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Abstract

GAMGI  is  a  free  program available  for  Linux  operating  systems,  used  for  the  construction,

visualization and analysis of atomic structures.

The  objective  of  this  work  was the  research,  development  and  implementation  in  GAMGI  of

algorithms that allow the creation of molecular structures based on graphene: nanotubes, nanocones and

fullerenes.

Graphene is a carbon based structure which presents interesting mechanical, thermal and optical

properties.  Three  important  classes  of  atomic  structures  may  be  computationally  generated  from

graphene: carbon nanotubes, carbon nanocones and fullerenes. These molecules, like graphene, present

properties that make them interesting for applications in different scientific areas, such as medicine and

engineering.

Algorithms were developed and implemented throughout the course of this work, which allow for

the generation of any single-walled nanotube of the zig-zag, armchair and chiral types, with an arbitrary

height. Other algorithms were equally developed and implemented which allow for 16 kinds of open or

closed nanocones to be built, with an arbitrary height,  with disclination angles between 60o and 300o,

differing in the positions or only locally, as a result of the applied construction method. Finally, caps were

built which, when correctly applied to specific classes of nanotubes – (5,0), (5,5) and (6,6) – allow for the

generation of infinite series of fullerenes, which include the most experimentally observed molecules of

this type,  C60 and C70,  in  both cases with the 12 pentagons (demanded for this kind of  structure) all

isolated.
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 1  Introduction

This work was elaborated with the objective of creating additional functionalities to the free and

open-source program GAMGI (General Atomistic Modelling Interface) [1]. The goal of this program, as

stated on the official website, is “… to provide a free package to construct,  view and analyze atomic

structures, as powerful and simple to use as possible”. At the beginning of this work, GAMGI lacked the

functionality of directly creating any kinds of molecules from simple input parameters given by the user.

Over the course of this work, code has been written and added to the program, which allows for the

creation of several different graphene based structures, namely carbon nanotubes, carbon nanocones and

fullerenes.  Algorithms  that  create  the  molecules  based  on  user  input  were  researched  and  then

implemented in C code, after which they were subject to continuous development. The graphical interface

also suffered various modifications to adjust to the new functionalities, so as to allow for direct user input.

 2  State of the art

In 2010, the Nobel Prize in Physics was awarded jointly to Andre Geim and Konstantin Novoselov

“for groundbreaking experiments regarding two-dimensional material graphene”. Graphene (Figure 1) is

an outstanding material due to its mechanical, electrical, thermal and optical properties [2], [3], [4]. It holds

great promise in terms of its applications, the most attractive being within the area of material/device

applications, such as solar cells, LEDs, touch panels and smart windows or phones [5]. Graphene is a

crystalline allotrope of other important carbon structures with 2-dimensional properties, such as carbon

nanotubes, fullerenes and nanocones. These structures inherit some of the properties of graphene, so it is

also very interesting to study them.

Carbon nanotubes are allotropes of carbon with a cylindrical shape. They can be thought of as

rolled up sheets of graphene. There are several ways in which the sheet can be rolled to form a nanotube,

and depending on that, the nanotube will  exhibit different properties, such as whether it  is metallic or
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Figure 1 - The graphene honeycomb lattice



semiconductor [6]. Carbon nanocones are conical structures which are made predominantly from carbon

and which have at least one dimension of the order one micrometer or smaller [7]. There are also several

ways in which the sheet can be rolled to form a nanocone, and they will also influence the properties.

Fullerenes are closed carbon-cage molecules containing only pentagonal and hexagonal rings, where

every atom has bonds with exactly 3 other atoms, idealized as sp2 hybridized atoms [8].  All  of these

molecules show great promise in different scientific and engineering areas, and are already being applied,

namely carbon nanotubes as reinforcement material [9], carbon nanocones as scanning probe tips and

electron field emitters [10], [11], and fullerenes various medical fields [12], [13]. Fullerenes in particular

have also attracted the interest of the scientific community in the area of graph theory, where scientists

have studied and developed algorithms to try to create all possible fullerene isomers [14].

 3  Algorithms and Results

The algorithms were based and developed upon pre-existing scientific works, and implemented in

the C programming language. The source code, totalling a number of 2356 lines, is divided among six

files.

 3.1 Graphene

Before  explaining  the  generation  algorithms  for  nanotubes,  nanocones  and  fullerenes,  it  is

important to know how to generate graphene. Graphene can be described by a 2D hexagonal lattice with

vectors a1 = a.x and a2 = a.sin (120o).x + a.cos (120o).y, with carbon atoms at positions (0, 0) (A atoms)

and (2/3, 1/3) (B atoms). The lattice parameter  a = 2.467 Å is thus simply related with the CC bond

distance between the two atoms: a=bond∗√3 .

 3.2 Nanotubes

Nanotubes are, like graphene, described by two base vectors, separated by a 60o angle: b1 = a.x

and b2 = a.sin (60o).x + a.cos (60o).y. Since the lattice is hexagonal, these vectors are also lattice vectors.

Any (m,n) integer combination of these two vectors represents a translation vector T of the lattice, which

links two equivalent points:

T=m⋅b1+n⋅b1

Two lines  perpendicular  to  T passing  through these  two equivalent  points,  must  also  be equivalent,

allowing us to define a rectangle with length |T| and equivalent sides of height h, as shown in Figure 2. As

the two sides are equivalent, the rectangle can folded and the two sides linked, forming a perfect seam,

thus forming the final nanotube structure.
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The integer coordinates (m,n) uniquely identify the whole atomic structure of a nanotube, including

its radius and, most importantly, its type. An (m,0) nanotube is called a zig-zag, an (m,m) nanotube is

called an armchair and an (m,n) nanotube is called a chiral, these names being attributed based on the

top and bottom outlines of the nanotube, each of which makes a different angle  θ with the horizontal  x

axis. 
To select the atoms within the 2D rectangle, vectors  a1 and a2 are first rotated of the angle  -θ ,

together  with  the  rectangle.  The  atoms inside  the  transformed,  horizontal,  rectangle  are  selected  by

checking whether the x coordinate is between 0 and T (the length of the vector T) and the y coordinate is

between 0 and h.

The range of hexagonal graphene cells that must be considered to include all the relevant atoms

must be a lozenge which fully covers a semi-circular area of radius r, where r is the length of the diagonal

of the rectangle.
To convert the 2D rectangle of atoms into the 3D nanotube, we notice that the rectangle length T

is simply the perimeter of the nanotube, so the nanotube radius (unrelated to the previous one) becomes r

= T / 2π. The 3D atom coordinates are then obtained applying the following transformation to all the atoms

inside the 2D rectangle:

(x, y )→(r⋅cos(α) ,r⋅sin(α), y )

with: α=2π⋅x /T . 

Atoms with x = T are superimposed over atoms with x = 0,  so they must be discarded. This

corresponds to, in terms of the primitive hexagonal lattice, that atoms at cells (i,j) are superimposed over

atoms at  cells  (i,j)  –  T.  If  we write  the nanotube translation vector  as an integer combination of  the

graphene base vectors:

T=(m+n)⋅a1+n⋅a2
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Figure 2 - Selection rectangle for a (5,5) carbon nanotube. T is the translation vector, b1 and b2  the
nanotube base vectors, and h is the height



it is easy to see that an atom at a cell (i, j) must be discarded if another atom has been previously alocated

in a lower cell (i - m - n, j – n).

The final step in generating nanotubes is to create the bonds between the atoms. Through direct

inspection, it can be seen that each atom A in a cell (i, j) should be connected to 3 atoms B at cells (i, j), (i

– 1, j) and (i – 1, j – 1), and this is enough to create local bonds. To create the bonds between atoms at

opposite borders of the rectangle (atoms that form the seam region), the periodic boundary conditions

must be applied. Therefore, the general procedure to create the nanotube bonds is: for each atom A in a

cell (i, j), try to find an atom B in cells (i, j), (i – 1, j) and (i – 1, j – 1) (local atoms) or in cells (i + m + n, j +

n), (i + m + n – 1, j + n) and (i + m + n – 1, j + n – 1) (atoms close to the left border: α → 0, applying +T

periodic boundary conditions) or in cells (i – m – n, j – n), (i – m – n – 1, j – n) and (i - m - n - 1, j - n – 1)

(atoms  close  to  the  right  border:  α  → 2π,  applying  +T periodic  boundary  conditions).  For  a  better

understanding, see Figure 3.

The  incorporation of these algorithms in GAMGI allows for the creation of nanotubes, like the

ones seen in Figure 4:
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Figure 4 -The (10,0), (10,10) and (10,5) nanotubes

Figure 3 - Nanotube bonding scheme. Atom 1 makes 2 local bonds and one associated with periodic
boundary conditions. Atom 2 only makes local bonds



 3.3 Nanocones

As in the case of carbon nanotubes, a graphene sheet is used to create carbon nanocones. In this

case, however, we want the initial 2D sheet to be circular, in the simpler cases with the origin at the center

of a hexagon instead of an atom, so the two carbon atoms per graphene cell are at positions (2/3, 1/3) and

(1/3, 2/3).  Nanocones can be described by a disclination angle, Δ, which is the angle of the circular slice,

starting from the circle center, that is removed  before folding the sheet until  the two slice borders are

reunited again, forming a 3D nanocone. This angle Δ can have the value of 60o, 120o, 180o, 240o and 300o.

Nanocones may be closed or open, in which case they lack the top part, or apex of the cone, so two radii

are defined: the outer radius of the sheet (rout) and the inner radius of the sheet (r in). To select the atoms

within  the circular  area that  is  left  after  cutting the slice  corresponding to the disclination angle,  it  is

necessary to check if their distance from the center is smaller than or equal to r out and greater than or

equal to rin, and if the angle they make with the x axis is greater than the disclination (see Figure 5):

An exercise similar to the case of nanotubes is applied to find the range of graphene cells that

must be considered in order to generate all the relevant atoms. In this case, range of hexagonal graphene

cells that must be considered to include all the relevant atoms must be a lozenge which fully covers a

circular area of radius rout.

To convert the 2D circular slice of atoms into the 3D nanocone, one side of the slice remains fixed,

while  the  other  rotates  an  angle  equal  to  -Δ,  in  order  to  fill  the  gap  left  from  removing  the  area

corresponding to the disclination. The value of the angle, αcone, of an atom in the nanocone is calculated

from its value in the graphene sheet, αsheet, through the formula:

αcone=2π(1−
2 π−αsheet

2π−Δ
)

The 3D atom coordinates are then obtained applying the following transformation to all the atoms inside

the circular slice area:

6

Figure 5 - The selection area for a nanocone is the circular crown with maximum and minimum radii rout
and rin, minus the 60o disclination gap



(x, y , z)→(l⋅f⋅cos(αcone), l⋅f⋅sin(αcone) ,h⋅(1− l
r out

)−h /2)

where l is the distance of an atom from the center, f = rcone / rout, and h is the height of the nanocone.

For several  partial  disclinations of  60o each,  acting together,  the hexagons at  which they are

centered will be transformed into pentagons, as one of the six atoms of the original hexagon has been

removed.. Depending on the center of the disclinations, different isomers of a nanocone with a specific

total disclination may be generated, since the pentagons will be located at different places of the structure.

Moreover, rotating only one end or both ends of the angular gaps left by disclinations produce different

results. Therefore, several different isomers can be created for the same total disclination.

First, if the nanocone model so requires, the origin is changed so that it becomes the center of a

bond. Then, the atoms with distance from the center greater than rout or smaller then rin are removed. The

steps that  follow are  successively  applied  for  each  disclination,  with  the  calculations being made as

though a disclination is the origin of the cone. A check to see if the atoms lie outside the disclination area

is made, with atoms being discarded if they are inside. Unlike in the case of a single disclination, not all

atoms of the structure are rotated, so atoms that are not discarded are submitted to a final check which

determines  if  they  should  be  rotated  in  order  to  fill  the  vacant  spots  left  by  discarded  atoms.  This

procedure becomes progressively more complex with the number of introduced disclinations.

To create bonds between atoms, a scheme similar to the one used for nanotubes can be applied.

Considering the initial indices  i and  j of a 2D graphene sheet, each bond in a seam region (the region

where  the  two  loose  edges come together  through the  bonding  of  the atoms)  is  always  established

between an A or B atom of an (i0, j0) cell on one side of the seam, and another A or B atom in an (i1, j1) cell

on the other side of the seam. Also, if the atom on cell (i0, j0) is an atom A, then k0 = 0, otherwise k0 = 1.

Identically, if the atom on cell (i1, j1) is an atom A, then k1 = 0, otherwise k1 = 1. It is necessary to determine

one bond through direct  inspection.  This  bond is  chosen to  be the one closest  to  the  center  of  the

nanocone. From this inspection, i0, j0, k0, i1, j1 and k1 are determined. Since the disclination area that is

subtracted  corresponds  to  a  symmetry  rotation,  there  is  a  natural,  predictable  progression  of  these

indices. This progression must also be directly inspected, by determining 2 or 3 more bonds after the

starting one. This progression can be identified by six other indices: ii0, jj0, kk0, ii1, jj1, and kk1, which are

used in the algorithm. The bonding scheme for a single 60o with a bisector at 30o can be seen in Figure 6.
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The  incorporation of these algorithms in GAMGI allows for the creation of nanocones, like the one

seen in Figure 7:

 3.4 Fullerenes

Hasheminezhad et al. presented three sets of patch replacement operations for fullerene graphs

which allow the every fullerene graph, starting from C20 and C28, to be generated, and these three sets of

expansions are called Li,  Bi,j and F. Among the three of them, F proves to be the most easily applicable

one,  since it simply consists in adding an hexagonal layer of rings around a structure composed of a

central pentagon surrounded by five pentagons. Applying expansion F on C20 results in C30, where a layer

of five hexagonal rings is in between two “caps“ composed of six pentagons. Applying expansion F on C30

results in C40, and now the two caps are separated by two layers of five hexagonal rings. These fullerenes

are no more than (5,0)-type nanotubes covered with caps, where the height of nanotube, given by the

number of ring layers, corresponds to the application of expansion F to C20 as many times as the number

of ring layers between the caps. Any combination of (m,n) fullerene nanotube can be created in this way,

in particular the (5,5)- and (6,6)-types, with the shape of the caps being different in each case. By making

use of the previously explained algorithms to generate nanotubes, all that remains is to cover the ends of
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Figure 7 - Nanocone 60_O

Figure 6 - Nanocone bonding scheme for a single 60o disclination between 0o  and 60o



the  nanotube  with  a  cap  specific  to  the  considered  type  of  (m,n)  nanotube,  and  this  procedure  is,

compared  to  the  the  ones  for  nanotubes  and  nanocones,  quite  trivial.  An  image  of  C20 and  the

corresponding nanotube fullerene obtained from applying transformation F three times, C50, can be seen

in Figure 8:

Besides  expansion  F,  a  particular  case  of  expansion  L where  i  =  0  (L0)  and  a  special

transformation that converts C28 to C24 (thus allowing every fullerene isomer to be generated from C20

alone) have been developed in this work. These transformations have successfully been implemented in

code as far as creating bonds between atoms goes, but the atom positions are incorrect, so they have not

been incorporated into GAMGI.

 4  Graphical interface

Several features have been added to GAMGI’s graphical interface that allow for the introduction of

data by a user in order to produce any of the molecules that have been described in this work. If one

chooses the option “Molecule” → “Create”, it is now possible to choose, in the “Method” toolbox, to create

graphene-based structures, namely sheets, nanotubes, nanocones, fullerenes (cages) and caps (Figure

9).

9

Figure 8 - C20 and (5,0)-type nanotube C50

Figure 9 - Toolbox for the new "Molecule" -> "Create" option



 5  Conclusion

With this work, new features have been added to GAMGI which allow for the creation of three

types of graphene based structures: carbon nanotubes, carbon nanocones and fullerenes. GAMGI is now

able to generate all kinds of nanotubes without restrictions, and with a good geometry. In the case of

nanocones, the geometry of the more complex isomers that can be created can still be worked upon, and

this can be achieved through the implementation of, for example, force-field methods. Finally, in what

regards fullerenes,  GAMGI can  now generate  fullerenes belonging  to  one of  three different  types  of

nanotubes. While this is certainly a good addition, GAMGI is not able to generate all the different fullerene

isomers. To fill in this gap, research will have to be undertaken in the graph theory field, and the algorithms

created by researchers will have to be thoroughly analyzed.
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