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Abstract—The emergence of cheaper DNA sequencing tools
lead to an exponential growth of sequenced DNA. Thus, the
amount of computation involved in the area of bioinformatics,
and in particular in the alignment of DNA sequences, has also
grown. To face this challenge, the alignment can be parallelised
using alternative computing platforms, such as GPUs, reducing
the time required for the alignment. To further reduce computa-
tional costs, the alignment tools also adopt a heuristic model,
where the queries are filtered using exact search, generating
regions which are optimally aligned. The present work proposes
a new approximate matching tool, BowMapCL, using hetero-
geneous multi-device computing platforms. The proposed tool
was performed by extending the work of the exact search tool
BowMapCL v1.0 [1]. This was performed by adding an filtration
stage, using aforementioned exact search, and implementing
the Smith-Waterman (SW) algorithm on GPUs. BowMapCL
v1.0 (and thus BowMapCL) have been implemented using the
OpenCL API, which means the execution is not restricted to
NVIDIA GPUs, unlike existing alignment tools.

When compared to state of the art tools, BowMapCL offers
speedups of up to 4 times against the CPU-based tools. Compared
to the existing GPU-based SOAP3-dp, it is faster for queries
smaller than 100 bases. BowMapCL aligns fewer alignments
correctly when compared to the evaluated state of the art tools.

Index Terms—GPU, OpenCL, Approximate string matching,
SW, Smith-Waterman

I. INTRODUCTION

THE emergence of cheaper DNA sequencing methods led
to an exponential growth of sequenced DNA, particularly

human DNA. The reduction in the cost of sequencing was
achieved through the division of DNA into short fragments,
smaller than previous technologies. These fragments are then
sequenced in parallel, creating reads. A common usage for
these reads is the re-creation of the original genome. This
can be achieved either through de novo assembly, where no
prior information is used, or by using a reference genome to
find the final positions of each read, thereby speeding up the
assembly process. In the latter method, each read is mapped
to the reference genome, allowing some mismatches between
the reference and the read, to find the position where the read
and the reference have the best match. The mapping of the
reads, also known as (short) read alignment, is an example
of approximate string matching, a technique with multiple
applications, including text retrieval and data mining [2].

The alignment of reads is a computationally expensive oper-
ation due to large number (tens of millions) of reads that can be
generated in a single run of the DNA sequencing machine and
the size of the reference. To reduce time required to perform
the alignment, several different tools taking advantage of
alternative computing platforms, such as Graphics Processing

Units (GPUs), FPGAs or special purpose processors have been
proposed. GPUs, in particular, are used by several state of the
art DNA alignment tools [3], [4], owing to their increased
performance and favorable memory capabilities. Furthermore,
the development cost of GPUs tools are lower than other
alternative computing platforms. There are two main frame-
works for the development of GPU applications, CUDA and
OpenCL. The majority of existing DNA alignment tools target
the CUDA framework and are thereby restricted to run only on
NVIDIA GPUs, whereas OpenCL can run on multiple devices,
such as GPUs, CPUs, FPGAs and other accelerating devices,
such as Xeon Phi.

Despite the increased performance offered by alternative
platforms, the alignment of DNA data against the human
genome still requires a great amount of time, which can
be lowered by using heuristic techniques. These techniques
use exact string search to reduce the area of the genome
searched, by generating promising regions. These regions
are then searched using optimal approximate string matching
algorithms.

II. ALGORITHMIC BACKGROUND

Approximate string matching is an operation where the
objective is to find a pattern in a text, where one (or both)
of them have suffered some corruption, and can not therefore
be matched exactly. These corruptions can be deletions, inser-
tions or substitutions between pattern and text. Approximate
string matching is used in different applications, such as text
retrieval, data mining[2] and bioinformatics. There are some
approximate string matching algorithms capable of operating
with a complexity of O(n), where n is the length of the
pattern to be searched. However, bioinformatics applications
require more flexibility, since the cost of replacing a base with
another is dependent on the specific bases. Moreover, it is
also necessary to consider gaps (serial deletions or insertions)
to have lower cost than the equivalent serial operations.
Hence, the considered optimal string matching algorithms use
dynamic programming (DP), and possess a complexity of
O(mn), where m is the size of the text.

A. Smith-Waterman algorithm

The considered optimal approximate string search uses
the Smith-Waterman algorithm (SW), which is divided into
two stages. In the first stage, a matrix H , as well as the
auxiliary matrices E and F (which store the values required
for the gaps) are filled according to (1) using the reference
Sq = q1, . . . qn and the pattern Sd = d1, . . . dm. It is possible
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Fig. 1. Striped approach to intratask parallelisation

to adjust the parameters gap open α, gap extend β and
substitution scores δ(qi, dj) to select optimal alignments with
different characteristics.

Hi,j = max


Hi−1,j−1 + δ(qi, dj),

Ei,j ,

Fi,j ,

0

Ei,j = max

{
Hi,j−1 − α,
Ei,j−1 − β

Fi,j = max

{
Hi−1,j − α,
Fi−1,j − β

Hi,0 = Ei,0 = Fi,0 = 0

H0,j = E0,j = E0,j = 0

(1)

In the second stage, a trace back occurs over the H matrix
to extract the optimal alignment. The trace back begins at the
cell from the matrix H with the highest value. The cell that
originated the value from the current cell is then selected,
iteratively, until a cell with a score of 0 is reached, and the
trace back is concluded.

B. Extraction of parallelism in SW

In sequence alignment, several different reads are aligned
against one reference. Furthermore, since each read can gener-
ate several promising sections of the reference to be searched
against, it is possible to perform several alignments simul-
taneously in the GPU. This approach is known as intertask
parallelism and presents a case of an embarrassingly parallel
problem, since there are no dependencies between alignments.
However, it is also possible to parallelise a single alignment
between a read and the reference (or a reference section), an
approach known as intratask parallelism. The chosen approach
for intratask parallelism is a striped approached [5], where
several values from one column are computed at once, marked
in one color in Figure 1, without taking into consideration
intracolumn dependencies, since the values of F often do not
contribute to the values of H . After a full column is calculated,
and if the values from H are high enough that the values of F
contribute to the values of H , the values of the matrix H are
recomputed. This recalculation is known as the lazy F loop.

C. Non-optimal alignment

Despite the increase of performance of optimal alignment
tools, existent optimal alignment tools are not suited to the
alignment of DNA generated by DNA alignment tools due
to the high computational costs required to align millions
of reads against a human genome through optimal alignment
algorithms. Heuristic algorithms can lower the computational
costs, by potentially missing some optimal alignments. The
foundation of these heuristic algorithms is the fact that in
every approximate occurrence of a query in a text there are
some substrings of the pattern that match the text without any
errors. The locations of theses strings, which can be found
through exact search, indicate areas of text where the best
possible approximate string matches can occur. To find the
approximate string match, the area around each location can
then be expanded by matching additional characters from the
pattern and text as long as the pattern and text do not diverge
significantly. It is also possible to use the areas around the
locations of seeds as targets to perform optimal approximate
string matching. The usage of seeds to select areas suitable
for a more careful search is called filtration [6]. Another
technique, called intermediate partitioning, divides the queries
into seeds, which are searched in the text, although some errors
are allowed. Since the number of errors in this search is smaller
than the number of allowed for the whole query, the search
procedure is less costly than optimal alignment. In fact, this
procedure can be seen as searching all the neighbors of the
seed, where the neighbors are mutated versions of the seed.

The exact search can be performed using several different
algorithms, such as hash-tables, suffix trees or the Burrows-
Wheeler Transform with FM-index [7]. Exact search using
FM-index offers search times proportional to the length of
the query and is specially amenable to GPU devices due to
the lower memory costs when compared to other algorithms.
Hence, it has been used for the implementation of several read
alignment tools using GPUs [8], [9].

D. Brief presentation of BowMapCL v1.0

As previously stated, the present work is based upon the
tool BowMapCL v1.0, proposed in [1]. BowMapCL v1.0 is
an exact search tool targeting heterogeneous platforms, using
BWT and FM-index to perform the alignment. This tool is
capable of performing the exact search in DNA, Proteins or
Text.

In contrast to existing alignment tools, BowMapCL v1.0
uses the OpenCL API to be able to execute in different
GPUs from different vendors. Since the GPUs (and hosts)
have varying quantities of memory, the tool is also capable of
adjusting several parameters to limit the memory consumption
of the data structures. Furthermore, the reference sequence
can also be split into multiple blocks to further decrease the
memory required, allowing the processing of any reference
sequence, regardless of the size of the input data. Since the
BWT is a data structure mostly used for offline exact string
search, BowMapCL v1.0 has two operations modes. The first
operation mode creates the index files for the search, taking
into account the size of host and accelerating devices memory
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to create data structures (index files) which fit into the available
memory. The second mode is the principal operation mode.
This mode reads the previously created index files and the file
containing the reads/queries, which are then searched exactly
in the reference text using the GPU(s), creating a range of
positions. After the range of positions is transferred to the
host memory, it is converted to absolute positions of the text,
and the results are written to a file.

In order to hide the communication costs between CPU and
GPU, [1] devised an architecture, see Figure 2, where multiple
threads (BWT thread in the fig. 2), each with its own set of
buffers, enqueue data and kernel executions to the device, and
retrieve the range of positions. Another thread, known as the
producer thread (thread #0 in the fig. 2), generates the queries
which will be searched by reading the input file.
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Fig. 2. Flowchart of the parallel solution BowMapCL v1.0 for exact string
matching

This implementation was found to have a speedup of 10
over multi-threaded CPU-based exact search implementations,
such as Bowtie, BWA and SOAP2, and speedups between 1.5
times and 5 when compared to existing state of the art GPU,
such as SOAP3 and HPG-BWT.

III. IMPLEMENTATION

Similarly to its predecessor, the proposed tool has two
modes of operation. The first mode creates the necessary data
structures for the exact search, whereas the second (and main)
mode is the approximate alignment mode. The main mode
accepts the data structures previously created, the reference
genome, and a query file, and aligns each query against the
reference. The queries are divided into seeds to be searched
using the exact search. Some positions from the exact search
are selected to create potential sections of the reference for
the optimal alignment, a procedure called filtration. Finally,
the potential sections for each query are searched using SW.

This section details the implementation of the main mode,
and is divided into three logical parts. In the first part the paral-
lelism opportunities for the optimal alignment are described.
The second part describes the proposed architecture for the

program. The third part details how the SW algorithm was
mapped to the GPUs.

A. Parallel processing paradigms in approximate string match
Since the number of queries is usually quite large, it is

possible to harness the computational power of the GPUs
by performing several optimal alignments simultaneously, im-
proving the execution time of the tool. In general, the number
of the queries precludes loading the entirety of the query
file into the GPU memory in a single phase due to memory
restrictions. Nevertheless, by loading chunks of queries to the
GPU, it is possible to use a data-level parallelism approach,
in the exact search step and in the optimal alignment step.
Furthermore, since the exact search and the optimal alignment
can be executed independently it is possible to take advantage
of the spatial parallelism of GPUs and execute them in parallel,
in a task level parallelism approach. It is also possible extract
even more task level parallelism since there multiple tasks that
can be performed in parallel to the computation of the optimal
alignment, such as the I/O operations, namely reading the
queries file and writing the results to a file, and computational
tasks, such as extracting seeds from the queries and the
filtration of the exact search results.

B. Proposed parallelisation architecture overview
As previously mentioned, the proposed tool is composed

of a filtering phase, generating promising reference areas,
and an optimal approximate string search. Each phase has an
operation, in the case of filtering is the exact search, and in
optimal alignment is the SW algorithm, which is offloaded
to the GPU. In order to parallelise the two main phases of
the alignment tool, a two stage pipeline is proposed, with
each phase performed entirely by a single pipeline stage. The
flowchart of the proposed solution is presented in Figure 3.

The program starts by initialising the OpenCL devices
and loading into their memory the blocks of the index. In
the initialisation step the several processing threads are also
created.

The thread #0 reads the queries from the file to a buffer,
grouping them into chunks of queries. When a buffer contain-
ing queries is filled, it is sent to circular queue to be consumed
by the filtering stage. In the filtering stage, performed by the
BWT threads, the seeds are extracted from the queries and sent
to the GPU. The exact string matching kernel is launched,
matching hundreds of seeds in parallel. When the kernel is
complete, the result, containing the range of positions where
each seed matches in the index block, is copied to the host
memory. The results from each seed are used to select the
most promising reference areas for each query, constituting
the previously mentioned filtration step. The promising areas
are sent to another circular queue. The SW threads in Figure 3
perform the next stage, the optimal alignment. In this phase,
hundreds of promising areas are optimally aligned against
the respective reference sections through the SW algorithm
in parallel. After the kernel has finished its execution, the
homology scores are loaded back to the host memory, to be
written to the disk, along with the positions of the queries in
the reference.
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Fig. 3. Flowchart of parallel solution of non-optimal approximate string
matching, new steps presented in red

C. Device management

To manage the accelerating devices, the proposed tool
extends the architecture of its predecessor, BowMapCL v1.0,
through the addition of a new stage, performing the optimal
alignment, and the enlargement of the existing stage to perform
the filtering step. In [1], two alternatives were evaluated for the
management of multiple devices using the OpenCL devices:
perform the management using exclusively OpenCL functions,
managing several different devices from a single thread, or
manage each device from one thread. The first alternative, and
considering an execution with non-blocking (asynchronous)
operations, the thread would manage the different devices.
While the computation occurs in the devices, the thread would
also execute the host side computations, such as filtration and
seed extraction for the filtering stage and reference selection
for the optimal alignment stage. However, if a device does
not support non-blocking operations, the thread would be
blocked waiting for the execution of the device side operations,
including data transfers and kernel execution, preventing the
host side from managing other devices or to concurrently
prepare the data, leaving the efficiency of the proposed
program vulnerable to the capabilities of the devices. The
second alternative circumvents these problems by using several
threads, each with its own command queue and managing a
different device, allowing a concurrent execution of commands
through the different devices regardless of the non-blocking
capability. Moreover, for data which has a significant cost in
processing in the host side, as it is the case, this architecture
has the added benefit of extracting parallelism from the host

side as well. Consequently, several threads process chunks of
queries, where each thread has its own command queue. An
initial thread, known as index thread, is responsible for setting
up the required environment for the processing, such as the
creation of the shared data structures in the host side and in
the device side and the creation of the processing threads.
Another thread, thread #0 is responsible for reading the input
file, creating chunks of queries, and in the case of DNA, for the
creation of the reverse-complement. The remainder threads,
that effectively manage the devices through the command
queues, are divided into two sets. One set (BWT threads in
fig. 3) is responsible for the filtering stage, consuming the
queries created by thread #0 and generating the promising
areas. Each thread of the filtering set is responsible for fetching
a chunk of queries from a pool of queries, extracting the
seeds from the queries, enqueueing transfer of the seeds to
the global memory of the correspondent device, ordering the
execution of the exact search kernel, waiting for completion
of the execution of the kernel, copying the kernel output to
the host memory, selecting the positions of promising areas
and, finally, storing those positions into a pool of promising
query areas. Even though, at each kernel execution and data
transfer from and to the device, a thread is blocked waiting
for the completion of the command, the remainder threads
can continue to operate in parallel, allowing a maximization
of the usage of the CPU and the accelerating devices. The
other set of threads (SW threads in fig. 3) is responsible for
the optimal alignment, consuming the previously generated
promising areas and generating the optimal positions of each
query in the text, by fetching the promising areas from a chunk
of queries from the pool of promising query areas, extracting
the areas from the reference, enqueueing the transfer of the
queries and the reference sections to the global memory of
the correspondent device, ordering the execution of the SW
kernel, copying the kernel output with the SW scores back
to the host memory after the kernel execution, and, finally,
writing the best scores to the disk.

As hinted previously, with the proposed architecture it is
possible to have multiple command queues per device. Hence,
in addition to computation and transfer overlap over multiple
devices, it is also possible to overlap host side computation and
kernel execution/data transfers in a single device, reducing the
cost of communication and maximizing the occupancy of the
accelerating devices.

D. Memory management
The size of the genomes present a challenge to the paral-

lelisation on GPUs. BowMapCL v1.0 implemented memory
efficient data structures in order to minimize the memory
occupied by the BWT index blocks. Nevertheless, for human-
sized genomes the full index may not fit entirely into the
memory of the majority of GPUs. To solve this problem
and make the tool capable of handling texts of any size,
BowMapCL v1.0 also implemented a technique where the text
is partitioned into index blocks that fit into the available device
memory.

The complete alignment is conducted by processing sequen-
tially the index blocks and matching all the queries against
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each block, since this approach reduces the communication
overhead for the data structures. To be able to report only the
best result of the optimal alignment, it is necessary to have all
the optimal results for all the index blocks simultaneously.
This could be achieved by saving all promising areas and
conducting the optimal search only after the filtration of all
index blocks is finished, or by saving all the optimal scores
from the optimal alignment and conducting a post-processing
step selecting the best scores. Both methods impose an heavy
penalty in the host memory required to store the intermediate
results, hence the best alignment inside each index block
is stored directly to the output file, possibly resulting in a
duplication of results for the best location.

E. Management of multiple devices

The proposed tool has two tasks, the exact search kernel
and the optimal alignment, which are executed in parallel.
Hence, in the presence of multiple devices, there are two ap-
proaches that can be used: differentiate the devices and execute
only one of the tasks in each device, or execute both tasks
simultaneously in each device, similar to the single device
management. The first approach reduces possible contention
between tasks and reduces the memory usage in each device.
Since the characteristics of the work load are unknown before
hand, and can even vary in the course of the execution, it is
impossible to distribute the tasks between the devices in such a
way as to eliminate bottlenecks, preventing the full utilisation
of the device(s). Consequently, it was chosen to execute both
tasks simultaneously in all devices.

F. Filtration

As previously stated, BowMapCL v1.0 only performs exact
search and does not search for mismatches of any kind. The
only existent read alignment tool sharing this restriction is
bowtie2 [10]. Thus, BowMapCL uses an algorithm inspired
by bowtie2 since the choice of the algorithm heavily impacts
the quality of the results as well as the execution time, and
the analysis of the trade-offs involved (such as execution time
vs. alignment quality) are outside of the scope of the present
work.

The filtration happens in two steps, the creation of the seeds
for the exact search and the selection of the promising refer-
ence sections. The seeds are created by extracting overlapping
seeds at regular intervals. By default, the seed length is inde-
pendent of the query length. In [10] it was reported that it is
advantageous to set the interval length to a sub-linear function
of the read length. The default function used in bowtie2, also
used in the current tool, is to set the interval length between
consecutive seeds I(x) to I(x) = b1 + 1.15×

√
xc, where x

is the length of the query.
After the seeds are searched using exact search in the GPU,

the results are copied back to the host memory. The results
from each seed are a range of transformed positions, each
corresponding to a position in the original text. The number
of results have a great variation, with some queries not present
in the text, some are present only a few times, and some
seeds generate ranges with thousands of results. These latter

seeds are not very selective, thus are not very interesting to
analyse. Moreover, the conversion procedure from transformed
positions to text positions is time consuming. Thus, in the
selection of the promising areas, the proposed tool orders the
seeds of a single query according to increasing range and
then selects the positions from the seed with the smallest
range, until a configurable quantity of search regions are reach.
If this quantity is not reached, the positions from the next
seed are selected, until the quantity is reached or until the
program runs out of seeds for the current query. The selected
positions are converted to effective text positions, which in turn
generate search regions around these positions. If two search
regions from a read overlap they are joined and more positions
are converted to search regions. Both steps of filtering are
performed on the CPU since they do not map efficiently to
GPUs due to the memory access patterns and irregularity of the
code. Moreover, the conversion of the transformed positions
to regular positions requires a very large data structure that
can not be easily stored in the GPU.

G. Mapping of SW to GPU

As previously stated, the execution of Smith-Waterman
algorithm for each promising area is a computationally ex-
pensive procedure. However, it is also suited for parallelisa-
tion using GPUs. There are two main approaches: intratask
parallelism, where parallelism is extracted from a single op-
timal alignment, and intertask parallelism, where parallelism
is extracted by performing several alignments in parallel. In
order to select the best approach, the two approaches were
implemented and evaluated.

1) Intratask parallelism: In intratask parallelism paral-
lelism is extracted from the computation of a single alignment
using the SW algorithm. In OpenCL the computation is
divided into two levels of granularity. On a lower level, all
work items execute the same operation, but on different data,
extracting data level parallelism. However, work items are
grouped into work groups, inside which they can share data
and flow control, although work items belonging to different
work groups can not share data.

Since intratask parallelism requires communication between
the vector elements/work items, it can only be applied at the
work group level. Consequently, the intratask parallelism mode
combines intratask and intertask parallelism by distributing
a single alignment to a work group, but performing several
different alignments across different work groups.

Inside each work group, the intratask parallelism was
implemented using the previously described striped layout
approach, since it has been successfully ported to a GPU
architecture and offers the best performance. The pseudo code
is presented in Figure 4. The algorithm fills the matrix column
by column. In each column, the cells are computed without
taking into account inter-column dependencies. If the inter-
column dependencies affect the final result, the results are
corrected in the lazy F loop.

Even though work items inside a same work group share
some resources, such as local memory, and control flow, the
targeted version of OpenCL, 1.1, does not have any functions
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Fig. 4. OpenCL Intratask SW algorithm using striped layout (pseudo-code)

1: function SW(char ref[][], profile query[][][][], result[],
interval small, vHE[][][], database[])

2: group := get group id()
3: local size := get local size()
4: tid := get local id()
5: length big := database[group].reference length
6: length small := database[group].query length
7: seg len = dlength small/local sizee
8: max score := 0
9: for i := 1, 2, . . . , length big do

10: regF := 0
11: query char[][] = profile query[group][big[group][i]]
12: regH := 0
13: if tid > 0 then
14: regH := vHE[group][seg len][tid− 1].H
15: end if
16: Sync threads
17: for j := 1, 2, . . . , seg len do
18: regH next := vHE[group][j][tid].H
19: regE := vHE[group][j][tid].E
20: regH := max(regH + query char[j][tid], 0)
21: max score := max(max score, regH)
22: regH := max(regH, regE, regF)
23: regE := max(regE - GE, regH - GO)
24: vHE[group][j][tid] := (regH, regE)
25: regF := max(regF - GE, regH - GO)
26: regH := regH next
27: end for
28: for i := 1, 2, . . . , local size do . Lazy F loop
29: shift aux[tid] := regF
30: regF := -GO
31: Sync threads
32: if tid > 0 then
33: regF := shift aux[tid - 1]
34: end if
35: Sync threads
36: for j := 1, 2, . . . , seg len do
37: vHE[group][j][tid].H := max(vHE[group][j][tid].H,

regF)
38: if AnyElement(regF > regH−GO, tid) = false then

39: Break all
40: end if
41: regF := regF - GE
42: end for
43: end for
44: end for
45: res[gid] := max score
46: end function

to make the control flow dependent on values from all the work
items, required for the AnyElement function (used in line 38 of
Figure 4), nor does it have any functions which transfer values
from a work item to another, required for the vector shift left.
For the latter problem, the transference of values from a work
item to another is performed by storing the values of each

work item in particular location of the local memory and then
fetch them from another local memory location, see line 29
until line 35 of Figure 4.

In relation to the AnyElement function, presented in Fig-
ure 5, which determines if a given condition is true for any of
the elements of a work item, it is also necessary to use local
memory to store the values of the condition of each work item
inside a work group. Then, each work item traverses the array
to find if the condition is true for any of the work items. Since
every work item will see the same values, the control flow is
performed equally in all work items.

Fig. 5. OpenCL AnyElement function (pseudo-code)
1: function ANYELEMENT(condition, tid, local size)
2: local cmp[local size]
3: cmp[tid] := cond
4: Sync threads
5: decision := false
6: for k := 1, 2, . . . , local size do
7: if cmp[k] == true then
8: decision := true
9: end if

10: end for
11: return decision
12: end function

2) Intertask parallelism: In intertask parallelisation each
work item performs a complete alignment between a read
and reference section. This arrangement, unlike intratask par-
allelisation, does not have dependencies between each work
item, even inside the same work group. However, since there
are more matching procedures occurring simultaneously, the
memory requirements are higher.

In intertask parallelisation, the matrix can be built row
by row (or equivalently, column by column) or anti-diagonal
by anti-diagonal. The advantages of the former include the
regularity of the memory accesses pattern, since every row has
the same amount of columns, unlike the anti-diagonal, and the
number of columns is smaller than the maximum size of the
cells in the anti-diagonal, resulting in less required memory.
The choice of building row by row or column by column is
important for the memory usage when the sizes of the read (n)
and the reference (section) (m) are very dissimilar, since the
memory usage can be proportional to either n or m, which is
not the case here, since we are only interested in a reference
section enveloping the read.

Since the substitution matrix has memory accesses which
can not be coalesced and has a relatively small size, it is an
ideal candidate to be loaded onto the local memory. Therefore,
before the execution of the optimal alignment all work items
load the substitution matrix to the local memory.

In order to reduce memory accesses to the global memory
for the intermediate values of H and E, the intertask kernel
implements a tiling approach similar to CUDASW++ v2.0
[11]. The matrix is computed in stripes with the same length
as the reference section, and with a width adjustable at
compile time in the kernel, RFULL in Figure 6. Thus, the
width can be adjusted at run time due to the architecture
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of OpenCL, where the kernels are compiled each time the
program executes. Inside this stripe, the matrix is filled row-
wise until the width of the stripe is reached, and only then is
the following row computed. Using this technique, the number
of memory accesses per stripe is reduced from RFULL× n
to n. The intermediate values H and F of the stripe are stored
in registers.

Fig. 6. OpenCL Intertask SW algorithm
1: function SW(char ref[][][], query[][], result[], vHE[][][],

delta[], database[])
2: gid := get group id()
3: length big := database[gid].reference length
4: length small := database[gid].query length
5: Copy delta to local memory
6: max score := 0
7: for i := 1, 1 + RFULL, . . . , length big do
8: pack ref[] = reference[gid][i]
9: for k := 1, 2, . . . , RFULL do

10: regH[k] := 0
11: regF[k] := 0
12: end for
13: regH prev diag = 0
14: for j := 1, 2, . . . , length query do
15: regHE := vHE[gid][j]
16: query char = multiple query[gid][j]
17: sub := delta[pack ref[j]][query char]

. regH and regF from previous iteration
18: regF[1] := max(regH[1] - GO, regF[1] - GE)
19: regE := max(regHE.H - GO, regHE.E - GE)
20: regP := regH[1]
21: regH[1] := regH prev diag + sub
22: regH[1] : = max(regH[1], regE, regF[1], 0)
23: max score := max(max score, regH[1])
24: regH prev diag := regP
25: for k = 2, 3, . . . , RFULL do
26: sub := delta[pack ref[j]][query char]
27: regF[k] := max(regH[k] - GO, regF[k] - GE)
28: regE := max(regH[k-1] - GO, regE - GE)
29: regP := regH[k]
30: regH[k] := regH prev diag + sub
31: regH[k] := max(regH[k], regE, regF[k], 0)
32: max score := max(max score, regH[k])
33: regH prev diag := regP
34: end for
35: regH prev diag = regHE.H
36: vHE[gid][j] = (regH[RFULL], regE)
37: end for
38: end for
39: res[gid] := max score
40: end function

IV. EXPERIMENTAL EVALUATION

A. Testing framework

In order to experimentally assess the performance of the
proposed tool, a set of human DNA read files from was

selected, with varying lengths and number of reads. The
read files are presented in table I. These reads were aligned
against the human reference genome GRCh37.75 [12], with
an approximate size of 3GB, since it represents a widely used
reference against which reads are aligned [13].

Accession reference Length of reads Number of reads
SRR001115 47 10M
SRR3317506 51 26M
SRR211279.1 100 25M
ERR1344794 302 35M

TABLE I
CONSIDERED SEQUENCED READS

The evaluation of the independent optimal alignment step
was conducted using protein data, since the existing gaped
SW implementations using GPUs, calculating only the score,
can only operate on proteins. The database of proteins used
is the simulated simdb, with 585MB, available from [11].
This databases represents an optimal case for parallelism, since
every sequence in the database has a length of 3000, giving
an indication of the maximum performance attainable by the
optimal alignment tools. A set of proteins of various sizes,
varying from 144 amino acides until 5478 amino acides, also
available from [11], served as the proteins to be aligned against
the database.

The platform used to obtain the results is a quad core Intel
Core i7-4770K operating at 3.5GHz with 32GB of RAM, and
two GPUs, namely: a Nvidia GeForce GTX 780 Ti GPU with
3GB of graphics RAM and a Nvidia GeForce GTX 680 GPU
with 2GB of graphics RAM. The tests were conducted using
only Nvidia GeForce GTX 780 Ti, unless noted otherwise.

B. Performance comparison

1) Optimal alignment: To quantitatively evaluate the per-
formance of the stand-alone optimal alignment, the proposed
tool was compared against CUDASW++ v2.0 [11], a state of
the art optimal alignment tool which implements the Smith-
Waterman algorithm in CUDA-enabled GPUs. The two par-
allelisation approaches were also evaluated, with the results
presented in Figure 7. In relation to the two parallelism
approaches offered by the proposed tool, intratask paral-
lelism has the smallest performance, reaching a maximum
of 6.72 GCUPS. Intertask parallelism, in contrast, reaches
a maximum of 97.43 GCUPS, a speedup of over 14 times
when compared to intratask parallelism. When compared to
CUDASW++ 2.0, the proposed tool operating in intertask
parallelism is up to 1.70 times faster. The speed advantage
of BowMapCL decreases as the size of the queries increases,
but even for the biggest queries BowMapCL has a speedup of
5% in relation to CUDASW++ 2.0.

For the complete alignment tool, the SW algorithm is
performed using intertask parallelism due to its superior per-
formance characteristics.

2) Non-optimal alignment: The proposed tool was quan-
titatively evaluated by comparing it against state of the art
alignment tools, such as the CPU-based bowtie2 and the GPU-
based SOAP3-dp. The comparison was performed by aligning
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Fig. 7. Comparison of different tools using database simdb, scored with
BLOSUM62 substitution matrix
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Fig. 8. Speedup of proposed tool in relation to bowtie2

a varying number of queries taken from SRR001115 against
the reference genome.

When compared against bowtie2, as can be seen in Figure 8,
the proposed implementation can achieve speedups of up to 3
times. The reduced speedup for a small number of queries is
caused by the initialisation and GPU-computation overhead,
which have a significant impact there are not many queries to
dilute this cost.

In relation to the GPU-based SOAP3-dp, the proposed tool
is can be up to 4 times faster, as shown in Figure 9, for fewer
than 10 million queries. For more than 10 million queries,
BowMapCL achieves a speedup of up to 2 times. The disparity
between speedups is explained by the size of the data involved,
which prevents it from being cached in the memory.

3) Alignment sensitivity: To quantitatively assess the sensi-
tivity of the proposed tool, several real datasets were aligned
against the human genome. The Figure 10 shows the percent-
age of reads from each file successfully aligned against the
genome for all the evaluated tools. The execution times of
the tools are presented in table II. The proposed tool has,
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Fig. 9. Speedup of proposed tool in relation to SOAP3-dp

on average, a sensitivity, i.e., percentage of reads successfully
aligned with the reference, inferior to the bowtie2 and SOAP3-
dp, with an sensitivity of 79.7%, whereas bowtie2’s sensitivity
is 85.4% and SOAP3-dp is 91.2%.
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Fig. 10. Alignment sensitivity comparison

In terms of execution times, BowMapCL is faster than
bowtie2 for all the evaluated datasets, with a maximum
speedup of 4.00 times, with both tools presenting an marked
increase in execution times with the increase of the read length.
In contrast, SOAP3-dp has a small variation with the size of
the read length, and BowMapCL is only competitive in read
files composed of reads with a length inferior to 100.

Accession reference BowMapCL bowtie2 SOAP3-dp
SRR001115 48.79 195.325 264.299

SRR3317506 338.42 482.031 230.182
SRR211279.1 488.01 1414.65 181.353

ERR1344794.1 793.36 2885.727 249.036

TABLE II
COMPARISON OF EXECUTION TIMES, IN SECONDS
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4) Alignment quality: An important characteristic of an
alignment tool is the percentage of reads correctly aligned
to the reference. To quantitatively evaluate the quality, 3 sets
of reads with differing mutation rates were created from
the human genome. Figure 11 presents the results for the
three evaluated tools, with the lower bar representing the cor-
rectly aligned results, the higher bar represents the incorrectly
aligned. Thus, the complete bar represents the aforementioned
sensitivity. The alignments created by the proposed tool have
a lower quality than the alignments produced by bowtie2. For
reads with highest (10%) mutation rate, the filtering approach
adopted by BowMapCL can align more reads correctly than
SOAP3-dp.
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Fig. 11. Alignment quality comparison for 100000 simulated reads of length
100

5) Multiple GPU scaling: The scaling in regards to the
number of buffers, with one and two GPUs, was also evalu-
ated. As can be seen in Figure 12, it is possible to increase
to the performance by using two buffers in single GPU
by overlapping several tasks, such as communication and
computation. Despite the increased performance offered by
2 GPUs due to the reduced contention of computation, the
performance is limited by I/O costs such as writing the results
to the disk.

V. CONCLUSION

This paper proposes a new non-optimal approximate string
matching model using heterogeneous multi-device paralleli-
sation. The model was implemented using OpenCL, by ex-
tending the work developed in [1], to create a alignment
tool capable on operating multiple types of data, such as
DNA or text. The optimal alignment stage of the tool was
implemented in GPUs using intratask and intertask parallelism.
We found the proposed intertask parallelism to be up to 14
times faster than intratask parallelism. Moreover, the intertask
parallelism is also up to 1.7 times faster than CUDASW++
v2.0. When compared to state of the art tools, BowMapCL
offers speedups of up to 4.0 times against the CPU-based
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Fig. 12. Scalability in regards with the number of buffers, in the alignment
of SRR3317506

bowtie2. Compared to SOAP3-dp, it is up to 2 times faster
for smaller queries (less than 100 bases long). In terms of
quality of the alignments, BowMapCL has a lower sensitivity
and quality than the evaluated state of the art tools.
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