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Abstract

GAMGI is a free program available for Linux operating systems, used for the construction,

visualization and analysis of atomic structures.

The objective of this work was the research, development and implementation in GAMGI of

algorithms that allow the creation of molecular structures based on graphene: nanotubes, nanocones

and fullerenes.

Graphene is a carbon based structure which presents interesting mechanical,  thermal and

optical properties. Three important classes of atomic structures may be computationally generated

from graphene: carbon nanotubes, carbon nanocones and fullerenes. These molecules, like graphene,

present properties that make them interesting for applications in different scientific  areas, such as

medicine and engineering.

Algorithms were developed and implemented throughout the course of this work, which allow

for the generation of any single-walled nanotube of the zig-zag, armchair and chiral types, with an

arbitrary height.

Other algorithms were equally developed and implemented which allow for 16 kinds of open or

closed nanocones to be built, with an arbitrary height, with disclination angles between 60o and 300o,

differing in the positions or only locally, as a result of the applied construction method.

Finally, caps were built which, when correctly applied to specific classes of nanotubes – (5,0),

(5,5)  and (6,6)  –  allow for  the  generation  of  infinite  series  of  fullerenes,  which  include  the  most

experimentally observed molecules of this type, C60 and C70,  in both cases with the 12 pentagons

(demanded for this kind of structure) all isolated. For fullerenes, other important topological algorithms

were described and in some cases analyzed but not implemented, and may constitute a basis for

future work. 
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Resumo

O GAMGI é um programa livre disponível para sistemas operativos Linux, utilizado para a

construção, visualização e análise de estruturas atómicas.

 Este trabalho teve como objectivo a pesquisa, desenvolvimento e implementação no GAMGI

de algoritmos que permitam a criação de estruturas moleculares baseadas em grafeno: nanotubos,

nanocones e fulerenos.

O grafeno é uma estrutura de carbono que apresenta interessantes propriedades mecânicas,

térmicas,  eléctricas  e  ópticas.  A partir  do  grafeno,  podem ser  geradas  computacionalmente  três

classes  importantes  de  estruturas  atómicas::  nanotubos  de  carbono,  nanocones  de  carbono  e

fulerenos.  Estas  moléculas,  tal  como  o  grafeno,  apresentam  propriedades  que  as  tornam

interessantes  para  aplicações  em diferentes  áreas  científicas,  entre  as  quais  a  engenharia  e  a

medicina.

Neste  trabalho  foram desenvolvidos  e  implementados  algoritmos  para  construir  qualquer

nanotubo de parede simples, do tipo “zig-zag”, “armchair” ou “chiral”, com uma altura arbitrária.

Foram igualmente desenvolvidos e implementados algoritmos que permitem construir 16 tipos

de  nanocones,  abertos  ou  fechados,  com  uma  altura  arbitrária,  com  ângulos  de  supressão

(“disclination”) que variam entre os 60o e os 300o, diferindo na posição dos pentágonos resultantes ou

apenas localmente, como resultado do método de construção aplicado.

Finalmente, foram construídas coberturas (“caps”) que, devidamente aplicadas em classes

específicas de nanotubos – (5,0), (5,5) e (6,6) – permitem gerar séries infinitas de fulerenos, que

incluem nomeadamente as moléculas deste tipo mais observadas experimentalmente, o C60 e o C70,

em ambos os casos com os 12 pentágonos (exigidos para este tipo de estrutura) todos isolados. Para

os fulerenos, foram igualmente analizados e nalguns casos descritos outros algoritmos topológicos

importantes, que não foram implementados, constituindo uma base de partida para o futuro.

Palavras-chave: grafeno, algoritmos, nanotubos, nanocones, fulerenos
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1. Introduction

This thesis was elaborated with the objective of creating additional functionalities to the free

and open-source software program GAMGI (General Atomistic Modelling Interface) [1]. The goal of

this program, as stated on the official website, is “… to provide a free package to construct, view and

analyse atomic structures, as powerful and simple to use as possible”.

At the beginning of this work, GAMGI lacked the funcionality of directly creating any kinds of

molecules from simple input parameters given by the user. Over the course of this work, code has

been written and added to the program, which allows for the creation of several different graphene

based structures, namely carbon nanotubes, carbon nanocones and fullerenes. Algorithms that create

the molecules based on user input were researched and then implemented in the C programming

language, after which they were subjected to continuous development. The graphical interface also

suffered various modifications to adjust to the new functionalities, so as to allow for direct user input.

2. State of the Art

2.1.Graphene

Graphite is a crystalline allotrope of carbon, and the most stable under standard temperature

and pressure conditions. It has a layered, planar structure, and belongs to space group 194 (as the

well known hexagonal compact structure), with Wyckoff positions b (0, 0, ¼), (0, 0, ¾) and c (1/3, 2/3,

¼), (2/3, 1/3, ¾) [2].

A layer of graphite is called graphene, and its crystalline structure can this be described as a

2D hexagonal lattice (with a = 2.464 Å, the graphite experimental value), with c atoms at positions (0,

0) plus (1/3, 2/3) or (0,0) plus (2/3, 1/3), forming a honeycomb pattern (Figure 1). Each atom is bonded

to three other atoms on the same plane, the distances between them being about 1.42 Å [3]. 

Graphene has various outstanding properties, such as being much stronger than the strongest

steels, conducting heat and electricity efficiently and being nearly transparent [4], [5], [6]. In 2010, the

Nobel  Prize  in  Physics  was  awarded  jointly  to  Andre  Geim  and  Konstantin  Novoselov  “for

groundbreaking experiments regarding two-dimensional material graphene”.

Graphene holds great promise in terms of its applications, the most attractive being within the

area of material/device applications, such as solar cells, LEDs, touch panels and smart windows or

phones [7].

Graphene is a crystalline allotrope of other important carbon structures with 2-dimensional

properties, such as carbon nanotubes, fullerenes and nanocones.
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2.2.  Nanotubes

2.2.1.Definitions and terminology

Carbon nanotubes are allotropes of carbon with a cylindrical shape (Figure 2). They can be

thought of as rolled up sheets of graphene. There are several ways in which the sheet can be rolled to

form a  nanotube,  and  depending  on  that,  the  nanotube  will  exhibit  different  properties,  such  as

whether it is metallic or semiconductor [8].

Nanotubes  can  be  single-walled  (SWCNT)  or  multi-walled  (MWCNT),  where  a  MWCNT

consists of multiple rolled layers of graphene, that is, multiple stacked SWCNTs. Most SWCNTs have a

diameter close to 1 nanometer, while being millions of times longer. They have been constructed with

length-to-diameter ratio of up to 132,000,000:1 [9].

2

Figure 1 - The graphene honeycomb lattice



2.2.2. Modelling

As shown in  Figure 3, a carbon nanotube structure can be described through a translation

vector T = m.a1 + n.a2 linking two equivalent atoms of the graphene honeycomb lattice, where a1 and

a2 are two base vectors separated by 60o, and m and n are integers that will identify the nanotube. As

T starts and ends at equivalent points, lines perpendicular to  T, passing through those two terminal

points, must also be equivalent. Defining an arbitrary heigh for these perpendicular lines, a rectangle

can be thus constructed where the terminal perpendicular sides are equivalent so the rectangle can be

folded  and  the  two  perpendicular  sides  connected  in  a  perfect  way,  forming  a  nanotube.  The

coordinates (m, n) defining the translation vector  T (and the geometrical height of the perpendicular

sides) uniquely characterise the molecular structure of  a carbon nanotube. Nanotubes are usually

classified  as  zigzag,  armchair  or  chiral,  for  coordinates  of  the  type  (m,  0),  (m,  m)  or  (m,  n),

respectively. These names have been given because zig-zag nanotubes have a typical zig-zag atomic

structure at the termination top and bottom sections, while the armchair nanotubes have an atomic

structure  that  closely  resembles  a  typical  sofa  design,  with  a  low flat  sitting  zone  by  higher  flat

armchairs.  Chiral  nanotubes  are  named  this  way  because  they  lack  the  symmetry  of  the  other,

producing typical spirals when seen along the tube direction, as the 2D graphene symmetry directions

are not aligned anymore with the longitudinal tube direction. [11], [12], [13], [14].

3

Figure 2 - Electron microscopy image of a single-wall carbon nanotube suspended between two CNT bundles
[10]



2.2.3. Discovery

Carbon nanotubes (CNTs) have attracted lots  of  attention from scientists  in  various fields

because they exhibit extraordinary physical and chemical properties due to their intrinsic nano-sized

and carbon-based natures.

Nanotubes were first discovered in 1952, by L.V Radushkevich and V.M Lukyanovich, who

published the first known transmission electron microscope images of multi-walled carbon nanotubes

(MWNT's). However, it  happens that not only the article was written in russian and published in a

Russian Journal, but this discovery took place during the Cold War. Because of this, their findings

were not given due attention [15]. In 1976, Endo, Koyama and Oberlin managed to synthesize and

observe hollow tubes of roled up graphite sheets synthesized by a chemical vapour growth technique,

and in this case, they were not multi but single-walled (SWNT's) [15], [16]. Endo also managed to

observe SWNT's later, in 1988 [17]. In 1979, John Abrahamson et al. presented evidence of carbon

nanotubes,  where  it  was  suggested  that  they  could  be  grown  in  a  nitrogen  atmosphere  at  low

pressures [18]. 

Despite these reports on the observation of nanotubes, it was not until 1991, six years after

the discovery of fullerenes by Kroto [19], when Iijima [20] discovered this molecule in the insoluble

material of arc-burned graphite rods, that carbon nanotubes started to draw great attention from the

scientific community. Indeed, coupled with the prediction of Mintmire et al. [21], that if single-carbon

nanotubes could be made, they would exhibit  remarkable conducting properties, Iijima's discovery

sparked the generalized interest in carbon nanotubes that we can observe up to this day.
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Figure 3 - Selection rectangle for a (5,5) carbon nanotube. T is the translation vector, b1 and b2  the nanotube
base vectores, and h is the height



2.2.4. Synthesis

Most of the processes used to produce CNTs take place in vacuum or with specific process

gases.  They  include,  but  are  not  limited  to:  arc  discharge,  laser  ablation,  high-pressure  carbon

monoxide disproportionation and chemical vapour deposition (CVD), some of which can be seen in

Figure 4. These methods allow for large quantities of nanotubes to be fabricated, making CNTs more

commercially viable [22].

2.2.5. Properties

Carbon nanotubes exhibit various attractive properties, in part due to being a graphene based

structure. These include:

Strength –  carbon nanotubes are one of the strongest materials yet discovered in terms of tensile

strength and stiffness, due to the covalent sp2 bonds formed between the individual carbon atoms. Yu

et al. [24] have reported that multi-walled carbon nanotubes were tested to have a tensile strength

between 11 and 63 GPa, and that the Young’s modulus of the outer layer varied between 270 to 950

GPa. However, CNTs are not nearly as strong under compression. Because of their hollow structure

and high aspect ratio, they tend to undergo buckling when placed under compressive, torsional, or

bending stress [25].

Wettability  –  the  contact  angles  of  most  as-synthesized  CNT arrays  with  water  are  over  160o,

exhibiting a super-hydrophobic property. However, it has been found that by applying a voltage as low

as 1.3V, the super-hydrophobic surface can be switched to super-hydrophilic [26].
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Figure 4 - Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b)
Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames [23]



Electrical properties – it is very interesting to note that the classification of CNTs based on electrical

conductivity is depends of the nanotube indices,  m and n. Indeed, if the nanotube has the armchair

configuration, it is metallic; if m – n is a multiple of 3, then the nanotube is semiconducting with a very

small band gap. In any other case, it is simply a moderate semiconductor [18]. They can  carry an

electrical current density of ~4 × 109  A/cm2, which is three orders of magnitude higher than a typical

metal, such as copper or aluminium [27].

Thermal  properties  –  measurements  show  that  a  SWCNT  has  a  room  temperature  thermal

conductivity along its axis of about 3500 W/mK, which is very high when compared, for example, to

copper, a metal well known for its good thermal conductivity, which transmits only 385 W/mK. Across

its axis,  however,  the thermal conductivity is very small,  of about 1.52 W/mK [23].  The cylindrical

shape of the CNTs is responsible for this anisotropy.

2.2.6.Applications

Certain  companies [28]  have already implemented CNT technology  as  of  today,  although

nanotubes have only mostly been applied in their bulk form, that is, as a mass of rather unorganized

fragments of nanotubes. The gains of tensile strength due to reinforcement  will never stand close to

the full potential of CNTs, but they may, nonetheless, be sufficient for certain applications. Their use

has also been reported in pharmaceutical and medicine [29], for example due to their high surface

area that is capable of adsorbing or conjugating with a wide variety of therapeutic and diagnostic

agents (drugs, genes, vaccines, antibodies, biosensors, etc.)

2.3.Nanocones

2.3.1. Definition

Carbon nanocones are conical  structures which are made predominantly from carbon and

which have at least one dimension of the order one micrometer or smaller.

2.3.2. Discovery

Research into CNC’s started almost at the same time as the discovery of CNT’s in 1991 by

Ijima [20]. In 1992, Ge et al. [30] reported the observation of carbon cones, together with tubules. The

observed cones were up to 24 nm in length and 8 nm in base diameter,  and although they only

observed cones with the same opening angle of 19o, they also predicted that there were another four

possible angles. The cones were artificially generated  by quenching of hot carbon vapor on a graphite

substrate. They also reported how a carbon nanocone can be modelled by rolling a sector of a sheet

around its apex and joining the two sides. 
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Later, in 1997, Krishnan et al. [31] successfully confirmed the predictions of Ge et al. that there

are  five  possible  opening  angles.  The  CNCs  were  generated  through  pyrolysis  of  hydrocarbons

(Figure 5).

Just like in the case of CNTs, CNCs can also be categorized as single-walled or multi-walled.

MWCNCs are the common case. SWCNCs, on the other hand, are much harder to obtain. One group

[32] found that using the CO2 laser ablation of carbon at room temperature produced aggregates of

SWCNCs.

2.3.3. Modelling of SWCNCs

The modelling of a SWCNC can be carried out by starting out, as in case of SWCNTs, with a

graphene sheet. In this case, the sheet should be circular, so as to produce a cone in the end. First,

one must cut off a slice of the sheet for some specific angle, and then fold it to close the sheet. As

graphene has a hexagonal six-fold symmetry, removing angular slices of 60, 120, 180, 240 or 300o

(the so-called disclination angle) starting from the circle center (placed in the center of a hexagon

ring), and then connecting the two border lines, a perfect junction should be obtained for the closure
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Figure 5 - TEM of the five types of cones in Krishnan’s sample, a) apex angle = 19.2o; b) apex angle = 38.9o; c)
apex angle = 60o; d. apex angle = 86.6o; e) apex angle = 123.6o; f) High resolution of image of a cone tip. [33]



line upon folding, as predicted by Ge et al. [34] (Figure 6). This way, a pentagon (Figure 7), a square,

a triangle, a line or a spire structure is formed in the cone center for the disclination angles of 60, 120,

180, 240 or 300o, respectively [33], [35], [36], [37], [38], [39], [40].

A different technique consists in removing and folding multiple sectors (from 2 to 5) of  60o

starting from different points close enough to the circle center. Curling any of the sectors between the

indicated lines leads to perfect closure of the honey comb network. For each sector removed, one

pentagon must be formed on the honeycomb lattice, which means that a maximum of five pentagons

may be formed, for a disclination angle of 300o. The values of the five possible cone angles are given

by 2 x arcsin(1 – n / 6), or 2 x arcsin (1 – Ѳ / 360), where n is the number of pentagons in the structure
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Figure 6 - The five possible nanocone disclination angles

Figure 7 - Formation of a nanocone from a graphene sheet with a 60 disclination. This results in a cone with a
single pentagon, located on the cone apex, with an apex angle of 112.9o. Thick lines in the image on the right
show the location of the pentagon. There is only one possible nanocone structure with a single pentagon [39]



and Ѳ is the disclination angle in degrees [33], [39], [41], [43]. Thus, for the five possible closed cone

structures the apex angles will be 112.9o, 83.6o, 60o, 38.9o and 19.2o (Figure 8).

Unlike the case where there is only one pentagon in the cone, when more pentagons are

incorporated  there is more than one possible cone structure [39] (Figure 9).
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Figure 8 - Optimized structures of five CNCs with one, two, three, four, and five pentagons, respectively. The
pentagons colored in light gray are displayed. (a) The top view. (b) The side view. [35]

Figure  9 - Formation of nanocones from a graphene sheet with a total of 240o disclination. There are four
pentagons in the resulting structure, with an apex angle of 38.9o. Thick lines in the images on the right show the
location  of  the pentagons.  There  are  many possible  structures corresponding  to  different  locations  of  the
pentagons,  with  two shown here:  (a)  structure with  the pentagons  arranged in  a rectangular  fashion with
twofold symmetry,(b) structure with pentagons arranged in a diamond pattern with twofold symmetry. [39]



Besides the closed cones described above, there are also open nanocones [39] (Figure 10).

Open cones can have the closed cone structures discussed above, with one to five angular sectors

removed, the only difference being that they lack the top part, or apex of the cone, and thus there are

no pentagons or other smaller rings. Open cones are usually more flexible than closed cones, as they

lack the constraints posed by the apex complex structures [33].

2.3.4. MWCNCs modelling

Unlike the isolated (SWCNC) cones, multi-walled carbon nanocones (MWCNCs) consist of

multiple  conical  layers  that  make  it  harder  to  verify  their  structures.  There  are  three  structures

proposed for this kind of cones:

Stacked closed cone structures – individual cones are stacked on top of each other, being offset

from each other in the same way [44]. This structure is referred to as a turbostratic structure. The

advantage  of  this  model  is  its  simplicity,  but  it  fails  to  explain  electronic  conductivity  in  the  axial

direction and the strong axial properties of nanofibers [39]. This structure is also the exception, rather

than the rule, as in almost every other case, conical structures with a variety of non-standard apex

angles are obtained.

Stacked open cone structures – same as the above case, but with open cones.
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Figure 10 - Schematic illustrations of CNCs with different opening angles (a). TD = 60o, apex angle = 19.2o; (b).
TD = 120o, apex angle = 38.9o; (c). TD = 180o, apex angle = 60o; (d). TD = 240o, apex angle = 86.6o; (e). TD =

300o, apex angle =123.6o. [33]



Cone-helix structures – Jaszczak et al [36] have reported a broad apex-angle distribution in one of

their works. They found that the cone-helix model (Figure 11) proposed by Double and Hellawell [45]

fitted their observations. This model is based on growth around a positive disclination with a screw

dislocation  component.  As  a  graphene sheet  wraps  around the  disclination,  adjacent  overlapping

layers are rotated with respect to one another by an angle equal to the disclination angle. Another

parameter, the degree of graphitic alignment, was adopted to justify if the overlapped graphenes are

energetically stable enough. It evaluates how many carbon atoms among the layers can achieve the

alignment of lattice points in graphite crystal. When the two parameters are combined, a series of

conical  graphenes with  all  possible  apex angles can be generated [42].  Although this  model  can

explain the broad range of observed apex angles, as well as the electronic and mechanical properties

that  the  stacked  cones  model  fails  to  predict,  the  construction  of  this  structure  is  much  more

complicated.

 

2.3.5. Energetic considerations

Calculations made using the molecular modelling program SPARTAN for various nanocone 

structures with four pentagons (Figure 9 and Figure 12) were carried out [39], and are shown in Table 

1:
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Figure 11-Schematic of cone formation by the cone-helix model [36]
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Figure 12 - Remaining Nanocone Isomers used for the simulations carried out in SPARTAN [39]

Table 1 - Results of the SPARTAN simulation [39]. In this work, the nanocones
in question are those from figures 9a, 9b, 12b, 12c and 12d, instead of 2a, 2b,
4b, 4c and 4d, respectively



Although it  is generally believed that structures with isolated pentagons are more unstable

than those with adjacent pentagons, the results from this work do not allow for any such confirmation.

The Hartree-Fock ab-initio calculations suggest that the structures with adjacent pentagons are more

stable, whereas the result from the molecular mechanics force field model suggest otherwise.

According to Double and Hellawell [45], cones with smaller apex angles may be disfavored

because  of  the  higher  elastic  energy  due  to  the  bending  needed  to  form  the  corresponding

disclinations; however it is also necessary to take into account that cones with smaller apex angles

have larger surface areas at their tips, and this should favor smaller apex-angle cones.

Cone angles corresponding to disclination angles that are equal to integer multiples of 60o

should be the most favorable, since they preserve the graphite crystal structure, as explained above.

But, if every cone would be formed due to the incorporation of pentagons into a graphene sheet, only

cones with discrete angles (60, 120, 180, 240 or 300o) would be observed, and those cones would be

very sharp. However, not only can cones with angles different from the expected discrete values be

observed,  but  they  can  also  present  various  different  shapes [36]  (Figures  13 and  14),  and this

suggests that there is more than one possible formation mechanism for nanotubes.
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Figure 13 - FESEM images of a cone-covered graphite aggregate. (a) Low-magnification image showing
complete coverage of the aggregate surface with conical structures. A ~39o cone is marked by an arrow. (b)
Higher magnification image of the sample showing a variety of large cones with different apex angles and
sharp and blunt tips. Arrows show changes in the apex angle. (c) Close up view of two surfaces which are
almost perpendicular and show different cone morphologies—large cones on one surface and globular
(artichoke-like) structures on the other. The latter are clusters of large-angle cones. Arrows show some of
the cones that are ripped on the side. [36]



2.3.6. Synthesis

Large-scale  production  of  conical  carbon  nanostructures  is  possible  through  pyrolysis  of

hydrocarbons  in  an  industrial  plasma  torch  process.  This  is  a  patented  process,  known  as  the

Kvaerner Carbon Black & Hydrogen Process (CBH). The CBH is an emission-free industrial process

that decomposes hydrocarbons directly into carbon and H2, based on a specially designed plasma

torch, with a plasma temperature above 2000oC. The solid output consists of a significant amount of

open-ended carbon nanocones (20%), as well as a large number of flat carbon discs (70%), the rest

being carbon black [43].

2.3.7. Properties and applications

Carbon-based electron field emitters have been reported to show good electron field emission

properties due to their capability of emitting high currents at low electric field [46], [47]. CNCs have

been ideally suited for use as scanning probe tips and electron field emitters due to their small size

and high stiffness [34], [48]. Shenderova et al. [49] predicted the good field emission properties for a
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Figure 14 - Typical cone morphologies. (a) SEM image of a cone with a 60o apex angle, the most common
apex angle. The slightly uneven surface of the cone suggests layer growth. (b) FESEM and (c) SEM images of
large cones with numerous smaller cones growing on their surface. Smaller cones covering surfaces of large
cones have a broad distribution of shapes, but large apex angles prevail (c). (d) FESEM image of four cones
having sharp and broad tips (multiple tips are marked by arrows). The cones are oriented to reveal their circular
cross sections around the tips and layered growth (ripples). [36]



nanocone with one pentagon. Qu et al [35] have found that the cohesive and formation energies for

various types of CNCs are dependent on the cone angles, while the work function, local density of

states, redistribution of the charge, and field emission pattern are sensitive to the morphologies of

CNCs that are governed by the position of pentagonal rings in the cone apex. Most importantly, the

nanocone with three pentagons in the cone apex exhibits the best field emission property. In this same

work, a broad apex-angle distribution has been reported.

2.4.Fullerenes

2.4.1. Discovery

Before its discovery by Kroto et al. [19], the existence of fullerenes had already been proposed

[50], when Osawa, after noticing the similarity between a corannulene molecule and a football shape,

proposed that a molecule with the exact shape of a football could exist. Attempts were then made to

predict the  exact structure of C60, but they ended out not receiving the due attention by the scientific

community [51], until finally, in 1985, Kroto et al. [19], “during experiments aimed at understanding the

mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar

shells”, ended up “producing a remarkably stable cluster consisting of 60 carbon atoms.”, a discovery

which earned them the Nobel Prize in Chemistry in 1996.

Fullerenes are closed carbon-cage molecules containing only pentagonal and hexagonal rings

[52], where every atom has bonds with exactly 3 other atoms [53], idealized as sp2 hybridized atoms

[54]. This bonding framework forms a polyhedron, with an atom at each vertex, a bond along each

edge, and a ring around each face [52]. 

2.4.2. Euler’s Theorem

One of  the  best-known  properties  of  polyhedra  is  Euler’s  theorem,  which  states  that  the

numbers of vertices (V), edges (E), and faces (F) in a polyhedron are related by:

V+F=E+2 (1)

Therefore, a Cn fullerene with n vertices and 3n / 2 edges, must have a number of faces F = n  / 2 + 2,

as in any special polyhedron with trivalent vertices. However, this result can be taken slightly further by

defining the number of pentagons as p and the number of hexagons as h. The total number of vertices

is then:

(5p+6h)/3=n (2)
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since there are 5 and 6 atoms for each pentagon and hexagon, respectively, and each atom is shared

by 3 faces. The total number of faces is

p+h=n /2+2 (3)

The solution of the two equation system composed by equations (2) and (3) is p = 12 and h = n / 2 – 

10. Hence all fullerenes contain 12 pentagons and n / 2 – 10 hexagons [52].

There is  at  least  one fullerene  for  each  even  number  of  vertices n >= 20,  with  the sole

exception of n = 22. If one attempts to construct a trivalent planar graph with a single hexagon at the

centre and every other face a pentagon, the construction fails because the final face of the graph has

to be another hexagon, giving a total  of  two hexagons and 24 vertices,  i.e.,  the unique fullerene

structure of C24.  Odd numbers of vertices are also precluded for fullerenes, because the number of

edges and faces must be integer. [52]

2.4.3. Isomers

There are infinitely many fullerenes, the number of isomers growing as N9 for N carbon atoms

[52] (Figure 15). For example, C60 has 1812 isomers, but C180, already has 79,538,751 isomers. The

order N9-growth follows from Thurston’s parameterization of triangulations on geodesic domes [55].

These isomers come in many different shapes depending on the distribution of the pentagons

over the surface of the fullerene, as can be seen in Figure 16.
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Figure 15 - Number of distinct (non-isomorphic) fullerene isomers CN (with and without fulfilling the IPR)
with increasing number of carbon atoms N up to N = 400 (double logarithmic scale). [54]



2.4.4.  Isolated Pentagon Rule

The single most important consequence of steric strain in the fullerenes is the IPR, which says

that the most stable fullerenes are those in which all the pentagons are isolated, that is, no pentagon

shares an edge with any of the other pentagons on the fullerene. This rule was first mentioned by

Kroto in 1987 [56]. The first fullerene to exhibit an isomer that respects the IPR is C60.

2.4.5. Pentagon and hexagon indices

The IPR is a very effective rule to determine which fullerene isomers are thermodynamically

more  stable  ones.  However,  for  fullerenes with  more  than  70  carbon  atoms,  the  number  of  IPR

isomers increases rapidly [52].

An additional rule used to determine the most stable fullerene isomers has been proposed by

Raghavachari [57], who argues that steric strain will be minimized beyond the IPR when the pentagon-
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Figure 16 - A selection of different 3D shapes for regular fullerenes (distribution of the pentagons DP are set in
parentheses). ‘Spherically’ shaped (icosahedral), for example, (a) C20 - Ih , (b) C60 - Ih  , and (c) C960 - Ih (DP = 12 ×
1); barrel shaped, for example, (d) C140 - D3h (DP = 6 × 2); trigonal pyramidally shaped (tetrahedral structures), for
example, (e) C1140 - Td (DP = 4 × 3); (f) trihedrally shaped C440 - D3 (DP= 3 × 4); (g) nanocone ormenhir C524 - C1

(DP = 5 + 7 × 1); cylindrically shaped (nanotubes), for example, (h) C369 - D5h , (i) C1152 - D6d , (j) C840 - D5d (DP = 2 ×
6). The fullerenes shown in this figure and throughout the paper have been generated automatically using the
Fullerene program. [54]



induced curvature is distributed as uniformly as possible over the fullerene surface. In order to quantify

the uniform curvature rule, Raghavachari defines the neighbour index of each hexagon in a fullerene

as the number of other hexagons to which it  is adjacent.  The arrangement of the pentagons in a

fullerene can be characterized within the neighbour index scheme by a signature of the form (h0, h1,

h2,  h3,  h4,  h5,  h6),  where  hk denotes the number of hexagons with neighbour index  k.  Since in an

isolated-pentagon fullerene, every hexagon is adjacent to at least another three, it is only reasonable

to dispense the first three indices (since they are all zero).

The sum of the entries in the hexagon neighbour index signature is simply the total number of

hexagons. As such, for an isolated-pentagon fullerene, we have:

h3+h4+h5+h6=n/2−10 (4)

The sum of the edges of all the hexagons can be obtained by multiplying 6: 3n – 60. Sixty of those (12 

x 5) are shared with pentagons (for IPR isomers), so:

3h3+4h4+5h5+6h6=3n−120 (5)

Eliminating n:

3h3+2h4+h5=60 (6)

which is simply the number of edges that are shared between pentagons and hexagons.

According to Raghavachari’s [57] argument that the indices of all the hexagons in the structure

should be as similar to one another as possible and taking into account the constraints of the above

equations, it follows that there are three optimum solutions:

• (20, 0, 0, 0) for n equal to 60;

• (0, 30, 0, 0) for n equal to 80;

• (0, 0, 60, 0) for n equal to 140.

Clearly, no (0, 0, 0, n) solution exists because some hexagons must be adjacent to pentagons.

It is also very interesting to verify that the three cases correspond to IPR fullerenes with maximum

(icosahedral) symmetry. However, these are only three values of  n,  and it  would be interesting to

expand the range of values. By allowing for a given fullerene to have two different, but consecutive,

hexagon neighbour indices, the solutions can be stated in the following form:

• (80 – n, 3n/2 – 90, 0, 0) for 60 <= n <= 80;

• (0, 70 – n/2, n - 80, 0) for 80 <= n <= 140;
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• (0, 0, 60, n/2 - 70) for 60 <= n <= 80;

The rationale applied above for large fullerenes, with more than 70 atoms, can be used for smaller

fullerenes,  considering not  the hexagon indices,  but  the pentagon indices,  that  is,  the number of

pentagons each pentagon is adjacent to, (p0, p1, p2, p3, p4, p5).

In this case, the total number of fused pentagon pairs (pairs of adjacent pentagons) in an

isomer can be given by (dividing by 2, as pentagons are counted twice):

Np=∑
k=1

5

kpk/2 (7)

The value  Np can be used as a qualitative filter for selecting stable isomers. The lower the

value of Np, the more stable the isomer. Although it can also be used for fullerenes with more than 70

carbon  atoms,  it  does  not  provide  much  help,  as  fused  pentagons  seldom  occur,  and  for  IPR

fullerenes, NP is always 0.

2.4.6. Fullerene Graph Generation Algorithms

There has been an intense activity in the field of topological and graph theoretical descriptions

of fullerenes over the past 20 years, to the extent that it has become a major sub-discipline within

mathematical chemistry. In order delve into an explanation of some of the proposed algorithms, it is

first necessary to go over some concepts [58].

2.4.6.1. Graph Theory

Graph theory covers the study of graphs, which are mathematical structures used to model

pairwise relations between objects. A very simple example of a graph can be seen in Figure 17.

Graphs consist of vertices (or nodes) related by edges (or connections). If two vertices are

connected by an edge they are said to be adjacent.
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Figure 17 - A 6 vertice graph [59]



The number of edges starting at a vertex (or the number of adjacent vertices) is the valency or

degree of that vertex. A node with valency n is said to be n-valent. A graph is called n-regular if every

vertex is n-valent.

At this level, a graph represents the information that chemists sometimes call the connection

table of a molecule. For a visual representation, it is also necessary to assign (2D or 3D) coordinates

to the vertices, and this is known as embedding of the graph (into 2D or 3D space).

When a graph is to be drawn on paper, it is desirable to draw the edges so that they don't

cross each other. If this is possible (the graph has a 2D embedding that permits intersection-free edge

drawing), the graph is said to be planar. Looking at a drawing of a graph with more or less straight

edges, faces are perceived as well as edges and vertices. A face is a 2D region bounded by some of

the graph's edges. (the special face defined by the “outside of the graph must also be included”).

Depending on the number of  edges bounding it,  a face can be a triangle,  quadrangle,  pentagon,

hexagon, and so on. The number of bounding edges is the face's size.

The notion of a dual is also a very important one to be aware of. If one pictures a planar graph

with its vertices, edges, and faces, one can then obtain a new graph, the dual of the original graph, as

follows: first, it is necessary to create a new (dual) vertex in the interior of each face of the original

graph. For each original edge, one must find the faces bounded by that edge and connect the dual

vertices inside them by a new (dual)  edge, crossing the original one. Dualizing exchanges vertex

degree and face size: the degree of each dual vertex is clearly equal to the size of the corresponding

original face: each edge bounding the original face creates a dual edge starting at the dual vertex.

Likewise, a dual face's size is equal to the degree of the corresponding original vertex.

A graph  is  called  k-(vertex)-connected if  one  must  remove at  least  k  vertices in  order  to

separate the graph into disconnected parts. If  k vertices are also "enough" to separate the graph

(there is some set of k vertices that, when removed, achieves the separation), we say the graph is

exactly k-connected. The number k is then called the connectivity of the graph. (Removing a vertex

implies removing all edges adjacent to it.)

A fullerene can be represented as a  graph,  if  one considers the vertices of  the graph to

represent atoms and the edges to represent bonds (Figure 18).  Constructing a fullerene graph is

equivalent to constructing its polyhedron, because the bonding connectivities of the two are the same.

A list of adjacent vertices in the graph is the same thing as a list of adjacent carbon atoms in the

polyhedron, for example, and this is how a computer might represent bonding connectivity. [58]
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2.4.6.2. Fullerene Duals

The duals of fullerene polyhedra are deltahedra, which are polyhedra made up exclusively of

triangular faces. It is easy to see from the above discussion that the dual of a fullerene polyhedron with

n vertices has n triangular faces and 12 five- and n / 2 – 10 six-valent vertices.

The  most  often  quoted  examples  of  dual  pairs  are  the  octahedron  and  the  cube,  the

icosahedron and the dodecahedron. The tetrahedron completes the set of Platonic solids and is the

only regular polyhedron that is self-dua [52] (Figure 19).
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Figure 18 - Graph of C20 [60]



One of  the many reasons why fullerene duals  are  interesting  is  that  it  is  often  easier  to

construct a fullerene by first constructing its dual. This trick forms the basis o several methods for

constructing fullerene isomers, such as the leapfrog method. Once the fullerene dual is known, the

fullerene can  easily  be reconstructed,  because  each  set  of  three mutually  adjacent  vertices  in  a

fullerene dual  encloses a  unique  vertex  of  the corresponding  fullerene  polyhedron (Figure 20).  It

follows that  each vertex of  the fullerene can be uniquely  associated with three mutually  adjacent

vertices of its dual, and moreover that two fullerene vertices will be adjacent if and only if two of the

three dual vertices with which they are associated are the same. These facts allow one to obtain a list

of adjacent vertices in the fullerene from a list of adjacent vertices in its dual, which is tantamount to

performing the reconstruction. [52]
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Figure 19 - Two dual pairs are (a) the icosahedron and the dodecahedron, (b) the octahedron and the cube.
The tetrahedron (c) is the only self-dual Platonic solid. [52]



2.4.6.3. Ring-Spiral Algorithm

This algorithm was proposed by Fowler and Manolopoulos in An Atlas of Fullerenes [52]. It is

based upon the following conjecture: “The surface of a fullerene polyhedron may be unwound in a

continuous spiral strip of edge-sharing pentagons and hexagons such that each new face in the spiral

after the second shares an edge with both (a) its immediate predecessor in the spiral and (b) the first

face in the preceding spiral that still has an open edge.” Any face of the fullerene may serve as a

starting point for the unwounding of the spiral. The spiral of the dodecahedron, C20, can be seen in

Figure 21.
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Figure  20 -  Planar  embeddings  of  fullerene  graph  and  dual  (blue  color  and  dotted  lines  for  the  dual
representation), and 3D embeddings of the duals: (a) C20 - Ih , for which the dual is the icosahedron; (b) C60 - Ih ,
for which the dual is the pentakis-dodecahedron. [55]

Figure  21 -  The unique spiral  of  the dodecahedron, shown superimposed on the corresponding planar
graph. Each new face in the spiral after the second is adjacent to both (a) its immediate predecessor and (b)
the first face in the preceding spiral that still has an open edge [52]



Unfortunately,  it  has  been proved that  this  algorithm fails  for  very  large isomers  [52].The

smallest fullerene for which a failing spiral can be found is a D2 isomer of C28. It has 168 spiral starts,

42 of which are distinct. Out of those 42, one of them fails. Despite the fact that there are fullerenes

which fail to be described by a spiral in this manner, this is nonetheless a very attractive algorithm due

to its simplicity.

2.4.6.4. Face-adding algorithms

Several authors have proposed fullerene graph generating algorithms in which the approach is

to add faces to an existing graph, while considering different sites for addition at each step. It was

proposed, for example, to grow a graph starting from a single face, and adding faces at each step [61],

as well as using patches, which are sets of faces bounded by a simple cycle, that is, a cycle that

traverses no vertex or edge twice [53].  Using C24 as a seed,  Brinkmann et  al.  [62]  were able to

generate almost all fullerene graphs up to C200. 

In order to fix the shortcomings of Brinkmann’s algorithm, Hasheminezhad et al. [63] defined a

set of patch replacements which allows for the generation of every fullerene graph, starting from C20

and C28 (Td) (Figure 22).

There are three sets of patch replacements, also called expansions:

• Li – for i >= 0, adds i + 2 faces, using a path of length 2i + 3 that alternates left and right;

• Bij – for i, j >= 0, adds i + j + 3 faces, using a path of length 2i + 2j + 5 that alternates left and

right, except that bends 2i + 2 and 2i + 3 have the same orientation;

• F – adds 5 hexagonal faces;
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Figure 22 - Two of the basic fullerene isomers [63]



Transformations L0, L3, B0,0, B3,2 and F, can be seen in Figure 23. All the transformations’ dual

representation, except  F, in Figure 24:

They have also mentioned how it would actually be possible to generate every fullerene graph

from C20. If, for example, one removes the central atom of C28 (Td) and suppresses the resulting atoms

of valence two, resulting in the C24 fullerene. So, by generating C24 from C20 and then applying the

inverse of the transformation that was just explained, it is possible to also generate C28.
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Figure 23 - Expansions L0, L3, B0,0, B3,2 and F [63]

Figure 24 - The L and B expansions in dual representation [64]



It is also worth mentioning the three algorithms established:

• Algorithm 1 –  every  fullerene  isomer  except  C28(TD)  can  be  constructed  from C20 using

expansions of type L, B, and F;

• Algorithm 2 – every fullerene isomer, except C28(TD) and type-(5,0) nanotube fullerenes, can

be constructed from C20 using expansions of type L and B;

• Algorithm 3 – every fullerene isomer with at most 300 atoms, except  C28(TD) and type-(5,0)

nanotube fullerenes, can be constructed from C20 using expansions of type L.

Brinkmann  et  al.  [64]  made  use  of  this  set  of  operations  to  define  a  fast  and  complete

algorithm that recursively generates all fullerene isomers up to a given maximal N. The algorithm was

implemented in a computer program called  buckygen, and the program was used to generate  all

fullerenes up to 400 vertices, which is available at the House-of-Graphs website [65].

2.4.6.5. Leapfrog Transformation

This transformation is more easily explained by example. Let us consider the C20 fullerene. By

placing a vertex on the center of each face and linking them with each of the other vertices in the

structure (five in case the vertex is in the center of a pentagon, six in case it is in the center of a

hexagon), the result is a deltahedron with 12 five-valent and 20 six-valent vertices (that is, vertices

connected to another 5 and 6 vertices, respectively). Now, by converting the deltahedron into its dual,

the  resulting  structure  is  a  truncated  icosahedron  with  12  pentagons  and  20  hexagons,  and  60

vertices. The different steps of this process can be seen in Figure 25.

So, to summarize it, a new fullerene can be generated from a smaller one by placing vertices

on the center of each face and then dualizing the resulting structure. This method always yields a

fullerene with three times the number of atoms of the original one. [52]
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Figure 25 - Leapfrogging a dodecahedron: a dodecahedron is converted to a 32-vertex deltahedron by
omnicapping, then to a truncated icosahedron by takind the dual [52]



2.4.6.6. Fullerene Generation Software

Several programs to create fullerene isomers have been created by researchers. Program

Fullerene, for example, is a general purpose open-source program that can generate any fullerene

isomer, perform topological and graph theoretical analysis, as well as calculate a number of physical

and chemical properties [55]. Other programs exist, like fullgen [53] or Buckygen [64].

2.4.7. Synthesis

The main process used to produce fullerenes is the arc discharge process, which consists in

the sublimation of carbon in an inert atmosphere through an electric arc, expansion of the carbon in an

inert gas and quenching of the carbon vapour, which leads some of the carbon clusters to assemble

into fullerenes.

There are alternatives, however. In 1999, Fulcheri et al. [66] tested a process for fullerene

production consisting of treating carbon powders through a 3-phase thermal plasma, and reported that

the preliminary experiments carried out had confirmed that their process was a promising option for

the mass production of fullerenes.

2.4.8. Applications

In  a  2013  review  paper  [67],  Lalwani  and  Sitharaman  analyzed  the  advances  in  the

development of fullerene-based magnetic resonance imaging and X-ray imaging contrast agents, drug

and gene delivery vehicles and photodynamic therapy agents. They presented the examples of certain

companies that make use of fullerenes in their products, such as for example an anti-aging cream,

fullerene-based drugs for AIDS and neurodegenerative diseases such as Parkinson and Alzheimer’s.

Bakry,  Rania et  al.  [68],  report  the aspects of  medical  applications of  fullerenes.  A similar

review, by Bosi, Susanna et al. [69], focuses on the biological applications of fullerenes.

3. Algorithms and Results 

The algorithms developed in  this  work  were  based upon existing  scientific  research,  and

implemented in the C programming language [70]. The source code, totalling a number of 2356 lines,

is divided among six files. In this section, the algorithms used to generate nanotubes, nanocones and

fullerenes will be explained and parts of the source code will be presented in code text segments. The

results of the implemented algorithms are also shown, (the molecules that GAMGI can generate).
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3.1.  Nanotubes

3.1.1.  Graphene Base Vectors and Atomic Positions

As mentioned in section  2.1,  graphene can be described by a 2D hexagonal  lattice   with

vectors a1 = a.x and a2 = a.sin (120o).x + a.cos (120o).y, with carbon atoms at positions (0, 0) and (2/3,

1/3). The lattice parameter a = 2.467 Å is thus simply related with the CC bond distance between the

two atoms: a=bond∗√3 .
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Code Segment 1 - Definition of the graphene base vectors and creation of graphene atoms

void gamgi_chem_graphene_vectors (double bond, double *a, double *b)
{
/****************************
 * graphene lattice vectors *
 ****************************/

a[0] = bond * sqrt (3.0);
a[1] = 0.0;
b[0] = -0.5 * bond * sqrt (3.0);
b[1] = 1.5 * bond;
}

/******************************************************
 * each primitive cell (i,j), with length a and       *
 * angle 120o, is formed by two equilateral triangles *
 *                                                    *
 * atoms A are in the vertices,                       *
 * atoms B are centered in the triangles below        *
 *                                                    *
 * the distance between atoms is the distance from    *
 * a vertex to the center of a triangle: a/sqrt(3)    *
 ******************************************************/

for (j = 0; j < max; j++)
  {
  for (i = -max; i < max; i++)
    {
    /*************************************
     * A atoms (type = FALSE): (0, 0, 0) *
     *************************************/

    x = i * a_rotated[0] + j * b_rotated[0];
    z = i * a_rotated[1] + j * b_rotated[1];
    static_atom_3d (molecule, driver, max, i, j, FALSE,
    n1, n2, perimeter, height, element1, x, z);

    /****************************************
     * B atoms (type = TRUE): (2/3, 0, 1/3) *
     ****************************************/

    x += 2 / 3.0 * a_rotated[0] + 1 / 3.0 * b_rotated[0];
    z += 2 / 3.0 * a_rotated[1] + 1 / 3.0 * b_rotated[1];
    static_atom_3d (molecule, driver, max, i, j, TRUE,
    n1, n2, perimeter, height, element2, x, z);
    }
  }



3.1.2. Nanotube Base Vectors, Translation Vector and Height

Nanotubes are usually described using similar base vectors but separated by a 60o angle: b1 =

a.x and b2 = a.sin (60o).x + a.cos (60o).y. Clearly these are also lattice vectors because the lattice is

hexagonal.  Therefore any (m,n) integer combination of  these two vectors represents a translation

vector T of the lattice, linking two equivalent points:

T=m⋅b1+n⋅b1 (8)

Two lines  perpendicular  to  T passing  through  these  two equivalent  points,  must  also  be

equivalent, allowing us to define a rectangle with length |T| and equivalent sides of height h, as shown

in Figure 3. As the two sides are equivalent, the rectangle can folded and the two sides linked, forming

a perfect seam, thus forming the final nanotube structure.
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Code Segment 2 - Definition of nanotube base vectors and translation vector

/****************************
 * nanotube lattice vectors *
 ****************************/

a[0] = bond * sqrt (3.0);
a[1] = 0.0;
b[0] = 0.5 * bond * sqrt (3.0);
b[1] = 1.5 * bond;

/********************************************
 * translation vector: T is always between  *
 * 0 and PI/2, angle is set negative so T   *
 * vector is rotated down, to be horizontal *
 *                                          *
 * rectangle dimensions: perimeter x height *
 ********************************************/

t[0] = n1 * a[0] + n2 * b[0];
t[1] = n1 * a[1] + n2 * b[1];

Code Segment 3 - Definition of height based on number of rings

static double static_height (double bond, int rings, int n1, int n2,
double angle)
{
/***********************************************************
 * armchair (angle = 30):                                  *
 * h = 2 * rings * bond * sin (PI / 3.0)                   *
 *                                                         *
 * zigzag (angle = 0):                                     *
 * h = (1 + rings) * bond * sin (PI / 6.0) + rings * bond  *
 ***********************************************************/

return 
bond * sin (GAMGI_MATH_PI / 6.0 - angle) +
rings * bond * sin (GAMGI_MATH_PI / 2.0 + angle) +
rings * bond * sin (GAMGI_MATH_PI / 6.0 + angle);
}



3.1.3.  Lattice Rotation

As mentioned in section 2.2.2, the integer coordinates (m,n) uniquely identify the whole atomic

structure of a nanotube, including its radius and type (armchair,  zig-zag, chiral).  Depending of the

nanotube type, the 2D rectangle makes an angle θ with the horizontal  x axis (0o for zig-zag, 30o for

armchair, between 0o and 30o for chiral nanotubes). To select the atoms within the 2D rectangle and

then build the nanotube, it is easier to first rotate the rectangle in order to align it with the 2D x, y axes.

This can be accomplished simply rotating the  a1,  a2 graphene base vectors of the angle  -θ, before

generating the graphene atom coordinates (Figure 26). The atoms inside the transformed, horizontal,

rectangle can now be selected simply by checking whether the x coordinate is between 0 and T (the

length of the vector T) and the y coordinate is between 0 and h. Atoms not fitting these conditions are

discarded.
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Figure 26 - Graphene lattice and selection rectangle of figure 3 after applying 30o clockwise rotation



3.1.4.Scanning Region

To find the range of graphene cells that  must be considered,  in order to generate all  the

relevant atoms, we notice that the farthest point in the rectangle (its top right corner) is given by:

r=√T 2+h2 (9)

This distance sets the radius of a circumference defining the maximum distance from the origin that

must  be considered.  Moreover,  as  the rectangle  is  above the  x axis,  only  atoms with  positive  y

coordinates must be considered. By direct inspection (see Figure 27) it can be seen that the range of

hexagonal graphene cells that must be considered to include all the relevant atoms closer than r can

be given by [-max, +max] (horizontal) and [0, +max] (vertical) with:

max=1+(1.2∗r )/a (10)
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Figure 27 - The semi-circle area and lozenge of graphene cells for a nanotube. r is the rectangle diagonal

Code Segment 4 - Rotation of the graphene base vectors

static void static_vectors (double *a, double *b,
double angle, double *a_rotated, double *b_rotated)
{
/************************************
 * rotated graphene lattice vectors *
 ************************************/

a_rotated[0] = cos (angle) * a[0] - sin (angle) * a[1];
a_rotated[1] = sin (angle) * a[0] + cos (angle) * a[1];
b_rotated[0] = cos (angle) * b[0] - sin (angle) * b[1];
b_rotated[1] = sin (angle) * b[0] + cos (angle) * b[1];
}



3.1.5. Coordinate Transformation

To convert the 2D rectangle of atoms into the 3D nanotube, we notice that the rectangle length

T is simply the perimeter of the nanotube, so the nanotube radius (unrelated to the previous one)

becomes r = T / 2π. The 3D atom coordinates are then obtained applying the following transformation

(see Figure 28 and Figure 29) to all the atoms inside the 2D rectangle:

(x, y )=(r⋅cos(α), r⋅sin(α)) (11)

with 

α=2π⋅x /T (12)
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Figure 28 - Selection rectangle with length T. A is an atom with coordinates (x,y)

Code Segment 5 - Definition of half-circle radius and maximum number of cells

/***********************************************
 * scanning region: a hexagonal lozenge with   *
 * [-max,max] x [0, max] cells, covering       *
 * completely a half-circle with radius radius *
 ***********************************************/

radius = sqrt (p * p + h * h);
*max = m = 1.0 + (1.2 * radius) / (bond * sqrt (3.0));



3.1.6. Periodic Boundary Conditions

In particular, atoms with x = T are automatically superimposed over atoms with x = 0 and must

be discarded. This can be accomplished noticing that atoms in graphene cells (i,j) and (i,j) + T or (i,j) -

T must be equivalent. Using the graphene cell vectors, the translation vector from equation (8) can be

written as:

T=(m+n)⋅a1+n⋅a2 (13)

so an atom in a graphene cell (i, j) must be discarded if another atom has been previously allocated in

a lower cell (i - m - n, j - n). (the argument could also be made for cells (i + m + n, j + n), but these

never occur because the cells are scanned upwards).

/*****************************************************
 * ignore atoms related with periodic boundary atoms *
 * with -T vector, so boundary atoms (that would be  *
 * superimposed after folding) are not created twice *
 *                                                   *
 * with +T vector is not needed because atoms are    *
 * generated in increasing order, from -max to + max *
 *****************************************************/

i_pbc = i - n1 - n2;

33

Figure 29 - Coordinate transformation for atom A of figure 29

Code Segment 6 - Nanotube radius and angle definitions and coordinate transformation

static void static_fold (gamgi_atom *atom, double perimeter, double x, double z)
{
double radius, angle;

radius = perimeter / (2 * GAMGI_MATH_PI);
angle = x / radius;

atom->position[0] = radius * cos (angle);
atom->position[1] = radius * sin (angle);
atom->position[2] = z;
}



3.1.7. Bond Creation

The  final  step  in  generating  nanotubes  is  to  create  the  bonds  between  the  atoms.  As

mentioned before, each graphene cell contains two atoms, at positions (0, 0) and (2/3, 1/3), from now

on called atoms A and B respectively. Through direct inspection, it can be seen that each atom A in a

cell (i, j) should be connected to 3 atoms B at cells (i, j), (i – 1, j) and (i – 1, j – 1).

However,  it  must  be  recognized  that  atoms close to  the  left  and right  borders of  the 2D

rectangle  may be  bonded to  atoms in  the  other  border,  when these two borders  are connected,

forming the seam that closes the 3D nanotube. Thus periodic boundary conditions must be applied,

described by translation vectors +T or -T, corresponding to (m + n, n) or (-m – n, -n) translation cells.

Therefore, the general procedure to create the nanotube bonds is: for each atom A in a cell (i,

j), try to find an atom B in cells (i, j), (i – 1, j) and (i – 1, j – 1) (local atoms) or in cells (i + m + n, j + n),

(i + m + n – 1, j + n) and (i + m + n – 1, j + n – 1) (atoms close to the left border: α → 0, applying +T

periodic boundary conditions) or in cells (i – m – n, j – n), (i – m – n – 1, j – n) and (i - m - n - 1, j - n –

1) (atoms close to the right border: α → 2π, applying +T periodic boundary conditions). Every time an

atom is found, a bond must be created between the two atoms, A and B. Figure 30 exemplifies these

rules.
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Code Segment 7 - Creation of graphene atoms with discarding of atoms with x = T

j_pbc = j - n2;
pbc = TRUE;
if (j_pbc < 0 || i_pbc >= max) pbc = FALSE;
if (i_pbc < -max || i_pbc >= max) pbc = FALSE;
if (pbc == TRUE)
  { 
  number = gamgi_chem_graphene_index (2 * max, max, 0, i_pbc, j_pbc, type);
  if (driver[number] == NULL) pbc = FALSE;
  }

/***************
 * create atom *
 ***************/

if (pbc == FALSE)
  {
  atom = gamgi_chem_atom_create (element);
  gamgi_engine_link_atom_molecule (atom, molecule);

  static_fold (atom, perimeter, x, z - height / 2);
  number = gamgi_chem_graphene_index (2 * max, max, 0, i, j, type);
  driver[number] = atom;
  }
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Figure 30 - Bonding scheme. Atoms 1 and 2 (in red) are A atoms. Atom 1 in cell (1,2) creates local bonds
with atoms B (in blue) in cells (1,2) and (0,1), and a bond with atom B of cell (5,2), close to the right border.
Atom B in cell (3,3) creates all possible local bonds, but no bonds with atoms close to the border.

Code 8 - Nanotube bond creation

static void static_bond_3d (gamgi_atom **driver, int max, int n1, int n2)
{
gamgi_atom *atom;
int i, j, number;

/***********************************************
 * build bonds between atoms that become       *
 * neighbours after folding the graphene sheet *
 ***********************************************/

for (j = 0; j < max; j++)
  {
  for (i = -max; i < max; i++)
    {
    /*****************************************************
     * type = FALSE for atoms A, type = TRUE for atoms B *
     *****************************************************/

    number = gamgi_chem_graphene_index (2 * max, max, 0, i, j, FALSE);
    atom = driver[number]; if (atom == NULL) continue;

    /**************************************
     * periodic boundary bonds: -T vector *
     **************************************/

    static_bond (atom, driver, max, i - n1 - n2, j - n2, TRUE);
    static_bond (atom, driver, max, i - 1 - n1 - n2, j - n2, TRUE);
    static_bond (atom, driver, max, i - 1 - n1 - n2, j - 1- n2, TRUE);

    /**************************************
     * periodic boundary bonds: +T vector *
     **************************************/

    static_bond (atom, driver, max, i + n1 + n2, j + n2, TRUE);
    static_bond (atom, driver, max, i - 1 + n1 + n2, j + n2, TRUE);
    static_bond (atom, driver, max, i - 1 + n1 + n2, j - 1+ n2, TRUE);
    }
  }
}



3.1.8. Results

With the implementation of these algorithms, it is now possible to generate nanotubes using

GAMGI. Examples of the three kinds of nanotubes that may now be generated are shown in figures 31

to 33. For each case, a top down and a side view are provided.
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Figure 31 - Zig-zag (10,0) nanotube

Figure 32 -  Armchair (10,10) nanotube



Nanotubes with any combination of (m,n) indices can be generated without restrictions. The atoms are

placed in the correct positions and there is barely any bond distortion. 

3.2.  Nanocones

3.2.1. General Considerations

As in the case of carbon nanotubes, a graphene sheet is used to create carbon nanocones.

However, in the case of nanocones, we want the initial 2D sheet to be circular, in the simpler cases

with the origin at the center of a hexagon instead of an atom, so the two carbon atoms per graphene

cell are at positions (2/3, 1/3) and (1/3, 2/3).  Nanocones can be described by a disclination angle, Δ,

which is the angle of the circular slice, starting from the circle center, that is removed before folding the

sheet  until  the  two  slice  borders  are  reunited  again,  forming  a  3D nanocone.  As  graphene  has

hexagonal symmetry, this angle Δ can have the value of 60o, 120o, 180o, 240o and 300o.  Nanocones

may be closed or open, in which case they lack the top part, or apex of the cone, so two radii are

defined: the outer radius of the sheet (rout) and the inner radius of the sheet (r in). This allows us to

define a circular region (an annulus) from which an angular slice having one of the five values just

mentioned has been removed. Additionally, instead of removing a single slice with an angle Δ, it is also

possible to remove up to five slices with angle Δ / n (usually 60o), where n is the number of slices, and

in this case, the slices have their origin in hexagons close to the center of the cone. The sheet can

then be folded by closing all the angular gaps that exist, resulting in the final nanocone structure.
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Figure 33 -  Chiral (10,5) nanotube



3.2.2. Single Disclination Cones

3.2.2.1. Atom Selection

The apex angle and the shape at the top of the nanocone will be different for each disclination,

as mentioned in section 2.2.2.  As shown in  Figure 34, to select the atoms within the circular region

that is left after cutting the slice corresponding to the disclination angle, it is necessary to check if:

• their distance from the center is smaller than or equal to rout and greater than or equal to rin:

rout⩾√x2+y2⩾r ins (14)

• the angle they make with the x axis is greater than the disclination angle: 

d⩽arccos( x

√x2+y2
) (15)
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Code 9 - Nanocone radii definition and atom discarding

static double static_circle (double bond, int rings)
{
double h, v;

h = 0;
if (rings > 0)
  h = (rings - 1) * bond * cos (GAMGI_MATH_PI / 6.0);

v = 0;
if (rings > 0)
  v = bond / 2.0 + bond * sin (GAMGI_MATH_PI / 6.0) +
  (rings - 1) * (bond + bond * sin (GAMGI_MATH_PI / 6.0));

return sqrt (h * h + v * v);
}

/********************************
 * remove inner and outer atoms *
 ********************************/

d = sqrt (x * x + y * y);
if (d < r_in || d > r_out) return FALSE;



3.2.2.2. Scanning region

An exercise similar to the case of nanotubes is applied to find the range of graphene cells that

must be considered in order to generate all  the relevant atoms. In this case, the nanocone outer

radius, rout, is used to set the radius of the circumference that defines the maximum distance from the

origin that must be considered. Again, by direct inspection (see  Figure 35), it can be seen that the

range of hexagonal graphene cells that must be considered in order to include all the relevant atoms

closer than r can be given by [-max, +max] (horizontal) and [-max, +max] (vertical) with:

max=1+(rout∗1.2)/a (16)

39

Figure 34 - The selection area for a nanocone is the circular crown with maximum and minimum radii rout

and rin, minus the 60o disclination gap

Figure 35 - The circle area and lozenge of graphene cells for a nanocone. r is the rectangle diagonal



3.2.2.3. Coordinate Transformation

To convert the 2D circular slice of atoms into the 3D nanocone, one side of the slice remains

fixed, while the other rotates an angle equal to  -Δ, in order to fill the gap left by the removed slice.

First, we note that atoms whose angle, αatom, is equal to Δ should be rotated by -Δ, that is, -100% of

the value of  Δ. Atoms whose angle is equal to 360o should remain fixed, that is, rotated 0% of the

value of Δ. Atoms with an angle between Δ and 360o should be rotated between 0% and 100% of Δ,

and the closer their angle is of Δ, the greater the rotation. The ratio that gives the percentage of the

angle Δ that an atom should be rotated is given by:  2π – αatom / 2π – d. The value thus obtained is

subtracted to 1 and the result multiplied by 2π in order to obtain the new value of the angle the atom

will have after rotation. The formula used to calculate the value of the new angle αcone of the atoms is:

αcone=2π(1−
2 π−αatom

2π−Δ
) (17)

 

The radius of the base of the cone, rcone, is given by:

rcone=(2π−Δ)rout /2 π (18)

while the height, h, of the nanocone can be calculated from Pythagoras’ theorem (see Figure 36):

h=√r out2 −rcone
2 (19)

When the graphene sheet is folded, the distance of the atoms from the axis of the cone (in the

xy plane) is smaller than their original distance from the center of the sheet and the atoms are rotated

by the angle αcone.  By multiplying the original  distance to the center,  l=√x2+y2
,  by the ratio

between the outer radius of the sheet and the base radius of the cone, f=rcone /r out , the new

distance to the axis is obtained. The transformation of coordinates x and y is thus given by:

x=l⋅f⋅cos(αcone) (20)

y=l⋅f⋅sin(αcone) (21)

To obtain the z coordinate, we note that the top and bottom z coordinates of the cone should be z = h /

2 and z = -h / 2, respectively, and this is easily obtained by:

z=h⋅(1−l /r out)−h/2 (22)
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3.2.3. Multiple Disclinations

For several partial disclinations of 60o each, acting together, the hexagons at which they are

centered will be transformed into pentagons, as one of the six atoms of the original hexagon will be

removed. Depending on the center of the disclinations, different isomers of a nanocone with a specific

total  disclination may be generated, since the pentagons will  be located at different  places of  the
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Figure 36 - Cone height, h, base radius, rcone, and distance from apex to outer point of base, rout

Code Segment 10 - Cone radius and height definitions and coordinate transformation for single disclination

/************************************
 * calculate cone radius and height *
 ************************************/

r_cone = static_cone (r_out, disclination);
f = r_cone / r_out; if (f > 1.0) f = 1.0;
height = r_out * sqrt (1 - f * f);

/***************************
 * 1 ring, single rotation *
 ***************************/

angle = acos (x / d); if (y < 0) angle = 2 * GAMGI_MATH_PI - angle;
if (angle > disclination)
  {
  angle = 2 * GAMGI_MATH_PI *
  (1 - (2 * GAMGI_MATH_PI - angle) / (2 * GAMGI_MATH_PI - disclination));
  *x_new = d * f * cos (angle);
  *y_new = d * f * sin (angle);
  *z_new = height * (1.0 - d * f / r_cone) - height / 2;
  return TRUE;
  }

return FALSE;
}



structure.  Moreover,  rotating  only  one  end  or  both  ends of  the angular  gaps  left  by disclinations

produce slightly different results. Therefore, several different isomers can be created for the same total

disclination.

3.2.3.1. Origin Translation and Radii

The general procedure to model nanocones is direct when a single disclination is applied,

becoming progressively more complex when more disclinations are introduced. First, the origin of the

nanocone may be moved to the center of a bond, if the nanocone model so requires. Then, atoms with

a distance from the center greater than rout and smaller than rin are removed. The next step is applied

to every disclination in succession.

3.2.3.2. Origin Conversion and Angle

The center of each disclination becomes the new rotation origin, and the atom coordinates are

converted so that they become relative to the new origin, that is, (x, y) → (x – cx, y – cy), where cx and

cy depend on the disclination center’s  coordinates.  The angle  that  the atoms make with  the new

horizontal x axis is calculated through the formula:

αc=arccos(
xc

√xc2+y c
2
) (23)
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Code Segment 11 - Nanocone origin translation and atom discarding

/************************
 * change global origin *
 ************************/

x += o_x;
y += o_y;

/********************************
 * remove inner and outer atoms *
 ********************************/

d = sqrt (x * x + y * y);
if (d < r_in || d > r_out) return -1;

Code Segment 12 - Origin conversion and angle calculation

/******************************************
 * get cartesian and cylindrical new atom *
 * coordinates, from the rotation center  *
 ******************************************/

x_c = x - c_x;
y_c = y - c_y;
d_c = sqrt (x_c * x_c + y_c * y_c);
angle = acos (x_c / d_c);
if (y_c < 0) angle = 2 * GAMGI_MATH_PI – angle;



3.2.3.3. Atom Removal from Disclination Gaps

To check whether an atom is inside the disclination area, we start by noting that a bisector can

be defined  for  every  disclination,  which  is  separated  by  the  same angle  from both  ends  of  the

disclination, and we call this angle  min. Let  a0 and a1 be the minimum and maximum angles of the

disclination, given by: a0 = bisector – min and a1 = bisector + min. Figure 37 illustrates these concepts.

Let t0 and t1 be the perpendicular distance of lc relative to a0 and a1, respectively (see Figure 38):

t0=lc⋅sin(αc−a0) (24)

t1=lc⋅sin(αc−a1) (25)
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Figure 37 - Bisector, a1 and a1 for a generic disclination. A is an atom at a distance lc from the disclination center,
making an  angle αc with the horizontal direction



It is possible to verify that  t0 > 0 and t1 < 0 for atoms inside the disclination area, so that the criterion

t0 > 0 > t1 is verified, then it is inside the disclination area, so its angle is:  a1 >= αc >= a0 and it must be

removed. However, when there are atoms along the angles a0 and a1, only atoms with  αc = a0 should

be included, whilst removing atoms with αc = a1, or vice-versa. In order to achieve this, the selection

criterion is modified in the following way: 

• t0 > 0.1 > t1 – in case atoms with αc = a1 should be removed;

• t0 > -0.1 > t1 -  in case atoms with αc = a0 should be removed.

0.1 is simply a tolerance value which is found to fit well its purpose. It is multiplied by a value, called 

side, which is 1 for the first case and -1 for the second case. Figure 39 Illustrates this concept.
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Figure 38 - t0 and t1 for atom A. Note that t1 is actually negative.



3.2.3.4. Rotation Check

The last step consists in determining whether an atom should be rotated in order to fill the gap

left by the disclination. Either atoms from both sides of the disclinations are rotated and joined in the

middle (Figure 40), or one side remains fixed while the other is rotated. Since there is more than one

disclination, it is not possible to rotate all the atoms of the structure, so an angle max, relative to the

bisector, is defined for each nanocone model, such that atoms with αc > max ou αc < -max aren’t

rotated.
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Figure 39 - New disclination borders for the cases where atoms at a0 are kept (red dashed lines) and atoms
at a1 are kept (blue dashed lines)

Code Segment 13 - Definition of a0, a1, t0 and t1 and atom discarding from angular gap in the case of multiple
disclinations

/*****************************************
 * remove atoms in negative, positive or *
 * both arcs from bisector to min angles *
 *****************************************/

a0 = bisector - min;
a1 = bisector + min;
t0 = d_c * sin (angle - a0);
t1 = d_c * sin (angle - a1);
if (t0 > side * TOLERANCE_T && t1 < side * TOLERANCE_T) return -1;



In case only one side is to be rotated, it is necessary to choose which side, between a0 and a1

is to remain fixed and which is to be rotated. If a0 is to be fixed (Figure 41), only atoms separated less

than 90o from a0 are rotated. If a1 is to be fixed (Figure 42), only atoms separated more than -90o are

rotated.
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Figure 40 - Diclination closed by rotating both edges. Atoms between -max and a0 and atoms between max
and a1 are rotated

Figure 41 - Disclination closed by rotating one edge. Atoms at a0 remain fixed. Atoms between a0 + 90o and a1

are rotated.



In case an atom is rotated, the new angle that he should have,  αnew, is calculated. It will be
rotated of at most 30o in case both sides are rotated, and 60o in case one side is fixed.

αnew=αc−min(max−αc /max−min) (26)

if (positive == FALSE && negative == FALSE) return 0;
if (min == max) return 0;

if (positive == TRUE && negative == FALSE)
  { bisector -= min; min *= 2; }

if (positive == FALSE && negative == TRUE)
  { bisector += min; min *= 2; }

/***************************************************************
 * convert angle to local values: [-max to +max], bisector = 0 *
 ***************************************************************/

angle = angle - bisector;
if (positive == TRUE && negative == TRUE)
  {
  if (angle > GAMGI_MATH_PI) angle -= 2 * GAMGI_MATH_PI;
  if (angle < -GAMGI_MATH_PI) angle += 2 * GAMGI_MATH_PI;
  }

/********************************************
 * return atom if outside the rotation zone *
 ********************************************/

if (fabs (angle) < min / 2) return 0;
if (fabs (angle) > max) return 0;
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Figure 42 - Disclination closed by rotating one edge. Atoms at a1 remain fixed. Atoms between a1 - 90o and a1

are rotated.



3.2.3.5. Coordinate Transformation

The 3D nanocone coordinates may finally be calculated by following an identical logic to the

transformations for a single disclination, with the exception that the x and y coordinates of the atom

should be reconverted back so that they become relative to the center of the cone. The transformation

of coordinate z is the same as in equation 22.

x=l⋅f⋅cos(αnew)+ f⋅cx (27)

y=l⋅f⋅sin(αnew)+ f⋅cy (28)

If an atom is not rotated to be rotated, the coordinate conversion is made so that the atom is
pulled towards the center, and its height changed:

xnew=x⋅f (29)

ynew=y⋅f (30)
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Code Segment 14 - Multiple disclination rotation  process. First, check what edges are to be rotated and adjust
the values of bisector and min accordingly. Second, convert angle to local values relative to bisector, with bisector
= 0o. Third, return atom coordinates if they lie outside the rotation zone. Fourth, get new angle for atoms. Finally,
convert angle back to absolute values.

if (negative == FALSE && angle < 0) return 0;
if (positive == FALSE && angle > 0) return 0;

/*******************************************
 * scale angle from [max, min] to [max, 0] *
 *******************************************/

if (angle < 0) {min = -min; max = -max; }
angle -= min * (max - angle)/ (max - min);

/***************************************************
 * convert angle back to absolute values: [0, 360[ *
 ***************************************************/

angle += bisector;
if (angle < 0) angle += 2 * GAMGI_MATH_PI;

Code Segment 15 - Multiple disclination x and y coordinate conversion for atoms that are to be rotated

/***********************************************
 * rotate atom with new angle to close arc gap *
 ***********************************************/

*x_new = f * d_c * cos (angle) + f * c_x; 
*y_new = f * d_c * sin (angle) + f * c_y;

return 1;



3.2.3.6. Analysis of Nanocone 120_E

For a better understanding, let us examine the case of the nanocone model that we have

labeled as 120_E, a nanocone with a total disclination of 120o in which the two pentagons (resulting

from the application of the two 60o disclinations) are separated by an atomic bond (edge), and the

gaps are closed by rotating both sides (Figure 43).

First, the origin is changed so that it is in the center of a bond, and this is done simply by

adding  a  /  2  to  the  x position  of  the  origin.  The  following  steps  are  carried  out  first  for  the  top

disclination center and repeated for the bottom one (we describe the procedure only for the top one).

The coordinate transformation (x, y) → (xc, yc) is applied, with cx = 0 and cy = a2 (graphene lattice base

vector) and the angle αc is calculated. The bisector is located at 90o, with min = 30o, so a0 = 60o and a1

= 120o. Atoms with 60o < αc <= 120o are removed, so the criterion t0 > 0.1 > t1 is used, with side = 1.

The value of  max is 90o, so only atoms from 0o to 180o should be rotated. Since both sides of the

disclination are rotated, they meet in the mid point, 90o. Atoms with αc = 60o  are to be rotated of min
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Figure 43 - Schematic for the creation of isomer 120_E. The origin of the cone is marked by a black dot. Two
60o disclinations are applied, and both of them are closed by rotating both sides.

Code Segment 16 - Multiple disclination x, y and z coordinate conversion for atoms which are not to be rotated

/*********************
 * set default atoms *
 *********************/

*x_new = f * x;
*y_new = f * y;
*z_new = height * (1.0 - d * f / r_cone) - height / 2;



so that they are placed at 90o. Atoms with αc = 0o or αc = 180o remain still. Atoms with 0 < αc < 60o are

to be rotated of an angle between 0o and min, and atoms with 120o < αc < 180o  are to be rotated of an

angle between 0o and -min.

3.2.3.7. Bond Creation

To create bonds between atoms, a scheme similar to the one used for nanotubes can be

applied although each nanocone requires a slightly different bonding scheme. Upon analyzing each

individual case, bonding patterns become clear, so it is possible to establish a common basis.

Considering the initial indices i and j of a 2D graphene sheet, each bond in a seam region (the

region  where  the  two  loose  edges  come  together  through  the  bonding  of  the  atoms)  is  always

established between an A or B atom of an (i0, j0) cell on one side of the seam, and another A or B atom

in an (i1, j1) cell on the other side of the seam. Also, if the atom on cell (i0, j0) is an atom A, then k0 = 0,

otherwise k0 = 1. Identically, if the atom on cell (i1, j1) is an atom A, then k1 = 0, otherwise k1 = 1.

It is necessary to determine the bond closer to the center of the nanocone disclination through

direct inspection. From this inspection, i0, j0, k0, i1, j1 and k1 are determined. Since the disclination area

that is subtracted corresponds to a symmetry rotation, there is a natural, predictable progression of

these indices. This progression is identified by six other indices: ii0, jj0, kk0, ii1, jj1, and kk1, which are

used in the algorithm: 0 when the index remains constant, +1 when it  increases by 1, -1 when it

decreases by -1, +2 when it increases by 1 every 2 iterations and the resulting atom is of type A, -2

when it decreases by 1 every 2 iterations and the resulting atom is of type A, +3  when it increases by

1 every 2 iterations and the resulting atom is of type B, -3 when it decreases by 1 every 2 iterations

and the resulting atom is of type B (kk0 and kk1 are either 0 or 1, depending on whether the atom type

changes or not ).

static void static_link (gamgi_atom **driver, int max,
int i0, int j0, int k0, int i1, int j1, int k1,
int ii0, int jj0, int kk0, int ii1, int jj1, int kk1)
{
gamgi_atom *atom;
int number;

while (i0 < max - 1 && j0 < max - 1 && i0 > -max && j0 > -max)
  {
  /*****************
   * update atom 0 *
   *****************/

  i0 = static_update (i0, ii0, k0);
  j0 = static_update (j0, jj0, k0);
  k0 = abs (kk0 - k0);

  /*****************
   * update atom 1 *
   *****************/

  i1 = static_update (i1, ii1, k1);
  j1 = static_update (j1, jj1, k1);
  k1 = abs (kk1 – k1);
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3.2.3.8. Analysis of Nanocone 60_O

Let us examine the bond creation process of the nanocone model that was labeled as 60_O,

a nanocone with a total disclination of 60o in which the pentagon is located at the top and center of the

nanocone, and the gaps are closed by rotating one side (Figure 44). The origin of the nanocone is

marked with a black dot.

• The first bond to be created is between atom B of cell (0, -1), and atom B of cell (0, 0). The 

starting indices are now known;

• The second bond is between B atoms of cells (1, -1) and (1, 1);

• The third bond is between B atoms of cells (2, -1) and (2, 2);

• The fourth bond is between the B atoms of cells (3, -1) and (3, 3);
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Figure 44 - Bonding scheme for the 60_o nanocone isomer

Code Segment 17 - Nanocone bond creation

 /*******************************************************
   * create bond between atoms (i0,j0,k0) and (i1,j1,k1) *
   *******************************************************/
  
  number = static_index (i0, j0, max) + k0;
  if (number >= 0 && number < 8 * max * max)
    {
    atom = driver[number]; if (atom != NULL)
    static_bond (atom, driver, max, i1, j1, k1);
    }

  }
}



The pattern has now been established. 

• The atom is always a B atom, in both cases, so k0 = k1 = 0 always. Because there is no 

change in these indices, kk0 = kk1 = 0;

• The value of 1 is added to i0 for each bond, while j0 = -1 always. As such, ii0 = 1, while jj0 = 0;

• The value of 1 is added to both i1 and j1 for each bond. As such, ii1 = jj1 = 1.

This  analysis  was repeated  on  every  nanocone.  A table  with  all  the  indices  can  be  seen  in  the

appendix B.

3.2.4. Results

With the implementation of these algorithms, it is now possible to generate nanocones using

GAMGI. Figures 45 to 52 show the most relevant examples of nanocones. In the cases where more

than one disclination was introduced, the pentagons are colored red. Nanocones are identified by a

number, which is equal to the total disclination, and a letter, which either regards the way in which

gaps are closed or the the way pentagons are linked. Nanocones labeled “edge” or “hexagon” have

their pentagons linked by edges (bonds) or hexagons, and “double” if the gaps are closed by rotating

both  sides.  Nanocones with  a  single  disclination  are  identified  by  the  letter  O,  meaning  that  the

disclination is centered in the nanocone origin.
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Figure 45 - Nanocone 60_O
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Figure 47 - Nanocone 180_O

Figure 46 - Nanocone 120_O

Figure 48 - Nanocone 240_O
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Figure 49 - Nanocone 300_O

Figure 50 - Nanocones 120_E, 120_H and 180_D

Figure 51 - Nanocones 240_E, 240_H and 300_E



It is now possible to generate any nanocone with a single disclination with a discrete value

between 60o and 300o. The higher the disclination value, the more distorted the structure becomes, but

it is still clearly defined.

A total of 10 different models of nanocones with multiple disclinations can be generated. Just

like in the case of single disclinations, the structures become more distorted with the increase of the

disclination (which corresponds to introducing more disclinations). However, since not all the atoms of

the structure are rotated, and those that are become more dislocated from their original position, the

structures are more heavily distorted in the regions where the disclination gaps were removed. Thus,

at this moment, the generation of nanocones with multiple disclinations may produce heavily distorted

structures, of which the most striking example is nanocone 300_E.

3.3.Fullerenes

3.3.1.1. L0 Transformation

As  mentioned  in  section  2.4.6.4,  according  to  Hasheminezhad  et  al.  [63],  all  fullerene

structures can be constructed applying only three classes of atomic expansions: Li, Bi,j and F, except

C28 (which needs a special transformation, discussed later). As stated in algorithm 3, expansions  Li

alone suffice to build fullerene isomers up to 300 atoms. For example, by applying expansion L0, which

adds 2 faces and 4 atoms to a fullerene, C24 is obtained. The first step is to identify and select the

atoms that participate in an L0 expansion, as seen in Figure 53.
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Figure 52 - Open nanocone 180_O



There are 14 atoms. Two of the faces must be pentagons. Faces labeled g1, g2, f1 and f2 may

be either pentagons or hexagons. 

int l0 (double *atom_in, int *bond_in, int size,
double *atom_out, int *bond_out, int central_1, int *hexagon)
{
double x, y, z;
int central_1n[3];
int central_2, central_2n[3];
int single_1, single_1n[3];
int single_2, single_2n[3];
int junction_1, junction_1n[3];
int junction_2, junction_2n[3];
int near_1, near_1n[3];
int near_2, near_2n[3];
int far_1, far_1n[3];
int far_2, far_2n[3];
int hexagon_1, hexagon_2;
int edge_1, edge_2;

copy_matrix_bond (bond_in, size, bond_out, size + 4);
copy_matrix_atom (atom_in, size, atom_out, size + 4);

/*****************************************
 * identify L0 changing atoms for side 1 *
 *****************************************/

/********************************
 * get neighbours of central 1: *
 * position 0 = central_2       *
 * position 1 = single_1        *
 * position 2 = junction_1      *
 *******************************/

neighbour_find (bond_in, size, central_1, -1, central_1n);
central_2 = central_1n[0];
single_1 = central_1n[1];
junction_1 = central_1n[2];

/*********************************
 * get neighbours of junction_1: *
 * position 0 = central_1        *
 * position 1 = near_1           *
 * position 2 = far_1            *
 *********************************/
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Figure 53 - Atoms that participate in transformation L0



Expansion L0 essentially consists in adding four atoms in a way that leads to the creation of

two adjacent pentagons, while transforming the original pentagons into hexagons, as can be seen in

Figure 54.
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Code Segment 18 - L0 transformation atom selection

neighbour_find (bond_in, size, junction_1, central_1, junction_1n);
if (ring_check (bond_in, size, single_1, junction_1n[1]) == FALSE)
  neighbour_swap (junction_1n, 1, 2);

near_1 = junction_1n[1];
far_1 = junction_1n[2];

/*****************************************
 * identify L0 changing atoms for side 2 *
 *****************************************/

/********************************
 * get neighbours of central_2: *
 * position 0 = central_1       *
 * position 1 = single_2        *
 * position 2 = junction_2      *
 ********************************/

neighbour_find (bond_in, size, central_2, central_1, central_2n);
if (ring_check (bond_in, size, single_1, central_2n[1]) == TRUE)
  neighbour_swap (central_2n, 1, 2);

single_2 = central_2n[1];
junction_2 = central_2n[2];

/*********************************
 * get neighbours of junction_2: *
 * position 0 = central_2        *
 * position 1 = near_2           *
 * position 2 = far_2            *
 *********************************/

neighbour_find (bond_in, size, junction_2, central_2, junction_2n);
if (ring_check (bond_in, size, single_2, junction_2n[1]) == FALSE)
  neighbour_swap (junction_2n, 1, 2);

near_2 = junction_2n[1];
far_2 = junction_2n[2];

/***************************************************************
 * check that junction_1, near_1, far_1 are part of a pentagon *
 ***************************************************************/

neighbour_find (bond_in, size, near_1, junction_1, near_1n);
neighbour_find (bond_in, size, far_1, junction_1, far_1n);
if (neighbour_check (bond_in, size, near_1n, far_1n, 1) == FALSE)
  return FALSE;

/***************************************************************
 * check that junction_2, near_2, far_2 are part of a pentagon *
 ***************************************************************/

neighbour_find (bond_in, size, near_2, junction_2, near_2n);
neighbour_find (bond_in, size, far_2, junction_2, far_2n);
if (neighbour_check (bond_in, size, near_2n, far_2n, 1) == FALSE)
  return FALSE;



By analyzing both figures thoroughly, the necessary steps to carry out the transformation 
become evident:

• break the bonds between atoms:

◦ 1 – 5

◦ 6 – 8

◦ 10 – 11

• create bonds between atoms:

◦ 1 – 15

◦ 5 – 15

◦ 6 – 17

◦ 8 – 16

◦ 10 – 18

◦ 11 – 18

◦ 15 – 16

◦ 16 – 17

◦ 17 – 18

/**********************
 * remove 3 old bonds *
 **********************/

bond_create (bond_out, size, central_1, central_2, 0);
bond_create (bond_out, size, junction_1, far_1, 0);
bond_create (bond_out, size, junction_2, far_2, 0);
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Figure 54 - Atoms from figure 52 after applying transformation L0. The added atoms are numbered in blue.



These transformations are meant to be applied to fullerene graphs, hence the fact that they

only provide  information in regards to the atom bonds (topological information).

3.3.1.2. C28 → C24 Transformation

As shown in Figure 55, C28 can be obtained from C24 by adding four additional atoms, one at

the center of a hexagon, and another three in alternating pentagons around, so three new pentagons

are created at the center and three adjacent pentagons are converted into hexagons, preserving the

total number of pentagons (12).

void ma (double *atom_in, int *bond_in, int size,

double *atom_out, int *bond_out, int *hexagon)

{

double x, y, z;

int near_1, near_2, near_3;

int center_1;
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Figure 55 - Graphs of C24 (left) and C28 (right), obtained by adding the central atom and three atoms in
alternating pentagons 

Code Segment 19 - L0 transformation bond creation

/**********************
 * create 9 new bonds *
 **********************/

bond_create (bond_out, size, hexagon_1, junction_1, 3);
bond_create (bond_out, size, hexagon_1, far_1, 3);
bond_create (bond_out, size, hexagon_2, junction_2, 3);
bond_create (bond_out, size, hexagon_2, far_2, 3);

bond_create (bond_out, size, hexagon_1, edge_1, 3);
bond_create (bond_out, size, hexagon_2, edge_2, 3);
bond_create (bond_out, size, edge_1, edge_2, 3);
bond_create (bond_out, size, edge_1, central_2, 3);
bond_create (bond_out, size, edge_2, central_1, 3);



copy_matrix_bond (bond_in, size, bond_out, size + 4);

copy_matrix_atom (atom_in, size, atom_out, size + 4);

/***************

 * new 4 atoms *

 ***************/

near_1 = size++;

x = (atom_in[3 * hexagon[0] + 0] + atom_in[3 * hexagon[1] + 0]) / 2;

y = (atom_in[3 * hexagon[0] + 1] + atom_in[3 * hexagon[1] + 1]) / 2;

z = (atom_in[3 * hexagon[0] + 2] + atom_in[3 * hexagon[1] + 2]) / 2;

atom_out[3 * near_1 + 0] = x;

atom_out[3 * near_1 + 1] = y;

atom_out[3 * near_1 + 2] = z;

near_2 = size++;

x = (atom_in[3 * hexagon[2] + 0] + atom_in[3 * hexagon[3] + 0]) / 2;

y = (atom_in[3 * hexagon[2] + 1] + atom_in[3 * hexagon[3] + 1]) / 2;

z = (atom_in[3 * hexagon[2] + 2] + atom_in[3 * hexagon[3] + 2]) / 2;

atom_out[3 * near_2 + 0] = x;

atom_out[3 * near_2 + 1] = y;

atom_out[3 * near_2 + 2] = z;

near_3 = size++;

x = (atom_in[3 * hexagon[4] + 0] + atom_in[3 * hexagon[5] + 0]) / 2;

y = (atom_in[3 * hexagon[4] + 1] + atom_in[3 * hexagon[5] + 1]) / 2;

z = (atom_in[3 * hexagon[4] + 2] + atom_in[3 * hexagon[5] + 2]) / 2;

atom_out[3 * near_3 + 0] = x;

atom_out[3 * near_3 + 1] = y;

atom_out[3 * near_3 + 2] = z;

center_1 = size++;

x = (atom_out[3 * near_1 + 0] + atom_out[3 * near_2 + 0] + atom_out[3 * near_3 + 0]) / 3;

y = (atom_out[3 * near_1 + 1] + atom_out[3 * near_2 + 1] + atom_out[3 * near_3 + 1]) / 3;

z = (atom_out[3 * near_1 + 2] + atom_out[3 * near_2 + 2] + atom_out[3 * near_3 + 2]) / 3;

atom_out[3 * center_1 + 0] = x;

atom_out[3 * center_1 + 1] = y;

atom_out[3 * center_1 + 2] = z;
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3.3.2. Nanotube Fullerenes

According to the analysis of Hasheminezhad et al. [63], (5,0)-type nanotube fullerenes can be

generated by  F expansions. As can be seen in  Figure 23, this transformation adds five hexagonal

faces  around  an  atomic  configuration  consisting  of  a  central  pentagon  surrounded  by  five  other

pentagons. In terms of nanotubes, transformation F corresponds to increasing a (5,0)-type nanotube’s

height through the addition of a ring layer. Based on this approach, all that is necessary to generate

(5,0)-type nanotube fullerenes is to cover both ends of (5,0)-type nanotubes with two caps with the

configuration from Figure 23.

C20 corresponds to the case where both caps are simply joined (a nanotube with a height

equal to 0).  By adding one layer of five hexagonal rings (a nanotube with a height equal to 1) in

between the caps results in C30. The addition of another layer leads to the creation of C40, so the

general formula for (5,0)-type nanotube fullerenes is: C20 + 10k, where k is the number of ring layers (or

the height of the nanotube).

The process of adding caps to both ends of a carbon nanotube, in order to create nanotube

fullerenes can be applied to any (m,n) nanotube, in particular to (5,5)- and (6,6)-type nanotubes. For

(5,5)-type nanotube fullerenes, the cap is formed by one pentagon surrounded by five hexagons which

are linked to five alternating pentagons and hexagons, and the general formula is: C60 + 10k. For (6,6)-

type nanotube fullerenes, the cap is formed by one hexagon surrounded by six hexagons which are

linked to  six  alternating pentagons and hexagons,  and the general  formula is:  C72  +  12k.  (5,5)-type

nanotube fullerenes C60 and C70 are of particular interest, as they are the experimentally observed IPR

isomers.

The corresponding caps for each type of nanotube fullerene can be seen in Figure 56.
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Code Segment 20 - C24 → C28 transformation

/**********************
 * remove 3 old bonds *
 **********************/

bond_create (bond_out, size, hexagon[0], hexagon[1], 0);
bond_create (bond_out, size, hexagon[2], hexagon[3], 0);
bond_create (bond_out, size, hexagon[4], hexagon[5], 0);

/**********************
 * create 9 new bonds *
 **********************/

bond_create (bond_out, size, hexagon[0], near_1, 4);
bond_create (bond_out, size, hexagon[1], near_1, 4);
bond_create (bond_out, size, hexagon[2], near_2, 4);
bond_create (bond_out, size, hexagon[3], near_2, 4);
bond_create (bond_out, size, hexagon[4], near_3, 4);
bond_create (bond_out, size, hexagon[5], near_3, 4);
bond_create (bond_out, size, center_1, near_1, 4);
bond_create (bond_out, size, center_1, near_2, 4);
bond_create (bond_out, size, center_1, near_3, 4);
}



3.3.2.1. (5-0)-type Nanotube Fullerenes

The general procedure to create nanotube fullerenes is to create two caps at both ends of a

nanotube and bond the external atoms of the caps (the ones more distanced to the cap center) with

the top and bottom atoms of the tube. For a better understanding, let us examine the case of (5,0)-

type nanotube fullerenes. 

In order to form the correspondent cap, it is necessary to place two pentagons, one above the

top  end  and  another  below the  bottom end of  the  tube,  respectively.  These  pentagons must  be

concentric with the tube, and its sides must be equal to the length of the bond between atoms. To

generate the pentagons, note that it is possible to divide a pentagon into five equal triangles of length l

(see Figure 57). The straight lines that unite the center of the pentagon and its vertices are separated

by θ angles, equal to 2π / 5.
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Figure 56 - From left to right, top down view of caps for (5,0)-, (5,5)- and (6,6)-type nanotubes

Figure 57 - Pentagon circumscribed in circumference. θ is the inner angle of the triangles, which is known to be
2π / 5, b is the bond length



From this, it is clear that: 

b
2 l

=sin (θ
2

) (31)

Rearranging the equation yields:

l= b
2sin( π

5
) (32)

The atoms must be generated at a distance l from the center, separated by  2π / 5 degrees.

The five bottom atoms of the nanotube make angles with the horizontal  x axis equal to multiples of

2π / 5, starting from 0, so the five atoms of the bottom pentagon are generated with the same angles

in order to be aligned. In the case of the five top atoms of the nanotube, they will make the same

angles with the horizontal x axis in case the number of ring layers is odd, otherwise they will be rotated

by π. In the latter case, the top pentagon atoms also need to be rotated by π so they are aligned with

the nanotube atoms. The angle at which the atoms should be generated is given by the following

formula:

α=αstart+
i⋅2π
5

(33)

where i  is between 0 and 4. αstart is always 0 for the bottom pentagon, and is either 0 or π for the top

pentagon whether the number of ring layers is odd or even, respectively.

To calculate the height at which the pentagons should placed such that the bonds they form

with the tube will have the same length as the other bonds in the structure, consider Figure 58.
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Code Segment 21 - Pentagon atom creation for (5,0)-type nanotube fullerenes

/***************************************************
 * build atoms and bonds for a (5,0) nanotube cap, *
 * formed by 1 pentagon linked to 5 pentagons      *
 ***************************************************/

for (i = 0; i < 5; i++)
  {
  angle = angle_start + i * 2 * GAMGI_MATH_PI / 5;
  x = radius * cos (angle);
  y = radius * sin (angle);

  element = (i % 2 == 0) ? element1 : element2;
  atoms[i] = static_atom (molecule, element, x, y, z_top);
  }



The value of the width, w, is given by: 

w= P
2π

−l (34)

where P is the perimeter of the nanotube. The height, ztop, is given by: 

ztop=
h
2

+√b2−w2
(35)

where h is the height of the nanotube. It is positive for the top cap and negative for the bottom cap.

The x and y coordinates are simply given by:

x=l⋅cos(α) (36)

y=l⋅cos(α) (37)

void static_caps_5_0 (gamgi_molecule *molecule,

gamgi_atom **driver, int max, int rings, double perimeter,
double height, int element1, int element2, double bond)
{
double radius, z_top, width;

/*****************************************************
 * build bottom and top caps for (5,0) nanotubes,    *
 * formed by a single pentagon linked to 5 pentagons *
 *****************************************************/

radius = 0.5 * bond / sin (GAMGI_MATH_PI/5);
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Figure 58 - The height at which the cap should be placed, ztop, should be such that the bonds between the cap
and the tube have the expected bond length



To create the bonds, it is necessary to bond each of the five atoms of the pentagons to the five

bottom or top atoms of the nanotube, depending on the cap. By “unfolding” the nanotube and caps, it

is possible to verify that the atoms of the bottom cap are connected to A type atoms in the nanotube

with index  j equal to 0, and that the atoms of the top cap are connected to B type atoms of the

nanotube with index j equal to the number of rings. The bond creation is illustrated in Figure 59.

j = j_start;
for (i = 0; i < 5; i++)
  {
  k = (j + 1) % 5;

  /********************
   * create cap bonds *
   ********************/

  bond = gamgi_chem_bond_create (atoms[j], atoms[k]);
  gamgi_chem_bond_name (bond, bond->object.name);
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Figure 59 - Bonding scheme for the (5,5) cap. The black dots represent the cap atoms.

Code Segment 22 - Pentagon height calculation and cap creation for (5,0)-type nanotube fullerenes

width = 0.5 * perimeter / GAMGI_MATH_PI - radius;
z_top = height / 2 + sqrt (bond * bond - width * width);

/************************************
 * cap below (to build cap or cage) *
 ************************************/

static_1p5p (molecule, driver, max, 0, 0, 0,
FALSE, element1, element2, radius, -z_top, 0.0);

if (rings < 0) return;

/*****************************
 * cap above (to build cage) *
 *****************************/

if (rings % 2 == 0)
  static_1p5p (molecule, driver, max, 3, rings / 2, rings,
  TRUE, element1, element2, radius, z_top, GAMGI_MATH_PI);
else
  static_1p5p (molecule, driver, max, 0, rings / 2, rings,
  TRUE, element1, element2, radius, z_top, 0.0);
}



 
 

3.3.3. Results

With the implementation of these algorithms, it is now possible to generate fullerenes using

GAMGI. Figures 60 to 62 show two fullerenes for each type of cap. C24 generated from C20 through

transformation Lo and C28 obtained from the application of the C24 → C28 transformation to C24 can also

be seen in figures 63 and 64.
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Figure 60 - C20 and (5,0)-type nanotube C50

Code Segment 23 - (5,0)-type nanotube fullerenes bond creation

 gamgi_mesa_start_bond (bond, gamgi→bond);

  /*************************
   * create tube-cap bonds *
   *************************/

  number = gamgi_chem_graphene_index (2 * max, max, 0, a + i, b, type);
  atom = driver[number];
  if (atom != NULL)
    {
    bond = gamgi_chem_bond_create (atoms[j], atom);
    gamgi_chem_bond_name (bond, bond->object.name);
    gamgi_mesa_start_bond (bond, gamgi->bond);
    }

  j = k;
  }
}
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Figure 61 - C60 and (5,5)-type nanotube C90

Figure 62 - C72 and (6,6)-type nanotube C132

Figure 63 - C24 obtained from applying transformation L0



It is now possible to create three families of nanotube fullerenes through GAMGI, with the

structures being geometrically optimized. Transformation  L0 and the transformation from C28 to C24

were successfully implemented in terms of topology, since a correct bonding between atoms has been

achieved, but they are geometrically incorrect, so it was decided that the creation of fullerenes through

these methods would not be incorporated into GAMGI.

4. Graphical interface

Several  features  have  been  added  to  GAMGI’s  graphical  interface  that  allow  for  the

introduction of data by a user in order to produce any of the molecules that have been described in

this work. GAMGI’s graphical interface was programmed in the C language, using the GTK graphical

toolkit.

To create a molecule, one must choose the options Molecule → Create (Figures 65 and 66).
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Figure 64 - Result of transformation C28 to C24



By clicking on these options before, a simple toolbox would show up, but it would not allow for
a functional input (Figure 67).
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Figure 67 - Toolbox for the previous "Molecule" -> "Create" option

Figure 66 - Enlarged image of the "Molecule" option

Figure 65 - The GAMGI graphical interface. The white arrow points to the "Molecule" option



Now, in the “Method” scrollbox, the option “Graphene” is available. From it,  the options to
create graphene sheets, nanotubes, nanocones, fullerenes (cages) and their correspondent caps are
available (Figure 68).

Images 69 to 73 show the input options for each case:
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Figure 69 - Input options for a graphene sheet

Figure 68 - Toolbox for the new "Molecule" -> "Create" option
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Figure 71 - Input options for nanocones

Figure 70 - Input options for nanotubes



It is also possible, for any of the given molecules, to insert any combination of two elements,

instead of simply carbon (Figure 74):
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Figure 72 - Input options for fullerenes

Figure 73 - Input options for caps



5. Conclusions

With this work, new features have been added to GAMGI which allow for the creation of three

types  of  graphene  based  structures,  based  on  simple  user  input:  nanotubes,nanocones  and

fullerenes.

The implementation of the nanotube generation functionality was the most successful of all

three. Among the harder aspects were:  a) the definition of the height of the nanotubes and b) the

creation of bonds. 

An equation which returns the height of any kind of nanotube based on the number of ring

layers was developed and found to produce very good results in the case of zig-zag and armchair

nanotubes. In the case of chiral nanotubes, due to their more complex orientation, some loose bonds

(atoms bonded to only one other atom) are created, making the overall look of the structure slightly

worse. 

The  concept  labelling  atoms  in  the  graphene  lattice  according  to  their  position  in  the

hexagonal lattice, which was discovered independently over the course of this work, proved to be

extremely useful to generate bonds in the case of nanotubes, nanocones and nanotube fullerenes

because of the six-fold symmetry of the honeycomb structure and the way these molecules can be

modelled from a graphene sheet. For nanotubes in particular, it provided an easy way of identifying

which atoms had to be discarded and what bonds to create due to periodic boundary conditions.

The result is that all three kinds of nanotubes, with any combination of (n,m) indices and with

any height, can now be generated. The equations used to make the coordinate transformation from

the 2D sheet to the 3D nanotube and the bonding scheme have proved to be correct,  since the

resulting structures present adequate geometries, with the bonds suffering very little distortion. The
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Figure 74 - Atom options



only  existing issue regards the  creation of  loose bonds in  chiral  nanotubes,  but  it  can  easily  be

corrected in the future, by either programming any such kinds of atoms from not being generated, or

by bonding them with hydrogen atoms. 

Although  the  implemented  algorithms  generate  very  satisfactory  results,  there  are  other

algorithms which  can be used  for  the  generation  of  nanotubes [71]  and it  may be interesting to

implement and compare the results of both cases in the future.

Parts of the algorithms for the generation of nanotubes served as a basis for the generation of

nanocones, namely the graphene sheet generation and the atom labelling scheme. In what concerns

cones with a single disclination, we were able to develop a satisfactory formula for the radii, which, just

like in the case of nanotubes, returns a nanocone with a specified number of ring layers, although it

presents the same problem as chiral nanotubes. The  equations used for coordinate transformation

are  also  adequate,  producing  cones with  the  correct  apex  angle  for  each  disclination  angle  and

geometrically ordered atoms. In particular, the formula used to calculate the new angle an atom has

after it has been rotated works very well in the case of single disclinations, as it leads to a proportional

rotation of every atom in the structure.

For nanocones with multiple disclinations, it was decided that the different models would be

established based on: a) pentagon positions, b) disclination orientation and c) rotation of one or both

edges.  Most pentagon positions were derived from the existing scientific  literature,  along with the

disclination orientations, but the decision on the way the gaps were closed was independent. As a

result, it is now possible to generate sixteen different, open or closed, nanocone models, with at least

one model for each number of pentagons. In the cases where the origin is changed to the center of a

bond (and due to this), the formula works slightly worse, with more loose bonds being created, which

means a new formula should be developed. 

As was previously mentioned, the atom labelling provided a very useful tool for the creation of

bonds. After a thorough analysis of each nanocone model, it was possible to invent a simple and

coherent  scheme to  create the bonds independently of  the disclination centers or  the disclination

orientation, and this is one of the strongest features that was developed and implemented throughout

the course of this work.

Although all cones present correct apex angles, the structures are noticeably more distorted

than in the case of single disclination cones. This is due to the fact that not all atoms of the structure

are rotated to close the gaps, which results in an uneven distribution of atoms, as there areas where

atoms remain fixed and others where they are heavily dislocated from their original positions. The

greater  the number of  disclinations,  the more noticeable  the effect  is.  As such,  there is  room for

improvement of the structures of nanocones. This may be achieved, for example, by the incorporation

of force-field optimization methods, which presents itself as a very interesting prospect for future work

in GAMGI. It would also be of interest to implement in GAMGI the functionality to generate nanocones
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through the cone-helix model, which although considerably more complex, would allow for nanocones

with more than five discrete angles to be generated. 

Among the  three  kinds  of  molecules  of  this  work,  fullerenes are  arguably  the hardest  to

generate, because unlike nanotubes and nanocones, they are not built  directly from the graphene

sheet. Instead, they are mostly generated starting from one of the most basic fullerenes, such as C20,

by  first  applying  operations  which  involve  solely  topology  to  the  fullerene  graph,  and  then  by

generating correct 3D atomic positions. Although the previously suggested spiral algorithm has been

proved to fail to generate all fullerenes above 380 atoms [52], new topological algorithms, based on L,

B and F transformations, seem to generate all possible topological structures for fullerenes. However,

no systematic algorithm has ever been proposed to generate the actual geometric coordinates.

We have managed to apply one of the simplest patch replacement operations (L0) to generate

C24 from C20 with correct bonds, but incorrect geometry. This means that there is a great room for

improvement  in  this  area.  With  the  incorporation  of  fullerene  graph  generation  and  force-field

optimization methods, it  will  be possible for GAMGI to produce at least a considerable amount of

fullerene isomers based on simple user input.

In this work, through the “capping” of nanotubes, an operation which has proven to be fairly

simple, it is now possible for GAMGI to generate three infinite families of nanotube fullerenes of the

types (5,0), (5,5) and (6,6), with the molecules presenting a correct geometry. In particular, IPR C60

and C70 (particular cases of (5,5)-type nanotubes with 0 and 1 ring layer), which are two of the most

experimentally observed fullerene isomers [52], can be generated in this way. The only setback to

nanotube fullerenes is that all the pentagons of the structure are always located at the caps, and that

fullerenes with a higher atom count will inevitably have an elongated shape. Also, just like fullerenes,

there are cap isomers (there are 73 caps for (5,5)-type nanotube fullerenes alone), and this is also an

aspect to be considered for future work.
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Appendix A – Creation schemes for the non-origin
nanocone isomers

Fig.1 – 60 Origin

Fig.2 – 120 Edge
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Fig.3 – 120 Hexagon

Fig.4 – 120 Single
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Fig.5 – 180 Double

Fig.6 – 180 Single
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Fig.7 – 240 Axis

Fig.8 – 240 Edge
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Fig.9 – 240 Hexagon

Fig.10 – 240 Plane
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Fig.11 – 300 Plane
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Appendix B – Table of nanocone bond indices

Isomer Gap i0 j0 k0 i1 j1 k1 ii0 jj0 kk0 ii1 jj1 kk1

60
origin

1 -1 -1 1 -1 -1 1 1 0 0 1 1 0

60
double

1 -1 0 0 -1 0 0 2 -2 1 1 3 1

120
origin

1 -1 -1 1 -1 -1 0 1 0 0 0 1 0

120
edge

1 -1 0 0 -1 0 0 1 1 0 0 1 0

2 -1 -1 1 -1 -1 1 -1 -1 0 0 -1 0

120
hexagon

1 0 0 1 0 0 1 1 3 1 2 1 1

2 -1 -1 0 -1 -1 0 -1 -2 1 -3 -1 1

120
single

1 0 0 1 0 0 1 1 0 0 1 1 0

2 -1 -1 0 -1 -1 0 -1 0 0 -1 -1 0

180
origin

1 -1 -1 1 0 -1 1 1 0 0 -1 0 0

180
double

1 0 0 1 0 0 1 1 3 1 2 1 1

2 -1 -1 1 -1 -1 1 -3 3 1 -1 -2 1

3 0 -1 1 0 -1 1 -3 -1 1 2 -2 1

180
single

1 -1 -1 1 -1 -1 1 0 1 0 -1 0 0

2 0 -1 1 0 -1 1 -1 -1 0 0 -1 0

3 0 0 1 0 0 1 1 0 0 1 1 0

240
origin

1 -1 -1 1 0 0 0 1 0 0 -1 -1 0

240
edge

1 -1 0 0 -1 0 0 1 1 0 0 1 0

2 -1 -1 1 -1 -1 1 -1 -1 0 0 -1 0
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3 0 0 0 0 0 0 2 -2 1 1 3 1

4 -2 -1 1 -2 -1 1 -3 3 1 -1 -2 -1

240
hexagon

1 0 0 1 0 0 1 1 3 1 2 1 1

2 -1 0 1 -1 0 1 0 1 0 -1 0 0

3 -2 -1 0 -2 -1 0 -1 -2 1 -3 -1 1

4 -1 -1 0 -1 -1 0 1 0 0 0 -1 0

240 axis

1 0 0 1 0 0 1 1 3 1 2 1 1

2 -1 0 1 -1 0 1 0 1 0 -1 0 0

3 -2 -1 0 -2 -1 0 -1 -2 1 -3 -1 1

4 -1 -1 0 -1 -1 0 0 -1 0 1 0 0

240
plane

1 0 0 1 0 0 1 1 3 1 2 1 1

2 -1 0 1 -1 0 1 2 1 1 -3 3 1

3 -2 -1 0 -2 -1 0 -1 -2 1 -3 -1 1

4 -1 -1 0 -1 -1 0 -3 -1 1 2 -2 1

300
origin

1 0 -1 1 0 -1 1 1 0 0 0 -1 0

300
edge

1 0 1 0 0 1 0 1 3 1 2 1 1

2 -1 0 1 -1 0 1 0 1 0 -1 0 0

3 -2 -1 0 -2 -1 0 -1 0 0 -1 -1 0

4 -1 -2 1 -1 -2 1 -3 -1 1 2 -2 1

5 -1 0 0 -1 0 0 2 -2 1 1 3 1
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