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Abstract

Water Delivery Canals are structures characterized for their large dimensions and for allowing the

water supply and an efficient resource management. Throughout their large extensions, water canals

have several local control agents associated with its pools, composed by sensors and actuators. Due

to its large dimensions and to the existing sensors and actuators, there is motivation to implement

distributed control strategies, that allow a more efficient communication between local controllers,

without requiring a central node. Also, existing external factors and disturbances associated with the

usage of water for consumption may change the dynamics of the system, which provides motivation

for the usage of adaptive algorithms, in which new models are identified using input and output data

retrieved from the system.

The objective of this dissertation is therefore to develop distributed adaptive control strategies

that are composed by a recursive identification algorithm (RLS) and by control algorithms based

on LQG and MPC theory, with coordination and negotiation mechanisms. The sequence of these

steps allows the design of controllers with models estimated recursively using data from the system,

becoming therefore adaptable to system dynamics changes. The algorithms considered in this study

are based in Game Theory concepts, where the decisions of local control agents take into account

the knowledge of the neighbouring agents’ decisions, converging therefore to the Nash Equilibrium,

and in Lagrangian optimization methods.
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Resumo

Os canais de água são estruturas caracterizadas pelas suas grandes dimensões, por possibil-

itarem o fornecimento de água e por permitirem a gestão eficiente deste recurso natural. Ao longo

dos canais de água existem diversos agentes de controlo locais, compostos por sensores e actu-

adores, que actuam sobre um dado troço. As grandes dimensões e a existência de vários sensores

e actuadores nos canais de água motivam a implementação de estratégias de controlo distribuı́das,

que tornam a comunicação entre controladores locais mais eficiente, sem a necessidade de um nó

central. Por outro lado, a existência de factores externos e de perturbações associadas à utilização

da água para consumo/fins agrı́colas alteram a dinâmica do sistema, pelo que a implementação de

algoritmos adaptativos possibilita a identificação de novos modelos com os dados de entrada e saı́da

deste.

O objectivo desta dissertação consiste então no desenvolvimento de estratégias de controlo adap-

tativas e distribuı́das que integram um algoritmo recursivo de identificação, os Mı́nimos Quadrados

Recursivos (RLS), e algoritmos de controlo óptimo LQG e MPC, baseados em mecanismos de

coordenação e negociação. A sequência de um algoritmo de identificação e de um algoritmo de

controlo possibilita o dimensionamento dos ganhos do controlador com base em modelos estimados

recursivamente com dados do sistema. Os algoritmos considerados nesta dissertação baseiam-se

em conceitos de Teoria de Jogos, em que as decisões dos vários agentes de controlo locais são

tomadas com conhecimento das decisões dos agentes vizinhos, convergindo para o equilı́brio de

Nash, e em métodos de optimização Lagrangeana.

Palavras Chave

RLS, LQG, MPC, Controlo Distribuı́do, Controlo Adaptativo, Canal de Água.
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1.1 Motivation

Although most of the Earth surface is covered by water, the percentage that is fresh is less than

3 percent, and only a part of it is available to human consumption. According to [1] the growth in the

world population requires immediate action to manage this natural and essential resource in a sus-

tainable way. Alongside with the increasing demand of water, the issue of water scarcity has become

critical in several regions worldwide and has also a severe impact in some economic sectors such as

agriculture.

Irrigation systems play an important role in addressing the problem of water scarcity by allowing

efficient resource management. These large structures are characterized for being both highly dy-

namic due to variations in the water levels, disturbances (mud accumulation, vegetation growing, and

physical problems), and for being time-variant in several ways [2]. To address these issues, and to

allow the system to respond in a both stable and robust way, it is relevant to understand how the

different stretches of a water canal interact and how to use the information provided by the different

sensors in order to develop appropriate control strategies. However, there are several issues that

need to be addressed [3], [4], [5], in order to increase the efficiency of water management in irrigation

canals, such as minimizing losses and ensuring water availability according to demand while taking

into account existing water level constraints.

Due to their large dimensions, most irrigation canals are characterized by having several sensors

and actuators placed across them that allow the development of local control strategies. Therefore,

a water delivery canal may be envisaged as a series of different subsystems that are connected and

that interact among each other. Although this sounds appealing to the implementation of centralized

control strategies, there is the downside of the increasing complexity of the system and the fact that

if the controller fails the consequences might be considerable. The communication between subsys-

tems can also be seen as difficult due to the large dimension of the structure, that introduces problems

in terms of computational load and communication [6]. These issues provide motivation for the im-

plementation of decentralized solutions, in which each controller computes its manipulated variable

without being aware of the other subsystems. Since the lack of communication between subsystems

threatens the performance of the whole system and may even yield an unstable behaviour [7], one

possible solution to improve the efficiency and tackle the feasibility and communication issues is the

implementation of a distributed control strategy. In this approach the interaction between subsystems

is taken into account and communication becomes an important ally in order to develop coordination

algorithms with the objective of reaching a consensus between subsystems.

While distributed strategies are characterized by the adequate management of local control ob-

jectives [3], adding adaptation to these strategies has the advantage of increasing the performance

of the system, by contributing to its stability when facing variations in its dynamics. Therefore, the
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combination of adaptation and distributed control strategies appears to be an efficient way to manage

the water levels in the canal.

1.2 Problem Formulation

The water canal considered in this dissertation belongs to Núcleo de Hidráulica e Controlo de

Canais (NuHCC) of Univerisity of Évora, Portugal. In [8] a more extensive description of the canal

is presented, alongside with a manual for the SIMULINK non-linear model used in this study. The

system is composed of an automatic canal, together with a traditional canal that guarantees water

return. The automatic canal is controlled by a central server equipped with a SCADA system that

allows remote monitoring and control of the canal, and consists of a series of four pools separated by

four vertical gates that are actuated by electrical motors. The first three pools are terminated by an

undershot gate, whereas the fourth pool is terminated by an overshot gate.

Figure 1.1: Schematic representation of the NuHCC automatic canal.

The pools have approximately the same length (35m for the first three and 36m for the fourth pool),

and the same height (0.90m). In order to measure the upstream (Mi), centre (Ci) and downstream

(Ji) water level, three sensors were placed along each pool i, as shown in figure 1.1, although only

the last ones are considered in this dissertation. The variables Qi represent the side flow of off-take i,

controlled by valves placed at the canal bottom, with control signals denoted by VOi. These variables

allow the generation of disturbances in the system, being associated, in a practical situation, to water

consumption by users.

The dynamics of the water flow in the canal is described by the non-linear hyperbolic Saint-Venant

equations [9], obtained using the mass and momentum conservation principles and whose solution is

obtained using numerical methods for solving Partial Differential Equations [8]. In this study only the

undershot gates, whose schematic representation is shown in figure 1.2 (Lemos, J. M. et al., 2010),

are considered and it is assumed that the flow under each is modelled by

Q(t) = CdsA(t) ∗
√

2g(hu − hd), (1.1)

in which Cds is the discharge coefficient, hu and hd denote the upstream and downstream water
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levels, g is the acceleration of gravity and A, the effective area of the opening of the gate, is given by

A(t) = Wu(t) (1.2)

in which W represents the width of the gates and u(t) is the position of the undershot gate, at time

instant t.

Figure 1.2: Schematic side view representation of the undershot gate. The upstream and downstream water
levels are denoted by hleft and hright respectively, whereas hcomp represents the gate height. [8]

The development of adaptive control algorithms has the purpose of maintaining the water level of

each pool at the desired level, even in the presence of existing disturbances and changes in canal

dynamics. The adaptive control algorithms implemented in this study take into account estimates

of system parameters computed by an identification algorithm that takes into account variations in

the dynamics of the system. The parameter identification problem is addressed using the Recursive

Least Squares (RLS) algorithm, that recursively estimates the parameters that minimize a predefined

least squares function.

The introduction of adaptation in the control algorithms addresses the time-variant dynamic of the

system, allowing it to maintain the water levels close to the desired values, even in the presence of

external factors or disturbances such as water extraction for agricultural use. The adaptive distributed

algorithms developed in this dissertation are based on Linear-Quadratic-Gaussian (LQG) control and

Model Predictive Control (MPC) theory. The LQG control algorithms are characterized by an infinite-

horizon quadratic cost function that is minimized, and that leads to the controller and state estimator

expressions, whereas in the MPC algorithms, a quadratic cost function is only considered for a spe-

cific finite-horizon that slides with time, and its minimization may take into account explicit input and

state constraints.

The water canal is converted in a network of connected subsystems associated with each pool, in

which each system is controlled by a local agent and the computation of manipulated variables takes

into account information provided by the neighbours. Although the irrigation canal is a non-linear

system with infinite order, in this dissertation it will be approximated by a finite-dimension linear model,

and thus the control algorithms developed will address only linear finite dimensional State-Space (SS)

models. Since during the period this study was conducted, the water canal was non-operational, the

target system considered is the SIMULINK non-linear canal model.
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1.3 Literature Review

Throughout the years there have been many studies, [4], [7], [9] that tackle the automatic control of

water canals due to strong motivations related with the issues and challenges associated with these

structures. The main objectives of automatic control of water canals concern the water level regula-

tion in order to optimize the resource distribution such that the amount of water provided matches the

demand [4].

1.3.1 System identification methods

The successful implementation of control algorithms requires accurate models that describe the

system dynamics. One of the first challenges to be addressed before developing a suitable control

strategy is the identification of the system. Irrigation canals are characterized for having a highly-

dynamic and complex behaviour described by the non-linear Saint-Venant equations, whose solution

requires approximations provided by numerical methods such as the Preissman Scheme or the Or-

thogonal collocation [9], [10], [11]. The estimation of model parameters based on the Saint-Venant

equations can be made by comparing experimental observations with simulation data and it typically

takes into account prior knowledge of the channel structure [11], [12]. The SIMULINK non-linear

model of the water canal considered in this dissertation was developed using numerical methods to

solve the Saint-Venant equations and was validated and calibrated by comparing simulation results

with experimental data [8].

An alternative to the linearization of the Saint-Venant equations is to use linear identification al-

gorithms that require experiments in the system considered to validate a model obtained, taken into

account prior physical information, to accurately describe the system dynamics [5], [13]. Models

based on the Saint-Venant equations with parameters estimated using experimental data capture the

dynamics of the channels but, due to the accuracy and simplicity of linear identification models and to

the control algorithms considered in the dissertation, the second approach is preferred [12], [13].

1.3.2 Control algorithms applied to water canals

The control techniques developed and applied to water canals range from centralized to decen-

tralized and distributed approaches [7], with several adaptive strategies also being taken into account

[2], [14]. Regarding the system considered in this dissertation, there are several studies, from master

thesis to research papers, that tackle the application of control algorithms using as plant the NuHCC

water canal [2], [3], [6], [15], [16], [17]. Some of these studies [6], [15], serve as background to

the development of the adaptive distributed strategies introduced in this dissertation. The control

strategies developed are applied taking into account both linear and non-linear models, and include

the application of Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controllers [18],
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[19], optimal Linear-Quadratic-Gaussian (LQG) control algorithms [15], [16], gain-scheduling control

[20], MPC algorithms [2], [3], [6], [21] and MUSMAR adaptive control [2].

1.3.3 Distributed control algorithms

The distributed control strategies taken into account in this dissertation were introduced in [6],

[15], [17] and [22]. The system is divided into several subsystems (pools and respective gates) that

are associated with local controllers in a network structure where the subsystems are connected to

their neighbours. Compared with decentralized control strategies, [23], [24], the distributed control ap-

proaches have the advantage of considering the interactions between subsystems in the computation

of manipulated variables. The control algorithms in [23] and [24] are based in coordination methods

that use an augmented Lagrangian in the cost function minimization, whereas the coordination proce-

dure introduced in [6], relies on a distributed optimization algorithm that uses augmented Lagrangian

to solve problems in networks of interconnected nodes. A different approach is followed in [15], [17],

[22] and [25], where Game Theory concepts are used in the coordination procedure in order to reach

a consensus between subsystems.

1.3.4 Other studies regarding water management in water delivery channels

Regarding water management in irrigation channels, there are still several techniques and relevant

issues that were addressed throughout the years and that include the usage of different manipulated

and measured variables such as water levels, discharges, volumes and gate heights [26]; Fault Tol-

erant Control (FTC) to guarantee stability in the presence of faults in sensors and actuators [16] and

control strategies that address risk mitigation in irrigation systems [27] by executing mitigation actions

if risk factors such as inadequate quality of fresh water and failures in gate openings are expected.

1.4 Original Contributions

Three adaptive distributed control algorithms are considered in this dissertation: the first one is a

Linear-Quadratic Regulator (LQR) based on optimal control and on Game Theory concepts, in which

the coordination of subsystems is achieved with a negotiation step common to all local controllers in

order to reach a consensus regarding the computation of manipulated variables, whereas the other

two algorithms are based on linear MPC theory, by minimizing a quadratic cost function that is only

applied in a pre-defined horizon that slides with time.

The coordination procedures of the adaptive D-MPC strategies introduced in this study rely on

the above control structures and are based in different concepts. The first strategy is based on a

distributed optimization algorithm that solves problems in networks of interconnected nodes using
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Figure 1.3: Schematic representation of the adaptive controller applied to a linear incremental model.

augmented Lagrangian whereas the second one is based on Game Theory concepts, using a nego-

tiation step similar to the one considered for the D-LQG algorithm.

The identification step of the adaptive controllers is based on the RLS algorithm that provides on-

line estimates of the system parameters. A representation of the general adaptive controller strategy

applied to the linear incremental model is shown in figure 1.3, in which input and output increments

with respect to the operating point, ∆u and ∆y, are the variations of the gate position and water levels

of a linear subsystem, the reference signal is denoted by r and Θ represents the parameter estimates

provided by the RLS algorithm.

1.5 Thesis Outline

This dissertation has the following structure:

Chapter 1 is dedicated to the motivations and problem formulation considered in this dissertation.

A literature review is also provided, with references to some of the studies conducted to water canals,

followed by a brief presentation of the original contributions.

Chapter 2 addresses the definition of identification strategies, model orders, linear incremental

models and of the recursive identification algorithm considered in the adaptive controllers.

Chapter 3 introduces the LQG control theoretical background, followed by the definition of single-

gate controllers and centralized multiple-gate controllers, adaptive and non-adaptive.

Chapter 4 addresses the definition of the distributed LQG control algorithm, both in the adaptive

and non-adaptive approaches.

Chapters 5 and 6 follow a similar structure as the previous chapters with the first chapter being

dedicated to the formulation of the MPC control algorithms and definition of single-gate and central-

ized multiple-gate controllers whereas the second one is dedicated to the distributed MPC control

algorithms, with adaptive and non-adaptive strategies.
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This chapter adresses the definition of the identification strategies and algorithms used in this

study. The first sections are dedicated to the identification of a linear incremental model using simu-

lation data obtained with the SIMULINK non-linear canal model. The last section describes the RLS

algorithm considered in the identification step of the adaptive controllers.

2.1 Linear Incremental Model

In order to design the control systems developed in this study, it is necessary to find a model that

adequately describes the dynamics of the water canal. The objective is to obtain finite-dimension

models that describe the system dynamics in both the SISO and MIMO cases. The parameter es-

timation from the non-linear SIMULINK model requires the establishment of the orders and of the

model structure considered. Since the noise present in the simulation data is not white, one may

consider an AutoRegressive Moving Average with eXogenous input (ARMAX) model to describe the

system dynamics. However, as previous studies show [15], [16], for the purposes of control design,

AutoRegressive with eXogenous input (ARX) models are suitable and the structure is simpler, which

makes it preferable.

For a SISO system, the ARX model structure is described by

A(q−1)∆y(t) = B(q−1)∆u(t− nK) + e(t), (2.1)

where ∆y(t) ∈ R represents the incremental output of the system, ∆u(t) ∈ R the incremental input,

e(t) ∈ R a Gaussian white noise sequence, q−1 is the unit delay operator, and A(q−1) and B(q−1) are

polynomials in the unit delay operator, described by

A(q−1) = 1 + a1q
−1 + ...+ anA

q−nA , B(q−1) = b0 + b1q
−1 + ...+ bnB

q−nB , (2.2)

in which positive integers nK , nA and nB represent the pure delay, and the number of zeros and

poles.

The identification of linear incremental models from the non-linear SIMULINK model requires the

definition of an equilibrium point, described in table 2.1 for an intake flow of 0.05m3/s.

Table 2.1: Equilibrium Point

Pool Water Level [m] Gate Position [m]

1 0.8 0.1072
2 0.72 0.1082
3 0.64 0.1089
4 0.56 0.4022

The first identification strategy used in this dissertation consists of using the pem function of MAT-

LAB, that implements the prediction error algorithm over the simulated data. This strategy provides

an indication of the orders of the model that correspond to the best results and that will be used in

the Recursive Least Squares (RLS) algorithm, used as an identification technique for adaptive con-

trol strategies. In order to avoid the excitation of high-frequency modes and non-linearities, the data
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was filtered using a third-order low-pass Butterworth filter with a cut-off frequency of 0.1rad/s, as de-

scribed in [16]. The mean and the initial transient of the signal were also removed before applying the

identification algorithm. The comparison between the output of the model and the measured one, ob-

tained with the parameter estimates, is accomplished using MATLAB function compare, that provides

the normalized root mean square error as a fit percentage. The sample time considered was Ts = 1s.

2.2 SISO Model Identification

In this first experiment, only the first pool and the corresponding undershot gate were taken into

account in order to identify a Single-Input Single-Output (SISO) model. In order to obtain a more

reliable model, a suitable signal needs to be applied in the system input, in order to excite it and

to provide better parameter estimates. The signal chosen is the Pseudo-Random Binary Sequence

(PRBS), since it is characterized for being a variable signal that excites the system along a wide range

of frequencies when compared with, for instance, a sequence of square waves, as shown in [16].

0 0.5 1 1.5 2 2.5

x 10
5

0.05

0.1

0.15

0.2

Time / [s]

u 1 / 
[m

]

0 0.5 1 1.5 2 2.5

x 10
5

0.6

0.8

1

1.2

Time / [s]

y 1 / 
[m

]

Figure 2.1: Input u1 and output y1 signals - first pool. The input signal is a PRBS signal with an amplitude of
0.05m applied around the equilibrium point of the pool, defined in table 2.1.

Several simulations were performed with the first pool being excited by a PRBS signal applied

around the equilibrium point while the other three gates were kept at their equilibrium points. The

simulation results were then filtered, and the mean was removed in order to provide better estimates.

The input and output signals obtained are represented in figure 2.1, in which the reverse response of

the system may be noticed, with an increase in the gate position u, leading to a decrease in the pool

water level y.

After performing several trials, with different combinations of model orders, the one that led to the

best fit percentage was nA = 4, nB = 2, nK = 1, leading to the results shown in figure 2.2. During

the experiments it was possible to verify that higher amplitude variations in the input signal led to poor

identification results, with manifestations of non-linearities and that the period of the input signal had
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Figure 2.2: Comparison between the measured system output and the simulated output, obtained using the
parameter estimates - first pool.

also influence in those results. The frequency of the input signal has to be within a range of values

that is sufficiently exciting to provide good estimates, and suitable to the slow system response, in

order to allow the stabilization of the water level. Having the parameter estimates and thus knowledge

of the transfer function that describes the dynamics of the system, one may obtain an equivalent linear

state model to be used in control design.

The conversion between transfer functions and the state model is achieved by either using an

analytical approach or by the MATLAB functions ss2tf and tf2ss. Due to the simplicity of the SISO

linear model, the first approach was used, but in the other cases, mostly due to their complexity,

MATLAB functions were preferable. The resulting SISO linear incremental SS model is

x(t+ 1) = Ax(t) +B∆u(t) + e(t), ∆y(t) = Cx(t), (2.3)

in which ∆u and ∆y represent the incremental gate position and water level with respect to the

equilibrium point, x is the state of the system, and A[nA × nA], B[nA × nB ] and C[nC × nA] are the

SS matrices that describe the system dynamics.

2.3 MIMO Model Identification

In order to design a control system for a multi-variable structure that contemplates the first three

pools and corresponding undershot gates, one needs to identify a Multiple-Input Multiple-Output

(MIMO) linear model from the simulation data. The identification procedure is similar to the one

defined in section 2.2, although there are some changes that reflect the interactions between subsys-

tems.

Just like in the previous section the outputs and the inputs of each subsystem are defined as the

downstream water levels and gate positions, respectively. But instead of having A(q−1) and B(q−1)

defined as polynomials that represent the zeros and poles of the system, these are now matrices with

polynomial entries, with the following underlying assumptions:

• The water level in each pool depends only on the water level in the same pool in previous time

instants;

• The inputs only influence the water levels of the respective system and of neighbouring systems.
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The MIMO linear model structure is therefore defined asA11(q−1) 0 0

0 A22(q−1) 0

0 0 A33(q−1)


y1(t)

y2(t)

y3(t)

 =

B11(q−1) B12(q−1) 0

B21(q−1) B22(q−1) B23(q−1)

0 B32(q−1) B33(q−1)


u1(t)

u2(t)

u3(t)

+ e(t),

(2.4)

with nA, nB and nK representing the model orders, defined as

nA =

nA11 0 0

0 nA22 0

0 0 nA33

 , nB =

nB11 nB12 0

nB21 nB22 nB23

0 nB32 nB33

 , nK =

nK11 nK12 0

nK21 nK22 nK23

0 nK32 nK33

 . (2.5)

The structure of the model (2.4) reflects the assumption that the different canal stretches interact

only through the manipulated variables (gate positions) of the adjacent gates. This assumption leads

to a good fit of the model and allows the application of the control methods described in subsequent

chapters.
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Figure 2.3: Input signals applied to the first three pools to the System - gate position representation.

Using the gate positions as input signals did not result in satisfactory fit percentages (no more than

70%), and thus a solution proposed for this issue, described in [16] was considered. The solution

consists of using a variable proportional to the flow drawn by each gate q(t) as input signal. This new

variable, v(t), is related with the flow across the gate by the discharge coefficient Cds, as shown in

(2.6) and with appropriate input signals it allowed to obtain better results with fit percentages around

91%-96%. The open-loop system response for the three pools is represented in figures 2.3 and 2.4,

in which one may see PRBS signals being applied to the inputs, with similar amplitude variations

around the equilibrium points defined in table 2.1 but delayed in order to not produce synchronous

variations.

v(t) =
1

Cds
q(t) = u(t) ∗W ∗

√
2g(hu − hd). (2.6)

The model identification was performed using the new variable proportional to the flow v(t), and

the value of the discharge coefficient Cds was computed as the quotient between the equilibrium point
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Figure 2.4: Output signals resulting from the open-loop response of the first three pools of the system - water
level representation.

of the flow (0.076m3/s) and the intake flow (0.05m3/s). The results obtained are represented in figure

2.5 and by comparing the open-loop responses of the three pools it is possible to verify how the water

level in each pool influences the neighbouring subsystems. For example in the first time instants,

when the first gate is excited with a negative variation of its position around the equilibrium point

which leads to a higher water level in the first pool, the opening of second gate leads to a decrease in

the water level of the first pool. The corresponding combination of orders that led to this result is

nA =

4 0 0

0 4 0

0 0 4

 , nB =

4 3 0

3 4 3

0 4 4

 , nK =

1 2 0

2 1 2

0 1 1

 . (2.7)

With the parameter estimates and corresponding transfer function, one may obtain an equivalent

state representation of the system using MATLAB function tf2ss. However, in order to prevent the

appearance of uncontrollable or unobservable states, MATLAB function minreal was also used to

obtain a minimum realization of the state model. The linear MIMO incremental model structure is

given by

x(t+ 1) = Ax(t) +Bv(t) + e(t) , ∆y(t) = Cx(t) (2.8)

x(t+ 1) =

A11 0 0

0 A22 0

0 0 A33

x(t) +

B11 B12 0

B21 B22 B23

0 B32 B33

 v(t) + e(t), (2.9)

∆y(t) =

C11 0 0

0 C22 0

0 0 C33

x(t), (2.10)

in which the incremental gate positions ∆ui(t) are computed using the relationship between ui(t) and

the variable proportional to the flow drawn by each gate vi

∆ui(t) =
vi(t)

W ∗
√

2g(hu − hd)
. (2.11)
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Figure 2.5: MIMO System Identification - Comparison of the open-loop system response simulated and the
resulting system output obtained using the parameter estimates for the first three pools.

2.4 MIMO Model Identification with the effect of the side takes

The D-LQG strategy introduced in section 4.1 requires a model composed by several subsystems

(pools) connected to their neighbours that interact with their manipulated variables and flow of lateral

off-takes. Each subsystem Σi, with i denoting the i-th pool, is seen as a MISO system [15], [16],

in which its output is the water level yi of the corresponding pool and its manipulated variable is the

position of the respective gate vi. The interactions between neighbouring subsystems are assumed

to be described by the respective gate positions vi−1, vi+1, considered later in the feed-forward control

term, and the flows of the lateral off-takes Qi−1, Qi, Qi+1 are handled as accessible disturbances.

Due to the number of inputs, the identification procedure conducted needed to be different than the

ones presented before. The simulation time was increased and new input signals had to be applied

into the SIMULINK model, representing the lateral off-takes Qi. Initially, during a pre-defined period

of time, only variations in gate positions were considered, and after that time interval only variations

in the flows of the lateral off-takes were taken into account. This resulted in identification problems

related with different mean values of the system response that corresponded to the different parts of

the experiment. The lateral off-take valves were considered to be open in the equilibrium, and thus a

new operating point was considered (table 2.2), in which Qi denotes the flow of lateral off-take of the
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Figure 2.6: Representation of the input signals applied to the SIMULINK model, with Qi representing flow of the
lateral off-take of pool i and ui the respective gate position.
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Figure 2.7: Output signals resulting from the open-loop response of the first three pools of the system - water
level representation. During the first 1 × 105s both gate positions and flows of lateral off-takes were excited
whereas in the rest of the simulation time the gates remained in constant positions.

Table 2.2: Equilibrium Point considering the flow of lateral off-takes

Pool Water Level [m] Qi [m3/s] Gate Position [m]

1 0.8 0.001 0.1050
2 0.72 0.002 0.1014
3 0.64 0.003 0.0948
4 0.56 0 0.4150

The identification procedure was divided into two different parts, in which in the first half, PRBS sig-

nals were applied simultaneously representing variations in the gate positions and flows of the lateral

off-takes. These input signals had different frequencies and were delayed with respect to each other.

In the second half of the experiment, gate positions were kept constant at their equilibrium position
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while varying the flows of lateral off-takes, as represented in figure 2.6, followed by a representation

of the system output in figure 2.7.

The variable proportional to the flow vi was used again for the model identification and all the sig-

nals were filtered and had their mean removed. After performing several experiments, the combination

of orders that resulted in the best fit percentages is

nA1 = 3 , nB1 =
[
3 4 3 4

]
, nK1 =

[
1 2 1 1

]
; (2.12)

nA2 = 3 , nB2 =
[
2 1 2 3 4 3

]
, nK2 =

[
1 1 1 1 1 1

]
; (2.13)

nA3 = 3 , nB3 =
[
3 4 1 5

]
, nK3 =

[
1 1 3 1

]
. (2.14)
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Figure 2.8: MIMO System Identification with the effect of side takes - Comparison of the open-loop system
response simulated and the resulting system output obtained using the parameter estimates for the first three
pools.

The fit percentages obtained, represented in figure 2.8, are slightly worse than the ones presented
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in the other sections, but since they are around 90% and since this identification procedure is only

to design controllers and to provide a good indication of the model orders to be used in the adaptive

control algorithms, the results obtained are satisfactory. Due to the changes that are required for

the distributed LQG control algorithm, the model structure needs to be different, with the B matrix

contemplating only the gate positions of the respective pools and the influence of flows from lateral

off-takes and positions of neighbouring gates contemplated by matrices Γd and Φv respectively. The

linear incremental model structure is therefore

x(t+ 1) = Ax(t) +Bv(t) + Φvv(t) + ΓdQ(t) + e(t) , ∆y(t) = Cx(t), (2.15)

A =

A11 0 0

0 A22 0

0 0 A33

 , B =

B11 0 0

0 B22 0

0 0 B33

 , Φv =

 0 B12 0

B21 0 B23

0 B32 0

 , Γd =

Γ11 Γ12 0

Γ21 Γ22 Γ23

0 Γ32 Γ33

 ,
(2.16)

∆y(t) =

C11 0 0

0 C22 0

0 0 C33

x(t). (2.17)

The parameter estimates used to define the models introduced in sections 2.2, 2.3 and 2.4 are

shown in Appendix A.

2.5 Recursive Least Squares

The results obtained in the previous sections are taken into account for the design of controllers

with fixed parameters and provide an indication of the model orders that result in good parameter es-

timates. However, the off-line application of an identification algorithm is not the approach considered

for the parameter estimation step of adaptive controllers. To identify the system dynamics or, in other

words, to estimate its parameters, the solution needs to take into account that several observations

are required and that memory management should be efficient. This leads us to a recursive solution,

which in this dissertation will be the RLS algorithm that uses both incremental input and output data to

estimate the parameters [28]. Considering the generic transfer function defined for an ARX model in

(2.1), it is possible to write an equivalent difference equation with delayed samples for an incremental

model

∆y(t) = −
nA∑
i=1

ai∆y(t− i) +

nB∑
i=0

bi∆u(t− nK − i) + e(t) (2.18)

in which t ≥ 0 is an integer that represents discrete-time, ∆u ∈ R is the incremental manipulated vari-

able, ∆y ∈ R the incremental system output, with increments defined with respect to the operating

point, e ∈ R represents white Gaussian noise, nA is the pole order, nB the zero order and nK is the

system delay. A system is casual if and only if its delay is nonnegative, i.e. nA ≥ nB . Discarding sys-

tems with instantaneous action, is is nA > nB . Taking into account expression (2.18), the regressor,

ϕ, is defined as

ϕ′(t−1) =
[
−∆y(t− 1) −∆y(t− 2) ... −∆y(t− nA) ∆u(t− nK) ∆u(t− nK − 1) ... ∆u(t− nB)

]
(2.19)
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and the vector of the parameters to be estimated, Θ, is given by

Θ′ =
[
a1 a2 ... anA

b0 ... bnB

]
. (2.20)

For each observation, the model is described by

∆y(t) = ϕ′(t− 1)Θ + e(t). (2.21)

Given N observations, the estimation of the vector of parameters Θ by Θ̂ is made by minimizing

the following cost function:

J(Θ) =
1

2N

N∑
t=1

[∆y(t)−Θ′ϕ(t− 1)]2. (2.22)

To obtain the estimate by combining the previous estimates with new data, a recursive estimator

is required, with the following elements:

• Vector of estimates Θ̂(t− 1) and previous auxiliary variables P (t− 1);

• New data ∆y(t), ϕ(t− 1).

With the combination of these elements it is possible to compute the new estimates Θ̂(t) and the

new auxiliary variables P (t), in which P is the covariance matrix, which is symmetric and positive

semi-definite. In order to obtain good parameter estimates one must ensure that the data is adequate

in the sense of being sufficiently exciting, thus guaranteeing the decrease of Kalman gain elements

K and P . In the first time instants, when the uncertainty regarding the true values of the parameters

is large, the values of the covariance matrix P should be high. This leads to higher Kalman gains in

the beginning and consequently to a faster convergence of the parameters estimates, as seen in the

expression for parameter estimation

Θ̂(t) = Θ̂(t− 1) +K(t)[∆y(t)− ϕ′(t− 1)Θ(t− 1)], (2.23)

in which Θ̂ denotes the vector of parameter estimations at time instant t, ϕ is the regressor and the

Kalman gain is denoted by K.

Higher values of K result in more emphasis to the difference between the experimental value

and the estimated value, and thus in a faster convergence of the estimates towards the true values.

Throughout time and with the data acquired, the uncertainty regarding the parameters decreases,

which results in a smaller value of K and a slower convergence to the real value of the parameters.

However, this introduces a new difficulty since the algorithm takes into account recent and past data

with the same ”weight”, and thus when the estimates converge, it takes a considerable amount of time

for the estimates to converge towards a new value after a change in the system dynamic. In order to

prevent this loss of adaptation from occurring, one may consider defining a forgetting factor, λ, with

values between 0 and 1 so that the algorithm weights less data from past. With smaller values of

λ, the algorithm tracks better changes in the state and the convergence is faster since it retains less

data. With larger values of λ, the algorithm becomes progressively slower to follow changes in the
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system dynamic since it retains more data but with less variations in the estimates.

With a fixed forgetting factor λ, the results obtained in the experiments conducted with the SIMULINK

canal model were unsatisfactory, with the parameter estimates constantly varying. When the system

was in equilibrium, the information provided to the algorithm was not exciting enough to it provide

good estimates, and since the input signal applied to the system takes into account its slow response,

as described in section 2.2, this situation occurred frequently. In order to prevent this issue, an alter-

native version of the RLS algorithm with variable forgetting factor, introduced in [29], is considered.

In this algorithm, the value of λ depends on the information available and on the current estimates.

In order to do so, one must define a new variable ε that denotes the prediction error. One of the

required parameters is the mean value of the prediction error, denoted as ε0, which was defined after

conducting several experiments in order to have a measure of the prediction error. In the experiments

conducted with the adaptive control algorithms, the parameters of the three subsystems were defined

as

λ0 = 0.98, λmin = 0.98 P0 = 0.01× Ip×p, ε0 = 5× 10−3, (2.24)

in which λ0 and P0 are the initial values of the forgetting factor and covariance matrix and p is the

number of parameters.

Algorithm 2.1 Recursive Least Squares (RLS) with variable exponential forgetting factor

Require: Output signal∆y(t), previous Covariance Matrix P (t−1), previous forgetting factor λ(t−1)
and previous parameter estimates Θ̂(t− 1)
function RLS(∆y, Θ̂, P, ε)

for t=1:T
Read current system output ∆y(t)
Compute the prediction error ε(t) = ∆y(t)− ϕ′(t− 1)Θ̂(t− 1)
Define the mean value of the prediction error ε0

Compute the Kalman gain K(t) = P (t−1)ϕ(t−1)
λ(t−1)+ϕ′(t−1)P (t−1)ϕ(t−1)

Compute the parameter estimates Θ̂(t) = Θ̂(t− 1) +K(t)ε(t)
The new forgetting factor λ is given by λ(t) = 1− [1− ϕ′(t− 1)K(t)]ε2(t)/ε0

If λ(t) < λmin → λ(t) = λmin
Compute the Covariance Matrix P (t) = [I −K(t)ϕ′(t− 1)]P (t−1)

λ(t)

return Θ̂(t)
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In this chapter the LQG controller is described, with the theoretical background followed by the

definition of two adaptive controllers applied respectively to the first pool of the canal and to the multi-

variable system composed by the first three pools.

3.1 Linear-Quadratic Gaussian Controller

The first control strategy to be considered in this dissertation is the LQG controller, that results from

the combination of a Linear-Quadratic Regulator (LQR) and a Linear-Quadratic Estimator (LQE). This

observer-controller structure is represented in figure 3.1. The linear incremental model, for a SISO

system, considered in the definition of this controller is described by (2.3).

Figure 3.1: Schematic representation of the LQG controller.

3.1.1 Linear-Quadratic Regulator

Assuming that the system state is accessible for direct measure, the LQR control law,

∆u(t) = −Kx(t), (3.1)

is obtained by finding the gain K that minimizes the quadratic cost function

J =

∞∑
t=0

x(t)TQx(t) + ρ∆u2(t), (3.2)

in which Q ∈ RnA×nA is a positive semi-definite matrix and ρ is a positive scalar quadratic cost weight.

In the case of a multi-variable system with several inputs, ρ ∈ RnB×nB . K is given by

K = (I + ρ−1BTPB)−1ρ−1BTPA, (3.3)

with P denoting the positive definite solution of the algebraic Riccati equation. In MATLAB the state

feedback gain K is given by the dlqr function from the Control Systems Toolbox.

3.1.2 Linear-Quadratic Estimator

In the previous section, it was assumed that the system state was accessible, which is not true

most of the times. In this study, since there is no access to the state, it is necessary to obtain

an indirect measure of it. In order to do so, one begins by defining an optimal Linear-Quadratic

Estimator (LQE), which provides estimates of the state x̂. The state estimate is given by

x̂(t|t) = Ax̂(t− 1|t− 1) +B∆u(t− 1) +M [∆y(t)− C(Ax̂(t− 1|t− 1) +B∆u(t− 1))], (3.4)
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in which M is the optimal gain matrix obtained by minimizing a cost function that depends on the

estimator covariance matrices QE and RE related with the process and measurement noises [16]. M

is given by

M = PCT (CPCT +RE)−1, (3.5)

with P denoting the positive definite solution of the algebraic Riccati equation. In MATLAB, the ob-

server gain M is computed using the function dlqe from the Control Systems Toolbox. The state

estimates computed by the observer take into consideration the reference signal r, in order to tackle

the reference tracking problem. The signal is added to expression (3.4),

x̂(t|t) = Ax̂(t− 1|t− 1) +B∆u(t− 1) +M [∆y(t)−C(Ax̂(t− 1|t− 1) +B∆u(t− 1))]−Mr(t), (3.6)

which can be written as

x̂(t|t) = ΦE x̂(t−1|t−1)+ΓE∆u(t−1)−M(e(t)), ΦE = A−MCA, ΓE = B−MCB, e(t) = r(t)−∆y(t).

(3.7)

3.1.3 Integral action

In order to guarantee that the system response follows the reference signal, the control design

requires the inclusion of an integrator, defined by

xI(t) =
Ts
q − 1

e(t)⇐⇒ xI(t+ 1) = xI(t) + Tse(t), (3.8)

in which e(t) is the output error defined by e(t) = r(t) −∆y(t), r(t) is the reference signal and Ts is

the sampling time, defined as Ts = 1s. The state-space model of the system is now described by

x̄(t+ 1) = Āx̄(t) + B̄∆u(t), x̄ =

[
x
xI

]
, Ā =

[
A 0
−TsC I

]
, B̄ =

[
B
0

]
, (3.9)

with the system output being written as

∆y(t) = C̄x̄(t), C̄ =
[
C 0

]
. (3.10)

Expressions (3.8) and (3.9) define the augmented state-space model of the system with integral

action, which is used in the computation of manipulated variables. The LQR takes into account the

augmented state-space matrices (Ā, B̄, and C̄) to compute the manipulated variables, that can be

written as

∆u(t) = −
[
K KI

] [ x(t)
xI(t)

]
, (3.11)

with [
K KI

]
= (I + ρ−1B̄T P̄ B̄)−1ρ−1B̄T P̄ B̄, (3.12)

in which P̄ denotes the algebraic solution of the Riccati equation using the augmented state-space

model. Since this augmented state-space model is unobservable [16], the cost function defined by

(3.2) needs to be rewritten, in order to include a term that depends on the integrator state xI and on

a matrix QI with dimensions nA × nA,

J =

∞∑
t=0

x̄(t)T Q̄x̄(t) +∆u(t)T ρ∆u(t), Q̄ =

[
Q 0
0 QI

]
, QI = I. (3.13)
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Regarding the LQE, the computation of the observer gain M takes into account the original state-

space model defined in (2.3) and thus the formulation introduced in section 3.1.2 is still considered.

3.1.4 LQG Controller - Separation Theorem

The combination of the LQR with the LQE results in the Linear-Quadratic-Gaussian (LQG) con-

troller, as previously mentioned. While x is estimated by the LQE, since the augmented state-space

system is unobservable, the true value of the integrator state xI is considered. In order for the LQG

controller to work, the regulator and the estimator need to be design separately. According to the

Separation Theorem, it is possible to design separately the observer and the regulator, guaranteeing

that after coupling them, the closed-loop system poles are the same as the ones obtained separately.

In [16], proof that this theorem is valid in this situation is given, and thus it is possible to design the

LQR and the LQE separately.

The schematic representation of the LQG controller applied to the system is shown in figure 3.2.

Figure 3.2: Schematic representation of the LQG controller with integral action applied to a linear incremental
model.

3.2 Single gate LQG controller

After describing the theoretical background of the LQG controller, the first algorithm developed was

applied to the first pool of the canal, taking into consideration the SISO model identified in section 2.2.

The LQR and LQE definition requires an initial step in which the suitable controller parameters, ρ, RE ,

and QE , are defined. In order to find the suitable parameters, several experiments were conducted

with different combinations of values, whose results are represented in figure 3.3. In order to verify

the influence of ρ, experiments were conducted with RE = 1 and q = 1. Higher values of ρ result in

a slower system response, while lower values are associated to faster system response with more

oscillations. In this scenario, the suitable value for ρ is the one that results in a compromise between

the fastest possible system response with less oscillations. Taking into consideration the results rep-

resented in figure 3.3, the value chosen was ρ = 1000.

With a value defined for ρ, it is still needed to define the estimator, which requires two covariance

matrices RE and QE to compute the optimal observer gain M . In the SISO model, RE is a positive

constant and QE is a matrix defined as q2BBT . With ρ = 1000 experiments were conducted to
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determine the influence of the estimator parameters. By maintaining RE = 1, it is possible to see that

an higher value of q results in a faster system response with more oscillations and higher overshot,

and thus the value chosen was q = 1. Similar experiments were conducted with the values already

defined for ρ and q but with different values forRE . This parameter as an effect on the estimator similar

to the effect of ρ in the regulator, and as it is possible to verify, an higher value of RE results in a slower

system response while lower values are associated to a faster response with more oscillations. The

combination of values for the LQG controller parameters is ρ = 1000, q = 1 and RE = 100. In figure

3.4 it is represented the closed-loop response of the controlled SISO system composed by the first

pool and corresponding gate with the parameters defined above.
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Figure 3.3: LQG controller parameter tunning - Results of the experiments conducted to find the best com-
bination of parameters. Closed-loop response of the SIMULINK non-linear canal model, considering only the
first subsystem composed by the first pool and gate. The remaining three gates were kept at their equilibrium
positions.
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Figure 3.4: Closed-loop response of the SIMULINK non-linear canal model, considering only the first subsystem
composed by the first pool and gate, controlled by the SISO LQG controller with ρ = 1000, q = 1 and RE = 100.
The remaining three gates were kept at their equilibrium positions.
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3.3 Adaptive single gate LQG controller

After defining the LQG controller, a corresponding adaptive strategy based on the same algorithm

was developed. This adaptive algorithm is basically divided into two steps:

• Identification: Estimation of SISO model parameters using the RLS algorithm 2.1 with variable

exponential forgetting;

• Control: Execution of LQG controller applied to a SISO model, defined in section 3.2, that takes

into account a model obtained from the parameter estimates.

The identification RLS algorithm takes into account incremental input and output data, ∆u, and

∆y, at each time instant t to provide estimates of the system parameters. The model orders are

defined in section 2.2, and in order to guarantee that the estimates are closer to convergence, during

a pre-specified period of time tI , only the identification step is activated. During that time period, the

system system is being excited by a PRBS signal of amplitude 0.01m that remains active during the

whole experiment. The period of time considered was tI = 7 × 104s. After the initial period of time,

the controller step is activated and the two steps are combined sequentially, with the RLS algorithm

providing the parameter estimates used to define the SISO model that is taken into account by the

LQG controller. This strategy is represented in figure 3.5. The controller parameters considered are

ρ = 1000, q = 1 and RE = 100, with QE = qInA×nA
.

The system response obtained with this adaptive controller is represented in figure 3.6, followed

by the parameter estimates in figure 3.7, where it is possible to see that by the time the controller step

is activated these are closer to convergence.

Figure 3.5: Schematic representation of the adaptive LQG controller with integral action applied to a linear
incremental model.

3.4 Multiple gate LQG controller

After defining the LQG controller applied to the first gate and pool, it is possible to use the same

theoretical background to develop a multi-variable controller applied to the model identified in section

2.3 and described by expression (2.8). The system state x is defined as x(t) =
[
x1(t) x2(t) x3(t)

]T ,
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Figure 3.6: Open-loop and closed-loop response of the SIMULINK non-linear canal model between 6×104s and
9 × 104s, considering only the first subsystem composed by the first pool and gate, controlled by the adaptive
SISO LQG controller with ρ = 1000, q = 1 and RE = 100. The remaining three gates were kept at their
equilibrium positions. The controller step is activated at t = 7× 104s.
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Figure 3.7: Representation of the SISO parameters estimates using the Adaptive LQG controller.

in which xi is the i-th subsystem state (i-th pool) and the integrator state is defined as xI(t) =[
xI1(t)xI2(t)xI3(t)

]T . The state-space matrices are now

A =

A1 0 0
0 A2 0
0 0 A3

 , B =

B11 B12 0
B21 B22 B23

0 B32 B33

 , C =

C1 0 0
0 C2 0
0 0 C3

 , (3.14)

and as for the controller parameters these are defined as

R = ρI3×3, R̄E = REI3×3, Q̄E = q2BBT , (3.15)

in which the parameters associated with each subsystem are assumed to be equal to simplify the

controller design. In order to define the controller parameters, several experiments were conducted

with different combinations of values, with the corresponding results represented in figures 3.8-3.10.

Taking into consideration the same aspects referred in section 3.2, regarding the parameter tun-

ning of the LQG controller applied to the first subsystem, the suitable combination of values for the

parameters is ρ = 1000, q = 1, RE = 100. In figures 3.11 and 3.12 it is represented the system

response with this combination of parameters, in which it is possible to see how the output track the

corresponding reference signals and the centralized effect visible whenever occurs a variation in the

position of one gate.
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Figure 3.8: LQG controller parameter tunning ρ - Closed-loop response of the SIMULINK non-linear canal
model, considering the MIMO model. The fourth gate was kept on its equilibrium position. The experiments were
conducted with q = 1 and RE = 1.
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Figure 3.9: LQG controller parameter tunning q - Closed-loop response of the SIMULINK non-linear canal
model, considering the MIMO model. The fourth gate was kept on its equilibrium position. The experiments were
conducted with ρ = 1000 and RE = 1.

3.5 Adaptive multiple gate LQG controller

The MIMO LQG controller defined in the previous section is now considered in the formulation of

an adaptive centralized multi-variable control strategy. This strategy is similar to the adaptive algo-

rithm introduced in section 3.3, regarding the sequence of two main blocks: an identification algorithm

to provide estimates of the system parameters and a control algorithm that takes into account a model

built with those estimates. During a period of time, denoted tI , only the identification step is activated,

and in this case, due to the higher complexity of the model (in terms of number of parameters), the

duration was increased to tI = 1× 105s. This allows the estimates to be closer to convergence when

the control step is activated, avoiding eventual identification issues that may prevent the controller

from stabilizing the system. During this time period each subsystem, composed by a pool and its cor-
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Figure 3.10: LQG controller parameter tunning RE - Closed-loop response of the SIMULINK non-linear canal
model, considering the MIMO model. The fourth gate was kept on its equilibrium position. The experiments were
conducted with ρ = 1000 and q = 1.
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Figure 3.11: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed
of the first three gates, controlled by the MIMO LQG controller with ρ = 1000, q = 1 and RE = 100. The fourth
gate was kept at its equilibrium position. (Output and Reference signals)

responding gate, is excited with a PRBS signal of amplitude 0.01m. The signal remains active during

the whole experiment, guaranteeing that the input is being constantly excited, to prevent identifica-

tion issues such as the covariance blow-up. The neighbouring input signals are asynchronous with

the purpose of identifying the influence of each subsystem in its neighbours, similar to the process

defined in section 2.3. This strategy is also represented by figure 3.5 and the controller parameters

considered are ρ = 1000, q = 1 and RE = 100, with R = ρI3×3, R̄E = REI3×3, and Q̄E = qI3×3.

During the controller definition it was verified that removing the linearization of the input provided

better results with the adaptive algorithm, since that new variable ”filtered” some of the excitation

that is required by the RLS algorithm to estimate the parameters. Therefore, the following adaptive

strategies based on the distributed LQG algorithm and on predictive controllers will not contemplate
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Figure 3.12: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed
of the first three gates, controlled by the MIMO LQG controller with ρ = 1000, q = 1 and RE = 100. The fourth
gate was kept at its equilibrium position. (Input signals)

the linearization of the manipulated variable. The results obtained are represented in figures 3.13 and

3.14, in which it is possible to verify that the outputs track the corresponding reference signals and

the centralized behaviour of the system whenever occur variations in its subsystems. The parameters

estimates are represented in figure 3.15.
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Figure 3.13: Open-loop and closed-loop response of the SIMULINK non-linear canal model, considering the
system composed of the first three gates, controlled by the adaptive MIMO LQG controller with ρ = 1000, q = 1
and RE = 100. The fourth gate was kept at its equilibrium position. The controller step was switched on at
1× 105s. (Output and Reference signals)
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Figure 3.14: Open-loop and closed-loop response of the SIMULINK non-linear canal model, considering the
system composed of the first three gates, controlled by the adaptive MIMO LQG controller with ρ = 1000, q = 1
and RE = 100. The fourth gate was kept at its equilibrium position. The controller step was switched on at
1× 105s. (Input signals)
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(a) Parameter estimates of the first subsystem.
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(b) Parameter estimates of the second subsystem.
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(c) Parameter estimates of the third subsystem.

Figure 3.15: Representation of the MIMO parameters estimates using the adaptive LQG controller between
9× 104s and 1.2× 105s. The control step is switched on at 1× 105s.
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This chapter is dedicated to the definition of a distributed LQG control strategy based on an itera-

tive procedure that relies on the subsystems coordination, while the local controllers negotiate in order

to reach a consensus. This strategy takes into consideration the MIMO state-space model identified

in section 2.4, in which the inputs of neighbouring systems and the flow of the lateral off-takes are

treated as accessible disturbances.

4.1 Control Law definiton

The state model considered in this section is the model defined by (2.15), in which v(t) and Q(t)

denote the accessible disturbances regarding the manipulated variables of neighbouring subsystems

and the flow of the lateral off-takes. In order to simplify the notation, the SS model described by (2.15)

can be written as

x(t+ 1) = Ax(t) +Bv(t) + Γd(t), ∆u(t) = Cx(t), (4.1)

with

Γ =
[
Φv Γd

]
, (4.2)

in which the entries of Φv are the vectors Bij with i 6= j, which denote the effect of neighbouring

manipulated variables and the entries of Γd are the vectors Bij that represent the effect of the lateral

off-take flow. The disturbances are denoted by d and defined as

d(t) =

[
v(t)
Q(t)

]
=
[
vi−1(t) vi(t) vi+1(t) Qi−1(t) Qi(t) Qi+1(t)

]T
. (4.3)

The SS model described above represents each subsystem i, and with integral action, expression

(4.1) is written as

x̄(t+ 1) = Āx̄(t) + B̄v(t) + Γ̄d(t), ∆u(t) = C̄x̄(t), (4.4)

with Γ̄ =
[
Γ 0

]T , and Ā, B̄, and C̄ are defined by (3.9-3.10). The controller structure is represented

in figure 4.1, in which it is possible to verify how the local control agents communicate with each other.

Figure 4.1: Schematic representation of the distributed controller structure.

At each time instant t, each controller has access to the manipulated variables of its neighbours

and to the flow of the lateral off-takes of the respective pool and of neighbouring susbsystems. This
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information exchange between local control agents is crucial to the coordination procedure. The

control strategy introduced in this section was already studied in [15] and [16]. The control law is

obtained by minimizing the quadratic cost function defined in (3.13), taking into consideration the new

SS MISO model defined by (4.4). The solution for this minimization problem is obtained by applying

the discrete-time version of the Pontryagin Minimum Principle, described in the studies previously

mentioned and in appendix B.

Taking into account the performance index defined by (B.2) and the cost function (3.2), it is possible

to write the Hamiltonian function as

H(t) = λT (t)[Āx̄(t) + B̄v(t) + Γ̄d(t)]− 1

2
[x̄(t)T Q̄x̄(t) + vT (t)ρv(t)], (4.5)

in which λ is the co-state. According to the Pontryagin Minimum Principle, the solution of the stationary

condition with respect to v is given by

∂H(t)

∂v(t)
= λT (t+ 1)B̄ − ρv(t) = 0 ⇔ v(t) = ρ−1B̄Tλ(t+ 1). (4.6)

Assuming that λ(t) = −P̄ x̄(t) + g, with P̄ being a nĀ× nĀ matrix and g is a vector related with the

accessible disturbances, it is possible to compute, at each time instant t, the manipulated variables

v(t) as

v(t) = −ρ−1B̄T P̄ [Āx̄(t) + B̄v(t) + Γ̄d(t)] + ρ−1B̄T g. (4.7)

The previous expression can be solved with respect to v(t), resulting in

v(t) = −(I + ρ−1B̄T P̄ B̄)−1ρ−1B̄T P̄ Āx̄(t) + (I + ρ−1B̄T P̄ B̄)−1ρ−1B̄T [g − P̄ Γ̄d(t)], (4.8)

and it can be simplified into

v(t) = −
[
K KI

]
x̄(t) + vff (t), (4.9)

in which vff is the vector of feedforward control variables. The computation depends on the partial

derivative of the Lagrangian L with respect to the augmented system state x̄ and on the co-state

and closed-loop state equations. The computation is described in detail in [16] and the resulting

expression for the feedforward control action vff is

vff (t) = Kffd(t) = (I + ρ−1B̄T P̄ B̄)−1ρ−1B̄T [Φ− P̄ Γ̄]d(t), (4.10)

with

Φ = −I + ĀT P̄ [I + B̄ρ−1B̄T P̄ ]−1B̄ρ−1B̄T − ĀT−1
ĀT P̄ [I + B̄ρ−1B̄T P̄ ]−1Γ̄, (4.11)

P̄ = ĀT P̄ [I + B̄ρ−1B̄T P̄ ]−1Ā+ Q̄ (4.12)

The control law defined by (4.9) is represented in figure 4.2.

35



Figure 4.2: Schematic representation of a local controller.

4.2 Coordination procedure

After defining the control law for each local agent it is important to develop a coordination pro-

cedure that guarantees that the manipulated variables are computed taking into account information

provided by neighbouring controllers. The distributed procedure considered in this study was defined

in [3] and [22] and it is applied to serially chained systems, like the water canal. This coordination

algorithm is an iterative procedure in which the local control agents communicate with each other to

compute the corresponding manipulated variables. In order to define the algorithm, the letter j will

be used to define the iterations, i to identify the subsystem and t is the discrete time. The procedure

begins by initializing the gate positions with the previous values, while the flow of the lateral off-takes

is read from the sensors,

di,j=0(t) =
[
vi−1(t− 1) vi(t− 1) vi+1(t− 1) Qi−1(t) Qi(t) Qi+1(t)

]T
. (4.13)

During a number of predefined iterations nI , the expression (4.9) is used to compute the new manip-

ulated variables vi,j(t),

vi,j(t) = −
[
K KI

]
x̄(t) +Kffdi,j(t). (4.14)

When the nI -th iteration is performed, the optimal manipulated variables are defined as vi,opt(t) =

vi,nI
(t). Although the disturbance vector d is composed by accessible disturbances associated with

the gate positions v and with the flows of lateral off-takes Q, the iterative procedure considers only

the gate positions, and thus it can be written as

vi,j(t) =
[
K KI

]
x̄(t) +

[
Kff,v Kff,Q

]
di,j(t), (4.15)

di,j(t) =

[
vj(t)
Q(t)

]
=
[
vi−1,j(t) vi,j(t) vi+1,j(t) Qi−1(t) Qi(t) Qi+1(t)

]T
. (4.16)

This iterative procedure is represented in figure 4.3, and since the local control agents find its

optimal manipulated variable with knowledge of their neighbors decisions, this procedure converges

to the Nash Equilibrium [22], a situation where no local controller benefits by changing only its manip-

ulated variable. In order for the algorithm to reach convergence, the spectral radius of Kff,v needs to

satisfy the condition

max|λ(Kff,v)| < 1, (4.17)

where λ(Kff,v) represents the eigenvalues of the matrix Kff,v, defined as

Kff =

 0 Ψ1Φ̄v,12 0
Ψ2Φ̄v,22 0 Ψ2Φ̄v,23

0 Ψ3Φ̄v,32 0

 , (4.18)
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Figure 4.3: Schematic representation of the coordination procedure.

with Ψi = −(ρi + B̄Ti P̄iB̄i)
−1B̄i

T
P̄i.

4.3 Parameter Tunning
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Figure 4.4: Spectral radius of Kff,v as a function of the quadratic cost weights ρi. It is assumed that the
quadratic weights of the three pools have the same value

In order to verify the condition (4.17), several experiments were conducted with different values

of quadratic weights ρ. In order to simplify the controller design it is assumed that the quadratic

weights of the three pools, ρi, have the same value. The observer parameters are also equal for the

three subsystems and these are defined as RE,i = 1 × 103 and qi = 1. The number of iterations nI

considered was 10 and the results are represented in figure 4.4, in which it is possible to see that

the condition is valid for ρ between 1 and 1 × 105. Maintaining nI = 10 and the same values for the

observer, the system response for different values of ρi is represented in figures 4.6 and 4.6. It is

possible to see that the closed-loop response of the system is only acceptable for ρi ≥ 5× 103, such

that for lower weights the system response was unstable, and thus the value defined was ρi = 1×104.

The results of an experiment conducted with all the parameters defined is represented in figures 4.7

and 4.8.
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Figure 4.5: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed
of the first three gates, controlled by the distributed LQG controller for several values of ρi, with q = 1, nI = 10
and RE = 1000. The fourth gate was kept at its equilibrium position. (Output and Reference signals)
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Figure 4.6: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed
of the first three gates, controlled by the distributed LQG controller for several values of ρi, with q = 1, nI = 10
and RE = 1000. The fourth gate was kept at its equilibrium position. (Input signals and flows of lateral off-takes)

4.4 Adaptive Distributed LQG controller

The adaptive distributed control strategy based on the D-LQG algorithm previously defined follows

the same principles of the adaptive multi-variable algorithm in section 3.5. The strategy is therefore

based in a two-step sequence in which first the RLS estimates the parameters using the input and

output data obtained from the plant, and after that, a model defined with those estimates is considered

in the controller step, with the D-LQG algorithm.

During a pre-specified period of time tI , only the identification step is working, in order to guar-

antee that the estimates are closer to convergence by the time the controller is activated. Without

guaranteeing this, it is possible to occur either stability or identification issues, and this was one of the

major difficulties while dimensioning the controller. During this period of time, the system is excited by

a PRBS signal of amplitude 0.01m around the equilibrium points, which is maintained active during the
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Figure 4.7: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed of
the first three gates, controlled by the distributed LQG controller with ρi = 10000, q = 1, nI = 10 and RE = 1000.
The fourth gate was kept at its equilibrium position. (Output and Reference signals)

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.1

0
0.1
0.2

u 1 / 
[m

]

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.1

0
0.1
0.2

u 2 / 
[m

]

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.1

0
0.1
0.2

u 3 / 
[m

]

0 1000 2000 3000 4000 5000 6000 7000 8000
0
1
2
3

x 10
−3

Q
1 / 

[m
3 /s

]

0 1000 2000 3000 4000 5000 6000 7000 8000
1
2
3
4

x 10
−3

Q
2 / 

[m
3 /s

]

0 1000 2000 3000 4000 5000 6000 7000 8000
2
3
4
5

x 10
−3

Q
3 / 

[m
3 /s

]

Time / [s]

Figure 4.8: Closed-loop response of the SIMULINK non-linear canal model, considering the system composed of
the first three gates, controlled by the distributed LQG controller with ρi = 10000, q = 1, nI = 10 and RE = 1000.
The fourth gate was kept at its equilibrium position. (Input signals and flows of lateral off-takes)

Figure 4.9: Schematic representation of the adaptive D-LQG controller with integral action applied to a linear
incremental model.
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whole experiment to guarantee that the system is being excited, in order to prevent identification is-

sues. The period of time in which only the identification step is activated was defined as tI = 4×104s.

The controller parameters were defined as ρi = 5 × 104, RE,i = 1 × 103, qi = 1, and nI = 10. The

parameters were equal for the three subsystems and the algorithm is defined in detail bellow and it is

represented in figure 4.9.

Algorithm 4.1 Adaptive D-LQG

Initialization of parameter estimates (θ1, θ2, θ3) and respective covariance matrices (P1, P2, P3).

for each time instant t
Computation of parameters θi(t), using algorithm 2.1 and input and output data (∆u(t), ∆y(t)).
Define the augmented models of each subsystem i, using the parameter estimates Θi(t)

x̄i(t+ 1) = Āix̄(t) + B̄ivi(t) + Γ̄idi(t)
∆y(t) = C̄ix̄i(t)

if t > tI then
Regulator and Observer parameters: ρi, RE,i, qi
Number of iterations: nI
Computation of Regulator and Integrator gains

[
Ki KI,i

]
Computation of Observer gain Mi

Computation the state estimates x̂i

vfb,i(t) =
[
Ki KI,i

] [ x̂i(t)
xI,i(t)

]
Initialize manipulated variables vi,j=0(t) = vi(t− 1)
for j = 1 : nI

vff,i,j(t) =
[
Kff,i,v Kff,i,Q

]
di,j(t)

end
Computation of manipulated variables: vi(t) = vfb,i(t) + vff,i,nI

(t)

The results obtained during an experiment with the algorithm 4.1 are represented in figures 4.10,

4.11 and 4.12. In figures 4.10 and 4.11 it is represented the open-loop and closed-loop response

of the system controlled by the adaptive D-LQG algorithm. It is possible to verify how the outputs of

the three pools converge to the reference signals, with the parameter estimates represented in figure

4.12. Comparing with the non-adaptive algorithm, the system response adaptive strategy appears

to be a close approximation, even with an additional small amplitude PRBS signal in the input of the

system. Regarding the parameters estimates, these begin with the values found in section 2.4, and

when the controller step is activated they are closer to convergence.
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Figure 4.10: Open-loop and closed-loop response of the SIMULINK non-linear canal model, considering the
system composed of the first three gates, controlled by the adaptive D-LQG controller with ρ = 5 × 104, q = 1
and RE = 1 × 103. The fourth gate was kept at its equilibrium position. The controller step was switched on at
4× 104s. (Output and Reference signals)
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Figure 4.11: Open-loop and closed-loop response of the SIMULINK non-linear canal model, considering the
system composed of the first three gates, controlled by the adaptive D-LQG controller with ρ = 5 × 104, q = 1
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(a) Parameter estimates of the first subsystem.
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(b) Parameter estimates of the second subsystem.
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(c) Parameter estimates of the third subsystem.

Figure 4.12: Representation of the MISO parameters estimates using the adaptive D-LQG controller. The control
step is switched on at 4× 104s.
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This chapter provides the theoretical background required to develop the adaptive and non-adaptive

MPC controllers, with a brief introduction followed by the algorithms description for both SISO and

MIMO linear systems. This chapter is also dedicated to the adjustment of control parameters and

features examples obtained with both linearized and canal models.

5.1 Problem formulation of Model Predictive Control

Model Predictive Control (MPC) or Receding Horizon Control (RHC) is a feedback strategy in

which the manipulated variable is obtained using predictions of the system dynamics that take into

account its model, with the advantage of handling both input and state constraints. Its control law

consists in the optimization of a quadratic cost function that depends on the forecasts of the system

behavior during a predefined finite horizon N .

The application of several MPC strategies to control the water delivery canal considered in this

study [6], [17], provide an interesting background and motivation to the development of adaptive

strategies. The algorithms developed take into account the linear incremental models identified

around an equilibrium point of the system, as shown in Chapter 2. The problem formulation of linear

MPC algorithms is described in [30] and it begins by considering a linear model such as

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), umin ≤ Du(t) ≤ umax, ymin ≤ Cx(t) ≤ ymax. (5.1)

Figure 5.1: Representation of the variables in Model Predictive Control [31].

Figure 5.1 (Lemos, J. M. et al., 2014) represents the variables taken into account by the MPC

control algorithm and the process of computing the manipulated variable based on predictions of the

system behavior. The objective is to drive the system to a goal state by controlling the input and

output variables of the system, u and y, taking into account the input and output constraints. Although

the cost function considered in the design of the LQG controllers is applied to an infinite horizon, in
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this alternative one considers a quadratic cost function associated to a predefined horizon N [30]

that slides alongside with the current state estimates, while taking into account the constraints. The

objective is to find a sequence of manipulated variables that minimizes the cost function

JN =

N∑
i=1

(y(t+ i)− r(t+ i))T (y(t+ i)− r(t+ i)) + ρu2(t+ i− 1). (5.2)

The advantages of the RHC strategy when compared with the infinite horizon control are described

in [32], and include the handling of constraints, the applicability to a large class of systems, and the

fact that it only depends on future values of the reference and of the system parameters in a finite

time interval.

5.2 Single gate MPC controller

In order to design a MPC controller for the first pool and corresponding gate, one needs to consider

the SISO incremental model defined in (2.3). Since the computation of manipulated variables takes

into account an incremental model, the input and output of the system are denoted as ∆u and ∆y,

which represent the variations around an equilibrium point.

5.2.1 SISO Predictor Model

The cost function of the MPC algorithm requires a model for the system predictor. In order to

define the predictor one needs to write the SS model equations for the several t time instants

x(t+ 1) = Ax(t) +B∆u(t)

x(t+ 2) = A2x(t) +AB∆u(t) +B∆u(t+ 1)

x(t+ 3) = A3x(t) +A2B∆u(t) +AB∆u(t+ 1) +B∆u(t+ 2)

x(t+ i) = Aix(t) +

i∑
j=1

Aj−1B∆u(k + i− j).

(5.3)

The predictor i steps ahead is obtained using the relationship between ∆y and x described by

(2.3), which results in

∆y(t+ i) = CAix(t) +

i∑
j=1

CAj−1B∆u(t+ i− j), (5.4)

in which wj = CAj−1B are denoted as the Markov parameters.

In order to simplify the notation and to design the MPC controller, one may write the predictor

model in matrix form. Let Y be a vector with the system outputs from time instant t + 1 to t + i and

∆U a vector with the manipulated variables computed from instant t to t+ i− 1, defined as

Y =


∆y(t+ 1)
∆y(t+ 2)

...
∆y(t+ i)

 , ∆U =


∆u(t)

∆u(t+ 1)
...

∆u(t+ i− 1)

 . (5.5)
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One may also define W and Π as

W =


w1 0 ... 0
w2 w1 ... 0
... ... ... ...
wi wi−1 ... w1

 , Π =


CA
CA2

...
CAi

 . (5.6)

Since it is not possible to access the system state with the SIMULINK model, one needs to con-

sider an estimate of the state x̂ obtained using a LQE introduced in section 3.1.2. With the matrices

defined in (5.5) and (5.6), one may write an expression for the model predictor as

Y = Πx̂(t) + W∆U. (5.7)

5.2.2 Receding horizon cost function

Taking into account the predictor model defined in (5.4), the RHC cost function (5.2) depends on

two parameters, the finite horizon N and on the cost weight ρ. Both these parameters need to be

defined before the minimization of the cost function. In the case of ρ, the value considered took into

consideration the parameter tunning process introduced in the LQG controller section, whereas for

the time horizon, several experiments were conducted with different values of N , in order to determine

its influence.

One may define the error e of the system output as

e =

∑N
t=1(y(t)− r(t))2

ts
, (5.8)

with r denoting the reference and ts the simulation time, in order to analyze how the influence of N

in the controller design. The results obtained are represented in figure 5.2, in which one may see e

decreasing with the horizon. For N < 5 the output did not track the reference. In general, the value of

e tends to decrease with an increasing horizon, although the value increases slightly for some values

of N . For N ≥ 5 the system is stable and since the computational load increases with the horizon

there is no need to select a higher value of N .

0 20 40 60 80 100
0

1

2

3

4
x 10

−3

N

e(
N

)

Figure 5.2: Variation of the error e with the horizon N for the SISO model with a quadratic weight ρ = 1000.

With the parameters defined, one needs to take into consideration the minimization of the RHC

cost function. Since this function depends on the value of the state estimate x̂ in the current time
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instant, which is known a priori, and on the manipulated variables, one may consider it as a function

of the sequence of manipulated variables. The solution for the minimization problem depends on

whether the constraints are considered or not.

Since in this dissertation the adaptive controllers require an identification step followed by the com-

putation of the manipulated variables, considering constraints would increase the computational load

and thus these are not taken into account. Without constraints, the problem has an algebraic solution

derived in [31], and it is also possible to determine the sequence of manipulated variables using MAT-

LAB function fminunc, that finds the minimmum of a problem defined by the user. The computation of

manipulated variables for the SISO model is accomplished by MATLAB function fminunc.

5.2.3 Integral action

After performing several examples, the results obtained were similar to the ones shown in [6], with

large static error between the system output and reference. The solution found to prevent this problem

was to introduce an integrator in series with the MPC controller, and thus the computed manipulated

variable is given by

z(t+ 1) = ∆u(t) + z(t), (5.9)

and the SISO model seen by the controler is represented by[
x(t+ 1)
z(t+ 1)

]
=

[
A B
0 1

] [
x(t)
z(t)

]
+

[
0
1

]
∆u(t), y(t) =

[
C 0

] [x(t)
z(t)

]
, (5.10)

which can be written in a more compact notation as

x̄(t+ 1) = Āx̄(t) + B̄∆u(t), ∆y(t) = C̄x̄(t), (5.11)

where x̄ denotes the augmented state of the system.

From the LQE point-of-view, the system is now described by

x(t+ 1) = Ax(t) +Bz(t), ∆y(t) = Cx(t). (5.12)

The matrices Π and W are now computed with the augmented model matrices Ā, B̄, and C̄ de-

fined in (5.10).

The results obtained with the linearized model after introducing integral action are shown in figure

5.3, in which the system output converges to the reference without static error. In figure 5.4 it is pos-

sible to verify the influence of the integral action with a comparison between the closed-loop system

response obtained with and without the integrator.

While implementing the MPC algorithm with integral action into the SIMULINK canal model, the

closed-loop system response shows a static error of small amplitude (around 0.005m) when varying

with respect to the equilibrium point, as shown in figure 5.5. The first gate is excited by a sequence of
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Figure 5.3: Closed-loop response of the linearized SISO model with parameters ρ = 1000 and N = 25.

square waves as reference signal while the other gates remain in their equilibrium positions. Despite

the static error, the system output tracks the reference signal and, by looking to the results obtained

with the linearized SISO model, the advantages of introducing integral action are noticeable.

The static error present in the closed-loop response of the SIMULINK canal model persisted in

all the experiments conducted with the MPC algorithms (both adaptive and non-adaptive strategies),

and a possible explanation to this error is still to be found.
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Figure 5.4: Comparison between the closed-loop response of the linearized SISO model with parameters ρ =
1000 and N = 25 with and without integral action.

5.3 Adaptive single gate MPC controller

In the previous section it was assumed that the system model was known a priori, after conducting

several experiments to identify its parameters as shown in chapter 2. In order to develop an adaptive

control strategy for the SISO MPC controller a similar approach to the one used in section 3.3 is

required. The algorithm is now divided into two steps:

• Identification: Estimation of SISO model parameters using the RLS algorithm with variable

exponential forgetting.

• Control: Execution of the MPC control strategy defined in section 5.2 with the resulting SISO

model from the previous setp.
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Figure 5.5: Closed-loop response of the SISO model simulated with the SIMULINK canal model (first gate) with
parameters ρ = 1000 and N = 25. The remaining gates were kept on their equilibrium positions.

In order to provide better estimates of the system parameters before connecting the controller,

during an initial pre-specified period of time only the identification step is working. At each time in-

stant t, the RLS algorithm provides estimates of the system parameters using the current input and

output data, ∆u and ∆y retrieved from the SIMULINK canal model. After the initial period of time in

which only this step is activated, in order to ensure that the estimates are converging, the controller

step begins by defining an augmented model with the matrices defined in (5.10) using the estimates

obtained in the previous step.

The augmented model is then used to compute the predictor matrices Π and W defined in (5.6).

The predictor (5.7) is then used to minimize the RHC cost function using fminunc. This sequence of

steps is represented in figure 5.6.

The results obtained with the Adaptive MPC algorithm are shown in figures 5.7, 5.8 and 5.9. Figure

5.7 shows both the open-loop and closed-loop system response from t = 6 × 104s to t = 8 × 104s,

in which at tI = 7 × 104s the controller is switched on. During the period of time in which only the

identification step is working, the system is excited by a pre-defined input signal in order to estimate

its parameters. When the controller is connected, a PRBS signal of small amplitude, 0.001m, is added

to the computed manipulated variable to provide a more exciting input signal. As it is possible to verify,

even with the introduction of integral action, the output tracks the reference with static error.

In figure 5.8 the parameters estimates obtained during the experiment are represented and it is

possible to verify that when the controller is switched on, the estimates are converging, even though

parameters, a4 and b2, appear to require more time and excitation to converge. Figure 5.9 shows

how the controller reacts to existing disturbances, which in this case are caused by the opening of

the lateral offtake valve at t = 7.2× 104s. The problem with the integral action is also reflected in this
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Figure 5.6: Schematic representation of the Adaptive MPC algorithm applied to both SISO and centralized MIMO
models.
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Figure 5.7: Open-loop and closed-loop response of the SISO model simulated with the SIMULINK canal model
(first gate) with parameters ρ = 1000 and N = 25. In this adaptation strategy, during the first 7 × 104s only the
identification step is working and then the MPC controller is switched on. The remaining gates were kept on their
equilibrium positions.

0 2 4 6 8

x 10
4

−1

−0.5

0

0.5

a
1

0 2 4 6 8

x 10
4

−0.5

0

0.5

a
2

0 2 4 6 8

x 10
4

−0.1

−0.05

0

0.05

0.1

a
3

0 2 4 6 8

x 10
4

−0.1

−0.05

0

0.05

0.1

a
4

0 2 4 6 8

x 10
4

−0.5

0

0.5

b
1

Time / [s]
0 2 4 6 8

x 10
4

−0.2

−0.1

0

0.1

0.2

b
2

Figure 5.8: Representation of the SISO parameters estimates using the Adaptive MPC controller.
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Figure 5.9: Open-loop and closed-loop response of the SISO model simulated with the SIMULINK canal model
(first gate) with parameters ρ = 1000 and N = 25. In this adaptation strategy, during the first 7 × 104s only the
identification step is working and then the MPC controller is switched on. The lateral offtake valve is open at
7.2× 104s with a constant flow of 0.001m3/s. The remaining gates were kept on their equilibrium positions.

example, since even though the controller reacts to the valve opening, the water level in the first pool

tends to decrease.

5.4 Multiple gate MPC controller

The previous sections were dedicated to the theoretical background and definition of a MPC con-

troller applied only to the first gate of the water canal while the remaining gates were kept at their

equilibrium positions. It is possible, using a similar formulation, to design a centralized MPC algorithm

to be implemented into the first three gates, using the MIMO model defined in (2.8).

The introduction of integral action with the centralized MIMO MPC requires an augmented system

state defined as

x̄(t) =
[
x1(t) z11(t) z12(t) x2(t) z21(t) z22(t) z23(t) x3(t) z32(t) z33(t)

]T
, (5.13)

in which zij with i = j are the manipulated variables defined in (5.9) and zij with i 6= j are copies

of the manipulated variables of subsystem j associated with the i-th subsystem. The augmented

matrices are written as

Āi =

[
Ai Bi
0 I

]
, B̄i =

[
0
I

]
, C̄i =

[
Ci 0

]
, (5.14)

with Bi defined as a matrix with the input matrices Bij of the corresponding subsystem i as entries.

The augmented state matrices are then used to compute the predictor model followed by the cost

function minimization using fminunc, as described in section 5.2.

The cost-function is now multi-variable and it is necessary to define values for the quadratic

weights related with each subsystem ρi and for the time horizon N . For the quadratic cost weights
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Figure 5.10: Variation of the total output error et with different combinations of quadratic cost weights ρi. In this
experiment the value of ρ3 was fixed in 400 and N = 20.

several experiments were conducted with different combinations of values of ρi from 100 to 800. In

figure 5.10 it is represented the variation of the total output error for different combinations of ρ1 and

ρ2, keeping fixed the value of ρ3. The combination of quadratic cost weights that results in a smaller

output error is ρ1 = 200, ρ2 = 600 and ρ3 = 400. A curious fact regarding the results obtained is

that the total output error et appears to not be influenced by the first quadratic cost weight ρ1. The

influence of the horizon is studied in this case, in terms of the total error variable et, which is computed

as

ei =

∑N
t=1(yi(t)− ri(t))2

ts
, et =

e1 + e2 + e3

3
, (5.15)

in which ei is the output error of the i-th subsystem and ts is the simulation time. Several experiments

were therefore conducted with different values of N in order to determine how it influences the system

output error. The results obtained are represented in figure 5.11 in which the output errors of the three

subsystems and of the total system are represented for several values of N , between 10 and 100. For

N < 10, the higher-amplitude oscillations in the output signal during the transitory regime increase

the value of the output error and thus these values were not represented. Due to the computational

load of the centralized MPC algorithm, it is not necessarily better to select the value of N for which the

output error is minimum. Since for N between 30 and 40 the total output error appears to be closer

to its minimum value, the selected value for the horizon N is 35.

With values defined for N and for the weights ρi two experiments were conducted, the first to

test the reference tracking and the second one to test the rejection of disturbances. In figures 5.12

and 5.13 it is shown how the output converges to the reference, in the linearized model, and the

corresponding input signals. The interaction between subsystems in the centralized model is seen

when the water level in each pool varies, which results in variations in the water level of neighbouring

subsystems. When this occurs, the controller acts upon the disturbance in order to drive the output

towards the reference. In figures 5.14 and 5.15 the experiment was conducted in the SIMULINK canal

model. In both cases it is possible to see that the outputs of the three subsystems converge to the
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Figure 5.11: Variation of the error ei of the i-th subsystem with the horizon N for the MIMO model with quadratic
weights ρ1 = 200, ρ2 = 100, ρ2 = 200.

respective reference and how these systems interact when the input/output of one varies. In the case

of the SIMULINK canal model there is again some static error when the output varies alongside its

equilibrium point. The error between the output and reference signals seems to vary accordingly with

the current water levels of the subsystems, which may indicate that it is influenced by the interaction

between control agents.
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Figure 5.12: Closed-loop response of the linearized MIMO model with parameters ρ1 = 200, ρ2 = 600, ρ3 = 400
and N = 35. (Output and Reference signals)

The experiment conducted begins with all three gates in their equilibrium position followed by the

opening of the first gate in order to track the reference. It is possible to see how the second system

reacts to this variation (t = 500s), in which the manipulated variable is computed in order to compen-

sate the disturbance related with the interaction between subsystems. At the same time instant, the

third gate is mostly affected by the disturbance in the second pool.
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Figure 5.13: Closed-loop response of the linearized MIMO model with parameters ρ1 = 200, ρ2 = 600, ρ3 = 400
and N = 35. (Input signal)
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Figure 5.14: Closed-loop response of the MIMO model in an experiment conducted in the SIMULINK canal
model with parameters ρ1 = 200, ρ2 = 600, ρ3 = 400 and N = 35 (Output and Reference signals)

Compared with the algorithm presented in section 5.2, the computational load and time increases

when applying this algorithm, mostly due to the larger dimension of the system. The minimization of

the quadratic cost function is affected by the size of N , since this parameter influences the matrices

used in the calculations. In terms of computational load, an analytical solution could improve the
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Figure 5.15: Closed-loop response of the MIMO model in an experiment conducted in the SIMULINK canal
model with parameters ρ1 = 200, ρ2 = 600, ρ3 = 400 and N = 35 (Input signals)

performance of the algorithm, since it is no longer required to use MATLAB function fminunc.

5.5 Adaptive multiple gate MPC controller

An adaptive version of the centralized multi-variable MPC algorithm is introduced in this section,

with a similar structure as the one represented in figure 5.6. Regarding the algorithm introduced in

the previous section, nothing changes in the control step, or to be more precise in the computation of

the manipulated variables ∆ui, which are still obtained with MATLAB function fminunc. The identifi-

cation step takes into account the parameters estimates of the three subsystems individually. During

the execution of the algorithm, at each time instant t there are three executions of the RLS algorithm

associated with the three subsystems that take into account the input and output data required to

estimate the parameters. This way it is possible to define the system matrices as in (3.14).

Although this strategy has the advantage of being adaptable to the dynamic behavior of the sys-

tem, the computational load increases with the introduction of the identification step. In the previous

section it was already verified this issue with the usage of fminunc and thus it is still necessary to

have this in mind to chose an appropriate value for N , which remains the same. During an initial

period of time, tI = 1 × 105s, only the identification step is working and thus the system is operating

in open-loop with an input excitation defined by the user. After this period of time, with the parameter

estimates obtained with the system open-loop response, the control step is switched on. This strategy

guarantees that the parameters estimates are converging or at least close to convergence to prevent
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issues such as instability.

The results obtained in the experiment are represented in figures 5.16 and 5.17. In order to

handle with high-frequency oscillations, visible in experiments conducted with the previously defined

quadratic cost weights, these values were increased in order to reduce the effect of the oscillations

in the system response. The combination of quadratic weights considered in this example is ρ1 =

2000, ρ2 = 2000, and ρ3 = 1000. Another possible solution for this issue is the inclusion of a low-pass

filter. After tI = 1×105s, when the controller step is activated it is possible to see that the output tracks

the reference with static error and that the water levels of each pool are disturbed by the interactions

between subsystems. For instance in t = 1.13 × 105s the output signal of the second subsystem

increases, following its reference and this produces a disturbance in the output signal of the first pool

that ends up increasing. As for the third subsystem, the variations in the second pool appear to not

introduce a relevant disturbance in the output.

The parameters estimates identified with the RLS algorithm are represented in figure 5.18. During

the experiment, while the input is being excited by a user predefined signal, the parameter estimates

converge, and by the time the control step is activated these are close to convergence. The period of

time in which only the identification step is working was increased, in comparison with the algorithm

of section 5.3, since some of the parameters required more time to converge. In figure 5.18 the

parameter estimates are represented during the time period that the control step is activated and it is

possible to see the estimates varying in instants that correspond to the input excitations.
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Figure 5.16: Open-loop and closed-loop response of the MIMO model in an experiment conducted in the
SIMULINK canal model with Adaptive MPC algorithm with parameters ρ1 = 2000, ρ2 = 2000, ρ3 = 1000 and
N = 35. In t = 105s the controller is switched on. (Output and Reference signals)
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Figure 5.17: Open-loop and closed-loop response of the MIMO model in an experiment conducted in the
SIMULINK canal model with Adaptive MPC algorithm with parameters ρ1 = 2000, ρ2 = 2000, ρ3 = 1000 and
N = 35. In t = 105s the controller is switched on. (Input signals)
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(a) Parameter estimates of the first subsystem.
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(b) Parameter estimates of the second subsystem.
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(c) Parameter estimates of the third subsystem.

Figure 5.18: Representation of the MIMO parameters estimates using the Adaptive MPC controller during the
time period the control step is switched on.

58



6
Distributed Model Predictive Control

Contents
6.1 D-MPC based on the Distributed Alternating Direction Method of Multipliers . . . 60
6.2 Adaptive D-MPC based on the Distributed Alternating Direction Method of Mul-

tipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 D-MPC with neighbouring agent coordination . . . . . . . . . . . . . . . . . . . . . 72
6.4 Adaptive D-MPC with neighbouring agent coordination . . . . . . . . . . . . . . . 75

59



This chapter is dedicated to the definition of two Distributed Model Predictive Control strategies,

with the objective of reaching a consensus between local controllers, by minimizing a global cost

function that is the sum of local cost functions, in order to improve the performance and efficiency

of the system. The first technique is based in an efficient distributed algorithm that requires less

communications to achieve a desired goal [6], [33], and the second one is a coordination algorithm

based on Game Theory concepts, similar to the one introduced in [17].

6.1 D-MPC based on the Distributed Alternating Direction Method
of Multipliers

The first D-MPC strategy to be introduced in this dissertation was already described in [6] for

input-output models. It is based on a distributed optimization algorithm named Distributed Alternating

Direction Method of Multipliers (D-ADMM) that solves problems in networks of interconnected nodes,

that represent the subsystems and that have a local cost function Ji associated with them [33]. Taking

into consideration the predictor model defined in (5.7) the local cost functions Ji at time instant t are

defined as

Ji(t) = ‖Πx̂i(t) + Wi−1,i∆U i−1 + Wi,i∆U i + +Wi+1,i∆U i+1 −Ri‖+ ρi ∗ ‖∆U i‖, (6.1)

in which Ri is the reference vector. The global cost function J is therefore the sum of all local cost

functions Ji. It is assumed that the local cost functions are only accessible by the respective node

and that communication is only allowed between neighbouring nodes. In order to minimize the global

cost function each node needs to communicate with its neighbours with the purpose of reaching a

consensus.

The network structure considered in the problem formulation of D-ADMM is represented in figure

4.1 in which a series of interconnected subsystems (nodes) Σi is associated to a local controller Ci

with a local cost function that depends on the manipulated variable of the corresponding node and

on copies of the manipulated variables of its neighbours Ji(∆U i−1, ∆U i, ∆U i+1). Considering the

multi-variable model defined by (2.8), it is possible to define the models of a subsystem i with integral

effect as 
xi(t+ 1)
zi−1(t+ 1)
zi(t+ 1)
zi+1(t+ 1)

 =

[
Ai Bi
0 I

]
xi(t)
zi−1(t)
zi(t)
zi+1(t)

+


0
1
0
0

 vi−1(t) +


0
0
1
0

 vi(t) +


0
0
0
1

 vi+1(t), (6.2)

∆y(t) =
[
C 0

] 
xi(t)
zi−1(t)
zi(t)
zi+1(t)

 , Bi =
[
Bi,i−1 Bi,i Bi,i+1

]
, ∆u(t) =

v(t)

W ∗
√

2g(hu − hd)
, (6.3)

which can be written in a more compact form as

x̄i(t+ 1) = Āx̄i(t) + B̄i,i−1vi−1(t) + B̄i,ivi(t) + B̄i,i+1vi+1(t), ∆y(t) = C̄x̄(t). (6.4)
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In the case of the first and third pool, since they limit the network and only have one neighbour,

the augmented model structure changes slightly, since there are only two manipulated variables z

considered. With the augmented state matrices it is possible to define the model predictor as

Yi = Πi


x̂i

zi−1(t)
zi(t)
zi+1(t)

+ Wi,i−1∆U i−1 + Wi,i∆U i + Wi,i+1∆U i+1, (6.5)

with

Wi,j =


C̄iB̄i,j 0 ... 0
C̄iĀiB̄i,j C̄iB̄i,j ... 0

... ... ... ...

C̄iĀ
i−1
i B̄i,j C̄iĀ

i−2
i B̄i,j ... C̄iB̄i,j

 , Π =


C̄iĀi
C̄iĀ

2
i

...
C̄iĀ

i
i

 . (6.6)

The model ”seen” by the LQE associated with subsystem i is given by

xi(t+ 1) = Aixi(t) +Bi,i−1zi−1(t) +Bi,izi(t) +Bi,i+1zi+1(t), ∆y(t) = Cx(t), (6.7)

and the corresponding state estimate can be computed as

x̂i(t) = Aix̂i(t) +Bi,i−1zi−1(t− 1) +Bi,izi(t− 1) +Bi,i+1zi+1(t− 1)−MiCix̂i(t) +Mi∆y(t). (6.8)

The local cost functions associated with each subsystem i are defined as

Ji = (Yi −Ri)T (Yi −Ri) + ρi∆U
T
i ∆U i, (6.9)

in which Y can be written in a more compact notation as

Yi = Πi


x̂i

zi−1(t)
zi(t)
zi+1(t)

+ Wi∆̄U i, Wi =
[
Wi,i−1 Wi,i Wi,i+1

]
, ∆̄U i =

∆U i−1

∆U i
∆U i+1

 . (6.10)

In order to use the D-ADMM algorithm the following conditions are required:

• Each cost function Ji : Rn → Rn is convex function over R and each set of constraints is closed

and convex;

• The problem is solvable;

• The network is connected and it does not vary with time.

Proof that these conditions [33] are valid in this system and problem are given in [6, Appendix D].

Since it is possible to use D-ADMM to solve the problem considered in this study, the next thing to

do is to define the algorithm. In [33] the D-ADMM algorithm defined, associates dual variables to the

nodes and in [34] it is shown an application of the algorithm to D-MPC.

The implementation of the D-ADMM considered in this dissertation is the one introduced in [6],

where the dual variables are associated to the edges. This requires the definition of two dual variables
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(γ1 and γ2) and of a cost weight ρA related with the cooperation part of the algorithm.

With this being said, the D-ADMM cost functions associated with each subsystem are

J1,A = J1 − γ1∆̄U1 +
ρA
2

(∆̄U1 − ∆̄U2)T (∆̄U1 − ∆̄U2), (6.11)

J2,A = J2− (γ1−γ2)T ∆̄U2 +ρA[(∆̄U2−∆̄U1)T (∆̄U2−∆̄U1)+(∆̄U2−∆̄U3)T (∆̄U2−∆̄U3)], (6.12)

J3,A = J3 + γ2∆̄U3 +
ρA
2

(∆̄U3 − ∆̄U2)T (∆̄U3 − ∆̄U2). (6.13)

The next step is to replace each Ji by the local cost functions defined in (6.9) and to write ex-

pressions (6.11), (6.12) and (6.13) in order to the corresponding manipulated variables. The resulting

expressions are given by

J1,A = ∆̄U
T
1 (WT

1 W1 + ρ̄1 +
ρA
2
I)∆̄U1 + ∆̄U

T
1 (2WT

1 (Π1x̄1 −R1)− γ1 − ρA∆̄U2) + Υ1, (6.14)

J2,A = ∆̄U
T
2 (WT

2 W2 + ρ̄2 + 2ρAI)∆̄U2 + ∆̄U
T
2 (2WT

2 (Π2x̄2−R2)− (γ1− γ2)− ρA(∆̄U1 + ∆̄U3) + Υ2,

(6.15)

J3,A = ∆̄U
T
3 (WT

3 W3 + ρ̄3 +
ρA
2
I)∆̄U3 + ∆̄U

T
3 (2WT

3 (Π3x̄3 −R3) + γ2 − ρA∆̄U2) + Υ3, (6.16)

where

ρ̄1 = ρ1

I 0 0
0 0 0
0 0 0

 , ρ̄2 = ρ2

0 0 0
0 I 0
0 0 0

 , ρ̄3 = ρ3

0 0 0
0 0 0
0 0 I

 , (6.17)

and Υi represents the terms that do not depend on the respective manipulated variable. While in

chapter 5, the minimization of the RHC quadratic cost function was computed using fminunc, in this

chapter the computation of the manipulated variables is accomplished with an analytical approach.

This strategy was also selected in [6] as a workaround to the large computational load and times

verified with MATLAB optimization functions.

The analytical minimization of cost functions Ji,A is accomplished by computing the derivative in

order to the respective manipulated variable and finding the value for which ∂Ji,A
∂∆̄Ui

is equal to 0. Before

computing the derivatives, expressions (6.14), (6.15), and (6.16) can be written in a more compact

way as

Ji,A = ∆̄U
T
i Ψi∆̄U i + ∆̄U

T
i Φi + Υi. (6.18)

The derivative of the D-ADMM cost function Ji,A (6.18) in order to ∆̄U i is given by

∂Ji,A
∂∆̄U i

= 2∆̄U iΨi + Φi. (6.19)

The values of the manipulated variables ∆̄U∗i that minimize the cost functions are given by ex-

pression
∂Ji,A
∂∆̄U i

= 0 ⇔ ∆̄U
∗
i = −1

2
Ψ−1
i Φi. (6.20)
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Like in chapter 5, no constraints were considered in the optimization problem. In this case, the in-

troduction of constraints would made impossible to use the analytical solution. A possible workaround,

although not optimal, is introduced in [6] where the values of the manipulated variables and system

output are bounded. The D-MPC strategy based on D-ADMM is introduced in algorithm 6.1.

Algorithm 6.1 D-MPC based on D-ADMM with edge-associated dual variables

Initialization of manipulated and dual variables: γ1 = 0; γ2 = 0; ∆̄U1 = 0; ∆̄U2 = 0; ∆̄U3 = 0.
repeat

Φ1 = 2WT
1 (Π1x̄1 −R1)− γ1 − ρA∆̄U2

Ψ1 = WT
1 W1 + ρ̄1 + ρA

2 I

∆̄U1 = − 1
2Ψ−1

1 Φ1

Φ3 = 2WT
3 (Π3x̄3 −R3) + γ2 − ρA∆̄U2

Ψ3 = WT
3 W3 + ρ̄3 + ρA

2 I

∆̄U3 = − 1
2Ψ−1

3 Φ3

Φ2 = 2WT
2 (Π2x̄2 −R2)− (γ1 − γ2)− ρA(∆̄U1 + ∆̄U3)

Ψ2 = WT
2 W2 + ρ̄2 + 2ρAI

∆̄U2 = − 1
2Ψ−1

2 Φ2

γ1 = γ1 − ρA(∆̄U1 − ∆̄U2)
γ2 = γ2 − ρA(∆̄U2 − ∆̄U3)

until pre-defined maximum number of iterations nI reached or stopping criteria is met

6.1.1 Parameter tuning

After introducing algorithm 6.1, there are two parameters that need to be pre-defined before con-

ducting experiments, a cost weight related with the D-ADMM algorithm, ρA, and the maximum number

of iterations nI . In order to select values for these parameters several experiments were conducted

with different combinations of values and the results are shown in figure 6.1. It is possible to verify

that initially, with less iterations and with a lower weight ρA, the output error is higher. The value tends

to decrease with more iterations, and with a higher value for ρA. From figure 6.1, the combination

of values defined to be used in the experiments is ρA = 80 and nI = 20, since the associated out-

put error is close to the minimum and a smaller maximum number of iterations is better in terms of

computational time.

6.1.2 Simulation results

The D-MPC algorithm based on D-ADMM was used in several experiments with both linearized

and SIMULINK non-linear canal models, whose results are shown in figures 6.2, 6.3, 6.4 and 6.5. In

the case of the experiments conducted with the linearized MIMO model, the system outputs converge

towards the reference signals with an integrator being included in series with the MPC controller. The

effects of the interactions between subsystems are visible whenever occur variations in the water

levels. As for the performance, the computational load and time is lower when compared to the

solution used in the centralized MPC controller, with less communication steps required to compute

the manipulated variables and the usage of an analytical solution. The results obtained with the

SIMULINK non-linear canal model, in figures 6.4 and 6.4 show how the outputs converge to the
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Figure 6.1: Variation of the total output error et with different combinations of cost weight ρA and the maximum
number of iterations nI . The value of the quadratic cost weights were ρ1 = 200, ρ2 = 600, ρ3 = 400 and N = 35.

reference, with an existing error that appears to be related with the current water levels of each

subsystem.
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Figure 6.2: Closed-loop response of the linearized MIMO model with parameters ρ1 = 200, ρ2 = 600, ρ3 = 400
and N = 35. The maximum number of iterations nI is 20 and ρA = 80. (Output and Reference signals)

6.2 Adaptive D-MPC based on the Distributed Alternating Direc-
tion Method of Multipliers

Following the implementation of the D-MPC algorithm based on D-ADMM in the previous section,

an identification step was added to the controller in order to define a new adaptive control strategy.

Like in the previous adaptive control algorithms, the introduction of an identification step using the RLS
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Figure 6.3: Closed-loop response of the linearized MIMO model with parameters ρ1 = 200, ρ2 = 600, ρ3 = 400
and N = 35. The maximum number of iterations nI is 20 and ρA = 80. (Input signal)
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Figure 6.4: Closed-loop response of the system, in an experiment conducted in the SIMULINK canal model,
with parameters ρ1 = 200, ρ2 = 600, ρ3 = 400 and N = 35. The maximum number of iterations nI is 20 and
ρA = 80. (Output and Reference signals)

algorithm has the objective of improving the general performance of the controller, by being adaptable

to changes in the dynamics of the system. During an initial period of time t < tI , only the identification

step is working with the RLS algorithm providing estimates of the parameters using input and output

data obtained from the system open-loop response. During this period of time, the input of the system

is excited by a signal defined by the user with the objective of having the parameter estimates closer

to convergence by the time the controller is switched on. This strategy is implemented in order to
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Figure 6.5: Closed-loop response of the system, in an experiment conducted in the SIMULINK canal model,
with parameters ρ1 = 200, ρ2 = 600, ρ3 = 400 and N = 35. The maximum number of iterations nI is 20 and
ρA = 80. (Input signal)

prevent stability issues and to allow the controller to act upon a model obtained with better parameter

estimates.

After the period of time denoted by tI the D-MPC algorithm introduced in section 6.1 is switched

on and thus the control strategy becomes a sequence of two main steps: an identification step and a

control step. At each time instant t, after estimating the values of the parameters, a system model is

defined followed the computation of the manipulated variables using algorithm 6.2. As in the previous

adaptation strategies a PRBS signal of small amplitude (around 0.001m) is added to the control vari-

able to provide enough excitation to the identification procedure. The parameters considered for the

controller are the ones defined in section 6.1.1.

6.2.1 Simulation results

Several experiments were conducted using this adaptive control algorithm in the SIMULINK model

of the water canal. In this D-MPC approach, in order to guarantee that the parameters estimates are

closer to convergence to prevent stability issues, the value defined for the time instant in which the

controller is switched on is tI = 2 × 105s. The values of the quadratic cost weights ρi were the ones

considered in the adaptive centralized controller. In figures 6.6 and 6.7 it is represented the system

closed-loop response with the adaptive distributed controller. The higher value for the quadratic cost

weights was again the considered solution to handle with existing high-frequency oscillations, and
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Algorithm 6.2 Adaptive D-MPC based on D-ADMM with edge-associated dual variables

Initialization of manipulated and dual variables: γ1 = 0; γ2 = 0; ∆̄U1 = 0; ∆̄U2 = 0; ∆̄U3 = 0.
Initialization of parameter estimates (θ1, θ2, θ3) and respective covariance matrices (P1, P2, P3).

for each time instant t
Computation of parameters θi(t), using algorithm 2.1 and input and output data (∆u(t), ∆y(t)).
Define the augmented models of each subsystem i, using the parameter estimates Θi(t)

x̄i(t) = Āx̄i(t− 1) + B̄i,i−1∆ui−1(t− 1) + B̄i,i∆ui(t− 1) + B̄i,i+1∆ui+1(t− 1)
∆y(t) = C̄x̄(t)

if t > tI then
State estimation:

x̂i(t) = Aix̂i(t)+Bi,i−1zi−1(t−1)+Bi,izi(t−1)+Bi,i+1zi+1(t−1)−MiCix̂i(t)+Mi∆y(t)

Predictor model:
Computation of Πi and Wi

Yi = Πix̄+ Wi∆̄U i
Minimization of D-ADMM cost functions:

repeat
Ψ1 = WT

1 W1 + ρ̄1 + ρA
2 I

Φ1 = 2WT
1 (Π1x̄1 −R1)− γ1 − ρA∆̄U2

∆̄U1 = − 1
2Ψ−1

1 Φ1

Ψ3 = WT
3 W3 + ρ̄3 + ρA

2 I
Φ3 = 2WT

3 (Π3x̄3 −R3) + γ2 − ρA∆̄U2

∆̄U3 = − 1
2Ψ−1

3 Φ3

Ψ2 = WT
2 W2 + ρ̄2 + 2ρAI

Φ2 = 2WT
2 (Π2x̄2 −R2)− (γ1 − γ2)− ρA(∆̄U1 + ∆̄U3)

∆̄U2 = − 1
2Ψ−1

2 Φ2

γ1 = γ1 − ρA(∆̄U1 − ∆̄U2)
γ2 = γ2 − ρA(∆̄U2 − ∆̄U3)
until pre-defined maximum number of iterations nI reached or stopping criteria is met
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despite the existing output error, mostly visible in the second pool response, the water levels con-

verged to the reference signals. The implementation of an optimal analytical solution reduced the

computational load and time with the downside of not allowing constraints to be considered. By the

time instant the controller step is switched on, the parameter estimates are close to convergence, as

shown in figure 6.8 and it is also possible to see how these estimates vary whenever occur variations

in the system response.
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Figure 6.6: Open-loop and closed-loop response of the system with the adaptive D-MPC based on D-ADMM, in
an experiment conducted in the SIMULINK canal model, with parameters ρ1 = 2000, ρ2 = 1000, ρ3 = 2000 and
N = 35. The maximum number of iterations nI is 20 and ρA = 80. The controller step is switched on in time
instant t = 2× 105s. (Output and Reference signals)
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Figure 6.7: Open-loop and closed-loop response of the system with the adaptive D-MPC based on D-ADMM, in
an experiment conducted in the SIMULINK canal model, with parameters ρ1 = 2000, ρ2 = 1000, ρ3 = 2000 and
N = 35. The maximum number of iterations nI is 20 and ρA = 80. The controller step is switched on in time
instant t = 2× 105s. (Input signal)

In order to verify how the controller rejected disturbances, a different experiment was conducted

with the opening of the lateral off-take valves as represented in figure 6.10. Figures 6.9 and 6.10

represent the closed-loop response of the system, in which it is possible to see that in the presence

of disturbances, the computed manipulated variables compensate the flow drawn by the lateral off-

takes, in order to ensure the tracking of reference signals. This experiment shows that the adaptive

distributed controller is also able to reject disturbances.

69



0 2 4

x 10
4

−1.6418

−1.6418

−1.6418

−1.6418

−1.6418

−1.6418

−1.6418

−1.6418

a
1

0 2 4

x 10
4

0.3086

0.3086

0.3086

0.3086

0.3086

0.3086

0.3086

0.3086

0.3086

a
2

0 2 4

x 10
4

0.3333

0.3333

0.3334

0.3334

0.3334

0.3334

a
3

0 2 4

x 10
4

−0.0976

−0.0976

−0.0976

−0.0976

−0.0976

−0.0975

b
1

0 2 4

x 10
4

0.0743

0.0743

0.0743

0.0743

0.0743

0.0743

b
2

0 2 4

x 10
4

0.1135

0.1135

0.1135

0.1135

0.1135

0.1135

0.1136

0.1136

b
3

Time / [s]

0 2 4

x 10
4

−0.0906

−0.0906

−0.0906

−0.0906

−0.0906

−0.0906

−0.0905

−0.0905

−0.0905

b
4

0 2 4

x 10
4

0.0148

0.0148

0.0149

0.0149

0.0149

0.0149

0.0149

0.0149

0.0149

0.0149

b
5

0 2 4

x 10
4

−0.0366

−0.0365

−0.0365

−0.0365

−0.0365

−0.0365

−0.0364

b
6

0 2 4

x 10
4

0.0212

0.0212

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

0.0213

b
7

(a) Parameter estimates of the first subsystem.
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(b) Parameter estimates of the second subsystem.
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(c) Parameter estimates of the third subsystem.

Figure 6.8: Representation of the MIMO parameters estimates using the Adaptive D-MPC controller based on
D-ADMM between 1.8× 105s and 2.2× 105s. The control step is switched on at 2× 105s.
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Figure 6.9: Open-loop and closed-loop response of the system, in the presence of disturbances, with the adap-
tive D-MPC based on D-ADMM, in an experiment conducted in the SIMULINK canal model, with parameters
ρ1 = 2000, ρ2 = 1000, ρ3 = 2000 and N = 35. The maximum number of iterations nI is 20 and ρA = 80. The
controller step is switched on in time instant t = 2× 105s. (Output and Reference signals)
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Figure 6.10: Representation of the manipulated variables ui and flow drawn by the lateral off-takes Qi, with the
adaptive D-MPC based on D-ADMM, in an experiment conducted in the SIMULINK canal model, with parameters
ρ1 = 2000, ρ2 = 1000, ρ3 = 2000 and N = 35. The maximum number of iterations nI is 20 and ρA = 80. The
controller step is switched on in time instant t = 2× 105s.
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6.3 D-MPC with neighbouring agent coordination

In this approach, the D-MPC algorithm to be introduced is based on Game Theory concepts, in

the sense that each controller must optimize its control variable, taking into account the knowledge

of the manipulated variables computed by its neighbours. Since each controller has access to the

control inputs of neighbouring subsystems, which are seen as accessible disturbances, the objective

of this control strategy is to guarantee an optimal approximation to the minimum of the global cost

function. If each controller computes its manipulated variable with knowledge of the control inputs

of the neighbouring subsystems, the goal is to reach a situation in which no controller benefits from

changing the manipulated variable, the Nash equilibrium [22]. This coordination process, similar to

control strategies introduced in [17] and [25], is defined in this study as a simpler alternative, in terms

of computational load, to the D-MPC algorithm based on D-ADMM.

The model of each subsystem i, with integral effect, is now written as
xi(t+ 1)
di−1(t+ 1)
zi(t+ 1)
di+1(t+ 1)

 =

[
Ai

[
Γi,i−1 Bi Γi,i+1

]
0 I

]
xi(t)
di−1(t)
zi(t)
di+1(t)

+


0
1
0
0

 vi−1(t)+


0
0
1
0

 vi(t)+


0
0
0
1

 vi+1(t), (6.21)

∆y(t) =
[
C 0

] 
xi(t)
di−1(t)
zi(t)
di+1(t)

 , ∆u(t) =
v(t)

W ∗
√

2g(hu − hd)
, (6.22)

in which di is the manipulated variable of the i-th subsystem, seen as an accessible disturbance,

given by

di(t) = di(t− 1) + vi(t). (6.23)

Expression (6.21) can be written in a more compact notation as

x̄i(t+ 1) = Āx̄i(t) + Γ̄i,i−1vi−1(t) + B̄ivi(t) + Γ̄i,i+1vi+1(t), ∆y(t) = C̄x̄(t). (6.24)

This system may also contemplate the disturbances from the lateral off-take valves, using the

model considered in section 2.4.

6.3.1 Predictor model

The local cost function associated with the i-th subsystem is given by (6.9) and the predictor model

by (6.10), where the matrices W and Π are defined as

Wi,j 6=i =


C̄i ¯Γi,j 0 ... 0
C̄iĀi ¯Γi,j C̄i ¯Γi,j ... 0

... ... ... ...

C̄iĀ
i−1
i

¯Γi,j C̄iĀ
i−2
i

¯Γi,j ... C̄i ¯Γi,j

 , Wi,i =


C̄iB̄i,i 0 ... 0
C̄iĀiB̄i,i C̄iB̄i,i ... 0

... ... ... ...

C̄iĀ
i−1
i B̄i,i C̄iĀ

i−2
i B̄i,i ... C̄iB̄i,i

 ,
(6.25)

Π =


C̄iĀi
C̄iĀ

2
i

...
C̄iĀ

i
i

 . (6.26)
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6.3.2 Minimization of cost functions

The objective of this control strategy is to minimize a global cost function that is the sum of all local

cost functions of each subsystem i,

J(∆U1, ∆U2, ∆U3) = J1(∆U1, ∆U2) + J2(∆U1, ∆U2, ∆U3) + J3(∆U2, ∆U3). (6.27)

This optimization problem is accomplished with a cooperation strategy in which each controller as-

sociated with a subsystem computes the control variable that minimizes its cost function with knowl-

edge of its neighbours decisions. With this being said, the local cost functions are given by

Ji = (Yi −Ri)T (Yi −Ri) + ρi∆U
T
i ∆U i, (6.28)

Yi = Πix̄i + Wi,i−1∆U i−1 + Wi,i∆U i + Wi,i+1∆U i+1 (6.29)

The minimum of each local cost function is solved by computing its derivative in order to the

corresponding manipulated variable and finding the solution of ∂Ji
∂∆̄Ui

= 0. This computations result in

Ji = ∆UTi (2WT
i,i(Πx̄i + Wi,i−1∆U i−1 + Wi,i+1∆U i+1)) +∆UTi (WT

i,iWi,i + ρiI) + Υi, (6.30)

where Υi denotes the terms that do not depend on the vector of manipulated variables ∆U i. The

derivative of the cost function is given by

∂Ji
∂∆̄U i

= 2∆U i(W
T
i,iWi,i + ρiI) + 2WT

i,i(Πx̄i + Wi,i−1∆U i−1 + Wi,i+1∆U i+1). (6.31)

The solution of ∂Ji
∂∆̄Ui

= 0 is therefore given by

∆̄U
∗
i = −1

2
(WT

i,iWi,i + ρiI)−1(2WT
i,i(Πx̄i + Wi,i−1∆U i−1 + Wi,i+1∆U i+1)) (6.32)

. This results in the iterative procedure introduced in algorithm 6.3.

Algorithm 6.3 D-MPC with neighbouring agent coordination

Initialization of manipulated variables: ∆̄U1 = 0; ∆̄U2 = 0; ∆̄U3 = 0.

∆̄U =
[
∆̄U1 ∆̄U2 ∆̄U3

]T
Ri = ρiI
Mi = WT

i,iWi,i +Ri

M =

M1 0 0
0 M2 0
0 0 M3


Φ =

 0 2WT
1,1W1,2 0

2WT
2,2W2,1 0 2WT

2,2W2,3

0 2WT
3,3W3,2 0


ψ1 = 2WT

1,1Π1x̄1

ψ2 = 2WT
2,2Π2x̄2

ψ3 = 2WT
3,3Π3x̄3

Ψ =
[
ψ1 ψ2 ψ3

]T
repeat

∆̄U = − 1
2M

−1Ψ− 1
2M

−1Φ∆̄U
until pre-defined maximum number of iterations nI reached or stopping criteria is met
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6.3.3 Parameter tuning

The iterative procedure described in algorithm 6.3,

∆̄U = −1

2
M−1Ψ− 1

2
M−1Φ∆̄U, (6.33)

will converge if the spectral radius

λmax := maxλ(M−1Φ) (6.34)

verifies |λmax| < 1 [17]. In order to study how the quadratic cost weights ρi influence the spectral

radius λmax, several experiments were conducted with different combinations of weights. Although in

[17] the proposed configuration of the controller assumed that the weights were equal, in this study

the assumption is not considered. Therefore, by fixing ρ1 = 200, the value considered in the previous

sections, the spectral radius representation with respect to combinations of weights ρ2 and ρ3 is shown

in figure 6.11.
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Figure 6.11: Spectral radius λmax.

As it is possible to verify, the spectral radius λmax tends to decrease when the cost weights ρi

increase, which influences the rate of convergence of the iterative procedure, such that a lower value

of λmax results in a fast convergence of the algorithm. The selected values of the quadratic cost

weights are ρ1 = 200, ρ2 = 800 and ρ3 = 100. Another parameter that needs to be defined is the

maximum number of iterations nI , and thus several experiments were conducted with different values

of nI in order to determine the associated total output error et. The results are shown in figure 6.12

and it is possible to see that the output error tends to decrease with an increasing number of iterations.

Since the total output error is smaller for nI > 10, the value considered for the number of maximum

iterations is the same as in section 6.1, nI = 20.
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Figure 6.12: Variation of the total output error et with the maximum number of iterations nI .

6.3.4 Simulation results

After defining the parameters required by the controller, two experiments were conducted in both

linearized and non-linear SIMULINK canal models, with the purpose of verifying the system response.

The experiments are similar to the ones described in section 6.1 and the results are represented in

figures 6.13, 6.14, 6.15 and 6.16. As it is possible to verify, the output converges to the reference

signal, although in the experiment conducted in the linearized model, the system response appears

to be faster and more oscillating than with algorithm 6.1. The results of the experiment conducted

in the SIMULINK non-linear canal model in figures 6.15 and 6.16 are similar to the results obtained

with the multi-variable MPC algorithms introduced so far, with the output tracking the reference with

the same issue regarding the output error, even with integral action, and a similar system response.

In terms of performance, the D-MPC algorithm based on Game Theory concepts, at least with an

equal number of maximum iterations, appears to have a similar computational time and load when

compared with the D-ADMM approach. In comparison with the centralized MPC algorithms, there are

practically no differences regarding the system response obtained with both D-MPC strategies.

6.4 Adaptive D-MPC with neighbouring agent coordination

Following the design of a D-MPC algorithm based on Game Theory concepts, comes the definition

of a corresponding adaptive control strategy, similar to the one defined in section 6.2. The controller

is composed by an identification step and a control step, that is only activated after a predefined time

instant tI . Before tI only the identification step is activated, using the input and output data from

the system to estimate its parameters, using RLS algorithm 6.2. The time instant selected for the

control step activation is the same as the one considered in section 6.2, since it was verified that at

tI = 2 × 105s the parameter estimates are closer to convergence. Regarding section 6.2, the only

relevant change is the control algorithm considered, by using the iterative procedure introduced in

the previous section. The addition of a PRBS signal with 0.001m of amplitude in the system input

was again considered, in order to provide enough excitation to the RLS algorithm, by avoiding issues
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Figure 6.13: Closed-loop response of the linearized MIMO model with parameters ρ1 = 200, ρ2 = 800, ρ3 = 100
and N = 35. The maximum number of iterations nI is 20. (Output and Reference signals)
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Figure 6.14: Closed-loop response of the linearized MIMO model with parameters ρ1 = 200, ρ2 = 800, ρ3 = 100
and N = 35. The maximum number of iterations nI is 20. (Input signals)

such as the covariance blow-up. Regarding the parameters of the controller, the number of iterations

and the finite-time horizon remain the same, whereas the quadratic weight costs considered were

the ones used in section 6.2 (ρ1 = 2000, ρ2 = 1000, ρ3 = 2000) since this combination worked in the

adaptive multi-variable MPC algorithms.

6.4.1 Simulation results

Two experiments were conducted in the SIMULINK non-linear canal model, considering two dif-

ferent situations with respect to existing external disturbances caused by the opening of the lateral
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Figure 6.15: Closed-loop response of the SIMULINK non-linear canal model with parameters ρ1 = 200, ρ2 =
800, ρ3 = 100 and N = 35. The maximum number of iterations nI is 20. (Output and Reference signals)
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Figure 6.16: Closed-loop response of the SIMULINK non-linear canal model with parameters ρ1 = 200, ρ2 =
800, ρ3 = 100 and N = 35. The maximum number of iterations nI is 20. (Input signals)

off-take valves. The results of the first experiment are represented in figures 6.17 and 6.17. Despite

the output error and the oscillatory behavior, the results are practically similar to the ones obtained

with the adaptive D-MPC algorithm based on D-ADMM, with a higher output error in the second pool,

that appears to be related with the interactions between subsystems. As for the first and third pools,

the outputs converge to the reference and appear to be less sensitive to variations in neighbouring

subsystems. Regarding the parameter estimates, by the time the controller step is switched on, these

are close to convergence, and in figure 6.19 is possible to see how the estimates change with the

input excitation.

Another experiment was conducted, with existing disturbances caused by the opening of the lateral
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Algorithm 6.4 Adaptive D-MPC with neighbouring agent coordination

Initialization of manipulated variables: ∆̄U1 = 0; ∆̄U2 = 0; ∆̄U3 = 0.

∆̄U =
[
∆̄U1 ∆̄U2 ∆̄U3

]T
Initialization of parameter estimates (θ1, θ2, θ3) and respective covariance matrices (P1, P2, P3).

for each time instant t
Computation of parameters θi(t), using algorithm 2.1 and input and output data (∆u(t), ∆y(t)).
Define the augmented models of each subsystem i, using the parameter estimates Θi(t)

x̄i(t+ 1) = Āx̄i(t) +
[
Γ̄i,i−1 B̄i Γ̄i,i+1

]
Vi(t)

∆y(t) = C̄x̄(t)

if t > tI then
Ri = ρiI
Mi = WT

i,iWi,i +Ri

M =

M1 0 0
0 M2 0
0 0 M3


Φ =

 0 2WT
1,1W1,2 0

2WT
2,2W2,1 0 2WT

2,2W2,3

0 2WT
3,3W3,2 0


ψ1 = 2WT

1,1Π1x̄1

ψ2 = 2WT
2,2Π2x̄2

ψ3 = 2WT
3,3Π3x̄3

Ψ =
[
ψ1 ψ2 ψ3

]T
repeat

∆̄U = − 1
2M

−1Ψ− 1
2M

−1Φ∆̄U
until pre-defined maximum number of iterations nI reached or stopping criteria is met

off-take valves, identified in figure 6.21 by Qi. The results of this experiment are represented in

figures 6.20 and 6.21, in which it is possible to see how the controller reacts to the presence of

disturbances, compensating the consequent water level decrease in each pool in the computation of

the manipulated variables, in order to maintain the reference tracking.
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Figure 6.17: Open-loop and closed-loop response of the system with the adaptive D-MPC with neighbouring
agent coordination, in an experiment conducted in the SIMULINK canal model, with parameters ρ1 = 2000, ρ2 =
1000, ρ3 = 2000 and N = 35. The maximum number of iterations nI is 20. The controller step is switched on in
time instant t = 2× 105s. (Output and Reference signals)
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Figure 6.18: Open-loop and closed-loop response of the system with the adaptive D-MPC with neighbouring
agent coordination, in an experiment conducted in the SIMULINK canal model, with parameters ρ1 = 2000, ρ2 =
1000, ρ3 = 2000 and N = 35. The maximum number of iterations nI is 20. The controller step is switched on in
time instant t = 2× 105s. (Input signals)
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(a) Parameter estimates of the first subsystem.
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(b) Parameter estimates of the second subsystem.
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(c) Parameter estimates of the third subsystem.

Figure 6.19: Representation of the MIMO parameters estimates using the Adaptive D-MPC controller with neigh-
bouring coordination between 1.2× 105s and 2.2× 105s. The control step is switched on at 2× 105s.
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Figure 6.20: Open-loop and closed-loop system response, obtained with the adaptive D-MPC with neighbouring
coordination, in an experiment conducted in the SIMULINK canal model, with parameters ρ1 = 2000, ρ2 =
1000, ρ3 = 2000 and N = 35. The maximum number of iterations nI is 20. The controller step is switched on in
time instant t = 2× 105s. (Output and Reference signals)
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Figure 6.21: Representation of the manipulated variables ui and flow drawn by the lateral off-takes Qi, with the
adaptive D-MPC with neighbouring coordination, in an experiment conducted in the SIMULINK canal model, with
parameters ρ1 = 2000, ρ2 = 1000, ρ3 = 2000 and N = 35. The maximum number of iterations nI is 20. The
controller step is switched on in time instant t = 2× 105s.
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7
Conclusions and Future Work
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The objective of this study was to define adaptive distributed control algorithms based on the LQG

and MPC control theory. The algorithms defined here are based on previous studies regarding the

water canal considered in this study [6], [15], [16], [17]. The target plant was the SIMULINK non-linear

canal model, which gives a good approximation of the canal dynamic behavior. The adaptive control

algorithms were tested in a simulation environment, and in the different experiments conducted the

results obtained were satisfactory, with a close approximation to the non-adaptive strategies in terms

of performance.

Regarding the adaptive strategies considered in this study, one of the difficulties in the design of

the controllers were identification problems regarding the selection of the forgetting factor, the initial

parameter values and the covariance matrix. In the initial experiments, the RLS algorithm considered

had a fixed value for λ. With a fixed value for the forgetting factor, there were several identification

issues that prevented the controllers from working properly. A lower value of λ was useful whenever

the prediction error was larger, but since the algorithm kept weighting less the past information, due

to the slow system response, the parameter estimates and the trace of the covariance matrix started

diverging. Since selecting λ = 1 was not the best approach, an alternative RLS algorithm was con-

sidered with a variable forgetting factor that depended on the prediction error, defined in section 2.5.

Another difficulty in the definition of the identification algorithm was the parameter initialization. It

would be preferable to begin the experiments with a higher uncertainty regarding the parameters of

the system, but after performing several experiments, it was verified that the best approach is initial-

izing the parameters closer to convergence with a lower uncertainty.

It would be interesting to define adaptation strategies with a different identification algorithm, such

as the Recursive LASSO and compare the results obtained with the RLS algorithm here considered.

Also a possible idea for future work is to define a new adaptation strategy in which it is possible to

initialize the parameters with a larger uncertainty. Comparing the adaptive and non-adaptive control

strategies, the results in general introduced more oscillations and variations in the system response

but outputs converged to the corresponding reference signals. Although it increases the compu-

tational load and time, with more variables and steps required to compute the control inputs and

although it also increases the complexity of the controller with a cost function that depends also on

the parameter estimates, adaptation has the advantage of allowing the controller to be more sensitive

and adaptable to changes in the system dynamics.

In a system with a time-variant dynamic behavior such as a water canal, with disturbances and

several external factors that may produce changes in the system dynamics, the adaptive controllers

have the advantage of computing its control inputs with knowledge of those changes in the system

dynamics, preventing therefore operational issues.

Regarding the distributed control algorithms, three different approaches were considered, two of
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which based on Game Theory concepts, where each local control agent had knowledge of the con-

trol inputs of its neighbours and the computation of the manipulated variables was accomplished

with a coordination/negotiation step, and the other one based on an efficient distributed algorithm

(D-ADMM) in which the computation of the manipulated variables was accomplished using an itera-

tive procedure and augmented Lagrangian function. The results obtained with the three approaches

were satisfactory, for the adaptive and non-adaptive algorithms, although it was difficult to define

adaptive controllers without stability problems. It was interesting to see how the performance of this

distributed techniques was close to the corresponding centralized solutions, with less communication

steps between local control agents required.

An unexpected result was obtained using the MPC algorithm, in which the controller, with inte-

gral action, is working properly in the linearized model, but when applied to the SIMULINK non-linear

canal model, the system output follows the reference with a small error, even with the presence of an

integrator. This effect is constant throughout all the experiments conducted with algorithms based on

the MPC theory and it appears to be related with either the position of the integrator and the linear

incremental model, the incorrect use of sensor measurements and actuators or with the interactions

between subsystems, since the error in each pool varies whenever a variation occurs in a neighbour-

ing pool. It is intended to solve this issue with the MPC algorithms with integral action as future work.

Regarding the usage of LQG controllers and strategies based on MPC, the usage of MATLAB

functions dlqr and dlqe from the Control Systems in the design of LQG control algorithms has advan-

tages in terms of computational load and time. Two different optimization solutions were considered in

the MPC strategies, in order to compute the manipulated variables. The usage of MATLAB optimiza-

tion function fminunc was considered in the SISO and centralized MIMO algorithms, but the higher

computational load and time when compared to an analytical solution made the second one preferred

for the adaptive distributed algorithms. Although MPC has the advantage of being able to handle

with operational constraints, the optimization process is more costly in terms of computational load.

Because of this fact, and since adaptation also increases the computational load of the controller, no

constraints were considered in the optimization process.

Due to the integral action issue verified in the MPC algorithms, it is difficult to make a compari-

son between the adaptive D-LQG and D-MPC algorithms. The system response obtained with the

adaptive D-MPC algorithms has more oscillations but the quadratic weights are smaller in comparison

with the D-LQG strategy. In general, since the MPC algorithms depend on the quadratic weights and

on the value of the finite-time horizon, it is possible to obtain acceptable results with lower quadratic

weights and a larger horizon. The adaptive D-MPC strategy based on Game Theory concepts is sim-

pler and requires less variables in the coordination step. Both this D-MPC approach and the D-LQG

algorithm have an easy implementation and their coordination procedures converge to the Nash equi-

librium. An alternative to this algorithms is the usage of D-ADMM, based on Lagrangian optimization,
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which is also efficient in terms of the communication steps required in the coordination procedure and

avoids the problem of the Nash equilibrium being far from the global minimum [35].
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Figure 7.1: Results obtained with the three adaptive distributed strategies.

In general, the adaptive distributed algorithms have similar performances, as it is possible to ver-

ify in figure 7.1, where the results of applying the three adaptive distributed control algorithms are

represented. The mean and variance of the output error e(t) = y(t) − r(t), represented in table

7.1. As it is possible to verify, the results obtained with the adaptive D-MPC algorithms are similar,

with a more oscillatory response than the obtained with the adaptive D-LQG algorithm. The D-LQG

controller required less time for the identification algorithm to work isolated, although it was consid-

ered a multi-variable model with the effect of side-takes. The adaptive distributed algorithms based

on Game Theory concepts have simpler negotiation/coordination strategies, with iterative procedures

that require less operations and auxiliary variables, with the drawbacks mentioned above regarding

the Nash equilibrium.

Table 7.1: Distributed Adaptive Control Algorithms

Algorithm ē σ2
e

D-MPC (D-ADMM) 0.0036 0.0010
D-MPC (Game Theory) 0.0030 3.2304× 10−4

D-LQG (Game Theory) 1.7949× 10−4 2.2467× 10−4

Since the results shown in this dissertation were obtained in a simulation environment, this in-

troduces a limitation regarding its application on the real plant. As future work, it would also be

interesting to test the adaptive algorithms in a real water canal, in order to verify how the controller

handles with disturbances and external factors that affect the system dynamics. Although there is

still work to be done with new ideas and solutions to explore regarding adaptive and distributed algo-

rithms applied to water canals, three different algorithms were developed and studied with satisfactory
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results, complementing the work already developed and creating new challenges for future research.
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[7] R. R. Negenborn, P.-J. Overloop, T. Keviczky, and B. Schutter, “Distributed model predictive

control of irrigation canals,” Networks and Heterogeneous Media, vol. 4, no. 2, pp. 359–380,

2009.

[8] J. M. Lemos, F. C. Machado, N. M. Nogueira, and P. O. Shirley, “Modelo SIMULINK de um canal

piloto - Manual do utilizador,” INESC-ID, Relatório Técnico no35/2010, no. 35, 2010. [Online].
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A.1 SISO Model

The SISO linear incremental model is defined by the transfer function

A(q−1)∆y(t) = B(q−1)∆u(t) + e(t), (A.1)

A(q−1) = 1− 3.614q−1 + 4.986q−2− 3.122q−3 + 0.7495q−4, B(q−1) = −0.001068q−1 + 0.0009421q−2.

(A.2)

A.2 MIMO Model

The MIMO linear incremental model is defined by

A11(q−1) 0 0

0 A22(q−1) 0

0 0 A33(q−1)

∆y(t) =

B11(q−1) B12(q−1) 0

B21(q−1) B22(q−1) B23(q−1)

0 B32(q−1) B33(q−1)

 v(t) + e(t), (A.3)

A11(q−1) = 1− 2.851q−1 + 2.758q−2 − 0.9068q−3, (A.4)

B11(q−1) = −0.1815q−1 + 0.4018q−2 − 0.2707q−3 + 0.04811q−4, (A.5)

B12(q−1) = 0.02407q−2 − 0.04456q−3 + 0.02032q−4, (A.6)

A22(q−1) = 1− 2.857q−1 + 2.779q−2 − 0.9222q−3, (A.7)

B21(q−1) = 0.1315q−2 − 0.3324q−3 + 0.2696q−4 − 0.06537q−5, (A.8)

B22(q−1) = −0.1548q−1 + 0.2994q−2 − 0.1476q−3, (A.9)

B23(q−1) = 0.0875q−2 − 0.2274q−3 + 0.1997q−4 − 0.06001q−5, (A.10)

A33(q−1) = 1− 2.869q−1 + 2.807q−2 − 0.9379q−3, (A.11)

B32(q−1) = 0.1002q−2 − 0.243q−3 + 0.1808q−4 − 0.03428q−5, (A.12)

B33(q−1) = −0.05582q−1 − 0.04845q−2 + 0.2543q−3 − 0.1538q−4. (A.13)

A-2



A.3 MIMO Model with the effect of side takes

The linear incremental model is defined as

A∆y(t) = Bv(t) + ΓQ(t) + e(t), (A.14)

A =

A11(q−1) 0 0

0 A22(q−1) 0

0 0 A33(q−1)

 , B =

B11(q−1) B12(q−1) 0

B21(q−1) B22(q−1) B23(q−1)

0 B32(q−1) B33(q−1)

 , (A.15)

Γ =

Γ11(q−1) Γ12(q−1) 0

Γ21(q−1) Γ22(q−1) Γ23(q−1)

0 Γ32(q−1) Γ33(q−1)

 , (A.16)

A11(q−1) = 1− 2.824q−1 + 2.712q−2 − 0.8889q−3, (A.17)

B11(q−1) = −0.09133q−1 + 0.1726q−2 − 0.08407q−3, (A.18)

B12(q−1) = 0.09972q−2 − 0.2378q−3 + 0.1788q−4 − 0.04088q−5, (A.19)

Γ11(q−1) = −0.1994q−1 + 0.4028q−2 − 0.2079q−3, (A.20)

Γ12(q−1) = −0.07317q−1 + 0.2532q−2 − 0.2965q−3 + 0.1161q−4, (A.21)

A22(q−1) = 1− 2.838q−1 + 2.746q−2 − 0.9085q−3, (A.22)

B21(q−1) = −0.007191q−1 + 0.01006q−2, (A.23)

B22(q−1) = −0.002756q−1, (A.24)

B23(q−1) = 0.006614q−1 − 0.006911q−2, (A.25)

Γ21(q−1) = −0.002298q−1 + 0.01624q−2 − 0.01423q−3, (A.26)

Γ22(q−1) = −1.796q−1 + 5.181q−2 − 5.073q−3 + 1.684q−4, (A.27)

Γ23(q−1) = 0.007431q−1 − 0.02024q−2 + 0.01235q−3, (A.28)

A33(q−1) = 1− 2.839q−1 + 2.761q−2 − 0.9221q−3, (A.29)

B32(q−1) = 0.1302q−1 − 0.2668q−2 + 0.1412q−3, (A.30)

B33(q−1) = 0.4455q−1 − 1.631q−2 + 1.928q−3 − 0.7473q−4, (A.31)

Γ32(q−1) = 2.677× 10−6q−2, (A.32)

Γ33(q−1) = −0.3264q−1 + 0.6154q−2 − 0.2959q−3. (A.33)
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B
Pontryagin Minimum Principal

B-1



For a discrete-time system described by the non-linear equation

x(t+ 1) = f(x(t), v(t), t), (B.1)

in which f is a function that describes the system dynamics. The initial condition x(0) is specified and

a performance index is defined as

J(u) = Φ(T, x(T )) +

∞∑
t=0

L(x(t), v(t), t), (B.2)

in which L denotes the Lagrangian function. The objective is to minimize the performance index

J , assuming that T ← ∞ and that there are no constraints either on the final state x(t) or on the

manipulated variable v.

The Hamiltonian function H is defined as

H(t) = λT (t+ 1)f(x(t), v(t), t) + L(x(t), v(t), t), (B.3)

in which λ is the co-state. The discrete-time Pontryagin Minimum Principle states that the co-state λ,

the optimal control input v and state trajectory x satisfy:

• State equation (B.1) with x(0) specified.

• Adjoint equation:

λ(t) = (
∂f(x(t), v(t), t)

∂x(t)
)Tλ(t+ 1) + (

∂L(x(t), v(t), t)

∂x(t)
)T (B.4)

• Stationary condition:
∂H(t)

∂v(t)
= 0 (B.5)

• Co-state terminal condition:

λ(T ) =
∂Φ(T, x(T ))

∂x(T )
. (B.6)
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