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Abstract

Water Delivery Canals are structures characterized for their large dimensions and for allowing the
water supply and an efficient resource management. Throughout their large extensions, water canals
have several local control agents associated with its pools, composed by sensors and actuators. Due
to its large dimensions and to the existing sensors and actuators, there is motivation to implement
distributed control strategies, that allow a more efficient communication between local controllers,
without requiring a central node. Also, existing external factors and disturbances associated with the
usage of water for consumption may change the dynamics of the system, which provides motivation
for the usage of adaptive algorithms, in which new models are identified using input and output data

retrieved from the system.

The objective of this dissertation is therefore to develop distributed adaptive control strategies
that are composed by a recursive identification algorithm (RLS) and by control algorithms based
on LQG and MPC theory, with coordination and negotiation mechanisms. The sequence of these
steps allows the design of controllers with models estimated recursively using data from the system,
becoming therefore adaptable to system dynamics changes. The algorithms considered in this study
are based in Game Theory concepts, where the decisions of local control agents take into account
the knowledge of the neighbouring agents’ decisions, converging therefore to the Nash Equilibrium,

and in Lagrangian optimization methods.
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Resumo

Os canais de agua sao estruturas caracterizadas pelas suas grandes dimensoes, por possibil-
itarem o fornecimento de agua e por permitirem a gestao eficiente deste recurso natural. Ao longo
dos canais de agua existem diversos agentes de controlo locais, compostos por sensores e actu-
adores, que actuam sobre um dado troco. As grandes dimensdes e a existéncia de varios sensores
e actuadores nos canais de agua motivam a implementacao de estratégias de controlo distribuidas,
gue tornam a comunicagao entre controladores locais mais eficiente, sem a necessidade de um né
central. Por outro lado, a existéncia de factores externos e de perturbagoes associadas a utilizacao
da agua para consumo/fins agricolas alteram a dinamica do sistema, pelo que a implementacao de
algoritmos adaptativos possibilita a identificagcao de novos modelos com os dados de entrada e saida

deste.

O objectivo desta dissertagao consiste entdo no desenvolvimento de estratégias de controlo adap-
tativas e distribuidas que integram um algoritmo recursivo de identificacdo, os Minimos Quadrados
Recursivos (RLS), e algoritmos de controlo 6ptimo LQG e MPC, baseados em mecanismos de
coordenacao e negociacdo. A sequéncia de um algoritmo de identificacdo e de um algoritmo de
controlo possibilita o dimensionamento dos ganhos do controlador com base em modelos estimados
recursivamente com dados do sistema. Os algoritmos considerados nesta dissertagdo baseiam-se
em conceitos de Teoria de Jogos, em que as decisoes dos varios agentes de controlo locais sao
tomadas com conhecimento das decisdes dos agentes vizinhos, convergindo para o equilibrio de

Nash, e em métodos de optimizagao Lagrangeana.

Palavras Chave

RLS, LQG, MPC, Controlo Distribuido, Controlo Adaptativo, Canal de Agua.
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1.1 Motivation

Although most of the Earth surface is covered by water, the percentage that is fresh is less than
3 percent, and only a part of it is available to human consumption. According to [1] the growth in the
world population requires immediate action to manage this natural and essential resource in a sus-
tainable way. Alongside with the increasing demand of water, the issue of water scarcity has become
critical in several regions worldwide and has also a severe impact in some economic sectors such as

agriculture.

Irrigation systems play an important role in addressing the problem of water scarcity by allowing
efficient resource management. These large structures are characterized for being both highly dy-
namic due to variations in the water levels, disturbances (mud accumulation, vegetation growing, and
physical problems), and for being time-variant in several ways [2]. To address these issues, and to
allow the system to respond in a both stable and robust way, it is relevant to understand how the
different stretches of a water canal interact and how to use the information provided by the different
sensors in order to develop appropriate control strategies. However, there are several issues that
need to be addressed [3], [4], [5], in order to increase the efficiency of water management in irrigation
canals, such as minimizing losses and ensuring water availability according to demand while taking

into account existing water level constraints.

Due to their large dimensions, most irrigation canals are characterized by having several sensors
and actuators placed across them that allow the development of local control strategies. Therefore,
a water delivery canal may be envisaged as a series of different subsystems that are connected and
that interact among each other. Although this sounds appealing to the implementation of centralized
control strategies, there is the downside of the increasing complexity of the system and the fact that
if the controller fails the consequences might be considerable. The communication between subsys-
tems can also be seen as difficult due to the large dimension of the structure, that introduces problems
in terms of computational load and communication [6]. These issues provide motivation for the im-
plementation of decentralized solutions, in which each controller computes its manipulated variable
without being aware of the other subsystems. Since the lack of communication between subsystems
threatens the performance of the whole system and may even yield an unstable behaviour [7], one
possible solution to improve the efficiency and tackle the feasibility and communication issues is the
implementation of a distributed control strategy. In this approach the interaction between subsystems
is taken into account and communication becomes an important ally in order to develop coordination

algorithms with the objective of reaching a consensus between subsystems.

While distributed strategies are characterized by the adequate management of local control ob-
jectives [3], adding adaptation to these strategies has the advantage of increasing the performance

of the system, by contributing to its stability when facing variations in its dynamics. Therefore, the



combination of adaptation and distributed control strategies appears to be an efficient way to manage

the water levels in the canal.

1.2 Problem Formulation

The water canal considered in this dissertation belongs to Nucleo de Hidraulica e Controlo de
Canais (NUHCC) of Univerisity of Evora, Portugal. In [8] a more extensive description of the canal
is presented, alongside with a manual for the SIMULINK non-linear model used in this study. The
system is composed of an automatic canal, together with a traditional canal that guarantees water
return. The automatic canal is controlled by a central server equipped with a SCADA system that
allows remote monitoring and control of the canal, and consists of a series of four pools separated by
four vertical gates that are actuated by electrical motors. The first three pools are terminated by an

undershot gate, whereas the fourth pool is terminated by an overshot gate.
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Figure 1.1: Schematic representation of the NuHCC] automatic canal.

The pools have approximately the same length (35m for the first three and 36m for the fourth pool),
and the same height (0.90m). In order to measure the upstream (M;), centre (C;) and downstream
(J;) water level, three sensors were placed along each pool i, as shown in figure [1.1] although only
the last ones are considered in this dissertation. The variables @, represent the side flow of off-take i,
controlled by valves placed at the canal bottom, with control signals denoted by V,. These variables
allow the generation of disturbances in the system, being associated, in a practical situation, to water

consumption by users.

The dynamics of the water flow in the canal is described by the non-linear hyperbolic Saint-Venant
equations [9], obtained using the mass and momentum conservation principles and whose solution is
obtained using numerical methods for solving Partial Differential Equations [8]. In this study only the
undershot gates, whose schematic representation is shown in figure [1.2] (Lemos, J. M. et al., 2010),

are considered and it is assumed that the flow under each is modelled by

Q(t) = Cys A(t) * V 2g(hy — ha), (1.1)

in which C,s is the discharge coefficient, h, and h,; denote the upstream and downstream water



levels, g is the acceleration of gravity and A, the effective area of the opening of the gate, is given by
A(t) = Wu(t) (1.2)

in which W represents the width of the gates and w(t) is the position of the undershot gate, at time

instant ¢.

h_left
h_comp h_right

Figure 1.2: Schematic side view representation of the undershot gate. The upstream and downstream water
levels are denoted by hi.f: and h..iqn: respectively, whereas hcomp represents the gate height. [8]

The development of adaptive control algorithms has the purpose of maintaining the water level of
each pool at the desired level, even in the presence of existing disturbances and changes in canal
dynamics. The adaptive control algorithms implemented in this study take into account estimates
of system parameters computed by an identification algorithm that takes into account variations in
the dynamics of the system. The parameter identification problem is addressed using the Recursive
Least Squares algorithm, that recursively estimates the parameters that minimize a predefined

least squares function.

The introduction of adaptation in the control algorithms addresses the time-variant dynamic of the
system, allowing it to maintain the water levels close to the desired values, even in the presence of
external factors or disturbances such as water extraction for agricultural use. The adaptive distributed
algorithms developed in this dissertation are based on Linear-Quadratic-Gaussian control and
Model Predictive Control theory. The [LQG] control algorithms are characterized by an infinite-
horizon quadratic cost function that is minimized, and that leads to the controller and state estimator
expressions, whereas in the algorithms, a quadratic cost function is only considered for a spe-
cific finite-horizon that slides with time, and its minimization may take into account explicit input and

state constraints.

The water canal is converted in a network of connected subsystems associated with each pool, in
which each system is controlled by a local agent and the computation of manipulated variables takes
into account information provided by the neighbours. Although the irrigation canal is a non-linear
system with infinite order, in this dissertation it will be approximated by a finite-dimension linear model,
and thus the control algorithms developed will address only linear finite dimensional State-Space (SS)
models. Since during the period this study was conducted, the water canal was non-operational, the

target system considered is the SIMULINK non-linear canal model.



1.3 Literature Review

Throughout the years there have been many studies, [4], [7], [9] that tackle the automatic control of
water canals due to strong motivations related with the issues and challenges associated with these
structures. The main objectives of automatic control of water canals concern the water level regula-
tion in order to optimize the resource distribution such that the amount of water provided matches the
demand [4].

1.3.1 System identification methods

The successful implementation of control algorithms requires accurate models that describe the
system dynamics. One of the first challenges to be addressed before developing a suitable control
strategy is the identification of the system. Irrigation canals are characterized for having a highly-
dynamic and complex behaviour described by the non-linear Saint-Venant equations, whose solution
requires approximations provided by numerical methods such as the Preissman Scheme or the Or-
thogonal collocation [9], [10], [11]. The estimation of model parameters based on the Saint-Venant
equations can be made by comparing experimental observations with simulation data and it typically
takes into account prior knowledge of the channel structure [11], [12]. The SIMULINK non-linear
model of the water canal considered in this dissertation was developed using numerical methods to
solve the Saint-Venant equations and was validated and calibrated by comparing simulation results

with experimental data [8].

An alternative to the linearization of the Saint-Venant equations is to use linear identification al-
gorithms that require experiments in the system considered to validate a model obtained, taken into
account prior physical information, to accurately describe the system dynamics [5], [13]. Models
based on the Saint-Venant equations with parameters estimated using experimental data capture the
dynamics of the channels but, due to the accuracy and simplicity of linear identification models and to

the control algorithms considered in the dissertation, the second approach is preferred [12], [13].

1.3.2 Control algorithms applied to water canals

The control techniques developed and applied to water canals range from centralized to decen-
tralized and distributed approaches [7], with several adaptive strategies also being taken into account
[2], [14]. Regarding the system considered in this dissertation, there are several studies, from master
thesis to research papers, that tackle the application of control algorithms using as plant the NuHCCI
water canal [2], [3], [6], [15], [16], [17]. Some of these studies [6], [15], serve as background to
the development of the adaptive distributed strategies introduced in this dissertation. The control
strategies developed are applied taking into account both linear and non-linear models, and include

the application of Proportional-Integral (Pl) and Proportional-Integral-Derivative (PID) controllers [18],



[19], optimal Linear-Quadratic-Gaussian control algorithms [15], [16], gain-scheduling control
[20], MPCl algorithms [2], [3], [6], [21] and MUSMAR adaptive control [2].

1.3.3 Distributed control algorithms

The distributed control strategies taken into account in this dissertation were introduced in [6],
[15], [17] and [22]. The system is divided into several subsystems (pools and respective gates) that
are associated with local controllers in a network structure where the subsystems are connected to
their neighbours. Compared with decentralized control strategies, [23], [24], the distributed control ap-
proaches have the advantage of considering the interactions between subsystems in the computation
of manipulated variables. The control algorithms in [23] and [24] are based in coordination methods
that use an augmented Lagrangian in the cost function minimization, whereas the coordination proce-
dure introduced in [6], relies on a distributed optimization algorithm that uses augmented Lagrangian
to solve problems in networks of interconnected nodes. A different approach is followed in [15], [17],
[22] and [25], where Game Theory concepts are used in the coordination procedure in order to reach

a consensus between subsystems.

1.3.4 Other studies regarding water management in water delivery channels

Regarding water management in irrigation channels, there are still several techniques and relevant
issues that were addressed throughout the years and that include the usage of different manipulated
and measured variables such as water levels, discharges, volumes and gate heights [26]; Fault Tol-
erant Control (FTC) to guarantee stability in the presence of faults in sensors and actuators [16] and
control strategies that address risk mitigation in irrigation systems [27] by executing mitigation actions

if risk factors such as inadequate quality of fresh water and failures in gate openings are expected.

1.4 Original Contributions

Three adaptive distributed control algorithms are considered in this dissertation: the first one is a
Linear-Quadratic Regulator based on optimal control and on Game Theory concepts, in which
the coordination of subsystems is achieved with a negotiation step common to all local controllers in
order to reach a consensus regarding the computation of manipulated variables, whereas the other
two algorithms are based on linear [MPC] theory, by minimizing a quadratic cost function that is only

applied in a pre-defined horizon that slides with time.

The coordination procedures of the adaptive strategies introduced in this study rely on
the above control structures and are based in different concepts. The first strategy is based on a

distributed optimization algorithm that solves problems in networks of interconnected nodes using
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Figure 1.3: Schematic representation of the adaptive controller applied to a linear incremental model.

augmented Lagrangian whereas the second one is based on Game Theory concepts, using a nego-
tiation step similar to the one considered for the [D-LQG] algorithm.

The identification step of the adaptive controllers is based on the [RLS| algorithm that provides on-
line estimates of the system parameters. A representation of the general adaptive controller strategy
applied to the linear incremental model is shown in figure in which input and output increments
with respect to the operating point, Au and Ay, are the variations of the gate position and water levels
of a linear subsystem, the reference signal is denoted by r and © represents the parameter estimates
provided by the algorithm.

1.5 Thesis Outline

This dissertation has the following structure:

Chapter [1]is dedicated to the motivations and problem formulation considered in this dissertation.
A literature review is also provided, with references to some of the studies conducted to water canals,
followed by a brief presentation of the original contributions.

Chapter [2| addresses the definition of identification strategies, model orders, linear incremental
models and of the recursive identification algorithm considered in the adaptive controllers.

Chapter [3]introduces the [LQG] control theoretical background, followed by the definition of single-
gate controllers and centralized multiple-gate controllers, adaptive and non-adaptive.

Chapter [4] addresses the definition of the distributed [LQG] control algorithm, both in the adaptive
and non-adaptive approaches.

Chapters [5] and [g] follow a similar structure as the previous chapters with the first chapter being
dedicated to the formulation of the [MPCI control algorithms and definition of single-gate and central-
ized multiple-gate controllers whereas the second one is dedicated to the distributed control

algorithms, with adaptive and non-adaptive strategies.
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This chapter adresses the definition of the identification strategies and algorithms used in this
study. The first sections are dedicated to the identification of a linear incremental model using simu-
lation data obtained with the SIMULINK non-linear canal model. The last section describes the[RLS

algorithm considered in the identification step of the adaptive controllers.

2.1 Linear Incremental Model

In order to design the control systems developed in this study, it is necessary to find a model that
adequately describes the dynamics of the water canal. The objective is to obtain finite-dimension
models that describe the system dynamics in both the and cases. The parameter es-
timation from the non-linear SIMULINK model requires the establishment of the orders and of the
model structure considered. Since the noise present in the simulation data is not white, one may
consider an AutoRegressive Moving Average with eXogenous input (ABMAX) model to describe the
system dynamics. However, as previous studies show [15], [16], for the purposes of control design,
AutoRegressive with eXogenous input (ABX) models are suitable and the structure is simpler, which
makes it preferable.

For a[SISQ system, the model structure is described by

Alq M) Ay(t) = Blq~ ") Au(t — nx) + e(t), (2.1)

where Ay(t) € R represents the incremental output of the system, Au(¢) € R the incremental input,
e(t) € R a Gaussian white noise sequence, ¢! is the unit delay operator, and A(¢~!) and B(q¢~!) are

polynomials in the unit delay operator, described by
A(q_l) =1l4aqgt+.. + Gn, g " B(q_l) =by+big 4+ ...+ bn,q """, (2.2)

in which positive integers nx, ns and np represent the pure delay, and the number of zeros and
poles.

The identification of linear incremental models from the non-linear SIMULINK model requires the
definition of an equilibrium point, described in table [2.1]for an intake flow of 0.05m? /s.

Table 2.1: Equilibrium Point

’ Pool H Water Level [m] ‘ Gate Position [m)] ‘

1 0.8 0.1072
2 0.72 0.1082
3 0.64 0.1089
4 0.56 0.4022

The first identification strategy used in this dissertation consists of using the pem function of MAT-
LAB, that implements the prediction error algorithm over the simulated data. This strategy provides
an indication of the orders of the model that correspond to the best results and that will be used in
the Recursive Least Squares algorithm, used as an identification technique for adaptive con-

trol strategies. In order to avoid the excitation of high-frequency modes and non-linearities, the data
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was filtered using a third-order low-pass Butterworth filter with a cut-off frequency of 0.1rad/s, as de-
scribed in [16]. The mean and the initial transient of the signal were also removed before applying the
identification algorithm. The comparison between the output of the model and the measured one, ob-
tained with the parameter estimates, is accomplished using MATLAB function compare, that provides

the normalized root mean square error as a fit percentage. The sample time considered was T, = 1s.

2.2 SISO Model Identification

In this first experiment, only the first pool and the corresponding undershot gate were taken into
account in order to identify a Single-Input Single-Output (SISO) model. In order to obtain a more
reliable model, a suitable signal needs to be applied in the system input, in order to excite it and
to provide better parameter estimates. The signal chosen is the Pseudo-Random Binary Sequence
(PBBS), since it is characterized for being a variable signal that excites the system along a wide range

of frequencies when compared with, for instance, a sequence of square waves, as shown in [16].

ull[m]

0 0.5 1 1.5 2 25
Time / [s] 5

0 0.5 1 15 2 25

Time /[s] X 10°

Figure 2.1: Input w; and output y: signals - first pool. The input signal is a PRBS signal with an amplitude of
0.05m applied around the equilibrium point of the pool, defined in table

Several simulations were performed with the first pool being excited by a signal applied
around the equilibrium point while the other three gates were kept at their equilibrium points. The
simulation results were then filtered, and the mean was removed in order to provide better estimates.
The input and output signals obtained are represented in figure 2.7} in which the reverse response of
the system may be noticed, with an increase in the gate position u, leading to a decrease in the pool
water level y.

After performing several trials, with different combinations of model orders, the one that led to the
best fit percentage was na = 4, np = 2, ng = 1, leading to the results shown in figure [2.2] During
the experiments it was possible to verify that higher amplitude variations in the input signal led to poor

identification results, with manifestations of non-linearities and that the period of the input signal had
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SISO Model Identification

0.2

—Y (Measured)
B Y, (Estimated)
fit: 94.44%

0.5 1 1.5 2 2.5
Time / [s] 5

Figure 2.2: Comparison between the measured system output and the simulated output, obtained using the
parameter estimates - first pool.

also influence in those results. The frequency of the input signal has to be within a range of values
that is sufficiently exciting to provide good estimates, and suitable to the slow system response, in
order to allow the stabilization of the water level. Having the parameter estimates and thus knowledge
of the transfer function that describes the dynamics of the system, one may obtain an equivalent linear

state model to be used in control design.

The conversion between transfer functions and the state model is achieved by either using an
analytical approach or by the MATLAB functions ss2tf and {f2ss. Due to the simplicity of the
linear model, the first approach was used, but in the other cases, mostly due to their complexity,
MATLAB functions were preferable. The resulting linear incremental [SSImodel is

x(t+1) = Ax(t) + BAu(t) + e(t), Ay(t) = Cz(t), (2.3)

in which Au and Ay represent the incremental gate position and water level with respect to the
equilibrium point, z is the state of the system, and Ajn x na], Bna x ng] and C[nc x na] are the

matrices that describe the system dynamics.

2.3 MIMO Model Identification

In order to design a control system for a multi-variable structure that contemplates the first three
pools and corresponding undershot gates, one needs to identify a Multiple-Input Multiple-Output
linear model from the simulation data. The identification procedure is similar to the one
defined in section although there are some changes that reflect the interactions between subsys-
tems.

Just like in the previous section the outputs and the inputs of each subsystem are defined as the
downstream water levels and gate positions, respectively. But instead of having A(¢~!) and B(¢~!)
defined as polynomials that represent the zeros and poles of the system, these are now matrices with

polynomial entries, with the following underlying assumptions:

e The water level in each pool depends only on the water level in the same pool in previous time

instants;

e The inputs only influence the water levels of the respective system and of neighbouring systems.

12



The [MIMO|linear model structure is therefore defined as

An(g™h) 0 0 1 (t) Bii(qg™") Bia(q7) 0 uy(t)
0 Aga(g™h) 0 y2(t)| = |Bai(g™") Baa(q™") Bas(q™ )| |ua(t)| +e(t),
0 0 Ass(qg™")] |ws(t) 0 Bso(q7') Bss(g7')| |us(t)

with n4, np and nx representing the model orders, defined as

NAL 0 0 By MBiy 0 MK MKy 0
na = 0 TN Ag, 0 y MB = [MBa; MByy "By y MK = [NMKy MKy MKy | - (25)
0 0 T Ass 0 NB3; MBss 0 MKz, MNKag

The structure of the model (2.4) reflects the assumption that the different canal stretches interact
only through the manipulated variables (gate positions) of the adjacent gates. This assumption leads
to a good fit of the model and allows the application of the control methods described in subsequent

chapters.

0.13
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il T I
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Figure 2.3: Input signals applied to the first three pools to the System - gate position representation.

Using the gate positions as input signals did not result in satisfactory fit percentages (no more than
70%), and thus a solution proposed for this issue, described in [16] was considered. The solution
consists of using a variable proportional to the flow drawn by each gate ¢(¢) as input signal. This new
variable, v(t), is related with the flow across the gate by the discharge coefficient Cy,, as shown in
(2.6) and with appropriate input signals it allowed to obtain better results with fit percentages around
91%-96%. The open-loop system response for the three pools is represented in figures and
in which one may see signals being applied to the inputs, with similar amplitude variations
around the equilibrium points defined in table but delayed in order to not produce synchronous

variations.

v(t) = Cld?q(t) =u(t) * W /2g(hy — hq). (2.6)

The model identification was performed using the new variable proportional to the flow v(¢), and

the value of the discharge coefficient C,;, was computed as the quotient between the equilibrium point
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Figure 2.4: Output signals resulting from the open-loop response of the first three pools of the system - water
level representation.

of the flow (0.076m3/s) and the intake flow (0.05m3/s). The results obtained are represented in figure
[2.5]and by comparing the open-loop responses of the three pools it is possible to verify how the water
level in each pool influences the neighbouring subsystems. For example in the first time instants,
when the first gate is excited with a negative variation of its position around the equilibrium point
which leads to a higher water level in the first pool, the opening of second gate leads to a decrease in

the water level of the first pool. The corresponding combination of orders that led to this result is

4 0 O 4 3 0 1 2 0
na= 10 4 0 , np= 4 3 , ng =12 1 2|. (2.7)
0 0 4 4 4 0 1 1

o W

With the parameter estimates and corresponding transfer function, one may obtain an equivalent
state representation of the system using MATLAB function tf2ss. However, in order to prevent the
appearance of uncontrollable or unobservable states, MATLAB function minreal was also used to

obtain a minimum realization of the state model. The linear [MIMQOI incremental model structure is

given by
x(t+1) = Az(t) + Bo(t) +e(t) , Ay(t) = Cx(t) (2.8)
An 0 0 Bi11 Bio 0
x(t + 1) = 0 Agy 0 LL'(t) + | Ba1 Bos Bos U(t) + 6(t)7 (29)
0 0 Ass 0 B3z Bss
Ci1 0 0
Ay(t) = 0 022 0 .%‘(t), (21 0)
0 0 Cs3

in which the incremental gate positions Aw;(t) are computed using the relationship between w;(t) and

the variable proportional to the flow drawn by each gate v;

Auy(t) = vilt) 2.11)

W \/2g(h — ha)
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MIMO System Indentification - First Pool
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Figure 2.5: System ldentification - Comparison of the open-loop system response simulated and the
resulting system output obtained using the parameter estimates for the first three pools.

2.4 MIMO Model Identification with the effect of the side takes

The [D-LQG] strategy introduced in section requires a model composed by several subsystems
(pools) connected to their neighbours that interact with their manipulated variables and flow of lateral
off-takes. Each subsystem ¥;, with ¢ denoting the i-th pool, is seen as a system [15], [16],
in which its output is the water level y; of the corresponding pool and its manipulated variable is the
position of the respective gate v;. The interactions between neighbouring subsystems are assumed
to be described by the respective gate positions v;_1, v;41, considered later in the feed-forward control

term, and the flows of the lateral off-takes @Q;_1, Q;, Q;+1 are handled as accessible disturbances.

Due to the number of inputs, the identification procedure conducted needed to be different than the
ones presented before. The simulation time was increased and new input signals had to be applied
into the SIMULINK model, representing the lateral off-takes @;. Initially, during a pre-defined period
of time, only variations in gate positions were considered, and after that time interval only variations
in the flows of the lateral off-takes were taken into account. This resulted in identification problems
related with different mean values of the system response that corresponded to the different parts of
the experiment. The lateral off-take valves were considered to be open in the equilibrium, and thus a

new operating point was considered (table[2.2), in which Q; denotes the flow of lateral off-take of the
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i-th pool.
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Figure 2.6: Representation of the input signals applied to the SIMULINK model, with Q; representing flow of the
lateral off-take of pool i and u; the respective gate position.
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Figure 2.7: Output signals resulting from the open-loop response of the first three pools of the system - water
level representation. During the first 1 x 10°s both gate positions and flows of lateral off-takes were excited
whereas in the rest of the simulation time the gates remained in constant positions.

Table 2.2: Equilibrium Point considering the flow of lateral off-takes

’ Pool H Water Level [m] ‘ Q; [m3/s] ‘ Gate Position [m] ‘

1 0.8 0.001 0.1050
2 0.72 0.002 0.1014
3 0.64 0.003 0.0948
4 0.56 0 0.4150

The identification procedure was divided into two different parts, in which in the first half, [PRBS]sig-
nals were applied simultaneously representing variations in the gate positions and flows of the lateral
off-takes. These input signals had different frequencies and were delayed with respect to each other.

In the second half of the experiment, gate positions were kept constant at their equilibrium position
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while varying the flows of lateral off-takes, as represented in figure followed by a representation
of the system output in figure[2.7]

The variable proportional to the flow v; was used again for the model identification and all the sig-
nals were filtered and had their mean removed. After performing several experiments, the combination
of orders that resulted in the best fit percentages is

na1=3, npi=[3 4 3 4 , nxa=[1 2 1 1]; (2.12)
naz=3, npz=102 1 2 3 4 3] , nge=[1 1 1 1 1 1]; (2.13)
naz3=3, nps=1[3 4 1 5] , ngg=[1 1 3 1]. (2.14)

MISO System Identification — First Pool y, (Measured)

0.06 y, (Estimated)
0.041 fit: 91.61%
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Figure 2.8: System Identification with the effect of side takes - Comparison of the open-loop system

response simulated and the resulting system output obtained using the parameter estimates for the first three
pools.

The fit percentages obtained, represented in figure[2.8] are slightly worse than the ones presented
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in the other sections, but since they are around 90% and since this identification procedure is only
to design controllers and to provide a good indication of the model orders to be used in the adaptive
control algorithms, the results obtained are satisfactory. Due to the changes that are required for
the distributed control algorithm, the model structure needs to be different, with the B matrix
contemplating only the gate positions of the respective pools and the influence of flows from lateral
off-takes and positions of neighbouring gates contemplated by matrices 'y and ®,, respectively. The

linear incremental model structure is therefore

x(t+1) = Az(t) + Bo(t) + Q,v(t) + TaQ(t) +e(t) , Ay(t) = Cx(t), (2.15)
A 0 0 By 0 0 0 Bis 0 11 T'is 0
Alo A 0|, B=|0 B 0], ¢, = [Bay O 323]7 Fd|:r21 Iy F23},
0 0 Ass 0 0 Bss 0 Bso 0 0 I3y I'sg
(2.16)
Ci1 0 0
Ay =10 G 0|20 (2.17)
0 0 Cs3

The parameter estimates used to define the models introduced in sections and [2.4] are
shown in Appendix [A]

2.5 Recursive Least Squares

The results obtained in the previous sections are taken into account for the design of controllers
with fixed parameters and provide an indication of the model orders that result in good parameter es-
timates. However, the off-line application of an identification algorithm is not the approach considered
for the parameter estimation step of adaptive controllers. To identify the system dynamics or, in other
words, to estimate its parameters, the solution needs to take into account that several observations
are required and that memory management should be efficient. This leads us to a recursive solution,
which in this dissertation will be the[BLS] algorithm that uses both incremental input and output data to
estimate the parameters [28]. Considering the generic transfer function defined for an model in

(2.1), it is possible to write an equivalent difference equation with delayed samples for an incremental

model . .
Ay(t) = = aidy(t —i) + Y bidu(t —ng — i)+ e(t) (2.18)
=1 1=0

in which ¢ > 0 is an integer that represents discrete-time, Au € R is the incremental manipulated vari-
able, Ay € R the incremental system output, with increments defined with respect to the operating
point, e € R represents white Gaussian noise, n 4 is the pole order, np the zero order and ny is the
system delay. A system is casual if and only if its delay is nonnegative, i.e. n4 > ng. Discarding sys-
tems with instantaneous action, is is n4 > np. Taking into account expression (2.18), the regressor,

p, is defined as

' (t—1) = [-Ay(t—1) —Ay(t—2) ... —Ay(t—na) Au(t—ng) Au(t—ng —1) ... Au(t —np)]
(2.19)
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and the vector of the parameters to be estimated, ©, is given by
O =[a1 az . Gny by o Doyl (2.20)
For each observation, the model is described by
Ay(t) = ¢'(t — 1)O + e(t). (2.21)

Given N observations, the estimation of the vector of parameters © by © is made by minimizing

the following cost function:
N
1
J(0) = 5 D_Ay(t) - &'p(t — 1)) (2.22)
t=1

To obtain the estimate by combining the previous estimates with new data, a recursive estimator

is required, with the following elements:
e Vector of estimates O(¢ — 1) and previous auxiliary variables P(t — 1);
o New data Ay(t), p(t —1).

With the combination of these elements it is possible to compute the new estimates ©(t) and the
new auxiliary variables P(t), in which P is the covariance matrix, which is symmetric and positive
semi-definite. In order to obtain good parameter estimates one must ensure that the data is adequate
in the sense of being sufficiently exciting, thus guaranteeing the decrease of Kalman gain elements
K and P. In the first time instants, when the uncertainty regarding the true values of the parameters
is large, the values of the covariance matrix P should be high. This leads to higher Kalman gains in
the beginning and consequently to a faster convergence of the parameters estimates, as seen in the

expression for parameter estimation

O(t) = O(t — 1) + K(t)[Ay(t) — ¢'(t — 1)O(t — 1)], (2.23)
in which © denotes the vector of parameter estimations at time instant ¢, ¢ is the regressor and the

Kalman gain is denoted by K.

Higher values of K result in more emphasis to the difference between the experimental value
and the estimated value, and thus in a faster convergence of the estimates towards the true values.
Throughout time and with the data acquired, the uncertainty regarding the parameters decreases,
which results in a smaller value of K and a slower convergence to the real value of the parameters.
However, this introduces a new difficulty since the algorithm takes into account recent and past data
with the same "weight”, and thus when the estimates converge, it takes a considerable amount of time
for the estimates to converge towards a new value after a change in the system dynamic. In order to
prevent this loss of adaptation from occurring, one may consider defining a forgetting factor, A, with
values between 0 and 1 so that the algorithm weights less data from past. With smaller values of
A, the algorithm tracks better changes in the state and the convergence is faster since it retains less

data. With larger values of A, the algorithm becomes progressively slower to follow changes in the
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system dynamic since it retains more data but with less variations in the estimates.

With a fixed forgetting factor ), the results obtained in the experiments conducted with the SIMULINK
canal model were unsatisfactory, with the parameter estimates constantly varying. When the system
was in equilibrium, the information provided to the algorithm was not exciting enough to it provide
good estimates, and since the input signal applied to the system takes into account its slow response,
as described in section this situation occurred frequently. In order to prevent this issue, an alter-
native version of the algorithm with variable forgetting factor, introduced in [29], is considered.
In this algorithm, the value of A depends on the information available and on the current estimates.
In order to do so, one must define a new variable ¢ that denotes the prediction error. One of the
required parameters is the mean value of the prediction error, denoted as ¢, which was defined after
conducting several experiments in order to have a measure of the prediction error. In the experiments
conducted with the adaptive control algorithms, the parameters of the three subsystems were defined
as

Mo =098, Apin =098 Py=0.01xI,x,, € =5x10"%, (2.24)

in which \g and P, are the initial values of the forgetting factor and covariance matrix and p is the

number of parameters.

Algorithm 2.1 Recursive Least Squares (RLS) with variable exponential forgetting factor

Require: Output signal Ay(t), previous Covariance Matrix P(t—1), previous forgetting factor A\(¢—1)
and previous parameter estimates ©(t — 1)
function RLS(Ay, 6, P, ¢)
for t=1:T
Read current system output Ay(t)
Compute the prediction error e(t) = Ay(t) — ¢'(t — 1)O(t — 1)
Define the mean value of the prediction error ¢

Compute the Kalman gain K (t) = /\(tfl)JrigEt_jifé’t(;i)l)@(tf1)

Compute the parameter estimates O(t) = O(t — 1) + K (t)e(t)
The new forgetting factor X is given by A\(t) =1 — [1 — ¢'(t — 1)K (t)]€(t) /eo
If )\(t) < >\min — /\(f) = )\min

Compute the Covariance Matrix P(t) = [ — K(t)¢'(t — 1)]%

return O(t)
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In this chapter the controller is described, with the theoretical background followed by the
definition of two adaptive controllers applied respectively to the first pool of the canal and to the multi-

variable system composed by the first three pools.

3.1 Linear-Quadratic Gaussian Controller

The first control strategy to be considered in this dissertation is the[CLQG]|controller, that results from
the combination of a Linear-Quadratic Regulator and a Linear-Quadratic Estimator (CQE). This
observer-controller structure is represented in figure The linear incremental model, for a SISO
system, considered in the definition of this controller is described by (2.3).

Plant 4 |_.

A 4

Observer (LQE)

1 X[ST

— Controller (LQR)

Figure 3.1: Schematic representation of the [LQG] controller.

3.1.1 Linear-Quadratic Regulator
Assuming that the system state is accessible for direct measure, the [LQR|control law,
Au(t) = —Kx(t), (3.1)

is obtained by finding the gain K that minimizes the quadratic cost function

J = at)"Qu(t) + pAu(t), (3.2)

t=0
in which Q € R"4*"4 is a positive semi-definite matrix and p is a positive scalar quadratic cost weight.

In the case of a multi-variable system with several inputs, p € R"8*"5, K is given by
K=I+p'BT"PB)~'p~'BTPA, (3.3)

with P denoting the positive definite solution of the algebraic Riccati equation. In MATLAB the state

feedback gain K is given by the dlgr function from the Control Systems Toolbox.

3.1.2 Linear-Quadratic Estimator

In the previous section, it was assumed that the system state was accessible, which is not true
most of the times. In this study, since there is no access to the state, it is necessary to obtain
an indirect measure of it. In order to do so, one begins by defining an optimal Linear-Quadratic

Estimator (LQE), which provides estimates of the state £. The state estimate is given by

2(t[t) = A2(t — 1)t — 1) + BAu(t — 1) + M[Ay(t) — C(A2(t — 1|t — 1) + BAu(t —1))],  (3.4)
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in which M is the optimal gain matrix obtained by minimizing a cost function that depends on the
estimator covariance matrices Qr and Ry related with the process and measurement noises [16]. M
is given by

M = PCT(CPCT + Rg)™*, (3.5)
with P denoting the positive definite solution of the algebraic Riccati equation. In MATLAB, the ob-
server gain M is computed using the function dlge from the Control Systems Toolbox. The state
estimates computed by the observer take into consideration the reference signal r, in order to tackle

the reference tracking problem. The signal is added to expression (3.4),
2(tlt) = Az(t — 1|t — 1) + BAu(t — 1) + M[Ay(t) — C(Az(t — 1|t — 1) + BAu(t — 1))] — Mr(t), (3.6)
which can be written as
2(tt) = Ppz(t—1jt—1)+TgAu(t—1)—M(e(t)), ®p=A-MCA, Tp=B-MCB, e(t)=r(t)—Ay(t).
(3.7)
3.1.3 Integral action

In order to guarantee that the system response follows the reference signal, the control design

requires the inclusion of an integrator, defined by

T
xr(t) = q_le(t)<:>x1(t+1):w1(t)+Tse(t), (3.8)
in which e(t) is the output error defined by e(t) = r(t) — Ay(t), r(t) is the reference signal and T is

the sampling time, defined as T; = 1s. The state-space model of the system is now described by

2(t+1) = Az(t) + BAu(t), = [;’J . A= [éc ﬂ . B= m , (3.9)

with the system output being written as

Ay(t)=Cz(t), C=[C 0]. (3.10)

Expressions (3.8) and (3.9) define the augmented state-space model of the system with integral
action, which is used in the computation of manipulated variables. The [LQR]takes into account the

augmented state-space matrices (A, B, and C) to compute the manipulated variables, that can be

written as
Aut) = - [K K] Li((t})} , (3.11)
with
(K K/ =(+p'BTPB)"'p'\BTPB, (3.12)

in which P denotes the algebraic solution of the Riccati equation using the augmented state-space
model. Since this augmented state-space model is unobservable [16], the cost function defined by
(3.2) needs to be rewritten, in order to include a term that depends on the integrator state z; and on

a matrix Q; with dimensions n4 x n4,

o0

J=Y zt)TQz(t) + Au(t)' pAu(t), Q = {%9 631] , Qr=1 (3.13)
t=0 -
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Regarding the LQE| the computation of the observer gain M takes into account the original state-
space model defined in (2.3) and thus the formulation introduced in section is still considered.

3.1.4 LQG Controller - Separation Theorem

The combination of the with the results in the Linear-Quadratic-Gaussian con-
troller, as previously mentioned. While z is estimated by the since the augmented state-space
system is unobservable, the true value of the integrator state x; is considered. In order for the
controller to work, the regulator and the estimator need to be design separately. According to the
Separation Theorem, it is possible to design separately the observer and the regulator, guaranteeing
that after coupling them, the closed-loop system poles are the same as the ones obtained separately.
In [16], proof that this theorem is valid in this situation is given, and thus it is possible to design the
and the separately.

The schematic representation of the LQG] controller applied to the system is shown in figure[3.2]

U Y- Equilibrium Points

v
=

—( ¥ = Integrator

Observer (LQE)}—= -K

Figure 3.2: Schematic representation of the [LQG] controller with integral action applied to a linear incremental
model.

3.2 Single gate LQG controller

After describing the theoretical background of the LQG]| controller, the first algorithm developed was
applied to the first pool of the canal, taking into consideration the [SISOlmodel identified in section
The[LQR]and [LQE| definition requires an initial step in which the suitable controller parameters, p, Rz,
and Qg, are defined. In order to find the suitable parameters, several experiments were conducted
with different combinations of values, whose results are represented in figure In order to verify
the influence of p, experiments were conducted with R = 1 and ¢ = 1. Higher values of p result in
a slower system response, while lower values are associated to faster system response with more
oscillations. In this scenario, the suitable value for p is the one that results in a compromise between
the fastest possible system response with less oscillations. Taking into consideration the results rep-
resented in figure [3.3] the value chosen was p = 1000.

With a value defined for p, it is still needed to define the estimator, which requires two covariance
matrices Rg and Qg to compute the optimal observer gain M. In the SISOl model, Rg is a positive

constant and Qp is a matrix defined as ¢>BB”. With p = 1000 experiments were conducted to
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determine the influence of the estimator parameters. By maintaining Rg = 1, it is possible to see that
an higher value of ¢ results in a faster system response with more oscillations and higher overshot,
and thus the value chosen was ¢ = 1. Similar experiments were conducted with the values already
defined for p and ¢ but with different values for Rg. This parameter as an effect on the estimator similar
to the effect of p in the regulator, and as it is possible to verify, an higher value of Rg results in a slower
system response while lower values are associated to a faster response with more oscillations. The
combination of values for the [LQG] controller parameters is p = 1000, ¢ = 1 and Rg = 100. In figure
[3.4]it is represented the closed-loop response of the controlled system composed by the first

pool and corresponding gate with the parameters defined above.
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Figure 3.3: [LQG controller parameter tunning - Results of the experiments conducted to find the best com-
bination of parameters. Closed-loop response of the SIMULINK non-linear canal model, considering only the
first subsystem composed by the first pool and gate. The remaining three gates were kept at their equilibrium
positions.
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Figure 3.4: Closed-loop response of the SIMULINK non-linear canal model, considering only the first subsystem
composed by the first pool and gate, controlled by the [SISOILQG] controller with p = 1000, ¢ = 1 and Rg = 100.
The remaining three gates were kept at their equilibrium positions.
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3.3 Adaptive single gate LQG controller

After defining the [LQG controller, a corresponding adaptive strategy based on the same algorithm

was developed. This adaptive algorithm is basically divided into two steps:

o Identification: Estimation of SISO/model parameters using the [RLS] algorithm [2.1] with variable

exponential forgetting;

e Control: Execution of LQG]controller applied to a[SISOImodel, defined in section[3.2] that takes

into account a model obtained from the parameter estimates.

The identification algorithm takes into account incremental input and output data, A, and
Ay, at each time instant ¢ to provide estimates of the system parameters. The model orders are
defined in section and in order to guarantee that the estimates are closer to convergence, during
a pre-specified period of time ¢, only the identification step is activated. During that time period, the
system system is being excited by a PRBS signal of amplitude 0.01m that remains active during the
whole experiment. The period of time considered was ¢; = 7 x 10*s. After the initial period of time,
the controller step is activated and the two steps are combined sequentially, with the algorithm
providing the parameter estimates used to define the model that is taken into account by the
[CQGl controller. This strategy is represented in figure The controller parameters considered are
p=1000, ¢ =1and Rg = 100, With Qz = ¢, xn,-

The system response obtained with this adaptive controller is represented in figure followed
by the parameter estimates in figure 3.7} where it is possible to see that by the time the controller step

is activated these are closer to convergence.

Ay

w | RS F—/——— LQG Controller
—_— P e e e e e e e - —-——— " © — Parameters estimates
: u, — User pre-defined input signal
r Z e lntegrator X, > 'KI U Y — Equilibrium Points
]
- ]

]
]
! X,
! Observer (LQE)|—= -K
1
e e - e = -

Figure 3.5: Schematic representation of the adaptive controller with integral action applied to a linear
incremental model.

3.4 Multiple gate LQG controller

After defining the [LQG] controller applied to the first gate and pool, it is possible to use the same
theoretical background to develop a multi-variable controller applied to the model identified in section
and described by expression (2.8). The system state = is defined as z(t) = [¢1(t) 22(t) x3(t)] T
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Figure 3.6: Open-loop and closed-loop response of the SIMULINK non-linear canal model between 6 x 10*s and
9 x 10*s, considering only the first subsystem composed by the first pool and gate, controlled by the adaptive
SISO LQG controller with p = 1000, ¢ = 1 and Rg = 100. The remaining three gates were kept at their
equilibrium positions. The controller step is activated at ¢t = 7 x 10%s.
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Figure 3.7: Representation of the SISO parameters estimates using the Adaptive [LQG] controller.

in which z; is the i-th subsystem state (i-th pool) and the integrator state is defined as x;(t) =

[ (t)zra(t) ]3(t)]T. The state-space matrices are now

A 0 0 Biin B2 0 ¢, 0 0
A=10 Ay 0|, B= By DBy By|, C=|0 Cy 0], (3.14)
0 0 A 0 Bz Bss 0 0 GCs
and as for the controller parameters these are defined as
R=pl3x3, Rp=Rplsxs, Qp=¢BBT, (3.15)

in which the parameters associated with each subsystem are assumed to be equal to simplify the
controller design. In order to define the controller parameters, several experiments were conducted
with different combinations of values, with the corresponding results represented in figures [3.8}{3.10]

Taking into consideration the same aspects referred in section regarding the parameter tun-
ning of the controller applied to the first subsystem, the suitable combination of values for the
parameters is p = 1000, ¢ = 1, Rg = 100. In figures and it is represented the system
response with this combination of parameters, in which it is possible to see how the output track the
corresponding reference signals and the centralized effect visible whenever occurs a variation in the

position of one gate.
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Figure 3.8: controller parameter tunning p - Closed-loop response of the SIMULINK non-linear canal
model, considering the [MIMO|model. The fourth gate was kept on its equilibrium position. The experiments were
conducted with ¢ = 1and Rg = 1.
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Figure 3.9: controller parameter tunning ¢ - Closed-loop response of the SIMULINK non-linear canal
model, considering the MIMO|model. The fourth gate was kept on its equilibrium position. The experiments were
conducted with p = 1000 and Rg = 1.

3.5 Adaptive multiple gate LQG controller

The controller defined in the previous section is now considered in the formulation of
an adaptive centralized multi-variable control strategy. This strategy is similar to the adaptive algo-
rithm introduced in section regarding the sequence of two main blocks: an identification algorithm
to provide estimates of the system parameters and a control algorithm that takes into account a model
built with those estimates. During a period of time, denoted ¢;, only the identification step is activated,
and in this case, due to the higher complexity of the model (in terms of number of parameters), the
duration was increased to t; = 1 x 10°s. This allows the estimates to be closer to convergence when
the control step is activated, avoiding eventual identification issues that may prevent the controller

from stabilizing the system. During this time period each subsystem, composed by a pool and its cor-
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Figure 3.10: [LQG] controller parameter tunning Rz - Closed-loop response of the SIMULINK non-linear canal
model, considering the[MIMO| model. The fourth gate was kept on its equilibrium position. The experiments were
conducted with p = 1000 and ¢ = 1.
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Figure 3.11: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed
of the first three gates, controlled by the MIMOILQG] controller with p = 1000, ¢ = 1 and Rg = 100. The fourth
gate was kept at its equilibrium position. (Output and Reference signals)

responding gate, is excited with a[PRBS]signal of amplitude 0.01m. The signal remains active during
the whole experiment, guaranteeing that the input is being constantly excited, to prevent identifica-
tion issues such as the covariance blow-up. The neighbouring input signals are asynchronous with
the purpose of identifying the influence of each subsystem in its neighbours, similar to the process
defined in section This strategy is also represented by figure and the controller parameters
considered are p = 1000, ¢ = 1 and R = 100, with R = pl3y3, Rp = Rplsxs, and Qg = ql3x3.
During the controller definition it was verified that removing the linearization of the input provided
better results with the adaptive algorithm, since that new variable *filtered” some of the excitation
that is required by the algorithm to estimate the parameters. Therefore, the following adaptive

strategies based on the distributed algorithm and on predictive controllers will not contemplate
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Figure 3.12: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed
of the first three gates, controlled by the [MIMOILQG] controller with p = 1000, ¢ = 1 and Rg = 100. The fourth
gate was kept at its equilibrium position. (Input signals)

the linearization of the manipulated variable. The results obtained are represented in figures[3.13]and
in which it is possible to verify that the outputs track the corresponding reference signals and
the centralized behaviour of the system whenever occur variations in its subsystems. The parameters
estimates are represented in figure
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Figure 3.13: Open-loop and closed-loop response of the SIMULINK non-linear canal model, considering the
system composed of the first three gates, controlled by the adaptive controller with p = 1000, ¢ = 1
and Rg = 100. The fourth gate was kept at its equilibrium position. The controller step was switched on at
1 x 10°s. (Output and Reference signals)

E
>
0.9 0.95 1 1.05 1.1 1.15 12
Time /[s] x10°
0.4
E 03 v g
\N
> o.z“'u‘“w“'“"‘““'w'w‘w o
0.1 : : : : :
0.9 0.95 1 1.05 1.1 1.15 12
Time / [s] x10°
0.35
03t g
E
< 0.25¢ v g
3(‘)
0.2f ’
0.9 0.95 1 1.05 1.1 1.15 12
Time /[s] x10°

Figure 3.14: Open-loop and closed-loop response of the SIMULINK non-linear canal model, considering the
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Bigure 3.15: Representation of the [MIMO| parameters estimates using the adaptive controller between
9 x 10*s and 1.2 x 10°s. The control step is switched on at 1 x 10°s.
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This chapter is dedicated to the definition of a distributed control strategy based on an itera-
tive procedure that relies on the subsystems coordination, while the local controllers negotiate in order
to reach a consensus. This strategy takes into consideration the [MIMQ state-space model identified
in section[2.4, in which the inputs of neighbouring systems and the flow of the lateral off-takes are

treated as accessible disturbances.

4.1 Control Law definiton

The state model considered in this section is the model defined by (2.15), in which v(¢) and Q(t)
denote the accessible disturbances regarding the manipulated variables of neighbouring subsystems
and the flow of the lateral off-takes. In order to simplify the notation, the [SSImodel described by
can be written as

z(t+1) = Az(t) + Bo(t) + Td(t), Au(t) = Cx(t), (4.1)

with

r=[®, T, (4.2)

)

in which the entries of ®, are the vectors B;; with ¢ # j, which denote the effect of neighbouring
manipulated variables and the entries of I'; are the vectors B;; that represent the effect of the lateral

off-take flow. The disturbances are denoted by d and defined as
10 = |50 = a® 5 v @) Q) Q@] “3)

Thel[SSImodel described above represents each subsystem i, and with integral action, expression
(4.1) is written as

z(t+1) = Az(t) + Bo(t) + Td(t), Au(t) = Cz(t), (4.4)

with T = [T Q]T, and A, B, and C are defined by 1 . The controller structure is represented

in figure[4.1] in which it is possible to verify how the local control agents communicate with each other.

Y, u,

Y
\ 4

Figure 4.1: Schematic representation of the distributed controller structure.

At each time instant ¢, each controller has access to the manipulated variables of its neighbours

and to the flow of the lateral off-takes of the respective pool and of neighbouring susbsystems. This
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information exchange between local control agents is crucial to the coordination procedure. The
control strategy introduced in this section was already studied in [15] and [16]. The control law is
obtained by minimizing the quadratic cost function defined in (3.13), taking into consideration the new
model defined by (#.4). The solution for this minimization problem is obtained by applying
the discrete-time version of the Pontryagin Minimum Principle, described in the studies previously

mentioned and in appendix [B]

Taking into account the performance index defined by and the cost function (3.2), it is possible
to write the Hamiltonian function as
_ _ _ 1 _
H(t) = \T()[Az(t) + Bo(t) + Td(t)] — 3 [Z()T Qz(t) + vT (t)pv(t)], (4.5)
in which X is the co-state. According to the Pontryagin Minimum Principle, the solution of the stationary

condition with respect to v is given by

OH (1)
au(?)
Assuming that \(t) = —Pz(t) + g, with P being a n 5 x n 5 matrix and g is a vector related with the

=M t+1)B-pv(t) =0 & ovt)=p 'BYA{t+1). (4.6)

accessible disturbances, it is possible to compute, at each time instant ¢, the manipulated variables
v(t) as
v(t) = —p 'BTP[Az(t) + Bu(t) + Td(t)] + p~*B'g. 4.7)

The previous expression can be solved with respect to v(t), resulting in
v(t) = I+ p 'B*PB) 'p ' BTPAz(t) + (I + p 'BT"PB)'p~'BT[g — PTd(t)], (4.8)
and it can be simplified into
v(t) = — [K KI] .1_7(15) Jr’Uff(t), (4.9)

in which vy is the vector of feedforward control variables. The computation depends on the partial
derivative of the Lagrangian L with respect to the augmented system state & and on the co-state
and closed-loop state equations. The computation is described in detail in [16] and the resulting

expression for the feedforward control action vy is

’Uff(t) = Kffd(t) =T+ pilBTpB)ilpiléT[(b — pf]d(t), (4.10)

with
&= I+ ATP[I+Bp 'BTP|"'Bp~ BT — AT "ATP[[ + Bp~ BT P|'T, (4.11)
P=ATP[I+Bp 'BTP]7'A+Q (4.12)

The control law defined by (4.9) is represented in figure [4.2]
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r e

Integrator » K

Observer (LQE)

Figure 4.2: Schematic representation of a local controller.

4.2 Coordination procedure

After defining the control law for each local agent it is important to develop a coordination pro-
cedure that guarantees that the manipulated variables are computed taking into account information
provided by neighbouring controllers. The distributed procedure considered in this study was defined
in [3] and [22] and it is applied to serially chained systems, like the water canal. This coordination
algorithm is an iterative procedure in which the local control agents communicate with each other to
compute the corresponding manipulated variables. In order to define the algorithm, the letter 5 will
be used to define the iterations, : to identify the subsystem and ¢ is the discrete time. The procedure
begins by initializing the gate positions with the previous values, while the flow of the lateral off-takes

is read from the sensors,
di)j:()(t) = [U,L‘_l(t — 1) ’Ui(t — 1) Ui+1(t - 1) Qi—l(t) Qz(t) qu_;,_l(t)]T . (413)

During a number of predefined iterations ny, the expression is used to compute the new manip-
ulated variables v; (),

v ;(t) = — [K K| Z(t) + Kypd; j(t). (4.14)
When the n;-th iteration is performed, the optimal manipulated variables are defined as v; op.(t) =
v;.n, (£). Although the disturbance vector d is composed by accessible disturbances associated with
the gate positions v and with the flows of lateral off-takes @, the iterative procedure considers only

the gate positions, and thus it can be written as
vig(t) = [K Ki]@(t)+ [Kpro Kppoldiy(t), (4.15)

0= |3 =[50 00 vas0 @) @0 Q)" @18

This iterative procedure is represented in figure and since the local control agents find its

optimal manipulated variable with knowledge of their neighbors decisions, this procedure converges

to the Nash Equilibrium [22], a situation where no local controller benefits by changing only its manip-

ulated variable. In order for the algorithm to reach convergence, the spectral radius of K¢, needs to
satisfy the condition

maz|A(Kyy,)| <1, (4.17)

where \(K ) represents the eigenvalues of the matrix K ,, defined as

0 V1P, 10 0

Kyp = | 0D, 00 0 Uo®, 03] , (4.18)

0 \113(1311,32 0
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Computation of Manipulated Variables
(Coordination Procedure)

Step 1 Step 2 Step 3 Step N,
Agent 1 @ @
Agent}2 v, V, eee
Agent 3 \\< K<
VB v3
t Sampling Interval 1

Figure 4.3: Schematic representation of the coordination procedure.
with U; = —(p; + B?ptéb)_lngPL

4.3 Parameter Tunning

0.2

0.15

max [\(K, )
o
[

0.05

Figure 4.4: Spectral radius of Ky;, as a function of the quadratic cost weights p;. It is assumed that the
quadratic weights of the three pools have the same value

In order to verify the condition (4.17), several experiments were conducted with different values
of quadratic weights p. In order to simplify the controller design it is assumed that the quadratic
weights of the three pools, p;, have the same value. The observer parameters are also equal for the
three subsystems and these are defined as Rg; = 1 x 10° and ¢; = 1. The number of iterations n;
considered was 10 and the results are represented in figure in which it is possible to see that
the condition is valid for p between 1 and 1 x 10°. Maintaining n; = 10 and the same values for the
observer, the system response for different values of p; is represented in figures and It is
possible to see that the closed-loop response of the system is only acceptable for p; > 5 x 103, such
that for lower weights the system response was unstable, and thus the value defined was p; = 1 x 10%.
The results of an experiment conducted with all the parameters defined is represented in figures
and

37



—— R=1000
R=5000
h 7 = | ——R=10000
——— R=20000
—— R=50000
ref

y, /]

0.9

0.8
0

v, /]
o o
g%

1 1 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000 8000

0.75
_ o7k
5
o
>
A A
0.6 | v ¥
0.55 I I ! I ! ! ! |
0 1000 2000 3000 4000 5000 6000 7000 8000
Time / [s]

Figure 4.5: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed
of the first three gates, controlled by the distributed [LQG] controller for several values of p;, with ¢ = 1, ny = 10
and Rg = 1000. The fourth gate was kept at its equilibrium position. (Output and Reference signals)
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Figure 4.6: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed
of the first three gates, controlled by the distributed [LQG] controller for several values of p;, with ¢ = 1, ny = 10
and Rg = 1000. The fourth gate was kept at its equilibrium position. (Input signals and flows of lateral off-takes)

4.4 Adaptive Distributed LQG controller

The adaptive distributed control strategy based on the [D-LQGl algorithm previously defined follows
the same principles of the adaptive multi-variable algorithm in section [3.5] The strategy is therefore
based in a two-step sequence in which first the estimates the parameters using the input and
output data obtained from the plant, and after that, a model defined with those estimates is considered
in the controller step, with the [D-LQG algorithm.

During a pre-specified period of time ¢, only the identification step is working, in order to guar-
antee that the estimates are closer to convergence by the time the controller is activated. Without
guaranteeing this, it is possible to occur either stability or identification issues, and this was one of the
major difficulties while dimensioning the controller. During this period of time, the system is excited by

alPRBS|signal of amplitude 0.01m around the equilibrium points, which is maintained active during the

38



v,/ m]

I
1000 2000

I I
3000 4000 5000

I
6000 7000 80

—,
——ref,

I I
3000 4000 5000

—
——refy

00
I
6000 7000 8000

o 1000 2000
_ osf
E
= 0.7
= 0.6 —
ool | ‘ ‘
0 1000 2000

1
3000 4000
Time / [s]

5000

1
6000 7000 8000

Figure 4.7: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed of
the first three gates, controlled by the distributed LQG] controller with p; = 10000, ¢ = 1, n; = 10 and R = 1000.
The fourth gate was kept at its equilibrium position. (Output and Reference signals)

— 02 T T T
E J
E o1 —— —
e 702 | I I I I ! ! t‘
"o 1000 2000 3000 4000 5000 6000 7000 8000
= 02 T T T T T T T
E Dll: A —
. vy
0
~
s I I I I I I I
-0.1
0 1000 2000 3000 4000 5000 6000 7000 8000
— 02 T T T
E o1
e Ol: I I I
-0.1
0 0)(1073 1000 2000 3000 4000 5000 6000 7000 8000
Z 3
o)
E 2
- 1
50 | I I I I I I |
C;( 107 1000 2000 3000 4000 5000 6000 7000 8000
2 4
B
E 3
8;4 i | | I I I | | )
0)( 107 1000 2000 3000 4000 5000 6000 7000 8000
2 s
B
4 |
o2l | | | | | | | )
0 1000 2000 3000 4000 5000 6000 7000 8000
Time / [s]

Figure 4.8: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed of
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Figure 4.9: Schematic representation of the adaptive controller with integral action applied to a linear
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whole experiment to guarantee that the system is being excited, in order to prevent identification is-
sues. The period of time in which only the identification step is activated was defined as t; = 4 x 10%s.
The controller parameters were defined as p; = 5 x 104, Rg; = 1 x 103, ¢; = 1, and n; = 10. The
parameters were equal for the three subsystems and the algorithm is defined in detail bellow and it is
represented in figure

Algorithm 4.1 Adaptive D-LQG
Initialization of parameter estimates (61, 62, 63) and respective covariance matrices (Py, P, Ps).

for each time instant ¢
Computation of parameters 6;(t), using algorithm [2.1]and input and output data (Au(t), Ay(t)).
Define the augmented models of each subsystem i, using the parameter estimates O;(t)
i‘i(t + 1) = Aii'(t) + Bi’l)i(t) + fidi(t)
Ay(t) = C;zi(t)
if t > ¢; then
Regulator and Observer parameters: p;, Rg i, ¢
Number of iterations: n;
Computation of Regulator and Integrator gains [K; Kj ;|
Computation of Observer gain M;
Computation the state estimates i;
N T 1| 2a(t)
vfb,z(t) = [Kz KI,z:I |:$I,L(t):|
Initialize manipulated variables v; j—o(t) = v;(t — 1)
forj=1:n;
itag(t) = [Krpio Kpriqldij(t)
end
Computation of manipulated variables: v;(t) = vy (t) + vysin, (t)

The results obtained during an experiment with the algorithm are represented in figures[4.10}
and In figures and it is represented the open-loop and closed-loop response
of the system controlled by the adaptive [D-LQG] algorithm. It is possible to verify how the outputs of
the three pools converge to the reference signals, with the parameter estimates represented in figure
Comparing with the non-adaptive algorithm, the system response adaptive strategy appears
to be a close approximation, even with an additional small amplitude [PRBS] signal in the input of the
system. Regarding the parameters estimates, these begin with the values found in section and

when the controller step is activated they are closer to convergence.
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(c) Parameter estimates of the third subsystem.

Figure 4.12: Representation of the[MISOlparameters estimates using the adaptive[D-LQG]controller. The control

step is switched on at 4 x 10%s.
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This chapter provides the theoretical background required to develop the adaptive and non-adaptive
MPC controllers, with a brief introduction followed by the algorithms description for both SISO and
MIMO linear systems. This chapter is also dedicated to the adjustment of control parameters and

features examples obtained with both linearized and canal models.

5.1 Problem formulation of Model Predictive Control

Model Predictive Control (MPC) or Receding Horizon Control (BHC) is a feedback strategy in
which the manipulated variable is obtained using predictions of the system dynamics that take into
account its model, with the advantage of handling both input and state constraints. lts control law
consists in the optimization of a quadratic cost function that depends on the forecasts of the system

behavior during a predefined finite horizon N.

The application of several strategies to control the water delivery canal considered in this
study [6], [17], provide an interesting background and motivation to the development of adaptive
strategies. The algorithms developed take into account the linear incremental models identified
around an equilibrium point of the system, as shown in Chapter[2l The problem formulation of linear

IMPCl algorithms is described in [30] and it begins by considering a linear model such as

x(t+1) = Az(t) + Bu(t), y(t) =Cxz(t), Umin < Du(t) < Umaz, Ymin < C2(t) < Ymaz-  (5.1)

T T T T T T Lot
k-n k-n+1 k-1 k  k+1 k+2 k+T-1 k+T

TPresenr time, u(k)=?
L ] L
Data observed at time k Predictions made at time k

B Observations of y, known up to time k

O  Predictions of y from k+1 up tp k+T
----- Reference to track
— == Virtual reference

@ Past moves of the manipulated variable u

O  Virtual moves of the manipulated variable

Figure 5.1: Representation of the variables in Model Predictive Control [31].

Figure (Lemos, J. M. et al., 2014) represents the variables taken into account by the
control algorithm and the process of computing the manipulated variable based on predictions of the
system behavior. The objective is to drive the system to a goal state by controlling the input and
output variables of the system, v and y, taking into account the input and output constraints. Although

the cost function considered in the design of the [LQG] controllers is applied to an infinite horizon, in
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this alternative one considers a quadratic cost function associated to a predefined horizon N [30]
that slides alongside with the current state estimates, while taking into account the constraints. The

objective is to find a sequence of manipulated variables that minimizes the cost function

N
Iy =Y (yt+i)—r(t+)T(y(t +1i) — r(t +1) + pu(t+i— 1). (5.2)

=1
The advantages of the[RHClstrategy when compared with the infinite horizon control are described
in [32], and include the handling of constraints, the applicability to a large class of systems, and the
fact that it only depends on future values of the reference and of the system parameters in a finite

time interval.

5.2 Single gate MPC controller

In order to design a[MPClcontroller for the first pool and corresponding gate, one needs to consider
the [SISQl incremental model defined in (2.3). Since the computation of manipulated variables takes
into account an incremental model, the input and output of the system are denoted as Au and Ay,

which represent the variations around an equilibrium point.

5.2.1 SISO Predictor Model

The cost function of the algorithm requires a model for the system predictor. In order to

define the predictor one needs to write the [SS|model equations for the several ¢ time instants

x(t+1) = Az(t) + BAu(t)
x(t +2) = A%x(t) + ABAu(t) + BAu(t + 1)
z(t +3) = A3x(t) + A2BAu(t) + ABAu(t + 1) + BAu(t + 2) (5.3)
x(t+1i) = A'z(t) + Z AT BAu(k + i — j).
j=1
The predictor i steps ahead is obtained using the relationship between Ay and x described by

(2.3), which results in

Ay(t +1i) = CA'z(t) + Z CAIBAu(t +i — j), (5.4)

j=1

in which w; = CA7~! B are denoted as the Markov parameters.

In order to simplify the notation and to design the [MPC| controller, one may write the predictor
model in matrix form. Let Y be a vector with the system outputs from time instant ¢ + 1 to ¢ + 7 and

AU a vector with the manipulated variables computed from instant ¢ to ¢t + ¢ — 1, defined as

Ay(t+1) Au(t)
v — Ay(t+2) AU - Au(.t“—i— 1) (5.5)
Ay(t +1) Au(t+i—1)
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One may also define W and IT as

2
w; Wij—1 ... W1 CA’L

Since it is not possible to access the system state with the SIMULINK model, one needs to con-
sider an estimate of the state # obtained using a [LQE]introduced in section With the matrices
defined in (5.5) and (5.6), one may write an expression for the model predictor as

Y =TI2(t) + WAU. (5.7)

5.2.2 Receding horizon cost function

Taking into account the predictor model defined in (5.4), the [RHCI cost function depends on
two parameters, the finite horizon N and on the cost weight p. Both these parameters need to be
defined before the minimization of the cost function. In the case of p, the value considered took into
consideration the parameter tunning process introduced in the controller section, whereas for
the time horizon, several experiments were conducted with different values of IV, in order to determine

its influence.

One may define the error e of the system output as

_ ) —r1)?

ls

e

: (5.8)

with r denoting the reference and ¢, the simulation time, in order to analyze how the influence of N
in the controller design. The results obtained are represented in figure [5.2} in which one may see ¢
decreasing with the horizon. For N < 5 the output did not track the reference. In general, the value of
e tends to decrease with an increasing horizon, although the value increases slightly for some values
of N. For N > 5 the system is stable and since the computational load increases with the horizon

there is no need to select a higher value of N.

x10°

0 20 40 60 80 100
N

Figure 5.2: Variation of the error e with the horizon NV for the [SISOlmodel with a quadratic weight p = 1000.

With the parameters defined, one needs to take into consideration the minimization of the RHC

cost function. Since this function depends on the value of the state estimate & in the current time
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instant, which is known a priori, and on the manipulated variables, one may consider it as a function
of the sequence of manipulated variables. The solution for the minimization problem depends on

whether the constraints are considered or not.

Since in this dissertation the adaptive controllers require an identification step followed by the com-
putation of the manipulated variables, considering constraints would increase the computational load
and thus these are not taken into account. Without constraints, the problem has an algebraic solution
derived in [31], and it is also possible to determine the sequence of manipulated variables using MAT-
LAB function fminunc, that finds the minimmum of a problem defined by the user. The computation of
manipulated variables for the [SISOl model is accomplished by MATLAB function fminunc.

5.2.3 Integral action

After performing several examples, the results obtained were similar to the ones shown in [6], with
large static error between the system output and reference. The solution found to prevent this problem
was to introduce an integrator in series with the MPC controller, and thus the computed manipulated
variable is given by

2(t+1) = Au(t) + 2(t), (5.9)

and the [SISOlmodel seen by the controler is represented by

z(t+1)] (A B]| |z(t) 0 - x(t)

L<t+ 1)} = [0 1] [z(t> + {7 Ault),  yt)=[C 0] A1) (5.10)
which can be written in a more compact notation as

z(t+1) = Az(t) + BAu(t), Ay(t) = Cz(t), (5.11)

where z denotes the augmented state of the system.

From the point-of-view, the system is now described by
xz(t+1) = Az(t) + Bz(t), Ay(t) = Cx(t). (5.12)

The matrices IT and W are now computed with the augmented model matrices A, B, and C de-

fined in (5.10).

The results obtained with the linearized model after introducing integral action are shown in figure
in which the system output converges to the reference without static error. In figure [5.4]it is pos-
sible to verify the influence of the integral action with a comparison between the closed-loop system

response obtained with and without the integrator.

While implementing the algorithm with integral action into the SIMULINK canal model, the
closed-loop system response shows a static error of small amplitude (around 0.005m) when varying

with respect to the equilibrium point, as shown in figure [5.5] The first gate is excited by a sequence of
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Figure 5.3: Closed-loop response of the linearized [SISOlmodel with parameters p = 1000 and N = 25.

square waves as reference signal while the other gates remain in their equilibrium positions. Despite
the static error, the system output tracks the reference signal and, by looking to the results obtained
with the linearized [SISQ| model, the advantages of introducing integral action are noticeable.

The static error present in the closed-loop response of the SIMULINK canal model persisted in
all the experiments conducted with the MPC|algorithms (both adaptive and non-adaptive strategies),
and a possible explanation to this error is still to be found.

0.1

E ( VY, (w/ integrator)
- —,
- 0.05 —
£
By

off ]

0 500 1000 1500 2000 2500 3000
Time / [s]

Figure 5.4: Comparison between the closed-loop response of the linearized SISO model with parameters p =
1000 and N = 25 with and without integral action.

5.3 Adaptive single gate MPC controller

In the previous section it was assumed that the system model was known a priori, after conducting
several experiments to identify its parameters as shown in chapter 2] In order to develop an adaptive
control strategy for the controller a similar approach to the one used in section [3.3| is
required. The algorithm is now divided into two steps:

o Identification: Estimation of [SISOl model parameters using the algorithm with variable
exponential forgetting.

e Control: Execution of the [MPC| control strategy defined in section [5.2] with the resulting [SISO
model from the previous setp.
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Figure 5.5: Closed-loop response of the SISO model simulated with the SIMULINK canal model (first gate) with
parameters p = 1000 and N = 25. The remaining gates were kept on their equilibrium positions.

In order to provide better estimates of the system parameters before connecting the controller,
during an initial pre-specified period of time only the identification step is working. At each time in-
stant ¢, the [RLS] algorithm provides estimates of the system parameters using the current input and
output data, Au and Ay retrieved from the SIMULINK canal model. After the initial period of time in
which only this step is activated, in order to ensure that the estimates are converging, the controller
step begins by defining an augmented model with the matrices defined in using the estimates

obtained in the previous step.

The augmented model is then used to compute the predictor matrices IT and W defined in (5.6).
The predictor (5.7) is then used to minimize the RHC| cost function using fminunc. This sequence of
steps is represented in figure[5.6]

The results obtained with the Adaptive [MPClalgorithm are shown in figures[5.7] [5.8]and[5.9] Figure
shows both the open-loop and closed-loop system response from ¢t = 6 x 10*sto ¢t = 8 x 10%s,
in which at t; = 7 x 10*s the controller is switched on. During the period of time in which only the
identification step is working, the system is excited by a pre-defined input signal in order to estimate
its parameters. When the controller is connected, a[PRBS|signal of small amplitude, 0.001m, is added
to the computed manipulated variable to provide a more exciting input signal. As it is possible to verify,
even with the introduction of integral action, the output tracks the reference with static error.

In figure [5.8| the parameters estimates obtained during the experiment are represented and it is
possible to verify that when the controller is switched on, the estimates are converging, even though
parameters, a4 and by, appear to require more time and excitation to converge. Figure shows
how the controller reacts to existing disturbances, which in this case are caused by the opening of

the lateral offtake valve at t = 7.2 x 10*s. The problem with the integral action is also reflected in this
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For each time instant t:

u|(t) User-generated input signal

Definition of the System Model
with parameters P(t)

TI Initial period of time for the Identification step
uc{t) Manipulated variable computed with MPC
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Figure 5.6: Schematic representation of the Adaptive [MPClalgorithm applied to both[SISOland centralized [MIMO
models.
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Figure 5.7: Open-loop and closed-loop response of the [SISOl model simulated with the SIMULINK canal model
(first gate) with parameters p = 1000 and N = 25. In this adaptation strategy, during the first 7 x 10*s only the
identification step is working and then the [MPClcontroller is switched on. The remaining gates were kept on their
equilibrium positions.
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Figure 5.8: Representation of the SISO parameters estimates using the Adaptive [MPC|controller.
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Figure 5.9: Open-loop and closed-loop response of the SISO model simulated with the SIMULINK canal model
(first gate) with parameters p = 1000 and N = 25. In this adaptation strategy, during the first 7 x 10*s only the
identification step is working and then the MPC controller is switched on. The lateral offtake valve is open at
7.2 x 10*s with a constant flow of 0.001m®/s. The remaining gates were kept on their equilibrium positions.

example, since even though the controller reacts to the valve opening, the water level in the first pool

tends to decrease.

5.4 Multiple gate MPC controller

The previous sections were dedicated to the theoretical background and definition of a[MPC| con-
troller applied only to the first gate of the water canal while the remaining gates were kept at their
equilibrium positions. It is possible, using a similar formulation, to design a centralized [MPClalgorithm
to be implemented into the first three gates, using the [MIMOl model defined in (2.8).

The introduction of integral action with the centralized requires an augmented system
state defined as

Z(t) = [z1(t) z211(t) 212(t) @a2(t) 2za(t) z22(t) 223(t) ws3(t) zs2(t) 233(15)]T» (5.13)

in which z;; with ¢ = j are the manipulated variables defined in (5.9) and z;; with i # j are copies
of the manipulated variables of subsystem j associated with the i-th subsystem. The augmented

matrices are written as

0 I I

Ai{Ai Bl], Bim, Ci=1[c 0, (5.14)

with B; defined as a matrix with the input matrices B;; of the corresponding subsystem ¢ as entries.
The augmented state matrices are then used to compute the predictor model followed by the cost

function minimization using fminunc, as described in section (5.2

The cost-function is now multi-variable and it is necessary to define values for the quadratic

weights related with each subsystem p; and for the time horizon N. For the quadratic cost weights
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Figure 5.10: Variation of the total output error e; with different combinations of quadratic cost weights p;. In this
experiment the value of ps was fixed in 400 and N = 20.

several experiments were conducted with different combinations of values of p; from 100 to 800. In
figure it is represented the variation of the total output error for different combinations of p; and
p2, keeping fixed the value of p3. The combination of quadratic cost weights that results in a smaller
output error is p; = 200, po = 600 and p3 = 400. A curious fact regarding the results obtained is
that the total output error e; appears to not be influenced by the first quadratic cost weight p;. The
influence of the horizon is studied in this case, in terms of the total error variable e;, which is computed

as
S n®)? | etete
ts ’ 3 ’

in which e; is the output error of the i-th subsystem and ¢, is the simulation time. Several experiments

(5.15)

€

were therefore conducted with different values of N in order to determine how it influences the system
output error. The results obtained are represented in figure 5.11]in which the output errors of the three
subsystems and of the total system are represented for several values of NV, between 10 and 100. For
N < 10, the higher-amplitude oscillations in the output signal during the transitory regime increase
the value of the output error and thus these values were not represented. Due to the computational
load of the centralized[MPClalgorithm, it is not necessarily better to select the value of IV for which the
output error is minimum. Since for N between 30 and 40 the total output error appears to be closer
to its minimum value, the selected value for the horizon N is 35.

With values defined for N and for the weights p; two experiments were conducted, the first to
test the reference tracking and the second one to test the rejection of disturbances. In figures|5.12
and it is shown how the output converges to the reference, in the linearized model, and the
corresponding input signals. The interaction between subsystems in the centralized model is seen
when the water level in each pool varies, which results in variations in the water level of neighbouring
subsystems. When this occurs, the controller acts upon the disturbance in order to drive the output
towards the reference. In figures[5.14and[5.15]the experiment was conducted in the SIMULINK canal

model. In both cases it is possible to see that the outputs of the three subsystems converge to the
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Figure 5.11: Variation of the error e; of the i-th subsystem with the horizon N for the MIMO model with quadratic
weights p1 = 200, pa = 100, p2 = 200.

respective reference and how these systems interact when the input/output of one varies. In the case
of the SIMULINK canal model there is again some static error when the output varies alongside its
equilibrium point. The error between the output and reference signals seems to vary accordingly with
the current water levels of the subsystems, which may indicate that it is influenced by the interaction

between control agents.
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Figure 5.12: Closed-loop response of the linearized MIMO model with parameters p; = 200, p2 = 600, p3 = 400
and N = 35. (Output and Reference signals)

The experiment conducted begins with all three gates in their equilibrium position followed by the
opening of the first gate in order to track the reference. It is possible to see how the second system
reacts to this variation (¢ = 500s), in which the manipulated variable is computed in order to compen-
sate the disturbance related with the interaction between subsystems. At the same time instant, the

third gate is mostly affected by the disturbance in the second pool.
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Figure 5.13: Closed-loop response of the linearized MIMO model with parameters pi1 = 200, p2 = 600, ps = 400
and N = 35. (Input signal)
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Figure 5.14: Closed-loop response of the MIMO model in an experiment conducted in the SIMULINK canal
model with parameters p; = 200, p2 = 600, p3s = 400 and N = 35 (Output and Reference signals)

Compared with the algorithm presented in section the computational load and time increases
when applying this algorithm, mostly due to the larger dimension of the system. The minimization of
the quadratic cost function is affected by the size of N, since this parameter influences the matrices

used in the calculations. In terms of computational load, an analytical solution could improve the
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Figure 5.15: Closed-loop response of the MIMO model in an experiment conducted in the SIMULINK canal
model with parameters p; = 200, p2 = 600, p3 = 400 and N = 35 (Input signals)

performance of the algorithm, since it is no longer required to use MATLAB function fminunc.

5.5 Adaptive multiple gate MPC controller

An adaptive version of the centralized multi-variable algorithm is introduced in this section,
with a similar structure as the one represented in figure Regarding the algorithm introduced in
the previous section, nothing changes in the control step, or to be more precise in the computation of
the manipulated variables Au;, which are still obtained with MATLAB function fminunc. The identifi-
cation step takes into account the parameters estimates of the three subsystems individually. During
the execution of the algorithm, at each time instant ¢ there are three executions of the [RLS] algorithm
associated with the three subsystems that take into account the input and output data required to

estimate the parameters. This way it is possible to define the system matrices as in (3.14).

Although this strategy has the advantage of being adaptable to the dynamic behavior of the sys-
tem, the computational load increases with the introduction of the identification step. In the previous
section it was already verified this issue with the usage of fminunc and thus it is still necessary to
have this in mind to chose an appropriate value for N, which remains the same. During an initial
period of time, t; = 1 x 10°s, only the identification step is working and thus the system is operating
in open-loop with an input excitation defined by the user. After this period of time, with the parameter
estimates obtained with the system open-loop response, the control step is switched on. This strategy

guarantees that the parameters estimates are converging or at least close to convergence to prevent
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issues such as instability.

The results obtained in the experiment are represented in figures and In order to
handle with high-frequency oscillations, visible in experiments conducted with the previously defined
quadratic cost weights, these values were increased in order to reduce the effect of the oscillations
in the system response. The combination of quadratic weights considered in this example is p; =
2000, p2 = 2000, and p3 = 1000. Another possible solution for this issue is the inclusion of a low-pass
filter. After t; = 1 x 10°s, when the controller step is activated it is possible to see that the output tracks
the reference with static error and that the water levels of each pool are disturbed by the interactions
between subsystems. For instance in t = 1.13 x 10°s the output signal of the second subsystem
increases, following its reference and this produces a disturbance in the output signal of the first pool
that ends up increasing. As for the third subsystem, the variations in the second pool appear to not
introduce a relevant disturbance in the output.

The parameters estimates identified with the RLS algorithm are represented in figure[5.18] During
the experiment, while the input is being excited by a user predefined signal, the parameter estimates
converge, and by the time the control step is activated these are close to convergence. The period of
time in which only the identification step is working was increased, in comparison with the algorithm
of section since some of the parameters required more time to converge. In figure the
parameter estimates are represented during the time period that the control step is activated and it is

possible to see the estimates varying in instants that correspond to the input excitations.
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Figure 5.16: Open-loop and closed-loop response of the MIMO model in an experiment conducted in the
SIMULINK canal model with Adaptive MPC algorithm with parameters p; = 2000, po = 2000, ps = 1000 and
N = 35. Int = 10°s the controller is switched on. (Output and Reference signals)
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Figure 5.17: Open-loop and closed-loop response of the MIMO model in an experiment conducted in the
SIMULINK canal model with Adaptive MPC algorithm with parameters p; = 2000, po = 2000, p3 = 1000 and
N = 35. Int = 10%s the controller is switched on. (Input signals)
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Figure 5.18: Representation of the MIMO parameters estimates using the Adaptive MPC controller during the
time period the control step is switched on.
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This chapter is dedicated to the definition of two Distributed Model Predictive Control strategies,
with the objective of reaching a consensus between local controllers, by minimizing a global cost
function that is the sum of local cost functions, in order to improve the performance and efficiency
of the system. The first technique is based in an efficient distributed algorithm that requires less
communications to achieve a desired goal [6], [33], and the second one is a coordination algorithm

based on Game Theory concepts, similar to the one introduced in [17].

6.1 D-MPC based on the Distributed Alternating Direction Method
of Multipliers

The first strategy to be introduced in this dissertation was already described in [6] for
input-output models. It is based on a distributed optimization algorithm named Distributed Alternating
Direction Method of Multipliers (D-ADMM) that solves problems in networks of interconnected nodes,
that represent the subsystems and that have a local cost function J; associated with them [33]. Taking
into consideration the predictor model defined in the local cost functions J; at time instant ¢ are

defined as
Ji(t) = |12 (t) + W1, AU -1 + W, ;AU + +Wipq1 ;AU 1 — Ryl + pi * || AU, (6.1)

in which R; is the reference vector. The global cost function J is therefore the sum of all local cost
functions J;. It is assumed that the local cost functions are only accessible by the respective node
and that communication is only allowed between neighbouring nodes. In order to minimize the global
cost function each node needs to communicate with its neighbours with the purpose of reaching a

consensus.

The network structure considered in the problem formulation of D-ADMM is represented in figure
in which a series of interconnected subsystems (nodes) ¥; is associated to a local controller C;
with a local cost function that depends on the manipulated variable of the corresponding node and
on copies of the manipulated variables of its neighbours J;(AU;_1, AU;, AU,+1). Considering the

multi-variable model defined by (2.8), it is possible to define the models of a subsystem i with integral

effect as
zi(t+1) xi(t) 0 0 0
alt+1) | T {0 I | ww | fo| @ g v@F fo| v, (6:2)
Zi+1(t + 1) Zi+1(t) 0 0 1
w(t)
1 (t) v(t)
A t) = C O % 1( 5 Bi: B71_ B71 Bl7 5 Aut = s 63
v =199 Brams B Bl el =y €9
ziy1(t)
which can be written in a more compact form as
i‘i(t + 1) = Ai‘i(t) + Bi,i—lvi—l(t) + Bi7ivi(t) + Bi7i+1vi+1 (t), Ay(t) = éf(t) (64)
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In the case of the first and third pool, since they limit the network and only have one neighbour,
the augmented model structure changes slightly, since there are only two manipulated variables =

considered. With the augmented state matrices it is possible to define the model predictor as

T
Y, =1I, Zz(lt()t) + W, 1 AU 1+ W, , AU, + W, ;11 AU 141, (6.5)
| zi+1(t)
with o _
CiB; 0 0 C;A;
W, - C;A;B; ; CiB; ; 0 M- o, A2 (6.6)
CAB., CAIB,, .. CiBi, Al
The model "seen” by the LQE| associated with subsystem i is given by
xzi(t+1) = Ajzi(t) + Bii—12i-1(t) + By izi(t) + Biit12i41(8), Ay(t) = Cz(t), (6.7)

and the corresponding state estimate can be computed as
2i(t) = A@i(t) + Biic1zio1(t — 1) + Bizi(t — 1) + Biig12ipa(t — 1) — M;Cy2i(t) + M; Ay(t). (6.8)
The local cost functions associated with each subsystem i are defined as
Ji = (Yi = R)"(Yi — Ry) + p, AUT AU, (6.9)

in which Y can be written in a more compact notation as

z;

21 (1) . N R
Y, =11, Zfét) + W,AU;, W, =[W,,0 Wi W], AU, = | AU; (6.10)
= AU ;41
zit1(t)

In order to use the [D-ADMM | algorithm the following conditions are required:

e Each cost function J; : R — R™ is convex function over R and each set of constraints is closed

and convex;
e The problem is solvable;
e The network is connected and it does not vary with time.

Proof that these conditions [33] are valid in this system and problem are given in [6, Appendix D].
Since it is possible to use [D-ADMM] to solve the problem considered in this study, the next thing to
do is to define the algorithm. In [33] the [D-ADMM] algorithm defined, associates dual variables to the
nodes and in [34] it is shown an application of the algorithm to [D-MPCl

The implementation of the [D-ADMMI| considered in this dissertation is the one introduced in [6],

where the dual variables are associated to the edges. This requires the definition of two dual variables
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(v1 and ~2) and of a cost weight p 4 related with the cooperation part of the algorithm.

With this being said, the D-ADMMI cost functions associated with each subsystem are
Jia = J1 — AU + %“(A’U1 — AUL)T (AU, — AU,), (6.11)
Jaa = Jo— (1 —72) AU + pal(AU 2 — AUL)T (AU, — AUL) + (AU, — AU3)T (AU, — AU3)], (6.12)
Jsa = Js + AU + B (AU — AUL)T(AUs — AU,). (6.13)

The next step is to replace each J; by the local cost functions defined in and to write ex-
pressions (6.11), (6.12) and (6.13) in order to the corresponding manipulated variables. The resulting

expressions are given by

Jia =AU, (WIW, +py + %‘“I)A_Ul + AU @WT(ILZ) — Ry) — 71 — padUs) + Y1, (6.14)

Jaa = AUS (WIWy + py+ 2p41) AU + AU S (2WT (T1yZ5 — Ry) — (71 — 72) — pa(AU1 + AU3) + Yo,

(6.15)
J3,4 = AU?(W3TW3 +p3 + %I)AU:’, + Ang(QWg(H:afzs — R3) 42 — paAUs) + Y3, (6.16)
where
I 00 000 000
pr=p1 |0 0 0|, p2=p2|0 I 0|, ps=p3|0 0 0O}, (6.17)
000 000 00 I

and T; represents the terms that do not depend on the respective manipulated variable. While in
chapter [5] the minimization of the [RHCI quadratic cost function was computed using fminunc, in this
chapter the computation of the manipulated variables is accomplished with an analytical approach.
This strategy was also selected in [6] as a workaround to the large computational load and times

verified with MATLAB optimization functions.

The analytical minimization of cost functions J; 4 is accomplished by computing the derivative in
AJ;i, A
AU,
computing the derivatives, expressions (6.14), (6.15), and (6.16) can be written in a more compact

order to the respective manipulated variable and finding the value for which

is equal to 0. Before

way as
Jia = AU U, AU, + AU, ®; + Y. (6.18)
The derivative of the [D-ADMM] cost function .J; 4 (6.18) in order to AU is given by

0Ji.4

A oAU, 4 B, 6.19
AU, + (6.19)

The values of the manipulated variables AU, that minimize the cost functions are given by ex-

pression
0Jia
0AU,;

AU} = —%xp;l@i. (6.20)
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Like in chapter 5] no constraints were considered in the optimization problem. In this case, the in-
troduction of constraints would made impossible to use the analytical solution. A possible workaround,
although not optimal, is introduced in [6] where the values of the manipulated variables and system
output are bounded. The [D-MPC]| strategy based on[D-ADMM]is introduced in algorithm

Algorithm 6.1 D-MPC based on D-ADMM with edge-associated dual variables

Initialization of manipulated and dual variables: y; = 0;v, = 0; AU, = 0; AU, = 0; AU3 = 0.
repeat

b, = QW,{(Hlfl — Rl) -y — pAAUQ

Uy =WIW, +py + 227

AUy = —107'®,

3 = 2W1 (II375 — R3) + 72 — paAU>

U3 =WiW;s+ g3+ 541

AUz = 10310,

Dy = 2W; (IaZ2 — Ra) — (11 — 72) — pa(AU: + AU3)

Uy = WIW, + po + 2pal

AUy = —305 '@,

Y1="7— PA(A_Ul - A_UZ)

Y2 = Y2 — pa(AU, — AU3)

until pre-defined maximum number of iterations n; reached or stopping criteria is met

6.1.1 Parameter tuning

After introducing algorithm there are two parameters that need to be pre-defined before con-
ducting experiments, a cost weight related with the D=ADMM]algorithm, p 4, and the maximum number
of iterations n;. In order to select values for these parameters several experiments were conducted
with different combinations of values and the results are shown in figure It is possible to verify
that initially, with less iterations and with a lower weight p 4, the output error is higher. The value tends
to decrease with more iterations, and with a higher value for p4. From figure the combination
of values defined to be used in the experiments is p4, = 80 and n; = 20, since the associated out-
put error is close to the minimum and a smaller maximum number of iterations is better in terms of

computational time.

6.1.2 Simulation results

The algorithm based on [D-ADMM) was used in several experiments with both linearized
and SIMULINK non-linear canal models, whose results are shown in figures[6.2] and In
the case of the experiments conducted with the linearized [MIMOl model, the system outputs converge
towards the reference signals with an integrator being included in series with the [MPC| controller. The
effects of the interactions between subsystems are visible whenever occur variations in the water
levels. As for the performance, the computational load and time is lower when compared to the
solution used in the centralized controller, with less communication steps required to compute
the manipulated variables and the usage of an analytical solution. The results obtained with the
SIMULINK non-linear canal model, in figures and show how the outputs converge to the
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Figure 6.1: Variation of the total output error e, with different combinations of cost weight p4 and the maximum
number of iterations n;. The value of the quadratic cost weights were p; = 200, p» = 600, p3s = 400 and N = 35.

reference, with an existing error that appears to be related with the current water levels of each
subsystem.
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Figure 6.2: Closed-loop response of the linearized MIMO model with parameters p; = 200, p2 = 600, ps = 400
and N = 35. The maximum number of iterations n; is 20 and p4 = 80. (Output and Reference signals)

6.2 Adaptive D-MPC based on the Distributed Alternating Direc-
tion Method of Multipliers

Following the implementation of the [D-MPCl algorithm based on[D-ADMM ]in the previous section,
an identification step was added to the controller in order to define a new adaptive control strategy.

Like in the previous adaptive control algorithms, the introduction of an identification step using the RLS]
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Figure 6.3: Closed-loop response of the linearized MIMO model with parameters p1 = 200, p2 = 600, ps = 400
and N = 35. The maximum number of iterations nr is 20 and pa4 = 80. (Input signal)
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Figure 6.4: Closed-loop response of the system, in an experiment conducted in the SIMULINK canal model,
with parameters p1 = 200, p2 = 600, ps = 400 and N = 35. The maximum number of iterations n; is 20 and
pa = 80. (Output and Reference signals)

algorithm has the objective of improving the general performance of the controller, by being adaptable
to changes in the dynamics of the system. During an initial period of time ¢ < ¢, only the identification
step is working with the RLS algorithm providing estimates of the parameters using input and output
data obtained from the system open-loop response. During this period of time, the input of the system
is excited by a signal defined by the user with the objective of having the parameter estimates closer

to convergence by the time the controller is switched on. This strategy is implemented in order to
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Figure 6.5: Closed-loop response of the system, in an experiment conducted in the SIMULINK canal model,
with parameters p1 = 200, p2 = 600, ps = 400 and N = 35. The maximum number of iterations n; is 20 and
pa = 80. (Input signal)

prevent stability issues and to allow the controller to act upon a model obtained with better parameter

estimates.

After the period of time denoted by ¢; the [D-MPCl algorithm introduced in section [6.1]is switched
on and thus the control strategy becomes a sequence of two main steps: an identification step and a
control step. At each time instant ¢, after estimating the values of the parameters, a system model is
defined followed the computation of the manipulated variables using algorithm As in the previous
adaptation strategies a[PRBS] signal of small amplitude (around 0.001m) is added to the control vari-
able to provide enough excitation to the identification procedure. The parameters considered for the

controller are the ones defined in section

6.2.1 Simulation results

Several experiments were conducted using this adaptive control algorithm in the SIMULINK model
of the water canal. In this[D-MPCJ approach, in order to guarantee that the parameters estimates are
closer to convergence to prevent stability issues, the value defined for the time instant in which the
controller is switched on is t; = 2 x 10%s. The values of the quadratic cost weights p; were the ones
considered in the adaptive centralized controller. In figures and it is represented the system
closed-loop response with the adaptive distributed controller. The higher value for the quadratic cost

weights was again the considered solution to handle with existing high-frequency oscillations, and
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Algorithm 6.2 Adaptive D-MPC based on D-ADMM with edge-associated dual variables

Initialization of manipulated and dual variables: vy, = 0;2 = 0; AU, = 0; AU, = 0; AU3 = 0.
Initialization of parameter estimates (61, 62, 03) and respective covariance matrices (Py, P, Ps).

for each time instant ¢
Computation of parameters 6;(t), using algorithm [2.1]and input and output data (Au(t), Ay(t)).
Define the augmented models of each subsystem i, using the parameter estimates O;(t)
ji(t) = Ai‘l(t — 1) + Bm-_lAui_l(t - 1) + Bi7iAui(t - 1) + Bi,i+1Aui+1(t - 1)
Ay(t) = Cz(t)
if t > ¢; then
State estimation:
i’l(t) = Aliil (t) -+ Bm_lzi_l (t - ].) + B'L,’LZZ (t - 1) + Bi,i+lzi+l (t - 1) - MlC’Zil (t) + MZAy(t)
Predictor model:
Computation of IT; and W;
Y, =ILzT + W1A7U2
Minimization of D-ADMM] cost functions:
repeat
U, = Wiw, +p1+ B -
(Dl = QW{(Hlﬂ_ﬁl — Rl) - Y1 — pAAUQ
AUy = —307'®y
\I/3=W3TW3+E3+%“I B
O3 = 2W1 (II375 — R3) + 72 — paAU»
AUz = —205 '@
Uy = WIW, + po + 2pal - -
Py = 2W7 (IIxZ2 — Ro) — (11 — 72) — pa(AU + AU3)
AUy = 1wy 18,
71 =7 — pa(AUL — AU»)
Yo = Y2 — pa(AUs — AU3)
until pre-defined maximum number of iterations n; reached or stopping criteria is met
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despite the existing output error, mostly visible in the second pool response, the water levels con-

verged to the reference signals. The implementation of an optimal analytical solution reduced the

computational load and time with the downside of not allowing constraints to be considered. By the

time instant the controller step is switched on, the parameter estimates are close to convergence, as

shown in figure[6.8and it is also possible to see how these estimates vary whenever occur variations

in the system response.
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Figure 6.6: Open-loop and closed-loop response of the system with the adaptive [D-MPClbased on[D-ADMM,| in
an experiment conducted in the SIMULINK canal model, with parameters p; = 2000, p2 = 1000, ps = 2000 and
N = 35. The maximum number of iterations n; is 20 and p4 = 80. The controller step is switched on in time

instant ¢t = 2 x 10%s. (Output and Reference signals)
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Figure 6.7: Open-loop and closed-loop response of the system with the adaptive D-MPClbased on [D-ADMM, in
an experiment conducted in the SIMULINK canal model, with parameters p; = 2000, p2 = 1000, p3 = 2000 and
N = 35. The maximum number of iterations n; is 20 and pa = 80. The controller step is switched on in time
instant t = 2 x 10%s. (Input signal)

In order to verify how the controller rejected disturbances, a different experiment was conducted
with the opening of the lateral off-take valves as represented in figure Figures and
represent the closed-loop response of the system, in which it is possible to see that in the presence
of disturbances, the computed manipulated variables compensate the flow drawn by the lateral off-
takes, in order to ensure the tracking of reference signals. This experiment shows that the adaptive

distributed controller is also able to reject disturbances.
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Figure 6.8: Representation of the MIMO parameters estimates using the Adaptive controller based on
%WM]between 1.8 x 10°s and 2.2 x 10°s. The control step is switched on at 2 x 10°s.
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Figure 6.10: Representation of the manipulated variables u; and flow drawn by the lateral off-takes @Q;, with the
adaptive D-MPC based on D-ADMM, in an experiment conducted in the SIMULINK canal model, with parameters
p1 = 2000, p2 = 1000, ps = 2000 and N = 35. The maximum number of iterations n; is 20 and p4 = 80. The
controller step is switched on in time instant t = 2 x 10°s.
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6.3 D-MPC with neighbouring agent coordination

In this approach, the algorithm to be introduced is based on Game Theory concepts, in
the sense that each controller must optimize its control variable, taking into account the knowledge
of the manipulated variables computed by its neighbours. Since each controller has access to the
control inputs of neighbouring subsystems, which are seen as accessible disturbances, the objective
of this control strategy is to guarantee an optimal approximation to the minimum of the global cost
function. If each controller computes its manipulated variable with knowledge of the control inputs
of the neighbouring subsystems, the goal is to reach a situation in which no controller benefits from
changing the manipulated variable, the Nash equilibrium [22]. This coordination process, similar to
control strategies introduced in [17] and [25], is defined in this study as a simpler alternative, in terms
of computational load, to the [D-MPCJalgorithm based on[D-ADMNL

The model of each subsystem i, with integral effect, is now written as

xi(t+1) x;(t) 0 0 0
At D) A oo B Tl 1O AL 410 oy | w0, 621
dip1(t+1) dia(t)| |0 0 1
x;(t)
ay(t) = ¢ q] Zgg{g ;A = — \/2;(2*%) (6.22)
1+1

in which d; is the manipulated variable of the i-th subsystem, seen as an accessible disturbance,
given by
di(t) = d;i(t — 1) + v (). (6.23)

Expression (6.21) can be written in a more compact notation as

Zi(t+1) = Az;(t) + Tiim1vic1 (t) + Bivg () 4+ Tiipavia (t),  Ay(t) = Cz(t). (6.24)

This system may also contemplate the disturbances from the lateral off-take valves, using the
model considered in section

6.3.1 Predictor model

The local cost function associated with the i-th subsystem is given by and the predictor model
by (6.10), where the matrices W and II are defined as

76_'1711;1 B 07 O 70173171 B 07 0
W= | O Ol 0y o G B OB B
C,ATL, CACL, .. Gl C, A B, CA B, .. CiB,
o (6.25)
Ci 1
m— |G (6.26)
oy
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6.3.2 Minimization of cost functions

The objective of this control strategy is to minimize a global cost function that is the sum of all local

cost functions of each subsystem i,
J(AU1, AU, AU3) = J1 (AU, AU ) 4+ Jo(AU1, AUo, AU3) + J3(AU4, AU3). (6.27)

This optimization problem is accomplished with a cooperation strategy in which each controller as-
sociated with a subsystem computes the control variable that minimizes its cost function with knowl-

edge of its neighbours decisions. With this being said, the local cost functions are given by
Ji = (Yi — R)T(Yi — R;) + p; AUT AU, (6.28)

Y, =1Lz, + Wiyi,1AU1;1 + WlZAUl + Wi1i+1AUi+1 (629)

The minimum of each local cost function is solved by computing its derivative in order to the

0J;
DAU;

corresponding manipulated variable and finding the solution of = 0. This computations result in
J; = AU?(QWZTl(H.’fz + Wi7i,1AUi,1 + Wi7i+1AUi+1)) + AU?(WZzWZl + pil) + Y, (6.30)

where T, denotes the terms that do not depend on the vector of manipulated variables AU;. The

derivative of the cost function is given by

ai% =2AU;(W{ Wi, + pI) + 2W/,(T1z; + W, ; 1 AU; 1 + W, ;11 AU 41). (6.31)
. aJl _ . .
The solution of aat; =0is therefore given by
s 1
AU, = —§(WZ Wi+ p ) QW] (MZ + Wi 1 AU 1 + Wi i1 AU 11)) (6.32)

. This results in the iterative procedure introduced in algorithm 6.3

Algorithm 6.3 D-MPC with neighbouring agent coordination

Initialization of manipulated variables: AU, = 0; AU2 = 0; AUz = 0.
AU = [AU, AU, AUs)"

R; = pil

M; = WZZWM + R;

My 0 O
M=1]10 M 0

0 0 M
0 2WT Wi, 0
= |2W], Wy, 0 2W71, Wy 3
0 QW1 W, 0

¢1 = 2W£1H1f1
’lﬂg = 2W§2H2f2
wg = 2W§3H3f3
U=[¢1 v 93
repeat

AU = —1M~'0 — 1M~ '®AU
until pre-deﬁned maximum number of iterations n; reached or stopping criteria is met

]T
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6.3.3 Parameter tuning

The iterative procedure described in algorithm [6.3]

1

AU = %M*qu — —M'®AU, (6.33)

will converge if the spectral radius
Anaz = max \(M ' ®) (6.34)

verifies [Amaz| < 1 [17]. In order to study how the quadratic cost weights p; influence the spectral
radius A\, Several experiments were conducted with different combinations of weights. Although in
[17] the proposed configuration of the controller assumed that the weights were equal, in this study
the assumption is not considered. Therefore, by fixing p; = 200, the value considered in the previous

sections, the spectral radius representation with respect to combinations of weights ps and p3 is shown

in figure

1000 1000

P
P, 2

Figure 6.11: Spectral radius \.q5-

As it is possible to verify, the spectral radius \,,., tends to decrease when the cost weights p;
increase, which influences the rate of convergence of the iterative procedure, such that a lower value
of \.qz results in a fast convergence of the algorithm. The selected values of the quadratic cost
weights are p; = 200, po = 800 and p3 = 100. Another parameter that needs to be defined is the
maximum number of iterations ny, and thus several experiments were conducted with different values
of ny in order to determine the associated total output error e;. The results are shown in figure
and it is possible to see that the output error tends to decrease with an increasing number of iterations.
Since the total output error is smaller for n; > 10, the value considered for the number of maximum

iterations is the same as in section[6.7], n; = 20.
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Figure 6.12: Variation of the total output error e; with the maximum number of iterations n;.

6.3.4 Simulation results

After defining the parameters required by the controller, two experiments were conducted in both
linearized and non-linear SIMULINK canal models, with the purpose of verifying the system response.
The experiments are similar to the ones described in section and the results are represented in
figures [6.13] [6.74} [6.15 and [6.16] As it is possible to verify, the output converges to the reference
signal, although in the experiment conducted in the linearized model, the system response appears

to be faster and more oscillating than with algorithm The results of the experiment conducted
in the SIMULINK non-linear canal model in figures and are similar to the results obtained
with the multi-variable [MPC| algorithms introduced so far, with the output tracking the reference with
the same issue regarding the output error, even with integral action, and a similar system response.
In terms of performance, the algorithm based on Game Theory concepts, at least with an
equal number of maximum iterations, appears to have a similar computational time and load when
compared with the [D-ADMM approach. In comparison with the centralized [MPClalgorithms, there are
practically no differences regarding the system response obtained with both [D-MPCl strategies.

6.4 Adaptive D-MPC with neighbouring agent coordination

Following the design of a[D-MPClalgorithm based on Game Theory concepts, comes the definition
of a corresponding adaptive control strategy, similar to the one defined in section The controller
is composed by an identification step and a control step, that is only activated after a predefined time
instant ¢;. Before t; only the identification step is activated, using the input and output data from
the system to estimate its parameters, using algorithm The time instant selected for the
control step activation is the same as the one considered in section since it was verified that at
t; = 2 x 10°s the parameter estimates are closer to convergence. Regarding section the only
relevant change is the control algorithm considered, by using the iterative procedure introduced in
the previous section. The addition of a [PRBS] signal with 0.001m of amplitude in the system input

was again considered, in order to provide enough excitation to the [RLS algorithm, by avoiding issues
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Figure 6.13: Closed-loop response of the linearized MIMO model with parameters p1 = 200, p2 = 800, ps = 100
and N = 35. The maximum number of iterations n; is 20. (Output and Reference signals)
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Figure 6.14: Closed-loop response of the linearized MIMO model with parameters p1 = 200, p2 = 800, p3 = 100
and N = 35. The maximum number of iterations n; is 20. (Input signals)

such as the covariance blow-up. Regarding the parameters of the controller, the number of iterations
and the finite-time horizon remain the same, whereas the quadratic weight costs considered were
the ones used in section[6.2] (p; = 2000, po = 1000, p3 = 2000) since this combination worked in the
adaptive multi-variable algorithms.

6.4.1 Simulation results

Two experiments were conducted in the SIMULINK non-linear canal model, considering two dif-

ferent situations with respect to existing external disturbances caused by the opening of the lateral
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Figure 6.15: Closed-loop response of the SIMULINK non-linear canal model with parameters p1 = 200, p2 =
800, ps = 100 and N = 35. The maximum number of iterations n; is 20. (Output and Reference signals)
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Figure 6.16: Closed-loop response of the SIMULINK non-linear canal model with parameters p; = 200, p2 =
800, p3 = 100 and N = 35. The maximum number of iterations n; is 20. (Input signals)

off-take valves. The results of the first experiment are represented in figures and Despite
the output error and the oscillatory behavior, the results are practically similar to the ones obtained
with the adaptive [D-MPCl algorithm based on[D-ADMM, with a higher output error in the second pool,
that appears to be related with the interactions between subsystems. As for the first and third pools,
the outputs converge to the reference and appear to be less sensitive to variations in neighbouring
subsystems. Regarding the parameter estimates, by the time the controller step is switched on, these
are close to convergence, and in figure is possible to see how the estimates change with the

input excitation.

Another experiment was conducted, with existing disturbances caused by the opening of the lateral
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Algorithm 6.4 Adaptive D-MPC with neighbouring agent coordination

Initialization of manipulated variables: AU, = 0; AU2 = 0; AUz = 0.
AU = [AU, AU, AU3)"
Initialization of parameter estimates (61, 62, 63) and respective covariance matrices (P, P, Ps).

for each time instant ¢
Computation of parameters 6;(t), using algorithm [2.1]and input and output data (Au(t), Ay(t)).
Define the augmented models of each subsystem i, using the parameter estimates O;(t)
Ti(t+1) = Az;(t) + [fi,i—l B; fi,i+1} Vi(t)
Ay(t) = Cz(t)

if t > ¢; then
R, = pil
M; =W W,;;+R;
My 0 O
M=|10 M 0
0 0 Ms
0 2W{ W 5 0
b= |2WI, W, 0 IWT, W,
0 WL, Wi, 0

P = 2W¥:1H1§31
Py = 2W£2H2§32
Y3 = 2W3 ;T35
U= 2 3
repeat

AU = —IM~'0 — IM~'®AU
until pre—deﬁned maximum number of iterations n; reached or stopping criteria is met

]T

off-take valves, identified in figure by @;. The results of this experiment are represented in
figures and [6.21] in which it is possible to see how the controller reacts to the presence of
disturbances, compensating the consequent water level decrease in each pool in the computation of

the manipulated variables, in order to maintain the reference tracking.
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Figure 6.17: Open-loop and closed-loop response of the system with the adaptive D-MPC with neighbouring
agent coordination, in an experiment conducted in the SIMULINK canal model, with parameters p1 = 2000, p2 =
1000, p3 = 2000 and N = 35. The maximum number of iterations n; is 20. The controller step is switched on in
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Figure 6.18: Open-loop and closed-loop response of the system with the adaptive D-MPC with neighbouring
agent coordination, in an experiment conducted in the SIMULINK canal model, with parameters p; = 2000, p2 =
1000, p3 = 2000 and N = 35. The maximum number of iterations n; is 20. The controller step is switched on in
time instant t = 2 x 10%s. (Input signals)
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Figure 6.19: Representation of the MIMO parameters estimates using the Adaptive [D-MPClcontroller with neigh-
gguring coordination between 1.2 x 10°s and 2.2 x 10°s. The control step is switched on at 2 x 10°s.
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Figure 6.20: Open-loop and closed-loop system response, obtained with the adaptive D-MPC with neighbouring
coordination, in an experiment conducted in the SIMULINK canal model, with parameters p; = 2000, p2 =
1000, ps = 2000 and N = 35. The maximum number of iterations n; is 20. The controller step is switched on in
time instant t = 2 x 10%s. (Output and Reference signals)
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Figure 6.21: Representation of the manipulated variables u; and flow drawn by the lateral off-takes Q;, with the
adaptive D-MPC with neighbouring coordination, in an experiment conducted in the SIMULINK canal model, with
parameters p; = 2000, p2 = 1000, ps = 2000 and N = 35. The maximum number of iterations n; is 20. The
controller step is switched on in time instant ¢ = 2 x 10°s.
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Conclusions and Future Work
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The objective of this study was to define adaptive distributed control algorithms based on the LQG
and control theory. The algorithms defined here are based on previous studies regarding the
water canal considered in this study [6], [15], [16], [17]. The target plant was the SIMULINK non-linear
canal model, which gives a good approximation of the canal dynamic behavior. The adaptive control
algorithms were tested in a simulation environment, and in the different experiments conducted the
results obtained were satisfactory, with a close approximation to the non-adaptive strategies in terms

of performance.

Regarding the adaptive strategies considered in this study, one of the difficulties in the design of
the controllers were identification problems regarding the selection of the forgetting factor, the initial
parameter values and the covariance matrix. In the initial experiments, the [RLS] algorithm considered
had a fixed value for A\. With a fixed value for the forgetting factor, there were several identification
issues that prevented the controllers from working properly. A lower value of A\ was useful whenever
the prediction error was larger, but since the algorithm kept weighting less the past information, due
to the slow system response, the parameter estimates and the trace of the covariance matrix started
diverging. Since selecting A\ = 1 was not the best approach, an alternative [BLS] algorithm was con-
sidered with a variable forgetting factor that depended on the prediction error, defined in section
Another difficulty in the definition of the identification algorithm was the parameter initialization. It
would be preferable to begin the experiments with a higher uncertainty regarding the parameters of
the system, but after performing several experiments, it was verified that the best approach is initial-

izing the parameters closer to convergence with a lower uncertainty.

It would be interesting to define adaptation strategies with a different identification algorithm, such
as the Recursive LASSO and compare the results obtained with the algorithm here considered.
Also a possible idea for future work is to define a new adaptation strategy in which it is possible to
initialize the parameters with a larger uncertainty. Comparing the adaptive and non-adaptive control
strategies, the results in general introduced more oscillations and variations in the system response
but outputs converged to the corresponding reference signals. Although it increases the compu-
tational load and time, with more variables and steps required to compute the control inputs and
although it also increases the complexity of the controller with a cost function that depends also on
the parameter estimates, adaptation has the advantage of allowing the controller to be more sensitive

and adaptable to changes in the system dynamics.

In a system with a time-variant dynamic behavior such as a water canal, with disturbances and
several external factors that may produce changes in the system dynamics, the adaptive controllers
have the advantage of computing its control inputs with knowledge of those changes in the system

dynamics, preventing therefore operational issues.

Regarding the distributed control algorithms, three different approaches were considered, two of
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which based on Game Theory concepts, where each local control agent had knowledge of the con-
trol inputs of its neighbours and the computation of the manipulated variables was accomplished
with a coordination/negotiation step, and the other one based on an efficient distributed algorithm
(D-ADMM) in which the computation of the manipulated variables was accomplished using an itera-
tive procedure and augmented Lagrangian function. The results obtained with the three approaches
were satisfactory, for the adaptive and non-adaptive algorithms, although it was difficult to define
adaptive controllers without stability problems. It was interesting to see how the performance of this
distributed techniques was close to the corresponding centralized solutions, with less communication

steps between local control agents required.

An unexpected result was obtained using the algorithm, in which the controller, with inte-
gral action, is working properly in the linearized model, but when applied to the SIMULINK non-linear
canal model, the system output follows the reference with a small error, even with the presence of an
integrator. This effect is constant throughout all the experiments conducted with algorithms based on
the [MPCl theory and it appears to be related with either the position of the integrator and the linear
incremental model, the incorrect use of sensor measurements and actuators or with the interactions
between subsystems, since the error in each pool varies whenever a variation occurs in a neighbour-

ing pool. It is intended to solve this issue with the [MPCl algorithms with integral action as future work.

Regarding the usage of controllers and strategies based on the usage of MATLAB
functions dlgr and dlge from the Control Systems in the design of LQG] control algorithms has advan-
tages in terms of computational load and time. Two different optimization solutions were considered in
the [MPC] strategies, in order to compute the manipulated variables. The usage of MATLAB optimiza-
tion function fminunc was considered in the and centralized algorithms, but the higher
computational load and time when compared to an analytical solution made the second one preferred
for the adaptive distributed algorithms. Although has the advantage of being able to handle
with operational constraints, the optimization process is more costly in terms of computational load.
Because of this fact, and since adaptation also increases the computational load of the controller, no

constraints were considered in the optimization process.

Due to the integral action issue verified in the algorithms, it is difficult to make a compari-
son between the adaptive [D-LQG] and algorithms. The system response obtained with the
adaptive [D-MPClalgorithms has more oscillations but the quadratic weights are smaller in comparison
with the [D-LQG] strategy. In general, since the [MPCl algorithms depend on the quadratic weights and
on the value of the finite-time horizon, it is possible to obtain acceptable results with lower quadratic
weights and a larger horizon. The adaptive [D-MPC] strategy based on Game Theory concepts is sim-
pler and requires less variables in the coordination step. Both this approach and the
algorithm have an easy implementation and their coordination procedures converge to the Nash equi-

librium. An alternative to this algorithms is the usage of D-ADMM] based on Lagrangian optimization,
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which is also efficient in terms of the communication steps required in the coordination procedure and

avoids the problem of the Nash equilibrium being far from the global minimum [35].

—— D-MPC (D-ADMM)
—— Reference Signal
—— D-MPC (Game Theory)
—— D-LQG (Game Theory)

Il
21 212 214 216 218 22
Time /[s] x10°

Figure 7.1: Results obtained with the three adaptive distributed strategies.

In general, the adaptive distributed algorithms have similar performances, as it is possible to ver-
ify in figure where the results of applying the three adaptive distributed control algorithms are
represented. The mean and variance of the output error e(t) = y(t) — r(t), represented in table
As it is possible to verify, the results obtained with the adaptive algorithms are similar,
with a more oscillatory response than the obtained with the adaptive [D-LQG algorithm. The [D-LQG]
controller required less time for the identification algorithm to work isolated, although it was consid-
ered a multi-variable model with the effect of side-takes. The adaptive distributed algorithms based
on Game Theory concepts have simpler negotiation/coordination strategies, with iterative procedures
that require less operations and auxiliary variables, with the drawbacks mentioned above regarding

the Nash equilibrium.

Table 7.1: Distributed Adaptive Control Algorithms

Algorithm e o2
D-MPC (D-ADMM) 0.0036 0.0010
D-MPC (Game Theory) 0.0030 3.2304 x 10~*
D-LQG (Game Theory) || 1.7949 x 10=* | 2.2467 x 10~*

Since the results shown in this dissertation were obtained in a simulation environment, this in-
troduces a limitation regarding its application on the real plant. As future work, it would also be
interesting to test the adaptive algorithms in a real water canal, in order to verify how the controller
handles with disturbances and external factors that affect the system dynamics. Although there is
still work to be done with new ideas and solutions to explore regarding adaptive and distributed algo-

rithms applied to water canals, three different algorithms were developed and studied with satisfactory
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results, complementing the work already developed and creating new challenges for future research.
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A.1 SISO Model
The SISOl linear incremental model is defined by the transfer function
A(g™h)Ay(t) = Bla™H)Au(t) +e(t), (A1)

A(g™') =1-3.614¢7" +4.986g72 —3.122¢7> +0.7495¢*, B(q™') = —0.001068¢ " +0.0009421q 2.

(A.2)
A.2 MIMO Model
The [MIMQ|linear incremental model is defined by
An(g) 0 0 Bui(¢™") Bia(g") 0

0 Aso(q™h) 0 Ay(t) = |Ba1(q™") Baa(q™') Bas(g™')| v(t) +et), (A3)

0 0 Ass(g™) 0 Bss(q7') Bss(g™h)
A (g7 =1-2.851¢7" +2.758¢72 — 0.9068¢ 3, (A.4)
Bii(g™") = —0.1815¢ " 4+ 0.4018¢~2 — 0.2707¢ > + 0.04811¢ %, (A.5)
Bia(q™1) = 0.02407¢™2 — 0.04456¢ 3 + 0.02032¢ 4, (A.6)
Ago(qg™h) =1 —2.857¢7 1 +2.779¢72 — 0.9222¢ 3, (A7)
Bo1(¢7') = 0.1315¢72 — 0.3324¢ 72 + 0.2696¢* — 0.06537¢ >, (A.8)
Bao(q™1) = —0.1548¢ +0.2994¢ 72 — 0.1476¢ 3, (A.9)
Bas(q™t) = 0.0875¢% — 0.2274¢ 3 + 0.1997¢~* — 0.06001¢ 7, (A.10)
Assz(qg™h) =1 —2.869¢" +2.807¢ 2 — 0.9379¢ 3, (A.11)
Bsa(q™1) = 0.1002¢% — 0.243¢ ™3 4 0.1808¢* — 0.03428¢ >, (A.12)
Bss(q™1) = —0.05582¢ 71 — 0.04845¢72 + 0.2543¢ > — 0.1538¢*. (A.13)
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A.3 MIMO Model with the effect of side takes

The linear incremental model is defined as

AAy(t) = Bo(t) + TQ(t) + e(t), (A.14)
An(g™) 0 0 Bii(¢™") Bia(g")
A= 0 Asa(g™h) 0 ., B=|B(qg7") Bal(qg') Bas(g )|, (A.15)
0 0 Ass(g™h) 0 Bss(q7') Bss(g™h)
Tii(g") Tialg™h) 0
L= [Tar(g™!) Taa(g™) Taslg™)], (A.16)
0 Ps2(q™ ') Tas(g™t)
A7) =1-2.824¢7 1 +2.712¢72 — 0.8889¢ 3, (A17)
Bii(g™1) = —0.09133¢™ " + 0.1726¢ 2 — 0.08407¢ 3, (A.18)
Bia(g™h) = 0.09972¢72 — 0.2378¢ > 4 0.1788¢* — 0.04088¢°, (A.19)
(g™ = —0.1994¢7" 4 0.4028¢ 2 — 0.2079¢ 2, (A.20)
Ti2(g™1) = —0.07317¢7 +0.2532¢72 — 0.2965¢ > + 0.1161¢ %, (A.21)
Aga(qh) =1 —2.838¢7 1 +2.746¢2 — 0.9085¢ 3, (A.22)
Boi(q™1) = —0.007191¢~" + 0.01006¢ 2, (A.23)
Baa(q™ ') = —0.002756¢ ", (A.24)
Bos(q™1) = 0.006614¢" — 0.006911¢ 2, (A.25)
To1(g™t) = —0.002298¢ " + 0.01624¢ % — 0.01423¢ >, (A.26)
Too(q™h) = —1.796¢7 1 + 5.181¢"2 — 5.073¢ > + 1.684¢ %, (A.27)
To3(¢ 1) = 0.007431¢~" — 0.02024¢ 2 4 0.01235¢ 2, (A.28)
Azz(q™!) =1—-2.839¢7 ! +2.761¢72 — 0.9221¢3, (A.29)
Bss(g71) = 0.1302¢71 — 0.2668¢ 2 4 0.1412¢ 3, (A.30)
Bss(q™1) = 0.4455¢ " — 1.631¢™% 4 1.928¢ ™2 — 0.7473¢™*, (A.31)
Ts32(q 1) = 2.677 x 1076¢72, (A.32)
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Pontryagin Minimum Principal

B-1



For a discrete-time system described by the non-linear equation

z(t+1) = f(z(t),v(t), 1), (B.1)

in which f is a function that describes the system dynamics. The initial condition x(0) is specified and

a performance index is defined as
J(u) = (T, 2(T)) + Y L(x(t),0(t), 1), (B-2)
t=0

in which L denotes the Lagrangian function. The objective is to minimize the performance index
J, assuming that T' <— oo and that there are no constraints either on the final state z(¢) or on the

manipulated variable v.
The Hamiltonian function H is defined as

H(t) = ATt + 1) f(2(t),v(t),t) + L(x(t), v(t), 1), (B.3)

in which X is the co-state. The discrete-time Pontryagin Minimum Principle states that the co-state A,

the optimal control input v and state trajectory z satisfy:
e State equation (B.1) with z(0) specified.

¢ Adjoint equation:

o = QO P00 1 8
« Stationary condition: .
- (Sf)) —0 (B5)
« Co-state terminal condition:
T) = (W. (B.6)
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