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Abstract—The utilization of Multiple-Valued Logic (MVL)
in logic circuits has the potential to reduce the number of
logic elements and interconnections that connect different parts
of the circuit. With the reduction of the interconnections,
delays, area and energy consumption can be reduced. In this
thesis we propose a technology mapping tool that implements
circuits using recently proposed 2-input Quaternary Lookup
Tables (QLUTs), taking advantage of the benefits of MVL
to produce more efficient circuits. The mapping functionality
was implemented using MVSIS as a base platform. MVSIS
reads the circuit specification from a file and creates a network
representation, which is then used by the tool we developed to
perform the decomposition of the network and mapping into
the target technology. Overall, the results show a reduction in
the number of interconnections, but this is offset by the increase
in occupied area by the Lookup Tables (LUTs), due to the fact
that a QLUT requires more transistors to be implemented than
a binary LUT. The conclusion taken from this work is that,
although the mapping tool produces circuits that, in some cases,
are more efficient than their binary equivalent, there is still
room for further optimizations in both the mapping tool and
the implementation of the QLUT.
Keywords: Multiple-valued logic (MVL), system synthesis,
technology mapping, Quaternary Lookup Table (QLUT)

I. INTRODUCTION

Digital circuits are prevalent in current technology and
nearly all of these are based on binary logic for its simplicity
of interpretation and implementation.

Although binary logic presents several advantages that make
it appealing to be used in circuits, there are situations where
the nature of the problem benefits from a different represen-
tation.

Examples of situations such as this are a constant presence
in the real world and a few are presented below.
• Traffic light red, yellow, green
• Playing card suits clubs, diamonds, hearts, spades
• DNA nucleotides Adenine, Cytosine, Guanine, Thymine
• Days of the week Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday
As seen in the previous examples, with MVL more infor-

mation can be represented with the same amount of signals,
i.e. just 1 ternary signal is required to represent the color of
a traffic light.

Another benefit of using MVL is being able to reduce
the number of logic gates and interconnections required to
implement a given functionality. With this reduction some

limitations of the ever shrinking manufacturing process, such
as energy dissipation and signal crosstalk, can be attenuated.

To be able to leverage from MVL benefits both hardware,
logic gates, and software, mapping tool, have to become
available.

Although several MVL devices have been proposed and
developed[1, 2, 3, 4], no viable general purpose gate had been
proposed until recently when a voltage mode QLUT structure
was presented [5], that several limitations were overcome and
a viable gate has become available to be used in MVL logic
circuits.

To automate the process of creating circuits using the QLUT
technology, we propose the development of a mapping tool,
described in Section III, that converts a logic level circuit
specification into the required QLUTs and their respective
memory configurations and interconnections.

To test the developed mapping tool, benchmarks were used
to compare the implementation of the same in both binary and
quaternary form and evaluate the performance of the tool. The
results of these benchmarks are presented in Section IV.

II. STATE OF THE ART

In the beginning of the 20th century, mathematicians, lo-
gicians and philosophers, needing to better represent varying
degrees of truthfulness, started investigating systems that al-
lowed for more than just “true” or “false” [6]. These needs
led to the concept and development of several forms of MVL
to use in the representability of problems.

Engineers from various areas also started looking into
MVL [7, 8, 9] as a source for improvements in technology.

One of the technological improvements that can benefit from
MVL, is in the area of electronic devices and circuit design
where interconnection area and delay has become a major con-
cern. Higher-radix systems, not only provide a better relation
between circuits and natural representation, but also provide
a way of reducing the number of interconnections required to
transmit information. As illustrated by Figure 1, to transmit the
decimal number “219” the amount of interconnections reduces
as the radix increases, from 8 in binary to 4 in quaternary to
3 in decimal.

Although MVL presents numerous advantages, the feasi-
bility of such systems depends upon two factors, namely,
the availability of reliable gate implementations and adequate
synthesis tools and techniques.



Fig. 1: Simple signal representation for different radixes.

Fig. 2: Quaternary logic and reference voltages levels.

A. MVL Gates and QLUT

Devices have been proposed and implemented using MVL
for several years, namely, memories [1], combinational cir-
cuits [2, 3] and programmable devices [4]. Mainly in memo-
ries, manufacturers have used MVL to increase storage density
and have developed commercially available products, first Intel
with the StrataFlashTM Memory Technology [10] and then
other manufacturers [11] with Solid-State Drives (SSDs).

Although commercially available exist with memories,
when it comes to standard gates, several implementations have
been proposed to be used in MVL circuits but until now few
represent a viable alternative to regular binary Complementary
Metal-Oxide-Semiconductor (CMOS) gates. These implemen-
tations of MVL circuits can be fundamentally categorized as
Current-mode or Voltage-mode operation.

Current-mode logic gates work on the principle of Kirch-
hoff’s current law where logic levels are represented by
different currents that can be easily added and subtracted to get
the desired output, making arithmetic operations very simple
to implement, as incoming currents add up to the outgoing
current.

The main disadvantage of this approach is a higher power
consumption inherent to the current constantly flowing through
the circuit.

Voltage-mode gates work by having several stable inter-
mediate voltages levels between fully discharged and fully
charged, usually requiring non-standard technologies, but ben-
efit from having a lower power consumption when compared
with current-mode logic gates.

1) QLUT: In [5], a new approach on a voltage mode QLUT
is presented, that overcomes the drawback of voltage mode
gates previously presented by using single supply voltage of
1.2V and standard CMOS technology and presents a viable
way of implementing MVL circuits.

The proposed 2-input 1-output QLUT structure, shown in
Figure 3, in order to guarantee equal noise margins for all
four logic levels, uses three different reference voltage values
are required, 1

6V DD, 3
6V DD, and 5

6V DD, to determine a
quaternary value, shown in Figure 2.

In the same manner as in a regular LUT, the QLUT
behaves as an array or a multiplexer, where the input signals
select which logic value is connected to the output, based on
the configuration memory. To program the QLUT memory
configuration 16 quaternary values (V1 through V16 in the
Figure 3 are required.

This multiplexer action and programmable memory, allows
the QLUT to implement any desired logic function making it
perfect for use in MVL applications.

B. Logic Synthesis

In order to optimize and automate the process of designing
logic circuits, Computer Aided Design (CAD) software is
commonly used. Logic synthesis, an important component
of Electronic Design Automation (EDA), translates a high
level description of a circuit design, such as an Hardware
Description Language (HDL), into a gate-level representation.
Typically, logic synthesis is divided in two separate phases,
logic optimization and technology mapping.

MVL synthesis tools and techniques have been a subject of
great interest for years [12, 13, 14, 15, 16] and resulted in tools
that have been evolving over time, namely from Synopsys and
Cadence.

However, these are proprietary software and as such most
details and information are not public. Therefore, we focused
on academic open-source alternatives, from several universi-
ties, that have made research in the field of logic synthesis
tools.
SIS, MVSIS, ABC from University of California, Berkeley
BOLD from University of Colorado, Boulder
VIS from University of California, Berkeley; University of

Colorado, Boulder and University of Texas, Austin.
RASP from University of California, Los Angeles

Although several tools are available, as shown in the previ-
ous example, our interest is in tools capable of handling MVL
circuits, i.e. ABC and MVSIS.

1) BLIF-MV: Both ABC and MVSIS use BLIF-MV [24,
25] file format as an intermediate language between a high
level HDL, such as VHDL or Verilog, and the synthesis and
verification systems.

The BLIF-MV file format is an extension of the Berkeley
Logic Interchange Format (BLIF) with the main difference
between the two being that BLIF-MV supports MVL signals.

2) ABC: ABC [23] is a software system, currently the
most advanced open source package in sequential synthesis
and verification tools for logic circuits, developed based on
previous systems such as SIS, VIS and MVSIS.

It combines logic optimization with delay aware technology
mapping for binary LUTs and standard cells, along with
optimized algorithms for sequential synthesis and verification.



Fig. 3: Quaternary Lookup Table (QLUT).

Fig. 4: Basic Logic Gates and the correspondent AIG repre-
sentation.

In ABC, the internal representation of circuits and logic
functions is done with a data structure named And-Inverter
Graphs (AIGs). AIGs are multi-level logic networks of two-
input AND gates and inverters, with this representation it is
possible to have a simple and flexible data structure that can
represent any logic function/gate by simply modifying the
incoming and outgoing edges of the AND gate, through the
placement or removal of inverters. In Figure 4 there is an AIG
representation of the basic binary gates.

Despite being able to process MVL circuits, through
BLIF-MV files, all of the information is converted to the AIG
data structure. Although a very efficient structure to process
binary circuits, its advantages in binary logic do not apply
very well when the main goal of this work is to synthesize
and map MVL logic into the QLUT logic gates overviewed
in Section II-A1.

3) MVSIS: MVSIS (Multi-Valued Sequential Interactive
Synthesis) [22] is a logic synthesis and verification tool for
Very Large Scale Integration (VLSI) design, developed for

implementing new synthesis algorithms for logic optimization,
targeting both MVL and binary networks.

In MVSIS, variables of the logic network are binary by
default but can be multi-valued, each with its own range. An
MVL network can be read to MVSIS as a netlist of MVL
nodes using the BLIF-MV format. After a design specification
is read, it is converted into a MVL network and stored in
MVSIS internal representation.

The internal representation consists of a network of nodes,
each with its own range, where in each node, i-sets are used
to store the node functionality that represents the relation of
the inputs to a single output.

The functions associated with each of the i-sets are stored
as Sum of Products (SOP) or Multi-Valued Decisions Dia-
grams (MDD) form. They are a binary-output function which
evaluate “true” if the output can assume the value i.

An example of i-sets is here presented for the binary
function F = a AND b, which has two i-sets, 0-set and 1-set
with the following definition

0-set F (0) = a(0) + b(0)

1-set F (1) = a(1)b(1)

where a(0) means that when the input signal a assumes the
logic value 0 the function F takes on the logic value of 0 that
corresponds to the 0-set.

A similar approach is used to deal with MVL where an i-set
is used for each logic level, i.e. a quaternary node would have
a 0-set, 1-set, 2-set and 3-set.

This representation presents an advantage over the one use
in ABC because it allows all the operations performed over
the network to be done directly in MVL without requiring any
conversions or signal pairing to get the final result. This makes
MVSIS the ideal base platform to expand upon with the MVL
mapping functionality.



III. DEVELOPED WORK

To develop the mapping functionality, capable of converting
a MVL design specification into a set of QLUTs, the command
mapMVL was created inside the MVSIS framework.

The mapMVL command works similarly to the existing
MVSIS fpga command, but instead of working on binary
networks, it converts quaternary networks into a mapped
form, using the new QLUT technology proposed in [5] and
overviewed in Section II-A1.

The command is divided in several steps which are de-
scribed in the following sections.

A. Initial Process

Before any mapping occurs, a few verifications and config-
urations are done, in preparation for the next steps.

After issuing the command mapMVL from the MVSIS main
menu, the mapping function receives the MVSIS framework
as well as any additional parameters/options specified by the
user. With this, we first retrieve the network from the MVSIS
framework and parse the input options.

Also verifications are done to ensure that the mapping
process encounters no problems. The verifications consist of
having a non-empty valid network, all nodes inside the net-
work must be quaternary and have a default value associated
and finally the output file, if specified, must be accessible and
writable.

Finally, the naming mode inside MVSIS is set to long
naming scheme to guarantee consistency between the input
file and the names of the generated QLUTs. And if verbose
mode has been selected, a few general informations about the
network are printed to the terminal.

B. Network Processing

Now with all verifications and configurations done, we have
a valid network ready to be processed. This happens, for each
individual node, in two stages, the first one consisting of node
refactoring and the second comprised of node decomposition
and optimization.

In both stages the main goal is to adapt the network to be
compatible with the target technology of 2-input QLUT.

1) Node Refactoring: In this stage, we make use of MVSIS
existing functions to manipulate the network. Currently, the
function associated with the command collapse is being
used to attempt collapsing 1-input nodes into its fanouts.

As it can be seen in Figure 5a and Figure 5b, this process,
in most cases, avoids using a QLUT partially and thus reduces
the total number of necessary QLUTs. In this case the QLUT
Q5 was being used only to transform the signal from Q2, but
this transformation can be performed in conjunction with any
operation that comes after, in this case Q5 ∪Q7 → Q7 c and
Q5 ∪Q9 → Q9 c thus reducing the number of QLUTs.

Note that this process does not guarantee that all 1-input
nodes are collapsed, e.g. if the 1-input node output is directly
connected to a Primary Output (PO) then it cannot be col-
lapsed.

(a) No collapsing.

(b) Collapsing.

Fig. 5: Example of 1-input node.

2) Node Processing: As previously mentioned, we only
have available 2-input QLUTs and the nodes that make up
the network may have a variable number of input signals,
so it is necessary to decompose each node to a compatible
representation.

To process each node, information, such as the number of
input signals and their identifying names, the node name and
the internal functionality, is collected.

With the number of input signals it is determined which
strategy to employ to process the node.

1-Input Nodes: The 1-input nodes, that were not able
to be collapsed in the previous step, are here mapped into
a 2-input QLUT by leaving the second input connected to
a ground reference. The QLUT memory is then configured
with the node functionality in the first four positions and the
remaining twelve are filled with 0.

2-Input Nodes: Nodes that have two input signals require
no transformation to be mapped to a 2-input QLUT and the
memory configuration is programmed with the node’s internal
functionality.

3 or More Input Nodes: Nodes with 3 or more inputs
have to be decomposed/factorized in order be implemented
with the available technology. To do this, an algorithm based
on principle of the Shannon decomposition was implemented,
as it allows for any possible circuit specifications to be
decomposed and mapped.



C. Node Decomposition

The decomposition of the nodes, with 3 or more inputs, is
a recursive process, performed in Depth-First Search (DFS),
that transforms a node into a tree shaped structure.

Starting from the “root” level, where the output of the node
is located, every level behaves as a multiplexer controlled by
a distinct input signal and that selects from one of its four
“branches”.

The last level, “input” level, consists of “leafs” that work
the same way as if it were a 2-input node, by using the first
two inputs of the node as the QLUT inputs.

1) Selector Block and Shannon Decomposition: To imple-
ment the described multiplexer, a “Selector” block, illustrated
in Figure 6, was proposed that implements the principle of
the Shannon decomposition, which for a quaternary system is
given by Equation 1.

f(A,B,C, . . .) = C(0) · f(A,B, 0, . . .) + C(1) · f(A,B, 1, . . .)

+ C(2) · f(A,B, 2, . . .) + C(3) · f(A,B, 3, . . .)
(1)

The “Selector” block is comprised of 7 QLUTs organized
according to Figure 6b. The QLUTs in the selector perform
the function of either a “MUX block” (Q0, Q1, Q2 and Q3)
or “OR block” (Q4, Q5 and Q6).

“MUX blocks” perform the selection, based on the value
of C, which means that for a given value of C only the
corresponding QLUT would let the input propagate to the
output and all the others would put the value zero at their
output, i.e., C = 2→ Q0 = 0, Q1 = 0, Q2 = C2, Q3 = 0.

Since only one of the outputs of the previous QLUTs is
different from zero at any instance, the “OR blocks” just have
to join the signals by performing their sum.

D. Optimization

The method used in the previous step, to perform the
decomposition, generates a tree structure with all possible
combinations of the inputs, which is not always the optimal
solution. To achieve better results some particular cases of
circuit decomposition can be explored in order to perform
simplifications/optimizations.

To optimize the tree structure, two verifications are per-
formed, a duplicate functionality verification in all “branch”
levels and an input dependency verification at the “input” level.

1) Duplicate Functionality: The process to determine if
two “branches”, from the tree, have duplicated functionality
consists in carrying out a search that compares the two,
at every level, to ensure that both the structure and the
functionality are exactly the same, i.e. both branches produce
the same value for the same inputs.

When “branches” are determined to be duplicated, the sec-
ond is deactivated and redirected to the first. This information
is used, in a latter step, to rebuild the final layout of the
simplified node.

2) Input Dependencies: At the input level, the verification
performed consists in looking for instances where a node does
not locally depend on one or both of the input signals.

This verification can return one of the following situations
Standard Output = f(A,B)
fA Output = f(A)
fB Output = f(B)
cte Output = constant

For all situations other than Standard, the node can eventu-
ally be collapsed into the output, meaning that one less QLUT
is needed.

3) Reconstructing the Node: After having determined all
the changes needed, the original “Selector” is adapted to
account for these changes. Using the “MUX blocks” and “OR
blocks” from the original, this modified version .

The process to obtain the new MVL node with all the
required optimizations is described below.

1. Determine how many inputs are active in the end.
1.1. Group all the fA inputs into one “MUX block”.
1.2. Group all the fB inputs into one “MUX block”.
1.3. One “MUX block” for each of the still active inputs

that are not fA or fB or cte.
1.4. Group all the cte inputs and add them to the first “MUX

block”.
1.4.a. If all four inputs are cte then a “MUX block” is

created similar.
2. Add the required number of “OR block” to match the

number of “MUX blocks” created in the previous step.
The selectors, based on the number of inputs of which are

dependent, can have one of the configurations illustrated in
Figure 7 or in the case of having four input dependencies, a
configuration similar to the standard selector from Figure 6b
is used.

E. Generate QLUT Programming Data and New Network

After decomposing and optimizing all the nodes, the re-
sulting trees are merged together to form a QLUT network.
The QLUT network consists of a list of 2-input nodes, each
representing a single QLUT in the final output.

Each element of this structure stores all the informations
pertaining to its functionality and relationship to the rest of
the elements.

This information is then used to update the network inside
the MVSIS framework as well as generating an output file
with the programming information of each QLUT.

IV. RESULTS

To make an assessment on the accomplishment of the goals
originally proposed, a set of tests, consisting of different
benchmarks, was performed and the results used in order to
evaluate the developed mapping functionality.

For these tests, the mapping technologies used for com-
parisons are binary 2-input LUTs, binary 4-input LUTs and
2-input QLUTs.



(a) Functionality view. (b) Internal view.

Fig. 6: Selector block.

(a) One “MUX block”.
(1 QLUT)

(b) Two “MUX blocks”.
(3 QLUTs)

(c) Three “MUX blocks”.
(5 QLUTs)

Fig. 7: Modified node selector.

A. Tests and Results

The tests performed consist in an adaptation of the Mi-
croelectronics Center of North Carolina (MCNC) benchmark
suite [26], from where the Finite State Machine (FSM)
benchmarks were selected and converted to work with both
binary and MVL mapping processes. These benchmarks were
selected in order to have a broader set of examples that better
represent real specifications.

1) Binary Tests: Due to a limitation in the maximum
number of states supported by MVSIS when reading FSM
specifications, the benchmark files had to be converted from
their original FSM specifications to a binary PLA format in
order to perform the binary LUT map testing.

Binary mapping tests are done in a two phase process
consisting of synthesis and mapping. In the synthesis phase
three different circumstances are tested consisting of:

1. No synthesis
2. Synthesis sequence “script.rugged”
3. Synthesis sequence “script.test”
Here we used two different synthesis sequences since they

showed differences in the results for each benchmarks.

Followed by the fpga mapping stage, where two target
technologies are tested, 2-input LUTs and 4-input LUTs.

The best results for all the scenarios mentioned are pre-
sented in Table I, where PI and PO represent the number
of inputs and outputs of the circuit and the results in other
columns represent the number of binary LUTs required to
implement the circuit with that mapping target.

2) Quaternary Tests: For the quaternary tests, the files
from the binary tests are converted from PLA format to
quaternary encoding. This is accomplished by pairing the
signals and converting them into quaternary to create a file
in the BLIF-MV format.

By reading the BLIF-MV files the QLUT mapping func-
tionality is tested without the optimizations described in Sec-
tion III-D and also with the optimizations.

The results for these tests are presented in Table II, where
PI and PO represent the number of inputs and outputs of
the circuit and the results in remaining columns represent the
number of QLUTs required to implement the circuit.

In this table we can examine the reduction, in number of
used QLUTs, caused by the optimization process. The most
noticeable improvements are in the benchmarks “mc”, “s27”



TABLE I: Number of LUTs of binary tests for the FSM
benchmarks.

benchmark PI PO LUT2 LUT4
bbara 8 6 75 51
bbtas 5 5 21 8

beecount 6 7 55 32
dk14 6 8 86 57
dk15 6 8 63 42
dk17 6 7 51 32
dk27 4 5 25 5
dk512 5 7 66 31
donfile 7 6 157 104

ex5 6 6 66 39
ex7 6 6 79 54
mc 6 8 20 10

modulo12 5 5 26 8
s27 7 4 13 7

shiftreg 5 5 31 9
tav 7 7 24 15

train11 6 5 71 41

TABLE II: Number of QLUTs of quaternary tests for the FSM
benchmarks.

benchmark PI PO QLUTs
no optimization optimization

bbara 4 3 153 88
bbtas 3 3 33 20

beecount 3 4 44 30
dk14 3 4 44 41
dk15 3 4 44 41
dk17 3 4 34 33
dk27 2 3 3 3

dk512 3 4 44 40
donfile 4 3 153 150

ex5 3 3 33 25
ex7 3 3 33 27
mc 3 4 14 6

modulo12 3 3 23 15
s27 4 2 102 33

shiftreg 3 3 23 23
tav 4 4 104 18

train11 3 3 33 24

and “tav” with reductions of 57.14%, 67.65% and 82.69%,
respectively.

B. Result Analysis

To be able to make comparisons between the different
implementation technologies some comparable metrics have
to be established. The chosen metrics are the occupied area,
based on the amount of transistors on each LUT, and the
number of interconnections used in the circuit to route the
signals.

According to [5], the proposed QLUT technology is com-
posed of a total of 202 transistors. And although a binary LUTs
can be implemented in different manners, an approximation is
made, for comparison purposes, by considering the internal
construction to be similar to the one employed in the QLUTs.
With this approximation, a total of 60 and 296 transistors are
used in the calculations for the 2-input and 4-input variants,
respectively.

Note that, although this is not the most efficient means
of implementing binary LUTs in terms of number of used

transistors, it is a reasonable approximation to the internal
structure of the proposed QLUT.

In Table III, the results from Tables I and II are put together,
which are used to calculate the circuit area and number of
interconnections, columns “area” and “wires”. Equation 2
is used to determine the number of interconnections in the
circuit.

#wires = #LUT×#LUTinputs+#PO (2)

These values are then compiled into Table IV, where the
QLUT implementation is analyzed against the binary for
improvements/gains in number of used LUTs, circuit area
and internal signals/interconnections to route, additionally,
some statistics are also presented. In the table, a number
greater than 1 in the LUTs columns or positive in the area
and wires columns indicate improvements in the quaternary
implementation over the binary implementations.

The statistics are here presented to give a more comprehen-
sive view of the results and consist of the average, mean and
trimmed mean with 20% margin (10% ceiling and 10% floor).
The trimmed mean is here used in an attempt to remove the
effect of discrepant results.

From Table IV the main observation that can be done is that,
a few outliers do not perform well with the current MVL map-
ping implementation and as such the trimmed mean is going
to be used when making comparisons. But overall the number
of required QLUTs is approximately halved when compared
to 2-input LUTs. However, as expected, is approximately the
same when compared to 4-input LUTs. This is a positive result
if we consider also the number of interconnections that shows
an improvement of 37.52% and 38.50% when compared to
2-input and 4-input, respectively.

The number of transistors/circuit area has a contrary result
to the number of LUTs and interconnections. In these tests, the
area occupied by the quaternary circuit is 111.76% more than
with binary 2-input LUTs and 15.02% less when compared to
4-input binary circuit.

Some conclusions should be drawn from these results,
which are that while particular circuits may require other
mapping algorithms and/or optimizations to be efficiently
mapped into quaternary logic, e.g., “s27”, others show great
improvements in all metrics tested, e.g., “dk27”.

V. CONCLUSIONS

In the introduction of this report, a case was made for
the need for a mapping tool capable of implementing circuit
specifications in MVL using the newly developed Quaternary
Lookup Tables (QLUTs) from [5]. With this objective in mind,
a MVL mapping functionality was added to the MVSIS tool.

The MVL mapping tool proposed and developed can be
used to produce any desired circuit layouts using Quater-
nary Lookup Tables (QLUTs). Since it was developed inside
MVSIS, it accepts any format of input that MVSIS can read
and with it generate a quaternary network.

This work main problem to overcome was how to convert a
node inside a network into memory configurations to program



TABLE III: Results and characteristics of the FSM benchmarks.

benchmark binary quaternary
PI PO LUT2 area wires LUT4 area wires PI PO QLUTs area wires

bbara 8 6 75 4500 156 51 15096 210 4 3 88 17776 179
bbtas 5 5 21 1260 47 8 2368 37 3 3 20 4040 43

beecount 6 7 55 3300 117 32 9472 135 3 4 30 6060 64
dk14 6 8 86 5160 180 57 16872 236 3 4 41 8282 86
dk15 6 8 63 3780 134 42 12432 176 3 4 41 8282 86
dk17 6 7 51 3060 109 32 9472 135 3 4 33 6666 70
dk27 4 5 25 1500 55 5 1480 25 2 3 3 606 9
dk512 5 7 66 3960 139 31 9176 131 3 4 40 8080 84
donfile 7 6 157 9420 320 104 30784 422 4 3 150 30300 303

ex5 6 6 66 3960 138 39 11544 162 3 3 25 5050 53
ex7 6 6 79 4740 164 54 15984 222 3 3 27 5454 57
mc 6 8 20 1200 48 10 2960 48 3 4 6 1212 16

modulo12 5 5 26 1560 57 8 2368 37 3 3 15 3030 33
s27 7 4 13 780 30 7 2072 32 4 2 33 6666 68

shiftreg 5 5 31 1860 67 9 2664 41 3 3 23 4646 49
tav 7 7 24 1440 55 15 4440 67 4 4 18 3636 40

train11 6 5 71 4260 147 41 12136 169 3 3 24 4848 51

TABLE IV: Gains comparison of binary and quaternary circuits and statistics.

benchmark LUT2 LUT4
LUTs area wires LUTs area wires

bbara 0.8523 -2.9502 -0.1474 0.5795 -0.1775 0.1476
bbtas 1.0500 -2.2063 0.0851 0.4000 -0.7061 -0.1622

beecount 1.8333 -0.8364 0.4530 1.0667 0.3602 0.5259
dk14 2.0976 -0.6050 0.5222 1.3902 0.5091 0.6356
dk15 1.5366 -1.1910 0.3582 1.0244 0.3338 0.5114
dk17 1.5455 -1.1784 0.3578 0.9697 0.2962 0.4815
dk27 8.3333 0.5960 0.8364 1.6667 0.5905 0.6400

dk512 1.6500 -1.0404 0.3957 0.7750 0.1194 0.3588
donfile 1.0467 -2.2166 0.0531 0.6933 0.0157 0.2820

ex5 2.6400 -0.2753 0.6159 1.5600 0.5625 0.6728
ex7 2.9259 -0.1506 0.6524 2.0000 0.6588 0.7432
mc 3.3333 -0.0100 0.6667 1.6667 0.5905 0.6667

modulo12 1.7333 -0.9423 0.4211 0.5333 -0.2796 0.1081
s27 0.3939 -7.5462 -1.2667 0.2121 -2.2172 -1.1250

shiftreg 1.3478 -1.4978 0.2687 0.3913 -0.7440 -0.1951
tav 1.3333 -1.5250 0.2727 0.8333 0.1811 0.4030

train11 2.9583 -0.1380 0.6531 1.7083 0.6005 0.6982

average 2.1536 -1.3949 0.3058 1.0277 0.0408 0.3172
mean 1.6500 -1.0404 0.3957 0.9697 0.2962 0.4815

trimmed mean 1.8589 -1.1176 0.3752 1.0172 0.1502 0.3850

QLUTs with. To accomplish this, nodes have to conform to the
restrictions of the available technology. In this case any node
whose output value depended of more than 2 input signals
have to be decomposed.

The decomposition was done using an algorithm based on
the Shannon decomposition and implemented with a “Selec-
tor” block, described in Section III-C1,that performs the role
of a multiplexer.

After having the nodes decomposed a new network repre-
sentation is created of the new decomposed nodes and these
nodes are converted into QLUT memory configurations.

The mapping functionality was tested with a set of bench-
mark circuits and the results compared against binary circuit
implementations. Although our mapping implementation did
not provided better results in all the benchmarks, a few of
them showed improvements over the binary tests.

With improvements in both the hardware and software side,
it is possible in the future to have this synthesis tool capable

of generating MVL circuits that are smaller, faster and more
energy efficient than their binary equivalents.

The overall result of the developed work is positive as it
resulted in a functioning mapping tool capable of being used
in a variety of scenarios to generate a circuit using QLUT
technology.

Nonetheless, various enhancements can still be made in
order to improve the obtained results and expand the current
functionality. Bellow are a few ideas worth of exploring that
can produce improvements to the results here presented. Most
of these ideas consist of suggestions based on adversities
encountered during the development of this tool.

• Improvement of current implementation of the QLUT
since currently they use considerable more area than their
binary equivalents.

• Development of a 3-input QLUTs to combat a major
difficulty encountered during the development process of
this tool. Having a limitation of only 2-input QLUTs



being available led to the creation of a “Selector” block,
which is an inefficient and not very scalable solution.

• Process the network nodes by having a different order
in the “Selector” levels. Test which permutation of the
inputs order produces the most optimized result.

• Expand the current optimization process to account for
multi-output circuits that may share duplicate function-
ality across nodes, thus creating shared fanin cones and
reducing significantly the amount of QLUTs required.

• Explore mapping algorithms different from the Shannon
decomposition. Although the Shannon decomposition al-
lows to process any node, it always produces non-optimal
solution, in terms of number of required QLUTs, which
then has to be optimized for each particular case. If an
algorithm was used such that the decomposition is done
considering the function of the node instead of a general
case, a custom tailored result would be obtained without
having the need an optimization process.

• Explore the possibility of expanding the type of circuits
that can be mapped into QLUTs by converting non-
quaternary networks into quaternary form.

• Development of a power simulator to analyze the QLUTs.
In the results presented, in only a few benchmarks, the
circuit area was reduced by using a QLUT implemen-
tation. However QLUTs can provide improvements in
power dissipation due to the smaller transitions between
logic levels.
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