.

In the experimental context, the PDMS devices, which fabrication process was described previously
in section 3.2, were tested with DI water and Rayner's™ blue dye (Figure 3.15 (a)). All experiments
were performed with an inverted microscope from Olympus™ and incorporated digital color camera
Olympus XC30 (Figure 3.15 (b)).

Room temperature was controlled at 22 °C. The cleaned device was inserted on the microscope. In
this device, settled with an irreversible assembly setup, polyethylene tubes (Instech Solomon™) were
inserted on the GG outlet and inlets metallic connectors, with an Eppendorf™ tube for waste (Figure
3.16). The syringe pumps (NE-300, SyringePump.com™) (Figure 3.15 (c)), that were previously
calibrated for the syringe diameter, (U-100 Insulin, 1mL d 4.1 mm, Codan™) were placed in the inlets
with the flow rates ranging from 0.6 — 120 ulL.min™1.

(c)
Figure 3.15 —(a) Rayner’s blue concentrated dye (Rayner's™ 2011). (b) Olympus XC30 camera

(Olympus™ 2017) coupled with inverted microscope model from Olympus. (c) Syringe pump from NE-
300 SyringePump.com (SyringePump.com™ 2017).
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Figure 3.16 — (a) Schematic illustrating the standard experimental setup for GG microfluidic device

at left. (b) Images taken with microscope field of view at right.

The microchannel device was focused on microscope with the larger possible field of view (FOV) 4X

magnification. The process of filling was made from the entrance of the inlet. It was considered a settling

time of 1 min. To observe the GG main microchannel two alignments were chosen, the first at the mixer

exit and the second at the membrane entrance. Three pictures per alignment had to be taken

considering a superposition area between consecutive pictures since the FOV didn’t cover all channel
extension (Figure 3.16 (b)).

In these experiments an exposure time of 540 ms was used to minimize photobleaching. Each image
was post-processed in MATLAB 2015 (b) for:

aligning the consecutive images using reference points;

computing the intensity (I;) using the RGB intensity along a given alignment ( 3.1 ) for the
pure DI water solution and non-mixed concentrated solutions with concentrations ranging
from 1:1 to 1: 200;

I 0.2126 X R+ 0.7152X G + 0.0722X B (3.1)
i =
3

computing the relative intensity (;—;) of a concentrated solution relative to the correspondent
DI water solution along a given alignment homogenizing the results for a constant length
vector;

computing relation between the image intensity (I) and the concentration of known solutions
(c;) using an exponential relation ( 3.2 ). Note that the brightness was homogenized relative
to a DI water solvent (I,).

1
I—(ci)=a+bxe‘c*ci (32)
0

estimating the concentration of an unknown concentration profile in the mixer due to a
combination of different inlet concentrations and flow rates using the relation ( 3.2 )
computed.

The experimental setup overview can be observed in Figure 3.17.
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Figure 3.17 — Experimental setup for the gradient generation determination, microfluidic device
zoomed at left and global overview at right.

The inlet concentrations and flow rates considered both for the calibration step and for the gradient
determination are summarized in
Table 3.2.

Table 3.2 — Inlet concentration and flow rates for the calibration step (left) and for the gradient
determination (right).

Calibration Inlet Concentration  Inlet Flow Rate Gradient Inlet Concentration Inlet Flow Rate
Step {cn: ¢z csl [uL.min™1 ] Test {c1; €25 €3} [uL.min™1]

1 {000} 9,000 1 {1:1 1:10 1:100} 0,600

2 {1:200 1:200 1:200} 9,000 2 {1:1 1:10 1:100} 9,000

3 {1:100 1:100 1:100} 9,000 3 {1:1 1:10 1:100} 63,0

4 {1:20 1:20 1:20} 9,000 4 {1:1 1:10 1:100} 120,0

5 {1:10 1:10 1:10} 9,000 5 {1:2 1:20 1:200} 0,600

6 {1:2 1:2 1:2} 9,000 6 {1:2 1:20 1:200} 9,000

7 {11 1:1 1:1} 9,000 7 {1:2 1:20 1:200} 63,0

8 {1:2 1:20 1:200} 120,0

3.5.2 Generation of a stable shear stress

The flow rate was determined for both the GG and the SS to measure the average velocity and to
determine indirectly the shear stress at the microfluidic device walls. The average flow rate was
determined measuring the mass of DI water in the Eppendorf™ placed at the outlet and considering the
average water density at the room temperature 22°C to compute the water volume and dividing it by the
elapsed time during the experiment according:

tp =ty —ty Q=

Mpi—Mi;

v ="

o (3.3)

The experimental setup for both the SS and GG can be observed respectively in Figure 3.18 and
Figure 3.19.

The flow rates set at the inlets were made to match the channel cross section average velocities and
are presented along with the estimated time to fill the 1mL Eppendorf™ in Table 3.3.
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Figure 3.18 — Experimental setup for flow estimation in Shear Stress Generator with dimensions
4500 x 100 um?.

Figure 3.19 — Experimental setup for flow estimation in Shear Gradient Generator with dimensions
3000 x 100 um?.

Table 3.3 — Microchannel average velocity, individual inlet flow rate and estimated filling time for

1 mL volume.
GG Test Average Inlet Flow Filling SS Test Average Inlet Flow Filling
Velocity Rate Time Velocity Rate Time
[mm.s™1] [uL.min™1] [min] [mm.s™1] [uL.min™1] [min)
1 0,1 0,6 555,0 1 0,1 2,7 370,4
2 15 9 37,0 2 15 40,5 24,7
3 10,5 63 53 3 10,5 283,5 35
4 20 120 2,8 4 20 540 1,9

3.6 Final Considerations

A brief description of the design assumptions, and fabrication process of the microfluidic device were
depicted in this chapter. The first section is devoted to the fabrication process composed by hardmask
patterning, mold fabrication and PDMS casting. The process starts with the hardmask patterning of
Aluminum in a glass substrate through a photolithography process developed in a clean room
environment providing the 2D geometry. This hardmask is used in a subsequent photolithography
process to enable the creation of a master mold in a resist (SU-8) that provides the volumetry of the
mold. Finally, the PDMS is poured in the master mold enabling several replica molding.

The second section describes the reversible or irreversible assembly of the microfluidic device that
and the aim of the development of the latter device that enabled the reproducibility of the experiments.

The third section was dedicated to the computational simulation of the microfluidic device
components. The pre-design considerations made, and the simplifications assumed are depicted
establishing a compromise between computing power and model accuracy.

Finally, the fourth section describes the experimental setup and respective procedures, that provides
the validation of the project requirements.
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The shear stress experienced by the EC is assessed indirectly through the flow rate measurements
and channel geometry discrimination. The concentration gradient along a channel alignment is
assessed through image processing analysis with an initial calibration. The microscope FOV limited the
direct assessment of the concentration profile that had to be tackled with an initial processing step.
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4 Results and Discussion

In this chapter, the fabrication, design and validation processes of the microfluidic device will be
detailed with the presentation of the results.

The three main process steps of PDMS microfabrication are characterized in the section 4.1 namely
the hardmask patterning, PDMS molding and replica molding. Section 4.2 is devoted to the CFD
simulation of microfluidic device to estimate the mass transport at a microscale in the membrane pores
in the GG and the shear stress sensed by an array of cells in the SS. Finally, in section 4.3 the validation

of the physical processes is detailed in the experimental setup.

4.1 Microfluidic Technology

The first objectives of this work include the design and fabrication of a microfluidic device using Soft
Lithography. The fabrication of a PMMA holder that enabled the mechanical sealing of the microfluidic
device resorted to micromilling described in section 3.3. The material chosen for microfluidic device
fabrication was PDMS due to rapid prototyping, low cost, competent mechanical and optical properties
and biocompatibility as described in section 2.3.1. The microfluidic device components are depicted in
Figure 4.1 as well as the hydraulic circuit sections along with its geometric properties.

Additionally, for experimental purposes the individual structures were chemically bonded to PETE
membrane and glass substrate using plasma cleaner (Figure 3.14 (b)) accordingly section 3.3. A global
overview of the microfluidic technology process is presented in Figure 4.2 for SS and GG components.
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Figure 4.1 — Top view of microfiuidic device. The hydraulic circuit model simplification is defined by
section of the Microfluidic device. In red GG sections, in grey the SS sections and in yellow the PETE

membrane.
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Figure 4.2 — (a) Microfluidic technology auxiliary components (Hardmask, SU-8 mold and PDMS
microfluidic device) for SS. (b) Hardmask, SU-8 mold and PDMS microfluidic device for GG.

The inclusion of anti-fouling pillars was a strategy adopted both in GG and SS PDMS systems to
avoid channel ablation due to the large width to height ratio in the cross section, respectively 30: 1 and
45: 1, and the membrane deflection on the PDMS systems intersection. The intricate network created in
the GG improves the mixing efficiency since the shear stress involved have a spanwise component that
enhances the diffusion. The GG and SS systems are disposed in a perpendicular way, so the
concentration gradient imposed by GG on the PETE membrane and shear stress imposed by SS have
opposite directions enabling the study of simultaneous modulation of mechanotaxis and chemotaxis in
EC.

4.1.1 Hardmask patterning

The first step in the hardmask patterning consisted in the glass substrate cleaning and preparation
performed at the wet bench and where the appearance of residues on the substrate should be avoided
at any cost. The second step consisted in the deposition of a 1500 A Aluminum film on the glass
substrates (Figure 4.3) at Nordiko™ 7000 (Figure 3.5). A dummy sample scratched with a marker was
made to access the layer thickness.

Photolithography process starts with resist deposition at the SVG™ 88 series track system (Figure
3.6 (b)), followed by an UV-light exposure in the DWL™ lithography 2.0 system (Figure 3.6 (c)) and
development at SVG™ 88 series track system. The sample structure development was verified in
Olympus™ microscope BH3-MJL (Figure 3.7 (b)) and is presented in Figure 4.4.

Figure 4.3 — Al deposit in glass substract.

46



02mm
02mm

02mm

]

[l i |
(a) (b)
Figure 4.4 — Glass substract after photolithography and some structure details at optical
microscope for GG (a) and SS (b).

The Aluminum wet etching was performed with TechniEtch™ Al 80 MOS at the wet bench of the
clean room (Figure 4.5 — (a) and (d)). The PR strip was performed with Microstrip™ 3001 in the wet
bench of the grey area followed by a final washing with IPA, DI water and a compressed air drying
(Figure 4.5 — (c) and (f)).

As it can be observed in Figure 4.4 and Figure 4.5 the definition of the smaller 2D structures were all
defined since the m.f.s. is around 100 nm and the m f.s. of the SS and GG is about 5000 nm in the anti-
fouling pillars.

4.1.2 PDMS Molding

PDMS molding starts with the Silica substrate cleaning and preparation in the wet bench of the grey
area, by a dehydration bake in a hotplate (Figure 3.8 (b)) and finally by a cooling step. The SU-8 resist
is poured in the cooled Silica substrate and then subjected to a spinning process that defines the film
thickness. The Silica substrate is subjected to a pre- and soft-bakes to evaporate the solvent to make
the SU-8 photoresist more solid.

Figure 4.5 — Glass substract after aluminium wet etching and some details at optical microscope
respectively for GG (a) and SS (d). Hardmask after photoresist strip and some details at optical
microscope respectively for GG (b) and SS (e). Hardmasks final aspect respectively for GG (c) and SS
().
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To define the microchannels pattern, an UV exposure (Figure 3.10 (a)) with the hardmask made
previously is performed, followed by a post-exposure bake. A development step with PGMA was made
to reveal the microchannels patterns after which a final cleanup was made.

The microchannels height and width were verified at the profilometer (Figure 3.10 (c)) to assess the
effective thickness of the SU-8 on the Silica substrate. The average thicknesses of the SS and GG
samples were respectively thgs = 108,0 um and th;; = 97,8 um whose measurements can be observed
in Table 4.1.

Table 4.1 — SU-8 on the Silica Substrate profilometer assessment points on SS sample in top
picture and on GG sample in bottom picture. The pink arrow indicates the order and place of the

sample observations.

. Sample SS Sample GG Sample SS on top
Observation th [um)] th [pm] Sample GG on bottom
1 104,0 101,5
2 108,0 103,0
3 104,0 105,3
4 109,2 106,8
5 112,4 90,6 RE
6 109,4 83,7 E §
7 108,2 86,8
8 107,1 103,8
9 107,0 86,2 1 77 o |
10 106,4 86,1
S0
1 103,9
12 104,6
13 111,2
14 110,2
15 84,8 F
16 86,9 8
17 85,6
18 107,4 | |
19 109,3 | . |
Average 108,0 97,8
S0_mn

The SS sample thickness is slightly larger due to the fact that the initial protocol consider a thickness
of 150 um of SS sample, that had to be corrected for lower values due to the SU-8 50 limitations
(MicroChem™ 2000) comprehended between 50 to 120 um. Several procedures like velocity spinning
adjustments and two steps SU-8 deposition and exposure were taken to override this limitation with little
success. The smaller structures like the anti-fouling columns and mixer microchannels have a good
resolution as depicted in Figure 4.6 and didn’t show greater distortion at the edges. The final aspect of
SU-8 resist molds in Si substrate is presented in Figure 4.7 (b) and (c).

Figure 4.6 — Profilometer measurement in GG sample at left. Profilometer tip in SS sample
structure border at middle. GG sample detail on the mixer area at right.
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Figure 4.7 — (a) PDMS scaffold composed by SU-8 mold and pocketed PMMA plate. GG (b) and
SS (c)SU-8 resist molds on Si substrate coupled with PMMA plate.

4.1.3 Replica molding and Assembly

The PDMS device components for SS and GG were prepared in a mold consisting in the SU-8 mold
onto 2” Si plus one PMMA plate for mold thickness (Figure 4.7 (a)).

The replica molding was performed in the biolab facilities and consisted on the PDMS preparation,
mold cleaning, scaffold assembly, scaffold filling, baking and peeling and mold cleaning.

Several SS and GG PDMS samples were produced to enable a comprehensive study of the
microfluidic device. The PDMS devices were pierced with a metallic connector before assembly. The
assembly could be reversible or irreversible. The reversible assembly is composed by mechanical
sealing in the PMMA holder device micromachined while the irreversible assembly is composed by
structures cleaning and bonding in the UVO cleaner.

The PMMA holder fabricated for the reversible mechanical sealing had to be adapted through the
design process. The initial version was composed by two PMMA plates with a pocket on the bottom.
This version has been discarded since the optical properties of the mechanism would be compromised
in posterior microscope observation. The second version was composed by three PMMA plates, with
metallic bolts to mechanically seal the mechanism (Figure 4.8 — (a)).

Figure 4.8 — (a) Schematic on the last version of PMMA holder with microfluidic device. Top view of
the (b) initial version and (c) Last version of PMMA holder.
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(a) (b) (c)
Figure 4.9 — Top view of the PMMA microfluidic device holder ((a) — bottom plate, (b) — Middle
plate, (c) — Top plate). The plates have through holes for bolt tightening and only the top plate has
access holes for microfluidic device inlets and outlets.

This holder couldn’t stand more than 10 assemblies due to the wear of PMMA threads. The third and
definitive version of the holder was built using through holes and metallic bolts and nuts (Figure 4.8 —
(b) and (c)).

The microfluidic device exhibited some leakages between the PDMS structures and PETE
membrane (Figure 4.10 — (a)). An additional compression was achieved with additional acrylic sheets
to fill any gap between PDMS and PMMA holder reducing the leakage problem (Figure 4.10 — (b)). The
assemblage of the PDMS device consisted in mounting the GG, the membrane and then the SS
because this way the alignment was more efficient.

The irreversible assembly of individual PDMS systems enabled the effective flow rate on the device
without leakages. The SS and GG individual PDMS structures bonding to PETE membrane and glass
substrate are presented in Figure 4.11.

Plasma activation creates a weak bond between the PETE membrane and the PDMS microfluidic
device (Aran et al. 2010) that isn’t suitable for high pressure applications. In the microfluidic experiments
performed the membrane zone didn't blister for low flow rates, however, for higher flow rates, used for
microchannels clearance, the membrane zone blister. If this structure was to be used in higher pressure
domain, a one-step chemical modification (amine-PDMS linker) at room temperature followed by corona
treatment could be applied to increase the performance (Wu et al. 2014).

(b)
Figure 4.10 — (a) First version of microfluidic device with major leakage. (b) Third and last version

of microfluidic device with minor leakage issues.
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Figure 4.11 — (a) Side view schematic of the GG PDMS structures bonding to PETE membrane (b)
SS PDMS structure bonded to PETE membrane and glass substrate. (c) GG PDMS structure bonded
to PETE membrane and glass substrate at right.

4.2 CFD Simulation

4.2.1 Pressure Balance

PDMS has a Young modulus below 1 MPa (see Table 2.1) which make it suitable for low pressure
microfluidic applications the pressure balance between the SS and GG in the membrane zone is critical
to avoid additional membrane deflections or leakages. Pressure loss was computed over the hydraulic
circuit using the Bernoulli principle assuming that the fluid (water) is incompressible, the flow is steady
and that friction by viscous forces is negligible using the section dimensions and channel geometry of
microfluidic device channel and polyethylene tubing the. The hydraulic circuit sections are depicted in
Figure 4.1 and its geometric properties in Table 4.2.

The Bernoulli principle application is valid for most of the hydraulic circuit except for transition zones
due to cross sectional variation and the mixer zone (GG - 2a) of GG. In this area the goal is to mix the
inlets using viscous forces, however it has a null effect on the membrane pressure. To determine the
pressure in the membrane only channel sections (SS - 3) and (SS - 2b) in SS and sections (GG - 3) and
(GG - 2c) in GG must be considered.

Table 4.2 — Parameters of the microfluidic device.

Structure Channel Extension Shape Diameter Width Height Area Perimeter
Section [mm] [mm] [mm] [mm] [mm? [mm]

Gradient Generator GG-1 150 Cylindrical 0,86 - - 0,58 2,70

GG-2a 19,3 Rectangular - 0,2 0,1 0,02 0,60

GG-2b 11,5 Rectangular - 3 0,1 0,30 6,20

GG - 2c 10,8 Rectangular - 3 0,1 0,30 6,20

GG-3 150  Cylindrical 0,86 - - 0,58 2,70

Shear Stress ss-1 150  Cylindrical 0,86 - - 0,58 2,70

SS-2a 12,5 Rectangular - 4,5 0,1 0,45 9,20

SS-2b 12,5 Rectangular - 45 0,1 0,45 9,20

SS-3 150  Cylindrical 0,86 - - 0,58 2,70

The dimension of the channel extension was considered the projection over the flow direction. Due
to presence of microchannel bifurcation levels in the mixer section of GG (GG - 2a) of bifurcation the
flow was considered divided by several small microchannels in its extension with dimensions

0.2 x 0.1 mm?. The values of pressure drop for each region of the flow is given in Table 4.3. The
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extension of the polyethylene tubing was also considered since it represents about 1/3 of the pressure
drop (2.7 ) on the SS and less than 4% of on the GG. The discrepancy is due to the section constriction
in the mixer area of the GG that is made to enable a better mixing resulting in a larger pressure drop as
detailed in Table 4.3 that are performed for a SS mean fluid velocity U = 20.0 mm. s~ that yields a flow
rate in section SS-2a and SS-2b of 540pL. min~1.

Table 4.3 — Pressure drop computation and average wall shear stress for enables a pressure

balance
Structure Channel Dy, U Re f Ap T
Section [mm] [mm.s'] [-] [-] [Pa] [Pa]
Gradient GG-1 0,86 4,2 2,40 6,7 33 0,09
Generator GG-2a 0,13 56,8 4,98 3,2 2366 8,17
GG-2b 0,19 24,6 3,13 51 290 2,44
GG-2c 0,19 24,6 3,13 51 272 2,44
GG-3 0,86 12,7 7,19 2,2 99 0,28
Shear SS-1 0,86 15,5 8,77 1,8 121 0,35
Stress SS-2a 0,20 200 257 62 251 1,9
SS-2b 0,20 20,0 2,57 6,2 251 1,96
SS-3 0,86 15,5 8,77 1,8 121 0,35

From Table 4.3 it is possible to conclude that for all microchannels the flow is laminar. The wall shear
stress was computed according to ( 2.9).

To balance pressure in the PETE membrane, the flow rate of SS and GG must be set to the relation
(4.1). The pressure loss in polyethylene and mixer areas isn’t negligible. The calculated averaged wall
shear stress for the SS surface in the PETE membrane area (SS - 2a and SS — 2b) found to be 1.96 Pa.

Qe = 0.82 % Qss (4.1)

4.2.2 Characteristic Diffusion Time

An estimate of the time required to simulate the VEGF diffusion at the membrane pore provides an
order of magnitude of the process and limits the time of CFD simulation (t,,,,) used to assess the effective
concentration diffusion. The transport will be convective-diffusive and not separately convective or
diffusive. However, to estimate the concentration establishment time some simplification must be made.

Two hypotheses were considered, a mixed transport ruled initially by convection in the channel (x;)
and afterwards by diffusion (x,) and a pure diffusion transport ruled solely by diffusion over the distance
(x; + x,). Note that since the pore is closed at the bottom the convective transport in this part is
excluded. The schematic of travelling distance is depicted in Figure 4.12 (a).

Considering the convective transport, the particle velocity considered was 1/5 of the average velocity
derived from the paraboloid velocity profile in the effective diffusive time computation and the particle
travelling time (t,.) computation is straight forwarded. The diffusive time constant is estimated using the

2
relation T = L—CD. The characteristic length (x, ) is the membrane thickness or inlet-pore distance and the
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Figure 4.12 — (a) Side view of GG and membrane detail in red. (b) Travelling distances scheme of

x, and x, in GG schematic. (c) Travelling times scheme of t,. and t,, for a mixed transport ruled
initially by convection and afterwards by diffusion in GG. (d) Travelling time scheme of t,,,,, for a
mixed transport ruled by diffusion in GG.

diffusion coefficients, D, of water which is a small molecule and a large protein like VEGF. The
convective time is at least five times the characteristic diffusive time in the pore ( 4.2 ), resulting in
0.13 [s] for a small molecule and 2.50 [s] for a large protein.

ti=5XTl‘ (42)

The simulation time was computed as the minimum between the sum of effectives convective (t,.),
diffusive (t,4), and effective diffusive path times (t,4..4). The schematic of travelling times is depicted in
Figure 4.12 (c) and (d).

Table 4.4 — CFD simulation time estimate.

Scenario Average Diffusion Inlet Pore  Convective Membrane Diffusive  Diffusive  Simulation
Velocity Coefficient  Distance Time thickness Time Time Time
U[mm/s] D[m2/s] x;[pm] ti[s] X2 [pm] taals] t1d+24 [S] Lsim [S]
1
Water 0,1 1,00E-09 15 0,75 10 0,13 0,78 0,78
2
VEGF 0,1 5,00E-11 15 0,75 10 2,50 15,63 3,25
3
Water 20 1,00E-09 15 0,00375 10 0,13 0,78 0,13
4
VEGF 20 5,00E-11 15 0,00375 10 2,50 15,63 2,50

From Table 4.4 it is possible to conclude that the effective diffusive transport time (¢,;,,) is lower than
convective time in scenarios 2, 3 and 4. However, in scenario 1 the influence of the diffusive transport
is dominant due to the lower velocity and higher diffusion coefficient. The minimum simulation time of
the CFD analysis must be at least t,.

4.2.3 Gradient Generator — Pore Diffusion

In the GG the area of interest was reduced to enable a simplified but, yet representative model of
the actual VEGF gradient sensed by EC in the GG membrane in red of Figure 4.13. This model aims to
estimate the diffusion time of a given solute species in a pure volume solution to check if the membrane
pore replicates the concentration profile of the cross section intended to the EC.

As mentioned previously, incompressible fluid flow and convective/diffusive transport of passively
advected scalar field are governed by the (2.16 ) continuity, ( 2.17 ) Navier-Stokes and ( 2.27 ) species
transport equations. In Table 3.1, are the dimensions used for GG foot print area (3000 x 100um?) and

for SS foot print area (4500 x 100um?). The minimum and maximum velocities (U) considered were of
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Figure 4.13 - Top View of Gradient Generator (Left — Zoom In | Right — Global).

0.1mm.s™! and 20.0 mm.s™?! that results in a low Reynolds number ( 4.3 ) for any of the cases, well
inside the region of laminar flow , and for the lowest velocities a creep flow as observed in Table 4.5.
DU
Re = hTa"gp (4.3)

Table 4.5 — Reynolds Number computation for limit cases.

Device Maximum Maximum  Hydraulic Diameter Average Velocity Flow Rate Number
Component Width [um] Height [um] Dy, [um] Ugpg [mm.s™']  Q[uL.min"'] Re[-]
GG 3000 100 194 0,1 2,7 0,019
GG 3000 100 194 20 540,0 3,859

In this sense, it is possible to estimate a numerical solution of the full momentum balance and
continuity equations for incompressible flow with a reasonable number of elements. The equations that
are needed, as referred in sections 2.4.2.1 and 2.4.2.2, are presented, and simplified for the case study
as:

Vv=0 Erro! A
origem da
referéncia ndo

foi encontrada.
p(WV)v =V [—pl +nVv] (4.4)

where I corresponds the identity matrix. Separation in this structure involves species in relatively low
concentrations compared to that of the solvent, water. Assuming a binary mixture of a solute A in solvent
B, concentrations up to 10 mol% of A can be considered diluted. It is admissible to use Fick’s law to
describe the diffusive transport inside the channel, assuming that the solute molecules interact only with
water molecules and the flow is in steady state.

To simulate the mixing of different species equation ( 4.4 ) was solved for D = {100, 5} *
1071t m2.s71, considering respectively the values of diffusion coefficients for small molecules like water
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(Holz et al. 2000) and large proteins like VEGF using Einstein equation ( 2.10 ) that results in D =
6.12 x 1071 m?2,s71. It is assumed that a change in solute concentration does not influence the fluid
density and viscosity. This implies that it is possible to solve the Navier-Stokes equations, and then
solve the mass balance equation.

The computation of the Peclet number ( 2.33 ) enables the estimation of the mass transport regime.
From Table 4.6 analysis and the considerations made in section 2.4.2.5 it can be observed that for Pe <
1000 the influence of the diffusive component increases in the convection-diffusion flow dispersion.

Table 4.6 — Dimensional analysis of the flow.

Solute U D Re Sc Pe
[mm.s71  [m?.s7] -1 [ (-]
H,0 0,1 100x 1071 0,019 1000 19,4
H,0 20 100x 10711 3,859 1000 3870
VEGF 0,1 5x 10711 0,019 20100 387
VEGF 20 5x 10711 3,859 20100 77400

The Figure 4.14 refers to relevant boundary conditions and dimensions of GG CFD model in the
vicinity of the bottom wall in contact with the PETE membrane pores represented in this model by a
4 x 4 array of salient cylinders.

At the inlets, the velocity field was assumed perpendicular to the boundary in the inward direction,
following a paraboloid profile according to (White 1991) to match the mean velocity to those presented
in Table 3.3. Similar conditions were considered in the side walls and upper wall to match the velocity
profile (4.5 ). At the outlets, pressure condition was imposed ( 4.6 ) and due to small volume analysis,
the vanishing viscous stress was discarded ( 4.7 ).

V=—05n

(4.5)
P="Po (4.6)
n.n(Vv) =0 (4.7)

At the bottom wall and pores, no slip condition states that the velocity is zero at the wall,( 4.8 ).
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Figure 4.14 — (a) Side View schematic and zoom in of GG with PDMS system, PETE membrane
and glass surface where the channel saliences represent the membrane pores (b) 3D View of GG
CFD model and boundary conditions.

Considering the balance of mass, the assumption that solute molecules only interact with water

molecules implies that it is sufficient to consider a single species A of concentration c. At the inlet the

concentration boundary condition is ¢ = ¢, and in the volume of analysis for the initial time the

concentration ¢;-, = 0 to compute the diffusing time of the species over the volume.
W, v,W)yway = (0,0,0)

(4.8)
¢ =c, atinlet A (4.9)
¢ = 0 volume of analysis for t = 0 (4.10)

Established the boundary conditions and given the system of partial differential equations, the FEM
was considered to solve this system. In this sense, the solution domain is spatially discretized by
constructing a series of interlocking nodes and elements, resulting in a finite number of elements that
approximate the spatial geometry whose shape can be linear, triangular and parabolic. Using these
techniques in variational calculus to satisfies the specified conditions for the construction of a partial
differential equation. Then, an approximation for the field is introduced by matrix multiplying linear basis
functions by unknown nodal values.

In a practical sense, the mesh size was fine tuned to enable the creation of regular elements along
the volume with exception of points of interest where the discretization was increased. The mesh size
roughly corresponds to the software “Fine” mesh and a control of mesh quality was performed using the
software functionality to increase this parameter over the points of interest.

The determination of the overall diffusive time is crucial to assess what time is required to ensure the
concentration of interest in EC cells above the membrane. The CFD simulation time estimate (t,,,)
derived in section 4.2.2 set an upper bound of the CFD analysis time required to observe the diffusion
made in this section. A time margin was given so the diffusion process could be complete.

Since the transport will be convective-diffusive and not separately convective in the streamwise
direction and diffusive in the spanwise direction the estimate will be an upper bound. The establishment
time in the GG bottom wall (t,) was considered the time in which the concentration at GG bottom wall
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Figure 4.15 — Computation of the overall diffusion time at the membrane pore. The “particle arrival
times” are the times required to guaranty 95% of concentration in the paths inlet-bottom channel t,

pore top- pore bottom t, and inlet-pore bottom t .y,

Vel. Profile Mid Channel (White, 1991))

z[ym)
(a) (b)

Figure 4.16 — Vertical velocity profile at GG mid channel using numerical approximation (White
1991) at left. Velocity field on the model region of interest at middle. Vertical velocity profile at GG at
the model inlet, mid-section and outlet comparison with imposed conditions at right. Note that the
previous results considered a profile mean velocity of 20 mm.s™1.

reached 95% of the concentration generated at the inlet (Figure 4.15). The establishment time in the
membrane pore (t,) was considered the difference between the time in which the concentration
between the bottom wall and the bottom of the membrane pore reached 95% of the concentration
generated at the inlet (Figure 4.15). The simulation time (t,;,,,) estimated in section 4.2.2 is further
compared to the computational time (t.,,, = t; + t;).

The velocity profile imposed at the inlet considered a numerical approximation (White 1991) and is
presented in Figure 4.16 (a). The velocity field determination was decoupled of the mass transport to
enable a quicker simulation (Witarsa et al. 2013).

It is possible to observe the velocity field constancy over the x (longitudinal) direction and that the
membrane pores have negligible effect on velocity profile (Figure 4.16 (b)).

Figure 4.17 (a) shows that the outlet boundary conditions are distorting the surface pressure near
the outlet. This distortion becomes evident in the velocity profile that is maintained over the longitudinal
direction with exception of the outlet which exhibits a small variation at the ¥4 and % height of the model
(Figure 4.17 (b)).

P Wel. Profile Mid Channel (White, 1991)]
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Figure 4.17 — Pressure surface on the model region of interest at left. Vertical velocity profile at GG

at the model inlet, mid-section and outlet comparison with imposed conditions at right. Note that the

previous results considered a profile mean velocity of 20 mm. s™1.
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Figure 4.18 — Concentration profiles at the pore bottom, pore middle, channel bottom wall and

channel center. The computation was made considering the channel bottom and pore bottom. (a)
Scenario 1: U = 0.1lmm.s™* & D =1 X 10™°m?2.s71. (c) Scenario 2: U = 0.1mm.s 1 &D =
5% 107m2. s, (b) Scenario 3: U = 20mm.s 1 &D =1 x 10™9m?.s~1. (d) Scenario 4: U =

20mm.s 1 & D =5x10"1"1m2.s7 L.

The computational time was computed for four scenarios, which consider the combination between

two mean velocities U = {0.1;20.0} mm.s~* and two molecules of different sizes D = {1 x 107°;5 x

1071} m2.s7! (Table 4.7). The CFD simulation time estimate (t,,,) relative error (£, is computed

considering as the value computed in this section for the diffusive time (t,,,,)-

Table 4.7 — Computation of effective diffusive time in membrane pores bottom.

Scenario U [mm/s] D[m?/s] X107 ti[s] t>[S] teomp[S] tam(S] Eyg,,, [%]
1 0,1 100 0,760 0,050 0,810 0,781 3,55%
Water
2 0,
VEGF 0,1 5 1,762 1,838 3,600 3,250 9,72%
3 20 100 0,010 0,120 0,130 0,129 0,96%
Water
4 0,
VEGF 20 5 0,065 2435 2,500 2,504 0,15%

Table 4.7 analysis show that the estimates made for the diffusive time (t,,,,) from inlet to bottom pore

are close to those computed in the FEM model with a relative error lower than 10%. This estimate
becomes less reliable when the transport is ruled both by diffusion and convection alike as it can be
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observed in scenarios 1 and 2 for lower velocities. Note that the diffusive time estimates (t,) are accurate
for scenarios 3 and 4 for higher velocities. This finding becomes clearer if the concentration profiles of
the bottom wall and pore bottom are observed together, finding that in scenarios 1 and 2 the diffusion
phenomena to the wall bottom has the same pace as the diffusion as the pore bottom (Figure 4.18).

4.2.4 Gradient Generator - Mixer Efficiency

To study the mass transport mixer efficiency extensively a 3D numerical model should be used. The
molecule of interest is a large protein VEGF with a low diffusion coefficient (5 x 107'm?2.s71) and the
molecule that were tested lately are food colour dyes that have lower dimension and diffusion
coefficients closer to the lower bound considered (1 x 10~°m?.s™1). Studying the mass transport in this
range of diffusion coefficient, therefore provides a comprehensive understanding of the phenomena.

Computing such a 3D model with accuracy would yield an excessive computational time. This way,
the model complexity was reduced from 3D to 2D that require some considerations. The mass transport
in an extensive model such as this should be predominantly convective in the streamwise direction and
diffusive in spanwise direction. For low flow rates and high diffusion coefficients this assumption might
not hold and motivated the study. With the model reduction the mass transport is assumed to change
mainly in the streamwise direction and to change little in the model perpendicular spanwise direction.
This assumption doesn’t hold since the channel height is 30 times smaller than the channel width and
the velocity profile is paraboloid specially in the transition zones. However, for regular zones distanced
at least the development length the model can be considered a good approximation.

The Figure 4.19 refers to relevant boundary conditions and dimensions of GG CFD model.

At the inlets, velocity conditions were specified so the average inflow velocity match the desired flow
rate at the longer channel extension. At the outlets, pressure condition was applied ( 4.6 ) and due to
small volume analysis, the vanishing viscous stress was discarded ( 4.7 ).

Condition ( 4.6 ) states that the pressure is p, at the outlet. It is a numerically stable boundary
condition that admits total control of the pressure level at the whole boundary.

At the bottom wall and pores, no slip condition states that the velocity is zero,( 4.11 ). Considering
the balance of mass, the assumption that solute molecules interact, only with water molecules implies
that it is sufficient to consider a single species A of concentration c. At the three inlets, two combinations
of concentrations were used for the Concentration boundary condition ( 4.11 ) and for volume initial
concentration (4.13).

(u,v) = (0,0)

(4.11)
¢y ={1:1;1:2} atiinlet 1 (4.12)
¢, ={1:10;1:20} atinlet 2
¢;3 = {1:100;1: 200} at inlet 3
¢ = 0 volume of analysis fort =0 (4.13)
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The combinations used matched those used later in the experimental setup. The finite elements
shape used was triangular to approximate the intricate spatial geometry. The mesh size corresponds to
the software “Finer” mesh with 10 um over the points of interest and 50 um in the regular ones.
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Figure 4.19 - 2D View of Gradient Generator CFD model and boundary conditions.

Concluded the process depicted in section 4.2.3, the system simulation was conducted for the two
inlets concentration combinations, four average flow velocities {0.1;1.5;10.5;20.0} mm.s~* and two
diffusion coefficients {1 x 107%;5 x 10~} m?.s7 1.

The CFD analysis was made for eight scenarios that were tested experimentally. The results
presented in this section refer to a situation closer to serviceability conditions with average flow velocity
of 20.0 mm. s~ and diffusion coefficient of 5 x 10~**m?.s~1. The velocity field over the GG system is
depicted in Figure 4.20.

Figure 4.20 shows that the velocity profile varies according to section constriction. In Figure 4.20 —
(c) the velocity in the first ramifications is close to 240 mm.s™! whilst in the channel developing zone
Figure 4.20— (b) and (d) the velocities are below 40 mm.s™. The anti-fouling pillars cause a midchannel
constriction that causes the flow to subdivide in three sections that remain approximately constant over
the developing zone decreasing the homogeneity of the flow and resemblance to the expected
paraboloid profile.

The pressure over the GG system is depicted in Figure 4.21 that enables a validation of some
findings made in section 4.2.1.

The pressure drop is larger over the mixer zone of Ap;;_,, = 2800 Pa and in the developing zone of
Apge—2p+2¢ = 200 Pa (Figure 4.21). The pressure drop computed in section 4.2.1 for the mixer zone is
lower Apgg_2q4 = 2366 Pa and is higher for the developing zone Ap;;_2p+2c = 562 Pa. This discrepancy
can be attributed to the simplifications made in the two models.

In the Bernoulli approach the mixer zone was deeply simplified and the anti-fouling pillars were
excluded. Both extension and channel geometry could be further discriminated in the mixer zone and in
the developing zone an additional constraint could be imposed dividing the flow in three subsections
and imposing mass and energy balance in flow and pressure drop in these subsections.
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In the CFD approach, the reduction of dimension excludes the influence of top and bottom walls that
isn’t negligible. Despite the major simplifications, both models provide valuable insights that can be used
consecutively in the design process without contradiction.
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Figure 4.20 — (a) Top view of velocity profile of GG. (b) Spanwise velocity profile at GG mixer exit

and membrane entrance. (c) Top view of velocity profile of GG at mixer exit. (d) Top view of velocity
profile of GG at membrane entrance. Note that the previous results considered a profile mean velocity

of 20 mm.s™ L.

The surface concentration and concentration profile, over the mixer exit and PETE membrane
entrance are presented in in Figure 4.22 with the extreme combinations of flow rate mean velocity and
diffusion coefficient to highlight the importance of a fine tuning these variables.

Figure 4.22 (a) and (c) show that at the mixer exit area the diffusion coefficient apparently has little
influence in the higher and lower concentrations, however in the developing zone, near the outlet, these
concentrations become more diffuse for (¢) and apparently constant for (a). Figure 4.22 (b) and (d)
highlight the previous finding for the membrane entrance where the lower concentration is sustained in
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Figure 4.21 — Top view of pressure profile of GG. Note that the previous results considered a
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Figure 4.22 — The following results are obtained for inlets concentration of ¢;; = 1:2 ,¢;, =

1:20 and ¢;3 = 1: 200. (a) Top view of concentration profile of GG. (b) Spanwise concentration profile
at GG mixer exit and membrane entrance. (a) and (b) considered a profile mean velocity of 20 mm.s™1
and for a VEGF diffusion coefficient 5 x 10~**m?2.s~1. (c) Top view of concentration profile of GG. (d)
Spanwise concentration profile at GG mixer exit and membrane entrance. (c) and (d) considered a
profile mean velocity of 0,1 mm.s™* and for a small molecule diffusion coefficient 1 x 10~°m?2.s1.

0.005 mol.m™3 in (b) and increases for 0.012 mol.m™=2 for (d). The influence of convective transport is
more prominent in the latter given the lower velocity and higher diffusibility. A closer look in the
concentration profile development in the mixer zone exit results in smoother steps for (d) when
compared with (b). These findings make clear that establishing the velocity and molecule of diffusion
serviceability range should be defined for the microfluidic system end-user.
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4.2.5 Shear Stress

This simulation aims to estimate the variation of shear stress along the EC array.

In the shear stress generator, the area used in these simulations is only a portion of the entire system
for computational simplification, however it is a representative model of the actual shear stress
experienced by EC above the PETE membrane in red at Figure 4.23.

The minimum and maximum velocities (U) considered were of 0.1 mm/s and 20.0 mm.s™? that
results in Reynolds number below Re < 10 for any of the cases, that sustain the hypothesis of laminar
flow observed in Table 4.8. For the lowest velocity U,,, = 0.1mm.s~* creeping flow hypothesis is valid.

At the inlets, velocity conditions were specified by the normal inflow velocity, i.e. the velocity in the
inward direction normal to the boundary, in a paraboloid profile to match the mean velocity to those and

urt 0cir

“’___,a#"’j 2n 1w

I 33240 pn |

Figure 4.23 - Top View of Shear Stress Generator (Left — Zoom In | Right — Global).

due to small volume analysis, the vanishing viscous stress was discarded ( 4.7 ). This boundary
condition states that the pressure is p,. It is a humerically stable boundary condition that admits total
control of the pressure level at the whole boundary. At the bottom and top walls, no slip condition states
that the velocity is zero,( 4.8 ). The boundary conditions of SS CFD model can be observed in Figure
4.24.

Table 4.8 — Reynolds Number computation for limit cases.

Device Width Height Hydraulic Diameter Average Velocity Reynolds

Component [um]  [um] Dp[pm] Ugpg[mm/s] [-]
ss 4500 100 196 0,1 0,020
ss 4500 100 196 20 3,901

EC semi-ellipsoidal shape, with 15um high and 50um of diameter, exhibits a non-uniform wall shear
stress with a higher shear stress on top and lower at bottom that motivated its parametrization. This way
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Figure 4.24 - 3D View of Shear Stress Generator CFD model and boundary conditions.
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Figure 4.25 — (a) Top view of SS with 1D cuts at 15 um height. (b) Front view cut of shear stress.

(c) Parametrization of shear stress in a cell.

using the six EC alignments, the shear stress was evaluated at a constant height that corresponded to
the cell height. The shear stress in these horizontal alignments followed a sigmoidal shape with peaks
coincident with cell zenith. The variables accessed were the maximum shear stress 7,,,,, minimum
shear stress t,,;,,, full width at half maximum FWHM, the lateral deviation to the cell zenith § and the
shear stress prominence At = t,,,, — Tmin that can be observed in Figure 4.25 (c).
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Cell disposition and cell spacing influence both magnitude and shape of the shear stress distribution
in cells. To enable the comprehension of the cell distribution a parametric study was made considering
cell to cell distance and cell orientation related to flow direction as depicted in Figure 4.26.

The seven models created that enabled this study are depicted in Figure 4.27 and tackle the influence
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(a) (b)
Figure 4.26 - Cell disposition (a) and Cell spacing (b) schemes.

Cel 1 Cel 2 Cel 3 Cel 4

Cel 5 Cel 6 Cel 7

Figure 4.27 - Top view of Shear Stress Generator in 7 configurations of cell disposition and cell
spacing.

of packing of cells in the channel width, influence of positioning of anti-fouling pillars and cell spacing
(Table 4.9).

The effective wall shear stress experienced by EC must be within physiological parameters which
was the second requirement for the system work mode.

The wall shear stress evaluation was subdivided in two sections. The first section consisted in the
validation of the mesh size that enabled a reasonable tradeoff between accuracy and computational
time. The second section studied the influence of cell disposition with the mesh size previously defined.
These analyses considered a parametrization on the wall shear stress features enabling an effective

characterization.

Table 4.9 — Cell configurations in shear stress CFD model.

Configuration Spacing Disposition Packing of cells Presence
between cells of cells in channel width of pillars
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Cell 2R Diamond Full No

Cel 2 2R Diamond Partial No
Cel 3 2R Diamond Full Yes
Cel 4 2R Quadrangular Full Yes
Cel 5 3R Diamond Full Yes
Cel 6 4R Diamond Full Yes
Cel 7 6R Diamond Full Yes

4.2.5.1 Mesh size parametrization

The mesh size is a key feature to optimize since a coarser mesh can produce fast and inaccurate
models and the refined one a slow but accurate one. Engineering in FEM is about compromise,
guarantying that the model represents at some extent the physical parameters of interest in adequate
computation time.

The software has a powerful mesh generator by default adequate for standard geometries and
adequate tools to test them (e.g. mesh quality). Since the model geometry is relatively regular the
volume elements meshing relying solely in automatic meshing revealed inaccurate and don’t comply
with meshing good practices. Both symmetry, mesh size propagation from singularities and
homogeneity weren't fulfilled in automatic meshing. This way three mesh sizes lower than model
dimensions were adequate for regular and larger areas. In singular elements like ellipsoidal shaped the
EC the mesh size was refined by at least 1/8 of the previous size ensuring that singularities discretization
was adequate. With the adjustments made previously the mesh sizes named “Coarse”, “Normal” and
“Fine” depicted in Table 4.10. The finite elements shape is hexahedral.

Table 4.10 - Resume table of simulation parameters in mesh size parametrization.

Coarse Normal Fine
Mesh Size 6 um 3 um 1,5 um
# Finite Elements 78k 126k 370k
Computation Time 2h 38min 3h 40min 16h 21min
Average Mesh Quality 0,590 0,607 0,667
Minimum Mesh Quality 0,014 0,015 0,030

Table 4.10 shows that increasing refinement leads to the number of finite element increase, from
78k to 370k. The computational time also increases from 2h: 38min to 16h: 21min with the refinement.
The parameters of average and minimum mesh quality given by the software also increase with the
refinement. The fact that “Coarse” and “Normal” refinements have minor differences in mesh qualities
can, in some extent explain the lower increase observed in computational time. Looking at the wall shear
stress parameters presented in Figure 4.28 individually an apparent constancy of the parameters is
observed except for the wall shear stress lateral deviation to the cell zenith.

The maximum shear stress (7,4, = 2.5Pa) exhibited a value slightly higher to that presented in Table
4.3 (tqyy = 2.0Pa). This happens because EC cause a channel constriction and therefore in these

66



salient elements the wall shear stress is higher. The t,,,, average and standard deviation increases
slightly with mesh refinement that could be imputed to the slight channel constriction caused by higher
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Figure 4.28 - Bar charts of shear stress parameters analysis in mesh size parametrization with
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discretization of EC finite elements. Both the stress prominence (4t) and minimum shear stress (t,,;,,)
are relatively stable with values of At = 1.5Pa and t,,,;;, ® 1.0Pa. The full width at half maximum FWHM
exhibited constancy along the three mesh refinement both in average and standard deviation. The
FWHM =~ 28um is close to the cell radius. Both 47, t,,;,, and FWHM show little sensitivity to mesh
refinement since these values are probed between two EC cells where the mesh discretization is less
relevant.

The only wall shear stress parameter that wasn't stable and decreased dramatically from the
“Coarse” to the “Fine” model was wall shear stress lateral deviation with respectively § ~ 2um and § =
Oum. This parameter should be ideally zero since little lateral deviations should be observed in steady
state conditions since it is expected that the cell zenith exhibits the higher wall shear stress due to lower
protection and model symmetry. The fact that this lateral deviation decreases with mesh refinement also
supports that this finding is derived from numerical errors. With exception of lateral deviation, all
parameters fulfil the Chi-square distribution detailed in Table 4.11 for “Coarse” and “Normal” mesh.

Table 4.11 — Shear stress parametrization for mesh size analysis on Coarse, Normal and Fine
meshes. Last two columns refer respectively to Chi-square inverse cumulative distribution function

and condition verification with a 95% confidence.

Parameter Model Average Standard Deviation Chi-Square Test Chi-Square
Max. SS Coarse 2,43 0,12 0,78 1
Tmax [Pa] Normal 2,45 0,09 0,44 1
Fine 2,46 0,09 0,46 1

Ass. Dist. Coarse 2,35 2,32 324 0
8 [um] Normal 0,57 1,71 719 0
Fine 0,00 0,00 0,00 1

Prominence  Coarse 1,39 0,19 113 1
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At [Pa] Normal 1,40 0,17 114 1

Fine 1,41 0,16 112 1
Width Coarse 27,26 3,58 67 1
FWHM [pum]
Normal 27,81 3,18 52 1
Fine 27,52 2,93 44 1
Min. SS Coarse 1,04 0,14 2,68 1
T, Pa
max [Pa] Normal 1,05 0,14 2,55 1
Fine 1,05 0,14 2,50 1

All parameters where stable only if using the “Fine” mesh. This was the chosen to continue the study
although it meant increasing the computational cost. The introduction of singular elements in the
analysis increased even further the computation time as detailed in the following section.

4.2.5.2 Cell disposition parametrization

The influence of cell disposition can influence the shear stress, supposed at the cell wall. Therefore,
several parameters where studied to understand this influence. They are: cell distance, presence of
anti-fouling pillars, the unit cell organization and cell array size. The seven CFD model simulation
parameters are presented in Table 4.12.

Table 4.12 - Resume table of simulation parameters in cell disposition parametrization.

i i Cel 1 Cel 2 Cel 3 Cel 4 Cel 5 Cel 6 Cel 7
Configuration
Number of Cells 120 42 120 168 78 60 42
% of Cell Area in Flow
Area 27,3% 9,6% 27,3% 38,2% 17,8% 13,7% 9,6%
Mesh Size [um] 1,5 1,5 1,5 1,5 1,5 1,5 1,5
# Finite Elements 370k 321k 387k 435k 360k 344k 326k
Computation Time 16:21 11:38 15:47 17:48 12:46 12:20 11:30
[hh:mm]
Average Mesh 0,667 0,677 0,632 0,607 0,635 0,645 0,658
Quality
Minimum Mesh 0,030 0,012 0,004 0,0005 0,0069 0,0041 0,0055
Quality

The number of finite elements was obtained between 321k and 435k. The computation time
decreases as distance increase the model since complexity reduces singular points between EC contact
are fewer. Note that Cel 2 has the smallest quantity of cells because the average mesh quality is similar
amongst the models, however the minimum mesh quality increases for Cel 1 and Cel 2. Mesh quality
decreased one order of magnitude with the inclusion of anti-fouling pillars from Cel 3 to 7 that can be
attributed to the emergence of additional singular elements.

The wall shear stress parameters analysis for the cell disposition parametrization is presented in
Figure 4.29 and Table 4.13.

Table 4.13 — Shear stress parametrization for different cell configurations.
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Configuration Cel 1 Cel 2 Cel 3 Cel 4 Cel 5 Cel 6 Cel 7

Max. SS 2,46+£0,09  2,28+0,12 2,46 0,09 2,53+£0,09 2,60+0,08 2,57+0,07 2,52+0,08
Tmax [Pa]
Ass. Dist. 0+0 0+0 0+0 1,27+1,71 1,40+1,91 1,18+1,82 1,65+2,18
& [um]
Prominence 1,41+0,16 1,37+0,15 1,41+0,16 1,59+0,15 1,77 +0,08 1,67+0,26 1,71+0,07
At [Pa]
Width 27,52+293 28,13+1,85 2752+293 29,43+1,77 32,14+0,87 31,63+4,6 33,31+0,66
FWHM [pum]
Min. SS 1,05+0,14  0,91%0,03 1,050,144 095%0,11 083002 090%0,27 0,80+0,02
tmux [Pa]

The maximum shear stress (t,,,, = 2.60 + 0,08 Pa) and prominace (4t = 1,77 *+ 0,08 Pa) is
observed for cel 5 with spacing between cell of 3 times the radius of the cell (3R). Cel 2 when compared
to Cel 1 exhibits the influence of the channel constriction that must be ignored since there is a small flow
readjustment to bypass the EC group. The minimum shear stress exhibited between cells, appears to
decrease with increasing distance that is in line with the reduction of the channel constriction. The full
width at half maximum FWHM increases from 2R to 3R spacing to stabilize for larger spacings denoting
its reduced influence for lower EC density. The lateral deviation for Cel 4 to 7 distribution exhibit large
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Figure 4.29 - Bar charts of shear stress analysis for different cell configurations.

values (ranging from 1.18um to 1.65um ) that don’t comply with a normal distribution given supported
by chi-square test. Refining the mesh could be a solution to comply with chi-square test. Quadrangular
configuration increases both maximum shear stress (t,,,,,) and prominence (41) relative to the diamond
configuration. The latter can be derived from the fact that a diamond configuration creates a
heterogeneous surface roughness in the streamwise configuration whilst the quadrangular one creates
rifts between EC in this direction contributing for higher flow variations in these areas and consequently
the shear stress. The lateral deviation is lower in the diamond shape due to the higher distance along
the orthogonal directions x and y. The wall shear stress magnitude is comparable to the estimated
Tavg =~ 2.0Pa presented in Table 4.3 using (2.9 ).
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4.3 Experimental Validation

To validate the results from GG concentration profile simulations, it was necessary to fabricate and
test the device as explained earlier. The next two sub-chapters will describe the results regarding
fabrication and experimental validation.

The validation of the conditions of both GG and SS that constitute the microfluidic device was made
separately to enable the detachment of the interaction between the two PDMS parts. Experiments
consist on the determination of the GG concentration profile based on the relative image light intensity
and flow rate measurement. The flow rate imposed by the syringe pump was previously calibrated based
on the mass of liquid and time it took to fill a 1mL Eppendorf.

4.3.1 Concentration gradient determination

The concentration gradient determination required the prior model calibration for the six images taken
in GG (Figure 3.16) using a non-linear model homogenized to a DI water solution. The following step
consisted determining of the effective concentration at any point of the alignment and establish a
comparison between the mixer exit and the membrane entrance. Finally the gradient of concentration

was compared to previous work started of Brandao & Silvério (2016).
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Figure 4.30 — (a) Image light intensity obtained for GG with DI water in all inlets at mixer exit in
zone 1 (I,). (b) Image light intensity obtained for GG with dye solution with concentration 1:20 in all
inlets in zone 1 (1;).

4.3.1.1 Model calibration

The average image light intensity for the different concentrations tested were corrected by the
reference light intensity obtained for the system with DI water to enable the model calibration (Figure
4.30). The calibration starts with image alignment, intensity computation (I;), relative intensity
computation (I;/I,), that requires a previous image alignment, and estimation of the intensity
dependence [;/I, from concentration c;.

The results of the relative image light intensity and fit are presented in Figure 4.31 and Table 4.14
and show that most of relative intensity is precise with exception of 1: 10 dilution that presents a higher
standard deviation (0,058). It is also relevant that between the concentration 1: 100 and 1: 200 there are
virtually no differences that can cause model discrepancies for low concentrations.

Table 4.14 — Mean values and standard deviations for relative intensity.
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Concentration Mean Standard deviation

1:200 0,920 0,009
1:100 0,920 0,022
1:20 0,882 0,025
1:10 0,838 0,058
1:2 0,705 0,032
1:1 0,672 0,017
10 1:100 4
,,,,,, . ‘ 1:10
Ty
0.6 1:2 E
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Figure 4.31 - Parametrization of relative light intensity with solution concentration.

The r2 value is nearly 1 (Table 4.15), however, the interval of confidence of the fit parameters have
a relative standard deviation ranging from 5% to 25% indicating that it is critical to accommodate the
extreme concentrations of 1: 200 and 1: 1. The model parameter values and interval of confidence are
presented in Table 4.15.

Table 4.15 — Model fit parameter and interval of confidence.

Value Value Standard Deviation

a 0.6311 0.0306
b 0.2996 0.0274
c 4.079 1.028
r? 0.9832 -

4.3.1.2 Determination of concentration gradient in the gradient generator

The concentration gradient was obtained along the two alignments of reference, the GG mixer exit
and the PETE membrane entrance. The three images alignment and the constancy of the vector length
intensity was an issue that was resolved in two steps. The first step consisted in the selection of an
alignment without bubbles and detection of common visual markers between consecutive images by
inspection that enabled the matching between the three images (Figure 4.32). The second step
consisted in the truncation of the intensity vectors according to the smaller vector length for images
taken in the same area. This compromise enabled the correct matching between pixels and further
homogenization of brightness.

Figure 4.33 depict the images taken from zones 1 to 6, its alignment markers, the relative intensity
profile along the alignment and finally an estimate of the concentration based on fit parameters from
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Table 4.15. Along with the concentration profile, the CFD results obtained in section 4.2.4 are presented,
enabling a direct comparison between numerical and experimental results. These figures consider the
experimental setup ranges for the lower and higher velocities U = {0.1;20} mm.s~! to highlight its
influence in mass transport. The complete experimental setup consider two additional velocities and is
depicted in Figure A.3 and Figure A.4.

Figure 4.33 show that the alignment amongst images in the mixer outlet (zone 1 to 3) and membrane
entrance (zone 4 to 6) was mantained and that artifacts like bubbles were avoided.
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Figure 4.32 — Image alignment in mixer outlet (zones 1,2 and 3) and membrane entrance (zones 4,
5 and 6). The coloured dash lines were slightly misaligned in the scheme to favour visualization.

Observing the concentrarion profiles of Figure 4.33 (a) and Figure 4.34 (a) of five transition areas
that are coincident with areas where two microchannels converge. However, it is not possible to see the
eigth transition areas provided by the CFD analysis, speacilly for higher concentrations (zone 1). The
mixer performs better with lower velocities which agrees with the increasing of the Peclet number,
derived Reynolds number increase due to the increasing velocity that makes the mass transport less
sensible to the diffusion. In Figure 4.33 (c) and Figure 4.34 (c), that have higher velocity (U =
20.0 mm.s™1), it is possible to see only two transition that don’t comply with the CFD analysis provide
different results and yeld the same eight transition areas. This difference can be atributed to both model
simplifications in the CFD analysis or a deffective PDMS-glass bonding in the mixer area. Comparing
the CFD analysis of (a) with (c) images the concentration range is sligtly wider in the transition areas
due to the influence fo convective transport for lower velocities ((a) U = 0.1 mm.s™1).

Looking at concentrarion profiles of Figure 4.33 (b) and Figure 4.34 (d) there aren’t clear transition
areas that are compliant with the CFD analysis. For lower velocities (U = 0.1 mm.s™1), Figure 4.31 (b)
and Figure 4.34 (b) it is possible to see that the experimental results are compliant with CFD analysis in
most of the section profile. For higher velocities (U = 20.0 mm.s™1), for Figure 4.33 (d) and Figure 4.34
(d) the concentration profile should be very similar to the ones presented in the mixer outlet zone (Figure
4.33 (c) and Figure 4.34 (c)) due to the lower influence of diffusive transport that is supported by the
CFD analysis. A possible explanation for this deviation is that the membrane zone for higher flow rate,
and consequetly higher pressures could have been empolated in zone 6 and exhibited a higher relative
intensity that yelds a lower concentration. This hypothesis is supported by the weak bonding between
PETE membrane and both PDMS and glass ((Aran et al. 2010)). Another cause can be atributed to the
fact that the PETE membrane creates a constriction in the channel and influences the flow upstream.
The existance of the PDMS pillars are assumed to be perfectly circular and aligned but in the fabrication
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process the PDMS peeling could have cause volume modifications and with irregularities the flow virtual
subsectioning in the developing zone could be more diffuse and enhanced the spanwise diffusion
contributing for the higher degradation of the concentration profile.

Despite the image alignment the relative intensity along the superposition areas exhibit a vertical drift
which indicates that the brightness homogeneization failed partially. This vertical drift results in a
concentration difference that differs less than one order of magnitude.

Another important finding is that the concentration profile is comprised between the concentration
boundaries in most of the experimental results. The only exceptions are those in Figure A.3 in the
membrane entrance ((e) and (h)) for U = {10.5;20}mm. s~ and in Figure A.4 ((d),(e) and (h)) for U =
{1.5; 10.5; 20}mm. s~ for the lower concentration range. Comparing the right ((a), (c), (e) and (g)) to the
left ((b), (d), (f) and (h)) figures the last finding is relevant to observe the increasing influence of diffusion
in smaller velocities with the degradation of the concentration profile to a flatter one. This finding cannot
be observed for all velocities due to the vertical drift evoked previously.

The relative uncertainty of the concentration method was computed for the six zones in the different
experiments performed in Table 4.16. shows that the zones with higher concentration (zone 1 and 4) in
the influence of inlet ¢;; and ¢,;, are more accurate than lower concentration zones. The concentration

evaluation at the mixer outlet (zones 1 to 3) is more precise and homogeneous globally than the
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membrane entrance (zones 4 to 6). However, if Figure 4.33 (d) is considered to ben an outlier (8, =

292%) and is removed from the analysis the systems have similar performance, (8, gytier = 44 %) in

the mixer outlet and (6, yemprane = 41 %) in the membrane entrance.

Table 4.16 — Relative uncertainty of concentration determination for the six zones of GG and

figures correspondence.

Inlet Concentration ~ Mean Velocity Zonel Zone2 Zone3 Zone4 Zone5 Zone6

cwicmiep(-]  Ulmm/s] 8 (%] & (%] & (%] 6 (%] 6 [%] 6 [%] Figue  Annexes
1:1;1:10; 1:100 0,1 38% 66% 80% 13% 27% 26% 4.31(a)(b) A.20(a)(b)
1:2;1:20;1:200 0,1 35% 43% 32% 11% 51% 69% 4.32(a)(b) A.21(a)(b)
1:1;1:10; 1:100 15 51% 53% 47% 26% 53% 87% A.20 (c) (d)
1:2;1:20;1:200 15 35% 54% 80% 18% 65% 292% A.21 (c) (d)
1:1;1:10; 1:100 10,5 19% 30% 26% 28% 16% 15% A.20 (e) (f)
1:2;1:20; 1:200 10,5 25% 57% 51% 28% 37% 43% A.21 (e) (f)
1:1;1:10; 1:100 20 13% 51% 53% 15% 52% 80% 4.31(c)(d) A.20(g)(h)
1:2;1:20; 1:200 20 36% 44% 29% 38% 49% 64% 432 (c)(d) A.21(g)(h)

32%

50%

50%

22%

44%

85%

4.3.2 Flow rate measurement

4.3.2.1 Shear stress generator

The volumes obtained for SS experiment is presented in Table 4.17. Despite the initial goal was to

obtain a 1mlL volume the measurements for U = {0.1,1.5,10.50, 20} mm. s~ that wasn’t maintained in all

specially in the slower setup (U = 0.1mm.s™!) that would yield almost five hours. The volume

computation was made considering a water density at 20°C (p = 998.2 kg.m™3).

Table 4.17 - Flow estimation in Shear Stress Generator.

Qset Am + O Am VvV + oy t+ Oy Qmeas + O'Q 61‘0 ErQ
[uL / min] [mm/s] (9] [ul] [min] [uL/min]  [%]  [%]
2,7 0,5555 +£0,0004 556,5+0,4 21500+0,02 2,588+0,003 0,1% 4,1%
40,5 0,8733£0,0007 8749+0,7 22,75+0,02 38,46+0,04 0,1% 5,0%
283,5 0,8680 + 0,0008 870,0+1,0 3,17+0,02 2746+04 0,1% 3,1%
540 0,8088 + 0,0006 810,0+1,0 1,60+0,02 506,0+1,0 0,1% 6,2%

The flow rate was obtained for the different velocities with error increasing for higher flow rates. This

could be to the fact that the measured time and volume filled stopping operation must be performed

simultaneously that can result in a small discrepancy. The largest error is slightly superior than 6% that

isn’t explained by the relative deviation of the experimental setup, that is about 0.1%

4.3.2.2 Gradient generator

The volumes obtained for GG experiment is presented in Table 4.18. Despite the initial goal was to

obtain a 1mlL volume the measurements for U = {0.1,1.5,10.50, 20} mm. s~ that wasn’t maintained in all

specially in the slower setup (U = 0.1mm. s~ 1) that would yield almost six hours.
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Table 4.18 - Flow estimation in Gradient Generator.

Qset Uset Am i Oam |4 i oy t i O Qmeus i O'Q 51‘0 ErQ
[uL / min] [mm/s] [g] [ul] [min] [uL / min] [%]  [%]
1,8 0,1 0,4804 + 00,0003 481,2+0,3 277,00£0,02 1,737+£0,002 0,1% 3,5%
27 1,5 1,0718 £0,0006 1073,7+0,6 40,67 £0,02 26,40+0,02 01% 22%
189 10,5 0,9831+0,0012 9850+ 1,0 5,30 £ 0,02 185803 02% 1,7%
360 20 0,9733+0,0052 975,0+5,0 2,82+0,02 346,0+£3,0 08% 3,8%

The flow rate was estimated for the several velocities with an increasing error for faster flow rates.

This could be to the fact that the measured time and volume filled stopping operation must be performed

simultaneously that can result in a small discrepancy. The largest error is lower than 4% that isn’'t

explained by the relative deviation of the experimental setup, that is about 0.8% in the worst case.

Note that the volume contained in the PTFE tubing is lower than 9000 [uL]. This way even the smaller

droplet can influence the results.
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5 Conclusions and Future Work

Microfluidic technology has been disseminated in cellular applications due to the ease of fabrication,
better parameter control and low cost. Presently, the emergence of the Organ-on-a-Chip concept is
pushing specialists from different fields, like engineering and life sciences, to work together to mimic
physiological conditions adequately and defy the state of the art.

The goal of this project was to design and fabricate a microfluidic device at INESC-MN facilities that
generate simultaneously a VEGF gradient and a shear stress experienced by a group of EC in response
of this competing stimulus in cell polarization proposed by IMM.

The microfluidic device was designed considering the geometric and logistic limitations of the PETE
membrane where the EC were to be expand. The microfluidic device had to enable a reversible bonding
between the SS and GG to allow reproducibility of the experiments. The EC on the PETE membrane
face the SS microchannel and both devices included anti-fouling columns to avoid the channels ablation
due to larger channel aspect ratio that can be respectively 30: 1 and 45:1 in GG and SS.

Both device components were drawn in CAD software, simulated in FEM commercial software,
fabricated and tested in INESC-MN cleanroom and biolab facilities, respectively. The microfluidic pattern
design respected the m.f.s. of the fabrication process, the maximum dimensions allowed by the standard
substrate dimensions 5x5c¢m? including margins and alignment marks. The fabrication of the microfluidic
components was made in PDMS using soft-lithography techniques, starting with a deposition of
Aluminium thin film pattered in a glass substract, PDMS molding with a SU-8 resist in a Silica substrate
and finally the PDMS casting.

The device components required a sealing to work properly that could be reversible or irreversible.
The reversible sealing was attained with a three component PMMA holder assembled through passing
holes with bolts and nuts. This setup enabled an adjustable mechanical sealing and adequate
microscope observation. The irreversible sealing setup was achieved coupling one of the PDMS
structures (SS or GG) to the PETE membrane and a glass substrate. This setup was required for the
experimental setup. The bonding of PETE membrane to both PDMS and glass substrate isn’t
guaranteed exhibiting fluid accumulations for higher pressures.

The design of the microfluidic device was assisted by the simulation of the GG and SS in FEM
commercial software and additional simplified computations to estimate the model parameters and its
magnitude. The first computation included the estimate of flow rate relation between SS and GG
(0.8 %X Qss = Q) to balance the PETE membrane pressure preventing leakages between
microchannels and the magnitude of wall shear stress in SS (735 = 2Pa). The second computation
included the estimate of the effective diffusive time to know in advance the minimum simulation time of
the GG model that should be larger than 0.13s for U = 20mm.s~* and D = 1 X 10~°m?.s~* and 3.6s for
U=01mm.s"tand D =5x 10" m2.s71.

The determination of the effective diffusive time in the in the GG CFD model validated that for the
range of flow rate intended the establishment of a transient regime was inferior to 4s in the model and
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in working conditions should be inferior to the convective time in the streamwise direction added to the
convection time in the spanwise direction. The SS CFD model allowed the model validation and the
determination of the wall shear stress in the EC. Initially, the model meshing was fine tuned to ensure
that the wall shear stress parameters variation followed a distribution independent of numerical errors.
The second analysis considered several cell dispositions and presence of anti-fouling columns. From
this analysis it was possible to assess that the WSS magnitude t,,,, = 2.5Pa was superior to the
reference wall shear stress for a EC free channel estimated to be 7,,, ~ 2.0Pa. From the study it was
also possible to conclude that related to the wall shear stress magnitude of the anti-fouling columns
increases it due to the section constriction that increases the flow rate in the effective area. The diamond
cell disposition induces lower wall shear stress than square disposition that can be attributed to the
creation of rifts between EC in the streamwise direction contributing for higher flow variations in these
areas and consequently the shear stress.

Regarding the cell spacing the 3R spacing lead to the higher value of wall shear stress magnitude.
The full width at half maximum FWHM increases from 2R to 3R spacing to stabilize for higher spacing
denoting the reduced influence of cell spacing with lower degree of EC density.

The validation of GG and SS conditions was made separately to enable the detachment of the
interaction between the two PDMS devices.

The first experiment consisted on the determination of the concentration profile based on the relative
intensity resorting to basic imaging processing techniques. The homogenization standardization
processes allowed the intensity correction and later model fit determination. However, contributed for
the appearance of discrepancies in the superposition areas between consecutive images and led to a
minor loss of information, namely the reduction of the vector length. For low flow rates the mass transport
is diffusive-convective for lower velocities and the transport is convective for higher flow rates.

The experimental results exhibit some concordance with CFD analysis for lower velocities U =
{0.1; 1.5}mm. s~ in a qualitative way, supported by the definition of transition areas coincident with the
mixer outlet microchannels confluence. In the membrane entrance the concentration profile for these
velocities exhibit a larger degradation that could be due to enhanced mixing derived from the PDMS
peeling. The latter could cause velocity field modification that enhance diffusion in the spanwise
direction.

For higher velocities U = {10.5;20.0}mm.s~* the mixer performed poorly without the definition of all
transition areas contemplated in the CFD analysis in the mixer outlet. This finding could be due to CFD
model simplification, deffective PDMS-glass bonding in the mixer area or PDMS hydrophobic nature
that reduces effectice cross section area increasing flow rate mean velocity. Additionally, discounting
the mixer efficiency, the concentration profiles between profiles computed in the mixer outlet and
membrane entrance should be similar due to the dominance of convective transport. These deviations
could be attributed to the presence of PETE membrane whose bonding is weak and cause blister in the
area. This blister causes a spanwise fluid dispersion, a virtual increase in the relative intensity and lower
concentration that result in larger variations to the concentration profile obtained in CFD analysis.
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The second experiment consisted in the measurement of the flow rate and with known microfluidic
device channels dimensions to determine the average velocity. The experiment validated the flow rate
with error by defect with relative errors lower than 6.2% for SS and 3.8% for GG. This tendency for
having lower flow rates than expected can be derived from faulty detachment of water droplets and
desynchronization between pump and clock start and stop instants.

Some improvements could be made to increase the microfluidic device effectiveness. Bearing in
mind that prototyping is an iterative process, testing the microfluidic device with EC would be benefic
for the design process since it would lead to the solution of problems derived from its usage.

Since minor leakages between SS and GG were observed for some experimental conditions, namely
for higher flow rates that lead to high pressures, testing the microfluidic device with an impermeable
layer or with EC could solve this issue. To solve the membrane ablation problem a different anti-fouling
column disposition in diamond could be experimented. Despite leading to a uniform shear stress
spatially, it would lead to the appearance of two dominant directions with a 45° angle from the
streamwise direction. Another strategy that could be used for the gradient generation would be the
seeding of EC in a membrane embedded in VEGF gradient that required only one channel to fulfil the

requirements.

Regarding the experimental setup, the use of a flowmeter would be benefic, and it would allow the
determination of the transient flow rate response due to the syringe pump than can lead to a non-
constant flow rate. To increase the reliability, a pressure pump could be used constituting however an
expensive solution.

Regarding the model simulation, the CFD model will lead to a higher bound of the shear stress, since
the EC have a hydrodynamic shape that leads to lower shear stresses. Another key issue is that cells
are constituted by a cellular membrane that isn’t rigid and can exhibit a dynamic response according to
the flow rate imposed. In physiological conditions the flow rate can be approximated to a pulsatile flow
and an additional feature to consider would be the Fluid-Structure Interaction that could lead to important
findings. The cellular membrane stiffness could be calibrated determining the cell dynamic response to

several stimuli using 3D microscopy with a minimum time resolution of 10Hz.
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A.Annexes

Group Photo

Figure A.1— INESC-MN group picture taken in 2017-10-23.
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Results and Discussion

Table A.1 — Diffusion coefficient computation of water and VEGF-A molecules.

Molecule Water VEGF-A
Length [—] - 232 a.a.
Mass [Da] 18 27042
Diameter [nm] 0,096 4,240

Diffusion Coefficient 236,4 5,35
[m2.s 1] x 10~11

(a) (b)
Figure A.2 — 3D representation of water and VEGF-A molecules.
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Figure A.3 — Concentration gradient determination in the mixer based on the relative light intensity

for an inlet with concentration (Left Inlet 1:1 | Middle Inlet 1:10 | Right Inlet 1:100). Parametrization on
velocity from top to bottom (U = {0.1; 1.5; 10.5; 20.0}mm. s~1). Measurement taken at mixer exit and
membrane entrance, respectively left and right images.
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Figure A.4 — Concentration gradient determination in the mixer based on the relative light intensity

for an inlet with concentration (Left Inlet 1:2 | Middle Inlet 1:20 | Right Inlet 1:200). Parametrization on
velocity from top to bottom (U = {0.1; 1.5; 10.5; 20.0}mm.s™1). Measurement taken at mixer exit and
membrane entrance, respectively left and right images.
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