
SIGA: Integrated Queue Management System

Gonçalo António Rendeiro da Silva

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. Luís Miguel Teixeira D’Ávila Pinto da Silveira

Prof. Luís Jorge Brás Monteiro Guerra e Silva

Examination Committee

Chairperson: Prof. Nuno Cavaco Gomes Horta
Supervisor: Prof. Luís Miguel Teixeira D’Ávila Pinto da Silveira
Member of the Committee: Prof. João Nuno de Oliveira e Silva

November 2016

ii

To my parents

iii

iv

Acknowledgments

I would like to thank my supervisors, Prof. Luı́s Guerra e Silva and Prof. Luı́s Miguel Silveira for

letting me take part in such an interesting project. I learned a lot in these past months thanks

to you.

To the persons who I met as part of doing this project in the DSI (Computer and Network

Services of IST), a big thanks for your hospitality. And to the friends I made there, thanks for

the good moments!

To my friends Ruben Machado, Filipe Teixeira and Ricardo Joaquinito, thank you for your

presence. I hope we keep sharing the joys and woes of our endeavours, so that the friendship

we forged during our time together at IST goes on beyond our years.

Most of all, thanks to my family - thank you for all your support, motivation and availability.

Thank you for helping me focus on my objectives, for motivating me to continuously challenge

myself and to never stop learning. Thank you.

v

vi

Resumo

A gestão dos serviços académicos do Instituto Superior Técnico é actualmente efectuada

através de dispensadores de senhas manuais. Os clientes obtêm uma senha, organizam-se

em fila única e aguardam o seu turno desprovidos de tempos médios de espera. Os fun-

cionários estão alheios ao crescimento desta fila. A actividade operacional do serviço não é

registada.

Assim, com o objectivo de melhorar e modernizar estes serviços, é neste trabalho con-

cebido e implementado um produto de gestão de atendimento de filas, o sistema SIGA. Este

fornece mais informação tanto aos clientes como aos funcionários, mantém registo de todas

as atividades relacionadas ao serviço, é adaptável a outros contextos e integrável com outros

existentes sistemas (e.g. autenticação, CRM).

Após levantamento de requisitos, é proposta uma solução à base de servidor, que regista

toda a informação do serviço. Fornece interfaces web administrativas aos funcionários e ecrã

de progresso de filas aos clientes. Um dispensador electrónico em conexão com o servidor e

configurável pelos funcionários lista uma ou mais filas e o respectivo tempo médio de espera.

O cliente obtém deste dispensador uma senha após seleccionar a fila que melhor representa

o seu assunto a resolver. De forma similar, o cliente poderá obter uma senha virtual a partir do

seu dispositivo móvel estando ligado à internet.

A solução proposta é implementada, com material adquirido pelo IST (Raspberry Pis, es-

trutura metálica, tablet e impressora térmica) e software gratuito incluindo Django e o Android

Studio IDE.

Passos futuros para iterar e melhorar este produto são destacados.

Palavras-chave: Gestão do Atendimento, Dispensador de Senhas, Interfaces Admin-

istrativas, Aplicação Web, Integração Móvel

vii

viii

Abstract

Academic services at Instituto Superior Técnico are currently managed with manual ticket dis-

pensers. After obtaining a ticket, customers wait their turn in one queue, devoid of waiting

time estimates. Staff is unaware of the growth of this queue. Service operation activity is not

recorded.

With the goal of improving and modernize these services, a queue management product,

the SIGA System, is designed and implemented in this work. It provides more information to

both customers and staff while keeping record of all service related activities. It is adaptable to

other contexts and can integrate with other existing systems (e.g. authentication, CRM).

After requirements gathering, a server-based solution is proposed, recording all service

operation. It provides administrative web interfaces enabling backoffice operation for the staff

and a queue progress display for the clients. An electronic ticket dispenser connected to the

server and configurable by staff shows one or more queues and the respective average time

wait for each. Clients obtain a ticket from that dispenser by selecting the queue which best

represents their unsolved issue. In a similar way, a client can obtain a virtual tickets from a

mobile device, if connected to the internet.

The proposed solution is implemented, with hardware acquired by IST (Raspberry Pi, metal-

frame, tablet and thermal printer) and free software including Django Web-Framework and

Android Studio IDE.

Future steps to iterate and improve this product are highlighted.

Keywords: Queue Management, Ticket Dispenser, Backoffice Interfaces, Web Applica-

tion, Mobile Integration

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Figures . xvii

1 Introduction 1

2 System Requirements 5

2.1 Problem Statement . 5

2.2 Functional Requirements . 7

2.2.1 Definitions . 7

2.2.2 System Actors and Their Goals . 9

2.2.3 System Use-Cases . 10

2.2.4 Additional Functional Requirements . 20

2.2.5 Non-functional Requirements . 20

3 Proposed Approach 21

3.1 System Architecture . 21

3.2 Server . 21

3.3 Backoffice and Display . 24

3.3.1 Backoffice . 24

3.3.2 Display . 26

3.4 Ticket Dispenser . 26

4 Implementation 29

4.1 Hardware Components . 29

4.1.1 Hardware-level security requirements . 32

4.2 Server Software . 33

4.2.1 Web Application Frameworks . 33

xi

4.2.2 Exploring Web Framework’s architecture 34

4.2.3 Used Web-Framework . 36

4.2.4 Entity-Relationship model in Django . 38

4.2.5 RESTful Web services for Client-Server communication 38

4.3 Front-End: Back-office and Display Interfaces . 41

4.3.1 Operator and Service Admin Interfaces 41

4.3.2 Display . 41

4.4 Ticket Dispenser . 43

4.4.1 RaspberryPi to Tablet connection . 45

4.4.2 Request Handling on the Raspberry Pi . 47

4.4.3 Printing Tickets . 48

4.4.4 Printer Status . 49

4.4.5 Tablet Software: the SIGA App . 51

4.4.6 Ticket Dispenser: Final result . 54

4.4.7 Virtual Tickets . 57

4.5 Overview . 58

5 Test and Validation 61

5.1 Ticket Printing . 61

5.2 RESTful API Endpoints . 62

5.2.1 All Services . 62

5.2.2 One Service . 63

5.2.3 All Queues . 63

5.2.4 One Queue . 63

5.2.5 Ticket Creation . 63

6 Conclusions and Future Work 67

6.1 Conclusions . 67

6.2 Future Work . 67

Bibliography 70

A Backoffice Usage Guides 71

A.1 Entering the System . 71

A.2 Guide I: Operator Interface . 72

A.3 Guide II: Service Admin Interface . 74

xii

A.4 Guide III: Super Admin Interface . 77

B System Configuration Guides 83

B.1 Guide I: Configuring/Swapping Kiosk’s Tablet . 83

B.2 Guide II: Kiosk Raspberry Pi . 85

B.3 Guide III: Display . 86

xiii

xiv

List of Figures

2.1 Simple use case diagram for the SIGA system 19

3.1 System Architecture proposed approach . 22

3.2 System mockup interfaces . 23

3.3 Mockup of the super admin interface. 24

3.4 Mockup of the service admin interface. 25

3.5 Mockup of the operator interface. 25

3.6 Mockup of the Display interface. 26

3.7 Ticket dispenser representation, with touch screen for queue selecting and ticket

being printed by an attatched printer. 27

3.8 Mockup interface for associating dispenser with one of the existing services. . . . 28

3.9 Representation of the mobile application integration, allowing to request tickets

and receive notifications. User has taken ticket A20 and received a notification

on the last ticket called. 28

4.1 Photo of the kiosk with fixed tablet running an application with blue background . 30

4.2 Photo of the kiosk detailing the slitted that aligns with printer and from where the

ticket will come out. 30

4.3 Photo of the kiosk with front door opened, detailing the printer fixed in its respec-

tive compartment. 31

4.4 Photo of the kiosk from the back, with opened doors, where we see the tablet

attached to the frame, the printer compartment. 31

4.5 Picture of RaspberryPis used in the implementation. 32

4.6 Picture detailing intended kiosk components interaction 33

4.7 Three-Tier representation. 34

4.8 MVC architecture diagram . 35

4.9 Simple Entity-relationship model in Crow’s Foot notation. User here can be any

kind of user from 2.2.2. 36

xv

4.10 Our final models in Django. 39

4.11 JSON response for the queues endpoint with service ID (private key in the

database) 1, using Postman. 41

4.12 Functional draft interface for tickets operation. 42

4.13 Functional draft interface for settings operation. 42

4.14 Operation interface with a more advanced design, although still in a preliminary

version. 43

4.15 Display. Next ticket for B queue has been recently called: shows in alternate color. 44

4.16 Display. Last ticket called was B5 to desk 2, already cooled off (no alternate color). 44

4.17 Architecture overview of the Kiosk subsystem. 45

4.18 Picture of the kiosk from the back, with opened doors, where we see the tablet

attached to the frame, the printer compartment, a left grey holder for the cable

connections, power connection and plugs, and a hole in the bottom for other

needed input cables, most notably needed for passing an Ethernet cable to the

Raspberry Pi 3 used to control this system. 46

4.19 Pictures of digitally generated tickets with Imagick 49

4.20 Tickets in their analogue version. 50

4.21 Siga application showing the queues for a certain service, demonstrating lan-

guage changing feature. Depending on which language is selected, the chosen

queue ticket shall be printed in that same language, as shown above in fig.4.19 . 51

4.22 Service selection during first time configuration of the app. 52

4.23 Ticket dispenser, configured for a service, before clicking on the A queue for

ticket request. 54

4.24 Ticket dispenser during the printing, after clicking for ticket. 55

4.25 Ticket dispenser after printing. 56

4.26 App prototype for mobile tickets integration demo. 58

4.27 SIGA Overview: Simple interconnection diagram 59

5.1 Percentage bins for request duration for the Services endpoint. 62

5.2 Percentage bins for request duration for a specific server endpoint. 63

5.3 Percentage bins for request duration for all queues of specific server endpoint. . 64

5.4 Percentage bins for request duration for a specific queue of a specific server

endpoint. 64

5.5 Percentage bins for request duration for a specific queue ticket creation endpoint. 65

xvi

A.1 Login entry point for operators and service administrators. 71

A.2 Login entry point for the super administrators. 72

A.3 Desk selection for operator mode. 72

A.4 Highlighting operation interface functionalities. 73

A.5 Highlighting service administrator interface functionalities. 75

A.6 Landing page for super administrator after login. 77

A.7 Interface for adding a new service. 78

A.8 Super admin interface for selecting which Service to change. Shows upon click-

ing the Change button for the Ticket Services in the landing page. 79

A.9 Changing the academic unit - top part of the interface for changing a service. . . 80

A.10 Changing the academic unit - bottom part of the interface for changing a service. 81

xvii

xviii

Chapter 1

Introduction

Motivation

Numbered tickets, served by ticket dispensers, are probably the simplest existing technology

for managing waiting lines. A staff member operating a queued service can simply call the

next ticket aloud and register the last called number. Alternatively, this same operator can

press a button that makes a speaker signal the call and a LED display to show the ticket

number being called. This latter example is representative of the current queue management

systems deployed in the academic services at Instituto Superior Técnico, where only one queue

is formed by the customers, independent of the issues they might want to solve.

With this current technology the waiting customers have no way to know when their ticket is

about to be called. They can only look at the current number in the LCD display, and make an

educated guess by watching its progress, not being automatically of the current average time

estimate. This forces them to wait near the service, possible for long, or otherwise they risk

losing their turn.

Likewise, there is no means of providing automatic feedback to the staff about current queue

growth or about the effectiveness of their queue operation, based on tickets dispensed and

customers served.

No record of the overall activity of the services is taken. Recording service activity data in

the long run is useful to detect patterns in the service operation, like periods of higher affluence

of customers, periods of lower service efficiency or any others patterns that might be found. By

having this bulk data, its analysis could pinpoint the weak points of the system and where to

act in order to improve the service.

Although the current technological state of our school’s service management tools is not

the most advanced, this does not reflect the state of currently existing queue management

1

solutions. Several entities, like hospitals or public services, already have queue management

solutions that are more sophisticated, dividing their customers in several queues related to their

issues, and providing them with average wait time estimates. Several queue management solu-

tions can be found across the web, such as Sedco solutions1, Qminder2 and Lonsto solutions3,

presenting varying functionality. From these three, Qminder is the solution that best fits our

problem, and the only one to disclose its pricing, which is placed at 250 dollars per month and

per branch. For the three academic services at IST, this would ammount to 750 dollars per

month.

An internally developed system has several advantages. First, being a tool developed in

IST, it can be used by our community with pedagogical purpose: through continuous iterations

and improvements, future interested students can contribute to this product and learn with it.

Second, the control of costs and functionality shifts to our side, and by developing it we can

better control its cost-effectiveness, a part of our system requirements, along with functionality

needed for systems integration (e.g. authentication, user databases, CRM). Last but not least,

our academic services and current infrastructure also permits deployment of this system to be

tested and improved with real service operation data. So, after proven in our environment, the

ability to sell the developed system as a product to interested entities is also a plus.

As such, with the initial goal of optimizing our school services and provide a much better

experience both for customers and staff, a server-based integrated queue management system

is designed and implemented to be deployed in three academic services of IST.

This comprises interfaces for the backoffice operation in the form of a web application, to be

used by the staff, providing information of queue growth upon ticket dispensing, and the ability

to call tickets from several queues. Staff is responsible for configuring (creating, deleting or

editing) the possible queues.

These backoffices work along with a ticket dispenser kiosk which enables users to get

numbered tickets for different types of queues that reflect the issues they want to solve, and

provides them with average time estimates for each queue. They can also consult the current

queue status on a display near the service, and remotely if needed.

Also, upon integration with an existing user database, authenticated users are allowed to

obtain virtually dispensed tickets and get notifications about queue status on a mobile applica-

tion.

Software is selected such that integration with existing user databases or existing Costumer

1http://www.sedco-online.com/en/content/queuing-and-routing
2https://www.qminderapp.com/
3http://www.lonsto.co.uk/pc/6/queue-management/ticket-controlled-queuing-systems.html

2

http://www.sedco-online.com/en/content/queuing-and-routing
https://www.qminderapp.com/
 http://www.lonsto.co.uk/pc/6/queue-management/ticket-controlled-queuing-systems.html

Relationship Management (CRM) software is feasible.

Being a server based solution, the operations that occur in this system are properly stored

in a database, and thus service activity operation is recorded and can be queried any time.

In overview, in this project we developed a web infrastructure providing backoffice and client

interfaces and physical and virtual ticket dispensing that together support a queue management

system offering:

1. Support for different services and different queues in each service;

2. Interface for service operators;

3. Interface for users to get tickets;

4. Service activity logging to enable performance assessment and other types of reports;

5. Basic visual statistics;

6. Enable the future implementation of additional services that may require authenticated

users (e.g. CRM).

Although the solution developed during this work stems from the specific need of our school,

its design and implementation kept the broader vision of achieving a general-purpose product

of potential interest for any service with waiting lines.

Document Structure

The remainder of this document is divided in 4 more chapters. The second chapter details

the requirements for the SIGA system. First we state the problem to be solved. Then, we

present the needs that must be addressed by the system from the perspective of all existing

users, answering the question: what should each user be able to do with this system? From

here we extract several use-cases that capture the essential functional system requirements.

The few functional requirements that cannot be assessed through the user’s perspective or the

use-cases are subsequently presented, completing the functional design. Ending this chapter,

the non-functional requirements are assessed.

Afterwards, in the third chapter, we propose an architecture for our system that addresses

all the functional requirements and use-cases. Each element of the proposed approach is ex-

plored, and a final overview details the elements and their interconnection. We end this chapter

with a summary of required components necessary to implement the proposed architecture.

3

Following the proposed approach chapter, the fourth chapter delves into its implementation

details. The hardware that our school had already acquired for this project is presented, along

with the software used for the architecture implementation. The back-end data model is de-

picted, along with developed interfaces, and other parts of the implementation are highlighted,

including the printing of tickets, the logic behind managing the hardware used by the costumers

and the RESTful API that was developed and which enables the communication between sys-

tem elements. The chapter ends with an overview of all the interconnections of our system,

and a cost-effectiveness assessment.

The fifth chapter provides the reader with test results for the system in development phase.

These tests include printing tickets speed results and load tests to our endpoints, from where

we draw some current system limits.

In conclusion, the last chapter presents an overview of the accomplished work, reviewing

the steps made during the implementation, and proposing future steps and needed iterations

to lead this project into both a polished and better product.

4

Chapter 2

System Requirements

2.1 Problem Statement

At Instituto Superior Técnico, the academic services store no information on how they manage

service customers: one queue is formed, numbered tickets are dispensed to customers who

in turn are called by their arriving order. We now exemplify the current lack of information for

the two parties concerned (customers and staff), thus bringing to light how its existence could

improve their experience and the efficiency of operation.

Weighting in decreased efficiency, we have the lack of information on the operation side.

Staff elements have no way to see which issues are on higher demand as the queue grows,

thus cannot prioritize issues over others. At the end of the day, or month, or year, there is

no way to account for statistics on service operation. This data, particularly if obtained for a

long period, can be used to improve planning and thus bring efficiency to the operation of the

service. Also, to increase efficiency and service quality, more information could be given to

customers. Because they have no means to know their estimated waiting time, waiting near the

service office becomes necessary.

Thus, the problem we propose to address in this work is that of the uninformed queue

management. As pointed out in [1], having detailed information on how queues are operating

(e.g. user arrival time distribution, staff element productivity, etc) can lead to better modelling of

the service operation, thus enabling better decisions towards its (multi-objective) optimization

(e.g. customer waiting time, staff idleness, service utilization).

As an example, in a service with a first-come first-serve policy, queueing theory studies

point the multiple-cashier single-queue style as the most efficient [1]. By dynamically prioritizing

one queue over others and support multiple queues calling from different staff members, the

multiple-cashier would just happen naturally in our school scenario, because only one physical

5

queue would exist in practice. However, the study in [2], considering the social aspect of the

problem and focusing on minimizing waiting times, concludes that parallel physical queues are

the best solution. Other studies, also highlighting the social component that the operating staff

brings to this question, debate on how visual feedback might be important for increasing staff

efficiency [3] and what trade-off can be expected from changing the intensity of service [4][5].

With this in mind, and as before mentioned, we wish to develop a queue management

system that could provide both the school and its students and staff with better information. Our

work sets out from a practical standpoint, without restricting our system to a particular queueing

theory: we wish to develop a configurable system, where any of the above mentioned theories

and can be tested and fine tuned to the specific needs of the service where it is to be deployed.

After deployment, it could be even used to test and find new theories for queue management

improvement, based on the acquired data and configurable parameters.

We now proceed to describe the base features that this system should offer to its users.

The number of services and respective queues this system serves should be configurable

by the technical administrator that installs the system in the service provider entity (e.g. in IST).

For the operations, it should provide the service with the possibility of calling tickets of

different issues based on either a system’s suggestion (from a list of possible heuristics or a

default one) or by operator’s choice of a certain queue. The term queues will refer to those

different issues henceforth, and is unequivocally defined in 2.2.1. An example: Queue A -

Payments; Queue B - Enrolment; Queue C - Certificates. Staff members should be able to see

real-time queue data to help them make an informed decision on which queue to call next user

from.

In parallel, customers should be able to get a ticket for a given queue. Also, we wish to

provide the customers with updated waiting time statistics, and even notifications to a mobile

application that is linked with the service, which can dispense virtual tickets upon authentication

and inform them when they are about to be called.

This system should record all the operation data for further analysis with the objective of

pointing out possible improvements and better informing the staff on how to prioritize differ-

ent matters (that is, manage several queues) in both real-time and specific periods of higher

demand. It should also provide the staff with an easy to use back-office interface, and the

customers with an easy to understand queue progress display.

Because this is a broad problem, present not only in our school, but in all kinds of services

with users waiting to be called, we wish to develop a product that is customizable, making it

also possible to integrate with other services and existing CRM systems and user databases.

6

2.2 Functional Requirements

Functional requirements capture the intended behaviour of a system, and thus, a way of pro-

viding a structured functional blueprint, useful for both developers and users.

This base functional requirements were provided by the chief of undergraduate academic

services of IST, and elements of the Computer and Network Services (DSI), in line with the

problem statement above.

First, to better capture the system’s functional requirements, some terms will be defined,

maintaining their meaning throughout the whole document.

Second, having the functional requirements in mind, we define use-cases for better guid-

ing the interfaces development from a user perspective, and proceed with a general use-case

diagram for the overall picture. This approach is based on the use case concept first intro-

duced in [6], adopted by the UML specification1 and by other authors who expanded it and

complemented it with their own templates and definitions like Cockburn [7] and Fowler [8].

2.2.1 Definitions

The following term definitions are used to clarify contextual concepts of this work. In order to

maintain the meanings clear, examples with an application of this system in a school or an

hospital are provided when deemed necessary.

Service Provider Entity An entity that implements our system to use in the various services

it provides, for example, our School, that will require this system for three of its academic

services, or an Hospital, for managing patients priority or a personnel administration back-

office.

Service In an University, it could be its academic services, where students need to deal with

payments, enrolment or require a certificate. In an Hospital, the reception where peo-

ple attended and further redirected upon having a scheduled apointment, an urgency or

physical examinations to make.

Kiosk or Ticket Dispenser System near the service offices with an interface for the user to

select a queue. Returns the customer a physical ticket.

Customer Any individual that uses a service. Further subdivided in:

Kiosk Customer Customer that gets a ticket from the kiosk, near the service desks, for

a certain queue.
1http://www.omg.org/spec/UML/2.5/PDF

7

Authenticated Customer This customer gets a virtual ticket remotely in exchange for

his credentials for that service.

Staff Individuals responsible for running the service. Further subdivided in:

Super Administrator Responsible for managing the system base features (managing

everything technically service related).

Service Administrator Chief of Staff for the service. Can configure existing queues and

access service activity information.

Operator Staff members that call the customers and solve their issues.

Queue An identifier for typical customer issues, used to screen customer by their issues. In

the academic context, a graduated student might need to request a “A - Issuance of

Certificates”, or proceed with late “B - Fee Payments”. In an hospital context one could

find the choices at reception for “A - Scheduled Examination” or “B - Urgency”. The term

queue does not refer to a physical queue. It is more like a virtual queue, a way of dividing

the customers into the several issues they wish to deal with. The queue itself might be

organized as the staff wishes.

Desk Here the term desk is used as a generic place where the customer is called to discuss

his issue. The idea is that this system will be used in the above described multiple-

cashier style, so each “cashier”, which can effectively be a cashier, a counter, or a simple

reception desk, is generically called desk, followed by an identifier (e.g. Desk 1), and

associated to its currently operating staff member (e.g. Alice). Having the desk indentifier

is needed so that a customer knows which Desk to address when called by the operator

of that Desk. Important Note: A desk is not equivalent to a desk operator: if Alice, initialy

in Desk 1, exits the system, Desk 1 gets free to be chosen by any desk-unassigned

operator, as we will see further in Section 2.2.2.

Ticket A uniquely numbered ticket per service session corresponding to a Queue and Ser-

vice, created for a customer. Must contain info on Queue and Service name, with a short

queue identifier and the unique number (e.g. Academic Services, Issuance of Certifi-

cates, B047).

Service Session Period of time until the ticket loses validity, by default coinciding with the

office open-hours. Tickets taken in the previous session are not valid for a present or

future session. Can be extended or set to the default by the Service Administrator.

8

2.2.2 System Actors and Their Goals

In the above mentioned modelling literature, use cases are described as “interactions with a

specific goal between actors and the system under consideration”. Actors are external parties

to the system that interact with it, possibly being classes of users or roles a user can play.

This system will be used mainly by two parties: the staff, and the customers. These parties

are further subdivided into more specific actors, their role as detailed above in Section 2.2.1.

System actors and their goals, that is, the actions they can perform in the system, are now

listed.

Service Staff

• Super Admin

1. Login and logout to and from the super admin interface

2. Create/Modify/Delete Services for a generic service provider entity that installs this

system (e.g. for our University: Post-Graduate Academic Service, Undergraduate

Academic Service, International Mobility Service)

3. Define service open-hours (service management)

4. Define maximum number of queues for certain service (service management)

5. Define a logo for the tickets to be printed (service management)

6. Create/Edit/Delete staff members of any type

7. Associate a Kiosk/Ticket Dispenser to an existing service

The Super Admin doubles as the technical administrator and maintainer of the whole

system. This means he will have access to all the created data and used technologies.

As an example, he may create a new user authentication system for SIGA or integrate it

with an existing one.

• Service Admin

1. Login and logout to and from the service admin interface.

2. Give and remove service admin privileges to and from operators

3. View and edit Service Settings, use Operation Mode and visualize Statistics

4. Settings: Create/Edit/Delete Queues (e.g. Enrolment, Certificate Requirement, Grade

Improvement, Others)

9

5. Settings: Select Service Session duration period (between normal office hours or

manual)

6. Settings: Select heuristic for “next ticket to call” suggestion from:

(a) First-come,first-serve

(b) Minimize average wait-time for the service

7. Operation Mode: Can choose a desk and call tickets, performing the role of the

Operator.

• Operator

1. Login and logout to and from the system. Upon login, operator is prompted to select

a desk number

2. Call a customer (by system suggestion or from a queue) to his desk

3. Open or Close the service, that is, stops tickets creation

Customers

• Kiosk Customer

1. Get a ticket for a queue that categorizes this customer’s issue

2. Identified by the ticket, gets called by the service to solve that issue

• Authenticated Customer

1. Log in the appropriate service application, mobile or web, and get a virtual ticket for

a queue categorizing this customer’s issue.

2. Get notifications about that queue’s progress, until called by the service to solve the

issue, given that the customer used the given info to approach the service in time.

2.2.3 System Use-Cases

We now depict the above goals with system use cases. These use cases are structured in a

way similar to the template presented in [8].

Refer to diagram 2.1 to see the use whole system case diagram.

10

Use Case 1: Get an issue solved

Primary Actor: Kiosk/Authenticated Customer

Main Sucess Scenario:

1 Customer walks to the service

2 Gets an estimation of waiting time for each queue in the Kiosk interface,

and sees the last tickets called for each queue in a nearby Display

3 Customer interacts with the Kiosk, selecting the queue most closely corre-

sponding to her issue

4 From that selection, customer gets a physical Ticket, with an unique num-

ber for that queue

5 Customer waits to be called

6 Customer is called : display emits a notification sound, and blinks her ticket

(queue and number) and the desk she should address to solve her issue

with the calling operator.

Alternatives and Extensions:

1A Customer authenticates login in his device

2,3A Gets same info and selects queue in his device

2B The service is closed: No ticket can be selected. A prompt asks to try again

when service reopens

4A Receives a virtual ticket

4B System is out of paper: kiosk will halt until service staff replaces paper.

5A Customer remotely waits to be called, receiving notifications in his device

about queue status

11

Use Case 2: Serve Customer

Primary Actor: Operator

Main Sucess Scenario:

1 Operator sits on a Desk. Logs in the system, and inserts his desk identifier.

2 Operator now has visibility of all service queues, and info on how many

customers are waiting on each. He can choose to call a customer from a

specific queue or call from system’s suggestion.

3 Operator calls customer with one of the methods above, and waits for him.

Upon calling, two events take place. First event, in the operator inter-

face: a prompt appears. Customer info might appear filled or to fill if he is

either authenticated or not, respectively. A box detailing the subject can be

filled. He can now close Ticket. Second event, in the exterior Display: A

notifying sound will be played and the called ticket will blink on the screen,

with the calling operator’s desk present.

4 Customer appears. Desk operator deals with her problem/request, fills in

the info, and closes ticket.

Extensions:

4A Customer does not appear after reasonable time: Operator closes ticket,

possibly filling the info that this user did not appear.

Use Case 3: Open or Close Service

Primary Actor: Operator

Main Sucess Scenario:

1 Operator presses button to Open or Close the service

2 Ticket creation gets Activated or Deactivated respectively

12

Use Case 4: Manage Service Session

Primary Actor: Service Admin

Main Sucess Scenario:

1 Service Admin logs in. From three interfaces (Operator, Statistics and Set-

tings), he is always presented with settings upon login.

2 On the settings interface the service admin can change the default service

session behaviour from the default office-hours to free-mode.

3 Now, ticket numbers do not reset to number 1 on the next office-hours (day

of operation), only when this option is back to the default behaviour.

Extensions:

2A The behaviour was free-mode. Service admin changes to office-hours

3A Now, ticket numbers will reset on the following day’s office-hours

Use Case 5: Change Operator Permissions

Primary Actor: Service Admin

Pre-condition: Is logged in (check use case 4)

Main Sucess Scenario:

1 In the settings interface, the service is presented with a list of operators, for

which she can give or remove admin permissions.

2 Selects an operator with no admin permissions. Now this operator can do

the same as a service admin.

Extensions:

2A The operator already had admin permissions: will now be back to only

having operator permissions again.

13

Use Case 6: Manage Calling Heuristic

Primary Actor: Service Admin

Pre-condition: Is logged in (check use case 4)

Main Sucess Scenario:

1 In the settings interface, suggestion modes can be choosen.

2 He proceeds to select the first mode, “First-Come First-Serve”. The sug-

gestions for the operator interface now follow that heuristic.

Extensions:

2A He selects option “Average time wait minimization for the service”. Sugges-

tions are now given in a way to minimize average time wait increase in any

queue.

14

Use Case 7: Manage Queues

Primary Actor: Service Admin

Pre-condition: Is logged in (check use case 4)

Main Success Scenario:

1 In the settings interface, the service admin sees a list of all queues for this

service. He can:

1. Add a queue

2. Delete or Update an existing queue

2 Service admin chooses to add a queue.

3 He is prompted to enter a name for the queue (e.g. “Fee Payments”) and

assign it a short name (consisting of all current letters of the alphabet not

yet chosen). He then saves these changes (could discard). Now a new

queue is on the system, and presented on the kiosk and display.

4 Service admin chooses to delete an existing queue.

5 Prompted to confirm or cancel that decision, admin confirms. The kiosk no

longer shows this queue on either kiosk or display.

6 The service admin chooses to update an existing queue.

7 He is prompted for a new name and short name, and saves changes (could

discard). Now the name and short-name of that queue are changed corre-

spondingly.

Extensions:

2A System reached number of maximum queues: admin sees this information

and can’t access interface to add further queues.

5A Discards changes.

7A Same as above.

15

Use Case 8: Change Role or Visualize Statistics

Primary Actor: Service Admin

Pre-conditions: Logged in (check use case 4), in settings interface

Navigation Usage Scenario:

1 From the settings, operator or statistics interface, the admin can always

navigate to the other two. Admin navigates to statistics.

2 He can now visualize several statistics from the collected data of service

operation, or navigate to the other two interfaces.

Extensions:

1A User navigated to Operation. He is now an operator, and all proceeds as in

use case 2 except for the login which is already made.

1B User navigated to Settings tab. Nothing changed.

2A The service has been operating recently. No statistics are shown.

16

Use Case 9: Configure Kiosk and Display

Primary Actor: Super Admin

Main Success Scenario:

1 Super admin configures kiosk (or the display) operating for the first time

2 Existing services appear listed in the kiosk/display (because they were

firstly added to the system, as in use case 10)

3 Super Admin selects which service he wants this kiosk (or this display) to

be associated with (e.g. “Academic Services” or “Pos-Graduate Services”).

It will now correctly fetch info for the selected service for the configured

device.

Extensions:

2A No services are listed. Super Admin must add services first (use case 10),

and then re-initialize the devices configuration.

17

Use Case 10: Manage Service

Primary Actor: Super Admin

Management Scenario:

1 Super admin logs in to his interface

2 Chooses to add a new “Service”, between service and users.

3 In this interface, the several input fields appear. User enters a service

name, one desk, office-hours and proceeds to add a new staff member.

4 Saves a new staff member, of type operator.

5 Adds an operator to the service. Proceeds to add a new queue.

6 Sets queue info as defined in use-case 7. Saves.

7 Saves this service. Gets back to initial interface, and adds a new user of

type service admin.

8 Updates previously created service by selecting admin to make part of it.

9 Configures a kiosk for the created service

Extensions:

4A Discards user creation. No new user for this service. No one can operate

it.

6A Discards queue creation. No queues are created. Kiosk will show no

queues.

7A Discards service creation. With no services, nothing can be used.

7B Discards new user creation. No service admin is added.

8A No service exists from 7A, so can’t add created user

8B No user created from 7B to add to the service.

18

SIGA System

Service Admin

Operator

Super Admin

Get a
ticket

Attend
user

Manage
Queues

Kiosk User

Authenticated
User

Manage
Users

Manage
Services

Manage
Calling

Heuristic

Open or
Close

Service

Manage
Service
Session

«extend»

Get a
ticket

remotely

«include»

Change
Operator

Permissions

Change
Role or
Consult

Statistics

Configure
Kiosk
and

Display

Service
Admin also
plays
Operator
Role

«include»

«include»

«include»

Figure 2.1: Simple use case diagram for the SIGA system

19

2.2.4 Additional Functional Requirements

Records

On top of the functional requirements specified which were based on the use cases of the

system, the system shall never really delete any information that was collected. As an example:

all tickets created for the queues, even after queues are deleted through the interface, stay

stored and accessible, for purposes of data retrieval for future analysis and automatic report

generation .

Security Requirements

Also, the kiosk interface shall not have a direct internet connection, to prevent tampering from

the customers side. It should never be able to permit clients to use it for other purposes besides

getting tickets, or staff configuration.

The kiosk must also prevent clients that may request many tickets for the ill-purpose of

wasting resources (e.g. paper), by having an acceptable (0.5-1s) time-wait cooldown between

prints, besides blocking ticket printing request while printing the ticket.

The printing of tickets may only be authorized to the physical ticket dispenser or to a user

that is authenticated.

Integration Requirements

1. Authorization backend customization: staff should be able to login into back-office opera-

tion with already existing login back-end system.

2. App customers should be able to request remote tickets, with the app and respective

notification service also using the previously integrated authentication backend.

2.2.5 Non-functional Requirements

This system should be easy to work with for both customers and staff (user friendly interfaces),

customizable and deployable for different service provider entities (e.g. other universities, hos-

pitals, etc.) and achieve cost-effectiveness.

It should be server-based, easy to configure and scalable, ideally enabling the remote de-

ployment of client units that will self-configure upon server connection, making it easier to

deploy in large organizations and extensible to provide interfaces to devices external to this

system.

20

Chapter 3

Proposed Approach

3.1 System Architecture

Our solution will be server based, providing backoffice interfaces for the staff and client inter-

faces for the customers. An overview of this system’s architecture is depicted in Figure 3.1.

The respective interface mockups are depicted in Figure 3.2.

3.2 Server

The server shall be the main component of our system. It will be used to log all interaction

with the system on a database, as well as enable the needed interfaces. In order for this to

work, each component must have a corresponding computational unit to be able to establish a

connection with the server. The idea is to communicate with most of the components through

HTTP in a local area network (LAN), although internet might be used. It is necessary for the

case of the authenticated client, that accesses the service from his mobile device only with an

internet connection.

This server, deployed in a certain entity (e.g. university, hospital, social services) will be

able to serve all its services at the same time. That is, the super admin that installs the system

will be able to configure several services that will be managed by the system (e.g. in the case

of a university - Academic Unit, Post-Graduate Unit, International Mobility Unit). Therefore, it

will serve the multiple back-office and customer interfaces,for each of those services. These

interfaces, that we now present, must allow its users to execute the operations specified in the

the use-cases presented in the previous chapter.

21

Internet

B
ackoffice Interfaces

K
iosk: 3 com

ponents
(E

lectronic Ticket D
ispenser)

S
erver

(running w
eb app)

S
uper

A
dm

in

S
ervice

A
dm

in

O
perator

N
etw

orked S
ystem

s - in LA
N

Internet access m
ight exist for each but not

necessary.
A

ll com
m

unication to be H
TTP

 based.
1. Touch user

interface

2. C
om

putational
unit for control

and server
connection

3. Ticket printer

D
isplay: 2 com

ponents

1.
C

om
putational U

nit for control
and server connection

2.
M

onitor for displaying queues
progress

A
uthenticateed U

ser
in M

obile device
(V

irtual ticket dispensing)

Figure
3.1:

S
ystem

A
rchitecture

proposed
approach

22

New Service
Creation :

Super Admin Interface

Existing Services:

Academic Unit (edit) (delete) Post-Graduate Unit (edit) (delete)

Name

Session

Max Queues

Service Admins (+)

Service Workers (+)

Upload New Logo

Add (+)

Logout

Other Settings :

Service Admin Interface

Existing Queues:

A - Tuition Payments (edit) (delete)

B - Grade Improvements (edit) (delete)

Session (edit)Service Admins (edit) Service Workers (edit)

Add Queue (+) Consult Statistics Operation Mode

Academic Unit Logout

Operator Interface

Queues:

A - Tuition Payments (Call)

B - Grade Improvements (Call)

Academic Unit LogoutDesk: 2

In Queue: 5

In Queue: 12

Call Next

Avg Wait: 5min

Avg Wait: 2min

Server

Backoffice Interfaces

Display

Ticket Dispenser

Virtual Ticket
Dispenser

Tickets

Display

Desk

A07

Academic Unit

B42
(being called)

2

1

Academic Unit

A - Tuition Payments
Avg Wait time: 5min

B - Grade Improvements
Avg Wait time: 5min

Ticket A16

Academic Unit
Tuition Payments

(Printer)

(Touch Interface)

Academic Unit

A - Tuition Payments
Avg Wait time: 5min

B - Grade Improvements
Avg Wait time: 5min

Notification: A15 called 1 min ago

Current Tickets: A20

Figure 3.2: System mockup interfaces

23

3.3 Backoffice and Display

3.3.1 Backoffice

The backoffice interfaces will be web pages, being served by our server running a web-application,

that the staff can access in their computers, given they have a network connection to our server.

Our back-office interfaces will have three variants, one for each of the staff roles: the super

admin, the service admin and the operator. For the super admin, the idealized interface is

illustrated in Figure 3.3, containing the fields needed for adding a new service, and a display of

editable existing services, enabling the tenth use case, service management.

In Figure 3.4 we can visualize an interface with the enough elements to enable the ser-

vice admin to reach his goals: Adding and editing queues or workers, editing session, editing

call suggestion heuristic, and grant/revoke admin permissions. Also, navigation into the other

mentioned modes is possible.

For the operator, Figure 3.5 displays the existing queues and the info they should convey:

number of customers per queue and the average time between customer calls. The next cus-

tomer can be called directly from a queue or from a suggestion above. The operator’s desk is

shown as already selected.

New Service
Creation :

Super Admin Interface

Existing Services:

Academic Unit (edit) (delete) Post-Graduate Unit (edit) (delete)

Name

Session

Max Queues

Service Admins (+)

Service Workers (+)

Upload New Logo

Add (+)

Logout

Figure 3.3: Mockup of the super admin interface.

24

Other Settings :

Service Admin Interface

Existing Queues:

A - Tuition Payments (edit) (delete)

B - Grade Improvements (edit) (delete)

Session (edit)Service Admins (edit) Service Workers (edit)

Add Queue (+)

Consult Statistics Operation

Academic Unit Logout

Settings

Heuristics (edit)

Figure 3.4: Mockup of the service admin interface.

Operator Interface

Queues:

A - Tuition Payments (Call)

B - Grade Improvements (Call)

Academic Unit LogoutDesk: 2

In Queue: 5

In Queue: 12

Call Next

Avg Wait: 5min

Avg Wait: 2min

Figure 3.5: Mockup of the operator interface.

25

3.3.2 Display

Customers who take a physical ticket will have a Display near the service that informs them on

the current queue status. This display is actually a monitor or TV, connected to a computational

unit that is fetching a specific web page for queues progress for this service from our server.

That computational unit only needs to run a browser and have a network connection to our

server. Queue progress web pages for the various services can also be accessed through the

internet in a home computer, if one knows the URL address.

When the staff operator uses the backoffice interface to call the next ticket, the Display

interface will notify which ticket was called, and to which desk the customer with that ticket

must present itself. A depiction of an the intended information for the Display interface is shown

in Figure 3.6, along with the contrast between calling and called tickets, complying with the

use-cases and goals where customers need queue status information.

Tickets

Display

Desk

A07

Academic Unit

B42
(being called)

2

1

Figure 3.6: Mockup of the Display interface.

3.4 Ticket Dispenser

There will be two ways for customers to get tickets: through a physical ticket dispenser, also

called kiosk, where they select the intended queue from a touch-screen display interface;

through a mobile application, from where they can get a ticket for a queue, and receive no-

tifications updating the status of that queue.

26

As one can see in Figure 3.1, the Kiosk will have three main components: a touch interface,

a computational unit, and a printer. This computational unit will be responsible for interpreting

the touch-screen interfaces and communicate them to the server (e.g. create ticket for queue

A). It will also be responsible to interpret the server response and give order for the printer to

print a ticket. The interface to be presented in the touch-screen is depicted in Figure 3.7, along

with a printer and a ticket.

In 3.8, we see the configuration mode for the first time the Kiosk attempts to connect to a

service: it presents the existing services, as portrayed by the ninth use case. A similar interface

shall be displayed to the authenticated user before proceeding to the queues, and the first time

a display is configured.

Academic Unit

A - Tuition Payments
Avg Wait time: 5min

B - Grade Improvements
Avg Wait time: 5min

Ticket A16

Academic Unit
Tuition Payments

(Printer)

(Touch Interface)

Figure 3.7: Ticket dispenser representation, with touch screen for queue selecting and ticket
being printed by an attatched printer.

The virtual ticket can be obtained through an application, as depicted in Figure 3.9. The

several tickets obtained are also depicted. Note that, as previously explained in Figure 3.1, this

user needs an internet connection in order to communicate with the server.

27

Configuration Mode

Academic Unit

Post-Graduate Unit

(Touch Interface)

Figure 3.8: Mockup interface for associating dispenser with one of the existing services.

Academic Unit

A - Tuition Payments
Avg Wait time: 5min

B - Grade Improvements
Avg Wait time: 5min

Notification: A15 called 1 min ago

Current Tickets: A20

Figure 3.9: Representation of the mobile application integration, allowing to request tickets and
receive notifications. User has taken ticket A20 and received a notification on the last ticket
called.

28

Chapter 4

Implementation

In the sequence of the previous chapters, we now build from the requirements and the proposed

approach onto the specifics of our implementation. We will progressively unveil which software

and hardware tools we put to use as we now describe each part of this system. We start by

describing the used hardware elements, acquired by our school before the start of the project.

4.1 Hardware Components

Before this project started, some hardware was already chosen and acquired. This system is

a need our school has been trying to fulfil for some time, and during those attempts acquired

some materials for prototyping the Kiosk in our school services. Although these elements had

no influence on the functional requirements already assessed, they heavily influenced parts of

the implementation, notably, the development of the kiosk interface and its interconnections, as

we will see below. We now list the acquired materials:

Kiosk metal frames, ready for cable connections and a front opening that was cut to fit the

screen of a 9.7 inch tablet as a display, that is fixed with a metal piece through the back.

It also offers a metal compartment for a thermal printer, with a slitted cover to output

its printed thermal paper (check Figures 4.1, 4.2, 4.3 and 4.4). This frame is a national

product, completely manufactured in Portugal, by Partteam1.

Galaxy Samsung Tab A tablets. This model, the SM-T5502, comes with Android version 5.0.1

(Lollipop) as its operative system. Due to its low screen resolution, it’s perfect as a cost-

effective and user-friendly kiosk interface, which can be seen in Figures 4.4 (the back)

and 4.1 (front).
1http://www.partteams.com
2http://www.samsung.com/us/support/owners/product/SM-T550NZWAXAR

29

Figure 4.1: Photo of the kiosk with fixed tablet running an application with blue background

Figure 4.2: Photo of the kiosk detailing the slitted that aligns with printer and from where the
ticket will come out.

30

Figure 4.3: Photo of the kiosk with front door opened, detailing the printer fixed in its respective
compartment.

Figure 4.4: Photo of the kiosk from the back, with opened doors, where we see the tablet
attached to the frame, the printer compartment.

31

TMII-20 Epson Thermal Printers Thermal printers are mostly used in point of sales systems,

but have been also re-purposed for printing numbered tickets in waiting lines. They use

thermal paper that changes tonality when heated, hence their name. The Kiosk hols a

TMII-203 into its printer compartment with the right adjustments, as shown in the photos

presented in Figures 4.4 and 4.3

RaspberryPi models 2B and 3B4, as depicted in Figure 4.5. Nowadays, RaspberryPis are

widespread. In a nutshell, a RaspberryPi is a small computer that can run GNU/Linux

based operative systems, and interface with other technology through its plethora of con-

nections (USB, Ethernet, Wi-Fi, GPIO and Bluetooth). Very useful as system’s controllers.

Figure 4.5: Picture of RaspberryPis used in the implementation.

Having these items to build the kiosk, its architecture almost outlines itself. The tablet is the

display interface for users to pick their queue. It registers this request by communicating with a

RaspberryPi, that in turn communicates with the server, requesting a new ticket number. After

receiving the newly created ticket from the server, the RaspberryPi prepares and sends this

ticket’s info onto the printer, that prints a physical thermal paper ticket into the world. A diagram

of this interaction is presented in Figure 4.6.

4.1.1 Hardware-level security requirements

As previously defined in the additional requirements in Section 2.2.4, given that the Kiosk is

exposed to the public, the kiosk component used for interaction, that is, the tablet, shall not

communicate directly via Wi-Fi with the server or the internet in order to add a layer of security

to the system (e.g. against users that may try to tamper locally with the interface and ill-use the

existing internet connectivity).

3https://www.epson.pt/products/sd/pos-printer/epson-tm-t20ii-series
4https://www.raspberrypi.org/products/

32

PrinterTablet
Raspberry

Pi

Server

2. Forward request
to server (if printer
status ok*)

1. Request
ticket

3. Server
responds with
created ticket

4. Informs the
user ticket will
start printing

5. Creates a
ticket and sets
printer to print it

* Printer status is
checked in each
step

Figure 4.6: Picture detailing intended kiosk components interaction

A user may tamper with it anyway if he reaches the RaspberryPi. However, the metal frame

adds layer of protection to the RaspberryPi to a certain extent (e.g. as long no one breaks

through the tablet). Also, the RaspberryPi could be configured to be in a private ethernet-

enabled LAN with the server, limiting further the Kiosk’s internet connection.

Also, given that the tablet will be running the interface, we need to ensure that there is

no way the user can close this interface or start opening other applications and messing with

the device configurations. A brief exploration of the Android capabilities pointed out to the

solution which relied on the possibility of setting an application in pinned mode - that is, the app

stays active (one cannot go into definitions or other menus) unless you have physical access

to specific tablet buttons: which, having all the Kiosk’s metal frame doors closed and tablet in

place, is impossible.

With these constraints solved, we leave the kiosk for later integration with the server, with

the following problem in mind: the kiosk interface must be an Application, to use needed OS

functionality, and as such, its interface will not be served as a web application. A way must

be found so that our server based solution can provide information to build the application’s

interface and respond to its usage.

4.2 Server Software

4.2.1 Web Application Frameworks

In the early days of the web, web-pages were made by serving hand-coded HTML, published

on web servers. CGI, the Common Gateway Interface standard, was introduced with the intent

of interfacing external applications with web servers: in order words, going into an URL might

trigger code on the web server to perform some computations before serving a page. With time,

33

languages made for the web started to emerge. Today, full-stack frameworks that span utilities

for web development across various contexts (database management, HTML generation, URL

routing, security, etc) are freely available to developers. Some of the most famous include

Laravel, Ruby on Rails and Django.

In short, all these frameworks have the intent to streamline the development process by

automating some of the parts, structure the code and component reuse. Most of these archi-

tectures follow the Model-View-Controller software architectural pattern, which will be explained

shortly.

4.2.2 Exploring Web Framework’s architecture

Web applications are normally based on the same architectural patterns. This pattern is found

to be either 3-tiered architectural pattern[9] 5 or Model-View-Controller6 pattern, MVC [10].

These are similar patterns, with the exception that the topology of the latter is linear instead of

triangular, that is, each layer only communicates directly with the one above or below, as we

will see now.

The 3-tiered architecture

The 3-tiered architecture is depicted in Figure 4.7. Tier 1, the presentation, displays an inter-

face: An Operator calls a queued user from an interface; A user interacts with the kiosk through

an interface. These actions trigger Tier 2, the logic, which will: Mark ticket user as called (set

in in tier 3), inform the display to call user (instruction to tier 1); Create a new ticket (set in tier

3), generate the corresponding ticket to user (set in tier 1). The data, tier 3, already registered

both a new state for the user ticket (called) and a new ticket created in kiosk.

Figure 4.7: Three-Tier representation.

In resume, the three tiers, and how we map them into a client-server operation, are:

5https://msdn.microsoft.com/en-us/library/ms998478.aspx
6http://c2.com/cgi/wiki?ModelViewControllerHistory

34

Presentation All the system interfaces shall belong to this tier, requesting and receiving info

from the logic tier, a server, and presenting them to the back-office or the front-office

(kiosk, display), the client.

Logic Calculations, selecting which data to be presented or saved, business rules, data trans-

formations, are all computed in a server, and then sent to the respective tiers.

Data This is where our models reside. Everything to be logged, created, deleted - every ex-

isting entity (Tickets, Queues, Services) - are saved in this tier, a database that can be

internal or external to the server.

Model-View-Controller

This pattern is commonly used to implement user interfaces on computers, and does not need

to cross the stack (can be only a visual application on top of a presentation layer). An MVC

diagram can be consulted in fig. 4.8.

Figure 4.8: MVC architecture diagram

In this architecture, the code for handling the application’s data model, user interfaces and

control logic, is also separated into these three different interconnected components: The

Model, the View and the Controller.

Model The Model stores all data, and its relationships, that can be retrieved/created with a

controller and displayed into a view.

View A View presents different information based on changes (updates) to the model.

Controller A controller can update the model’s state, or instruct the view to change the way

the information is being presented (e.g. scrollable, fixed, mobile-friendly etc.).

35

As can be observed, opposed to the 3-tiers, here the controller can access both the model

and the view, which communicate unilaterally (view gets updated by model changes).

However, independently of how each subsystem eventually communicates, what matters is

that most Web Application Frameworks cross the various levels of concern of the system: the

interfaces, the logic and the database, all having a way to inform the others, directly or indirectly.

Our Data Model

We now present a simple Entity-Relationship model design for our system, depicted in Figure

4.9. This is a blueprint for how we will implement the model of the system in our web-framework.

Kiosks and and displays will be identified by the service entity they are configured to.

Queue

Ticket

Desk

Service

UserService Staff

Service Queues

Service Desks

Created queue tickets

Staff Member at Desk

Must belong to
same service

Kiosk/Auth User's Tickets

If Auth, can only take
next of the same queue
after current is solved

Figure 4.9: Simple Entity-relationship model in Crow’s Foot notation. User here can be any
kind of user from 2.2.2.

4.2.3 Used Web-Framework

The main framework used to develop this project is Django7, version 1.9. This is a free high-

level web-framework that aids the developer into building web applications faster. It uses

Python8, a high-level general purpose language, which is interpreted and dynamic. One of

the best advantages of Python, also present in Django, is the ease of install and usage of

modules developed by the community. Another highlight, it is Django’s good and extensive

documentation [11], that is also backed by Python’s own [12].

Django is a non-opinionated framework: one can choose in its settings which database to

use (including MySQL and PostgreSQL), define the authentication back-end, and include other

user developed Django applications that were made public. For development purposes it pro-

7https://www.djangoproject.com/
8https://www.python.org/

36

vides a lightweight web server purely written in Python, which should be changed in production

to more robust and scalable ones, like Apache, Gunicorn or uWSGI. It also might use nginx for

static file serving (HTML and CSS).

For the data layer, Django uses an ORM - an object-relational mapper. Entities are written

as extensions of specific Django Python classes, and Django will map these into tables of our

selected database. Likewise, instead of making SQL queries to the database directly, Django

wraps them into easier and more intuitive Python methods related to the entity classes.

URL end-points can be defined and associated with a Python function callback, that will

eventually provide a response to the request. For example: assume our server is running

at http://siga.tecnico.ulisboa.pt ; one can define a /queues/operation endpoint and

associate it with a function callback, so that going into the full http://siga.tecnico.ulisboa.

pt/queues/operation will trigger that callback; that callback could request info from the server,

and present it to the user in the form of an HTML/CSS web-page.

As explored in the previous chapter, these web-frameworks tend to base themselves on a

MVC or a three-tiered architecture.

Views, in Django, are the data that gets presented to the user. Not how the data looks, but

which data it is. A view is a Python callback function associated with a particular URL, similar

to part of the functionality of a Controller in the MVC model. The looks are templates (the web-

page in HTML/CSS), to which a view delegates data fetched from the database. According to

its authors, as one can find in the official documentation [11], if one really desires an acronym,

one could say it is a MTV framework (model, template, view).

Django provides a web template system. Web templates are composed of template en-

gines, content resources and template resources. In our “MTV” mode, what this means is that

an URL callback will send content resources fetched from the database (e.g. a list of queues)

to an HTML file, or in other words, to a template resource, where this list can be looped through

with special templating syntax. The Django templating engine will turn all of that logic into valid

HTML code upon page request. The templating syntax only allows for simple operations on the

received contents (no variable assignments).

Also, it has an out-of-the-box admin application, that upon receiving a list of models (that

is, our Python classes describing our entities), is able to preform CRUD (create, read, update,

delete) operations on them. With some visual changes, and adding a super user with develop-

ing tools, this makes our Super Admin interface.

37

http://siga.tecnico.ulisboa.pt
/queues/operation
http://siga.tecnico.ulisboa.pt/queues/operation
http://siga.tecnico.ulisboa.pt/queues/operation

4.2.4 Entity-Relationship model in Django

Based on the ER data model shown in Figure 4.9, the Django version was developed. This

includes models for Tickets, Queues, Services and Desks. For the users, we use the Django’s

User model, that already comes with authentication and permission features. The final model

and their relationships map is extracted from the code using an open-source django package,

django-extensions9, and presented in Figure 4.10.

4.2.5 RESTful Web services for Client-Server communication

The concept of representational state transfer (REST), was first introduced in [13] by Roy Field-

ing, to aid with the design of HTTP 1.1, Hypertext Transfer Protocol. HTTP is the request-

response protocol used when accessing a website: Going through a link (in technical terms,

a Uniform Resource Identifier, or URI), an HTTP request is sent to a server, which in turn re-

turns with an HTTP response, normally an HTML file that browsers render into a usable web

application.

HTTP defines a set of operations to send with each request, the most common GET, POST,

PUT and DELETE. These represent state transitions, or the next state of a certain application.

The term representational state transfer, has in its core the intention to portray that a well-

design web-application is a network of web resources (URIs) which a user can manipulate with

the above mentioned operations (state transitions), and transfer those resources to their use.

One of the aspects in HTTP, provided by the underlying REST concept, is that during all the

client-server communication, no session state is saved in the server end: each request is an

independent transaction, not needing any information from previous requests to be stored in

the server. This provides a clear client-server separation, and makes it easy to add additional

clients to the system, making it more easy to scale.

Normally, this kind of communication through the world wide web is used for human to

machine interaction. Web Services, as defined10 by the World Wide Web Consortium(W3C),

are a way to provide machine to machine interaction over a network.

W3C’s provides also a definition for a REST-compliant Web service: “REST-compliant Web

services , in which the primary purpose of the service is to manipulate XML representations of

Web resources using a uniform set of stateless operations”11.

JSON12 is a structured machine and human readable data format alternative to XML13,
9https://github.com/django-extensions/django-extensions

10https://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice
11https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#relwwwrest
12http://json.org/
13https://www.w3.org/XML/

38

 qsystem

 PrinterStatus

 id AutoField

 status PositiveSmallIntegerField

 status_description TextField

 TicketService

 id AutoField

 service_admin ForeignKey (id)

 service_printer ForeignKey (id)

 num_max_queues PositiveSmallIntegerField

 service_is_active BooleanField

 service_is_giving_tickets BooleanField

 service_logo ImageField

 service_name CharField

 service_name_PT CharField

service_printer (b'ticketservice')

 User

service_admin (b'tsadmin') service_workers (b'workers')

 Tickets

 id AutoField

 assigned_to ForeignKey (id)

 desk ForeignKey (id)

 queue ForeignKey (id)

 active BooleanField

 called_at DateTimeField

 created_at DateTimeField

 description TextField

 last_recall DateField

 number PositiveIntegerField

 solved_at DateTimeField

 state PositiveSmallIntegerField

 TicketQueue

 id AutoField

 last_given_ticket ForeignKey (id)

 service ForeignKey (id)

 active BooleanField

 queue_name CharField

 queue_name_PT CharField

 queue_reset_time DateTimeField

 queue_short_name CharField

queue (b'tickets')

 ReceptionDesk

 id AutoField

 current_ticket ForeignKey (id)

 desk_operator ForeignKey (id)

 service ForeignKey (id)

 desk_number PositiveSmallIntegerField

 in_use BooleanField

desk (b'tickets')

assigned_to (b'tickets')

service (b'ticketqueue')

last_given_ticket (b'ticketqueue')

service (b'receptiondesk')

current_ticket (b'receptiondesk')

desk_operator (b'receptiondesk')

Figure 4.10: Our final models in Django.

39

which is becoming increasingly popular due to its less complex and lighter format. The REST

API will use JSON as its primary format for encoding structured data.

As previously mentioned, to take advantage of the Android operative system pin mode, we

opted to make an application. However, this is not as easy as making a web page as interface,

directly accessed through the browser. Therefore, in order to have communication between

server and tablet, we used Django Rest Framework14(also known as DRF)

This framework lets us define a Web API (application programming interface), that is, URI

endpoints that can transmit machine to machine information in JSON format.

The following endpoints were created:

• api/services - returns list of existing services

• api/services/(serviceID) - returns all data about a specific service

• api/services/(serviceID)/queues - returns all queues and their data from a specific

service

• api/services/(serviceID)/queues/(queueID) - returns the particular information of a

certain queue from a certain service

• api/services/(serviceID)/queues/(queueID)/tickets - creates an anonymous ticket

for a certain queue from a certain service

• api/services/(serviceID)/queues/(queueID)/ticketsauth - to be used for mobile

devices, creates a named ticket (enabling mobile notifications) for a certain queue from a

certain service

An endpoint calling example with Postman15 can is presented in Figure 4.11. These end-

points will also be used to deliver notifications, as they will be the web services connecting the

mobile user to the system.

Security considerations

To make sure the ticket creation endpoint is not tampered with (e.g. a user using the endpoit to

create several tickets in the server, pretending to be a kiosk), a specific hash that needs to be

set in each request is defined, and a certificate for enabling HTTPS is recommended. Also, the

number of tickets creation per authenticated user must be limited.

14http://www.django-rest-framework.org/
15https://www.getpostman.com/

40

api/services
api/services/(serviceID)
api/services/(serviceID)/queues
api/services/(serviceID)/queues/(queueID)
api/services/(serviceID)/queues/(queueID)/tickets
api/services/(serviceID)/queues/(queueID)/ticketsauth
https://www.getpostman.com/

Figure 4.11: JSON response for the queues endpoint with service ID (private key in the
database) 1, using Postman.

4.3 Front-End: Back-office and Display Interfaces

4.3.1 Operator and Service Admin Interfaces

Accessing the back-office entry endpoint, siga/start, will present the user with a login inter-

face, which will be different, depending on the authentication back-end used (IST or default

SIGA). This can be configured in the Django settings, upon deployment. In this screen, the

back-office users must enter their user credentials, and will then be forwarded to their respec-

tive interfaces. These interfaces were developed in HTML/CSS and Javascript, taking advan-

tage of Django’s templating language. Figures 4.12 and 4.13 depict the initial status of these

interfaces, made with the help of TwitterBootstrap16. They are fully functional but the final de-

sign is not closed: full-fledged interface designs are still under development by the design team

of our school. A first, almost closed design, was made fully functional with CSS3 Flexbox17.

This design is presented in Figure 4.14).

4.3.2 Display

The display is also a web application, running on a Raspberry Pi that is connected to the internet

and can access a specific URL for that effect, which terminates with an ID that identifies the

16http://getbootstrap.com/2.3.2/
17https://www.w3.org/TR/css-flexbox-1/

41

siga/start

Figure 4.12: Functional draft interface for tickets operation.

Figure 4.13: Functional draft interface for settings operation.

42

Figure 4.14: Operation interface with a more advanced design, although still in a preliminary
version.

service to which we want to see the queues state (same ID used in the database). A Raspbian

Jessie with GUI was used.

The final result is depicted in Figure 4.16, with the alternate color pertaining to a recent call

in Figure 4.15. It blinks and stays in the alternate color for a few seconds for each new ticket

called.

This was made using HTML/CSS with Flexbox, and AJAX calls to poll the server for updates

on tickets status. When a ticket is called from the back-office, the respective queue letter and

number, along with the desk the user needs present itself, blinks in an alternate color, staying

with this color for a period of time. Sound can be heard upon calling, given the sound output of

the Raspberry Pi is connected to speakers.

Also, the right-pane is available to display information coming from an RSS feed. We used

an open-source tool, Feednami18 to integrate it. In the absence of a RSS feed, this right-pane

can be also configured to display static images and messages that alternate.

4.4 Ticket Dispenser

Now, as promised, we get back to where we left in 4.1, and complement Figure 4.6 with its

architectural description, Figure 4.17. Third party libraries for providing REST endpoint func-

tionality for the Android were used, along with python wrappers made specifically for working

18https://github.com/sekando/feednami-client

43

https://github.com/sekando/feednami-client

Figure 4.15: Display. Next ticket for B queue has been recently called: shows in alternate color.

Figure 4.16: Display. Last ticket called was B5 to desk 2, already cooled off (no alternate color).

44

with Point of Sale thermal printers using the proprietary ESC/POS control commands.

PrinterTablet
Raspberry

Pi

Server

HTTP (REST API)

HTTP (REST API)

USB (Python
ESC/POS)

Figure 4.17: Architecture overview of the Kiosk subsystem.

4.4.1 RaspberryPi to Tablet connection

The initial idea was that the tablet communicated with the RaspberryPi through inverse-tethering

over USB. In short, the USB connection would mimic an Ethernet one, offering a private TCP/IP

connection where HTTP would be supported. Another advantage of this idea, would be en-

abling ADB (Android Debug Bridge), a command line tool that requires USB connection and

lets one send commands directly to the device, mimicking human interaction, and other impor-

tant features, like activating a pin mode.

However, during the development, we found out that, at least this tablet model, Samsung

SM-T550, is not capable of charging properly at the same time that it is perceived as a host in

an USB port.

Although not officially documented, we have found out that some Android kernels are de-

veloped in such a way as to detect if the user is connecting to a computer, by figuring out if

the USB’s communication ports can be short-circuited. When they can’t be short-circuited, the

tablet detects it is connected to a computer, and the kernel sets the maximum drawable current

to a lower value. Using this lower current value for charging, is not enough to keep the battery

up with normal usage: a simple test of leaving our application on with maximum brightness for

some hours, resulted in the battery levels going down.

Taking into mind that the battery by itself will degrade, even if we lowered the default bright-

ness or tried to implement some periodic host-to-charge switcher, the problem would persist -

eventually the battery charge would not be sufficient.

Therefore, with the need to occupy the USB port only for charging, we found other solu-

tion to provide the physical layer that enables HTTP between the tablet and the Raspberry:

a private Wi-Fi Access Point network, generated and controlled by the Raspberry Pi, which

45

can be programatically configured in the tablet, providing an out-of-the-box solution with these

elements.

For security concerns, one can define a password for this network with WPA2 encryption19.

This is so that one cannot connect to the created Wi-Fi AP pretending to be a tablet.

As one might note in fig.4.18, that depicts all the needed kiosk connections, there is no

physical connection between the RaspberryPi and tablet. The orange cable is the USB cable

that goes directly to the plugged transformer.

Figure 4.18: Picture of the kiosk from the back, with opened doors, where we see the tablet
attached to the frame, the printer compartment, a left grey holder for the cable connections,
power connection and plugs, and a hole in the bottom for other needed input cables, most
notably needed for passing an Ethernet cable to the Raspberry Pi 3 used to control this system.

DSI’s Network Systems division also proposed an alternate solution to this one, where they

would use the already installed Access Points of our school to provide a specific network just

for bridging the above mentioned devices. The idea would be to not pollute the already existing

signal of our school’s APs. This is something that can be considered in the future, having the

advantage of integrating our system in the already existing network infrastructure and passing

its network maintenance and control to the Network Systems division. The current solution

is better for a quick deployment without complex needs of integration with an already existing

network infrastructure.

19http://standards.ieee.org/getieee802/download/802.11i-2004.pdf

46

4.4.2 Request Handling on the Raspberry Pi

As long as we get an HTTP connection available for these two elements (Raspberry and Tablet),

the implementation that follows is viable.

A Python program was developed to be our logic control for the tablet and the printer, and

communications broker from the kiosk interface to the server.

The RaspberryPi itself is running as the operating system Raspbian Jessie Lite 20, which

“is a free operating system based on Debian optimized for the Raspberry Pi hardware”.

This program runs as a background process in the Raspberry Pi, launched during boot. It

hosts a very simple HTTP server (in localhost), which is actually part of Python’s base modules

and intuitively called SimpleHTTPServer 21.

This server parses all requests and responses from and to the tablet through their private

network connection (which we will also see, must be configured on the tablet side). It uses the

REST API endpoints above defined, forwarding them to the correct hostname where the server

is. Conversely, it also receives and parses the respective response, forwarding it to the tablet’s

own host.

Tablet requests are captured inside our simple server request handlers, and forwarded using

Requests22, an HTTP library for Python that provides a very simple interface to send requests

to a specific API endpoint and parse the results. These results are obtained and returned to

the tablet.

Upon interfacing with the kiosk (user input), from the above mentioned REST API’s imple-

mented in our Django Rest Framework, only three of those requests can actually be made by

the tablet:

1. List of Services

2. List of Queues (for a certain service)

3. Ticket creation (for a specific queue of a certain service)

The first two are used for tablet configuration (selecting which service to use and displaying

its currently existing queues).

The third needs special care due to security reasons, because the printer gets involved in

printing a ticket that is created (and returned to the Raspberry) by the server. For that purpose,

the Raspberry holds a special hash key that adds to its body, which the server verifies, to allow

its usage.
20https://www.raspbian.org
21https://docs.python.org/2/library/simplehttpserver.html#module-SimpleHTTPServer
22http://docs.python-requests.org/en/master/

47

We will now explore how the third one triggers the printer, and then proceed to finalize this

section with details on the app development (most of which also apply to the mockup application

done for demonstrating notifications).

4.4.3 Printing Tickets

When handling ticket creation requests, our Python application invokes methods to communi-

cate with the EPSON Printer through USB. Vendor SDK’s23 were a bit away from our needs,

and its integration in our logic did not seem simple for our purposes.

As such, the possibility of using Epson’s ESC/POS proprietary commands24 through USB

was taken into account. However, we soon found out that this way was a bit cryptic in it-

self (sending and processing byte streams), with commands being deprecated and detailed

documentation[14] hard to find.

Fortunately, an open-source Python library, to which we contributed during the course of this

project25, was found. This library is named Python ESC/POS26, and has the intent of providing

access to ESC/POS printers from a Python application.

The most important feature used was sending an image to the printer. This library makes

use of appropriate imaging libraries that rasterize images very quickly, taking advantage of GPU

computations if possible.

Our ticket, for purposes of increased customization (e.g. not being tied with the available

printer text fonts), is an image. The ticket design was iteratively developed by the design team

of our school.

When the user requests a ticket in the tablet, and the request is forwarded by the Raspberry

Pi to the server, if everything goes well server-side we get a ticket response. From this ticket

response we extract the following needed information to construct an image:

1. Logo to use (fetched from server upon configuration)

2. Service name (e.g. Academic Unit)

3. Queue name (e.g. Tuition Fees)

4. Short Queue Name (e.g. B)

5. Date (day, month, year)

23 https://download.epson-biz.com/modules/pos/index.php?page=prod&pcat=3&pid=3721
24https://reference.epson-biz.com/modules/ref_escpos/index.php?content_id=72
25https://github.com/python-escpos/python-escpos/issues/143
26https://github.com/python-escpos/python-escpos

48

https://download.epson-biz.com/modules/pos/index.php?page=prod&pcat=3&pid=3721
 https://reference.epson-biz.com/modules/ref_escpos/index.php?content_id=72

(a) Digital ticket in Portuguese (b) Digital ticket in English

Figure 4.19: Pictures of digitally generated tickets with Imagick

6. Hour (hours, minutes, 24h format)

7. Tolerance

This image is created with a bash script that receives these arguments and is called within

the RaspberryPi request handler upon server ticket creation response. Depending on the lan-

guage the tablet was, some extra parameters are sent by the tablet that enable us to print the

ticket either in English or Portuguese, by selecting the appropriate arguments for the image

constructor script.

The script in itself makes use of a command-line tool for image creation called Imagick27,

and runs several Imagick commands to vertically concatenate the several ticket parts.

The final result of our image construction, can be seen in fig. 4.19. Its analogue counterpart

produced by the printer is depicted in fig. 4.20.

4.4.4 Printer Status

One important feature that during the development and at the time of writting was not present

in Python ESC/POS was that of assessing printer status.

This is highly important in the cases where paper is not present, so that we only ask the

server to create a ticket if we are sure it can be printed.

Using the underlying structure from the Python ESC/POS library that performs USB com-

munication with the printer and sends the hexadecimal ESC/POS commands, we achieved,

after some trial and error, status reporting to the tablet and the server.

27http://www.imagemagick.org/script/index.php

49

Figure 4.20: Tickets in their analogue version.

The documentation does not detail how status commands should be used together. We

found a solution that uses two types of status commands for ESC/POS: Automatic Status Back

and Current Status commands. Using only one of those types of commands would not capture

the errors in real-time, nor get the error corrected right away without printer re-initialization.

So, if printer status is abnormal, it will return a response to the tablet and the server listing

the present errors, which may be the following:

1. Offline Mode (printer turned off)

2. Cover is Open

3. Paper End

4. Autocutter error

5. Unrecoverable error

6. Automatically Recoverable Error

Two other types of errors, not pertaining only to the printer, are also checked for and sent:

printer USB connection errors and server connection errors.

50

(a) Queues interface set to Portuguese (b) Queues interface set to English

Figure 4.21: Siga application showing the queues for a certain service, demonstrating language
changing feature. Depending on which language is selected, the chosen queue ticket shall be
printed in that same language, as shown above in fig.4.19

4.4.5 Tablet Software: the SIGA App

Our app was developed with the free Android Studio IDE28, that easily allows the use of An-

droid’s Java API Framework [15] for Android application development. The end result for the

main interface, both for Portuguese and English settings (as defined in a server running our

Django application), is shown in Figure 4.21. A configuration interface to select which service

a certain kiosk will serve, used upon installing the app for the first time, is depicted in Figure

4.22.

Connecting to the Raspberry Pi Wi-Fi

For now, the connection to the RaspberryPi is only made once, in the first run of our app or

before installing it in the tablet. The main idea is that during configuration we should select

the correct network to connect to, and the tablet will expect to be able to communicate (for

sending HTTP requests) with a host of name 10.0.0.1 at port 9000. Those shall be the default

configurations for the RaspberryPi AP Wi-Fi network.

28https://developer.android.com/studio/index.html

51

Figure 4.22: Service selection during first time configuration of the app.

52

Sending and Receiving requests

Some third party libraries for Android were used for the development of REST API communica-

tion on the tablet side, one using the others: Square’s Retrofit29 using RxJava30 and GSON31.

Retrofit provides a way to interface with our HTTP API with Java. In short, Retrofit allows us

to define a series of endpoints (URLs) in our application which we want to access, and associate

them with a callback which we can call in the Controller part of a certain View. Calling these

callbacks performs all the work associated with invoking an HTTP(REST) webservice.

By empowering Retrofit with RxJava, we can define for these callbacks to be performed in

an event-driven way: the application does not stop to wait for the HTTP response, it will instead

react upon receiving it. Adding the GSON part, will allow to automatically transform the JSON

responses of our objects into Java objects that we define and annotate with the GSON library,

and store in a package named models.

Our application has two interfaces, which were programmed in two Android Activities. An

Activity is in fact a Java class from Android’s Java API, and can be thought as a controller

where one defines what will be displayed in the screen, and how it will be displayed. The

first interface is used only in the first run of the application, and is a configuration one: it lists

the existing services of a certain entity. This is depicted in Figure 4.22. The second interface

is the one everyone will use: the list of queues for the selected service, as in Figure 4.21.

This one updates to changes that occur in the back-office. In short, we only need to define

“GSON models” for Services and Queues (containing their database identifiers and all other

details from JSON), and make the respective Retrofit callbacks return those types on success.

We then use the created objects to populate our interfaces. For the moment, updates to the

queues in the tablet are being done by polling the queues endpoint and checking for changes.

Security Considerations - Pinning Mode

This feature, present in Lollipop (Android 5.0) and above as task pinning, is of utmost impor-

tance for the correct operation of our system, as previously discussed. One can manually pin

one application to the screen, which means that it will not leave the current screen view unless

one presses two specific navigation buttons simultaneous, for a while. In our metal frame, such

buttons are not accessible, making our app never leaving the screen. By defining our app as

device owner one can access the feature of the pinning programatically. This is called in the

29https://square.github.io/retrofit/
30https://github.com/ReactiveX/RxJava
31https://github.com/google/gson

53

https://square.github.io/retrofit/
https://github.com/ReactiveX/RxJava
https://github.com/google/gson

official documentation as task locking32. The only disadvantage, beside needing extra initial

configurations on installing the app, is that no accounts must be associated with the tablet (e.g.

Google account), so the device is not associated with an “owner”.

We add two protections to this one. First, the app has a boot listener, to self launch after

the tablet boots. Second, because there is a slight delay between the OS boot and the app

launch, a password must be added to the tablet user, only known to the super admin, so that

the screen is locked unless for password input.

4.4.6 Ticket Dispenser: Final result

The result of the integration of the several elements for the electronic ticket dispenser is shown

in Figures 4.23, 4.24 and 4.25.

Figure 4.23: Ticket dispenser, configured for a service, before clicking on the A queue for ticket
request.

32 https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

54

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

Figure 4.24: Ticket dispenser during the printing, after clicking for ticket.

55

Figure 4.25: Ticket dispenser after printing.

56

4.4.7 Virtual Tickets

Push notifications are a way to receive mobile notifications (in our smartphones) from a certain

application, if we so allow.

These push notifications are normally implemented with the aid of a third party service,

responsible for offloading messages to the devices when they come online (connect to the

internet), a service also known as cloud messaging. For Android OS, Google provides Firebase

Cloud Messaging33 (FCM), and for iOS, Apple provides the Apple Push Notification Service34

(APNS). FCM can also be used for iOS devices.

These are free services, providing in their software development kits (SDK) APIs that al-

low us to enable push notifications from a server to a mobile device, which we need to be

implemented in both-ends.

The implementation of a service like this is costly infrastructure wise - we would need to

keep track of a connection to a device (in practice, an internet socket), and manage its queued

notifications.

Cloud messaging services provide us with a simple and free way to achieve this.

Upon internet connection, the notification service shall give a token to the user, identifying

his mobile device, that the app sends to our server. We associate this user with that token,

and can send him push notifications by means of an HTTP request to a particular notification

service URL. The service shall deal with the delivering of the HTTP message, and the mobile

app with how to process it.

Our school is currently developing a project to provide another abstraction layer on top of

the cloud messaging services: it uses them, but its input for the notifications are a student’s

school ID (vs. a token that uniquely identifies a mobile device of a user). This project is not yet

finished, but it is expected to be used for the integration in our school application, simplifying

the requirements application wise.

Because such integration in IST’s app is dependent on the mobile team of DSI, which is

currently handling other backlogged features, a mockup application was developed to demon-

strate the notifications functionality, and to provide a basis of an implementation easy to follow

for future integration.

The mockup uses a fabricated back-end (not IST’s), constantly alerting users who have

had requested a ticket from a certain queue, of the updates to that queue. This was done

with the aid of FCM, and a Django Package for FCM (django-fcm35) that simplifies the sending

33https://firebase.google.com/docs/cloud-messaging/
34https://developer.apple.com/notifications/
35https://github.com/Chitrank-Dixit/django-fcm

57

(a) Select Service. (b) Get a ticket.

Figure 4.26: App prototype for mobile tickets integration demo.

configurations. Much parts of this mockup app are re-proposed from the SIGA App, as can be

seen in Figure 4.26.

4.5 Overview

In overview, one can refer to Figure 4.27 detailing the interconnections between each subsys-

tem.

This implementation lies on the use-cases from the previous chapter, achieving the base

functional requirements, leaving some functions of the service administrator to be later ex-

tended. In the next chapter we test for load and concurrency of our system, to guarrantee that

a unique ticket cannot be created more than once, or the same ticket called to two different

desks.

On the non-functional requirements, most must be tested upon deployment, to see if the

interface is friendly and of use, and if the system is fluid and scalable.

About cost-effectivness, a non-functional requirement, it shall be said that software-wise,

this system had no costs, with the possible exception of the design tools used by design team

to help with some designs. Hardware-wise, we computed the costs in table 4.1.

If we already have the server infrastructure to host the SIGA web application, the hardware

costs top at e1400. As for estimating the possible server costs, one will need to know the

throughput of this system. With the AWS EC2 model with 1TB per month in and out data

transfers, results in around 100 euros per month36, but even assuming a conservative usage of

10 times less that amount (100GB traffic in and out), it amounts to around 10 euros.
36https://calculator.s3.amazonaws.com/index.html

58

https://calculator.s3.amazonaws.com/index.html

PrinterTablet
Raspberry

Pi 3
(kiosk)

Server

Private Wi-Fi
(HTTP)

Ethernet
(HTTP)

USB (Python
ESC/POS)

Raspberry
Pi 2

(display)

Display

Ethernet
(HTTP)

Internet

Mobile
User

FCM
(notifications)

Backoffice
Interfaces

Internet

Figure 4.27: SIGA Overview: Simple interconnection diagram

Hardware Approximate Cost (e)
RaspberryPi 50
Galaxy Tab A 250
Metal Frame 600
Epson Printer 300
Kiosk Subtotal: 3600
Display + Rasperry 200
Server 10/month
Total: Fixed + monthly 1400 + 10/month

Table 4.1: Hardware costs for SIGA system.

59

60

Chapter 5

Test and Validation

5.1 Ticket Printing

We tested the speed with which we can print the tickets.

In a first test, we clicked continuosly on the same queue, even when not appearing in

the interface to show a printing dialog. We created 10 tickets in one minute, which totals an

average of 6.0 seconds per ticket. This measure includes the ticket printing, and the waiting for

the screen to re-establish the queues after a printing dialog.

In a second test, an analysis was made take by take, from a total of ten measurements

and without continuous clicks (only after the establishing of the screen) we measured both the

printing time after click, and the screen repositioning.

The average speed for the physical ticket creation was 1.9 seconds after button click.

The screen with the queues reappeared, in average, 1.6 seconds after the ticket printing.

Although this amounts to less than the first test, totalling 3.5 seconds for each ticket creation,

the missing 2.5 seconds can be accounted for button unresponsiveness after printing, thus

indirectly measured with this second test.

If we dispense 10 tickets in one minute, a service session serving tickets during 8 hours

(480 min) could dispense a maximum of 4800 physical tickets per service session.

Thus, without counting with virtually dispensed tickets, 4800 would be the theoretical maxi-

mum number of customers a service session could serve, limit set by the printing ticket speed.

Virtually dispensed tickets let us overcome this maximum.

61

5.2 RESTful API Endpoints

Using the Apache Benchmark tool1, we load tested the REST API endpoints.

The requests were launched from an external server to the development server, running a

development webserver, WSGIServer/0.2, a Lenovo X220 laptop running Ubuntu 15.04, with

a Intel(R) Core(TM) i5-2540M CPU running at 2.60GHz (dual core), 8GB of RAM and 128GB

SSD.

We tested the several endpoins for a configuration of 3000 requests, accounting for a pop-

ulation of roughly 2000 students making several requests at different times, with 10 concurrent

requests (that is, 10 requests being sent at the same time).

5.2.1 All Services

The percentage of requests served in a given time is presented in the plot of Figure 5.1. From

the 3000 sent requests, none failed. Maximum request response time took 120 ms, and vast

majority below that value.

Figure 5.1: Percentage bins for request duration for the Services endpoint.

1http://httpd.apache.org/docs/2.4/programs/ab.html

62

http://httpd.apache.org/docs/2.4/programs/ab.html

5.2.2 One Service

The percentage of requests served given time is presented in the plot of Figure 5.2. From the

3000 sent requests, none failed, and request times are similiar as the above, maximum below

120ms.

Figure 5.2: Percentage bins for request duration for a specific server endpoint.

5.2.3 All Queues

The percentage of requests served in a given time is presented in the plot of Figure 5.3. From

the 3000 sent requests, none failed, and 70% of the requests were below 200ms, with the

remaining 30% ramping up to above 250ms.

5.2.4 One Queue

The percentage of requests served in a given time is presented in the plot of Figure 5.4. From

the 3000 sent requests, none failed, and request response times similar to the services, always

below 120ms and mostly below 100ms.

5.2.5 Ticket Creation

This is the only endpoint which contains a POST, sending a secret token, and thus is not avail-

able to the public. This is so that people cannot create tickets simply by visiting one endpoint.

63

Figure 5.3: Percentage bins for request duration for all queues of specific server endpoint.

Figure 5.4: Percentage bins for request duration for a specific queue of a specific server end-
point.

64

The percentage of requests served in given time is presented in the plot of Figure 5.5. From

the 3000 sent requests, only 638 created and returned new tickets, while 2352 failed. There

is a big variance between time waits for these requests: while 60% are below a request time

of 500ms, 30% present a minimum of 1500ms and a maximum of 3000ms, with the remainder

10% between 500ms and 1500ms.

Figure 5.5: Percentage bins for request duration for a specific queue ticket creation endpoint.

The rate of failure for requests is quite large for ticket creation. This is because upon creating

a ticket, a transaction is initialized in the database, and locks are made to the data, as to ensure

that no ticket can get the same number. Failed requests reflect failed concurrent requests that

tried to obtain the last ticket given for a certain queue during database transaction lock.

65

66

Chapter 6

Conclusions and Future Work

6.1 Conclusions

At the end of this project, a solution to the uninformed queue management problem was doc-

umented and prototyped. Having in mind the needs of our school, several functional and non-

functional requirements were assessed, and use-cases defined, to better lead the product de-

sign and implementation. The implementation was carried out, with modern software tools and

school provided hardware, and the developed API was tested for load and concurrency in a

development environment. We feel that the base requirements were fulfilled, both functional

and non-functional, highlighting the simplicity of the interfaces and the cost-effectiveness of

this project. In the appendix A guides for using the backoffice interfaces are provided. In the

appendix B one can find guides on how to configure Kiosk elements and Displays.

The development of this project covered great amount of different tools and technologies,

which were studied and learned, making this project an extremely enriching experience.

6.2 Future Work

The back-office designs can be customized, and for such, with the help of the design team to

provide improved designs, these must be integrated in our system.

Also, the designs themselves, back-office and kiosk, can be object of further usability test-

ing.

On the technical side, it would be interesting to implement our Django Application with

websockets, a tecnhology that would allow real-time information for the back-office without

needing to poll the server with AJAX calls or constant page reload.

The application can be further battle tested, in an environment simulating production.

67

An RSS feed for displaying information on the TV Display can be provided to integrate into

our Display interface.

Also, the developed Django application can always be extended to provide more statics and

heuristics for the next ticket to select.

In overview, future work includes

1. Add improved back-office designs

2. Back-office usability testing

3. Possible inclusion of websockets

4. Extend next-ticket heuristics (based on acquired data)

5. Assess useful statistics options (based on back-office needs)

6. Integrate with IST mobile application

7. Test in a production or simulated production environment

8. Deploy to production

A good product is achieve upon continuous iterations. With this project we have made the

base foundations for the SIGA system, aiming that one day, after its continuous improvement

in the context of our schools, it becomes a full fledged product, battle tested, and ready to be

deployed in schools or entities looking for a better management of their services.

68

Bibliography

[1] M. Halperin, “Waiting lines,” RQ, vol. 16, no. 4, pp. 297–299, 1977. [Online]. Available:

http://www.jstor.org/stable/41354440

[2] H. Do, M. Shunko, M. T. Lucas, and D. A. Novak, “On the pooling of queues: How

server behavior affects performance,” SSRN Electronic Journal, 2015. [Online]. Available:

http://dx.doi.org/10.2139/ssrn.2606071

[3] K. L. Schultz, D. C. Juran, J. W. Boudreau, J. O. McClain, and L. J. Thomas, “Modeling

and worker motivation in JIT production systems,” Management Science, vol. 44, no.

12-part-1, pp. 1595–1607, 1998. [Online]. Available: http://pubsonline.informs.org/doi/

abs/10.1287/mnsc.44.12.1595

[4] K. S. Anand, M. F. Paç, and S. Veeraraghavan, “Quality–speed conundrum: Trade-offs

in customer-intensive services,” Management Science, vol. 57, no. 1, pp. 40–56, 2011.

[Online]. Available: http://dx.doi.org/10.1287/mnsc.1100.1250

[5] M. Delasay, A. Ingolfsson, B. Kolfal, and K. L. Schultz, “Load effect on service times,”

Available at SSRN 2647201, 2015.

[6] I. Jacobson, Object Oriented Software Engineering: A Use Case Driven Approach.

Addison-Wesley Professional, 1992.

[7] A. Cockburn, Writing Effective Use Cases, 1st ed. Boston, MA, USA: Addison-Wesley

Longman Publishing Co., Inc., 2000.

[8] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language,

3rd ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.

[9] Oracle, “Understanding the three-tier architecture,” http://docs.oracle.com/cd/B25221 04/

web.1013/b13593/undtldev010.htm, [Online; accessed 1-Aug-2016].

69

http://www.jstor.org/stable/41354440
http://dx.doi.org/10.2139/ssrn.2606071
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.44.12.1595
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.44.12.1595
http://dx.doi.org/10.1287/mnsc.1100.1250
 http://docs.oracle.com/cd/B25221_04/web.1013/b13593/undtldev010.htm
 http://docs.oracle.com/cd/B25221_04/web.1013/b13593/undtldev010.htm

[10] G. E. Krasner and S. T. Pope, “A cookbook for using the model-view controller user

interface paradigm in Smalltalk-80,” J. Object Oriented Program., vol. 1, no. 3, pp. 26–49,

Aug. 1988. [Online]. Available: http://dl.acm.org/citation.cfm?id=50757.50759

[11] Django Software Foundation, “Django documentation,” https://docs.djangoproject.com/en/

1.9/, [Online; accessed 22-April-2016].

[12] Python Software Foundation, “Python documentation,” https://docs.python.org/3.4/, [On-

line; accessed 20-Jun-2016].

[13] R. T. Fielding, “Architectural styles and the design of network-based software architec-

tures,” Ph.D. dissertation, 2000.

[14] SEIKO EPSON CORPORATION, “TM-T20II ESC/POS quick reference,” https://download.

epson-biz.com/modules/pos/index.php?page=single doc&cid=3723&pcat=3&pid=3721,

2014, [Online; accessed 15-July-2016].

[15] Google Inc. and Open Handset Alliance, “Android API guide,” https://developer.android.

com/guide/index.html, [Online; accessed 26-May-2016].

70

http://dl.acm.org/citation.cfm?id=50757.50759
https://docs.djangoproject.com/en/1.9/
https://docs.djangoproject.com/en/1.9/
https://docs.python.org/3.4/
 https://download.epson-biz.com/modules/pos/index.php?page=single_doc&cid=3723&pcat=3&pid=3721
 https://download.epson-biz.com/modules/pos/index.php?page=single_doc&cid=3723&pcat=3&pid=3721
https://developer.android.com/guide/index.html
https://developer.android.com/guide/index.html

Appendix A

Backoffice Usage Guides

A.1 Entering the System

Assume our Django application was configured by the technical administrator to be run in the

host siga:8000.

Both the service admin and the operator must go through the login interface, depicted in Fig-

ure A.1, before being redirected to their specific interfaces. If the system was configured to use

a different authentication backend, the login page might be different from the one mentioned,

being equal to the login page of the corresponding authentication backend being used. In any

case, to log into the system, both the operator and the service admin must access the URL

http://siga:8000/qsystem/start/ which will redirect them to their respective interfaces, as

we will see in Sections A.2 and A.3.

The Super admin can also access a Django administation interface, through the URL

http://siga:8000/admin/, leading to a login interface as depicted in Figure A.2 that allows

him to create new users (operators or service admins), services and service settings (number

maximum of queues, reception desks, etc.), without needing to use a terminal or executing

scripts, as we will see in Section A.4.

Figure A.1: Login entry point for operators and service administrators.

71

siga:8000
http://siga:8000/qsystem/start/
http://siga:8000/admin/

Figure A.2: Login entry point for the super administrators.

A.2 Guide I: Operator Interface

Figure A.3: Desk selection for operator mode.

After logging in (refer to Figure A.1), if the user is an operator the system will ask this

operator to select a desk, identified by a number, from a list of unoccupied desks for the service

this operator is assigned to (this assignment was previously enabled by the super admin,

otherwise the user could not perform the login).

The desk selection interface is simple: the user only has to select a number from the pre-

sented list, as one can see in Figure A.3.

After pressing the depicted blue button to save the selection, the operator will be forwarded

to the operator interface depicted in Figure A.4. We now proceed to explain each part of the

operation interface, guided by the numbers inserted in that figure.

72

1

2

3

4
5

6

Fi
gu

re
A

.4
:

H
ig

hl
ig

ht
in

g
op

er
at

io
n

in
te

rfa
ce

fu
nc

tio
na

lit
ie

s.

73

1. Toggle ticket creation This button allows the operator to turn off ticket creation. This might

be useful when the operator notices that the queues keep growing and the operators will

only be able to deal with the issues of the current waiting clients. Thus, the operators can

stop ticket dispensing and the clients without ticket must try again on other occasion.

2. Navigation This menu is available only to the service admin who is doing operator work.

The base operator won’t be able to navigate to the Settings tab. This tab, in the case of a

service administrator, would lead us back to the settings interface, that is detail in Section

A.3.

3. Logout Here in the bottom-left corner of the operator’s inteface, the operator can check

his/her assigned reception desk (in this case it is Desk 1), and proceed to logout of the

system. This will leave the desk this operator was occupying free for selection for the next

operator who logs in. So, if an operator needs to change desk for some reason, he should

always logout first to free the desk he/she was occupying.

4. Queue Info All the queues for the service at which the operator is working, are shown here

with some information for each queue. This information comprises: Name and shortname

of the queue, how many people are waiting in line for this queue, the next ticket to be

called for this queue and how long this ticket (representing a client) has been waiting to

be called. With this information for the several queues, the operator can make a more

informed choice for the best next ticket to call.

5. Client Call This button is present in all the existing queues and will call the displaying next

ticket. This information will be sent to the display of queues progress as explained previ-

ously in Section 4.3.2 and depicted in Figure 4.15.

6. System Call Suggestion In here the operator can find a suggestion made by the system for

the next ticket to be called, in contrast of using the available information to make a decision

as proposed in the 4th item. This suggestion is now set to point the first client that arrived.

Further extensions to the system will make that the heuristic of this suggestion is defined

by the service admin in his/her settings panel.

A.3 Guide II: Service Admin Interface

After logging in (refer to Figure A.1), if the user is a service administrator the system will forward

him to the settings panel, as one can see in Figure A.5.

74

1

2

3
4

5
6

7
8

Fi
gu

re
A

.5
:

H
ig

hl
ig

ht
in

g
se

rv
ic

e
ad

m
in

is
tra

to
ri

nt
er

fa
ce

fu
nc

tio
na

lit
ie

s.

75

We now proceed to explain each part of this interface, guided by the numbers inserted in

that figure.

1. Navigation and Logout In the top-right corner of the service administrator settings inter-

face, the admin may change to operation mode (changing its interface to the operator -

and everything will work as described in Section A.2) or logout. If he had been previously

in operation mode and then navigated back to the settings panel, the logout will clear the

occupied desk.

2. End Session: Reset Counters This button, upon pressed, will make all ticket counters re-

set to 1 - this is, the next given ticket for any queue will have number 1. This represents

the end of a service session - e.g. tomorrow’s new tickets will not start from today’s last

ticket. However, it might be useful to allow that to happen so that if tomorrow the operators

still call today’s given tickets, the numbers don’t overlap (e.g. if last ticket taken today for

queue A was the 40th, but its calling was postponed for tomorrow, if ticket counters are

reset and 40 people appear tomorrow, two clients with the number 40 will exist). As such,

this reset must be used with caution.

3. New Queue Here the service admin can press to create a new queue, with names both

in Portuguese and English, and a short name (one letter from a selection of available

roman alphabet letters). This new queue will automatically appear in the Kiosk and in the

Display. However, if the maximum number of queues, set by the super administrator, has

been reached, no new queue might be created.

4. Queue Info Here we see the information of a certain queue from the service this admin is

responsible for. It is the same information one can obtain from the operator’s interface,

and might aid the service admin in helping the operator’s take certain decisions or simply

consult the progress of each queue.

5. Reset Tickets For each existing queue the service administrator might reset its counters

individually - the next created ticket for this queue would have number 1 after pressing.

Caution is adviced so that no two clients with the same ticket exist, by making this reset

prematurely.

6. Invalidate Tickets This button, besides reseting the ticket counter, will also invalidate al-

ready given tickets - the queue gets a clean slate, and non-called tickets for this queue

will not be called henceforth.

76

7. Edit Queue This allows the user to change the queue names (for portuguese and english)

and its short-name (from a selection of available roman alphabet letters).

8. Delete Queue This will delete the queue from all the interfaces it appears. The tickets will

be invalidated, and this operation will free the alphabet letter used for its short name.

A.4 Guide III: Super Admin Interface

Figure A.6: Landing page for super administrator after login.

The super administrator will have a specific interface, as above described. The used ad-

ministrator interface comes already as a part of Django, as part of easing the common problem

of creating a super admin UI for a web application. So, after logging in the specific admin login

page as depicted in Figure A.2, the super administrator will be presented with a page where

he can visualize his last actions, and add or change certain modeled entities (most importantly

Ticket Services and Users) as depicted in Figure A.6. One can also consult the entities De-

vices and Groups. The first one allows the super admin to manually introduce the identifier

for a certain remote client device - this is highly impractical, and far from what currently hap-

pens: the users automatically register with the system upon calling a specific endpoint from

their devices, in the first usage of the mockup application. However, the super admin has the

power to remove them (pressing the Change button) from the database. The latter, Groups, is

automatically created by Django to define groups of permissions (e.g. with different priorities

like an Operator or a Service Admin), although it is also not directly used.

77

Figure A.7: Interface for adding a new service.

78

The most important entity here, which also allows us to configure other elements, is the

Ticket Services - by pressing Add, we will be presented with a menu for adding a new service

(e.g. International Mobility Unit), and all the entities this new service comprises, including users

(add new users or select from a list of existing ones), create new queues, new reception desks,

define a maxium number of queues, and others. This interface for adding a new Ticket Service

is depicted in Figure A.7.

Figure A.8: Super admin interface for selecting which Service to change. Shows upon clicking
the Change button for the Ticket Services in the landing page.

However, if the super admin chooses to edit an already existing ticket services, he will be

prompted which one he wants to change - as depicted in Figure A.8, and upon selecting one

of those, an interface similar to the one of adding a new ticket service, but already filled, is

presented, as depicted in Figures A.9 and A.10.

With this basic interface the super admin can configure a SIGA system to a particular enti-

tiy’s services and its respective users.

79

Figure A.9: Changing the academic unit - top part of the interface for changing a service.

80

Figure A.10: Changing the academic unit - bottom part of the interface for changing a service.

81

82

Appendix B

System Configuration Guides

B.1 Guide I: Configuring/Swapping Kiosk’s Tablet

This system, in its current version, makes use of a Samsung Galaxy Tab A (a.k.a the GTA)

9.7 inches, model ST-550M. The kiosk ticket application makes use of a kiosk feature only

available from Android Lollipop versions forward, only tested in the base version that comes

with that tablet model. The designs were also made having the screen size and resolution in

mind.

This guide will introduce you on how to configure the tablet for the first time to run the SIGA

App. It is also useful if you need to substitute a faulty tablet by a fresh new one.

What you need:

1. A computer with the android developer SDK is needed

2. The SIGA Application apk from the SIGA system maintainer

Note: The application is made to autoconnect to a Wi-Fi provided by the Raspberry Pi with

a specific SSID (Wi-Fi name). In case of swap, ask the SIGA system maintainer to provide you

with the apk file for the already existing SSID. In case of a fresh install, tell this to the maintainer,

who will provide you with a new apk file and files for configuring a new Raspberry Pi. This will

involve following this guide with the second, for the Raspberry Pi configuration.

Step-by-step guide:

Turn it off If the tablet is on, turn it off with the power button (isolated button on the user’s right

side, screen facing user), by pressing until a dialog appears. Select “Turn Off”.

83

Factory Reset This operation will delete any data or apps that a user has downloaded, but

factory settings remain. To achieve this, you need to enter in recovery mode. To do that,

press the power button, volume up button (immediatly below the power button) and the

Home button (in the middle bottom of the tablet) at the same time. When Android logo

appears, release the buttons. A list of options will appear. Use the volume button (down)

to highlight to the wipe data/ factory reset option, activating it with the power button.

Another list will appear, select the longest option yes – delete all user data. Wait for a bit,

and then press the power button in the reboot highlighted option.

Initial Configurations In here we will define some initial configurations. Do not associate any

account or Google account. Also, Do not configure any wireless network. Select a

language. Skip Wi-Fi configuration. Accept License (Agree). Define time and date. Skip

name definition (next three times). Untick Google Services. Skip account creation.

More Configurations Swipe the screen to unlock it and swipe down from top to access defi-

nitions. Turn off Wi-Fi, GPS, screen rotation and put screen brightness to maximum and

not in automatic. Press the gear symbol in the top right corner of these definitions. Se-

lect security and screen block from the left list, and add a password for screen block.

This password will prevent people from accessing the tablet in a case that the application

unexpectedly exits. Please register this password somewhere - if forgotten, start the pro-

cess from the first step. On the same settings, allow Unknown Origin installs, to deploy

the SIGA application apk file.

Final Configurations In order to communicate with the tablet through a computer, so we can

install the kiosk application, we need to enable the programmer mode. Go to Definitions,

About device, and click 7 times in the compilation number to activate the programmer

options, now be available on the left. In that menu, check USB debugging and Remain

Active. Now connect your tablet to a pc via the tablet’s USB cable. Confirm there is

device detection with adb devices in a shell - note that you need to have the Android SDK

installed in your system to have those tools. If you have Android Studio IDE, it will bring

the Android SDK with it.

Install the App In order for the app to work in kiosk mode after install, we need to define it

as device owner. Amazingly enough, this will not need root access. Ask the technical

administrator for the apk file. Provide him with the current Wi-Fi name being broadcast

by the already installed Raspberry Pi or ask him to provide the needed files for a new

Raspberry Pi installation (and proceed to the System Configuration Guide II). Connect

84

the tablet to your pc and make sure this is the only android device connected. In a

terminal, change to the directory of the apk file and install the app with the command

adb install qsystem.apk. Make the app device owner with the command adb shell dpm

set-device-owner dsi.qsystemtest/.AdminReceiver.

Check Because this is a Kiosk component, it will need to be nearby an already configured

Raspberry Pi Wi-Fi. However, if you run the app, lock screen should be tried and a

loading status should appear. Everytime you restart the tablet, the app will launch.

B.2 Guide II: Kiosk Raspberry Pi

This guide will aid you in configuring a new Raspberry Pi to control the Kiosk.

What you need:

1. A Raspberry Pi3

2. An SD card for running the Raspbian OS

3. A computer for carrying out the Raspbian OS installation in the SD card

4. A monitor with HDMI connection and a keyboard connected to the Raspberry, for config-

urations

5. The kioskPi package from the SIGA system maintainer

6. Make sure this kioskPi package is made for the previously installed SIGA App - so that

the devices can communicate through Wi-Fi.

It is assumed the kiosk network infrastructural part is taken care of, and that the system

maintainer is aware of this. In other words, there is an ethernet connection that connects this

Raspberry Pi, directly or indirectly with the server running our SIGA Django application.

Step-by-step guide:

Install Raspbian Follow the official guide1 to install Raspbian in your Raspberry Pi 3. No GUI

is necessary.

Connections Connect the Raspberry to the power source, the pre-defined ethernet cable, a

keyboard and a monitor. Start Raspberry Pi.
1https://www.raspberrypi.org/documentation/installation/installing-images/

85

 https://www.raspberrypi.org/documentation/installation/installing-images/

Install the kiosk package After having the .deb file from the SIGA system maintainer, install

it with the following command sudo dpkg -i kioskServerPi.deb through a command line,

in the same directory where you have placed the file.

Reboot Reboot the Raspberry Pi, reboot the tablet, and the already configured services should

appear in the tablet for selection! (Or the queues, if a service was already selected for

this tablet).

B.3 Guide III: Display

For enabling a display, you need to have a display (monitor), a Raspberry Pi (model 3 is rec-

ommended) and an internet connection.

Step-by-step guide:

Install Raspbian Follow the official guide1 to install the latest Raspbian in your Raspberry Pi

3. GUI is necessary.

Connections Connect the Raspberry to the power source, the pre-defined ethernet cable, a

keyboard and a monitor. Start Raspberry Pi. To provide sound, make the necessary con-

figurations: the Raspberry Pi provides sound output, if you want to connect with speakers,

or, if present, use the monitor speakers to provide the sound output (by default through

the HDMI).

Firefox/Chromium Open the most recent browser available in this OS, and enter the URL for

the web-page pertaining to the service you are configuring. This URL shall be the form of

http://sigahostname/qsystem/status_tv/service_ID_number. Please ask the main-

tainer the hostname for the SIGA system and which number corresponds to the service

you intend to display the progress of queues.

86

http://sigahostname/qsystem/status_tv/service_ID_number

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	1 Introduction
	2 System Requirements
	2.1 Problem Statement
	2.2 Functional Requirements
	2.2.1 Definitions
	2.2.2 System Actors and Their Goals
	2.2.3 System Use-Cases
	2.2.4 Additional Functional Requirements
	2.2.5 Non-functional Requirements

	3 Proposed Approach
	3.1 System Architecture
	3.2 Server
	3.3 Backoffice and Display
	3.3.1 Backoffice
	3.3.2 Display

	3.4 Ticket Dispenser

	4 Implementation
	4.1 Hardware Components
	4.1.1 Hardware-level security requirements

	4.2 Server Software
	4.2.1 Web Application Frameworks
	4.2.2 Exploring Web Framework's architecture
	4.2.3 Used Web-Framework
	4.2.4 Entity-Relationship model in Django
	4.2.5 RESTful Web services for Client-Server communication

	4.3 Front-End: Back-office and Display Interfaces
	4.3.1 Operator and Service Admin Interfaces
	4.3.2 Display

	4.4 Ticket Dispenser
	4.4.1 RaspberryPi to Tablet connection
	4.4.2 Request Handling on the Raspberry Pi
	4.4.3 Printing Tickets
	4.4.4 Printer Status
	4.4.5 Tablet Software: the SIGA App
	4.4.6 Ticket Dispenser: Final result
	4.4.7 Virtual Tickets

	4.5 Overview

	5 Test and Validation
	5.1 Ticket Printing
	5.2 RESTful API Endpoints
	5.2.1 All Services
	5.2.2 One Service
	5.2.3 All Queues
	5.2.4 One Queue
	5.2.5 Ticket Creation

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography
	A Backoffice Usage Guides
	A.1 Entering the System
	A.2 Guide I: Operator Interface
	A.3 Guide II: Service Admin Interface
	A.4 Guide III: Super Admin Interface

	B System Configuration Guides
	B.1 Guide I: Configuring/Swapping Kiosk's Tablet
	B.2 Guide II: Kiosk Raspberry Pi
	B.3 Guide III: Display

