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Abstract:
The relevance of electrical energy into the world economy is a motivation for the sustainable energy
consumption. Power system management assumes a major role in this field, by contributing to efficient
energy consumption. The development and application of forecasting methods to predict the energy
consumption contributes to its optimization and to keep a balance between production and demand. The
purpose of this dissertation is to make predictions for the electric energy consumption at the Alameda
campus of Instituto Superior Técnico, in Lisbon. The prediction problem consists on computing the
estimates of the future terms of a time series, given a sequence of observations. It is assumed that
the consumption process is generated by an ARMA model. To solve the prediction problem, some
algorithms were implemented, in order to integrate all the necessary steps, which are data processing,
model identification, and prediction. Several architectures are taken into consideration in this study, one
based on multiple models, one based on adaptive methods, and other two that combine both multiple
models and adaptive approaches. This dissertation focuses mostly on traditional approaches for model
identification, such as the prediction error method and a recursive and extended version of the least
squares method. In addition, several studies on the variance of the prediction error are also shown,
including on how it is influenced by the prediction horizon. Finally, some comparisons regarding the
performance of the different implemented integration architectures are presented.
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1. INTRODUCTION

Power system management is an important issue, given that,
in a power grid that distributes energy at the national level,
a balance between production and demand must be kept, so
that there is enough energy produced to match the consumption
needs. Failure to comply with this balance may result in serious
drawbacks, such as the degradation of service quality associated
to undesired changes in electrical tension and frequency, or
even instability phenomena that ultimately may lead to a partial
or complete shut-down of the grid. Since there is a delay on the
activation of production, there is a need to perform a demand
forecast. Another motivation for the methods addressed here
is the forecast of energy demand in smaller grids, such as a
campus grid like the one of Instituto Superior Técnico (IST). In
this case, the motivation is mainly economic, in the sense that
having a good prediction of what the electrical consumption
will be in an hour, day or a week in the future, can improve
the management of the power system, by optimizing the energy
consumption.

Forecasting, has been widely used in several areas, such as fore-
casts of electrical power consumption and generation (Amjady
(2001)) (Hugo Costa and Semião (2015)) (Pawlowski et al.
(2010)) (Hou et al. (2014)) (Moraes et al. (2013)), heat loads
(Dotzauer (2002)), water demand (Liu (2010)), wind generation
(Fan and Lee (2012)) (Sánchez (2006)) (Gao et al. (2009))
(Zhu et al. (2013)), and financial time series (Xia and Zhao
(2009)) (Li et al. (2005)). Several different models have been
utilized for prediction, including regression models (Xia and
Zhao (2009)), single or multivariate, exponential smoothing
Pawlowski et al. (2010), the ARMA model family (Amjady
(2001)) (Hugo Costa and Semião (2015)) (Hou et al. (2014))
(Gao et al. (2009)) (Li et al. (2005)) (Li et al. (2009)) (Wei

and Qun (2009)), and Support Vector Machines (Zhu et al.
(2013)). There are more recent models being utilized, which
are Neural Networks (Hugo Costa and Semião (2015)) (Liu
(2010)) (Li et al. (2005)) (Li et al. (2009)), fuzzy logic (Moraes
et al. (2013)) (Wang and Han (2010)) (Li et al. (2009)), and
Grey Theory (Liu (2010)) (Li et al. (2009)). Some of these
models have been combined in order to generate better forecasts
(Li et al. (2005)) (Sánchez (2006)) (Wang and Han (2010)).
behavior. For the parameter estimation of the model, for the
most classic approaches, the Least Squares Method (Li et al.
(2005)), and Maximum Likelihood (Hugo Costa and Semião
(2015)) (Fan and Lee (2012)) (Gao et al. (2009)) (Wei and
Qun (2009)) are the most used, for the AI approaches, machine
learning methods are implemented (Hugo Costa and Semião
(2015)) (Li et al. (2005)) (Li et al. (2009)). Finally, some ideas
on data treatment among the revised literature include, for time
series analysis, segmentation (Amjady (2001)), and also the use
of the Discrete Wavelet Transform to obtain stationarity (Hou
et al. (2014)) (Fan and Lee (2012)).

The prediction problem consists of the following: Given a se-
quence of observations of a time series, compute an estimate of
the terms associated to future times.This problem is solved on
the basis of a mathematical model that is assumed to generate
the time series terms. If . . . , k − 2, k − 1, k, k + 1, . . . are
integers that denote discrete time, with k being the present time,
the problem consists of computing an estimate of k+m, where
m is an integer designated prediction horizon. To solve the
problem of prediction of electric energy consumption at IST,
one must consider the following steps. Establish a criterion
to evaluate the predictions, which in this case is a quadratic
criteria. Separate week days, weekends, holidays and vacation
(it is also necessary to consider the HVAC part of the process
separately from the rest, this matter will be later discussed in



Section 2), and remove the daily seasonality of the processes
to obtain stationary processes. Then, the Box-Jenkins (Box and
Jenkins (2015)) method, which uses ARMA models is used,
and finally, after obtaining the estimates of the models, the
predictions are computed.

In this dissertation, the ARMA family models are used to
describe the systems that generate the electric consumption
processes. These models, that are to be used to make the
predictions of the electrical energy consumption at IST, are
identified by using traditional approaches, namely, a prediction
error method and the least squares method. An adaptive strategy
is also considered to estimate the parameters of the models,
based on the recursive extended least squares method with
exponential forgetting. Several prediction architectures are pre-
sented, which include a multiple models approach, an adaptive
approach and some combinations of the previous two.

This document is organized as follows. After a brief introduc-
tion to the theme of this work, the data that is used for prediction
purposes is presented in Section 2. This is followed, in Section
3, by the description of the methods that are used to solve
the prediction problem. These methods are then integrated into
some architectures that are presented afterwards in Section 4.
Section 5 shows the experimental results that follow the imple-
mentation of said architectures. To finalize, some conclusions
about the work performed and experimental results obtained are
presented in Section 6.

2. AVAILABLE DATA

The acquired data files of the electric energy consumption are
from the North Tower, one of the buildings of the Alameda
Campus of IST. The data acquired is from August 2015 to
March 2016. Also, the data provided is given in Ah. Mea-
surement spots take measurements every minute, but they are
registered only every 15 minutes, accumulating the previous 15
measurements, which is the interval that is going to be consid-
ered when doing predictions. The consumption is a combina-
tion of HVAC and other normal electric energy consumption
(illumination, electric equipment,...).The HVAC has a specific
working pattern characterized by approximately constant sec-
tions depending on the necessity at the moment.

Sensor faults can generate outliers in the process. Figure 1
shows probable sensor faults during the night, 1a and during the
day, 1b. Besides this, there is a constant consumption (hereafter
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(a) Night time sensor fault
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(b) Day time sensor fault

Fig. 1. Example of sensor faults

referred as the ”base line consumption”) in the buildings that
corresponds to a fraction of the maximum consumption (from
one third to one half).

Figures 2 and 3 show some graphics that represent the data
throughout several months, a week, and a day. In Figure 2 one
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Electrical energy consumption in the North Tower through several months

Fig. 2. Electric energy consumption in the North Tower
throughout several months
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Electric energy consumption in the North Tower throughout a week

Fig. 3. Electric energy consumption in the North Tower
throughout a week

can visualize the ”base line consumption”, that corresponds to
the permanent electric consumption throughout a year and a
half, as well as peaks and valleys, associated to week days and
weekends, and holidays, respectively, and also a drop in the
consumption, corresponding to the summer vacation. Figure 3
shows also peaks and valleys that correspond to day and night
time, and a considerable drop in consumption relative to the
weekend.

Figures 4 and 5 represent the normal and HVAC consumption,
respectively, throughout the week depicted in Figure 3. It
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Fig. 4. Normal electric energy consumption in the North Tower
throughout a week

can be seen that the ”base line consumption” is part of the
normal consumption, as the HVAC consumption is 0Ah during
the nights and weekends (with a few exceptions). It is also
noticeable that the HVAC consumption varies more abruptly
than the normal consumption, particularly at the beginning and
end of the school days.

3. METHODS

This section presents the proposed methods to address all the
parts required to solve the prediction problem, namely, data
processing, model identification and prediction methods.
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Fig. 5. HVAC electric energy consumption in the North Tower
throughout a week

3.1 Data processing

In terms of data processing there is the need to deal with
outliers, and seasonality. The proposed approach to remove the
outliers is to compare the difference between the values at a
current time instant, k, and the previous, k − 1, with a certain
threshold, T (k). The value of T (k) is computed using equation
(1)

T (k) =
a

M

M∑
j=1

|x(k − j)− x(k − 1− j)|+ b, (1)

where a and b, are two parameters to adjust according to the
given data, x(k), the process from which the outliers are to be
removed, and M is the number of previous differences to take
into account. If the difference between the current time instant,
k, and the previous, k−1, is bigger than T (k), x(k) is replaced
by another value, according to equation (2)

x(k) =



1
M

∑M
j=1 |x(k − j)− x(k − 1− j)|

if x(k)− x(k − 1) ≥ 0

− 1
M

∑M
j=1 |x(k − j)− x(k − 1− j)|

if x(k)− x(k − 1) < 0

. (2)

The reason for the term b to exist is that when the average
absolute value for the previous differences is small, a consid-
erable jump is necessary for a given value to be considered as
an outlier, whereas, when that average is bigger, the threshold,
T (k), can be approximated by said average times a constant, a.
Both a and b are to be determined after some experiments are
performed, to see which pair of values provides the best results.

A seasonal differencing filter (Box and Jenkins (2015)) allows
to remove seasonal aspects of the process by applying a filter
with poles on the unit circle. If in the unfiltered process, x(k),
exhibits seasonality of period T , it can be removed by applying
the following filter, represented in the delay operator as

y(k) = (1− q−T )x(k). (3)
If x(k) has no more seasonal parts, the process at the output of
the filter, y(k), is non-seasonal.

3.2 Model identification

For model identification, two main methods are presented,
prediction-error method and a variation on the classic least
squares method. Besides that, the method to estimate the ideal
number of parameters, p, is described.

This work assumes that the stationary systems are generated
by ARMA models (Åström and Wittenmark (1997)). Given a
stationary signal, y(k), it can be seen as the output of a linear

system to which is fed white noise (Åström and Wittenmark
(1997)), e(k), as input. Equation 4, depicts how y(k) is gener-
ated

y(k) = −a1y(k−1)−. . .−any(k−n)+e(k)+c1e(k−1)+

+ . . .+ cne(k − n) =
C∗(q−1)

A∗(q−1)
e(k), (4)

where the ai and ci coefficients are the quantities to be esti-
mated, and q−1 is a backward shift operator. The degrees of
the polynomials A∗(q−1) and C∗(q−1), are na and nc, respec-
tively.

The first method to be used is the one implemented in the
already existing MATLAB function armax that is based on a
prediction error method (Ljung (1987)). This function returns
the identified model, sys, given a data set, x, and the values of
na and nc.

Another method to implement is a modified version of the Least
squares method (Ljung (1987)). The regular Least squares
method does not guarantee that the estimates are not biased
when the noise is colored (nc 6= 0), and it assumes that the
model parameters are the same throughout the entire series. The
objective is to have, not only, parameter estimates that are not
biased, but also an algorithm that adapts to the changes in the
system parameters throughout the series. In order to accomplish
that, the equations for the Recursive extended least squares
method are (Sanoff and Wellstead (1983)) (Ljung (1987))

ε(k) = y(k)− θ̂Tes(k − 1)ϕes(k), (5)

K(k) =
P (k − 1)ϕes(k)

λ(k − 1) +ϕT
es(k)P (k − 1)ϕes(k)

, (6)

θ̂es(k) = θ̂es(k − 1) +K(k)ε(k), (7)
λ(k) = 1− [1−ϕT

es(k)K(k)]ε2(k)/ε0, (8)
If λ(k) < λmin =⇒ λ(k) = λmin. (9)

P (k) = [I −K(k)ϕT
es(k)]P (k − 1)/λ(k), (10)

where θes(k) denotes the vector of parameter estimates at a
certain time instant k, P (k) is the covariance matrix associated
to said estimates, K(k) is the Kalman gain associated to k, and
λ(k) is called the forgetting factor, λ(k) ∈ ]0, 1[, that gives
less weight to past data preventing that, in case the parameters
change, the data from the past influences te estimates so much
that the estimates do not converge to the new values, that should
not go below λmin, in order to have a sufficient amount of
information for identification. The estimates of the process e(k)
are denoted by ε(k), ε0 denotes the mean value of the prediction
error, and the vector ϕes(k) is given by
ϕes(k) = [−y(k−1) . . . −y(k−na) ε(k−1) . . . ε(k−nc)]T

that is composed of known values, only.

In order to identify any model, the number of parameters, p,
necessary to characterize the ARMA model that best fits the
data, needs to be estimated. To do so, the data to be used in
the identification is divided in two parts, a training set, that
contains about 65% of the total data, and a test set that contains
the remaining 35%. The training set is used for identification
purposes, and then the test set is used to make predictions one
step ahead, ŷ(k + 1|k). The number of parameters, p, which
in this particular case is the set of na and nc parameters of the
ARMA model, is chosen according to equation (11),

na∗, nc∗ = argmin
na,nc

1

M

∑
k∈test set

(y(k − 1)− ŷ(k|k − 1))2,

(11)



Fig. 6. Architecture for prediction using multiple models

Fig. 7. Architecture for the model selection box from Figure 6

where M denotes the size of the test set. In other words, the
goal is to minimize the variance of the prediction error when
making predictions using the test set. This method is used to
avoid overfitting.

3.3 Prediction

Let ŷ(k +m|k), m ≥ 1, be the predicted value, and

J = E[(y(k +m)− ŷ(k +m|k))2|Ok] (12)
be the variance of the prediction error in steady state, which
is the value to minimize, where E[ ] denotes the expected
value, Ok are the observations until time instant k (Åström and
Wittenmark (1997)). The process y(k+m) can be described in
the following way,

y(k +m) = F ∗m(q−1)e(k +m) +
G∗m(q−1)

A∗(q−1)
e(k),

where polynomialsG∗m(q−1) and F ∗m(q−1) result from the long
division of polynomials C∗(q−1) and A∗(q−1). Substituting
ŷ(k + m|k) in equation (12),according to (Åström and Wit-
tenmark (1997)), follows that the optimal predictor is given by

e(t) =
A∗(q−1))
C∗(q−1)

y(k), (13)

and the variance of the prediction error can be written as
E[(y(k+m)− ŷ(k+m|k))2|Ok] = (1+f21 + . . .+f

2
m−1)σ

2
e ,

(14)
where σ2

e is the variance of the signal e(k), and the fi, i =
1, . . . , m − 1, terms are the coefficients of the polynomial
F ∗m(q−1).

4. ARCHITECTURES

4.1 Multiple models

The first proposed architecture is based on multiple models,
as illustrated on Figure 6. A model is identified, using the
prediction-error method, for each segment, after the data has
been properly treated (segmented, with outliers removed, and
without seasonality). After obtaining the parameter estimates,
θ̂, for each segment, the prediction valuesm steps ahead, ŷ(k+

Fig. 8. Grid of possible variations of the main model, with
estimated parameters a∗1 and a∗2

m|k) can be calculated, using the parameters that correspond to
the appropriate model, from the available ones. After obtaining
the predicted values of the stationary process, seasonality, must
be added by using the inverse of the seasonal differencing
filter that was used to remove it, and according to the chosen
segments.

Figure 7 shows how the model selection block works. To select
the best model to fit the data, several predicted processes are
calculated, ŷi(k|k − m), one for each model i, followed by
adding the corresponding seasonality to obtain the prediction of
seasonal processes, ŷis(k|k−m). Then, again for each one of the
models, the prediction error, ỹsi(k|k−m) = ys(k)− ŷis(k|k−
m), is computed, squared, passed through a low pass filter
(LPF) for smoothing and through an integrator. The segment in
which the prediction starts is known. The corresponding model
is used for prediction until a time instant k1 is reached where
ỹisf (k|k − m) goes above a certain threshold T . When that
occurs, the model with the lower filtered prediction error is
chosen. This process is repeated for all the time series, so that,
for each time instant, there is a corresponding model to be used
for prediction.

The process described in this section is applied to both normal
and HVAC consumption processes separately. The two parts
are then summed in order to have a predicted process of the
total consumption data. This procedure is repeated for all the
architectures that are presented.

4.2 Multiple models with adaptation

This next approach is still based on multiple models, but with
a slight variation. There are as many main models as in the
previous case, only it is assumed now that the parameters cor-
responding to each segment may vary in time. So, considering
again the diagram from Figure 7, after the best main model is
selected, the two approaches presented compute variations in
said estimates for each main model.

Parameter tunning In this first case, the goal is to take
the parameter estimates of the chosen model, a∗i and c∗i , and
slightly vary them. For this, the uncertainty corresponding to
each parameter, which is provided by the armax function in
the form of a covariance matrix, gives an idea of the amplitude
of its variation. Figure 8 shows a grid, for a case where there
are only two parameters, a∗1 and a∗2, in which, each intersection
represents a slightly different model from the main one. The
best combination of parameters is then chosen similarly to way
the main models are chosen, checking which of them provides
the lowest prediction error.



Fig. 9. Architecture using adaptive prediction - recursive ex-
tended least squares method

Recursive Extended Least Squares In this case the variations
on the main models parameter estimates are computed using
the recursive extended least squares method with exponential
forgetting. Equations (5) to (10) provide the necessary steps
to compute the estimates. Before the algorithm starts running,
some initial conditions must be computed such as the values
of θ(k) for each of the main models, and ε(k). The former
are the estimates computed in the simple multiple models ap-
proach,and the latter, are computed using the appropriate in-
verse filter. As for the initial conditions of the covariance matrix
P (k) and the value of ε0, they are initialized with appropriate
values after some experiments are performed. As the algorithm
progresses, whenever there is a change of model, still follow-
ing the diagram presented in Figure 7, the R-ELS algorithm
needs to be re-initialized, namely the initial conditions, θ(k)
and P (k − 1). In the mean time the R-ELS takes charge and
performs the adaptation so that the parameter estimates can
better fit the data.

4.3 Adaptive prediction

The last proposed architecture does not require the identifi-
cation of multiple models when predicting the values for the
stationary process y(k). After removing the outliers and the
seasonality, the parameters of the system are estimated using
the recursive extended least squares (R-ELS) method with ex-
ponential forgetting, based on the introduction presented in
Section 3. Similarly to the previous case initial conditions must
be calculated, only this time there is no re-initialization, as there
are no multiple models describing the stationary process y(k)
in this particular case. For each time instant a prediction is then
made using the estimates calculated by the R-ELS algorithm.
Finally, seasonality must be added to the stationary predicted
process. Although there is no need for multiple models when
computing the predicted values of the process y(k), they are
still required when performing this last task. The model se-
lection box works similarly to the one presented in Figure 7,
except there are only multiple processes after adding seasonal-
ity, whereas for the other presented cases, there were multiple
ARMA model parameters, θ̂i, one for each segment.

5. EXPERIMENTAL RESULTS

For the practical purpose of this work, not all of the available
data is used. Sets of observation where the data acquisition
seems to have failed are left out.

Four different segments are considered, summer vacation, au-
tumn school time, Saturdays, and Sundays (with no differen-
tiation between summer and autumn in the case of the latter
two segments). The data corresponding to each segment is

concatenated, for example, for week days, the end of a Friday is
followed by the beginning of the next Monday. The normal and
HVAC consumption data are separated, because it is assumed
that systems that generate each part are different. Figures 10
and 11 show the normal and HVAC consumption processes,
respectively. Accessing the remotion of outliers, for the normal
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(a) Summer vacation
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(b) Autumn school time
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(c) Saturdays
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(d) Sundays

Fig. 10. Normal consumption data for each segment
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(a) Summer vacation
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(b) Autumn school time

Time [quarter of hour]
0 500 1000 1500

E
le

ct
ric

 e
ne

rg
y 

co
ns

um
pt

io
n 

[A
h]

0

50

100

150

Saturdays - HVAC consumption

(c) Saturdays
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Fig. 11. HVAC consumption data for each segment

consumption process, the threshold (recall equation (1)) above
which a sample is considered an outlier, determined after con-
ducting some experiments with several pairs of values a and b,
is

T (k) =
10

M

M∑
j=1

|x(k − j)− x(k − 1− j)|+ 10.

It was decided to not apply the outlier removal algorithm to
the HVAC consumption process, because it is very common
to have high jumps, and that is normal behavior. There would
have to be abnormal jumps for it to be considered an outlier,



and by visualization of the data, there are no such occurrences.
Figure 12 shows some data segments in which outliers were
detected, before and after they are removed. As for the removal
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(a) Night time sensor fault
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(b) Day time sensor fault

Fig. 12. Comparison between segments of the processes yis(k)
before and after outlier removal

of the daily seasonality, the data corresponding to each segment
is passed through the filter presented in equation (3). In this
particular case, the data has only one seasonal component, and
its period corresponds to a day. Given that the data is acquired
every fifteen minutes, a day corresponds to 96 samples, so
T = 96. The filter is, then,

y(k) = (1− q−96)ys(k) (15)
There are two particular cases to adress, which concern the data
relative to the HVAC consumption during the weekends. Re-
garding the case of Sundays, as said before, the HVAC is always
turned off, and as for Saturdays it is only turned on certain days.
These two data sets do not present a daily seasonality, so for this
work it is assumed that the Sunday segment is only composed
of the normal consumption, and the HVAC part of the Saturday
segment is already a stationary process, so that it is not required
to go through the seasonal differencing filter. Figures 13 and 14
show the processes presented in Figures 10 and 11 without the
seasonal part, here denoted as yi(k), result of the applying the
filter from (15), with the exception for the Saturday and Sunday
processes that correspond to the HVAC consumption because of
the reasons mentioned above. After the data is processed, the
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Fig. 13. Normal consumption data without seasonality for each
segment

parameters of the models for each segment can be estimated
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Fig. 14. HVAC consumption data without seasonality for the
appropriate segments

and used for prediction. Figures 15 and 16 show a comparison
between the stationary processes, yi(k), from Figures 13 and
14, and the one step ahead (m = 1) predictions, ŷi(k + 1|k).
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Fig. 15. Comparison between the original and predicted (m =
1) stationary normal consumption processes for each seg-
ment.
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Fig. 16. Comparison between the original and predicted (m =
1) stationary HVAC consumption processes for each seg-
ment.

The following step was to re-add the seasonality to the pre-
dicted processes. As mentioned above, it was not necessary
to remove the seasonality from the process that represents the
HVAC consumption on Saturdays as it is assumed to be already
stationary. The prediction is calculated using the process from
Figure 11c. The result is shown in Figures 17 and 18, for
the normal and HVAC consumption, respectively. Recalling
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Fig. 17. Comparison between the original and predicted (m =
1) normal consumption processes for each segment.
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Fig. 18. Comparison between the original and predicted (m =
1) HVAC consumption processes for each segment.

equation (14), the variance the variance of the prediction error
is given by

E[(ỹis(k +m|k))2|Ok] = (1 + f21 + . . .+ f2m−1)σ
2
e ,

where σ2
e is the variance of the process e(k). In particular case

when m = 1, follows that
E[(ỹis(k + 1|k))2|Ok] = σ2

e .

Theoretically, the variance of the prediction error is equal to the
variance of e(k). Table 1 presents a comparison between the es-
timates of the variance prediction error, Ê[(ỹis(k + 1|k))2|Ok],
and the estimates of the variance of e(k), for each segment.The
variance of the prediction error is calculated using the following
estimator

Ê[(ỹis(k + 1|k))2|Ok] =
1

M

M∑
k=1

(ỹis(k + 1|k))2,

and the estimator used to compute σ̂2
e is

σ̂2
e =

1

M

M∑
k=1

ε2(k),

where ε(k) are the estimates of the values of e(k), given that
they are not observable, computed using the inverse filters
obtained in the model identification phase, andM is the number
of samples of each process.

Table 1. Comparison between the estimates of the process e(k)
and the estimates of the variance of the prediction error for
each segment (m = 1).

σ̂2
e Ê[(ỹis(k + 1|k))2|Ok]

Normal HVAC Normal HVAC

Summer 14.9797 40.7040 15.0443 40.7040

Autumn 24.7887 55.3629 24.7879 55.3629

Saturday 3.1720 9.1049 3.1651 9.1049

Sunday 1.4212 − 1.4129 −

The presented estimates of the variance of the prediction error
present a mean deviance of approximately 0.18%, maximum
of a approximately 0.58%,and minimum of 0% from the corre-
sponding estimates of the variance of e(k). These estimates are
in accordance with what was expected.

The final step for the prediction of each segment’s process is
to add the normal and HVAC consumption parts. The result is
presented in Figure 19.
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Fig. 19. Comparison between the original and predicted (m =
1) total consumption processes for each segment.

To show the advantages of assuming that the electrical energy
consumption processes are generated by an ARMA model and
a seasonal adding filter, over assuming that these values depend
solely on the reading on the previous day at the same time, some
predicted processed are presented in Figures 20 and 21. The
predictor used is given by,

ŷis(k) = yis(k − 96).
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Fig. 20. Comparison between the original and predicted
(ŷis(k) = yis(k − 96)) normal consumption processes for
each segment.
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Fig. 21. Comparison between the original and predicted
(ŷis(k) = yis(k − 96)) HVAC consumption processes for
each segment.

These figures show that the predicted processes do not follow
the real ones as well, when compared to the predictions pre-
sented in Figures 17 and 18. As was done before, in Table 1,
the estimates of the prediction error were calculated using the
same estimator. The results are presented in Table 2.

These values are significantly larger than the estimated variance
of the prediction error calculated before, proving to be disad-
vantageous in comparison to the one step predictions calculated
before.

Next is presented an analysis on the effect of the prediction
horizon, m, on the actual prediction. For this, a single segment
is chosen, summer vacation. Figure 22 shows the prediction and
the real values of the stationary process for m = 1, . . . , 100.

Table 2. Estimates of the variance prediction error for each
segment (ŷis(k) = yis(k − 96)).

Ê[(ỹis(k + 1|k))2|Ok]

Normal HVAC

Summer vacation 96.8909 244.0531

Autumn school time 86.6108 219.4546

Saturdays 20.5590 113.7239

Sundays 10.1947 −

It can be seen that, as the prediction horizon increases, the
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Fig. 22. Comparison between the original and predicted (m =
1, . . . , 100) stationary consumption processes for the
summer vacation segment

predicted values tend to zero. Figure 23 shows the prediction
error for the normal and HVAC consumption during the sum-
mer vacation together with top and bottom limits of the interval
[−3σpe(m), +3σpe(m)], where σ2

pe(m) is the estimate of the
variance of the prediction as computed using equation (14), for
a given prediction horizon, m. This interval illustrates how σ2

pe
evolves as the prediction horizon increases. As expected, the
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Fig. 23. Prediction error of the consumption processes for the
summer vacation segment, for m = 1, . . . , 100.

variance of the prediction error increases with the increase of
m. It increases more rapidly for the first prediction horizons and
then it seems to converge to a given value. Figure 24 exhibits
the original and predicted processes shown in Figure 22 after
adding the seasonality, and also the interval that shows how
the variance of the prediction error evolves, only in this case,
it is centered on the original process, [y(k + m) − 3σpe(m),
y(k +m) + 3σpe(m)]

For a sufficiently large prediction horizon, there is no advantage
in computing the predictions of the stationary processes, as
it tends to zero, and the seasonal prediction processes depend
almost solely on the consumption value from the previous day.

Next are presented the results of the implementation of the
four integration architectures, the simple multiple models ar-
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Fig. 24. Comparison between the original and predicted (m =
1, . . . , 100) consumption processes for the summer vaca-
tion segment.

chitecture (MM), the multiple models approach with parameter
tunning (MM+PT), and R-ELS (MM+R-ELS), and the solely
adaptive approach (R-ELS).

To show an example of the visual representation of the results of
applying these architectures, Figure 25 is presented. It depicts
the total consumption predictions withm = 1, ŷs(k+1|k) com-
pared to the real process for the multiple models architecture.
Figure 26 shows a comparison between the predicted segment
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Fig. 25. Comparison between the original and predicted (m =
1) total consumption process - Multiple models.

for each time instant and the real correspondence. For this to be
represented if a form of a function, each segment corresponds
to a number, as follows

Segment =


1 if summer vacation
2 if autumn school time
3 if saturday
4 if sunday.

(16)

This applies to the architectures that are based on multiple
models. As for the R-ELS approach, only three segments are
considered, because of the adding seasonality phase, which are
week days, Saturdays, and Sundays.

In Figure 26 it is visible that most of the time during the summer
vacation the algorithm predicted that it was autumn school time
instead. In the beginning of the prediction process, the autumn
school segment has not occurred yet, so, when adding the sea-
sonality, it sums the previous consumption value of the segment
that is the most similar, which is the summer vacation. This sug-
gests that the identified systems for the two segments are similar
and that the consumption value added when reincorporating the
seasonality has a large weight on the prediction of the segments.
Besides that, it can also be seen that some periods on Sundays
are assumed to be Saturdays and vice-versa, and some autumn
school time periods correspond to summer vacation ones. An-
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Fig. 26. Comparison between the original and predicted (m =
1) total consumption process - Multiple models.

other aspect to point out is that some periods during week
days (summer vacation and autumn school time) are assumed
to be weekends and vice-versa, which seems strange at first,
considering that the values for consumption are considerably
different, but upon further analysis it was discovered that these
mis-predictions occur in instants that correspond to night time,
where consumption levels are somewhat similar for all the four
segments. But one can conclude that the predictions correspond
to the real segments most of the time.

Table 3 shows a comparison between the estimates of the
variance of the prediction error of the normal, HVAC and
total processes, for all four architectures. From this results

Table 3. Comparison between the variance of the prediction
error obtained with each of the architectures (m = 1).

Ê[(ỹs(k + 1|k))2|Ok]

Normal HVAC Total

MM 17.1761 60.9381 101.6131

MM+PT 25.3189 143.6848 199.3226

MM+R-ELS 22.8705 70.1397 116.6917

R-ELS 28.5345 60.3301 111.4326

it is verified that the architectures that combine the multiple
models with adaptive approaches are not advantageous when
compared with the simple multiple models approach, although,
when comparing the results obtained with the MM+R-RELS
with the MM+PT approach, the first one resulted in lower
estimates of the variance of the prediction errors. As for the
comparison of the MM and the R-ELS approaches, neither
presents an advantage over the other, in terms of the variance
of the prediction error of the processes. Despite that, one must
take in consideration that, when using the R-ELS architecture,
there is no need to estimate the parameters of the models that
generate the HVAC and normal stationary processes for each
segment, there is only the need of classifying a time instant as
belonging to a week day, Saturday or Sunday. This comes as
an advantage when there is the need to predict in a period that
is not contemplated in the identified segments (for example, a
segment during the winter).

6. CONCLUSIONS

The purpose of this dissertation is to implement strategies in
order to make predictions of the electrical energy consumption
at the IST campus in Alameda by applying temporal series
methods. For the practical purpose of this work, the data relative



to the electric energy consumption of the North Tower. These
strategies include the processing of the data, model identifica-
tion, and prediction.

When performing the predictions for each segment separately,
the results from studies on the variance of the prediction for
m = 1 are compliant with what was expected. Identifying
models for stationary processes as opposed to just say that
the predicted value at a certain time instant is equal to the
value of the process 96 samples ago (a day ago), is proven
to be more advantageous considering that the variance of the
prediction error is significantly lower. It was also shown that
the variance of the prediction error increases as the prediction
horizon increases.

During the course of this work, as an attempt to incorporate
exogenous inputs into the predictions, two approaches were
considered. The first one involved the estimation of the parame-
ters of an ARMAX model. However, this first approach leads to
identified models that were too complex. As a second attempt to
incorporate exogenous inputs in the models, the prediction error
process, that was obtained assuming an ARMA model, was
used to estimate some parameters that might describe how these
inputs could influence the consumption process. It was verified
that the variance of the prediction error remained the same after
updating the model with these newly identified parameters.
This occurrence led to the thought that the influence of these
exogenous inputs may be incorporated in the parameters of the
ARMA model.

Comparing all the integration architectures, it is concluded that
the multiple model approach combined with adaptation does
not present any advantage when compared with the simple
multiple models approach in terms of the variance of the predic-
tion error for each case and complexity of the implementation.
The one with parameter tunning provides significantly worst
results when comparing the variance of the prediction error,
and the one that uses the R-ELS has similar results to the
simpler version, when comparing, as well, the variance of the
prediction error. As for comparing the simple multiple model
approach with the one that relies solely on adaptation to predict
the stationary processes, when comparing the variance of the
prediction error for both cases, neither one presents a clear
advantage towards the other. Despite that, the second approach
is considered more advantageous because it could adapt to a
segment never seen before, whereas in the first approach, there
would be a need to analyze the new data in order to find a new
segment.
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