Continuous Time Neural Signal Processing in Embedded Platforms

João Lovegrove Pereira

Thesis to obtain the Master of Science Degree in

Biomedical Engineering

Supervisor: Yan Liu, PhD
Co-supervisor: Professor João Miguel Raposo Sanches

Examination Committee

Chairperson: Professor Luís Humberto Viseu Melo
Supervisor: Professor João Miguel Raposo Sanches
Members of the Committee: Professor Ana Luísa Nobre Fred

November 2016
Acknowledgments

I would like to start by thanking my family, for having, and continuing, to support me regardless of anything. My parents and sister, and my grandmother who took me in whenever I needed a boost.

I would like to thank Yan and Tim, for having accepted me and for their guidance and inspiration throughout the work.

A general thank you is also due to most of the CBIT group for making my stay a great experience, with many lunch breaks and soapboxes. And for the friends I now take with me.

A final thank you is owed to Prof. João Sanches for our talks and for having been my supervisor.
Abstract

When recording the electrical activity of the brain at an extracellular level, a process called spike sorting is necessary to classify each detected action potential to its source neuron. Current trends have pushed spike sorting to be performed on an implant, invasively placed with the electrodes. This requires efficient spike sorting algorithms to minimize power consumptions and chip sizes.

In this thesis I study how continuous time data conversion and asynchronous spike sorting can improve overall efficiencies of such implants without loss of sorting performances. I find that, due to the spurious behaviour of spikes, fewer samples are produced by the event-driven sampling scheme of level-crossing, without losing information on spikes.

From the continuous outputs of level-crossing sampling, I propose a set of 4 simple features that can be economically extracted, while attaining similar performances to template matching, a reference spike sorting method. The work finishes with the demonstration of the proposed spike sorting system implemented on an FPGA.

Although a conclusive comparison between this new paradigm and conventional systems requires deeper considerations for the hardware implementation, the results shown reveal the promise of taking advantage of the spurious behaviour of extracellular recordings.

Keywords: Continuous Time, Level-Crossing, Event Driven, Asynchronous, FPGA, Spike Sorting
Resumo

Quando se adquire o sinal elétrico do cérebro ao nível extracelular, um processo de classificação é necessário para atribuir cada potencial de ação detetado ao neurônio que o originou. A tendência atual é para a inclusão deste processo de classificação no próprio implante invasivo, junto com os elétrodos. Esta abordagem exige o uso de algoritmos de classificação eficientes de modo a minimizar o consumo energético e a dimensão do implante.

Nesta tese eu estudo a possibilidade da conversão do sinal em tempo contínuo, e a utilização de um circuito assíncrono para implementar o algoritmo de classificação, melhorar a eficiência destes implantes neuronais, sem detrimento para a eficácia da classificação. Revelo que, devida à atividade esparsa dos potenciais de ação, menos amostras são produzidas por esquemas de amostragem impulsionada pela atividade do próprio sinal, como o seja amostragem por passagem de nível, sem necessariamente perda de informação sobre potenciais de ação.

Dos produtos em tempo contínuo da amostragem por passagem de nível, eu proponho a extração de 4 simples descritores, passíveis de serem extraídos economicamente, que se revelam capazes de produzir resultados de classificação semelhantes a um outro método de referência. O trabalho termina com uma demonstração do sistema proposto para a classificação de potenciais de ação, implementado numa FPGA.

Apesar de uma comparação conclusiva entre a mudança de paradigma proposta e as abordagens tradicionais exigir a inclusão de uma análise mais profunda das possíveis tecnologias a usar, os resultados mostrados revelam o potencial de aproveitar a natureza esparsa dos sinais extracelulares.

Palavras-chave: Tempo Contínuo, Passagem de Nível, Assíncrono, FPGA, Classificação de Potenciais de Ação
Contents

Acknowledgments .. iii
Abstract .. v
Resumo .. vii
List of Tables ... xi
List of Figures ... xiii
Acronyms ... xv

1 Introduction
1.1 Motivation ... 1
1.2 Research Objectives ... 2
1.3 Thesis Outline ... 2

2 Background
2.1 Neurons .. 5
 2.1.1 Resting Membrane Potential 5
 2.1.2 Action Potentials ... 6
2.2 Neural Interfaces .. 8
 2.2.1 Extracellular Recordings ... 9
 2.2.2 Spikes ... 10
2.3 Spike Sorting .. 11
 2.3.1 Challenges .. 12
 2.3.2 Validating Results .. 14
2.4 On-Chip Spike Sorting .. 15
 2.4.1 Analogue-Front-End ... 16
 2.4.2 Spike Detection ... 18
 2.4.3 Spike Sorting Algorithms 20
 2.4.4 State-of-the-Art ... 23

3 Continuous Time Data Conversion
3.1 Motivation ... 27
3.2 Level-Crossing Sampling .. 28
 3.2.1 Properties ... 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>Asynchronous Delta-Modulation</td>
<td>31</td>
</tr>
<tr>
<td>3.2.3</td>
<td>ADC State-of-Art: LC vs US</td>
<td>31</td>
</tr>
<tr>
<td>3.3</td>
<td>Applying LC Sampling on Neural Data</td>
<td>34</td>
</tr>
<tr>
<td>3.3.1</td>
<td>LC ADC Model</td>
<td>34</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Datasets</td>
<td>34</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Results</td>
<td>36</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Discussion</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>Asynchronous Spike Sorting</td>
<td>39</td>
</tr>
<tr>
<td>4.1</td>
<td>Event-Driven Features</td>
<td>40</td>
</tr>
<tr>
<td>4.2</td>
<td>Methodology</td>
<td>41</td>
</tr>
<tr>
<td>4.3</td>
<td>Results</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>Discussion</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>From Soft- to Hardware: FPGA Implementation</td>
<td>46</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview</td>
<td>46</td>
</tr>
<tr>
<td>5.2</td>
<td>Results</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>Conclusions</td>
<td>51</td>
</tr>
<tr>
<td>6.1</td>
<td>Future Work</td>
<td>52</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>A</td>
<td>FPGA Implementation</td>
<td>59</td>
</tr>
<tr>
<td>A.1</td>
<td>Figures</td>
<td>59</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>On-Chip Spike Sorting State-of-the-Art</td>
<td>26</td>
</tr>
<tr>
<td>3.1</td>
<td>State-of-the-Art: LC vs. US ADCs</td>
<td>33</td>
</tr>
<tr>
<td>4.1</td>
<td>Average Number of Events and Inversion Points per Spike</td>
<td>43</td>
</tr>
<tr>
<td>4.2</td>
<td>Accuracy vs. Noise Level and Difficulty</td>
<td>44</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Neuron and Action Potential .. 6
2.2 Neural Interfaces ... 8
2.3 Extracellular Recordings ... 9
2.4 Spikes’ Waveforms ... 10
2.5 Spike Sorting ... 11
2.6 On-Chip Spike Sorting Power Consumption 16
2.7 On-Chip Spike Sorting ... 17
3.1 LC Sampling ... 28
3.2 LC ADC ... 29
3.3 Saturation Error ... 30
3.4 Asynchronous Delta-Modulation .. 32
3.5 Output of LC ADC Model .. 34
3.6 Artificial Neural Datasets .. 35
3.7 Average Maximum Loop Delay and Number of Level-Crossings vs \(N \) ... 37
3.8 Digitization Error ... 37
4.1 Signal Processing Domains .. 40
4.2 Sorting Accuracy vs. Cost of Proposed Features and TM 43
5.1 FPGA DE0 Board ... 47
5.2 Overview of FPGA Implementation ... 47
5.3 Input Data Structure ... 48
5.4 FPGA Sorting Results .. 50
A.1 FPGA + Logic Analyzer ... 59
A.2 Detailed Overview of FPGA System 60
A.3 Timing Diagram of the Flash Memory Controller 61
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
<td>Analogue-to-Digital Converter</td>
</tr>
<tr>
<td>AFE</td>
<td>Analogue-Front-End</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application Specific Integrated Circuit</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>BMI</td>
<td>Brain Machine Interface</td>
</tr>
<tr>
<td>CT</td>
<td>Continuous Time</td>
</tr>
<tr>
<td>DAC</td>
<td>Digital-to-Analogue Converter</td>
</tr>
<tr>
<td>DD</td>
<td>Discrete Derivatives</td>
</tr>
<tr>
<td>DR</td>
<td>Dimensionality Reduction</td>
</tr>
<tr>
<td>DSP</td>
<td>Digital Signal Processing or Digital Signal Processor</td>
</tr>
<tr>
<td>DWT</td>
<td>Discrete Wavelet Transform</td>
</tr>
<tr>
<td>EAP</td>
<td>Extracellular Action Potential</td>
</tr>
<tr>
<td>EDF</td>
<td>Event-Driven Features</td>
</tr>
<tr>
<td>ECoG</td>
<td>Electrocorticography</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalography</td>
</tr>
<tr>
<td>EMG</td>
<td>Electromyography</td>
</tr>
<tr>
<td>EOG</td>
<td>Electrooculography</td>
</tr>
<tr>
<td>ENOB</td>
<td>Effective Number of Bits</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic Interference</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field-Programmable Gate Array</td>
</tr>
<tr>
<td>LC</td>
<td>Level-Crossing</td>
</tr>
<tr>
<td>LFP</td>
<td>Local Field Potential</td>
</tr>
<tr>
<td>LNA</td>
<td>Low-Noise Amplifier</td>
</tr>
<tr>
<td>lsb</td>
<td>least-significant-bit</td>
</tr>
<tr>
<td>MSB</td>
<td>Most-Significant-Bit</td>
</tr>
<tr>
<td>MCU</td>
<td>Microcontroller</td>
</tr>
<tr>
<td>NEO</td>
<td>Non-Linear Energy Operator</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal Component Analysis</td>
</tr>
<tr>
<td>PC</td>
<td>Principal Component</td>
</tr>
<tr>
<td>SAR</td>
<td>Successive Approximation Register</td>
</tr>
<tr>
<td>SINAD</td>
<td>Signal-to-Noise And Distortion Ratio</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SR</td>
<td>Sampling Rate</td>
</tr>
<tr>
<td>TM</td>
<td>Template Matching</td>
</tr>
<tr>
<td>US</td>
<td>Uniform Sampling</td>
</tr>
<tr>
<td>ZCF</td>
<td>Zero-Crossing Features</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Motivation

The human brain is composed of billions of neurons that together perform the complex biological functions that allowed me to write this thesis, among my other everyday activities. Despite ongoing efforts by the scientific community, it is still not completely understood how neurological processes, such as memory and cognition, are achieved. The main drive behind these efforts is the desire to develop ways to prevent, manage or cure the many neurological conditions that can occur, with possibly a great impact on people’s lives. In the United States, Alzheimer’s disease is the 6th leading cause of death, with an annual cost estimated of $236 billions [1], showing the societal impact these diseases can also have beyond those directly affected.

With technological advances in electronics and robotics, it’s also becoming possible to interface the brain directly with sensory or effector units enabling to restore lost functions from spinal cord injuries, brainstem stroke or other disorders. Examples of such brain-machine interfaces, BMIs, are cochlear implants and neural prostheses [2]. Furthermore, understanding the brain’s functions can also inspire the development of novel technologies, as artificial neural networks or neuromorphic electronic architectures.

A key requirement to advance our understanding of the brain is the ability to record the electrical activity of individual neurons, i.e. achieving single-neuron resolution. This is done by implanting micro-electrodes into the neural tissue, capable of recording the extracellular action potentials. Since several neurons might be recorded simultaneously, a spike sorting algorithm is needed to classify each detected action potential to its source neuron. As we do not wish to restrict the freedom of the subject, both in experimental and clinical environments, a wireless data transmitter can be incorporated with the electrodes, bypassing the need for transcutaneous wires that additionally increase the risk of infections. However, due to bandwidth limitations, a preceding step of data reduction is necessary.

Advances in semiconductor technology are enabling the implementation of spike sorting algorithms on application-specific integrated circuits, ASICs, to be integrated with the electrodes and wireless transmitter. This provides for drastic datarate reductions, by transmitting only binary events indicating the...
firing of a spike and its class. However this comes at an increased computational overhead, and consequently, an increase in power and silicon area for the implant.

With the desire to increase the number of simultaneously recorded channels, needed for example to increase the degrees-of-freedom of BMIs or to study neural populations, there is a demand for efficient spike sorting algorithms that can be integrated on-chip whilst respecting the strict power and area constrains.

1.2 Research Objectives

In this work we raise the hypothesis of continuous time, CT, data conversion and event-driven spike sorting reducing power consumptions of neural implants while maintaining good sorting results by:

- Producing fewer, more informative samples through level-crossing, LC, sampling;
- Asynchronous delta-modulation enabling economical feature extraction;
- An event-driven, asynchronous digital signal processor, DSP, resulting in lower power consumptions from its signal-dependent activity.

The objectives laid out are:

- Determine how LC sampling performs on neural data;
- Propose a set of event-driven features and compare sorting results and costs with conventional methods;
- Demonstrate on hardware, using a field-programmable gate array, FPGA, the feasibility of the proposed spike sorting system.

1.3 Thesis Outline

In the following Chapter, the background to our problem is introduced. It starts by explaining the source of neural signals and how these can be recorded. In Section 2.3, spike sorting is presented, while Section 2.4 explains the need for it to be performed on-chip, followed by an explanation in deeper detail of its several stages. Chapter 2 ends with a review of the state-of-the-art of on-chip spike sorting systems.

In Chapter 3 we study the CT data conversion of extracellular recordings. It starts with a motivation for this different approach, then moves to explaining LC sampling and its properties. Section 3.2 also includes an explanation of asynchronous delta-modulation and finishes with a comparative review of the state-of-the-art LC and uniform sampling ADCs. In Section 3.3 we apply a LC ADC model, implemented on Matlab, to artificial neural datasets and observe how it behaves with different amplitude resolutions, comparing results with uniform sampling.

Chapter 4 studies how the output of CT data conversion can be used to sort spikes, explaining the possible advantages of using an asynchronous DSP. In Section 4.1 a set of event-driven features are proposed and in Section 4.2 we explain how they are compared in both implementation cost and sorting performances, with a reference spike sorting method.
In Chapter 5 we demonstrate, as a proof of concept, how the proposed asynchronous system can
be implemented, using an FPGA. Section 5.1 explains the different stages and some technical details,
while Section 5.2 presents the final classification results obtained.

This work finishes in Chapter 6 with a discussion rounding up the conclusions and with suggestions
for further developments on this topic.
Chapter 2

Background

2.1 Neurons

The nervous system is composed of two types of cells: glial cells and neurons. Glial cells, or neuroglia, are a class of cells which have a supportive role for neurons. They provide them with nutrient and oxygen supplies, structural support and protection by helping to maintain homoeostasis and removing pathogens. They do not produce action potentials, thus do not contribute to the brain’s electrical activity.

Neurons are the basic functional cells of the nervous system. They are responsible for integrating and propagating neural signals, both of chemical and electrical nature, enabling, through their combined activity, the complex computational abilities of the brain. Neurons are typically composed of a cell body, dendrites and an individual axon, Figure 2.1. The cell body comprises most of the cellular organelles. From it, thin structures extrude consisting on the dendrites, which ramify becoming thinner with each division. The axon is a single tubular extension that can measure up to a meter in humans, having the same width for most of its length, before ramifying at its distal end. Axons from different neurons can be bundled up together into fascicles, which themselves can also bundle up creating nerves in the peripheral nervous system.

2.1.1 Resting Membrane Potential

Like any other cell, neurons are delimited by a phospholipidic bilayer, the plasma membrane, that provides electrical insulation between the intra- and extracellular mediums. Through transmembrane proteins, complex electrochemical gradients of different ions are established across the membrane, resulting in an overall membrane potential. These transmembrane proteins can be ion pumps, which require the consumption of energy, usually in the form of ATP, to transport ions across the membrane in the opposite direction of their gradient. They can also be ion channels which provide the membrane with permeability for specific ions, enabling their transport down their gradient without energy costs. Among ion channels we find voltage-gated ion channels that only open if a certain membrane potential is present, which causes the necessary conformational changes.

An initial concentration gradient across the membrane for both sodium and potassium ions is achieved
through the Na+/K+ ATPase ion pump by transporting 2 K+ ions to the intracellular medium and 3 Na+ ions to the extracellular medium, at the cost of one ATP molecule. The natural tendency will be for both ion types to move down their concentration gradients, with K+ ions moving out of the cell and Na+ ions moving inside. However, the permeability of the membrane to Na+ ions is usually around 95% lower than to K+ ions, due to asymmetrical numbers of ion channels for each. This results in a lower electrical potential inside of the cell. The final balance between the activity of Na+/K+ ATPases and the passive diffusion of these ions through the membrane, together with fluxes from other ions, results in a relatively stable resting membrane potential of around \(-70 \text{ mV}\) in neurons.

2.1.2 Action Potentials

An action potential is a characteristic bioelectrical event that can occur in neurons and other excitable cells, Figure 2.1. It consists on a sharp increase of the membrane’s potential, followed by a return to its resting value. In neurons, action potentials typically have an amplitude of 100 mV and a duration of 1 to 2 milliseconds [3]. They have a characteristic shape, composed of a raising phase, a peak, a hyperpolarization phase and a refractory period, with generally the same amplitude and duration for the same neuron regardless of the initial stimuli’s intensity or duration.

Action potentials play a crucial role in the cell-to-cell communication of the nervous system, by propagating down a neuron’s axon to incite the firing of further action potentials in efferent neurons. They are produced by voltage-gated ion channels, who’s different distributions and concentrations along a neuron’s membrane provide different regions with different electrical properties, such as excitability.

A typical action potential originates at the axon hillock, the connection point between the axon and the cell body. When neurotransmitters released from a presynaptic neuron bind to receptors on a postsynaptic neuron they cause the opening of ion channels resulting in an increase or decrease of the membrane’s potential, i.e. a depolarization or hyperpolarization, corresponding respectively to an excitatory or inhibitory stimuli.
To trigger an action potential several excitatory stimuli are usually needed to raise the membrane’s potential to the threshold potential, around $-55\, mV$. At this point, voltage-gated sodium channels open causing an inflow of sodium and an increase of the membrane’s potential. This causes further sodium channels to open creating a positive feedback loop that culminates in the sharp increase of the membrane’s potential. As it reverses polarity and continues to increase, the sodium gates start to close. However, voltage-gated potassium channels that had also been opened, remain so, allowing the exit of potassium cations from the neuron and causing the sharp fall of the membrane’s potential that ensues after the peak. As the potential reaches the resting value, there’s a delay in closing the potassium gates, which results in a further decrease of the potential before returning to the initial value. This is called the afterhyperpolarization, and is responsible for the refractory period. This period can be divided in an absolute refractory period, in which it is impossible to trigger a new action potential, and a relative refractory period, during which stronger than usual stimuli will be needed to cause an action potential.

The firing of an action potential at the axon hillock provokes the firing at the neighbouring axon patch, and so on, creating a domino effect that propagates the pulse down the axon, without decay of the signal. It’s the refractory period of the previous patch that inhibits backpropagation of the action potential. At the end of the axon, it causes the release of neurotransmitters into the synaptic cleft, which will stimulate afferent neurons. The frequency at which neurons produce action potentials is called the firing rate. A spike train consists on the succession of spikes from the same neuron.

The shape of the action potential doesn’t change as it propagates down the axon [3]. It’s the number and timing between spikes that is thought to carry the information, i.e. the spike trains. Understanding the mechanisms through which this is done is essential if we ambition to decode the brain, and several mechanisms of neural coding have so far been explored.

Rate coding suggests that the information is contained in the mean firing rates of neurons. In fact, pioneering work back in 1926 showed that the firing rate along the sciatic nerve of frogs increased as a result of stretching their calf muscle with weights [4]. To compute these rates, we can average over time for a single neuron, or over a population of neurons subject to the same stimuli. The previous, however, is only suitable for slow, long lasting stimuli, not being able to explain the fast reaction times seen in animals.

For both approaches, two rate coding paradigms have also been proposed: analogue and digital, [5]. In analogue coding, the firing rate’s value contains the information itself, while in digital coding a threshold is thought to exist delimiting two on-or-off states.

In response to the temporal limitations of rate coding, spike coding has also been suggested [3]. Here, information is believed to be contained in the timing of spikes, in relation to reference signals. These could be, for example, oscillations of a background signal, such as local-field potentials, LFPs, [6], or the previous spike to have been fired by the same or another neuron.

The advances in understanding the mechanisms of neural coding have only been possible due to the ability to record the electrical activity of neurons.
2.2 Neural Interfaces

The brain’s electrical activity can be recorded at several levels of invasiveness using electrodes [7]. Electroencephalography, EEG, is a non-invasive technique which consists on placing electrodes on the scalp to perform the recordings, Figure 2.2 a). It provides useful information, mainly from its frequency analysis, with clinical applications in diagnosing epilepsy [8], sleep disorders, brain death, among others. It has also enabled successful use of BMIs, for rehabilitation, for example spelling devices or controlling wheelchairs [9]. It has the advantage of being relatively simple to set up, having a low cost and virtually no risk for the subject. However, the electrical signal results from averaging the activity from large numbers of neurons, with further smoothing from crossing the skull and soft tissues, thus providing limited spatial and temporal resolutions. Additionally, it is also prone to electromyographic, EMG, and electrooculographic, EOG, artefacts.

Alternatively, electrodes can be placed just above or below the dura matter, closer to the brain, in a technique called electrocorticography, ECoG [10], Figure 2.2 b). As they are placed directly above the cortex, no filtering occurs due to the skull or scalp, and EMG and EOG contributions are minimized, enabling finer spatial resolutions. Nonetheless, a craniotomy is required, rendering the procedure invasive, with the associated risks for the subject.

Despite the successes of EEGs and ECoGs, neither can record single-neuron activity, i.e. the individual action potentials of neurons. This is necessary if we aim to understand how neurons respond individually to different stimuli, and how complex phenomenon such as neural coding and neural plasticity can take place. This knowledge will enable a bottom-up approach to understand the higher level functions of the brain such as memory and cognition. With regard to applications, single-neuron resolution can also improve decoding of intentions in BMIs [11] [12], and is finding its uses in medical applications such as the treatment of epilepsy [13].

To record single-neuron activity, microelectrodes can be placed directly into the neurons. This was done by Hodgkin and Huxley in their breakthrough work in 1952 on giant squid axons [17], for which they were later awarded the Nobel Prize in Physiology or Medicine in 1963. However, due to the difficulty of inserting electrodes individually into each neuron, this technique becomes impractical with the desired increasing number of neurons to record simultaneously.

Figure 2.2: Different invasiveness levels of electrodes to record the electrical activity of neurons. a) A non-invasive cap for EEGs [14]. b) Intra-operative invasive grid of 64 ECoG sub-dural electrodes [15]. c) Acute microelectrode array implant in the human temporal cortex. Adapted from [16].
2.2.1 Extracellular Recordings

A compromise consists on recording the extracellular potential placing microelectrodes into the neural tissue, but without penetrating the neurons, Figure 2.2 c). This approach has been receiving considerable interest from the scientific community, motivated by continued advances in the fabrication of the microelectrodes [18]. Its main difficulties are the biocompatibility of the electrodes, destruction of neurons during insertion and scar tissue formation. Nonetheless stable long-term recordings up to months have been successfully reported [19].

The electrical potential recorded with these microelectrodes is composed of high frequency components, the extracellular action potentials, EAP, low frequency components, the local field potentials, LFPs, and of background noise, Figure 2.3. The main source of LFPs is the activity of large populations of neurons away from the electrode [5]. LFPs consist on the summation of the low frequency components of these electrical signals, as the tissue in the brain acts as a low-pass filter, due to the capacitive properties of the membrane cells, causing a higher attenuation of the high frequency components. It’s this same signal, somewhat further smoothed and integrated over larger areas, that is recorded with EEGs and ECoGs. These, however, are only capable of measuring signals from the superficial layers of the cortex, with deeper contributions being negligible, whereas microelectrodes can be placed deeper in the brain, a further advantage of this recording technique.

The largest source of background noise is the firing of neurons further away from the electrode, which don’t produce identifiable EAPs. Additionally, the electrodes add thermal noise due to their relatively high impedance, and an offset potential due to the electrode-electrolyte interface, which can reach several mV depending on electrode’s material [19].

![Extracellular Recording](image)

Figure 2.3: An extracellular recording and a breakdown of its components. Neurons located closest to the electrode’s tip produce distinguishable action potentials, with higher amplitudes. Activity from Zones II and III colectively produce the LFPs and background noise. Adapted from [20].
2.2.2 Spikes

EAPs, or spikes, display the opposite polarity of intracellular action potentials, and 2 to 3 orders of magnitude lower amplitudes, having peaks with approximately $50 - 500 \, \mu V$, Figure 2.4 B) and C). This is due to the filtering properties of the cell membrane and extracellular medium [13].

Spikes from different neurons are recorded having different waveform shapes due to a combination of factors. In [21] it was shown that different cell body and proximal dendrites’ sizes had a strong correlation with intracellular action potential amplitudes, and consequently with the recorded spikes’ shapes. Another factor are the types and densities of ionic channels on the neuron’s membrane. The position and distance of the electrode relative to the source neuron also influences spike’s waveforms. [21] showed that lower spike amplitudes are recorded as the distance between the electrode’s tip and the neuron increases, Figure 2.4 A). Also, the length of the depolarization phase increased with distance while the afterhyperpolarisation phase decreased in amplitude.

![Figure 2.4: A) Depiction of how a recorded spike changes as a function of the position of the probe relative to the neural source. Amplitude is color coded. Note how certain features are only recorded at certain sites, such as the positive afterhyperpolarization phase following the main peak, closer to the cell body. Comparison between an intracellular action potential (C) and the resulting spike (B), recorded at the tip of the probe. Spikes are usually shown with their polarity inverted from this image. Note the different amplitude scales used. Adapted from [21].](image)

2.3 Spike Sorting

Each extracellular recording might contain spikes from several different neurons, located close to the electrode’s tip. To obtain the desired single-neuron resolution, spike sorting is required, which consists on the classification each detected spike to its source neuron.

Spike sorting is based on two assumptions: spikes from different neurons will be recorded having different waveforms, as explained in Section 2.2.2; and a spike’s waveform doesn’t change throughout a recording session. In practice, only the neurons closest to the electrode, in Zone I of Figure 2.3, will have high enough amplitudes to allow successful sorting. As a result, we obtain the firing times of each neuron, i.e. their spike trains, which, as mentioned before, are considered to contain all the relevant information for neural coding. The spike trains from the recorded neurons can be displayed using Raster plots, shown at the end of Figure 2.5. Thus, the neural data can be reduced in size, requiring less memory for each recording session, since we can discard the signal’s shape and keep only the information of when the spikes occur and their class.

Prior to spike sorting, pre-conditioning steps need to be performed on the neural signal, Figure 2.5. The data is initially filtered with a bandpass filter to remove the lower frequency LFPs and the higher frequency noise, emphasising the spikes. A detection stage is then followed to isolate the spikes. Finally, spike sorting is done using one of several possible methods, to classify each spike to its source neuron.

Initially each experimental session was saved and classification was performed manually by human operators, offline. This process, however, introduces subjectivity, with sorting results varying with the experience of the operators. Also, it proves to be arduous work. For example, if a recording has 3 spikes firing at $20\ \text{Hz}$ each, a 5 minute session requires sorting 300 spikes. Which accounts for only 1 electrode. In the past years, the number of electrodes used simultaneously has grown exponentially, doubling approximately every 7 years [18], with some of today’s recordings using hundreds simultaneously [22]. This has been due to advances in the recording systems’ capacities and the production of electrodes, with the advent of silicon processing techniques. For these reasons, manual spike sorting is currently impractical.

Thus, computational algorithms are needed to perform spike sorting automatically, which has been an active field of research over the past decades [23]. These consist mainly on identifying similarities between the waveforms of the detected spikes and grouping them accordingly. For this, they can use the whole waveform or extract from it a set of features that best describe the spikes. These features can relate directly to the waveform of spikes, for example the amplitude or the width of the peaks, or

![Figure 2.5: Generic steps performed for spike sorting.](image)
they can result from analytical methods, such as principal component analysis, PCA, or discrete wavelet transform, DWT.

Feature extraction can additionally enable reducing the amount of data required to describe each spike, and consequently lower the computational requirements of the classification stage. For example, a spike composed of \(N\) samples could be represented by a set of \(M\) features, with \(M < N\).

Spike sorting algorithms can be divided into two main types: offline and online, or real-time. Offline methods consist on recording the whole session and then performing spike sorting on a computer. The spikes are detected and projected onto the feature space, where clustering methods are used to group them together. Spikes are classified according to the cluster where they end, with the assumption that each cluster corresponds to a different source neuron. By being offline there are few time constraints, allowing the use of computationally intensive methods. Additionally, they can use the whole recording simultaneously. Thus, these methods are more likely to obtain better sorting results. In [24] a comparison of spike sorting algorithms with publicly available source code showed how offline methods outperformed an online method.

However, offline algorithms are not adequate for cases where real-time sorting results are required. These are, for example, neural closed-loop experiments, where the procedure is adapted to real-time feedback, and all BMIs, for the obvious reasons.

For these applications, online spike sorting is required, which is the focus of this thesis. The main difference to offline spike sorting is that spikes need to be classified as they are detected, i.e. we can not collect all the spikes prior to sorting. Additionally, real-time execution restricts the computational complexity of the algorithms that can be used. For these reasons, the sorting algorithm is usually divided into two stages: the training and the classification stage. During the training phase, somewhat analogous to offline spike sorting, an initial segment of data is used for clustering, to find the underlying model of the recording, i.e. the number of identifiable neurons in each channel and their corresponding spike waveforms. With this information, a computationally lighter classifier is built, which is then used in real-time during the classification stage, to sort each newly detected spike.

2.3.1 Challenges

Spike sorting is not a trivial task. Beyond the noise present in the recordings, which can corrupt the waveforms of spikes, it faces many challenges. As the number of source neurons in each channel increases, differences between their waveforms become more subtle, rendering spike sorting more difficult. In [25], three expert operators independently used a publicly available offline spike sorting software, WaveClus [26], on different datasets with increasing numbers of source neurons. It revealed that performances started to decline for more than 8 neurons per channel.

This may be one reason for the discrepancy between the number of neurons usually found in extracellular recordings and their expected numbers, based on anatomical and biophysical considerations. For example, at least 50 neurons would be expected per recording from the cat’s visual cortex, while in practice they are approximately 10 fold fewer [27]. Further reasons for such discrepancy might be
neuron damage from probe insertion or the development of connective tissue insulating the probe after insertion [28]. Additionally, it has been shown that the brain might be much less active than commonly believed, having large numbers of sparsely firing neurons [27]. These might not produce enough spikes during a recording session to create their own cluster, thus being misclassified.

Another challenge is overlapping spikes. These occur when neighbouring neurons fire closely in time resulting in the superposition of their waveforms, which are difficult to disentangle. If neurons consistently fire synchronously, the resulting combined waveform might even be attributed to a ‘false’ neuron [28].

The underlying premise of spike sorting, that the recorded spikes from a certain neuron do not change over time, might also not hold under all circumstances. Some types of neurons fire in bursts - sequences of closely spaced spikes, during which their amplitude decreases. This might cause them to be erroneously sorted into different classes [28]. Analysis based on the firing times might be able to correct these cases, albeit not in real-time nor without an additional computational overhead. Electrode drifting, i.e. movement of the electrode with respect to the neural tissue, might also cause the spike’s shape to change, resulting in new clusters to appear and existing ones to split, merge or disappear [23]. This can occur, for example, in experiments with freely moving subjects, or from tissue retraction after electrode insertion1. Additional waveform changes can also result from glial cell growth surrounding the electrode tip, or connective tissue encapsulation. These phenomena might require the sorting algorithms to be adaptive, specially if targeting chronic implants or long experimental setups.

Adaptability can be partly achieved by successively repeating the training phase, though it might prove tricky to determine when to do so, or to relate the classes between consecutive trainings. With offline spike sorting methods specifically, this problem can be tackled with non-parametric clustering techniques, which can track these changes so long as they are gradual [28]. Parametric clustering methods usually assume a model for the clusters, described by a set of parameters, for example, the average and standard deviation of Gaussian distributions. However, as the waveforms of spikes change, the resulting clusters might have unusual shapes, not fitting the typical models, and thus being better suited for non-parametric clustering.

As mentioned earlier, we are also facing a constant increase in the number of channels to be recorded simultaneously, currently reaching hundreds [22]. The increasing amounts of data produced are putting pressure for the development of efficient spike sorting algorithms, specially for real-time applications. Additionally, shorter distances between electrodes, for example on tetrodes – probes with 4 closely positioned electrodes with distances usually of 25 – 50 µm, and high density multielectrode arrays, are producing potentially redundant data. If the same spikes are detected on several channels simultaneously, this poses a problem in interpreting the results from traditional spike sorting algorithms [23]. However, it could also reveal itself useful for untangling overlapping spikes, if these are detected separately on different channels. These issues have only recently started to be taken into account [28].

1 reason for which acquisitions are usually only made 30 to 60 minutes after inserting the probes [28].
2.3.2 Validating Results

A key aspect in the development of spike sorting algorithms is the ability to validate their results and compare performances between methods. The increasing variety of proposed methods calls for common reference tools for this purpose [29]. These can be divided in two according to the type of dataset used: with or without ground-truth knowledge, i.e. the information of which spike fired at what time.

Without ground-truth knowledge, the case with most extracellular recordings, this is not a straight forward problem. One approach consists on analysing the results for biological plausibility. Finding the distribution of interspike intervals for each cluster, we can check if the refractory period is being respected, an indication of successful sorting [23]. Another approach consists on using internal data of the spike sorting method itself. For example, with clustering algorithms different metrics can be used to evaluate the overall clustering performances, such as cluster separation or the final cost function value, providing an indication of the sorting quality.

In [29], several statistical measures were developed to evaluate sorting performances with a ‘black-box’ approach regarding the specific algorithm used. These measures focused mainly on the stability of the algorithms. For example, comparing the results obtained from re-running them with the same data, or using cross-validation - using some parts of the dataset to train classifiers to use on a common segment of data and then comparing results. An additional validation method is auxiliary spike addition [29], which consists on adding spikes with known classes to the dataset at specific times, and observing to which clusters they are classified.

With ground-truth knowledge, validating and comparing different methods becomes a simpler problem. By matching the results with the truth we can create a confusion matrix, from which several evaluation metrics can be computed, such as percentages of false and missed detections, and classification accuracy and precision. Ground-truth can be obtained from recording sessions where both intra- and extracellular potentials are measured simultaneously. However, these are not very frequent, and have a limited scope from the reasons explained in Section 2.2.

Alternatively, models describing neural geometry, firing patterns and biological and instrumentation noise can be developed and used to create artificial datasets. Spike templates from real recordings can also be added. These artificial datasets provide for the largest flexibility, allowing to easily manipulate various parameters such as the number of source neurons, the similarities between their waveforms and the levels and nature of the background noise. The challenge resides on creating datasets capable of realistically reproducing the expected extracellular recordings.
2.4 On-Chip Spike Sorting

Initially, neural recordings were performed with the electrodes inserted in the brain and wires relaying the data outside to rack-based acquisition systems. With continued developments in miniaturized electronic fabrication and novel ASIC technologies, it became possible to start integrating signal conditioning steps such as amplification and filtering with the electrodes. This allows to improve signal-to-noise ratios, SNR, by reducing movement artefacts and external interferences on the low amplitude neural signals.

There are two main constraints in the design of these neural implants. Their overall size needs to be kept to a minimum, to reduce trauma from implantation, ideally being possible to integrate the chip at the base of the electrodes. The power dissipation of these implants is also limited by the possible heat-induced damage to the biological tissues, with the literature stating a maximum temperature increase allowed of $1^\circ C$ [30]. As a reference, in [30], an implanted ASIC and 100-electrode array were predicted, from finite-element analysis and in vitro and in vivo experiments, to induce a temperature increase due to power dissipation of $0.029 \, ^\circ C/\mu W$. Thus a maximum power dissipation of $34 \, mW$ would be allowed for this ASIC and electrode-array combination.

The use of transcutaneous wires to power the device and transmit the data, however, causes problems. Not only do these wires restrict the movement of the subjects to the vicinity of the external memory/processing devices, they cause a susceptibility for infections. With the current trend shifting from shorter term implants, to performing recordings over longer periods, ultimately aiming at chronic implants for rehabilitation BMIs, transcutaneous wires are not desirable. To bypass their use, a wireless data transmitter can be included to allow a fully implantable neural recording device [31]. Additionally, a battery needs to be included, with a wireless power link optional if chronic implants are intended.

Due to the relatively high frequency of spikes and the fine resolutions needed to capture the details in their waveforms, the amounts of data produced by these implants can be quite high. A system with 128 channels, for example, can easily require rates of $23 \, Mbps$.

These high bandwidth requirements, together with the need to respect strict power consumptions, create a bottleneck in the design of such wireless neural implants, with the channel count lagging in comparison with microelectrode design advances. A review of wireless links for neural implants developed up to 2009 can be found in [32].

A solution to this problem consists on performing data reduction on-chip prior to transmission [33]. By performing detection, the isolated spikes can be transmitted individually, as opposed to transmitting the whole signal [34]. Furthermore, feature extraction can allow lighter representations of spikes, reducing transmission datarates.

However, on-chip spike sorting can provide for the most drastic data, and consequently, power, reduction, Figure 2.6, and has thus been an active field of research for the past two decades [19]. As single-neuron spike trains are already the desired input for many applications, implementing sorting on-chip in real-time allows reducing the datarate without loss of relevant information. Datarate reductions in the order of $200 \times$, compared to the transmission of the whole signal, can be achieved [33]. For example, a 64-channel recording system transmitting at $11 \, Mbps$ could be reduced to $50 \, kbps$, if only the outputs...
For on-chip spike sorting several stages need to be implemented, Figure 2.7. Firstly, an analogue-front-end, AFE, performs the signal conditioning tasks of amplification, filtering and digitization. Then, a spike detection algorithm isolates the spikes from the neural signal. Finally, spike sorting per se can be done.

It starts with the extraction of features. Dimensionality reduction methods can follow to select a smaller subset, with the objective of reducing computational costs of subsequent processing stages, while retaining discriminability. During the training phase, unsupervised learning techniques use the features to cluster the spikes from an initial data segment, the training set. Based on the classification results, a classifier able to distinguish the different classes is calibrated. It is then used during the classification phase to classify each newly detected spike in real-time.

Due to the computational complexity of clustering, some on-chip spike sorting systems have opted to perform training off-chip [35][36]. Spikes are first detected on-chip and streamed outside to a computer, where clustering is performed and the parameters for the classifier are found. These are then transmitted back to the system, which, switching operation modes, starts to perform online spike sorting, outputting only the classification results.

2.4.1 Analogue-Front-End

The AFE provides the interface between the electrodes and the digital signal processing, DSP, stages of the neural implant. It performs amplification, filtering and digitization, and has a direct influence in the performance of the following spike detection and sorting algorithms. Firstly, a low-noise amplifier, LNA, is used to raise the potential of the spikes from microvolts to millivolts, relaxing the noise requirements of the following electronics. It typically provides amplification gains of $50 - 200$ over a $3 - 10 \, kHz$ bandwidth [19].

Filtering is necessary to remove all the undesired frequency components from the extracellular recording: DC offset, baseline drift, LFPs and high frequency noise. Additionally, it also prevents aliasing...
Figure 2.7: Stages of on-chip spike sorting. The AFE is composed of a low-noise amplifier, LNA, a bandpass filter and an analogue-to-digital converter, ADC. Once in the digital domain, detection, feature extraction and classification is performed. Dimensionality reduction is within brackets as it is only necessary in some systems. In this diagram, training is shown to be performed off-chip due to its computational intensity. It results in the classifier’s parameters, which are transmitted back to the chip at the end of the training phase.

during digitization. It is thus performed in the analogue domain, although a digital filtering stage can also be added. Typical cutoff frequencies are $100 - 300 \, Hz$ for the highpass edge and $2 - 6 \, kHz$ for the lowpass edge. Due to the narrow bandpass width, sharp cutoff responses are desirable, to avoid in-band attenuation, however, increasing the filter’s order increases implementation cost and might introduce distortions.

In [20] it was shown that non-causal filters provided for better detection results than causal filters, as they allow zero-phase implementations which don’t introduce phase distortions in the spike’s waveforms. These, however, cannot be used in real-time applications. With causal filters it is necessary to take into account their non-linear frequency-dependent phase response, which can cause distortions in spike’s waveforms, for example making them biphasic. In [20] this was argued to be the cause for the poorer detection performances obtained with these filters.

The final stage of the AFE is sampling of the signal with an analogue-to-digital converter, ADC. Amplitude is typically quantized using $8 - 10$ bits and the sampling rate, SR, is usually set at $16 - 32 \, kHz$ [19]. The SR and amplitude resolution have a direct impact on detection and sorting performances, by defining their numerical accuracy. They are also directly proportional to the amount of data produced and consequently the subsequent memory and processing power required. For example, if 10 bits and 18 kHz are used, 180 $kbps$ and per channel are produced. In a 10 minute session using 128 channels, the total memory required to store all these samples amounts to 1.7 $Gbytes$. In [20], the minimum sampling rate without deleterious effects on detection was $7 \, kHz$, while the minimum resolution was 6 bits. For the spike sorting stage these were found to be $7 \, kHz$ and 10 bit of resolution. Note, however, that these values might vary with the specific detection and sorting algorithms used.
2.4.2 Spike Detection

Once in the digital domain, signal detection algorithms isolate spikes from the recording. Beyond the detected spikes these methods can originate both false positives - detections which do not correspond to a spike, and false negatives - spikes that were not detected. The performance of detection has a direct influence in the following spike sorting stage. However, if spike sorting is robust, we can allow detection to be relaxed, having the false positives distinguished in the sorting stage by classifying them as outliers.

Spike detection results in 2 or 3 ms long windows of data, each considered to contain an individual spike, that are forwarded for spike sorting. The length of these windows should not be too small, to contain the whole spike waveform, nor too big so as to avoid containing waveforms from more than one spike. The window produced with each detection can start at the point of detection. However, this will result in the loss of the initial part of the waveform, which can worsen spike sorting, for example by missing the initial positive peak shown in some spikes in Figure 2.4. Alternatively, a rolling data buffer can be used to save the previous X samples at any instant. Once detection occurs, these can be retrieved and included in the data window. The downside is the need to constantly channel every sample through this path, which results in higher costs.

Most detection methods consist on applying a threshold to the neural signal, either directly or after an operator has been applied to emphasise the spikes and attenuate the noise. A spike is considered to be present if the threshold is crossed. If set too high, smaller spikes might be missed, but if too low, noise activity might cause false positives. The threshold value can be set manually, although this becomes impractical as the number of recording channels increases. Setting it automatically is thus preferable. Additionally, this simplifies making detection adaptive to non-stationary noise levels throughout a recording session, for example, by periodically recomputing the threshold's value.

The most straightforward detection method consists on applying a threshold directly to the amplitude of the signal. The threshold can be automatically set as a multiple of the standard deviation of the background noise, which itself can be estimated by the standard deviation of the whole signal. With this approach, however, the activity of neurons will have an influence on the threshold, with higher amplitude and firing rate spikes shifting the threshold to higher values independent of noise levels. In [26] a different estimate of the background noise level was proposed. Assuming the noise has a Gaussian distribution, its standard deviation can be estimated from the whole signal as:

$$\theta_n = \text{median} \left\{ \frac{|x|}{0.6745} \right\}$$ (2.1)

The denominator corresponds to the value of the cumulative distribution function of a standard normal distribution evaluated at 0.75. By using the median, the contribution of spikes in the data is reduced. It was shown in [26] that when firing rates increased, this method provided for a better estimate of the standard deviation of the background noise than using the standard deviation of the whole signal. The detection threshold can then be set as:

\[\text{in offline systems, as all the data is readily available, this isn't a problem.}\]
With \(X \) determined empirically. The threshold can also be applied on the absolute value of the neural signal, which has been reported to provide better detection performances than only using a positive threshold [34].

While spikes are associated with changes in amplitude which are fast, the previous detection methods only account for the amplitude’s value itself, regardless of the derivative. For this reason, the non-linear energy operator, NEO, also called Teager’s energy operator, has been proposed for spike detection. It provides an estimate of a signal’s energy by applying the following operator:

\[
\psi(x[n]) = x[n]^2 - x[n+1]x[n-1]
\]

(2.3)

This results in the amplification of the signal where both the amplitude and frequency are high, however at an increased computational overhead. In [37] an automatic detection threshold was computed as the average of the signal after applying the NEO, times a constant, \(C \), that was empirically set to 8:

\[
Thr_D = C \frac{1}{N} \sum_{n=1}^{N} \psi(x[n])
\]

(2.4)

In [34] a cost function that took both detection performance and computational cost into account, rendered absolute value detection more efficient than NEO, although different weights on the cost and performance terms might result differently.

The discrete wavelet transform, DWT, has also been proposed for spike detection. By providing energy information of the signal at different time-frequency windows, it is well suited for detection in the presence of noise. However, its high implementation costs, with the computation of successive convolutions, together with its worse detection performances compared with both absolute value and NEO detectors in [37], excluded this method from our consideration.

Detection through match-filtering has also been proposed. It consists on sliding pre-determined spike waveforms over the signal and detecting spikes when the mismatch is smaller than a certain value. It requires, however, \textit{a priori} knowledge of the spike waveforms, which is not ideal. Additionally, it carries considerably high computational costs. In [34] it resulted in worse detection scores than both absolute threshold and NEO detectors, precisely due to its high costs. When cost was not a constraint, it actually performed better. Nevertheless, the need for \textit{a priori} spike waveforms and its prohibitive computational costs excluded this detection method from our consideration.
2.4.3 Spike Sorting Algorithms

Feature Extraction

Feature extraction results in the projection of spikes onto a feature space where spikes from different neurons are better distinguishable. Additionally, it can lighten the computational cost of the following stages, by representing spikes using fewer data.

The most straightforward approach is to use the samples of the spikes as features, i.e. without an explicit feature extraction step. Hence, spike waveforms are compared directly with each other, a method called template matching, TM [35].

Preceding TM with an alignment step has been suggested to improve sorting [38]. This can be easily understood if we think of each feature as the value of a spike at a specific phase of its waveform. If the waveform is shifted, the index of these features will not match. Spikes can be aligned to their maximum by shifting so that the sample with highest value is at the \(i^{th}\) position of the data window. Spikes can also be aligned to the point where their derivative is maximum [39]. Alignment in real-time requires using, during detection, the data buffer mentioned earlier. If no explicit alignment is done, it is equivalent to aligning the spikes to detection point.

Since each spike can have many samples, a variation of TM consists on using only a smaller handful of samples as opposed to using them all. These are called informative samples [40]. The principle behind informative samples is that not all samples provide useful information to distinguish the spikes from a recording, and if all are used, the useful information of some is diluted by the others. To find which samples are informative in each channel, a dimensionality reduction method can be used, corresponding to an additional step to perform during the training phase.

Other possible features result directly from visible characteristics of the spikes’ waveforms. The most intuitive are the extrema, i.e. the values of the maximum and the minimum, and the width of the peaks [41]. In [42] it was argued that these lose their ability to sort spikes as the SNR of the recording decreases. For this reason, they propose zero-crossing features, ZCF, as a combination of their information. Two features are thus computed as:

\[
ZCF_1 = \sum_{n=0}^{Z-1} x[n] \quad ZCF_2 = \sum_{n=Z}^{K-1} x[n] \tag{2.5}
\]

\(K\) is the number of samples in each spike and \(Z\) is the index of the first zero-crossing after detection. The integral transform has also been proposed to obtain a similar set of features to ZCF, [37]. It integrates the samples for both the positive and negative peaks of the each spike, however, while with ZCF the limit between the peaks is defined by the zero-crossing, with the integral transform the limits need to be defined \textit{a priori}:

\[
I_A = \frac{1}{N_A} \sum_{n=n_A}^{n_A+N_A} x[n] \quad I_B = \frac{1}{N_B} \sum_{n=n_B}^{n_B+N_B} x[n] \tag{2.6}
\]

A possible advantage is the ability to optimize these limits for the spike waveform combinations present in each channel. However, this would most likely need to be performed offline.
Discrete derivatives, DD, can also be used as features, and are computed as the difference between consecutive samples [37]:

\[DD_\delta = x[n] - x[n - \delta] \] (2.7)

\(\delta \) can take different integer values. The derivative operation can also be repeated to produce higher order derivatives. Thus, many different features can be obtained, which introduces the need for a dimensionality reduction method [39]. Alternatively, the extrema of each derivative can be used as the feature, as was done in [43].

The discrete wavelet transform, DWT, as a feature extraction method, gained popularity due to the offline spike sorting software made available in [26], WaveClus. The DWT is a multiresolution technique which provides good temporal resolution for high frequencies and good frequency resolution for lower frequencies. In real-time applications it can be computed through filter banks. However, the need to perform successive convolutions results in considerably higher computational costs than the features previously described. In [37] the DWT was studied for a possible hardware implementation. The Haar wavelet family was used since it provided for the best results amongst the families tested, while also being lighter to implement. However, it resulted in slightly lower sorting accuracies than DD while having a computational cost more than 1 order of magnitude larger.

Principal component analysis, PCA, can also be used for feature extraction. It is most commonly applied on the samples of spikes. Each spike can be represented by a point in a \(n \)-dimensional space where each axis corresponds to a different sample index. PCA is a transformation applied on each of the \(n \)-dimensional points which consists on projecting them onto \(n \) orthogonal vectors, the principal directions, resulting in \(n \) principal components, PCs. The principal directions are found as the eigenvectors of the spikes. The first is aligned with the direction of largest variance in the dataset. The second is aligned with the direction of largest variance orthogonal to the first principal direction, and so on. For spike sorting, the first few PCs of each spike are used as features.

PCA is usually performed in offline systems, due to the high computational cost of computing the principal directions. Nonetheless it can also be used in real-time applications where the training phase is performed offline [37]. Storing the first few principal directions on-chip, they can be used during the classification phase to compute the corresponding PCs of each detected spike. However, if each spike has \(n \) samples and three PCs are to be used, these features require \(3 \times n \) multiplications plus \(3 \times n \) additions.

Dimensionality Reduction

Dimensionality reduction, DR, is done whenever we wish to reduce the number of features to a smaller, more informative subgroup. Beyond reducing the computational complexity of the following stages, DR can also improve sorting accuracy [37]. If features without useful information are used, they end up diluting the information of other relevant features during clustering. DR methods can be used when studying which features are better suited for spike sorting. However, it has also been considered
for on-chip implementation, with the goal of developing truly unsupervised spike sorting platforms [37]. The most straightforward DR method is uniform subsampling. It was used in [39] to reduce the number of features produced from DD. It consists simply on subsampling the feature space, without a selection criteria, to produce a smaller subset.

In [37] a comparison between different DR methods for hardware implementation was done. As is somewhat expected, uniform subsampling was not shown to produce good results. Another method analysed was the Lilliefors test, which has previously been used in the offline spike sorting software WaveClus. The underlying assumption is that multimodal features will result in better sorting performances, with each lobe resulting from the activity of a different source neuron, as opposed to single mode distributions where the features of all neurons are overlapped. The test consists on a modification of the Kolmogorov-Smirnov test for normality. The empirical distribution function of each feature is computed and compared with a normal distribution with the same mean and variance. The best feature candidates are those with largest difference between both distributions.

Due to the computational intensity of the Lilliefors test, the maximum-difference test was also proposed in [37]. It consists on identifying the best feature candidates as those with most variability, while constrained by limited available memory. It was shown to perform similarly to the Lilliefors test in spite of its lower computational cost.

Training Phase

The training phase is used to find the underlying model of the extracellular recording, i.e. the number and characteristic waveform of each source neuron. This is most commonly achieved using clustering methods. Their computational intensity has motivated a two-stage approach for on-chip spike sorting, where clustering is performed offline on a computer, while only the classifier is implemented on-chip.

Possibly the most often used clustering method is k-means [33]. It randomly spreads k centroids in the feature space then iteratively repeats the following steps: Assign each spike to the closest centroid, based on the Euclidean distance; update the centroid as the average of the spikes assigned to it. With TM, for example, each final centroid corresponds to the template spike waveform of each class. A limitation of k-means is that the number of clusters, i.e. the number of source neurons, needs to be provided a priori.

Other popular clustering algorithms used for spike sorting are expectation maximization, superparamagnetic clustering [26], Bayesian clustering and valley detection. For a detailed review of sorting algorithms for biomedical applications, refer to [44].

The previous clustering methods are all performed offline, i.e. they requiring having all the data at the beginning of clustering. In [45] a clustering algorithm, OSort, was developed for online spike sorting. Additionally, it does not require prior knowledge of the number of source neurons expected, as with k-means. It begins with the first spike producing the first cluster. Each new input spike is compared with the existing cluster centroids using the Euclidean distance. It is then attributed to the closest cluster if the distance is smaller than a threshold, computed from the variance of noise in the channel. This cluster's centroid is then updated using a weighted average. If the distance to every centroid is larger
than the threshold, the spike creates new cluster. At each iteration, the distance between the centroids of each cluster is also computed, and if smaller than a threshold, clusters are merged together. With this algorithm, many clusters are initially built, but with time they start to converge to a final, stable number. Clustering can thus be performed in real-time, as spikes are detected.

Classification Phase

Once the spikes are clustered, different types of classifiers can be used for the classification phase. These can be associated with the clustering method used in the first place. For example, with k-means, the final centroids for each class can be stored on-chip. The distance between each new spike and these centroids is computed and the spikes are classified to the closest centroid. Distance metrics that can be used are the Euclidean distance and the L1-norm, among others [44]. Each has different computational costs and properties. For example, in [33] it was argued that the L1-norm was more robust to noise compared with the Euclidean distance, in addition to being less computationally intensive to compute, as no squaring operations are required. Other similarity measures can be used to compare each new spike with the clusters obtained during the training phase [19].

Classification can also be achieved by separating the feature space into regions, each corresponding to a different class. This can be implemented using decision trees, as was done in [46]. Alternatively, in [36] each feature was compared individually with a pre-defined threshold to cast a binary vote, with the majority defining the final classification of the spike. This approach facilitates using features having different scales, such as spike amplitude and derivative. If used together to compute distances in the feature space, the different scales would result in different features having different weights on the result.

2.4.4 State-of-the-Art

The main challenge of on-chip solutions is achieving the same performances as offline methods while respecting the stringent power and area constraints. Neural recording platforms have been developed using either application specific integrated circuits, ASICs, or off-the-shelf components. The latter have the advantage of being easier and faster to develop. Additionally, they facilitate adapting previous systems to new spike sorting algorithms developed.

In [35] a field-programmable gate array, FPGA, was used to implement a two-stage spike sorting algorithm. With it, spikes were detected by amplitude threshold crossing, and transmitted to a computer via a USB 3.0 link, where WaveClus was used to cluster and determine the waveform templates for each neuron. These were then sent back to the FPGA, where spike sorting by TM was performed in real-time. During recordings, the power consumption was 32 mW for a total of 32 channels. This system, however, is not implantable, intended to be incorporated on a headstage for animal experiments.

In [36] a similar two-stage approach was implemented using a microcontroller, MCU, where channel specific, near-optimal features were found. These are a combination of informative samples and DD, named waveform and derivative features. After offline clustering, during the training phase, an optimization algorithm is used individually on each channel to find the subset from the features which provides
best separability between the spikes. Real-time classification is performed on the MCU by comparing this smaller group of features with corresponding thresholds, also computed offline, to cast a vote, with the majority determining the classification.

Artificial datasets with varying SNRs were used, to which white Gaussian noise was also added, to simulate the contributions from the instrumentation. The performance-oriented dimensionality reduction was shown to result in better sorting performances, while requiring lower costs, than other methods such as PCA and DD, leaving the computational burden mainly to the offline, off-MCU stage. The MCU managed 32 channels with a power consumption of 268 µW/channel. The authors mention, however, that lower consumptions could be obtained with the development of an ASIC, estimated to consume only 34 µW/channel.

ASICs provide the best prospect for developing fully implantable, wireless, spike sorting systems. In [41] a fully analogue IC was designed and built to perform spike detection and feature extraction. It also included a LNA. Detection was achieved by thresholding both the positive and negative peaks of spikes. The analogue features were obtained using capacitors and consisted on the maximum, minimum and width of the main peak of each spike. Spike sorting was not included on-chip, however, using real datasets from rats and monkeys the features were shown to achieve 90% of the sorting accuracy obtained from PCA. The chip was implemented using a 0.35 µm CMOS process, occupying 0.24 mm² and consuming 70 µW per channel.

In [40] a digital 64-channel spike detector and feature extractor was implemented. Fabricated in a 90 nm CMOS process, detection was done with NEO whose threshold was computed on-chip. Alignment was done to the maximum derivative and the features were the DD. To reduce dimensionality, uniform subsampling was performed, with a final data reduction of 11× being achieved compared with the transmission of raw data. Using real data from a human epilepsy patient, these features resulted in sorting results deemed acceptable by neuroscientists2. Using simulated datasets with SNRs ranging from −15 to 20 dB, the median probability of detection, probability of false positives and the sorting accuracy where 87%, 5% and 77% respectively. The 64-channel chip occupied an area of 7.07 mm², equivalent to 0.06 mm² per channel, and consumed 130 µW using a 24 kHz SR and a resolution of 8 bits/sample.

As the number of channels increases, specialized circuit architectures can be used to achieve resource optimization on-chip. This was explored in [47] where a mixture of parallel and serialized processing enabled a 91% hardware cost (area × power) reduction compared to a fully parallel implementation. The system was designed for a 90 nm CMOS process, with a total of 128 channels. Detection was performed with NEO and DD features were extracted for sorting. It occupied an area of 1.26 mm², and at a SR of 40 kHz the total power consumption was 1.87 mW. This value, however, resulted from synthesis estimates, as the system was not manufactured and measured.

The SR is tightly related with the performance of sorting and simultaneously to the power consumption of a system. To address this issue, [48] designed a cubic-spline interpolator to be integrated with a spike sorting processor. As detection does not require detailed waveform information, lower SR can be used at this stage. However, higher SRs improve alignment and sorting. Thus, by following detection

2As mentioned earlier, it isn’t straightforward to measure sorting performances using real datasets, without ground-truth knowledge.
with an interpolator, the authors argue that a better power/accuracy trade-off can be obtained. It was shown that with it, a system operating at \(12.5 \, kHz\) could outperform one operating at \(25 \, kHz\) in both accuracy and power. Employing a NEO spike detector, DWT and PCA for feature extraction and k-means for clustering, the system consumed \(87 \, \mu W\), equivalent to \(0.68 \, \mu W/\text{channel}\). Note however that offline training was performed on a computer to determine the detection threshold, the principal directions and so on. The area occupied by the chip, fabricated in a 90 nm CMOS process, was \(8.89 \, mm^2\).

In [33] the first and so far, to the extent of our knowledge, only spike sorting system with on-chip unsupervised clustering was developed. Detection was achieved with absolute value thresholding, and clustering was performed using the samples of the spikes themselves, i.e. TM. The online clustering algorithm OSort was adapted, since using it directly resulted in higher power consumptions that simply transmitting the detected spikes. This was mainly due to the large amount of memory required to store the transient clusters produced during the training phase. Thus, some modifications were made on the algorithm.

It starts by determining the detection and clustering thresholds. Then, clustering is performed sequentially for each channel, allowing to share the larger memory required for the transient clusters. Their number was found to converge after 30 spikes on average. Instead of using the Euclidean distance, the L1-norm was chosen, as it was shown to be more robust to noise and less computationally intensive. After sequential training, the classifying stage is initiated simultaneously on all channels. Each new spike is classified to the closest cluster using the L1-norm. Adaptability to variations in a channel is achieved by measuring the distance between each spike and cluster it’s classified to. If it is larger than a threshold, the training phase can be repeated for this channel individually.

Implemented with a 65 nm CMOS process, the 16-channel chip occupies a total area of \(1.23 \, mm^2\) and consumes \(75 \, \mu W\) of power, resulting in a power density of \(67 \, \mu W/mm^2\), which is below recommended values to avoid tissue damage. Running on 600 simulated datasets with a SNR ranging \(0 – 15 \, dB\), the probability of detection, false positives and classification accuracy were 95\%, 1\% and 75\% respectively. On human neural data obtained from an epilepsy patient, the clustering results were in accordance with what was expected by neuroscientists. The clustering performance was comparable to offline algorithms such as k-means and superparamagnetic clustering, in spite of the disadvantage of not having all the data at the beginning of clustering. Compared with [39], higher power consumptions were obtained. However, the data reduction achieved was \(20 \times\) larger, which should result in overall lower power consumptions if including the wireless link.

The works cited in this brief review are summarized in Table 2.1. Spike sorting results are not included due to the variety of ways these are presented, and types of datasets used, with some systems not even including on-chip classification.
Table 2.1: State-of-the-art of the neural spike sorting integrated systems reviewed.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Technology</th>
<th>Area/Channel (mm²)</th>
<th>Power/Channel (µW)</th>
<th>On-Chip Training</th>
<th>On-Chip Sorting</th>
</tr>
</thead>
<tbody>
<tr>
<td>[35]</td>
<td>2015</td>
<td>FPGA</td>
<td>/</td>
<td>1000</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>[36]</td>
<td>2016</td>
<td>MCU</td>
<td>/</td>
<td>268</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>[41]</td>
<td>2008</td>
<td>350 nm</td>
<td>0.24</td>
<td>70</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[39]</td>
<td>2011</td>
<td>90 nm</td>
<td>0.06</td>
<td>2</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>[47]*</td>
<td>2009</td>
<td>90 nm</td>
<td>0.01</td>
<td>14.6</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>[48]</td>
<td>2012</td>
<td>90 nm</td>
<td>0.07</td>
<td>0.7</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>[33]</td>
<td>2013</td>
<td>65 nm</td>
<td>0.08</td>
<td>4.7</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

* Not fabricated.

Discussion

Despite continued advances, we have yet to see a complete implantable, wireless, long-term, neural spike sorting platform, capable of enabling the next generation BMIs. This has motivated our study of novel technologies for more efficient on-chip spike sorting.
Chapter 3

Continuous Time Data Conversion

3.1 Motivation

Different hardware signal processing domains exist. Using analogue circuits the signal is both con-
tinuous in time and continuous in amplitude. Continuous amplitude, however, has disadvantages such
as higher sensitivity to noise and component variations, and limited reconfigurability. For these reasons
digital systems have gained a major role in today’s electronics. ADCs are used to digitize the continuous
inputs into discrete samples, represented by strings of bits.

Discrete amplitude provides for better noise immunity than continuous amplitude since the binary
usage of voltages is more robust against small interferences. Digital circuits are also more easily recon-
figured. For example, with FPGAs, circuits projected on software can be directly implemented. Addi-
tionally, technology scaling has benefited the digital domain, with ever increasing numbers of transistors
fitting in dense integrated circuits: Moore’s Law.

Digital circuits are conventionally synchronous. A central clock is used to define the SR of the ADC,
to perform uniform sampling, US, and to govern the switching of the digital circuitry. Being fixed, the
frequency needs to be set to accommodate the worst case scenario. For example, the SR must be at
least twice the maximum expected input frequency to avoid aliasing: Nyquist’s theorem.

When sampling neural recordings it is necessary to capture the detail of spikes’ waveforms for spike
sorting, so the SR is fixed at high values, such as 16 kHz. However, after filtering, as can be seen in
Figure 2.5, extracellular recordings show a spurious behaviour, with high frequency spikes intercalated
by periods of lower activity. This sparsity results in many of the samples produced by conventional
US not carrying any information on spikes. For example if a 1 second long acquisition has 60 non-
overlapping spikes, each lasting 2 milliseconds, 88% of the samples produced will not describe spikes.
Power is thus being wasted on producing and processing large amounts of samples without benefits to
spike sorting.

This has motivated studying the possibility of continuous time, CT, data conversion improving the ef-
ficiency of neural spike sorting implants. With a sampling scheme such as level-crossing, LC, sampling,
each sample is only produced when an event of interest occurs in the input signal, which can happen at
Figure 3.1: LC sampling using 3 bits for amplitude quantization. Each bit can change its value at any point in time. Adapted from [49].

any moment, i.e. the samples are a function of CT. As a consequence, the SR is data-driven, adapting to the activity of the input. If it's constant, no sample is produced, but as its activity increases, for example from a spike, the SR will increase accordingly. Thus, fewer, more informative samples are expected to be produced from sparse signals, such as extracellular recordings, without loss of relevant information.

3.2 Level-Crossing Sampling

In LC sampling, the input analogue signal is compared with a set of pre-defined amplitude thresholds, Figure 3.1. Whenever a threshold is crossed, a sample is produced with the corresponding value. The difference between consecutive samples is always 1 least-significant-bit, lsb. As the level-crossings can occur at any moment, the samples are a function of CT. For sharp input signals, more samples are produced and in closer proximity. As the amplitude and derivative of the input signal decreases, fewer thresholds are crossed and so fewer samples are produced.

In practice, instead of comparing the input signal with all the thresholds simultaneously, only 2 comparators are used as LC detectors, Figure 3.2. The input analogue signal is subtracted to its digital representation, using a feedback digital-to-analogue converter, DAC. The result is then compared with an upper and a lower threshold, fixed at +1 lsb and -1 lsb respectively. The outputs of the comparators control an up/down counter, which increments or decrements by 1 if the upper or lower thresholds are crossed. Its value corresponds to an instantaneous digital representation of the analogue input, Figure 3.1 bottom, which is fed back into the DAC, closing the loop.

Instead of producing samples in the conventional sense, the value of the counter can be streamed directly into the following DSP. I will continue, however, to refer to changes to the counter’s value as if a sample were produced. Note how sample-hold circuits are not necessary, as the input signal is continuously being compared with the enclosing thresholds. Additionally, no clock is needed to define a SR.
The most relevant property of LC sampling for spike sorting is the SR being data-driven, i.e. adapting to the activity of the input signal, as opposed to being fixed at the highest expected frequency. While the designer of US ADCs defines both the SR and amplitude resolution, with CT LC ADCs only the amplitude resolution, r, is defined:

$$r = \frac{V_{FS}}{2^N}$$ \hfill (3.1)

V_{FS} is the maximum input range and N the number of bits used for amplitude quantization. The sampling rate of LC ADCs will depend solely on the relation between the amplitude resolution and the input signal’s gradient and amplitude. This dynamic behaviour has the advantage of producing few samples during the intervals between spikes, while continuing to sample these with the desired amplitude resolution.

Overall less samples can thus be produced without losing information on spikes, reducing storage and processing requirements, and leading to potential power savings. However, if the amplitude resolution is set too narrow, too many samples might be produced on the slopes of spikes. A balance is required between the desired amplitude resolution and the number of samples produced.

For an sinusoidal input signal of amplitude A and frequency f, the number of samples generated per second by a LC ADC is:

$$N_S = \frac{4A}{r}f$$ \hfill (3.2)

If the input signal is Gaussian noise with bandwidth f_m and power φ, the average number of samples generated per second is [51]:

$$\text{average number of samples} = \frac{4\varphi}{\varphi}f_m$$
Although in theory LC ADCs will not produce aliasing, they still have a maximum input frequency that can be handled, due to hardware limitations. These are summarily described by the loop delay, Δ, which represents the time the LC ADC takes to process a level-crossing before it is able to detect a new one, i.e. the time to update the counter, the DAC and the comparators. Together with the amplitude resolution, these parameters define the maximum input frequency and amplitude beyond which saturation error occurs, Figure 3.3, which corresponds to a mismatch between the input signal and the value of the counter.

The maximum input gradient to be sampled without saturation error is \cite{52}:

$$\frac{|dV_i|}{dt} < \frac{r}{\Delta} \quad (3.4)$$

Which corresponds to a maximum loop delay allowed for a LC ADC to track a full scale sinusoidal input of:

$$\Delta = \frac{1}{2^N \pi f_{in\text{max}}} \quad (3.5)$$

To improve the trade-off between dynamic range and input bandwidth, LC ADCs with adaptive resolutions have been proposed \cite{50}\cite{52}. When the input signal is smoother, finer resolutions are used. As the amplitude and frequency start to increase, coarser resolutions are used. This way the subtle features of the signal are captured without producing an excessive amount of samples on the steep slopes of the spikes, which also relaxes the speed requirements for the ADC. Adaptive resolution LC ADCs, however, were not included in this work.

A possible weakness of LC sampling is its vulnerability to noise on the input signal. If too high, it can cause erroneous level-crossings and consequently increase the number of samples produced. For this reason, an adequate AFE filter will be crucial to harness the advantages of LC sampling.
LC sampling can also result in lower quantization noise than US, [49]. In US, the analogue input at each sample is rounded to the closest quantisation level, introducing some error. This is captured by the theoretical SNR expression used to describe US ADCs: \[SNR = 6.02N + 1.76 \; dB. \]

\(N \) corresponds to the number of bits used for amplitude quantization. As it increases, the approximation error introduced in each sample is reduced and the SNR increases. With LC sampling, on the other hand, each sample is only produced when the analogue input crosses a threshold, and so both values coincide, meaning no rounding error is added\(^1\). Thus its spectrum will only have components at the fundamental frequency of the input and its harmonics, while US results in many error spectral components in between the harmonics. In [53] it was reported that the quantisation noise from LC sampling a full-scale sinusoidal input of 1 kHz was \(-121\) dB in a 20 kHz bandwidth, while US the same signal resulted in \(-98\) dB.

3.2.2 Asynchronous Delta-Modulation

A further advantage of using LC ADCs is that they enable a more economical representation of the input signal. Proposed in 1966 [51], asynchronous-delta modulation consists on representing a signal by a succession of binary pulses indicating whenever it has changed by a certain amount, and in which direction the change occurred, Figure 3.4. These pulses can be directly obtained from the outputs of the comparators of a LC ADC. If the upper or lower threshold is crossed, an incremental, INC, or decremental, DEC, pulse is created respectively.

To facilitate the control of the following asynchronous DSP, explained in Chapter 4, the INC/DEC pulses can be transformed, through some digital logic, into a request, REQ, and direction, DIR, pulses. The REQ pulse indicates whenever any level-crossing occurs, and can be used as a control signal to trigger the digital circuits, while the DIR indicates if it was an INC or DEC level-crossing. Thus the output of LC ADCs is both the REQ and DIR pulses and the value of the counter, all of which are digital signals but continuous in time.

Using asynchronous delta-modulation, the complexity of the following DSP stages can be significantly reduced by allowing only 2-bit signal representations for certain data paths.

3.2.3 ADC State-of-Art: LC vs US

In this Section we compare the state-of-the-art of LC ADCs with their US counterparts. Different US ADC architectures have been developed to achieve the best power consumptions at different SRs and resolutions. To record electrophysiological signals, successive approximation register, SAR, ADCs are the most appropriate [54].

SAR ADCs perform sampling through a binary search algorithm. First the analogue signal is captured using a sample&hold circuit operating at the SR. The binary search is initiated by setting an \(N \)-bit register to its midvalue - the most-significant-bit, MSB, at '1' while the remaining bits at '0'. The length of the

\(^1\)note however that the burden of time quantization is being transferred to the DSP. If we simply store the samples sequentially as is done in US, we loose this information.
register, N, is equal to the number of bits used for the amplitude resolution. Through a feedback DAC, the register’s value sets a threshold at $1/2 V_{FS}$, that is compared with the input signal. If the input is larger, the MSB of the register is kept at ‘1’. Otherwise it is lowered to ‘0’. The second MSB is then set to ‘1’ and the process is repeated until all bits have been analysed. In essence, each sample will require N steps to be processed, each consisting on a comparison and a register and DAC update. These components will be required to work at a frequency of $N \times SR$. For example, if sampling at 16 kHz using 8 bits, the internal frequency of the SAR ADC will need to be 128 kHz. Additionally, the DAC is required to settle to the full accuracy of the ADC within one step.

With LC ADCs, on the other hand, the DAC only suffers voltage swings of 1 lsb. LC ADCs also only require one step to obtain each sample. However, their architecture includes two comparators, while SAR ADCs use only one.

Two common metrics are used to describe the performance of ADCs, to take their nonidealities into account. These are the signal-to-noise and distortion ratio, SINAD, and the effective number of bits, ENOB. The SINAD can be measured from the spectrum of the output:

$$SINAD = \frac{P_{signal} + P_{noise} + P_{distortion}}{P_{noise} + P_{distortion}}$$ \hspace{1cm} (3.6)

The ENOB corresponds to the number of bits an ideal ADC with the same SINAD would have.

$$ENOB = \frac{SINAD - 1.76}{6.02}$$ \hspace{1cm} (3.7)

The specifications from state-of-the-art LC and SAR ADCs can be found in Table 3.1. Some LC ADCs have adaptive resolution. Others perform systematic time quantization using a clock. The time that elapses between consecutive samples is rounded to the closest clock cycle count and stored in an N-bit word. Thus, their output is a pair of amplitude and time values.

Lower power consumptions are reported for the SAR ADC, while being less restricted by the maxi-
Table 3.1: Comparison between state-of-the-art LC and SAR ADCs.

<table>
<thead>
<tr>
<th>Reference</th>
<th>LC</th>
<th>SAR</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Year</td>
<td>2011</td>
<td>2013</td>
<td>2013</td>
<td>2014</td>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology (nm)</td>
<td>180</td>
<td>130</td>
<td>180</td>
<td>130</td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (mm²)</td>
<td>0.92</td>
<td>0.36</td>
<td>0.04</td>
<td>0.28</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (µW)</td>
<td>25</td>
<td>5 (a)</td>
<td>0.38</td>
<td>(b)</td>
<td>0.21</td>
<td>(c)</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply (V)</td>
<td>0.7</td>
<td>0.8</td>
<td>0.8</td>
<td>0.3</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SINAD (dB)</td>
<td>43</td>
<td>54 (a)</td>
<td>48 (b)</td>
<td>28 (d)</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENOB</td>
<td>6.9</td>
<td>8.7 (a)</td>
<td>7.7 (b)</td>
<td>4.4</td>
<td>(d)</td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>20 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max F_{in}</td>
<td>1 kHz</td>
<td>20 kHz</td>
<td>5 kHz</td>
<td>1.2 kHz</td>
<td>10 kHz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptive Resolution</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Quantization</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) $f_{in} = 1$ kHz (c) from electrocardiography data
(b) $f_{in} = 1.1$ kHz (d) $f_{in} = 50$ Hz

mum input frequency. Both ADC architectures use similar components: comparators, a feedback DAC and digital logic, however, while SAR ADCs have only one comparator, LC ADCs require two. In [55], the two comparators accounted for approximately 57% of the total power consumption. On the other hand, a larger number of steps is required to process each sample with SAR ADCs. Note also how the power consumption of LC ADCs varies with the input signal’s activity, while it is constant for SAR ADCs. In Table 3.1, with the exception of [55], power consumption values were reported for sinusoidal inputs.

In spite of the current state-of-the art, the possibility of LC ADCs producing fewer, more informative samples than conventional ADCs could reduce the costs of the spike sorting stage of an implant, and ultimately lower the overall power consumption. Additionally it’s reasonable to expect further improvements to the performance of LC ADCs, as these are more recent than SAR ADCs, and taking into account the resemblance of their architectures.
3.3 Applying LC Sampling on Neural Data

In this Section we analyse how LC sampling performs on extracellular recording datasets, to determine the setup in which it can be most advantageous compared with US. We inspect how the number of level-crossings varies with the amplitude resolution and SNR of the data, how well the spikes' information is captured, and how fast must the LC ADCs be to avoid saturation error.

3.3.1 LC ADC Model

A pseudo-CT LC ADC was implemented in Matlab. It compares the input signal with the upper and lower thresholds and saves the time and direction of each level-crossing, as an INC or DEC pulse, Figure 3.5. The difference between consecutive thresholds, \(\text{thrID} \), is found as:

\[
\text{thrID} = \frac{\max(\text{data}) - \min(\text{data})}{2^N}
\]

(3.8)

\(N \) is the number of bits used for amplitude quantization. The datasets have a SR of 24 kHz. To simulate CT level-crossings, they were upsampled to 10 MHz, with linear interpolation being performed between consecutive samples. Thus, the approximation error introduced by quantizing the time of each level-crossing is never larger than 0.1 µs.

3.3.2 Datasets

As mentioned before, evaluating spike sorting methods without ground-truth is not straightforward. For this reason, a total of 16 artificial datasets were used in this work, Figure 3.6, which aim at realistically reproducing extracellular recordings. These were created in [26] and made publicly available, with other studies having since used them, such as [36] and [48].

Figure 3.5: Top: Example of a spike, in blue, the digital reconstruction, in black, and the amplitude thresholds, in grey. The spike is from dataset 'Easy1' with noise level 0.05. Bottom: INC, green, and DEC, purple, pulses produced by level-crossing. Due to upsampling, the error introduced by time approximation is negligible.
From a database of 594 different average spike shapes obtained from recordings in monkey neocortex and basal ganglia, 3 different spike waveforms are used to represent 3 different single units in each dataset. Each artificial neuron has a Poisson distribution for interspike intervals and a mean firing rate of 20 Hz. A 2 ms refractory period between spikes of the same class is imposed. These datasets do not contain LFPs. To generate background noise, spikes randomly selected from the whole database are added at random times and amplitudes. This aims at creating more realistic simulations, with the noise displaying a power spectrum similar to those of spikes, rendering spike sorting more challenging than simply adding white Gaussian noise. The 16 datasets are divided in 4 groups of 4. Each group has the same combination of single units and covers 4 different noise levels: 0.05, 0.1, 0.15 and 0.2. These are computed as:

\[
\text{Noise level} = \frac{\text{median} \{ |\text{signal}| \}}{0.6745 \times \text{Average peak amplitude}}
\]

In these datasets the peaks of spikes are normalized to 1. The groups are divided in half, as 'Easy' or 'Difficult' given the similarity between their spike’s waveforms. Each dataset lasts 60 seconds and was produced at a sampling rate of 24 kHz.

All datasets were filtered using a 4th order Elliptic bandpass filter designed using Matlab’s inbuilt function `ellip`. The Elliptic architecture was chosen because in [20] it was shown that using it, changing the high cutoff frequency had a smaller effect on detection performances, than Butterworth or Bessel filters. It was also shown that higher order filters decreased detection performances due to larger ‘ringing’ effects, which led to our choice for a 4th order filter. The lowpass cutoff frequency was set to 4000 Hz and the high pass cutoff frequency to 200 Hz. The ripple in the passband was set to 1 dB while the attenuation in the stopband to 40 dB.

Figure 3.6: Datasets ‘Easy1’ and ‘Difficult1’ with noise levels 0.05 and 0.15. Spikes are color coded according to source neuron. The waveforms with peaks not aligned with the majority result from overlapping spikes. Note how the spikes in ‘Easy1’ are much more distinguishable than in ‘Difficult1’.
3.3.3 Results

Number of Level-Crossings and Maximum Loop Delay

To determine the average number of samples per second produced from neural recordings, as a function of N, we used 10 seconds from each of the datasets and averaged the results within the different noise levels, Figure 3.7 a). We can observe that it displays an exponential growth with increasing N, which is expected from Equation 3.2. For N larger than 7, a prohibitively high number of samples is produced, while for N lower than 6, they are much fewer compared with the typical uniform sampling rate of 16 kHz.

As N increases, the maximum loop delay allowed for a LC ADC to avoid saturation error decreases. We find this value for neural recordings as the minimum interval between consecutive samples for all datasets, Figure 3.7 b). 10 seconds were analysed for each dataset and the results were averaged. The standard deviation between datasets was never larger than 20% of the average value. Both the minimum interval and the 10th percentile values are shown. Note that the time resolution of the Matlab LC ADC is 0.1 μs, which is approximately 1 order of magnitude smaller than the smallest difference found. We can see that, for example, sampling neural data using $N = 6$, the LC ADC will need to be able to process each level-crossing in less than 2.5 μs.

Data Conversion Quality

We are concerned not only with reducing the number of samples produced, but also with their quality, i.e. with how much information they carry on spikes. For this, we isolated the spikes using the labelling information provided with the datasets, then sampled them using both LC and US. The digitized signals were reconstructed using zero-order interpolation and compared with the original spikes by computing the following error:

$$E = \frac{1}{\#\text{spikes}} \sum_{i} |\text{spike}_{i}\text{rec} - \text{spike}_{i}|$$

(3.10)

In Figure 3.8 a) we show the resulting error as a function of the number of samples produced by US and LC sampling. For LC ADCs the number of samples results from the amplitude resolution, while for US it depends only on the SR. For this reason three error curves are shown for US, resulting from different amplitude resolutions. Although the error is computed only for the spikes, the number of samples presented results from the whole signal.

The discrepancy between reconstruction errors can be understood from the nature of the sampling schemes. While in LC ADCs the error results solely from the amplitude resolution, with US if the SR is set too low, not enough samples will be produced on spikes to capture their waveform, regardless of amplitude resolution. This can be visually verified in Figure 3.8 b), where similar numbers of samples are being produced, however LC samples are concentrated at spikes resulting in a lower error. As the SR increases, the error of US will tend to the value of LC sampling using the same quantization amplitude.
Figure 3.7: a) Average number of samples per second produced by LC sampling neural recordings. The horizontal line marks the number of samples per second produced by US at 16 kHz. b) Average minimum and 10th percentile time difference between consecutive level-crossings on neural data, as a function of \(N \).

Figure 3.8: a) Normalized digitization error as a function of the number of samples per second produced by LC and US. For LC sampling \(N \) ranges from 3 to 8. b) Comparison of the digital signal, black, obtained from sampling a neural recording, blue, using US, top, and LC sampling, bottom. Although a SR of 2 kHz is never used to record spikes, a similar number of samples produced by LC is able to capture the main characteristics of the spikes: peaks and slopes.
3.3.4 Discussion

With the previous analysis we have observed how the numbers of samples produced by LC sampling change with the amplitude quantization used, having identified 7 bits as the limit below which fewer samples are produced from spurious neural data, compared to US systems.

We have also confirmed that at similar numbers of average samples per second, LC is better at describing spikes than US due to its event-driven nature. Additionally, we inform LC ADC designers of the timing requirements these need to satisfy for their application to extracellular recordings.

The use of CT LC sampling, however, raises challenges, namely how its outputs - the REQ and DIR pulses and the counter’s value, can be used, with their timing information, for spike sorting. This is the focus of the following Chapter.
Chapter 4

Asynchronous Spike Sorting

The CT nature of LC ADCs motivates the use of asynchronous digital circuitry for spike sorting, where the data is processed as it arrives, in a self-timed manner.

As the circuit speed adapts, rather than being fixed at the speed mandated by the worst case, transistors will only switch when the input changes. This results in adaptive dynamic power consumption that can lead to savings when processing spurious data, as extracellular recordings. A central clock to set the SR and govern the DSP is also not required, enabling further savings by removing clock drivers, avoiding the difficulties of distributing time-sensitive, high fan-out clock signals. This can also improve modularity, for example for networks of low-power neural implants.

Electromagnetic interference, EMI, is also less severe than in synchronous systems. These produce considerable EMI at the frequency band of the clock and its harmonics, while EMI patterns in asynchronous circuits are much more evenly distributed across the spectrum. Finally, less stress on the power distribution network is also achieved, as the power drawn tends to be more uniform, as opposed to being bursty at the clock pulses.

This approach, however, has its challenges, such as the additional difficulty in circuit designing, to manage the control pulses and avoid race conditions along the processing pipeline. Additionally, unlike conventional asynchronous systems, the timing between the outputs of the CT LC ADC contains information, which must be preserved during the signal processing stages.

Truly CT DSPs have been reported in the literature, using tapped digital delay lines to implement CT digital FIR filters [58][59]. With these, the timing information is preserved as the signal flows down the delay line, which acts as a sort of memory. However, due to the cost of implementing delay lines, we have opted for explicit time quantization, at the feature extraction stage, effectively switching from the CT domain to asynchronous, Figure 4.1. Time can be quantized through an oscillator and a counter. This is the assumption made for our system, although the underlying technology is not explored in this work. It is important, however, to be able to tune the oscillator's frequency as it defines the time resolution.
4.1 Event-Driven Features

Driven by the outputs of the LC ADC we propose extracting a set of 4 features for each spike:

- Extrema Values - max and min;
- Minimum Inverse Derivatives - minDInc and minDDec.

Although simple, this combination of features combines the benefits of waveform features, which are more robust against high frequency noise, and derivative features, more robust against low frequency noise. Additionally, they can be extracted as the level-crossings occur, without the need to save the whole spike on-chip, as would be the case, for example, with PCA features, hence reducing the total memory required.

Extrema

To find the extrema with conventional synchronous systems, each sample is compared with the current maximum and minimum, and if larger or smaller, the extrema is overwritten. This requires performing $2 \times \#samples$ N-bit comparisons.

With LC sampling this can be improved. We know that peaks will only occur at inversion points. A negative inversion point, i.e. with a negative second derivative, corresponds to a local maximum and a positive inversion point to a local minimum. By analysing only the REQ and DIR pulses we can economically locate these points: if a decremental level-crossing follows an incremental one, we have a local maximum; if an incremental level-crossing follows a decremental one, we have a local minimum. This can be visually confirmed by the INC/DEC trains in Figure 3.5.

Whenever an inversion point is detected, the present value at the counter can be compared with the corresponding extrema. Although we still need to track the input signal through the REQ/DIR bits, we only perform as many comparisons as detected inversion points, reducing the overall computations. No time quantization is required for these features.

While in theory the average absolute difference between the real extrema and these features’ values is $\frac{1}{2} \text{thrID}$ for both US and LC sampling, if the SR of US ADCs is set too low, no sample might be taken close to the peak of the spike, introducing a larger error.
Minimum Inverse Derivatives

Commonly used features for spike sorting are the maximum of spikes’ derivatives. Due to the nature of LC sampling, we propose extracting the minimum inverse derivatives instead. In synchronous digital systems the derivative is found as:

\[
\frac{\Delta x_i}{\Delta t} = \frac{x_i - x_{i-1}}{t_i - t_{i-1}} = x_i - x_{i-1}
\] (4.1)

Since the time between consecutive samples is constant, it can be defined as 1 unit of time to simplify the expression. In LC sampling, on the other hand, this interval is a function of CT, however, the difference between consecutive samples is always 1 lsb. Thus, an inverse derivative can be computed as:

\[
\frac{\Delta t_i}{\Delta x} = \frac{t_i - t_{i-1}}{x_i - x_{i-1}} = t_i - t_{i-1}
\] (4.2)

Each inverse derivative is obtained by measuring the time that elapses between consecutive level-crossings. If the signal has a sharp increase, i.e. has a large derivative, this time will be short, resulting in a small inverse derivative. A distinction can be made between the inverse derivative of consecutive INC pulses and consecutive DEC pulses. The minima of these are the features: minDInc and minDDec.

This is the only stage of our system where time needs to be quantized. As we are only interested on the minima of the inverse derivatives, time quantization can be performed only over a short interval, outside of which we can assume the pulses in question do not produce a minimum.

While conventional derivatives require performing \(N\)-bit subtractions between consecutive samples, the inverse derivatives only require manipulating the REQ and DIR pulses. However, time quantization could prove costly.

4.2 Methodology

To analyse how spike sorting performs with the proposed event-driven features, EDF, we used 20 seconds of each dataset and the Matlab LC ADC model described in the previous Section.

Amplitude threshold crossing is used for detection, as methods such as NEO would require systematically saving the timing information of every level-crossing, increasing overall costs. With amplitude thresholding, only the instantaneous value of the input is required. For the same reason, no pre-detection buffer is used, so spikes are aligned to detection point. As the first dominant peak of all spikes in our datasets is positive, only a positive detection threshold is used.

From Equations 2.1 and 2.2 the detection threshold for the noisiest datasets would be too high. For this reason, it was fixed equally for all datasets at \(Thr_D = 0.25\), which corresponds to the value obtained from the same equations applied to the least noisy datasets and fixing \(X = 5\). The threshold value was then rounded to the closest amplitude quantization level.

Using the labelling information provided with the datasets, perfect detection is done, rejecting false
positives and overlapping spikes, so as to better interpret the sorting results.

With each detection a 1 ms window is initiated, during which the features are extracted and used to classify the spike. Perfect training is done by using the ground-truth knowledge to compute the centroids of each class as the median of the spikes belonging to that class. The median was used as it was found to result in better sorting performances than using the average.

The spikes were then classified to the closest centroid using the l1-norm:

$$\text{Class}_j = \min_i ||\text{Features}_j - \text{Centroid}_i||_1 \; , \; i = 1, 2, 3 \; ; \; j = 1, \ldots, \#\text{spikes}$$ (4.3)

To evaluate performances we compute the accuracy of sorting as:

$$\text{Accuracy}_i = \frac{TP_i + TN_i}{\text{Total}}$$ (4.4)

With TP_i the number of spikes correctly classified to class i, TN_i the number of spikes neither belonging nor classified to class i and Total corresponding to the total number of spikes. The accuracy results were averaged among the three spike classes.

To compare results with a typical US, synchronous spike sorting method, we sort the same spikes using template matching, a method often seen in the literature as a reference. The same methodology is repeated, i.e. perfect detection by amplitude threshold crossing, alignment to detection point and perfect training.

We are interested not only on sorting performance, but also on the corresponding computational cost. It’s measured by the number of operations, considering 1 operation as a 1-bit addition, subtraction or comparison, or a modulus operation.

To extract the max and min features we require one 1-bit comparison per event (level-crossing) to find the inversion points, plus one N-bit comparison per inversion point to determine the extrema, with N being the number of bits used to quantize amplitude. The average number of events and inversion points per spike will also depend on N:

$$\text{Cost}_{\text{max+min}} = \#\text{events} + \#\text{inv.points} \times N \; \text{operations}$$ (4.5)

For the minDInc and minDDec we need time quantization. This is done uniformly in discrete Δt-wide intervals, with the resulting values stored in M-bit words. For a fixed Δt, M will define the range of time quantization. Δt mustn’t be larger than the minimum minDInc/Dec, represented by Δt_{max}, which depends on N, as seen in Equation 3.5. However, it can be smaller, improving time resolution, but, for a fixed M, reducing the range. For each pair of events, an M-bit comparison is needed to find the extrema:

$$\text{Cost}_{\text{minDInc+Dec}} = (\#\text{events} - 1) \times M \; \text{operations} + \text{Time Quantization}$$ (4.6)

TM does not require computations for feature extraction, as these are the samples themselves. However, a larger number of features are produced, increasing the memory of the system plus the
computational cost of the classifier, which is:

\[\text{Cost}_{\text{classifier}} = \#\text{classes} \times (\#\text{features} \times (N + 2) - 1) \text{ operations} \] \hspace{1cm} (4.7)

4.3 Results

Using the LC ADC, the average number of events and inversion points per spike for different \(N \) is found in Table 4.1. With the EDF, by varying \(N \) and looking at the average accuracy over all the datasets, we find that \(M = 4 \) and \(\Delta t = \Delta t_{\text{max}}/4 \) provides for the best results, while allowing to minimize time quantization.

These values are used in Figure 4.2, where we compare the average accuracy over all datasets versus computational cost of the proposed EDF and TM. For the EDF, \(N \) varies from 3 to 7 and the cost is computed by adding Equations 4.5, 4.6 and 4.7. For TM, only the later Equation is used, and we vary \(N \) from 3 to 8 and the SR from 10 kHz to 20 kHz.

We can see how the proposed features outperform TM. This is due to the economical feature extrac-

<table>
<thead>
<tr>
<th>(N)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td># events/spike</td>
<td>4.3</td>
<td>9.9</td>
<td>21.3</td>
<td>44.2</td>
<td>90.0</td>
</tr>
<tr>
<td># inv. points/spike</td>
<td>1.2</td>
<td>1.5</td>
<td>1.7</td>
<td>2.0</td>
<td>2.2</td>
</tr>
</tbody>
</table>
Table 4.2: Average sorting accuracy from the EDF and TM with alignment. Each column shows the average accuracy over the datasets satisfying the condition in the header. ‘Total’ corresponds to the average accuracy over all the datasets.

<table>
<thead>
<tr>
<th>Noise Level</th>
<th>Difficulty</th>
<th>EDF</th>
<th>TM - aligned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.05 0.10 0.15 0.20</td>
<td>0.82 0.91 0.85 0.79 0.73</td>
<td>0.83 0.91 0.86 0.80 0.75</td>
</tr>
<tr>
<td>‘Easy’</td>
<td>‘Difficult’</td>
<td>0.86 0.78</td>
<td>0.87 0.79</td>
</tr>
</tbody>
</table>

To make sense of the worse-than-expected sorting results from TM, we also plot in Figure 4.2 a curve for TM after aligning the spikes to their maximum, with a 0.5 ms window before the maximum and 1 ms afterwards. The reported cost, however, does not include searching for the maximum, aligning the spikes and using the necessary pre-detection buffer. Additionally, the whole spikes need to be saved on-chip prior to alignment, increasing memory requirements. With this additional burden, the spike sorting performances become slightly better than with the proposed EDF.

In Table 4.2 we compare how the average accuracy varies with noise level and difficulty across the datasets, for the proposed features and for TM with alignment. The parameters for both were chosen to result in similar average accuracy over all the datasets and computational costs. These were $N = 7$, $M = 4$ and $\Delta t = \Delta t_{max}/4$, for the proposed features, and $N = 5$ and $SR = 18 kHz$ for TM1. Neither the cost of time quantization nor of aligning spikes to their peak is included.

As can be seen, both methods show the same behaviour as the conditions of the data change, with neither proving to be more robust against noise and difficulty of the datasets.

4.4 Discussion

We have seen how the proposed EDF resulted in better performances than TM, under the same conditions. By increasing the complexity of TM, with alignment, performances became similar, slightly smaller for the EDF. The lower computational cost of the EDF could enable their use in applications where large channel-count is a priority over sorting performances - without these being necessarily bad. The low feature extraction cost of the EDF is possible due to asynchronous delta-modulation, which results naturally from LC ADCs.

However, the cost of time quantization should be included in the analysis. This would require switching the cost functions from the number of operations to the consumed power, which will vary with the technology used.

1Increasing N from 5 to 7 resulted in an increase of less than 1% of the average accuracy.
The possible power savings from producing fewer events and using an activity-dependent asynchronous DSP for spike sorting, have also not been quantified in this work, as, again, it depends to a great extent on the technology used.

Overall, the proposed change in digital signal processing paradigm presents itself promising.
Chapter 5

From Soft- to Hardware: FPGA Implementation

5.1 Overview

The proposed asynchronous system was implemented on an FPGA to demonstrate how the presented features can be extracted and used to sort spikes, driven by the events of the input, namely the level-crossings. The device used was a TerasIC DE0 board with Altera’s Cyclone III FPGA. It can be seen in Figure 5.1 where the main components used are labelled. The system was coded in Verilog. ModelSim was used to test the modules through simulation, and Altera’s Quartus II software was used to compile the code and program the FPGA.

To test the system and output the sorting results, the digital signals of interest were connected to Saleae’s logic analyser through the GPIO pins, Figure A.2 in the Appendices.

An overview of the system can be seen in Figure 5.2. The names of modules described in the following explanations (in capitals) derive from Figure A.2 in the Appendices, which shows the implemented system in greater detail, with all the input and output wires of each module specified. The names of wires are written in italic.

Input Data

The neural datasets were filtered on Matlab before applying the LC ADC model. Time was quantized into discrete $1\mu s$ steps, each composed of 2 bits representing the REQ and DIR pulses. Each step can take the values ‘11’, ‘10’ and ‘00’ indicating respectively that an INC, DEC or no level-crossing occurred at that instance. The step immediately following each level-crossing must necessarily be a ‘00’ as the positive edges of REQ are used to trigger the circuitry. If two consecutive steps have REQ = 1, only the first will be processed.

The resulting binary array is preceded by setup variables for the system. These are the initial value of the counter, $initial_val$, as the data can begin at any point, and the detection threshold, det_thresh,
Figure 5.1: TeraslC's DE0 board used to implement the system.

Figure 5.2: Overview of the 2-stage system implemented on the FPGA. The outputs are 3 bits which are individually \textit{HIGH} if the current spike was classified to the corresponding class. Note how the clock is only connected to the memory controller and detection blocks. The white arrows represent strings of bits.
Figure 5.3. The described data structure is saved on a binary file and loaded into the flash memory of the DE0 board using the Control Panel, an interfacing software provided by TerasIC.

Flash Memory

The DE0 board has a 4 MByte flash memory which is divided into $2^{21} - 1$ addresses of 16 bits each. To access it, a memory controller was implemented on the FPGA. It is divided into two modules. MEM_CONTR consists on a state-machine of 4 states that sequentially provides the control signals to read each address. At each cycle it outputs a 16-bit word to MEM_DECODER. This module consists on a state-machine with 8 states that sequentially produces REQ and DIR pulses.

Both these modules are synchronous and require a clock signal to operate. However, the frequency for MEM_DECODER must be twice the frequency for MEM_CONTR, as its state-machine has double the number of states.

The first 2 addresses are processed differently by MEM_DECODER as these contain the initial_val and det_thresh (the parameters of the classifier were hard-coded into the system for simplicity). A control signal, enable_sort, indicates to the DETECTOR module when the setup variables have been stored and the REQ/DIR pulses start to be produced.

The timing diagram in Figure A.3 in Appendices shows in detail how the data is read from the flash memory.

Detector

A positive amplitude threshold crossing detector is implemented with 2 simple modules. DET_INTEGRATE implements the up/down counter. At the positive edge of enable_sort it resets to initial_val. Then, at each positive edge of REQ it increments or decrements if DIR is ‘1’ or ‘0’ respectively.

The DET_WINDOW module compares counter_val with det_thresh and if larger, window switches to ‘1’, serving as an enable signal for the feature extraction modules. A clock signal is used at this stage to set the time during which window stays at ‘1’ after each detection.

Delays

To manage the asynchronous feature extraction and classification stages, delay units are necessary to produce control pulses, as we do not intend to rely on a governing clock. These, however, are not an integral part of FPGAs, as they are targeted for synchronous circuits.
FPGAs are composed of many logic cells, the basic programmable units. By transmitting a signal through a sequence of these, a delay at the output is obtained from the inherent propagation time of the technology. When compiling a design, the synthesis tools will optimize the Verilog code for both logic utilization and performance, removing the redundancy introduced by using logic cells to produce delays. Quartus II, however, provides a primitive, \textit{lcell}, which forces the final design to include a logic cell at the intended place. This was the method used in our design. By varying the number of logic cells we can change the length of the delay.

It should be noted that this is not a good practice, as the delays introduced will vary with temperature, power supply voltage and device fabrication process, which can render the circuit unreliable. Additionally, an excessive number of logic cells are used to produce the delays needed. For our demonstrative purpose, however, it suffices. A final system, likely to be implemented with an ASIC, would need to properly address this issue, for example with controllable digital delay elements.

\textbf{Feature Extractors}

To extract the \textit{max} and \textit{min} features, the F_MAX and F_MIN modules are used. While \textit{window} is ‘1’, at each positive edge of REQ, the equivalent DIR bit is analysed to find the inversion points. When these occur, \textit{counter_val} is compared with the current extrema, to replace it if more extreme.

When \textit{window} returns to ‘0’, the falling edge is used to reset the values of \textit{max} and \textit{min} for the following detection. In practice, this falling edge needs to be delayed by a certain amount before entering these modules, as it is also used to trigger the classification of each spike, at the CLASSIFY module.

For \textit{minDInc} and \textit{minDDec} we use the F_MINDINC and F_MINDDEC modules. To quantify time an oscillator is used to increment a counter for \textit{minDinc} and another for \textit{minDDec}, at each cycle. Each time an INC or DEC occurs, the value of the respective counter is compared with the current feature value to find the minimum. The counter is then reset.

To implement the oscillator a pulse is sent down a delay element that feeds back to its input, creating a loop, who’s output is a series of periodic pulses. The initial pulse is created by the positive edge of \textit{window}. Once \textit{window} returns to ‘0’, the oscillator is stopped, as time only needs to be quantized when extracting features. The last output pulse, when \textit{window} is already ‘0’, is used to reset the values of \textit{minDInc} and \textit{minDDec} for the following detection.

\textbf{Classifier}

Once \textit{window} switches back to ‘0’ at the end of each spike, the current features at the output of the feature extraction modules are used in CLASSIFY to classify each spike into either of the three possible classes.

As opposed to using the l1-norm classifier explained in the previous Chapter, classification is achieved simply by comparing the features with pre-determined values, found offline. The outputs of CLASSIFY remain the same until the following negative edge of \textit{window} triggers a new classification.
5.2 Results

To test the system, a section from dataset ‘Easy1’ with noise level 0.05 was used, Figure 5.4 a). With the LC ADC, \(N = 6 \) and \(M = 6 \). The length of window was set to 2.4 ms. The output classes, obtained through the logic analyser can be seen in Figure 5.4 b).

As can be seen, all spikes were classified correctly. This was expected from Matlab analysis of the same segment. In fact, a 1-to-1 correspondence between Matlab simulation and FPGA results was obtained.

With this, the proposed system, with features extracted from asynchronous delta-modulated data produced by CT LC ADCs, has been successfully demonstrated on an asynchronous FPGA.

Figure 5.4: a) Data segment input in the FPGA, resulting from dataset ‘Easy1’, noise level 0.05. The beginning of each spike is marked with the red vertical lines and the corresponding class is shown above. b) Sorting results obtained with the FPGA, measured through the logic analyser.
Chapter 6

Conclusions

In Chapter 3 I have quantified how the # samples produced by LC sampling extracellular recordings varies with amplitude resolution. The range of amplitude resolutions for which fewer samples are produced due to the spurious behaviour of spikes, compared with conventional US, has thus been identified.

I find that, within this range, samples from LC sampling carry more information on spikes than US, resulting on lower reconstruction errors, as a result of the event-driven nature of LC sampling producing samples concentrated at spikes as opposed to evenly distributed over the signal.

Finally I inform the timing constrains these LC ADCs need to oblige for their use on extracellular recordings without causing saturation error.

The output of LC ADCs raises challenges at the following signal processing stages, by differing from conventional systems in which data is carried by discrete samples at regular intervals. In Chapter 4 I show how this CT flow can be handled to perform spike sorting. I propose a set of 4 lightweight features which obtain slightly better sorting accuracies than the reference method of TM. Due to asynchronous delta-modulation the computational cost of the proposed features is similar to TM, even though for the latter the cost derives only from classification, as no feature extraction step is needed.

By increasing the complexity of TM with aligning spikes to their peaks, average sorting accuracies increase by only a few percentage points, in spite of the additional costs. It was also found how both the proposed features and TM with alignment display similar behaviours when changing the conditions of the datasets, by varying noise levels or sorting difficulties due to waveform similarities, with neither proving to be more robust.

To continue benefiting from the spurious behaviour of spikes, the proposed spike sorting features can be extracted using an asynchronous system. The feasibility of such an approach was demonstrated in Chapter 5 with its implementation on an FPGA.

Although the limited amplitude resolution did not hinder sorting results compared with a reference method having comparable computational costs, it could limit the use of more intensive algorithms requiring higher accuracies, to obtain even higher sorting performances. However, the event-driven nature of the proposed scheme allows to capture the relevant information at lower resolutions, producing fewer data to handle and less samples, thus lowering consumptions at the signal processing stages, while still
achieving satisfactory sorting results. This could be a motivation for its use in applications where higher channel counts are paramount over obtaining the best possible performances on each channel.

6.1 Future Work

Future work should consider using adaptive resolution LC ADCs. Not only would the speed requirements of the ADC relax, but also fewer samples would be produced at finer resolutions, improving the limitation previously stated. Using an adaptive resolution ADC would have a small effect on the cost of extracting the proposed EDF. \max and \min would be unaffected. For \minDInc and \minDDec, by properly setting the thresholds at different resolutions, only a slight computational increase would result. If the difference between consecutive thresholds, \thrID, varies by a power of 2, i.e. \thrID, $2\times\thrID$, $4\times\thrID$, ..., the corresponding derivative features are obtained by simply shifting the time that elapsed between consecutive events, expressed in binary, by 0, 1, 2, ... bits respectively.

A continuation of this work should also consider exploring further spike sorting features that can economically be extracted from the CT outputs of LC ADCs.

A more complete cost analysis would also be required for more conclusive remarks regarding the advantage of using the proposed approach. Beyond the computational cost of feature extraction and classification, different methods of time quantization and corresponding implementation costs should be explored. Also, an integrated view of the whole system should be considered, taking into account the possible power saved by using an asynchronous DSP on spurious data, from its activity dependent dynamic power consumption. The small amount of memory required for this system, as the input is processed as it arrives, could also result in lower costs.

This analysis would require changing the cost function from numbers of operations to power consumption and silicon area, requiring deeper considerations for the hardware implementation.
Bibliography

Appendices
Appendix A

FPGA Implementation

A.1 Figures

Figure A.1: Saleae's logic analyser connected to several GPIO pins of the FPGA.
Figure A.2: Detailed overview of the system implemented on the FPGA. Each designed module is shown together with all its inputs and outputs. White arrows represent strings of bits, the size of which is reported within brackets after its name. The wires "req" and "polarity" correspond to REQ and DIR respectively.
Figure A.3: Timing diagram of the signals involved in reading the data from the flash memory. The same signals are labelled in Figure A.2.