
TrustFrame, a Software Development Framework for TrustZone-enabled Hardware

João Rocheteau Ramos
Instituto Superior Técnico, Universidade de Lisboa

Lisbon, Portugal
Email: joao.silva.ramos@tecnico.ulisboa.pt

Abstract—With the continuous evolution of technology fields
like mobile, embedded systems and ubiquitous computing, the
way we interact with several types of devices is ever changing.
Today, applications with sensitive data are increasingly used in
mobile devices by users, which brings huge security issues. In
an attempt to overcome the growing security concerns, some
hardware manufacturers are starting to use ARM TrustZone
technology. This technology presents itself with enormous
appliance potential, since it allows the development of more
robust operating systems, achieving better application security.
However, research on this matter is quite complicated, due
to various incompatible software and hardware solutions, as
well as the lack of documentation and support to software
development for TrustZone-enabled hardware. Development
initiation on any TrustZone-based solution has many barriers:
framework selection, choosing compatible hardware, initial
environment configuration, programming APIs study and
start of development. In this work we study the current
state of the art in TrustZone-based solutions. This work
paves the way for the development of a complete framework
(documentation, development environment and compatibility
support) to ease the bootstrap of TrustZone-based software
development projects.

Keywords—Mobile Devices, Security, Trusted Computing,
ARM TrustZone, GlobalPlatform.

I. INTRODUCTION

Mobile devices handle data that is becoming increasingly
valuable and confidential. This data ranges from simple
photos or files to our own medical information, banking
credentials or even other access credentials, making them
an increasingly sought target for a variety of attacks, as
reported in [1]. Furthermore, with the popularity of Internet
of Things (IoT) rising, more and more devices are expected
to be connected, exchanging these types of data. Therefore
it is crucial to have mechanisms capable of protecting such
data.

Nowadays, the processing of sensitive data is increasingly
dependent on highly complex software, with many lines of
code. Not only is this true for traditional computational plat-
forms, like desktops and servers, but also for smartphones.
Also, by depending on many lines of code, the operating
systems may contain vulnerabilities that can be exploited
by malware and possibly result in the theft or repudiation
of data.

To develop secure and trusted software, new mobile plat-
forms processors have been created that allow the execution
of sensitive code, in a secure way, in particular ARM
TrustZone [2] technology, present in the most recent ARM
processors. It aims at enabling the creation of an execution
environment, for protecting the confidentiality and integrity
of critical code, allowing that code to be executed isolated
from the main operating system (OS). Therefore, in the event
of total OS compromise, the application remains secure. This
allows most of the operating system and application code to
be separated from the critical code, responsible for handling
sensitive data or that executes in an isolated environment,
creating a logical barrier between them. However, there
are still difficulties in running sensitive code in isolated
environments.

A. Motivation

Despite the fact that ARM processors are widely available
in smartphones, tablets, among other devices, ARM Trust-
Zone functionality has not been fully explored. There are
five main reasons for this.

TrustZone security mechanisms are complex. They
suffer from compatibility issues between different hardware
choices which require a great effort to overcome them,
such as the creation of drivers for the target hardware,
junction of APIs into a common API and common software
development methods, to successfully minimize the impact
of using different tools to achieve the same goal. Since
TrustZone is rather used by the OS instead of being used by
the applications themselves, although they enjoy the benefits
of using TrustZone, optimizing the usage of resources by
OSs is an important and ongoing research area.

Lack of good hardware documentation. Hardware
manufacturers provide documentation on the hardware they
sell, but sometimes it is not good enough. For developers
with little or no experience, searching for answers in these
documents may well be the same as trying to find a needle
in a haystack. Some of these manufacturers also provide
a community forum, allowing software developers to ask
questions, but quite often, these questions do not receive the
appropriate answer or do not get answered at all, which
obliges the software developer to continue searching for
solutions, wasting more time. As a consequence, these



difficulties present themselves as a major challenge for the
entire software development process.

Execution environment related difficulties. There al-
ready exist some frameworks capable of using ARM Trust-
Zone technology, such as Genode OS Framework [3]. These
development frameworks require the developer to initially
configure them, setting the necessary toolchain, verifying
the compile targets, and so on, before they can start using
them. Again, for developers with little or no experience,
just to install and configure a development framework can
be a very difficult step, since the developer is not familiar
to these types of environments and their requirements. How-
ever, they advertise their support of a certain development
board and may require additional effort in configuring the
environment, to use a hardware feature that may not be fully
implemented already. These constraints bring even more
difficulties, mainly due to the lack of good documentation
for the framework being used. In this case, the developer
is faced with the problem of having to explore both the
hardware documentation and the framework documentation,
which can easily be overwhelming for someone with little
experience. Similarly to the case above, Genode provides
some documentation, but some of it does not contemplate
some probable issues that may appear for hardware other
than the ones they mention.

Development board related difficulties. Every develop-
ment board has its own software, that was designed to work
for that specific board and not for any other. This leads
to more constraints for the developer, since it sometimes
requires different approaches to obtain the same desired
outcome. This concern escalates if the developer introduces
the selection of hardware, since there are multiple choices
available that allow the use of TrustZone and take advantage
of its benefits. Each board may have its own way of doing the
same step, such as the communication with the development
host with proper software or manually, through the use
of MicroSD cards, the difference in command targets and
image mounting steps. These concerns lead the developer to
consider aspects like compatibility between the board and
the host. The availability of proper drivers that remove or
diminish these constraints is not always assured.

Finally, development boards evolution. Some are now
obsolete compared to new ones. The hardware has changed,
introducing new hardware features and possibly new prim-
itive instructions to be used. Also, their capabilities have
been improved with better hardware, consequently being
able to sustain more applications running, both in number
and complexity, through the exploration of those added
resources. This creates a gap between some of the first
models used for this type of work and the new ones that
are being released, that come already with changes, both in
hardware and software, leaving the older models behind.

B. Goals and Requirements

The overall goal of this work is to conceive and implement
a Software Development Kit (SDK) that eases the develop-
ment process, as well as the testing of security applications
for ARM TrustZone. The provided system should be com-
pliant with the following requirements:

Ease the development process of new solutions. Instead
of wasting time and resources on creating a custom platform
that serves their intentions, the provided system should allow
developers to jump straight to the development of their
solution and start exploring the capabilities at their disposal.

Compatible implementation with API standards. Since
the development of solutions for ARM TrustZone began,
the interest of this type of research led entities, like Glob-
alPlatform, to develop specifications for projects on this
matter. This non-profit organization has been developing
specifications to facilitate the secure deployment and man-
agement of applications, in isolated environments. To keep
the system current on this theme, this system should provide
compatibility with these specifications.

Work on real hardware. This system should work on
real development boards, where more and more developers
may use and test it, in order to develop their own solutions.
To allow such use and testing, this system will be used and
tested for the NXP i.MX53 QSB board (formerly known as
Freescale i.MX53 QSB) [4], since this is a regularly used
development board for ARM TrustZone projects.

Efficient execution of applications. To allow developers
to fully develop their idealized solutions, without having
to sacrifice some of its features, the system should provide
good scalability and usability. The execution of applications
on top of it should present good overall performance and
efficiency results.

It is intended that the system is not a final product, but
instead serves as a basis on which future works might extend
the current capabilities.

II. BACKGROUND

This section provides some necessary background infor-
mation about ARM TrustZone, GlobalPlatform API and
resource management of Linux and Genode, since they are
the main topics covered in this work.

A. ARM TrustZone

ARM TrustZone [2], [5] technology is a hardware security
technology present into recent ARM processors. It consists
of security extensions to a System-On-Chip (SoC), providing
a security framework that allows the partitioning of both
hardware and software resources. These security extensions
cover processor, memory and peripherals, granting system
developers the ability to execute trusted services, ranging
from a simple library to a complete operating system (OS),
isolated from the main OS.



Figure 1. ARM processor modes with TrustZone security extensions.

The resource partitioning allows the coexistence of two
separate worlds, normal world and secure world (see Fig-
ure 1). The normal world or Rich Execution Environment,
henceforth referred to as REE, is where all user applications
are installed and execute, with limited access to the device’s
capabilities while the secure world or Trusted Execution
Environment, henceforth referred to as TEE, is where trusted
applications run with full access the its resources. The
memory address spaces are independent for each processor
mode, creating an isolated ambient that runs parallel to
the device’s operating system, exploring the concept of
privileged and unprivileged mode already present in earlier
ARM processors. Between these processor modes lies a
switch mechanism known as monitor mode, in which both
virtual cores switch context through time slices, saving their
current state in separate virtual memory, so that the normal
world cannot tamper with the secure world’s memory. The
memory regions used for both worlds can be hard-wired or
configured. This configuration must partition the resources
available, so that any non-secure access, to secure memory
or device, is treated as a security violation, causing an
external abort to the core.

B. GlobalPlatform API

To allow system developers to build security services for
ARM TrustZone, ARM has initially provided her own Trust-
Zone API called TZAPI. The API defined the interfaces in
non-secure world, being publicly available. On the contrary,
the API for the secure world was private and closed, leading
to it not being accepted by the security industry. As a result
GlobalPlatform [6], a non-profit, member driven association
, saw an opportunity along with Trusted Computing Group
[7], an association formed by AMD, HP, IBM, Microsoft
and Intel, are working on creating a joined TEE standard,
although GlobalPlatform has its own TEE standard since
2011.

This API is divided into two parts, TEE Client API and
TEE Internal API, for the normal world and secure world,
respectively. The normal world application calls the TEE
Client API, which then communicates with the secure world
and sends relevant data. The secure world internally redirects
this data to the desired trusted application, using the TEE
Internal API.

C. Resource Management

In the Linux, both user and kernel memory are inde-
pendent and isolated. This isolation is due to the way the
address spaces are used by the system, i.e., instead of
using the hardware physical memory, the address spaces are
virtualized, becoming abstracted from the physical memory
available. This allows many virtual address spaces to exist,
each assigned to a certain process. To avoid the inefficient
use of physical memory the operating system must take
actions, like saving the physical memory by only loading
virtual pages that are currently being used by the executing
program. This process is called Paging, but in Linux it is
normally called Swapping. It consists of moving a page
from physical memory, that has not been used frequently
or for quite some time, to a special file called the swap file.
This special file is located in a slower storage device, like
a hard disk. This action results in leaving the most used or
frequently used pages available in physical memory. Access
to the swap file is very slow, compared to the speed of both
processor and physical memory.

In Genode [3], unlike Linux, the Genode OS simply arbi-
trates the access to such resources and allows the delegation
of authority over resources between components. The low-
level physical resource are represented as dedicated services,
provided by the core component, which is the first user-
level component, directly created by the kernel. At boot
time, the core component creates an initial RAM session
with a balance containing all the available physical memory
for the init component, the first and only child of core. A
child component does not have the authority over init’s RAM
session nor the RAM sessions of any siblings. Each child
may continuously subdivide their budgets in order to spawn
grandchildren using the same procedure as their parent did
before. The opposite procedure occurs in case a certain RAM
Session is closed.

III. RELATED WORK

Several of the TrustZone-based solutions focus on assur-
ing services with more security measures, like authentication
mechanisms, one-time passwords, use of cryptology, while
others focus on exploring virtualization features. Others
focus on simplifying their design, reducing their trusted
computing base (TCB), in turn, reducing the attack surface
they face.

A. ARM TrustZone-based solutions

TrustOTP [8], a one-time password solution that focus
on offering secure one-time passwords (OTP) tokens for
smartphones that achieve both the flexibility of software
tokens and the security of hardware tokens, through the
use of ARM TrustZone. The basic concept behind OTPs
is the automatic generation of numeric or alphanumeric
string of characters that authenticates the user for a single



transaction or session to an authentication server, being this
way resistant against replay attacks.

Trusted Language Runtime [9], [10], or TLR, is a system
that protects the confidentiality and integrity of .NET mobile
applications from OS security breaches, using the ARM
TrustZone hardware features, to provide an isolated trusted
environment. It provides runtime support for the secure
component based on a .NET implementation for embedded
devices, offering productivity benefits of modern high-level
languages, such as strong typing and garbage collection, to
application developers.

B. Development Frameworks for ARM TrustZone

The Genode OS Framework [3] is a tool kit created by
Genode Labs, with the purpose of allowing the creation
of operating systems with extended security measures. The
architecture in which Genode was build resembles ARM
platforms, which allows Genode OS to take full advan-
tage of CPUs with TrustZone technology, at a level that
allows Genode to be used as a TrustZone monitor, through
a hypervisor, that leverages the protection mechanism of
ARM TrustZone. This allows program execution to execute
in sandbox environments, with access control execution
equivalent to normal world-secure world environments, i.e.,
granted only the access rights and resources that it requires
to fulfill its purpose. In Genode, each component has a
budget of physical resources assigned by its parent, unlike
traditional operating systems, which create an abstraction
from physical resources. This resource management allows
the use of dedicated resources by the components, that are
within the designated limits, or to assign parts of their
resource quota to its children. The usage and assignment
of budgets is managed by each component rather than a
global policy of the OS kernel. Each component can also
communicate with other components and trade resources
if need be, but only according to specific rules, reducing
the attack surface of security-critical functions, compared to
other operating systems.

IV. ARCHITECTURE

In this chapter we will go through the capabilities and
design of TrustFrame. We will explore in detail the func-
tionality of the system and its components.

As stated previously, the main goal of this system is to
offer a SDK, that is easy to use for both development and
testing of applications, capable of using ARM TrustZone
without the need for additional effort from the developers
that use the system.

In terms of requirements, this system should meet the
following requirements:

1) Ease the development process by allowing devel-
opers to immediately start developing their solutions,
saving time and effort in the process.

2) Compatible with the GlobalPlatform API specifica-
tions by offering new possibilities for developers that
are already familiarized with the specifications and for
those starting on this journey.

3) Work on real hardware, allowing more and more
developers to use and test the developed solutions by
themselves, assuming they use the same hardware,
required by the system.

4) Allow efficient execution of applications on top of
it, allowing developers to build their desired solutions,
without having to sacrifice some of its capabilities, due
to performance limits.

A. System Components

Throughout this document, we already discussed some of
the major components of this system, namely its two OSes,
Linux in the normal world and Genode OS in the secure
world and the hardware in which the system runs, the NXP
i.MX53 QSB. We now head into further detail around these
components, as well as other details not yet fully explored,
but also present as seen in Figure 2.

Figure 2. TrustFrame architecture overview.

In terms of execution flow, the system starts with the boot
of the SoC used in this work, the NXP i.MX53 QSB. By
default, the board boots in the secure world, where it will
load Genode’s micro kernel, containing 20KLOC, which
compared to Linux’s 2016 expectancy of around 20MLOC,
is quite an achievement. This micro kernel was specifically
developed for Genode, thereby reducing the complexity of
the trusted computing base compared to other kernels. As
seen in the previous chapter, Genode is a collection of small
building blocks, where new add-ons can be seen as services
to the kernel core. One of these services already provided
is the tz vmm, which is Genode’s TrustZone demo. In this
demo, a VM session interface is used to allow a user-level
virtual machine monitor (VMM) to affect the whole state of
the CPU of a non-secure virtual-machine (VM), initiate a
world switch to the non-secure world, and obtain the VM’s
state, after an exception-triggered return. To take advantage
of Genode’s existing work with TrustZone, the tz vmm demo
was used as a foundation in this system. After Genode’s init



process finishes, the tz vmm service immediately prepares to
boot the normal world and initiates a world switch,, where it
will load a custom Linux kernel. Since Genode merges the
Linux image with its own generated image, in our setup, we
changed Genode to use a custom Linux image, compiled
by us, instead of the original precompiled image, therefore
static. This allows features to be added to the kernel, and
allowed us to add our system call which is responsible for
the data transfer between both worlds. Another interesting
fact is that the Linux root filesystem is built using an initial
RAM disk1, which allowed us to add our binaries, that would
be used in the normal world, like a client application. When
Linux finishes booting, it is ready to be used, like any Linux
distribution, and at this point, the developer can them call
his program.

In the normal world, a client application invokes the
TEE Client API, implemented by us, which in turn calls
our system call, in order to transfer the client application’s
data. This system call is responsible for executing security
verifications, creating the shared memory region, executing
the smc instruction and finally, returning any received data
back to the client application. In the secure world, each time
a client application executes and a system call initiates a
world switch, the tz vmm receives the normal world data to
be handled. It then calls our GlobalPlatform API handler,
responsible for preparing the received data and redirecting
the client application request to the correct function call from
the TEE Internal API, implemented by us, where that data
will be manipulated and a response will be prepared to be
sent back to the normal world.

The client application (CA) is the normal world side of
the application that will use ARM TrustZone in our system.
This part focuses on calling the GlobalPlatform TEE Client
API, using the specification’s data types as arguments. The
trusted application (TA) is the secure world side of the
application that that will use ARM TrustZone in our system.
This part focuses on calling the trusted services, specified by
the client application. The system already has an example of
a Hello World program, in which it calls the GlobalPlatform
API, compatible with its specifications. This example is the
combination of the client application that runs on Linux with
the trusted application that runs in Genode.

B. System Details

During the initial bootstrap phase of the NXP i.MX53
QSB, our bootloader, U-Boot, loads the Genode kernel
binary along with additional boot modules into the physical
memory. These boot modules are chunks of data, like
the ELF images of Genode’s components: core, init, all
components created by init, and the configuration of the init
component. After this task finishes, U-Boot transfers control

1Initial RAM disk (initrd) is an initial root file system that is mounted
prior to when the real root file system is available.

to the kernel, where the kernel then passes information about
the physical resources and the initial system state to the core
component. The core component then begins to execute its
purpose, by making low-level physical resources (physical
memory, processing time, device resources, initial boot
modules, and protection mechanisms) of the SoC available
to other components in the form of services. Then, it creates
the init component, using its own services, and delegates
all physical resources, and control over the execution of all
subsequent component nodes, which can be further instances
of init.

In terms of memory layout, the development board used
in this work contains two memory banks of 512MB each,
making a total of 1GB. During the development of this
work, it was noted that only one of those memory banks
was in fact mapped by Genode, namely bank 0. Although
we do not know why only one of the memory banks was
mapped, we suppose that it may have been due to the lack of
need, given by the simplicity and low memory requirements
needed by the Linux kernel used, as well as Genode itself.
The used memory bank goes from address 0x70000000 to
0x90000000, and is divided in half for each world, i.e.,
the memory addresses from 0x70000000 to 0x7FFFFFFF
are mapped as secure and the memory addresses from
0x80000000 to 0x8FFFFFFF are mapped as non-secure.
This memory mapping results in the assignment of 256MB
for the secure world and 256MB for the normal world.
Figure 3 illustrates the memory layout described above.

Figure 3. Memory mapping for the i.MX53 QSB bank 0.

V. IMPLEMENTATION

This section provides in-depth details over the implemen-
tation for this work. We will explore details concerning both
the normal and secure world.



A. Normal World Details

If a normal Linux kernel booted without some modifi-
cations, the system would hang during boot. These modi-
fications are required, in order to avoid access permissions
issues that cause the system to hang. These issues would
occur by executing sensitive instructions in some kernel
component drivers like IPU, GPIO, as well as trying to
access other peripherals, deemed critical. To allow the kernel
to boot without these issues, the Genode staff had to modify
these drivers, introducing hypercalls that occur whenever the
Linux kernel tries to access a device, which is not assigned
to the normal world. When this happens, an external data
abort occurs, and the control is passed to the secure world,
so that the device may be emulated. The basic idea of
emulating device access is allow the hypervisor to pass
control to the TrustZone virtual machine monitor (VMM) as
soon as the non-secure OS accesses an address outside the
allowed physical address boundaries. Afterwards, the VMM
may then inspect the address and the program counter of the
non-secure OS that raised the access violation. Based on the
program counter value, the VMM can then fetch the faulting
instruction, decode it and emulate it in software, bypassing
the issue that did not allow the Linux kernel to properly
boot.

Since we could now add functionalities to our kernel and
see them reflected immediately after booting both Genode
and Linux, we created a custom system call. Our system call
allowed us to immediately switch from the normal world to
the secure world when necessary. The major benefit was the
simplicity introduced, since instead of having to replicate
the same assembly instructions, over and over again, we
only needed to use a single line of code to call the system
call (see Figure 4).

// SMC System Call
SMC_SystemCall(INVOKE_COMMAND, args);

Figure 4. Function call for the SMC system call.

Considering we could now exchange data between both
worlds, we started to implement the GlobalPlatform APIs
for both worlds. We began by the normal world, where
we researched how other frameworks implemented the API
specifications according to their own concept. This research
was done, since the client side of the API would surely be
similar, due to its independence from the normal world OS
and also to understand better how the specifications could
be applied.

Since we needed to pass the data from the client applica-
tion, through the system call, to be sent to the secure world,
we opted to create a data container. This container contains
all the arguments and parameters necessary for the secure
world to manipulate them and return an accurate response.
We followed the same principal for each function that

comprises the TEE Client API. Each function executes the
following tasks: receive the client application’s arguments,
store those arguments in the data container, call our system
call and wait for a response. All the received arguments are
stored into the data container, separated by certain special
characters, that work as delimiters. These characters exist
to allow the secure world to parse the entire container
and, based on the character encountered, assign each piece
of data to the correct destination. When the secure world
receives the whole container, it will need to assign the
correct parameters to the correct session and so on, which it
does using this method, achieving an accurate assignment of
the received data. After the API function finishes preparing
the arguments, it calls our system call and transfers the
prepared data container to the system call. Since the system
call is located into the kernel space, it allows us to retrieve
the process identifier that executed the program. The system
call then appends that identifier to the received container
and stores the data in the shared memory region. This step
is always done to allow the secure world to differentiate
between two processes that use the same parameters, like
sessions identifiers and such values, that could normally
overcome isolation barriers.

B. Secure World Details

Following the implementation of the normal world details,
we started to prepare Genode for our requirements. We
began by looking into the tz vmm component, in order to
understand how we could receive the normal world data
container and use it in the secure world. We created a simple
secure world handler that is called each time Genode’s
interrupt handler receives a specific argument, defined by
us. This argument, as referred previously, is also sent in
one register, which will allow identifying what to do when
the argument is received. Since Genode already contains
three defined behaviors for different types of interrupts, ours
was the fourth, hence the reason the number four is sent
in a register. This allows Genode to redirect the interrupt
from our smc to our handler. This handler will then retrieve
the arguments passed in the other registers, map the shared
memory region using the received address with the size of
the region and extract the data that was stored in it. From this
point forward, our secure world handler contains the data
sent from the normal world and is able to pass it down to
our GlobalPlatform API handler, serving as a bridge between
the normal world and our GlobalPlatform API handler.

After we retrieve the data, we must then call our Glob-
alPlatform API handler. This handler was developed as a
service to Genode, just like tz vmm is, which allowed us
to call it using Genode’s RPC interface, adapted for our
needs. Using this interface, we can pass the normal world
data to the handler, which then reverse engineers the process
executed by the TEE Client API. By detecting the special
characters sent along with the data, the handler is able to



partition the received data container and assign the data
correctly. This allows it to identify which operation was
executed in the normal world and, based on it, execute the
respective TEE Internal API function, passing the necessary
arguments. Besides passing the necessary arguments, this
handler is responsible for handling data updates. These
updates occur after a secure world service manipulates the
data it receives, and so, this handler ensures an overall
synchronization between all the secure world components
that must deal with the data. In the end, the tz vmm
component retrieves the latest data updates and sends them
back as a response, to the normal world.

As for the implementation of trusted services, a new
developer may replace the single source file, that con-
tains our examples of trusted services, by his own, pro-
vided that he adds the special function, containing the
redirection to his trusted services. By looking at our ex-
ample, he can easily replicate the redirection mechanism.
This special function is required, since it is called by
the TA InvokeCommandEntryPoint function, from our TEE
Internal API implementation. The secure world developer
may even add his services to the existing ones, and add a
redirection entry to the special function, without replacing
the provided source file, further reducing his workload and,
possibly, allowing him to easily test his solution, without
having to worry about other details, like calling the special
function correctly or know which Genode libraries he must
use besides the ones needed for his services.

Our Hello World example executes three different trusted
services, each called after the other. The first service exe-
cuted is the sample we encountered, which receives a certain
value from the normal world CA and increments it, returning
the new value back to the CA. The second service is similar
to the first, but instead of a value, returns a date. The third
service uses a different data type, instead of the previous
value type. This service requires the CA to prepare a data
buffer, containing the desired data, which in this example
is a string. This data buffer is then sent the same way
to the secure world, where the trusted service receives the
string and responds with another string, similar to a TCP/IP
acknowledge response.

VI. EVALUATION

In this section we provide our evaluation methodology
and setup, as well as the results for our prototype.

A. Methodology

Since our solution uses ARM TrustZone, we sought to
measure the execution times in each world, along with time
measures of our system call, in order to understand the
impact it has on the performance of the overall system. We
divided these measurements into different sets:

Execution of services in the normal world. In this
test we limit our measurements to the normal world. We

execute the client application, but instead of invoking the
TEE Client API, consequently calling our system call, we
simply execute the services solely in the normal world.

Execution of normal world services with secure
world invocations. We continued to measure the three
services in the normal world. The difference in this test
is the invocation the GlobalPlatform TEE Client API func-
tions that will always be executed in every client ap-
plication, namely the pair TEEC InitializeContext
and TEEC FinalizeContext functions and the pair
TEEC OpenSession and TEEC CloseSession func-
tions. Since every client application must invoke these
functions, we measured what impact would the invocation of
those functions have, along with the three services, running
solely in the normal world.

Execution of secure world services. Afterwards, instead
of executing the service in the normal world, like the previ-
ous test, we execute it in the secure world, by invoking the
TEEC InvokeCommand function in the client application.

Execution of the entire system. Finally, we measured the
performance of the entire system, from point to point. Start-
ing from the beginning of the client application execution
in the normal world, consequently calling our system call,
executing commands in the secure world and receiving the
response. Each service is measured separately, along with
the invocation of the GlobalPlatform API in both worlds.

As for the objective of these tests setups, we aimed at
measuring the execution time of:

Every service in the normal world, with no invocations to
the secure world.

Each service in the normal world, plus the invocation
of the GlobalPlatform API functions to the secure world,
without accounting for the overhead introduced by setting
and getting the updated data.

The invocation of the GlobalPlatform API functions to
the secure world, with the desired service being called
in the secure world, without accounting for the overhead
introduced by setting and getting the updated data.

Each service in the secure world, plus the invocation
costs and the overhead introduced by setting and getting
the updated data.

B. System Overhead

The overhead introduced by the system was calcu-
lated by removing the service execution time average
from the overall time average. Throughout the testing of
the system, we noticed that the invocation of the TEEC
InitializeContext and TEEC FinalizeContext
functions had minimal impact on overall performance, with
estimates of two nanoseconds. The same was observed from
the invocation of both the TEEC OpenSession and TEEC
CloseSession functions, with averages between one and
two nanoseconds. The biggest time contribution belongs to
the TEEC InvokeCommand function, mainly due to the



fact that when this function is called and all the data is sent,
it must be parsed in the secure world, to be assigned and used
accordingly. The measurements for each of these functions
already contain the execution costs of the corresponding
functions of the secure world, i.e., from the TEE Internal
API, due to the small added cost implied.

Figure 5. Time overhead added for different amounts of manipulated data.

For the manipulation by value, as used when executing the
increment value service, we observed an average overhead
time of 3400 nanoseconds. For the data buffer manipulation,
the overhead varied based on the amount of data bytes
being manipulated. To measure the variation, we tested with
different amounts of bytes being manipulated. The first two
measurements contained 8 and 14 bytes of data, presenting
an average overhead of 4000 nanoseconds, while the third
measurement contained 512 bytes of data being manipu-
lated, presenting an average overhead of 6300 nanoseconds.
The biggest time contribution for these overhead results
is the cost of updating and retrieving the GlobalPlatform
parameters, manipulated by the services, along with the data
exchange between the tz vmm component and our Glob-
alPlatform module. Each service must call the appropriate
parameter updater, based on the type of data the service
manipulated, i.e., by value, like in our increment service, or
through the data buffer like our string copy service. Before
setting and retrieving the updated data, a cycle is executed,
based on the normal world process and session identifier,
along with the secure world session identifier, assigned
when a new session is opened. This cycle is responsible for
providing a considerable contribution to the final overhead.
If the service manipulated the data buffer parameter, a small
amount of time is added to the overhead, due to the use
of an extra memcpy function, that is only used for this type
of parameters. Figure 5 contains the introduced overhead for
the different types of data manipulation used in the services,
described above.

The overhead added by our system was already expected.
This is due to the fact that, instead of only copying the
same code from the normal world to the secure world,

we also added more code that must execute before and
after the service executes. This is required, not only due to
our implementation of the GlobalPlatform specifications, but
also due to the requirements of Genode’s RPC service. Even
though the system overhead brings the nanosecond execution
time of both increment value service and print date service
to the microsecond execution time, using the system, the
added overhead is imperceptible to the developer, since the
time scale is still at a few microseconds, which is still very
fast. In the data buffer manipulation overhead, although the
amount of bytes changed from 14 bytes to 512 bytes, around
37 times more, the overhead variation was roughly 1,6 times,
which is insignificant at this scale of time.

C. Service Comparison

Figure 6. Increment service performance results in both worlds.

The increment service consisted into incrementing the
received value. Since this is a simple task, it was executed
several times, as stated previously. An overview of these
results can be seen in Figure 6, where we partition the time
costs described above.

We started by measuring the service running isolated
in the normal world, which required 19 nanoseconds, on
average, to execute. We then measured the costs of in-
voking the GlobalPlatform API functions, at the same
time the service was being executed. Since the TEEC
InitializeContext and TEEC FinalizeContext
functions and the TEEC OpenSession and TEEC
CloseSession functions must always execute one time
only, we measured their invocation cost, along with the in-
crement service, which resulted in an additional cost of three
nanoseconds, on average, to the previous 19 nanoseconds,
totalling 22 nanoseconds. We then measured the invocation
of all the GlobalPlatform API functions, first while running
the service in the secure world and then without running the
service at all. This allowed us to retrieve the just the cost
of invoking the TEEC InvokeCommand function, where
we obtained and average of 126 nanoseconds, totalling an
average of 148 nanoseconds for this service.



Afterwards, we measured the service executing solely in
the secure world, where we isolated the cost of invoking the
GlobalPlatform API functions. We obtained the same time
average of three nanoseconds, for the all the GlobalPlatform
API functions, excluding the TEEC InvokeCommand. For
the command invocation, the measured an average of 129
nanoseconds and for the service in the secure world we
measured an average of 21 nanoseconds, totalling an average
of 153 nanoseconds, a slight difference from the previous
test, due to small error margins.

The string copy service consisted into copying a received
string, which could be used in the secure world, for any
means, and copying a response string, to be sent back to the
normal world. For this service we executed the same tests,
but using different payloads, to ascertain the performance
costs of increasing the amount of data manipulated in
the secure world. We measured the service using 8 bytes,
14 bytes and 512 bytes. The major differences between
this service and the remaining two are that this service
manipulates data from a data buffer parameter, specified
by the GlobalPlatform API standards. We used the memcpy
function more often, as a solution, which brought an increase
in the time average, compared to the previous services.

In terms of the service execution isolated in the normal
world, using the service to copy a total of 8 bytes resulted in
an average execution time of 2049 nanoseconds. The same
service copying a total of 14 bytes only took around 1,17
times more, about 2405 nanoseconds, although the amount
of data increased 1,75 times. As for the final test, copying
512 bytes, the average time was 2863 nanoseconds, which
is an increase of roughly 1,19 times the execution time of
the same service copying 14 bytes of data, even though the
amount of data increased about 36.5 times.

When executing the same service in the secure world,
using the service to copy 8 bytes of data resulted in an
average time of 241 nanoseconds for the invocation of
the GlobalPlatform API functions and an average of 2177
nanoseconds, totalling 2418 nanoseconds, on average. When
using 14 bytes of data with this service, the execution
time obtained, from the invocation of the GlobalPlatform
API functions, was 327 nanoseconds and for the service
was 2232, totalling 2559 nanoseconds, on average. Finally,
when using 512 bytes of data with this service, the average
execution time for the invocation of the GlobalPlatform
API functions was 671, while the service only took 2687
nanoseconds to execute, totalling 3358 nanoseconds, on
average.

The difference in the execution time of the service
isolated, is due to the observed standard deviation of
190 nanoseconds, over the service’s execution time, which
slightly changes the ratios calculated above. The time dif-
ference between executing the service, using 14 bytes and
8 bytes, only varies roughly 1,05 times, while the time
difference increases 1,31 times, when using 512 bytes of

Figure 7. String copy service performance results in the normal worlds.

data. Figure 7, contains an overview of these results.

D. Service Overview

The total execution times for the increment service and
print date service remain with minimal differences, due to
the fact that they manipulate the received values from the
parameter structure of the GlobalPlatform specifications in
the same way. For the increment service, the average total
time is 3528 nanoseconds, while the average total time for
the print date service is 3558 nanoseconds. As for the string
copy service, the introduced overhead varies, based on the
amount of data being manipulated. For the manipulation of
8 bytes of data, the average total time is 6272 nanoseconds,
while for the manipulation of 14 bytes, the total time slightly
increases to 6375 nanoseconds, on average. Finally, for the
last scenario, the total time of the string copy service, while
manipulating 512 bytes of data is 9711 nanoseconds, on
average. Figure 8 contains the total execution time for each
service.

Figure 8. Total execution performance for the provided services.

Although the amount of data manipulated varied con-
siderably between each service, as well as the way our
GlobalPlatform module handled the data, the difference in
the total time, did not escalate proportionally to the increase
in the amount of data being handled. These results show



that our system provides very good scalability, even if larger
amounts of data are used within our module, as seen by the
results of varying from a simple integer of 4 bytes, being
incremented, to a 512 bytes string, being copied.

VII. CONCLUSION

Some of the presented works related to ARM TrustZone
technology focus on providing small, but trusted, services
that run in the secure world, isolated from a traditional op-
erating system running in the normal world. These services
range from authentication mechanisms, one-time passwords,
use of cryptology or virtualization features to reduce their
attack surface by minimizing the trusted computing base.
Other solutions led to the creation of development frame-
works, capable of exploring TrustZone features. However,
there are still difficulties in using such platforms, due to
the lack of support or good documentation, to the lack of
availability of their source code.

In this work, we proposed the development of TrustFrame,
a toolkit capable of allowing the development of new
TrustZone-based solutions, that could ease the difficulties of
developers and serve as a basis for new TrustZone projects
in the future. We based our solution on Genode, an existing
development framework capable of using ARM TrustZone,
where we combined the use of a supported and easily
available framework, with the API standards devised by
GlobalPlatform, an organization that has been dedicating
itself into the development of standardized specifications
for trusted execution environments, where trusted solutions
execute. Our system was tested using three different types
of services, as a proof of concept, with different complexity
levels among them.

By analyzing our evaluation results, we realized that,
although our system introduced some overhead in the overall
performance, that impact is still minimal and insignificant
to developers and their solutions. The devised services re-
mained with high speed performance results, while running
in the secure world and using the GlobalPlatform API
specifications.

A. Future Work

As for future work, the developed solution enables many
possibilities. These include the following:

Extend the GlobalPlatform API. Since not all the API
specifications were implemented during this work, it is still
possible to extend the current implementation and add new
functionalities. The GlobalPlatform specifications account
for the use of cryptography, arithmetic, trusted storage, as
well as other APIs, which were not implemented in this
work, leaving room for future work.

Optimize the GlobalPlatform module. During the eval-
uation tests, it was noted that the system introduced an over-
head to the overall execution of a service. Optimizing the
data flow and reducing the copy of data, within this module,

would surely have an increase in the overall performance
results.

Code production automation. During the development
of our solution, we noticed that the client application con-
tained duplicated source code, for example, when calling
the TEEC InvokeCommand function. Automation of the
generation of duplicated code, similar to the RPC systems,
would benefit future development projects, ultimately aiding
the developer.

Increase compatibility and portability of the system.
By using Genode, this platform is a candidate for other
development boards, since Genode itself supports other
development boards. Extending the support to other devel-
opment boards would surely reach broader audiences and
increase interest in this type of work. Although we already
support Linux as a rich OS, supporting more REE OSes,
like Android, would open new possibilities for more future
work. Finally, use of a new toolchain, compatible with this
work, could provide better access to the toolchain and further
support. This way, issues, like the ones described earlier, that
led to compilation and availability problems, making it hard
to find the appropriate toolchain, would be mitigated.

REFERENCES

[1] Educause, “7 Things You Should Know About Mobile Secu-
rity,” pp. 1–2, 2011.

[2] Arm, “ARM Security Technology. Building a Secure System
using TrustZone Technology,” p. 108, 2009.

[3] N. Feske, “Genode Operating System Framework 16.05.”

[4] N. Semiconductor, “i.MX53 Quick Start-R Board.”

[5] J. Winter, “Trusted Computing Building Blocks for
Embedded Linux-based ARM Trustzone Platforms,”
Proceedings of the 3rd ACM Workshop on Scalable
Trusted Computing, pp. 21–30, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1456455.1456460\nhttp://doi.acm.org/10.1145/1456455.1456460

[6] GlobalPlatform, http://globalplatform.org/, 2016, [Online; ac-
cessed 17-October-2016].

[7] T. C. Group, http://www.trustedcomputinggroup.org/, 2016,
[Online; accessed 17-October-2016].

[8] H. Sun, K. Sun, Y. Wang, and J. Jing, “TrustOTP : Transform-
ing Smartphones into Secure One-Time Password Tokens,”
Ccs, pp. 976–988, 2015.

[9] N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using ARM
trustzone to build a trusted language runtime for mobile ap-
plications,” Proceedings of the 19th international conference
on Architectural support for programming languages and
operating systems - ASPLOS ’14, no. i, pp. 67–80, 2014.

[10] ——, “Trusted language runtime (TLR): enabling trusted ap-
plications on smartphones,” Proceedings of the 12th Workshop
on Mobile Computing Systems and Applications (HotMobile),
pp. 21–26, 2011.


