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Abstract

In acoustic active noise control (ANC), an unwanted noise is acquired by a microphone, processed and
an ”anti-noise”, with the opposite phase from the original noise, is emitted by a loudspeaker. The anti-
noise is superimposed to the original signal and destructive interference occurs. This paper presents
the design, implementation and results of an adaptive ANC headphone system. A TMS320C6713
floating-point digital signal processor was used as the controller. Various algorithms were employed and
performance has been evaluated and compared between them and with reported results in the literature.
Keywords: Active Noise Control (ANC), ANC Headset, Adaptive ANC systems, Digital signal
processing, LMS Algorithm

1. Introduction
Earmuffs, using passive techniques, are usually used
as personal devices to attenuate noise in transporta-
tion, industry etc. However, these compact and
light devices perform better for short wavelength
noise than for long wavelength noise, i.e. low fre-
quency noise. Active noise control (ANC) was in-
troduced as a solution to attenuate low frequency
noises, generally bellow 500 Hz. An ANC system
combines a secondary noise (anti-noise) of opposite
phase with the primary noise (unwanted noise), re-
sulting in cancellation of both noises, as seen in Fig-
ure 1. However, ANC does not perform well for high
frequency noises so, both passive and active tech-
niques are used to complement each other in order
to achieve better noise-cancelling results [8]. An
ANC headset is an example of application where
this is employed.

Figure 1: Active noise cancellation concept.

A generic ANC system, seen in Figure 2 is com-
posed of an error microphone, to capture the noise
resulting from the superposition, a loudspeaker as
the anti-noise source, a reference microphone to give
advanced information about the noise, in feedfor-
ward systems, and a controller to process the sig-
nals.

Most commercial headsets are based on an ana-

Figure 2: Basic blocks of a feedforward ANC sys-
tem.

logue filter controller [3]. Their use is advantageous
for their stability, low system delay, low power con-
sumption, small hardware size, simple control al-
gorithm and good attenuation of random and im-
pulse noises (broadband noise)[8]. However, they
are only applicable to linear time-invariant systems
and are hard to design for multiple input, multiple
output systems [4]. For most ANC applications,
the physical system may have time varying acous-
tic and environmental characteristics thus the use
of an adaptive controller is desired, to model these
variations.

Adaptive controllers are generally implemented
as adaptive filters in digital signal processors. These
are digital filters whose coefficients are adjusted
by an adaptive algorithm. Due to these system’s
self-optimizing and tracking capabilities, they have
improved performance in a larger bandwidth over
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fixed controllers with periodic and tonal noises (nar-
rowband noise). Also, they are able to control mul-
tiple input and multiple output systems (multichan-
nel systems). However, they are digital so the de-
lays of the A/D and D/A converters are usually
high, therefore their performance while cancelling
broadband noise is inferior to fixed controllers.

The ideal result of ANC is no sound at all but, in
reality, the actual noise cancellation depends on the
accuracy of the data processing algorithm (calcula-
tions) to determine and synthesize the anti-noise
and on the characteristics of the system. To im-
prove those, new algorithms, hardware and system
configurations should be developed and tested. A
stable system is difficult to obtain for adaptive con-
trollers, since there are multiple sources of instabil-
ity for a ANC algorithm such as modelling errors,
zeroes in inverse models, over driven systems, i.e.
noises too low that exceeds the numerical range of
a system.

One recent design is an ANC headset system
employing both fixed controller and adaptive con-
troller. The adaptive controller would reduce pe-
riodic signals while the fixed would control broad-
band signals [10, 7].

2. Background
In this section, the theoretical background neces-
sary to understand the work is presented, namely
the Least Mean Squares (LMS) algorithm, Filtered-
X LMS (FxLMS) for a feedforward and feedback
ANC system and its variations to solve the prob-
lem of secondary path modelling error.

2.1. Types of ANC systems
Active headsets can be interpreted as a problem
of noise propagating in ducts, since plane waves in
ducts and the sound field in a ear cup are both one-
dimensional problems, thus enabling good results to
be achieved with a single-channel control system [4].
For multi-dimensional noise fields it is necessary to
employ a multiple-channel system.

There are two main configurations for ANC sys-
tems: feedback and feedforward. In addition, feed-
back types may be further classified into analogue
(fixed) and digital (adaptive), depending on the
controller used. Fixed controllers and multiple-
channel systems are outside of the scope of this
work.

Figure 3 illustrates a single channel feedforward
system. It is composed by a controller, two mi-
crophones (reference and error) and a loudspeaker.
It is the only configuration capable of cancelling
broadband noise if the causality and high coherence
conditions are met.

To ensure causality, the distance from the ref-
erence microphone to the error microphone should
be greater than the distance from the secondary

Figure 3: Single-channel feedforward ANC system
in a duct.

source to the error microphones. Also, the propa-
gation time between the reference sensor and the
secondary source should be larger than the time
the controller takes to generate the anti-noise at the
loudspeaker. To achieve high coherence between the
reference signal and the primary noise, the reference
microphone should be close to the noise source, in
order to reduce the amount of ambient noise cap-
tured by the microphone. There can be acoustic
feedback between the reference microphone and the
secondary source in feedforward systems, but that
should be low in headset systems.

Figure 4: Single-channel feedback ANC system in
a duct.

Adaptive feedback systems are composed of an
error microphone and a secondary source. Since
there is no reference microphone the reference sig-
nal has to be estimated by the system. Therefore,
it can only cancel narrowband noise by exploiting
their predictability. However, they only need one
microphone and good references are hard to get
and therefore are the most used conguration for
headsets.. The only design constraint is the choice
and positioning of the loudspeaker and error micro-
phone to improve stability and noise reduction.

2.2. Adaptive Controller
ANC can be seen under the system identification
framework as seen in Figure 5.

It works by modelling the primary path P (z),
from the reference microphone to the error micro-
phone, with an adaptive filter W (z), composed of a
digital filter and an adaptive algorithm. The algo-
rithm is given a reference signal x(n), already excit-
ing P (z), to excite the adaptive model W (z). The
adaptive algorithm adjusts the filter coefficients in
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Figure 5: Adaptive system identification [8].

order to minimize the error signal e(n), computed
with the difference between the physical system
response d(n) and adaptive model response y(n).
When e(n) has been minimized, the adaptive model
ideally reproduces P (z), implying that y(n) = d(n).

The digital filter structure and the adaptive al-
gorithm depend on the application requirements.
The structure can be (transversal) finite impulse re-
sponse (FIR), (recursive) infinite impulse response
(IIR), lattice, among others. This work focuses on
the Least Mean Squares (LMS) algorithm, however
one of its variations, the Normalized LMS (NLMS),
was used.

The LMS algorithm [2] updates a FIR filter coef-
ficients with

w(n+ 1) = w(n) + µe(n)x(n), (1)

where µ is the step size, w(n) is the filter coefficients
vector and x(n) is the filter input vector, both at
time instant n. In order for this algorithm to be
stable µ should verify

0 < µ <
2

LPx
, (2)

where L is the adaptive filter length and Px the
power of the reference signal.

The stability condition of the LMS depends on
x(n). That inconvenience can be defeated by nor-
malizing µ with respect to an estimate of the refer-
ence signal power, resulting in The NLMS algorithm
3.

w(n+ 1) = w(n) +
µe(n)x(n)

P̂x(n)
. (3)

where .̂ denotes estimate. P̂x is computed with the
squared euclidean norm, for NLMS algorithms as in
the following expression

P̂x(n) = ‖x(n)‖2 =

L−1∑
l=0

x2(n− l). (4)

This algorithm is faster than the ordinary LMS and
it is convergent if the following condition on µ is
satisfied.

0 < µ < 2, (5)

Another modified version of the LMS was used. It
was the Leaky-LMS where a leakage factor λ tends
to bias each coefficient toward zero. The principle
of this method is similar to adding white noise to
the input signal, prior to the adaptive filter [8]. It
takes the form

w(n+ 1) = λw(n) + µe(n)x(n), (6)

where λ is the leakage factor with 0 < λ ≤ 1. The
value of the leakage factor is in general determined
on an experimental basis, as a compromise between
robustness and loss of performance of the adaptive
filter, due to the white noise addition. Usually a
good starting point is a leakage factor slightly less
than 1.

2.3. ANC Algorithms
In a real ANC system, the error signal is not com-
puted but is obtained by sampling the residual
acoustic pressure resulting from the acoustic su-
perposition of the noise and anti-noise. Therefore,
in the path from the control signal y(n) to the er-
ror signal e(n), the devices have transfer functions
which alter y(n). This is called the secondary path
S(z) and the LMS algorithm should be modified to
assure the system convergence.

The filtered-x LMS (FxLMS), illustrated in Fig-
ure 6, is one approach to compensate for the sec-
ondary path effects [8]. It filters the reference signal
x(n) with an estimate of the secondary path trans-
fer function Ŝ(z) and inputs it in the NLMS along
with the error signal. Therefore, an estimate of the
secondary path transfer function must be available
for the FxLMS algorithm.

Figure 6: Block diagram of ANC system using the
FxLMS algorithm [4].

The modelling of the secondary path transfer
function is also a system identification problem.
This time an internally generated white noise is
used as a reference signal to construct the model
Ŝ(z), during an initial stage. At the end of the
training interval, the estimated model S(z) is fixed
and used for ANC operation. This is called the off-
line modelling technique, and it should be used if
S(z) is time-invariant. Even then, slight changes
in the environment during system operation may
happen which may lead the adaptive algorithm to
instability if the phase difference between S(z) and
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Ŝ(z) has an excess of 90◦. To solve this problem
there, are two approaches one can take: to block
noise control for frequencies whose phase error ex-
ceeds 90◦ more frequently; use the on-line modelling
technique, usually employed in time varying sec-
ondary paths.

Adaptive on-line modelling of the secondary path
should be used when S(z) varies continuously in
real time. S(z) can be either occasionally or con-
tinuously estimated and the most recent estimate
Ŝ(z) used in the weight update of the control fil-
ter W (z). Provided that S(z) changes slowly, the
controller adaptation and secondary-path estima-
tion functions can be considered separately. Two
methods as generally used, the overall modelling
algorithm (OMA) and the additive random noise
algorithm.

Figure 7: Block diagram of the feedback BMFxLMS
algorithm.

Two FxLMS variations, which employ the ap-
proaches for the secondary path modelling error
mentioned above, were used in this work. The feed-
back band-limited Modified FxLMS (BMFxLMS)
[5], depicted in Figure 7, turns off the noise con-
trol by filtering out problematic frequencies of the
primary noise d(n), thus avoiding the instability as-
sociated to them. The frequencies where the mod-
elling error is more frequent can be determined with
a series of off-line modelling runs and computing the
maximum phase difference between the estimates.

The MFxLMS is employed to obtain the electri-
cal model of the noise cancelling because an acoustic
signal cannot be electrically filtered. This is done by
estimating the primary noise, adding an estimate of
the anti-noise ŷ′(n) to the error signal e(n). Then,
an estimate of the error signal, called modified error
em(n), is obtained with the difference between the

primary noise estimate d̂(n) and the output of the
filtered-x signal filtered by the current control filter.
Now, it is possible to filter the reference signal x(n)

and d̂(n) by a bandpass filter F (z), thus achieving
the band limiting. This algorithm was implemented
for a feedback configuration, by using d̂(n) as a ref-
erence signal, to later compare it with the feedback

FxLMS.
The Mirrored MFxLMS [6], seen in Figure is a

variation of the MFxLMS algorithm, with the OMA
embedded in the algorithm for on-line modelling of
the primary and secondary paths. It is stable even
with incorrect secondary path models and deals
very well with sudden changes. Instead of obtain-
ing the electrical model of the noise cancellation as
the regular MFxLMS, it passes the reference signal
through the primary path estimate P̂ (z) obtaining

the primary noise estimate d̂(n).

Figure 8: Block diagram of the MMFxLMS algo-
rithm [6].

3. System architecture
3.1. Hardware
The developed system hardware is composed of a
commercial ANC headset, the ATH-ANC1 Quiet-
Point r, which had its control circuit removed,
in order to use its microphones and loudspeak-
ers. A development board, the TMS320C6713 DSP
starter kit (C6713 DSK), Spectrum Digital, housing
a TMS320C6713 floating-point digital signal pro-
cessor (DSP) from Texas Instruments, was used as
the substitute controller. The programs are down-
loaded to the DSK and the data is uploaded from
the DSK with USB, through a JTAG emulator, to
a Personal Computer.

The line-level channels were used as input and
output of the board, meaning that no pre-amplifiers
nor power amplifiers were available. So, a printed
circuit board (PCB) containing the microphones’
biasing, the microphones’ pre-amplifiers, the power
amplifiers to drive the loudspeakers and a power
circuit to supply these circuits was produced. In
order to implement the feedforward configuration,
a reference microphone had to be assembled and
the DSK AUDIO4 daughtercard, from Educational
DSP, LLC, was installed in the development board
to expand the number of channels of the C6713
DSK. Then, the reference microphone biasing and
pre-amplifier circuits were mounted on a bread-
board. The analogue board developed is pictured
in Figure 9.

The DSK AUDIO4 daughtercard contains two
16 bit Coder Decoder (CODEC), each one with a
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Figure 9: Analogue Circuit Developed.

stereo A/D converter (ADC) and a D/A converter
(DAC). The maximum input and output of both
devices is 1 Vrms. The error microphones have an
estimated sensitivity of 13.2mV/Pa, and the pre-
amplifiers have a gain of AVpre

= 55, thus allow-
ing to acquire noises with 2 Pa sound pressure,
the maximum noise considered, without saturat-
ing the channel. The power amplifier has a gain of
Gv = 0.12 outputting enough power for the loud-
speakers to cancel a 2 Pa noise. The reference mi-
crophone pre-amplifier gain value was determined
experimentally, to observe its impact on noise can-
celling performance. The output of the error mi-
crophones pre-amplifiers were connected to the line-
input of CODEC0 and input of the power amplifier
connected to the line-output of the CODEC0. The
output of the reference microphone pre-amplifier
was connected to the line-input of CODEC1.

A diagram with the components of the system
hardware is depicted in Figure 10.

Figure 10: Diagram of ANC Headset System Hard-
ware.

The error and reference signals were acquired at
a sampling rate of Fs = 16kHz.

3.2. Software
The software was developed in Code Composer Stu-
dio software suite, version 6.1.0. All the programs
were implemented in C-language.

Multi-rate signal processing was used to obtain
the low delay of high sampling rates and the high
processing time, i.e. the time spent by the processor
doing the ANC algorithm computations, and lower
adaptive filter order of low sampling rates. The 16
kHz sampling rate of the CODECs was decimated
to the 2 kHz operating frequency of the ANC algo-
rithms operated, meaning a conversion factor of 8
was used. The anti-aliasing/anti-image filters used
were 161st order lowpass FIR filters with 500 Hz
as cut-off frequency and 1000 Hz stopband corner
frequency, with low ripple.

FxLMS algorithm was implemented for both
feedforward and feedback system. For feedback
FxLMS, the reference signal was synthesized by
adding an estimate of the anti-noise ŷ′(n) = y(n) ∗
ŝ(n) to the error signal, obtaining a primary noise
estimate which was used as the reference signal. It
used NLMS with the power of the filtered-x as a
normalizing factor.

Off-line secondary path estimation also used the
NLMS, with the step-size µs = 0.01 normalized by
the power of the internally generated white noise,
the training signal. This training signal was used
to achieve fast convergence of the off-line modelling
algorithm.

BMFxLMS algorithm uses the modified error sig-
nal, with the primary noise estimate band limited,
and filtered-x signal also band limited as the NLMS
input. The normalizing factor was the bandlimited
filtered-x power. The phase error was found to be
above 90◦ for frequencies under 80 Hz. The band
limiting filter was implemented using a linear phase
FIR filter. It had cut off frequencies of 100 and 500
Hz and stopband corner frequencies of 25 and 900
Hz and relatively high ripple comparing to the dec-
imator and interpolator filters. The resulting filter
was a 60th order bandpass filter.

The MMFxLMS algorithm [6] was implemented
in C-language.

The step sizes, filter lengths and leakage factors
of all algorithms were determined experimentally
to achieve the best performance in an experiment
explained in the following section.

4. Results

Various real-time tests were performed to under-
stand the capabilities of the system. All the ex-
periments had a user wearing the headset and the
data was acquired by plotting the systems signals in
the graphing tool of CCS, exporting that data and
process it in MATLAB. The secondary paths of the
system were characterized, with the secondary path
modelling error being estimated. Then each algo-
rithm went through a process of changing various
system parameters, with the resulting performance
assessed.
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4.1. Secondary path characterization
The parameters, amplifier gains, step-sizes, sam-
pling frequency, etc., used at the time of the mea-
surements presented in this subsection were not the
ones in the final system. Nevertheless they are use-
ful to make some conclusions.

Audio system measurements
After the assembly of the system hardware, i.e.

the stereo headset, DSK board and analogue am-
plifier circuit, some of the systems audio character-
istics were measured to know to what extent the
hardware affects the system performance.

The electrical crosstalk of the DSK was studied.
It measured the introduction of electrical noise in
one channel, when another channel is excited by a
signal. More specifically, the DAC emitted a signal
to drive the loudspeaker and the signal sampled by
the ADC was observed. There was no considerable
electrical crosstalk between the channels. However,
these results had little significance because the ana-
logue circuit was not included in the measurement.

To study the non-linear distortion, the off-line
secondary path modelling had the training sig-
nal maximum amplitude increased with the values
{5000, 10000, 15000, 20000}. Each run used a value
and the resulting error signal power would be ob-
served. If, with each variation of input power, the
output power does not increase in the same way,
there are non-linearities present in the circuit. It
was observed a linear relationship between the in-
put and output powers except for the lowest digital
gain used, Gd = 5k, which exhibited high non lin-
earity for low power signals.

(a) Left Channel (b) Right Channel

Figure 11: Secondary path Input-Output linearity.

To determine the total harmonic distortion
(THD), a sinusoidal signal, with frequencies f ∈
{50, 75, 100, 250, 500, 750, 1000}Hz for each run,
was input in the secondary path and the output
THD, using the harmonics of the input signal fre-
quency, was computed. A linear system with a sinu-
soidal signal as input has always a sinusoidal signal
with the same frequency at the output. THD is a
measurement of the extent of non-linear distortion.
As seen in Figure 12, frequencies below or equal to
100 Hz had THD between 1% and 2%. The rest of

Figure 12: Total harmonic distortion of the sec-
ondary path.

the frequencies had THD below 1%. The THD re-
sults were found to be satisfactory because 1% dis-
tortion will be only noticeable for noise cancelling
levels close to 40 dB, which is a great deal more than
what is expected for the attenuation performance of
this system.

4.2. Secondary path off-line modelling

To learn about the off-line secondary path mod-
elling algorithm performance, 100 runs of the al-
gorithm were realized. Then the phase error be-
tween the secondary path and the estimates was
computed. It should be noted that the sampling
frequency used for these measurements

Figure 13 shows the acquired impulse responses.
Each line represents an estimate of the secondary
path. It can be seen that there is great precision
in modelling the delay of the secondary path, i.e.
the large peak, because on that point the estimates
are not spread. Thus, one can conclude that there
is a big possibility of the algorithm accurately esti-
mating the secondary path delay. However there is
a big spread on the signal segment after the peak
which may result in instability in the system.

Figure 13: Estimated secondary path impulse re-
sponses.

Figure 14 shows that there is a big variation of
phase on the lower end of the spectrum. More
specifically, approximately under 80 Hz the phase
error is above 90◦ thus, at these frequencies the sys-
tem should be more prone to instability or at least
slower convergence. This is was expected because
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(a) Maximum difference between the secondary
path estimates phase.

(b) Detail on the phase error plot of the sec-
ondary path estimates.

Figure 14: Phase error of the secondary path esti-
mates.

at low frequencies the secondary path has small am-
plitude therefore the signal to noise ratio is low in
these frequencies.

4.3. Algorithm performance evaluation

The experimental setup for the parameter optimiza-
tion is depicted in Figure 15. This setup was used
for all the algorithms and the presented distances
were used in an effort to meet the causality con-
dition and high coherency condition. Even though
it depicts a feedforward system, the reference mi-
crophone was turned off when using feedback al-
gorithms. The noise source utilized was a Pioneer
XR-NM1 stereo system.

For each algorithm a good combination of pa-
rameter values, which gave good performance, was
found. Then that set of parameters was used in
various tests where the primary noise was changed.

Experimental parameter optimization

In this procedure the system parameters were
manipulated to achieve the best possible perfor-
mance. The parameters to be set were the step
size µ, the leakage factor λ, the adaptive filters
length Lw = Ls and the reference microphone pre-
amplifier gain AVref

. A sinusoidal noise with 100 Hz

Figure 15: Experimental setup of the performance
evaluation.

was used a the primary noise. Two levels of sound
pressure were used to test the performance at high
sound pressure levels and low sound pressure levels.

The sampling frequency was also varied not with
optimization in mind but to see how the perfor-
mance varied with it. The sampling frequencies
tested were 16 kHz without decimation, 8 kHz dec-
imated from 48 kHz and 2 kHz decimated from 16
kHz.

Data was gathered while varying one of these
variables and holding all others at a constant value
to best isolate its effect on the system. Performance
was assessed by observing 4 different performance
measures: attenuation, convergence time, stability
and robustness. To measure stability a subjective
method of classification was employed with grades
being stable, oscillating, unstable, very unstable, di-
verging. A system configuration was classified with
one grade based on the amount of runs it displayed
a certain behaviour. Robustness was determined by
inducing perturbations to the headset, specifically
taking off and putting on the headset. Attenuation
was the favoured measure to choose the best value,
then it was convergence time, stability and for last
robustness.

The resulting parameters of the optimization pro-
cess are presented in Table 1. They were not neces-
sarily the best combination of parameters since the
study was incomplete, but presented a good balance
of attenuation, stability and speed while cancelling
both high level noises and low level noises.

This study proved valuable to understand the
weight some parameters have on the performance
measures used. The system revealed to be more
unstable for high sound pressure levels, with this
effect being mitigated by using the leakage factor.
However, it limits the output power of the system,
thus reducing attenuation in the process. The low-
est pre-amplifier gain generated the highest atten-
uation. The convergence time increased with the
filter length. The convergence time decreased as
the step size increased. For the sampling frequency,
stability and robustness was worse without multi-
rate processing. With multi-rate processing, atten-
uation was higher for 8 kHz but the stability and
robustness was better with 2 kHz for some algo-
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rithms, namely the BMFxLMS algorithm.

Table 1: Parameters obtained from the experimen-
tal parameter optimization.

µ λ Lw = Ls AVref

FxLMS fb 0,005 1 120 -
BMFxLMS 0,005 1 55 -
FxLMS ff 0,005 1 200 62,5

MMFxLMS 1 1 200 62,5

Tone frequency sweep
In this set of experiments the sinusoidal noise had

its frequency varied. The resulting attenuation was
noted and other relevant measures of performance
observed. Table 2 has a comparison of the attenu-
ation results for each algorithm.

On average, the best attenuation is from the BM-
FxLMS and the worse from the MMFxLMS. The
feedback FxLMS algorithm was the least stable and
the MMFxLMS was the most stable. From these
results, it can be concluded that the methods to
counter the modelling error effects were successful
in doing so.

Comparing to the literature results [9, 1], even
though the system can achieve good attenuation
levels, superior to 30 dB, the results reported could
get over 40 dB of attenuation. This can be ex-
plained by their methods employed to obtain the
attenuation measures. Their attenuated noises were
acquired inside head simulators with high precision
microphones, whereas in this work the residual sig-
nal, contaminated by background noise, was used
as the attenuated noise. The fixed controller head-
set tested in [1] revealed to be inferior, however it
is a very old model.

Narrowband noise
In this procedure the primary noise used was an

industrial compressor, with narrowband spectrum.
Some high power harmonics were observed for the
trials of each algorithm and their attenuation com-
pared. In Table 3 the attenuation for the observed
harmonics and the total attenuation are presented,
for each algorithm.

The feedforward FxLMS had the best total atten-
uation and on average of the observed harmonics.
The spectrum of this algorithm attenuation can be
seen in Figure 16. MMFxLMS had equally good av-
erage attenuation for those harmonics, however the
overall performance was not very good. Although
the feedback FxLMS had the second best total at-
tenuation, it was the algorithm with the worst sta-
bility. The BMFxLMS improved on it but had the
worst attenuation of harmonics. The feedforward
algorithms had no stability issues.

The results of the prototypes reported in other
works [11, 9] show that, although the present system
has a worse total attenuation, the attenuation for
harmonics higher than 100 Hz is comparable and for
harmonics higher than 200 Hz is superior. In those
works commercial analogue headsets had their at-
tenuation assessed. The system developed in this
work had performance similar to that of the com-
mercial headsets, therefore the results were good.

Figure 16: Power spectra of narrowband noise with
and without ANC, for feedforward FxLMS.

Broadband Noise
Broadband noise was not cancelled by this sys-

tem. Figure 17 depicts the situation for the algo-
rithm which had the best performance, the feedfor-
ward FxLMS, since it did not increase the noise
level in the system. For feedback systems that
was expected, due to their inability to cancel those
noise. The physical placement of the sensors for
the feedforward systems probably did not meet the
coherence and causality conditions.

Figure 17: Power spectra of broadband noise with
and without ANC, for feedforward FxLMS.

5. Conclusions
The active headset system, with both feedback and
feedforward configurations, showed satisfactory at-
tenuation. Not only it reinforced the fact that feed-
forward systems perform better than feedback sys-
tems, but also demonstrated the superior attenu-
ation of an adaptive controller compared to some
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Table 2: Attenuation of the algorithms with the tone frequency sweep. fb - algorithm for feedback system;
ff - algorithm for feedforward system.

Frequency [Hz] FxLMS fb[dB] BMFxLMS[dB] FxLMS ff[dB] MMFxLMS[dB]
60 21,62 23,73 19,62 16,62
100 28,83 18,94 26,69 29,6
200 28,27 28,45 20,52 29,72
400 26,58 24,9 28,23 23,77
500 26,35 38,93 32,37 25,03

Table 3: Attenuation of the algorithms with the narrowband noise. fb - algorithm for feedback system;
ff - algorithm for feedforward system.

Frequency [Hz] FxLMS fb-Att[dB] BMFxLMS-Att[dB] FxLMS ff-Att[dB] MMFxLMS-Att[dB]
82 11,06 3,65 20.45 23.41
121 10,88 9,35 19.62 20.02

175,8 9,38 6,18 8.74 8
207 18,35 8,12 18.63 15.13
320 18,35 - 22.29 21.13

Total Attenuation 5.42 1.13 7.1 1.07

fixed controllers, seen in the consulted literature.
However, it revealed instability issues related to the
modelling error of the secondary path estimates, in-
herent to the off-line modelling method.

The two approaches used to reduce the effects
of the phase error were successful mitigating them.
The instability of the FxLMS algorithm was re-
duced, however at the cost of reduced attenuation
for real noises. Still, the BMFxLMS was not com-
pletely stable and it presented great lack of robust-
ness. The MMFxLMS revealed to be robust to all
perturbations but the take off/put on situation, it
was very stable when the numerical range of the
CODEC was not exceeded by the overshoot inher-
ent to it. This overshoot was the greatest drawback
of this algorithm, since, as stated, it also degraded
its attenuation for real systems.

It should be noted that the tone frequency sweep,
narrowband and broadband noises all used loud
noises, to maximize the attenuation achieved. How-
ever, at these sound pressure levels, the stability of
the system got worse.

The experimental results are acceptable since it
compares to, and sometimes it exceeds, the per-
formance of the reported commercial analogue sys-
tems, however it obtained inferior attenuation com-
pared to recent results from other researchers. The
system presents stability issues, which can difficult
a commercial application, thus they should be bet-
ter studied.

It was made evident how important is a closer
study of causality and coherence to achieve broad-
band cancellation. For instance it would be useful
to measure the electrical delay of the CODEC and
compare to the acoustic delay of the system, to bet-
ter study the causality of the system. Also a study

of the position of the reference microphone and its
effect on the performance of broadband noise can-
cellation would be in order.
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