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Summary

Following from previous research, the aim of this paper is to present a hybrid-mixed stress finite ele-
ment model for the analysis of reinforced concrete, taking into account the bond between the concrete
and the steel reinforcement. The finite element formulation is based on the independent approximation of
the stress fields both in the concrete and steel domain, the displacement fields in the domain and static
boundaries of concrete and steel, as well as the bond stress and slip in the concrete-steel interface. The
latter two fields allow for the implementation of a non-linear bond response based on the model proposed
by Mendes and Castro [1]. As verification, two examples based on previous experimental work are presen-
ted - pull-out test and reinforced concrete tie - supporting the assessment of the behaviour of both short
and long anchorage lengths. The analyses adopt an incremental-iterative procedure, along with Legendre
polynomials as approximation functions. The obtained results afford an adequate response, corroborating
the employment of a hybrid-mixed stress model for reinforced concrete in conjunction with a bond model.

Keywords: Finite Elements, Reinforced Concrete, Hybrid-Mixed Stress Model, Concrete-Steel Bond, Phys-
ically Nonlinear Analysis

1 Introduction
The purpose of this paper is to apply the hybrid-mixed stress finite element formulation to the modelling
of reinforced concrete considering concrete-steel bond behaviour. This formulation is included in the non-
conventional finite element formulations, as opposed to the conventional displacement finite element model.

The hybrid-mixed stress model is one of the hybrid and mixed formulations developed by Freitas et al.
[2] following previous work by Pian (1967) and Veubeke (1965). Three different formulations are proposed
by the authors - hybrid-mixed, hybrid and hybrid-Trefftz. For each there are two different variants - the
displacement and stress models. These formulations have useful characteristics, such as the use of hierarchical
and independent approximations of stress and displacement (or deformation) fields, allowing great flexibility in
the choice of shape functions, and the possibility to obtain quasi-statically admissible solutions. On the other
hand, conventional finite element models, by approximating the displacement field, impose compatibility at a
local level, though equilibrium is imposed in a weaker form, thus leading to kinematically admissible solutions.

The formulation used in the present work is part of the hybrid-mixed stress model. It is called hybrid due to
the inclusion of independent approximation fields in the domain and on the boundaries and mixed as a result
of approximating two different fields in the domain - stress and displacement. By approximating boundary
displacements, there is a weighted imposition of boundary equilibrium, leading to the designation of stress
model.

The extension of this method to reinforced concrete has been developed in previous works by the same
research unit [3, 4, 5]. Adding a new level of detail in the finite element model comprises the consideration
of steel-concrete bond behaviour. This property can be modelled by including an interface element that uses
the bond model proposed by Mendes and Castro [1].

After a brief section stating the fundamental relations, the hybrid-mixed formulation for reinforced concrete,
consisting of bidimensional concrete elements and linear reinforcement elements, is extended to include two
new approximation fields - bond stress and slip. The inclusion of these approximations makes it possible to
adapt the bond model proposed by Mendes and Castro [1]. The solving system will be able to include both
linear and nonlinear concrete-reinforcement adherence behaviour. This formulation is then applied to two
experimental cases that seek to evaluate its performance - a pull-out test and a reinforced concrete tie test.

The results were obtained using the program pyHM developed by Mendes and Castro [6], written in Python.
MATLAB [7] was used to process the graphical results.
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2 Fundamental relations
Considering a domain V , enclosed within a static boundary Γσ and a kinematic boundary Γu, the fundamental
relations that govern the mechanical problem are [8, 2]:

Dσ + b = 0 in V (1)
ε = D∗u in V (2)
ε = Fσ in V (3)
Nσ = t̄ on Γσ (4)
u = ū on Γu (5)

Equations (1) and (2) define the equilibrium and compatibility conditions, where σ and ε list the independent
components of the stress and strain fields, respectively, and b and u define the body forces and the displacement
vector. D and D∗ define the differential equilibrium and compatibility operators, which are linear and adjoint.
The linear elastic constitutive relation (3), written in the flexibility format, associates the stress and strain
fields through a flexibility matrix F. Lastly, in the equilibrium and compatibility boundary conditions (4) and
(5), respectively, t̄ are the external forces and ū the prescribed displacements, while N identifies the matrix
containing the elements of the unit vector normal to the boundary.

3 Bond model
The transfer of longitudinal stresses between the reinforcement and the surrounding concrete occurs through
the bond stresses - τb - at the concrete-steel interface Vi. The stress changes along the length of both
materials causes strain differentials and, consequently, a relative displacement between the reinforcement and
the concrete - slip sb [9]. Thus, two fundamental equations are obtained:

sb = ur,V − uc,Γ in Vi (6)
τb = Kssb in Vi (7)

where ur,V and uc,Γ define the steel domain displacement and the concrete displacement on the overlapping
boundary. In the concrete-steel bond, the constitutive relation (7) is written in the stiffness format with the
interface stiffness Ks.

It is now possible to define the equilibrium both in the reinforcement domain (8) and on the concrete
element boundary (9):

DrNr + br − τ∗b = 0 in Vr (8)
Ncσ

∗
c = t̄c + τ∗b on Γσc (9)

where the index r identifies variables related to the reinforcement, Nr is the steel axial tension, and c denotes
variables related to concrete. It should be observed that, when imposing the interface equilibrium, only the
relevant direction of the concrete operators is considered. As both equations are written in FL−1, pseudo-
stresses must be considered both for the bond stress, integrated along its perimeter Pc = 2πr (where r is the
reinforcement radius) and the concrete stress, integrated across its thickness ec:

τ∗b = Pckssb (10)
σ∗c = ecσc = ecKcεc (11)

Several bond models have been developed [9, 1]. This work uses the semi-analytical bond model proposed
by Mendes and Castro [1]. Four main phases of bond behaviour must be considered: perfect bond, with a
very high stiffness; with crack initiation there is a loss of chemical adhesion and a growth in slip; the widening
of longitudinal cracks along the interface lead to a softening of the connection between the materials; lastly,
for ribbed bars, the residual bond stress is guaranteed by friction.

The bond model is shown in Figure 1 and the parameters used to define the model are grouped in Table
1. The parameters are determined based on concrete-reinforcement bond experimental results.
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Figure 1: Bond model (adapted from Mendes and Castro [1])

Table 1: Bond model parameters (adapted from Mendes and Castro [1])

Parameter Units Definition
spb L perfect bond slip limit
s0 L slip at peak stress
sres L slip at the begging of the residual stress
kpb FL−3 Perfect bond tangent stiffness
k0 FL−3 Secant stiffness at peak stress
f1 − Residual stress ration
cs − shape control parameter of the softening branch

4 Hybrid-mixed stress models
The hybrid-mixed stress model presented in this section derives from the model proposed by Freitas et al.
[2]. That model was later adapted to reinforced concrete, considering plane stress concrete elements and bar
elements for the reinforcement [5].

4.1 Approximation fields
For the concrete elements, three fields are approximated, namely the domain stresses σc and the domain and
boundary displacements uc:

σc = ScXc in Vc (12)
uc = UV cqV c in Vc (13)
uc = UΓcqΓc on Γσc (14)

For the reinforcement, the approximations include the domain axial tension Nr and the domain and boundary
displacements ur:

Nr = SrXr in Vr (15)
ur = UV rqV r in Vr (16)
ur = UΓrqΓr on Γσr (17)

Matrices Sc, UV c, UΓc, Sr, UV r and UΓr list the shape functions for each field and vectors Xc, qV c, qΓc,
Xr, qV r and qΓr the corresponding weights.
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For the interface element two fields must be considered - bond stress τb and slip s:

τb = Fbλb in Vi (18)
s = Sbsb in Vi (19)

where Fb and Sb list the shape functions and λb and sb the corresponding weights.
It should be noted that both the concrete stress field and the bond stress are defined as pseudo-stresses,

as explained in the previous section.

4.2 Finite element model
The fundamental relations must now be enforced in a weighed-residual approach. Equation (20) enforces the
equilibrium (1) in the concrete domain and (24) the equilibrium in the bar domain (8), including the bond
stress. Equations (21) and (25) impose the compatibility (2) in the concrete and steel domains, respectively,
and (22) and (26) the linear elastic constitutive relations (3) for both materials. Lastly, equation (23) imposes
the concrete boundary equilibrium (9), including the bond stress, and equation (27) imposes the reinforcement
boundary equilibrium (4). Equations (21) and (25) are integrated by parts to accommodate the compatibility
boundary conditions (5) both for concrete and reinforcement.∫

V c

UT
V c(Dcσc + bc) dVc = 0 (20)∫

V c

STc (εc −D∗cuc) dVc = 0 (21)∫
V c

STc (εc − Fcσc) dVc = 0 (22)∫
Γσc

UT
Γc(Ncσ

∗
c − t̄c − τ∗b ) dΓσc = 0 (23)

∫
V r

UT
V r(DrNr + br − τ∗b ) dVr = 0 (24)∫

V r

STr (εr −D∗rur) dVr = 0 (25)∫
V r

STr (εr − FrNr) dVr = 0 (26)∫
Γσr

UT
Γr(NrNr − t̄r) dΓσr = 0 (27)

Regarding the interface elements, the enforcement of concrete-reinforcement displacement compatibility
(6) and the elastic bond constitutive relation (7), equations (28) and (29), respectively, results in:∫

V r

FTb (s− ur + uc) dVr = 0 (28)∫
V r

STb (τ∗b − Pckss) dVr = 0 (29)

Inserting all the approximations defined in the previous section in the above equations, the resulting finite
element equations give the governing system at the element level for the reinforced concrete hybrid-mixed
stress model taking into account bond behaviour:

Fc 0 AV c 0 −AΓc 0 0 0
0 Fr 0 AV r 0 −AΓr 0 0

AT
V c 0 0 0 0 0 0 0
0 AT

V r 0 0 0 0 −CT
br 0

−AT
Γc 0 0 0 0 0 CT

bc 0
0 −AT

Γr 0 0 0 0 0 0
0 0 0 −Cbr Cbc 0 0 Cbs

0 0 0 0 0 0 CT
bs −Ks





Xc

Xr

qV c
qV r
qΓc
qΓr
λb
sb


=



v̄c
v̄r
−QV c

−QV r

−QΓc
−QΓr

0
0


(30)

The global solving system is equivalent to the elemental one. Elements of the same type are connected by
considering the same approximation for the inter-element boundary displacement field. Hence, apart from the
boundary operators (with index Γ), all the others are totally independent for each element, not occurring any
overlap in the global system. Detailed construction of a solving system may be found in [10, 11].

The solving system operators are derived in [12]. The operators related to either concrete or reinforcement
are defined by the following expressions:
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Fc =
∫
V c

STc FcSc dVc (31)

AV c =
∫
V c

(DcSc)TUV c dVc (32)

AΓc =
∫

Γσc
(NcSc)TUΓc dΓσc (33)

QV c =
∫
V c

UT
V cbc dVc (34)

QΓc =
∫

Γσc
UT

Γct̄c dΓσc (35)

v̄c =
∫

Γuc
(NcSc)T ūc dΓuc (36)

Fr =
∫
V r

STr FrSr dVr (37)

AV r =
∫
V r

(DrSr)TUV r dVr (38)

AΓr =
∫

Γσr
(NrSr)TUΓr dΓσr (39)

QV r =
∫
V r

UT
V rbr dVr (40)

QΓr =
∫

Γσr
UT

Γr t̄r dΓσr (41)

v̄r =
∫

Γur
(NrSr)T ūr dΓur (42)

The operators linked with the concrete-reinforcement interface are given by:

Cbc =
∫
V r

FTb UΓc dVr (43)

Cbr =
∫
V r

FTb UV r dVr (44)

Cbs =
∫
V r

FTb Sb dVr (45)

Ks =
∫
V r

STb PcksSb dVr (46)

4.3 Nonlinear behaviour
Because the bond model is nonlinear, to solve the governing system it is necessary to adopt an incremental-
iterative resolution method (Newton-Raphson). For each load increment, there is an iterative process in order
to reduce the error to an acceptable level [13].

Considering an interface tangent stiffness k∗s the new stiffness operator may be obtained by the expression:

K∗s =
∫
V r

STb Pck∗sSb dVr (47)

At the end of each iteration, the error is given by:

RXc
RXr
RqV c
RqV r
RqΓc

RqΓr

Rλb
Rsb


=



0
0
0
0
0
0
0
−tb


+



Fc 0 AV c 0 −AΓc 0 0 0
0 Fr 0 AV r 0 −AΓr 0 0

AT
V c 0 0 0 0 0 0 0
0 AT

V r 0 0 0 0 −CT
br 0

−AT
Γc 0 0 0 0 0 CT

bc 0
0 −AT

Γr 0 0 0 0 0 0
0 0 0 −Cbr Cbc 0 0 Cbs

0 0 0 0 0 0 CT
bs 0





Xc

Xr

qV c
qV r
qΓc
qΓr
λb
sb


−



v̄c
v̄r
−QV c

−QV r

−QΓc
−QΓr

0
0


(48)

For each iteration, as long as the error is not smaller than a given tolerance, the increments to the independent
variables is obtained by:

Fc 0 AV c 0 −AΓc 0 0 0
0 Fr 0 AV r 0 −AΓr 0 0

AT
V c 0 0 0 0 0 0 0
0 AT

V r 0 0 0 0 −CT
br 0

−AT
Γc 0 0 0 0 0 CT

bc 0
0 −AT

Γr 0 0 0 0 0 0
0 0 0 −Cbr Cbc 0 0 Cbs

0 0 0 0 0 0 CT
bs −K∗s





∆Xc

∆Xr

∆qV c
∆qV r
∆qΓc
∆qΓr
∆λb
∆sb


= −



RXc
RXr
RqV c
RqV r
RqΓc

RqΓr

Rλb
Rsb


(49)
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5 Numerical tests
Two examples based on previous experimental work are shown here in order to evaluate the response and
accuracy of the proposed model.

The interface element is placed in parallel, that is, it is superimposed on the concrete boundary, connecting
it with the reinforcement element.

Because of the properties of orthogonal functions, Legendre polynomials were used as approximation
functions, allowing for highly sparse and numerically efficient governing systems[14].

5.1 Example 1 - Pull-out tests by Eligehausen et al. [15]
This example is a pull-out test, consisting of a ribbed reinforcement bar embedded in a concrete specimen,
disconnected near both edges, as shown in Figure 2a. Loading is imposed using controlled displacements on
the left protruding end of the reinforcement

As a result of a 5φs concrete-steel contact length, the specimen is considered short, in terms of the
anchorage length. Due to the small anchorage length, stress transfers will occur along the total breadth of the
interface. Therefore, the specimen is expected to display near uniform distributions of bond stress and slip.

(a) Geometric characteristics
(b) Finite element mesh

Figure 2: Geometric characteristics and the finite element mesh used in the analyses

The mesh used is shown in Figure 2b and the values used to define all the material properties are stated
in Table 2.

Table 2: Material properties (adapted from Mendes and Castro [1])

Material Properties
Concrete Ec = 30.5 GPa ν = 0.20 tc = 178 mm

Reinforcement Er = 200.0 GPa ν = 0.30 Ar = 5.067 cm2 (φs = 25.4 mm)

Interface kpb = 32.94 GPa/m k0 = 8.235 GPa/m f1 = 0.35 cs = 0.00
spb = 0.343 mm s0 = 1.70 mm sres = 10.50 mm

Adopting stress and tension fields approximation degrees of nx = 10 and the other approximation degrees
with values nx−1 = 9, the model has a total of 3786 degrees of freedom. Loading consisted of a displacement
qimp imposed as shown in Figure 2b, applied in 120 steps of 0.1 mm, up to a maximum total value of 12.00 mm.

Figure 3 shows the bond stress in relation to the displacement measured at point B. Because the bond
stress is not entirely uniform along the interface, an equivalent bond stress τeqb = Qc/Ac was considered, where
Qc is the constraint force at point A due to the imposed displacement and Ac the total surface area of the
reinforcement bar connected to the concrete (Ac = PcLc). In the same figure are included the experimental
results obtained by Eligehausen et al. [15] and the conventional finite element analysis executed by Mendes and
Castro [1]. It clearly shows that both finite element analyses reach very similar results, confirming the suitability
of the hybrid-mixed stress formulation to model bond behaviour. Also, considering the values proposed by
Mendes and Castro [1], the bond model provides a good approximation of the observed experimental behaviour.
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Figure 3: Bond stress vs. displacement at point B (experimental data from Eligehausen et al. [15] and
conventional FEM results from Mendes and Castro [1])

The bond stress distribution at selected load steps is shown in Figure 4. In the first step (0.1 mm), the
interface is still in the initial high stiffness branch shown in Figure 1. This means a very small change in slip
leads to a significant change in the bond stress, explaining the non uniform distribution shown in the figure -
as the stress transfer occurs between steel and concrete, the slip changes, thus altering the bond stress. For
the fifth step (qimp = 0.5 mm), the first part of the interface, closer to the loading point, is at the second
branch of the bond behaviour diagram (Figure 1), whereas the rest of the interface is still in the high stiffness
branch. Therefore, the first part shows a significant loss of sensibility to the change in slip, displaying a
uniform distribution. The other two steps - qimp = 2.0 mm, near peak bond stress, and qimp = 12.0 mm, at
the residual stress phase - feature a near uniform distribution of stresses, as expected.

Another relevant result is shown in Figure 5, for qimp = 2.0 mm. It displays the reinforcement stress
distribution together with the concrete σxx stresses at section A − B (y = 152.40 mm) and section C − C ′
(y = 167.75 mm). At first inspection, it can be seen that the concrete and steel stresses along the interface zone
show a linear variation, in agreement with a uniform bond stress transfer. Additionaly, the first reinforcement
element displays a constant stress, as there is no connection to the surrounding concrete elements, the last
reinforcement element has no stresses, respecting equilibrium conditions. The figure also shows a significant
concrete stress cluster at both ends of the interface element. However, plotting the concrete stress distribution
just 15 mm apart from the interface presents a much smoother transition of stresses in those areas.
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qimp = 2.0 mm
qimp = 12.0 mm

Figure 4: Bond stress distribution at selected load steps
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Figure 5: Concrete (σxx) and reinforcement stress distributions for qimp = 2.0 mm

5.2 Example 2 - RC tie tests by Clément [16]
This example consists of a reinforced concrete tie with symmetrically imposed displacements on both ends of
the reinforcement. The geometric characteristics are shown in Figure 6. The mesh used in the analyses is
displayed in Figure 7, together with the restraint conditions applied. As can be observed, the mesh comprises
four bidimensional concrete elements and two reinforcement elements, each connected to the concrete by an
interface element.

Figure 6: Geometric characteristics of tests performed by Clément [16] (adapted from Mendes [17])

Figure 7: Finite element mesh for Example 2

The material parameters can be found in Table 3. Both for concrete and steel a linear elastic behaviour
was considered. Due to lack of detailed information on the bond behaviour, the approach followed by Mendes
[17] was adopted, thus considering a linear behaviour for the interface, with a constant stiffness values in a
range coherent with the experimental results. A more detailed explanation may be found in [12].

This example considers a specimen that can be classified as medium/long. Therefore, it is expected to
result in a balancing of the concrete and steel strains in part of the specimen, as a length segment of the
interface should show no stress transfer. It should also be stated that the tie displays a similar behaviour to
the tensioned section of a beam, thus providing results that may be relevant to practical applications.

Several approximation degrees were tested [12] and the set that provided the best results were a high
degree for the concrete and steel stresses, nx = 20, coupled with significantly lower degrees fro the rest of the
approximations, nuv = nuΓ = nτ = ns) = 12. The resulting model has 7028 degrees of freedom.
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Table 3: Material parameters (adapted from Mendes [17])

Material Parameters
Concrete Ec = 30.5 GPa ν = 0.20 tc = 178 mm

Reinforcement Er = 210.0 GPa ν = 0.30 Ar = 78.5398 mm2 (φs = 10 mm)
Interface ks = {0, 60, 120, 240}GPa/m

Because there is no non-linearity in the solving system, no incremental-iterative has to be considered.
Therefore, two symmetrical displacements were imposed, with values qimp = 0.125 mm, totalling a controlled
displacement ∆qimp = 0.25 mm.

Figures 8a and 8b show the steel stresses and concrete σxx stress distribution at y = 50 mm (section
A − B). As expected, the higher the interface stiffness, the larger the central area of uniform stresses. This
implies that there is no stress transfer in the central area, confirmed by the null bond stresses displayed in Figure
9a. Accordingly, higher values of ks result in higher stress slopes in the specimen ends, because there is a larger
stress transfer capacity per length of interface. The lowest value of interface stiffness, i.e. ks = 0 GPa/m,
implies a lack of connection between both materials, thus resulting in zero bond stress and, consequently, zero
concrete stresses. Figure 9b shows that with the increase in bond stiffness, there is a decrease in the maximum
slip. The extreme case, of perfect bond, would lead to no slip. On the other end, for ks = 0 GPa/m, the slip
equals the bar extension due to tension.
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Figure 8: Reinforcement and concrete stresses for ∆qimp = 0.25 mm
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Figure 9: Bond stress and slip for ∆qimp = 0.25 mm

6 Closure
The scope of the present work was to advance previous research on non-conventional finite element formula-
tions. The main aim was to extend the hybrid-mixed stress formulation in order to model reinforced concrete
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considering bond behaviour. Having the reinforced concrete hybrid-mixed model, considering bidimensional
concrete elements and bar reinforcement elements, as a starting point, the purpose of this work was to include
the bond model proposed by Mendes and Castro [1] by introducing new approximation fields for the bond
stress and slip in the interface between both materials.

In order to evaluate the performance of the proposed model, two examples were analysed, which focus was
the study of the concrete-reinforcement connection. The main conclusions are as follows:

• The HMT model lends itself to the modelling of reinforced concrete with steel-concrete bond failure,
giving satisfactory results that are in accordance with those obtained in laboratory tests;

• The consideration of the physical nonlinearity of the bond behaviour is effectively modelled by adopting
an incremental-iterative method (Newton-Raphson);

• Taking into account the loss of bond between the two materials affects the overall results, when compared
with the consideration of a perfect bond;

• The use of Legendre polynomials as shape functions leads to results consistent with the expected dis-
tributions in experimental works, except for a few singularity points (especially at the extremities of the
interface elements).

6.1 Future work
Future work may include:

• Coupling of HMT formulation simultaneously with concrete physical nonlinearity (damage model) and
concrete-reinforcement bond nonlinearity (bond model);

• Extending the formulation to two-dimensional structures of greater complexity (e.g., inclusion of trans-
verse reinforcement) and to three-dimensional structures;

• Application of cyclic and dynamic loading;

• Consistent and methodical evaluation of the decision process about the approximation degrees.

• Inclusion of fracture mechanics to model the concrete behaviour.
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