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Resumo 

 

O objectivo do trabalho consiste em modelizar analiticamente a condição de ressonância entre 

partículas rápidas e ondas de Alfvén num tokamak. Em particular, considera-se a interacção de 

partículas  resultantes de reacções de fusão com TAEs (Toroidicity-induced Alfvén Eigenmodes) para 

o cenário de ρυ ὓὃ do Reactor Termonuclear Experimental Internacional (ITER). Pretende-se 

desenvolver um formalismo para identificar as órbitas das partículas em ressonância com os TAEs.  

Demonstra-se, partindo do formalismo de Porcelli, que as partículas com a energia de formação dos 

alfas de fusão são as mais eficientes a trocar energia com os TAEs. Escreve-se a condição de 

ressonância mantendo apenas termos de ordem zero e obtém-se previsões analíticas discordantes dos 

dados numéricos do CASTOR-K, justificando a necessidade de ordens superiores. Para fazê-lo 

consistentemente, deriva-se um modelo analítico para equilíbrios magnéticos locais, ajustando os 

parâmetros com base no código HELENA.  

Obtém-se um modelo analítico para as órbitas passantes de partículas carregadas partindo do 

formalismo de Littlejohn para o movimento de centros-guia. O equilíbrio local e as órbitas analíticas 

demonstram boa concordância com os resultados numéricos. Obtém-se expressões analíticas para as 

frequências de trânsito poloidal e toroidal das partículas com erros inferiores a ρϷ e conclui-se que o 

método possibilita a avaliação comparativa de códigos focados no movimento de centros-guia.  

Escreve-se a condição de ressonância analítica e obtém-se as propriedades orbitais das partículas 

ressonantes. Conclui-se que os resultados reproduzem aproximadamente o comportamento numérico, 

providenciando estimativas analíticas para as órbitas das partículas que transferem mais energia para 

os TAEs. 
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Abstract 

 

This work aims to derive an analytical model for the resonance condition between fast particles and 

Alfvén waves in a tokamak. In particular, it is considered the interaction of fusion-born -particles with 

TAEs (Toroidicity-induced Alfvén Eigenmodes) for the ρυ ὓὃ baseline scenario of ITER (International 

Thermonuclear Experimental Reactor). A formalism is intended to be developed in order to identify the 

orbits of particles in resonance with TAEs. 

Starting from Porcelliôs formalism for wave-particle interaction, the particles with the alphaôs birth 

energy are the most efficient ones exchanging energy with the TAEs. The resonance condition is written 

retaining only terms of zeroth order, the corresponding analytical predictions disagreeing with numerical 

data from CASTOR-K, which justifies the need for higher order terms. To do that consistently, an 

analytical model is derived for local magnetic equilibria, whose parameters are fitted according to the 

HELENA code.  

An analytic model is obtained for passing orbits of charged particles by using Littlejohnôs formalism 

for guiding center motion. The local equilibrium and analytical orbits show good agreement with 

numerical results. Analytical forms for the particleôs poloidal and toroidal transit frequencies are 

obtained, the associated errors being lower than 1%. Therefore, the method can be used to benchmark 

codes following guiding center motion.  

The analytical resonance condition is written, allowing the determination of the orbital properties of 

resonant particles. It is concluded that these results approximately agree with the behavior of numerical 

data, providing analytical estimates for the orbits corresponding to maximum energy transfer to the 

TAEs. 
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I - TAE/fusion-born ♪-particles resonance and the need for analytical studies 

1. Fusion energy, tokamaks and ITER 

The search for sustainable long-term energy sources is undoubtedly one of the major global 

challenges mankind is facing nowadays. This is led by the worldôs population ever-increasing energy 

needs, together with the severe environmental issues associated to currently explored energy sources 

such as fossil fuels and nuclear fission. One of the most promising paths being followed today towards 

that ultimate goal is controlled nuclear fusion. It is based upon the idea of reproducing nuclear fusion 

reactions taking place in the sun in order to access the huge amounts of energy released in the process. 

One of the most widely used reaction in nuclear fusion research projects consists in deuterium-tritium 

burning, generating an  particle (σȢυ ὓὩὠ) and a neutron (ρτȢρ ὓὩὠ) in the process, 

 Ὀ Ὕᴼ ὌὩ ὲ. (1) 

This is so because the D-T reaction has a higher cross section than D-D or other fusion reactions, thus 

making it easier to initiate in an experimental reactor. 

In order for nuclear fusion reactions to take place, the distance separating atomic nuclei must be 

shortened enough for the strong nuclear force to prevail over electromagnetic repulsion. This requires 

heating the fuel to temperatures of the order of ρπ ὑ (about 10 times the temperature in the sun core). 

At these high temperatures, the D-T mixture becomes completely ionized, thus creating a plasma. In 

order to preserve those high temperatures and keep fusion underway, the plasma must remain confined 

inside the reactor. One of the most widely used confinement mechanism is based upon the imposition 

of a strong magnetic-field by means of external magnetic coils, so that all magnetic-field lines remain 

enclosed within the finite volume of the fusion device. This assures that the plasmaôs charged particles 

keep moving around magnetic-field lines inside the reactor. Consequently, a suitable confinement time 

for both particles and energy may be achieved. 

Several geometric configurations can be used to achieve the plasmaôs magnetic confinement, the 

tokamak being one of the most promising in what concerns reaching a viable fusion reactor [Wesson, 

Tokamaks]. It consists of a toroidal magnetic chamber exhibiting axial symmetry where a strong toroidal 

magnetic-field is created by external coils disposed along the torus. In order to reach an efficient plasma 

confinement, an equilibrium force balance shall be provided, which requires the existence of a poloidal 

component of the magnetic-field. This can be obtained by means of a transformer or some non-inductive 

current drive mechanism (like Neutral Beam Injection or Lower-Hybrid waves), thus imposing a toroidal 

electric current in the plasma which gives rise to the poloidal magnetic-field. As a result, a helical 

magnetic-field is generated inside the tokamak thus making it possible to confine the charged particles 

of the plasma in the core region of the chamber.  

At this point, it shall be noted that not only the fuel confinement is important, as fusion products must 

remain confined too, for their energy is crucial to keep the fusion plasma hot. In fact, other methods are 

used in order to raise the plasma temperature during the first stages, when fusion energy is not available: 

Ohmic heating generated by the toroidal plasma current is enough to heat it until σ ὯὩὠ, while processes 

like radiofrequency heating (RF) or neutral beam injection (NBI) can be used to reach a χ ὯὩὠ 

temperature. Beyond that point, however, one must take advantage of the heating power of energetic 

ions created in fusion reactions, such as the σȢυ ὓὩὠ -particles generated by D-T burning. This means 



11 

 

these energetic ions shall remain confined in the inner region of the reactor where they are meant to 

heat the plasma, thus playing a crucial role on leading it to the desired ignition state (about ρυ ὯὩὠ). 

Ensuring -particle confinement is then a mandatory condition towards maintaining the burning-plasma 

state inside a tokamak and allowing the fusion reaction to occur in a self-sustained way. Moreover, -

particles and other fast ions must be prevented from escaping the core and hitting the reactor walls, as 

their high energy constitute a major threat for plasma-facing components, thus pointing out the urgent 

character of -particle confinement. 

The reactor geometry can be characterized by the tokamak aspect ratio, defined as the ratio between 

Ὑ and ὥ (both defined in figure 1). However, the inverse aspect ratio ‐ Ḻρ is more commonly used 

as an expansion parameter in tokamak research.  

 

Figure 1: Schematic representation of a tokamak showing the lengths Ὑ (measured between the 

symmetry and magnetic axes) and ὥ (between the magnetic axis and the plasma boundary). Laboratory 

coordinates ὶȟ‰ȟ— can be used, with ὶ being the distance from an arbitrary point to the magnetic axis, 

normalized by ὥ. On the left side a magnetic flux surface   ὧέὲίὸ is represented in orange, with the 

enclosed equatorial surface Ὓ signaled in blue. 

 

There are several coordinate systems that can be used in toroidal geometry, one of the simplest 

being the Ὑȟ‰ȟὤ coordinates. In this system, Ὑ is the horizontally measured distance from the torus 

symmetry axis to a given point and ὤ is the distance vertically measured from the torus equatorial plane 

to that point. Ὑȟὤ then constitute a Cartesian coordinates system for the poloidal plane, while the 

toroidal angle ‰ accounts for a third dimension being added. The ὶȟ‰ȟ— coordinates defined in figure 

1 are also frequent in literature and will be frequently used in this work, being henceforth named 
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laboratory coordinates. Both Ὑȟ‰ȟὤ and ὶȟ‰ȟ— are orthogonal coordinate systems, the Ὑȟὤ 

coordinates being obtained from the ὶȟ— ones as 

 Ὑ Ὑ ὥὶÃÏÓ— Ὑ ρ  ‐ὶÃÏÓ— ȟ 

ὤ ÁὶÓÉÎ— Ὑ ‐ὶÓÉÎ—. 

(2) 

Magnetic-field lines in a tokamak are located along geometric surfaces known as magnetic flux 

surfaces. This is so because they can be labeled by the poloidal magnetic flux   crossing the equatorial 

surface Ὓ enclosed within the magnetic flux surface (drawn in figure 1), 

 
  ὄᴆẗὲᴆὨὛȢ 

(3) 

Moreover, for each magnetic flux surface, the magnetic-field lineôs topology is described by the 

safety-factor ή
 
, where ῳ‰ is the toroidal angle described by a magnetic-field line while it completes 

a full ς“ orbit in the poloidal projection plane [Wesson, Tokamaks]. An analytical expression for ή can 

easily be derived using the laboratory coordinates ὶȟ‰ȟ—. This requires taking into account that the 

magnetic-field lines necessarily verify the condition 
 

 
, where ὄ , ὄ  and 

ὄ  stand respectively for the radial, poloidal and toroidal components of the magnetic-field ὄᴆ. The 

safety-factor then comes as 

 ή
ρ

ς“

‐ὶρ
ρ
ὶ
Ὠὶ
Ὠ—

ρ ‐ὶÃÏÓ—

ὄ

ὄ ὄ

Ὠ—Ȣ (4) 

Although many tokamak experiments have been carried out worldwide, the expectations have never 

been so high as they are now due to the ITER project: the International Thermonuclear Experimental 

Reactor under construction in Cadarache, France. This huge device is being developed in the context 

of an international consortium with the major goal of reaching the burning-plasma stage in order to show 

the viability of nuclear fusion reactors for energy production. Therefore, a lot of theoretical research still 

needs to be developed in order to prevent possible problems and ensure that an efficient plasma 

confinement and heating is achieved when the machine starts operating.  

Useful data also includes ITERôs geometric dimensions, namely the torus major and minor radii, 

respectively Ὑ  (from the center of the torus to the center of the poloidal cross section) and ὥ  

(between the center of poloidal cross section and the plasma boundary), these being 

 
ὥ ςȢπ άȟ 

Ὑ φȢς άȢ 
(5) 

These shall not be mistaken by the Ὑ and ὥ lengths having been presented in figure 1, which refer 

to distances measured to and from the magnetic axis, its location depending on the particular equilibrium 

associated with the baseline scenario being considered. 

 

2. Shear-Alfvén wave stability 

As it has already been highlighted, assuring an efficient confinement of the fusion-born -particles is 

one of the key factors accounting for a successful ITER operation [Fasoli, 2007]. In this context, the 
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main concern on fast ions confinement comes from instabilities associated with shear-Alfvén waves in 

the tokamak. These can be pictured as oscillations of the magnetic-field lines caused by magnetic-field 

perturbations perpendicular to the background magnetic-field, which propagate in the direction parallel 

to it. An MHD approach can be used to describe shear-Alfvén waves if their characteristic length scale 

ὒ is much larger than the ion Larmor radius ” and mean-free path ‗ (ὒḻ”, ‗), their frequency is  

much smaller than the ion cyclotron frequency   (Ḻ ), all bulk-plasma species are locally 

Maxwellian and all other finite Larmor radius effects are negligible. Under these conditions, the shear-

Alfvén waves dispersion relation is 

  Ὧȿȿὺȟ (6) 

where Ὧȿȿ is the parallel component of the wave vector and ὺ  stands for the Alfvén speed, ὄ 

being the magnetic-field magnitude and ” the mass density of the plasma [Heidbrink, 2008].  

The problem with Alfvén waves is that fusion-born -particles move with velocities closer to the 

Alfvén speed, which gives rise to wave-particle resonant interactions. This may lead to energy being 

transferred from -particles to Alfvén waves, thus making them grow unstable and put -particle 

confinement at risk. Nonetheless, not all Alfvén waves are equally susceptible to be driven unstable by 

fast ions populations. 

At first, a glance shall be taken at the specific features of Alfvén waves propagating inside a tokamak. 

As a consequence of toroidal geometry, periodicity arises not only in the poloidal direction but also in 

the axial one, thus imposing periodicity constraints to both poloidal and toroidal components of the 

parallel wavelength. These constraints translate into a pair of integer mode numbers, the most 

commonly used notation establishing ὲ for the toroidal mode number and ά for the poloidal mode 

number. These mode numbers turn out to be the respective covariant components of the wave vector. 

Moreover, the absolute value of the parallel wave vector taking part in the dispersion relation can be 

written in terms of the mode numbers [Heidbrink, 2008], 

 Ὧȿȿ ὲ
ά

ή

ρ

Ὑ
Ȣ (7) 

It shall be noticed that both Ὧȿȿ and ὺ have functional dependencies on the radial coordinate ὶ, as ή, 

Ὑ and ” are functions of ὶ. Hence, in equation (6) is also a function of ὶ, which means that the phase  

velocity of the Alfvén waves is not constant for different radial locations. Alfvén waves propagating in 

the plasma observing the dispersion relation in (6) and finite  are part of what is called the Alfvén 

continuum. Due to their phase velocity depending on the radial location, these waves cannot propagate 

in the plasma without suffering a huge dispersive effect, thus exhibiting a strong damping rate  which 

is proportional to the wave frequency radial gradient, θ  [Heidbrink, 2008]. The Alfvén waves from 

the continuum are then subject to a strong damping mechanism known as continuum damping, which 

works to stabilize them. Therefore, Alfvén-continuum waves do not generally represent a significant 

threat regarding fast-ion confinement and transport. 

However, toroidal geometry gives rise to frequency gaps in the Alfvén continuum. This happens 

because the magnetic-field toroidal component ὄ  inside a tokamak follows ὄ ᶿ
ȟ

, meaning that 

the Alfvén speed ὺ will exhibit a periodical dependence on the azimuthal coordinate —, thus leading to 
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a periodical behavior of the refraction index ὔ. Analogously to what is seen in other physical contexts, 

the periodic variation of ὔ is responsible for generating frequency gaps centered at a gap frequency 

given by  , which depends on the radial location via ή, Ὑ and ὺ [Heidbrink, 2008]. As a result, 

waves from the Alfvén continuum with their frequency inside the frequency gap shall not be observed. 

Instead of it, a coupling is observed between waves with equal toroidal mode number ὲ and close 

poloidal mode numbers ά. This modifies the continuous spectrum by creating a frequency gap with a 

frequency minimum above it and a frequency maximum below it, thus providing a thin region where the 

frequency gradient vanishes. A weakly damped Alfvén eigenmode can then be generated in the radial 

location where mode coupling was observed, its frequency approaching the central gap frequency. 

There are several kinds of gap Alfvén Eigenmodes (AEs) which are named according to the order ’ 

of the coupling that originated them. First order coupling ’ ρ is associated with the so called 

Toroidicity-induced Alfvén Eigenmodes (TAEs) and is induced by toroidal geometry. These modes arise 

from the coupling between two poloidal harmonics ά and ά ρ that propagate in opposite directions. 

Matching the Ὧȿȿ value in (7) for the ά and ά ρ harmonics, leads to the condition  

 ή ά
ρ

ς

ρ

ὲ
ȟ (8) 

which sets the TAEôs radial location for a given safety-factor profile ή  . Moreover, combining (6), (7) 

and (8) allows one to find the gap frequency to be 

 
ὺ

ςὙή
ȟ (9) 

with the TAEôs frequency being necessarily close to it. 

Among other kinds of AEs, TAEs are likely to be driven unstable by interacting with fast ions moving 

with speeds close to the Afvén velocity, thus being object of extensive research. In order to find out if 

wave-particle resonances lead to damping or drive effects, the energetic-particleôs distribution function 

shall be analyzed. The radial and energy gradients of the particles distribution function come out as the 

factors determining whether this resonant energy transfer is responsible for damping the TAEs or rather 

driving them unstable. For fusion-born -particles, a negative energy gradient of the distribution function 

is expected [Heidbrink, 2008]. At the same time, the -particle distribution function usually has a 

negative radial gradient, because they are born in fusion reactions taking place in the core. Therefore, 

mode stability will be determined by the balance of the two factors. Still, there are several particle 

populations in the plasma that may exchange energy with the TAEs, including both fast ions from 

auxiliary heating systems (Neutral Beam Injection and Ion-Cyclotron Resonant Heating) and thermal 

species, thus making the TAE stability assessment a challenging task. Despite that complexity, -

particle driven TAE instabilities can be theoretically predicted [Lauber, 2013], as well as their harming 

effects on -particle confinement. Indeed, these unstable oscillations may drag  particles away from 

their original orbits, that delocalization being explained by non-linear dynamics [Heidbrink, 2008]. That 

justifies the need to understand the physical mechanisms underlying this wave-particle resonance 

towards foreseeing the TAE stability in a burning-plasma regime for specific ITER scenarios. 
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3. Wave-particle resonant interaction 

In order for an -particle to be in resonance with a TAE, it is not enough that its velocity is of the 

order of the Alfvén speed. In fact, a resonant energy transfer can only occur if the particles observe a 

specific condition relating their velocity components with the TAE frequency and mode numbers. This is 

usually referred to as the resonance condition and it can be derived in an almost straightforward way as 

outlined below [Porcelli et al, 1994].  

To begin with, fast ions motion shall be treated in terms of a guiding center motion approach, which 

is valid as long as the relevant time scales are much larger than the gyromotion time scale, that is to 

say, if the frequency of interest satisfy the ordering condition  

 


 
Ḻρȟ (10) 

where   is the ion cyclotron frequency. It also requires the particle Larmor radius to be much smaller 

than some ὒ length of interest (which in this work can be the TAE perturbations wavelength and the 

typical length-scale of the magnetic-field), thus satisfying 

 
”

ὒ
Ḻρȟ (11) 

where ” stands for the ion Larmor radius. If orderings (10) and (11) hold, the ions complete a full gyro-

orbit much faster than the overall guiding center motion. Therefore, gyro-averaged physical quantities 

can be regarded at reasonable approximation as the values taken by those quantities at the particle 

guiding center during the corresponding gyro-period. This allows one to describe energetic particle 

motion based upon the guiding center properties, thus making possible to follow a guiding center 

approach.  

This is the case for fusion-born -particles in this work. The guiding center Lagrangian is specified 

in terms of the guiding center coordinates ὼᴆ, its parallel velocity ὺȿȿ and the magnetic moment ‘ , 

plus an angular coordinate  referring to the gyro-angle described by the particle in the context of its 

Larmor rotations. This was first done by Littlejohn [Littlejohn, 1983], the guiding center Lagrangian being 

written as 

 ὒὼᴆȟὺȿȿȟ‘ȟȠὼᴆȟὺȿȿȟ‘ȟȠὸ ὤὩὃᴆ άὺȿȿὦᴆȢὼᴆ ώ άὺȿȿ ώ ὤὩ•, (12) 

where • stands for the electrostatic potential, ὃᴆ is the vector potential and ώ ‘ὄ is the energy related 

to the perpendicular velocity. Straightforward application of the Euler-Lagrange equations shows that 

   and ‘ π, which means ‘ is a constant of motion. The other invariants of motion are the particle 

energy Ὁ and its canonical toroidal angular momentum ὖ , thus resulting in a set of three invariants 

of motion ὖȟὉȟ‘ that determine the particleôs orbit topology:  

 ὖ ὤὩ  άὙὺȿȿ
ὄ

ὄ
ȟ (13) 

 Ὁ
ρ

ς
άὺȿȿ ώ ὤὩ•ȟ (14) 

and  

 ‘
ώ

ὄ
Ȣ (15) 



16 

 

In order to study fast particle behavior, the time evolution of their distribution function Ὢ is found by 

solving the Vlasov kinetic equation, which is written in the guiding center coordinates as 

 
Ὢ

ὸ
ὼᴆȢᴆὪ ὺȿȿ

Ὢ

ὺȿȿ
ώ
Ὢ

ώ

Ὢ


πȢ (16) 

If an equilibrium situation is considered, the particles will move along unperturbed orbits fully specified 

by the invariants of motion ὖȟὉȟ‘ plus an additional index „ taking one of two possible values in order 

to distinguish the two available directions for a given orbit. This means Ὢ will be just an equilibrium 

distribution function Ὂ satisfying π. However, when perturbations are added the distribution function 

will change, the perturbed distribution function including terms of different orders. A suitable choice for 

the ordering parameter is the normalized ion Larmor radius, ” . Neglecting terms of higher orders 

than the first one, the fast ions distribution function gets the form Ὢ Ὂ Ὢ , where Ὢ  is the first-

order perturbed distribution function. The Vlasov equation can then be linearized, thus being written as 

 
Ὢ

ὸ
ὼᴆ ȢᴆὊ ὺȿȿ

Ὂ

ὺȿȿ
ώ
Ὂ

ώ
πȟ (17) 

where ὼᴆ , ὺȿȿ  and ώ  are the first order perturbations in ὼᴆ, ὺȿȿ and ώ. The term in  was taken to 

zero because it vanishes when an integration over  is performed due to the fast gyromotion approach 

being taken. Equation (17) shall now be rewritten with the equilibrium distribution function gradients 

taken in respect to the invariants of motion ὖȟὉȟ‘ȟ thus leading to 

 

ὨὪ

Ὠὸ
ὼᴆ Ȣᴆὖ ὺȿȿ

ὖ

ὺȿȿ

Ὂ

ὖ
ὤὩὼᴆ Ȣᴆ• άὺȿȿὺȿȿ ώ

Ὂ

Ὁ

ώ

ὄ

ώ

ὄ
ὼᴆ Ȣᴆὄ

Ὂ

‘
πȢ 

(18) 

By making use of the Euler-Lagrange equations and after some algebra, the quantities inside the 

brackets in equation (18) can be obtained, which allows for its simplification. The first order perturbed 

Vlasov equation can then be integrated over time to give the first order distribution function 

 Ὢ ὖ
Ὂ

ὖ
ὤὩ•

Ὂ

Ὁ
‘
ὄ

ὄ

Ὂ

‘
Ὤ ȟ (19) 

where the three first terms constitute what is usually called the adiabatic response and Ὤ  stands for 

the nonadiabatic part given by 

 
ὨὬ

Ὠὸ

Ὂ

Ὁ

ὒ

ὸ
ὤὩ•

Ὂ

ὖ

ὒ

‰
Ȣ (20) 

Specifying this nonadiabatic part will lead to the resonance condition, as shown by Porcelli [Porcelli, 

1994], whose derivation is presented below. First, one notices that the leading order in ” perturbed 

Lagrangian ὒ  can be written as 

 ὒ ὤὩὃᴆ Ȣὼᴆ ὤὩ• ‘ὄ Ȣ (21) 

Then, a coordinates transformation is performed for the sake of convenience. Indeed, the so-called field-

aligned coordinates shall now be used, with the poloidal flux function   replacing ὶ as the radial 

coordinate and the — coordinate being replaced by a generalized poloidal angle si etanidrooc  ehT . 

defined by the condition 
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 ὦ ήὦȟ (22) 

ὦ  and ὦ  being the toroidal and poloidal contravariant components of the magnetic-field in field-aligned 

coordinates. Unlike the laboratory coordinates ὶȟ‰ȟ—, the field-aligned coordinates  ȟ‰ȟtes a mrof  

of non-orthogonal coordinates. 

Another useful definition is that of the poloidal transit time † , which is the time taken by fast-passing 

particles to describe a full closed orbit from  π to  ς“ in the poloidal projection plane and can be 

obtained as 

 † Ὠ†
Ὠ



Ὠ—

—
ȟ (23) 

where the last equivalence stands for the fact that integrating over the poloidal angle from π to ς“ yields 

the same result whether the degareva tisnart-ladiolop a ,eromrehtruF .desu gnieb si etanidrooc — ro  

value of a certain physical quantity ὢ is an average calculated in a poloidal transit time † , according to  

 ộὢỚ
ρ

†
ὢὨ†

ρ

†

ὢ


Ὠ

ρ

†

ὢ

—
Ὠ—Ȣ (24) 

The poloidal transit frequency   can then be defined in field-aligned coordinates as the particle 

poloidal velocity averaged over one complete poloidal transit period,  ộtisnart-ladiolop A .Ớ 

averaged toroidal velocity ộ‰Ớ can be derived, too, both ộ.(42) gniwollof Ớ‰ộ dna Ớ  

In order to specify Ὤ , the first order perturbed Lagrangian is then considered to take the form  

 ὒ ὸ ὒ  ὸȟὸ ÅØÐὭὸ ὲ‰ὸ ȟ (25) 

where periodicity is imposed in time as well as in the axial direction ‰, being the Alfvén eigenmode  

frequency and ὲ its toroidal mode number. It must be noticed that ὒ  is an amplitude that depends on 

the  ȟᴆὃ) seititnauq debrutrep rehto eht lla dna setanidrooc  , • , ὄ ) must follow an analogous 

form to (25). Making use of this in equation (20) and integrating it over time allows one to write the 

nonadiabatic term as 

 Ὤ Ὥ
Ὂ

Ὁ
ὲ
Ὂ

ὖ
ὒ †Ὠ†Ȣ (26) 

The computation of the integral (26) requires the axial coordinate ‰ὸ to be split in two terms, 

 ‰† ộ‰Ớ† ‰†ȟ (27) 

‰† being a time-dependent oscillating part. This leads to the perturbed Lagrangian being written as 

ὒ † ὒ†ÅØÐὭ ὲộ‰Ớ†, with 

 ὒ† ὒ  †ȟ† ÅØÐὭὲ‰†ȟ (28) 

Since ὒ† is a periodic function of †, it can be Fourier expanded, 

 ὒ† ὣ ὖȟὉȟ‘ȟ„ÅØÐὭὴ †ȟ (29) 

where ὣ ὖȟὉȟ‘ȟ„ are Fourier coefficients that can be obtained by computing a poloidal-transit 

averaged quantity, 

 ὣ ὖȟὉȟ‘ȟ„ ộὒ†ÅØÐὭὴ †Ớȟ (30) 

thus depending only on the invariants of motion ὖȟὉȟ‘ and the „ index. The perturbed Lagrangian 

then becomes 
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 ὒ † ὣ ὖȟὉȟ‘ȟ„ÅØÐὭ ὲộ‰Ớ ὴ †ȟ (31) 

Taking advantage of Fourier series in (31), the integral in (26) can be carried out, the nonadiabatic 

part of the perturbed distribution function finally yielding 

 Ὤ 
Ὂ

Ὁ
ὲ
Ὂ

ὖ
ὣ ὖȟὉȟ‘ȟ„

ÅØÐὭ ὲộ‰Ớ ὴ ὸ

 ὲộ‰Ớ ὴ
Ȣ (32) 

The resonance condition thus corresponds to a singularity in Ὤ  due to a vanishing denominator in 

(32): 

  ὲộ‰Ớ ὴ πȢ (33) 

In the resonance condition (33), ὴ is an integer value (ὴ πȟρȟςȟȣ) arising from the Fourier series 

expansion which can be related to the AEs poloidal mode number ά as follows. To begin with, 

expression (20) for the guiding center first order perturbed Lagrangian must be rewritten, this time 

imposing periodicity in the poloidal direction ά rebmun edom ladiolop eht ot sdael sihT .llew sa  

appearing in the Lagrangian form, 

 ὒ ὸ ὒ  ὸ ÅØÐὭὸ ὲ‰ὸ άὸ Ȣ (34) 

Assuming † ,strap yrotallicso dna raluces otni tilps eb osla nac  ộ†Ớ eht gniwollof dna ȟ† 

same procedure having been used above, one finds the perturbed Lagrangian is given by  

 ὒ ὸ ὣὖȟὉȟ‘ȟ„ÅØÐὭ ὲộ‰Ớ ὰ ά  †ȟ (35) 

where ὰ is the new Fourier expansion index and  ộeht rof (53) dna (13) smrof gnirapmoC .Ớ 

perturbed Lagrangian highlights the relation between the integer ὴ in resonance condition (33) and the 

poloidal mode number άȟ 

 ὴ ὰ άȢ (36) 

Moreover, the physical meaning of ὰ can be understood after looking at form (21) for the perturbed 

Lagrangian. There, one notices that ὃᴆ , •  and ὄᴆ  are electromagnetic perturbations depending 

only on the TAEs toroidal and poloidal mode numbers ὲ and ά, ὼᴆ being the only physical quantity which 

can be related to ὰ. In addition, since these are ideal MHD perturbations, the vector potential ὃᴆ  is 

perpendicular to the background magnetic-field ὄᴆ, 

 ὄᴆ ᶯ ὃᴆ ȟ  ὃᴆ ‚ᴆ ὄᴆȟ (37) 

where ‚ᴆ is an arbitrary displacement of the magnetic-field lines in a direction perpendicular to the 

background magnetic-field. Therefore, ὒ ὸ depends on ὼᴆ only via the perpendicular drift-terms. This 

means ὰ must be regarded as the poloidal-harmonic index associated to the perpendicular drift-velocity 

terms of the guiding center velocity ὼᴆ. A discussion on the relevant ὰ values will soon be undertaken. 

However, the resonance condition by itself does not allow one to evaluate the energy transfer 

between fast particles and Alfvén Eigenmodes. The amount of energy transferred via this wave-particle 

resonant interaction can be derived starting from the linearized force balance equation, in which inertial 

terms can be neglected providing only slow time scales are considered, 
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 ὐᴆὄᴆ ᴆὖ ᴆȢὖᴆ πȟ (38) 

where ὖ is the pressure associated to the plasma core and ὖᴆ is the pressure contribution from high 

energy particles. The fact that ὖᴆ has a tensorial form proceeds from the fast ions distribution function 

being anisotropic, thus leading to different values of the parallel and perpendicular pressure 

components, ὖ
ȿȿ

ὖ . In order to determine the energy transfer from the Alfvén Eigenmodes to 

fast particles, one shall find a way of calculating the work performed by the perturbed electric-field on 

those fast particles, ὡ . It comes out that, for an arbitrary displacement of the magnetic-field lines ‚ᴆ, 

ὡ  can be computed as the inner product of the last term on the left side of equation (38) and the 

adjoint displacement ‚ᴆ
ᶻ
 integrated over all space, 

ὡ 
ρ

ς
‚ᴆ
ᶻ
ȢᴆȢὖᴆ ὨὼȢ (39) 

The computation of the integral in (39) requires the perturbed pressure tensor ὖᴆ  to be suitably 

defined [Antonsen and Lee, 1982]. Then, starting from (39) and after some algebraic calculations, an 

explicit form can be obtained for the energy transfer ὡ , all terms being specified in a detailed way. 

Those terms may be fit into one of two groups: those which show no dependencies on the mode 

parameters, thus producing the same value for all modes, and those depending on the mode frequency 

and the toroidal mode number ὲ, which account for the wave-particle energy transfer varying in  

accordance with the specific mode considered. This mode-dependent term shall be represented by ὡ  

and it can be written as 

ὡ 
ρ

ς
ὨὼὨὺ 

Ὂ

Ὁ
ὲ
Ὂ

ὖ
ὒ

ᶻ
ὒ Ὠ†ȟ (40) 

ὒ
ᶻ
 being the complex conjugate of the first order perturbed Lagranian (25). Making use of the 

expansion in Fourier series of both ὒ  and ὒ
ᶻ
 and performing the time integration, a simplified form 

is obtained for the mode-dependent energy transfer term, 

ὡ 
ρ

ς
ὨὼὨὺ 

Ὂ

Ὁ
ὲ
Ὂ

ὖ
ὣᶻÅØÐὭὰ ὸ

ὣÅØÐὭὴ ὸ

 ὲộ‰Ớ ὴ
Ȣ (41) 

At this point, the expression can be further simplified by changing the phase-space variables to more 

convenient ones, including the invariants of motion ὖȟὉȟ‘ as well as the ‰ coordinate, the time along 

the orbit ὸ and the particle gyro-angle . This is a simple exercise as the Jacobian is a constant given 

by 

 ὨὼὨὺ
ρ

ὤὩά
ὨὖὨὉὨ‘Ὠ‰ὨὸὨȟ (42) 

the sum over „ accounting for the two possible orbits for the same set of invariants of motion ὖȟὉȟ‘. 

Applying this transformation of coordinates to (41) and integrating ὡ  over ‰, ὸ and  (the phase-space 

variables that are not constant around the orbit of the particle) allows one to obtain the ὡ  term in its 

most simplified way, 

ὡ 
ς“

ὤὩά
ὨὖὨὉὨ‘ † 

Ὂ

Ὁ
ὲ
Ὂ

ὖ

ὣ

 ὲộ‰Ớ ὴ
Ȣ (43) 
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Since ὡ  constitutes the only term of the wave-particle energy transfer that depends on the mode, 

expression (43) provides a guide to compare the energy transfer for different Alfvén Eigenmodes. Firstly, 

it shall be pointed out that ὡ  accounts for the energy transfer from the perturbed magnetic-field to the 

fast particles, which results in ὡ π if the Alfvén modes are damped and ὡ π being the case for 

drive effects. Hence, it now becomes clear that a negative energy gradient of the equilibrium distribution 

function Ὂ will account for mode damping, while a negative radial gradient of Ὂ implies that the Ὂ gradient 

taken with respect to ὖ  is also negative, thus prompting drive rather than damping. The relative strength 

of both  and  then comes as the key factor defining the direction of the energy transfer, as well as 

the values of the mode frequency and toroidal number ὲ, which constitute weighting coefficients of  

the energy and momentum gradients respectively. This balance is crucial to determine whether a certain 

Alfvén Eigenmode will be damped or driven unstable by fast ions in resonance with them. 

To sum up, both the resonance condition (33) and the mode-dependent energy transfer term (43) 

play a capital role on the TAE stability analysis. While equation (33) allows one to identify the orbital 

properties ὖȟὉȟ‘ of those -particles in resonance with some specific TAE, expression (43) can be 

used to evaluate the energy transfer taking place in those circumstances. As a consequence, answers 

can be found for the following questions: what modes are the most likely to be driven unstable and what 

values of the particle orbital properties maximize the energy being transferred. 

 

4. ITERôs  ╜═ baseline scenario 

Considering how decisive it is to attain a strong knowledge on Alfvén Eigenmodes stability in a 

burning-plasma regime, several research projects have already been conducted. In recent years, an 

even greater effort has been done on searching for answers, since the first plasma experiments at ITER 

are now scheduled for December 2025 and predicting the stability of TAEs and other AEs in the 

presence of fusion-born -particles for ITER baseline scenarios is a key factor towards its successful 

operation. This means that theoretical research on TAE stability must be ITER-relevant in the sense that 

all physical conditions considered must be those observed in the context of ITER operation, ranging 

from the reactor geometry characterized by its aspect ratio to the magnetic-equilibrium associated to a 

certain ITER baseline scenario.  

The ITERôs baseline scenario being considered in this work has been at the core of recent research 

[Pinches, 2015; Lauber, 2015; Rodrigues, 2015; Figueiredo, 2016] and is characterized by a set of 

magnetic-equilibrium related parameters, as well as density and temperature profiles being presented 

here. According to what has been introduced in figure 1, the magnetic axis location determines both 

dimensions Ὑ and ὥ. Since the magnetic axis is slightly displaced from the geometric center of the 

deviceôs poloidal cross section, these values donôt match those of the device dimensions Ὑ  and ὥ  

in (5), so one must not confuse them. Ὑ, ὥ and the inverse aspect ratio yield 

 

ὥ ρȢωωυ άȟ  

Ὑ φȢτπυυ άȟ 

‐ πȢσρρτυȟ 

(44) 

where ‐ can be considered small enough in order to be used as an expansion parameter.  
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For the ITERôs baseline scenario under study, the plasma current flowing in the tokamak is ρυ ὓὃ. 

Since this is a key factor determining the magnetic features of the tokamak, this scenario is commonly 

labeled as ITERôs ρυ ὓὃ baseline scenario, which will be used henceforth. Important magnetic-

equilibrium related parameters include the magnetic-field at the axis ὄ, the on-axis Alfvén speed and 

the poloidal magnetic flux at the plasma edge   , which yield 

 

ὄ υȢςωτφ Ὕȟ 

ὺ χȢπχυχρπ ά ί ȟ 

  ρςȢρττπ Ὕ ά ὶὥὨȢ 

(45) 

It must be noted that the poloidal magnetic flux   labeling each flux surface can then be normalized to 

  , thus giving rise to a normalized poloidal magnetic flux ί defined by 

 ί
 

 
ȟ (46) 

Where ί is allowed to vary within the range πȟρ. Therefore, ίȟ‰ȟdengila-dleif sa desu eb nac  

coordinates instead of  ȟ‰ȟ.  

Returning our attentions back to ITERôs ρυ ὓὃ baseline scenario, it is also characterized by being a 

very low magnetic-shear scenario, which means the radial profile of the safety factor is very flat in the 

core of the plasma. The ή-profile is presented in figure 2, together with the Alfvén continuum spectrum 

for ITERôs ρυ ὓὃ baseline scenario, where several continuum gaps can be distinguished, the lower-

frequency ones corresponding to TAEs. 

Figure 2: Radial profile of ή (yellow) and Alfv®n continuum spectrum for ITERôs ρυ ὓὃ scenario. 

 

The presentation of the baseline scenario under consideration must also include density and 

temperature profiles for both ions and electrons, as well as -particles and helium ash density, since 

this is a burning-plasma scenario. These profiles can be seen in figure 3. 
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Figure 3: Radial profiles of ion and electron density and temperature, as well as -particles and helium 

ash density for ITERôs ρυ ὓὃ baseline scenario. 

 

5. Current status of AE stability predictions for ITER 

In the context of what has been previously explained, the TAEs have been attracting major attention 

as results show they are among the most susceptible modes to be driven unstable by fusion-born -

particles.  

A February 2015 paper by Pinches et al [Pinches et al, 2015] explores a broad range of phenomena 

involving energetic ions, regarding with special concern the AE stability in ITERôs ρυ ὓὃ baseline 

scenario with very low magnetic-shear in the plasma core. An analytical model is presented there in 

order to evaluate TAE stability, accounting for several physical processes affecting it, from thermal ion-

induced damping to drive effects caused by fusion  particles or NBI-generated fast ions, also including 

continuum damping and other phenomena. The instabilities growth rates were computed for different 

TAEs, leading to the conclusion that unstable modes could only be observed in the outer region of the 

plasma (ὶȾὥ πȢυ), where energetic-ion induced drive was found to dominate over a weak thermal-ion 

damping due to the low temperature, while the higher temperature near the axis works to suppress any 

energetic-ion drive. 

These studies were further extended in a new article from April 2015 by Lauber [Lauber, 2015], 

revealing it was possible to excite TAEs in the inner half of the plasma in the low-shear ITER baseline 

scenario. This was based upon numerical simulations using LIGKA, a linear gyrokinetic spectral code. 

Such an approach accounted for all particle species in the plasma in order that every single 

phenomenon was included while assessing the stability of Alfvén Eigenmodes. Concerning TAEs, many 

unstable modes were identified, including core-localized ones. Interesting breakthroughs also included 

results for TAE damping for different values of the toroidal mode number ὲ. 
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Finally, another paper on TAE stability was published in June 2015 by Rodrigues et al [Rodrigues et 

al, 2015]. A systematic strategy was developed in order to assess the linear stability of Alfvén 

Eigenmodes in the presence of fusion-born  particles for an ITER baseline scenario. The method 

consisted in using a hybrid model combining an ideal-MHD description of thermal species and a drift-

kinetic approach for -particles, which required running the CASTOR-K code [Borba and Kerner, 1999]. 

CASTOR-K follows the Porcelliôs formalism presented in the last section in order to compute ὡ  from 

(43), which is the output of the code, this being the major contribution for the total fast-ion/TAE energy 

transfer ὡ  from (39). While computing ὡ , all energetic particle populations in the plasma are taken 

into account, as well as the energy transfer contributions from the thermal plasma. Summing up all terms 

and numerically integrating over the whole phase space volume, growth rates were obtained for several 

TAEs, these being depicted in figure 4. 

 

Figure 4: Growth rates of several TAEs computed by CASTOR-K plotted as a function of their toroidal 

mode number ὲ and the radial location of their maximum amplitude ί . Positive growth rates 

correspond to instabilities, while the most unstable TAEs can be seen to belong to two distinct families 

A and B located in the inner region of the plasma ί πȢυ. 

 

The highest growth rates were found for TAEs with toroidal mode number ὲ lying in the range ςπṂ

ὲṂσπ. Moreover, these modes were found to be located in the inner half of the plasma, close to the 

point where the radial gradient of the  particle density has a maximum, which is in accordance with 

what has been discussed about expression (43). On the other hand, the ὲṂρπ TAEs and modes far 

from the core were found to be stable due to strong continuum damping. This has shed some light on 

knowing what TAEs should deserve more attention on future research, the main CASTOR-K results 

being presented in figure 4. There, two different TAE families can be seen to exhibit the highest growth 

rates, thus showing further investigation shall be conducted on these modes. Particularly, the ὲ σρ 

mode from the A family and the ὲ ςυ mode of the B family in figure 4 prove to be the most unstable 



24 

 

ones from each family, thus making them the ones requiring most attention. The radial structure of these 

two modes is presented in figure 5, while the radial structures of three distinct modes from the A family 

can be found on figure 6.  

 

Figure 5: Radial structure of the ὲ ςυ TAEs from the A family (red) and the B family (blue). Both of 

them are located within the ίɴ πȢςȟπȢυ region. 

 

 

Figure 6: Radial structure of three TAEs from the A family with three different poloidal mode numbers: 

ὲ ςυ (red), ὲ σρ (yellow) and ὲ σσ (green). These unstable modes are limited to the ίɴ πȢςȟπȢυ 

region. 
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At this point, one must understand which particles are most efficient on transferring energy to the 

TAEs. This requires investigating the resonance condition (33) in order to determine the orbital 

properties of those particles in resonance with the TAE, while expression (43) may provide further insight 

on which of these particles drive the most unstable modes more efficiently. The analytical approach to 

be performed in sections III and IV of this work will produce a framework on which predictions can be 

based, while numerical results from simulations will be used to check if the analytical assumptions made 

are valid. 

 

6. Analytical predictions at lowest order in Ⱡ and Ⱦ♦  

The next steps will present a very simple zeroth order derivation towards determining the orbital 

properties of the particles in resonance with the TAE. Its purpose is to show that such basic approach 

is clearly insufficient and to motivate further developments to be carried out later.  

To begin with, the poloidal-transit averaged quantities ộ‰Ớ and   ộnoitidnoc ecnanoser eht ni Ớ 

(33) must be obtained, which requires determination of both ‰ and stluser redro-htorez ylno ecniS . 

are aimed, several approximations shall be considered at this stage, the first of which will be to take the 

simplest magnetic-equilibrium with centered circular flux surfaces. It must also be noted that calculations 

will be performed in orthogonal laboratory coordinates ὶȟ‰ȟ— rather than non-orthogonal field-aligned 

coordinates ίȟ‰ȟta emiger raehs-wol yrev a ot sdnopserroc oiranecs enilesab ὃὓ υρ sôRETI ecniS . 

ί πȢυ, which encloses the radial location of the TAEs under concern, the magnetic-shear will be taken 

to be zero, which leads to a constant ή-profile being considered. This is in agreement with the ή-profile 

shown in figure 2. Using this approximation, poloidal coordinates hcihw ,redro htorez ta eerga — dna  

will become evident later in section IV-1, where an analytical form relating setanidrooc yrotarobal htiw  

ὶȟ— is derived. Therefore, one is able to take  ộ—Ớ at zeroth order.  

In order to determine zeroth order approximations for ‰ and —, one shall first note that these are two 

of the contravariant components of the particle guiding center velocity expressed in ὶȟ‰ȟ— coordinates. 

This shall be easily verified starting from the intuitive velocity components,  

 ὺᴆ ὺ ȟὺ ȟὺ Ὑ‐ὶȟὙ ρ ‐ὶ ÃÏÓ— ‰ȟὙ‐ὶ—Ȣ (47) 

The contravariant and covariant components of the velocity vector can then be obtained by means of 

the metric tensor for the ὶȟ‰ȟ— coordinates system, its non-zero covariant coefficients and the 

associated metricôs determinant being 

 

Ὣ Ὑ ‐, 

Ὣ Ὑ ρ ‐ὶ ÃÏÓ— ȟ 

Ὣ Ὑ ‐ὶ, 

Ὣ Ὑ ‐ὶ ρ ‐ὶ ÃÏÓ— Ȣ 

(48) 

Therefore, it follows from (47) and (48) that the contravariant velocity components are simply ὶȟ‰ȟ— in 

laboratory coordinates. In an analogous way, the contravariant velocity components are given in field-

aligned coordinates by ίȟ‰ȟ. 

Applying the Euler-Lagrange equations to the Littlejohn Lagrangian (11) for the particle guiding 

center provides the equations of motion for the guiding center, from which velocity components can be 
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calculated [Littlejohn, 1983]. One will keep terms up to first order in the inverse of the particleôs cyclotron 

frequency at the magnetic axis,  (with ὤ ς for -particles). Writing ὺᴆ instead of ὼᴆ as the particle 

guiding center velocity to simplify notation, the guiding center equations of motion yield 

 ὄ
ὺȿȿ

 
ὄᴆȢɳᴆὦᴆ ὺᴆ ὺȿȿὄᴆ

ὺȿȿὄ

 
ᴆɳὦᴆ

‘ὄ

ά 
ὦᴆ ᴆɳὄȟ (49) 

with ὦᴆ standing for the magnetic-field unitary vector. Equation (49) can be further simplified to give an 

explicit expression for the components of the velocity vector, all terms of order greater than  being 

neglected, 

 ὺᴆ ὺȿȿὦᴆ
ρ

ά 
ὦᴆ ‘ɳᴆὄ άὺȿȿ ὦᴆȢɳᴆὦᴆȢ (50) 

However, as only a rough zeroth order estimate is intended, expression (50) shall be kept for future 

reference. For now, only the first term can be consistently kept, as all other terms are of order 1 in . 

This allows one to write, at zeroth order, 

 ὺᴆ ὺȿȿὦᴆȢ (51) 

The zeroth order contravariant velocity components can then be expressed as 

 

ὶ ὺȿȿὦ, 

— ὺȿȿὦ, 

 ‰ ὺȿȿὦȟ 

(52) 

where ὦȟὦȟὦ  are the contravariant components of the magnetic-field unitary vector, which shall be 

determined next. The contravariant velocity components can also be given in field-aligned coordinates 

as 

  
                        ὺȿȿὦ , 

                       ‰ ὺȿȿὦȟ 

 
(53) 

where the radial component ί vanishes at zeroth order since ὦ π in field-aligned coordinates. 

The components of the magnetic-field for a circular equilibrium model can be specified as   

 ὄᴆ ὄ ȟὄ ȟὄ
ὄ

ρ ‐ὶ ÃÏÓ—
πȟρȟ
‐ὶ 

ή
ȟ (54) 

where ή is related to the safety-factor ή (event though they are not exactly the same, they agree at 

zeroth order in ‐). As a result, the magnetic-field modulus will be given by 

 ὄ
ὄȾή

ρ ‐ὶ ÃÏÓ—
‐ὶ ήȢ (55) 

Dividing the ὄᴆ vector in (54) by its modulus in (55), the magnetic-field unitary vector becomes  

 ὦᴆ πȟ
ή

‐ὶ ή
ȟ

‐ὶ

‐ὶ ή
Ȣ (56) 

Finally, applying the metric coefficients in (48) gives the contravariant components of ὦᴆȟ  

 ὦȟὦȟὦ πȟ
ή

Ὑ ρ ‐ὶ ÃÏÓ— ‐ὶ ή
ȟ

ρ

Ὑ ‐ὶ ή
Ȣ (57) 

Now, neglecting all terms in ‐, the zeroth order contravariant components of ὦᴆ are obtained as 
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 ὦ ὦȟὦȟὦ πȟ
ρ

Ὑ
ȟ
ρ

Ὑή
Ȣ (58) 

Therefore, the contravariant velocity components ‰ and — given at zeroth order by 

 

‰
ὺȿȿ

Ὑ
ȟ 

—
ὺȿȿ

Ὑή
Ȣ 

(59) 

Coming back to the resonance condition, an alternative form will be considered for the integer value 

ὴ. Solving equation (8) in order to ά and using the resulting solution in expression (36) allows one to 

state ὴ as 

 ὴ ὲή ὰ
ρ

ς
Ȣ (60) 

Before proceeding, one must determine the ὰ values of physical interest by checking the —-dependencies 

from the drift-velocity terms from (50) in order to find out which poloidal harmonics dominate at leading 

order. One notices that both  and 
ȿȿ

 are constant at leading order assuming only passing particles 

are considered, so one must check the contravariant components of vector forms ὦᴆ ᴆɳὄ and ὦᴆ ὦᴆȢɳᴆὦᴆ 

using the circular magnetic-equilibrium from equations (54), (55) and (56). It then comes out that only 

radial and poloidal contravariant components exhibit non-zero leading order terms, yielding 

 
ὦᴆ ᴆɳὄ , ὦᴆ ὦᴆȢɳᴆὦᴆ ᶿÓÉÎ—ȟ 

ὦᴆ ᴆɳὄ , ὦᴆ ὦᴆȢɳᴆὦᴆ ᶿÃÏÓ—Ȣ 

(61) 

Therefore, the first poloidal harmonic ὰ ρ is proved dominant at leading order. As a consequence, 

one shall take both these values later on. For now, letôs simply keep on writing ὰ.  

It can then be noticed that, assuming the aforementioned leading order approximations, namely a 

very simple cylindrical magnetic-equilibrium, with no toroidicity (‐ is neglected) and centered circular 

magnetic flux surfaces, the two poloidal angles ylreporp eb lliw sihT .redro gnidael ta eerga — dna  

seen later in section IV-2. Replacing (60) in (33) and using  —, the third term in the resonance 

condition can be written as ὴ ὲήộỚ ὰ ộ—Ớ, thus yielding 

  ὲộ‰ ήỚ ὰ
ρ

ς
ộ—Ớ πȢ (62) 

At this point, the zeroth order contravariant velocities shall be replaced by expressions (52). As for the 

zeroth order mode frequency,   will henceforth be used. Equation (62) then comes 

  ὲộὺȿȿὦ ήὦ Ớὰ
ρ

ς
ộὺȿȿὦỚ πȢ (63) 

Therefore, using (22) and (58), the zeroth order resonance condition becomes    

  ὰ
ρ

ς

ộὺȿȿỚ

Ὑή
πȢ (64) 

This equation can be normalized by the Alfvén angular frequency at the magnetic axis  , ὺ  

being the Alfvén speed at ὶ π, resulting in 

  ὰ
ρ

ς

ộὺȿȿỚ

ὺ ή
πȟ (65) 
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where   is the Alfvén-normalized mode frequency at zeroth order.  

Now, the particle parallel velocity can be written as ὺȿȿ „
ȿȿ
, with „ being the same sign 

associated to the direction of the particle motion along the orbit that was mentioned before, with „ ρ 

for the particle traveling parallel to the magnetic-field line and „ ρ for antiparallel motion. Ὁȿȿ is in turn 

the parallel energy given by 

 Ὁȿȿ Ὁ Ὁ Ὁ ρ
Ὁ

Ὁ
Ȣ (66) 

Using (66) and expressing the perpendicular energy as Ὁ ‘ὄ, the parallel velocity is written as 

 ὺȿȿ „
ςὉ

ά
ρ
‘ὄ

Ὁ
Ȣ (67) 

The resonance condition can now be stated in a different way proceeding from (67), 

  ὰ
ρ

ς

„ὼ

ή
ộρ Ώ ὄȾὄ Ớ πȟ (68) 

where ὼ  is a constant of motion (with Ὁ  the Alfvén energy at the magnetic axis defined as Ὁ

άὺ ) and Ώ  is a constant of motion related to the particle perpendicular energy fraction (though 

this is not exactly  due to the perpendicular energy being Ὁ ‘ὄ instead of ‘ὄ). It must be noticed 

that ὼ is a constant of motion that depends only on the particle energy Ὁ, while Ώ is determined by the 

magnetic moment ‘ and the particle energy Ὁ. Therefore, the invariants of motion Ὁȟ‘ used to identify 

the particle orbits can be replaced by these two constants ὼȟΏ, the complete set of orbital parameters 

being given by ὖȟὼȟΏȟ„. 

Returning again to resonance condition (68), one easily notes that the ordering is not entirely 

consistent since the ὄȾὄ factor must be ρ at zeroth order in ‐. The zeroth order resonance condition 

shall then be written as 

  ὰ
ρ

ς

„ὼ

ή
Ѝρ Ώ πȟ (69) 

which can still be simplified through dividing by the normalized mode frequency  , 

 ρ ὰ
ρ

ς

„ὼЍρ Ώ

ή
πȢ (70) 

The resonance condition at zeroth order depends only on   and ὰ, as well as the orbital properties 

ὼ and Ώ (but not ὖ ) of the interacting particle. Nonetheless, it is independent of the toroidal mode 

number ὲ. On the other hand, recalling expression (9) for the TAE gap frequency and noticing  

 at zeroth order in ‐, the zeroth order Alfvén-normalized frequency   is obtained as 

 
ρ

ςή
Ȣ (71) 

Replacing (71) into (70) and using the fact that ή and ή agree at zeroth order leads to the resonance 

condition being stated as 

 ρ ςὰ ρ„ὼЍρ Ώ πȢ (72) 



29 

 

As for ὰ, its value must be ὰ ρ, according to what have been seen in (61). Since „ὼЍρ Ώ is the 

particleôs parallel speed normalized by the Alfv®n velocity, one can replace ὰ ρ in (72) to notice ὰ

ρ corresponds to ὺȿȿḙὺ, while ὰ ρ yields ὺȿȿḙ ὺ, the minus sign meaning that the particle is 

traveling in the direction opposite to the waveôs direction of propagation. One shall then take the two 

cases separately. Assuming Ώ ρ, equation (70) can be solved in order to Ώ, yielding 

 

Ώ ρ ȟ if ὰ ρ, 

Ώ ρ ȟ if ὰ ρ. 
(73) 

It shall be noticed that (73) is independent on the value of „ since  „ ρ for both „ ρ possible 

values. Therefore, the resonant lines in the ὼȟΏ plane can be obtained at zeroth order by plotting 

expressions (73), thus determining which orbits allow fusion-born  particles to establish resonant 

interactions with the TAE. The corresponding resonance lines in the ὼȟΏ phase-space are plotted in 

figure 7. 

 

Figure 7: Resonant line in the ὼȟΏ space at zeroth order for particles in resonance with a TAE, taking 

both ὰ ρ values and considering an arbitrary toroidal mode number ὲ. Only ὼ values on the left of 

ὼ ρȢψσφρ (signaled by a black vertical line) have physical meaning. 

 

Note that only positive values of ὼ and Ώ are considered, for negative values wouldnôt have physical 

meaning. Interesting features of the resonant line include the existence of a minimum value of the 

Alfvén-normalized velocity ὼ for resonant particles, which correspond to vanishing Ώ at ὼ ρ (strongly 

passing particles). Ώ increases monotonically with ὼ and converges to Ώ ρ as the particle energy 

grows. Therefore, at zeroth order in ‐, passing particles with Ώ ρ cannot take part in resonant 

interactions. However, only energy values lower than the fusion alphas birth energy Ὁ σȢυ ὓὩὠ are 

of physical interest in this context. Using the on-axis Alfvén speed in (45) for ITERôs ρυ ὓὃ baseline 

x 
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scenario and the -particleôs mass ά φȢφτρπ  ὯὫ, one then obtains the corresponding ὼ value, 

ὼ ρȢψσφρ. 

However, the resonant condition by itself tells nothing about the amount of energy being transferred 

from the different resonant particlesô orbits to the TAE under study, as it only reveals information on the 

properties of potential resonant particles. To assess the energy transfer due to each resonant orbit one 

must recall expression (43) for the mode-dependent energy transfer term ὡ .  

To begin with, an assumption must be made for the squared modulus of the Fourier coefficients ὣ . 

These have first been presented in expression (29) for the oscillatory part of the perturbed Lagrangian 

ὒ†. ὣ is then defined in (30), the poloidal-transit averaging in the later requiring an integral along a 

given orbit. At this point, it is assumed that the TAEôs amplitude is totally concentrated in the modeôs 

rational magnetic flux surface, its radial width being neglected. Then, aiming to obtain leading order 

estimates, one assumes that if the particleôs orbit is centered at the TAEôs rational flux surface, then ὣ 

will get a finite value, while otherwise ὣᴼπ. Therefore, ὣ  can be stated as being proportional to a 

Dirac delta, 

 ὣ ὅί ί ȟ (74) 

where ί  is the ί value of the TAEôs rational magnetic flux surface and ὅ is a constant for each ὴ 

value. The Dirac Delta in (74) must be written in terms of the integration variables in (43), which can be 

done by using equation (13) for ὖ . This whole equation can be normalized, being divided by a ὤὩὄὙ  

normalization factor, which yields  

 
ὖ

ὤὩὄὙ

 

ὄὙ

ά

ὤὩὄ

Ὑ

Ὑ
ὺȿȿ
ὄ

ὄ
Ȣ (75) 

The left hand side can now be regarded as a normalized canonical toroidal angular momentum,  

 ὖ
ὖ

ὤὩὄὙ
Ȣ (76) 

Using (76) and the definition of the on-axis ion cyclotron frequency   , writing   in terms of ί, 

    ίȟ  equation (75) becomes  

 ὖ
  ί

ὄὙ

ρ

 

Ὑ

Ὑ
ὺȿȿ
ὄ

ὄ
Ȣ (77) 

At leading order, the second term on the right hand side vanishes and the radial coordinate ί can be 

mapped onto ὖ , which then allows one to write the Dirac Delta in (74) in terms of ὖ , yielding 

 ὣ ὅὖ ὖ ȟ (78) 

As for the denominator, which is but the resonance condition, it accounts for the singularity arising at 

the resonance, being very small elsewhere. This means this quantity can be approximated as a Dirac 

delta to be integrated over the particle orbit parameters ὖȟὉȟ‘, which will be written as ῲ , with 

ῲ  ὲộ‰Ớ ὴ . As a result, the mode-dependent term of the energy transfer ὡ  in (43) 

becomes, 

ὡ  ᶿ ὨὖὨὉὨ‘ † 
Ὂ

Ὁ
ὲ
Ὂ

ὖ
ὅὖ ὖ ῲ Ȣ (79) 
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Since ὴ is related to ά and ὰ by (36), the former being a constant for a given TAE, the sum over ὴ in 

(79) can be replaced by a sum over ὰ. This requires the resonance condition to written in terms of ὰ, 

which can be done by following the zeroth order resonance condition in (72), yielding ῲ ρ

ὰ ς„ὼЍρ Ώ. Therefore, ὡ  becomes 

ὡ  ᶿ ὨὖὨὉὨ‘ † 
Ὂ

Ὁ
ὲ
Ὂ

ὖ
ὅὖ ὖ  ῲȢ (80)

At this point, one changes the coordinates system in use, taking the integral in (80) over ὼȟΏ instead 

of Ὁȟ‘. Since one has Ὁ ὼ and ‘ , the determinant of the Jacobian matrix for the 

Ὁȟ‘ᴼ ὼȟΏ transformation is given by ὼ. As a consequence, expression (80) can be written 

as 

ὡ  ᶿ ὨὖὨὼὨΏ ὼ †


ςὼὉ

Ὂ

ὼ
ὲ
Ὂ

ὖ
ὅὖ ὖ  ῲȟ (81)

Regarding the -particles equilibrium distribution function Ὂ, which is fully determined by the orbital 

parameters ὖȟὼȟΏ, one then assumes the distribution function to be separable, thus yielding 

ὊὖȟὼȟΏ  Ὢ ὖ ὪὼὪΏ. Assuming that the fusion-born -particles are isotropic, the distribution 

function is independent of Ώ, so one can write ὪΏ ρ. This means the distribution function becomes 

ὊὖȟὼȟΏ  Ὢ ὖ Ὢὼ. As for the energy distribution of isotropic fusion-born -particles, it is given 

by the slowing-down distribution [Gaffey, 1976],  

 Ὢ Ὁ ᶿ
ὌὉ Ὁ

ὉȾ Ὁ Ⱦ
ȟ (82) 

where ὌὉ Ὁ  is the Heaviside function, Ὁ stands for the -particles birth energy Ὁ σȢυ ὓὩὠ and 

Ὁ is a critical energy whose value for this ITERôs baseline scenario is Ὁ πȢφ ὓὩὠ [Figueiredo, 2016]. 

Converting (82) to the ὼ parameter is straightforward, yielding  

 Ὢὼ
ὃ Ὄὼ ὼ

ὼ ὼ
ȟ (83) 

where Ὁ ὼ  and Ὁ ὼ  were used and ὃ is a normalization constant. 

One must now be aware of the fact that, for the ITER baseline scenario being considered here, the 

gradients of ὊὖȟὼȟΏ with respect to ὼ and ὖ  follow the relation 

 



ςὼὉ

Ὂ
ὼ

ὲ
Ὂ
ὖ

Ḻρȟ (84) 

which can be found as follows. Taking advantage of separability, one has  

 



ςὼὉ

Ὂ
ὼ

ὲ
Ὂ
ὖ



ςὲὼὉ

Ὢ ὖ

Ὢ ᴂὖ

Ὢᴂὼ

Ὢὼ
Ȣ (85) 

Computing  from (83) is straightforward, yielding, for ὼ ὼ, 
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Ὢᴂὼ

Ὢὼ

σὼ

ὼ ὼ
Ȣ (86) 

On the other hand, obtaining  requires taking equation (77) for ὖ  in order to express Ὢ ᴂὖ  to 

lowest order as 

 Ὢ ᴂὖ
ρ

ὤὩὄὙ

Ὢ

ὖ

ρ

ςὤὩ  ί

Ὢ

ί
ͯ

ρ

ςὤὩ  ί

Ὢ

ὒ
ȟ (87) 

where ὒ is the characteristic ί scale of variation of Ὢ . Therefore, one finally gets  

 
Ὢ ὖ

Ὢ ᴂὖ
ͯ ςὤὩ  ίὒȢ (88) 

Pasting expressions (86) and (88) into (85) then allows one to estimate the two terms ratio, 

 



ςὼὉ

Ὂ
ὼ

ὲ
Ὂ
ὖ

ͯ


ςὲὉ

φὤὩ  ίὒὼ

ὼ ὼ
Ȣ (89) 

This can be written in terms of normalized quantities as 

 



ςὼὉ

Ὂ
ὼ

ὲ
Ὂ
ὖ

φͯίὒ
ὼ

ὼ ὼ

 

ὄὙ

 

ὲ
Ȣ (90) 

where    is the on-axis cyclotron frequency normalized by the on-axis Alfvén frequency. In order 

to evaluate the order of magnitude of (90), all numerical values must be known. One then has ὲͯ σπ for 

the TAEs under study, Ὁͯ σȢυ ὓὩὠ and Ὁ πͯȢφ ὓὩὠ. As for ,one can take the zeroth order form in (71) , 

where ήͯ ρ. The values of Ὑ and   , ὄ, ὺ  are those in (44) and (45), respectively. Finally, the radial 

location of the TAEs of interest sets ίͯπȢσ according to figures 5 and 6, while the characteristic ί scale 

of variation of Ὢ  can be taken as ὒ πͯȢυ. Using these values to compute the terms ratio in (90) thus 

yields  

 



ςὼὉ

Ὂ
ὼ

ὲ
Ὂ
ὖ

πͯȢπυḺρȟ (91) 

hence proving condition (84) holds. 

Returning to expression (81), one can take advantage of condition (84) to neglect the first term in 

brackets and use separability while writing the second one, thus yielding  

ὡ  ᶿὲ ὨὖὨὼὨΏ ὼ † Ὢ ᴂὖ
Ὄὼ ὼ

ὼ ὼ
ὅὖ ὖ ῲ Ȣ (92) 

The poloidal transit time †  shall then be written in terms of ὼ  and Ώ  at zeroth order by using 

(23), (59) and (67). This yields 

 †
ς“ή

 ʎὼЍρ Ώ
ȟ (93) 

where ὄ ὄ and ή ή were taken since only zeroth order terms are considered. Taking advantage of 

this fact allows ὡ  in (92) to be expressed as 
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ὡ  ᶿὲ ὨὖὨὼὨΏ
ήὪ ᴂὖ

ʎЍρ Ώ
ὼ
Ὄὼ ὼ

ὼ ὼ
ὅὖ ὖ ῲ Ȣ (94) 

Integration over ὖ  allows one to get rid of the Dirac delta ὖ ὖ , which requires ή and Ὢ ᴂὖ  

to be replaced by the corresponding values at the TAEôs rational flux surface, ή  and Ὢ ᴂὖ . 

These are constants, thus being brought out of the integral, where a minus sign is added so that one 

reminds that ὡ π, since Ὢ ὖ π. ὡ  can then be written as 

ὡ  ᶿ ὲ ὨὼὨΏ 
ὼ

ʎЍρ Ώ
 
Ὄὼ ὼ

ὼ ὼ
ὅῲȢ (95) 

At this point, the sum over ὰ and the ὅ constants are brought out of the integral. Integration in Ώ 

allows one to get rid of the Dirac delta function ῲ , since this will select, for each ὼ, the value of Ώ for 

which the particles are in resonance with the TAE. This is done using the resonance condition in (72), 

which is inverted in order to express ʎЍρ Ώ in terms of ὼ and ὰ, yielding  

ὡ  ᶿ ὲ ὅ Ὠὼ ὼ ςὰ ρ 
Ὄὼ ὼ

ὼ ὼ
Ȣ (96) 

At this point, the sum over ὰ will be simplified by recalling that the ὰ ρ poloidal harmonics are 

dominant in the drift-velocity terms. Therefore, these are the only values of ὰ considered in the sum, the 

other contributions being neglected. Considering the case ὰ ρ, then ςὰ ρ ρ and ὡ π, which 

means the TAE is being driven unstable. However, if ὰ ρ is taken, then ςὰ ρ σ and ὡ π, 

which accounts for the TAE being damped instead of drive effects. Since our main concern in this work 

is TAE instabilities driven by fusion-born -particles, one must look at the ὰ ρ case as the situation 

of interest. The mode-dependent energy transfer term can finally be written as 

ὡ  ᶿ ὲ Ὠὼ 
ὼ

ὼ ὼ
Ὄὼ ὼ Ȣ (97) 

The Heaviside function sets the upper limit of integration to ὼ ὼ, while the lower limit of integration is 

physically imposed as ὼ π, yielding thus 

ὡ  ᶿ ὲ Ὠὼ 
ὼ

ὼ ὼ
Ȣ (98) 

Evaluating the integrand in (97) shows the relation between constants ὼȟΏ for all resonant particles 

with a given ὖ  and the amount of energy being transferred from each one to the TAE, thus revealing 

which orbit maximizes that energy transfer. Because  is a monotonically increasing function of ὼ, 

as seen in figure 8, one finds out that fusion-born -particles with ὼ ὼ (i.e., Ὁ Ὁ) are the most 

efficient ones on transferring energy to the TAE. 
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Figure 8: Plot of  as a function of ὼ, while taking ὼ  with Ὁ πȢφ ὓὩὠ. The function 

increases monotonically and converges to ρ as ὼO Њ. 

 

At the maximum energy transfer, the Ώ value can be obtained at zeroth order imposing ὼ ὼ in 

equations (73), the results being    

 
ΏḙπȢχπ if ὰ ρȟ 

ΏḙπȢωχ if ὰ ρȟ 
(99) 

This shows that the -particles that most efficiently drive TAEs unstable should be -particles with 

ὼ ὼ and high Ώ value. Moreover, this shall be valid for all values of the toroidal mode number ὲ, since 

the resonance condition proves independent on this mode parameter if only zeroth order is considered. 

It shall also be noted that this rough estimate required all perpendicular drift-velocity terms to be 

neglected in the contravariant components of the particleôs velocity in (59), since they are first order 

terms in . However, these very simple analytic estimates require validation by checking if they agree 

with more accurate numerical simulations. This was not the case, as detailed in the next section.  

 

7. Numerical results and need for further analytical studies 

The CASTOR-K code was used towards validating these rough numerical estimates. As previously 

explained, it computes the mode-particle energy transfer ὡ  for different sets of values so that the 

whole ὖȟὼȟΏ space is covered. This shall reveal both the resonance surfaces location in the ὖȟὼȟΏ 

space and the energy transfer for particles lying on that surface, thus providing a systematic way of 

determining what particles drive the TAEs unstable more efficiently.  

By taking this systematic proceeding for the most unstable TAEs from families A and B having been 

highlighted before, the CASTOR-K allows one to assess the energy transfer from -particles to these 

TAEs for different values of Ώ, which is plotted in figure 9. 
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Figure 9: Energy transfer from  particles to TAEs as a function of Ώ. Results for modes from both A 

and B families are presented, including the most unstable ones. 

  

Taking a look at figure 9, one immediately notices the highest energy transfer is for all modes 

observed at Ώ πȢτ. There is also a lower peak at Ώͯ πȢψ, but this has no physical meaning since it is 

caused by numerical convergence issues due to the boundary between trapped- and passing-orbit 

topologies (these errors affect the determination of the poloidal transit time for these orbits). This totally 

disagrees with the zeroth order analytical prediction that the most efficient particles exchanging energy 

with the TAEs would be the ones with ὼ ὼ and ΏḙπȢχπ (ὰ ρ) or ΏḙπȢωχ (ὰ ρ). Moreover, the 

energy transfer distribution in Ώ proves very different from TAE to TAE, its maximum being displaced to 

lower Ώ value when higher mode numbers are considered. Distributions for modes from different families 

with the same value of ὲ are also distinct.  

The resonance lines in the ὼȟΏ space were also obtained, which required fixing the value of ὖ  

(which can be done due to ὖ  being related to the average radial location of the particleôs orbit, which is 

fixed by the rational flux surface around which the TAE is centered) and then look at the energy transfer 

computed by CASTOR-K for several samples in the corresponding ὼȟΏ plane. For each value of Ώ, 

the value of ὼ maximizing the energy transfer was noted, which allowed one to find the shape of the 

resonance line in the ὼȟΏ space. This was carried out for the aforementioned TAEs from the A and B 

families, the corresponding results being represented in figures 10 and 11 respectively.  

Once again, numerical data proved surprising, as differently-shaped curves were obtained for distinct 

values of ὲ while considering TAEs from the same family. Moreover, -particles with the birth energy 

ὼ ρȢψσφρ being in resonance with any of the TAEs considered where found to have much lower Ώ 

values than the ones predicted by zeroth order analytical estimates. What is more, even the highest 

values of Ώ found for resonant particles are much lower than the zeroth order analytical prediction in 
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figure 7, meaning that passing particles are the ones interacting the most with the TAEs, being 

responsible for the energy transfer that drives them unstable. 

 

Figure 10: Resonance lines in the ὼȟΏ phase-space at a well-defined radial location extracted from 

numerical data obtained by the CASTOR-K code. TAEs from the A family were considered, taking ὲ

ςυ (green dots), ὲ σρ (purple dots) and ὲ σσ (blue dots). 

 

Figure 10 shows that the resonance lines from the A family are displaced towards lower values of Ώ 

when the toroidal mode number ὲ is increased, this displacement being quite severe while comparing 

the ὲ ςυ and ὲ σσ resonance lines. The only one that allows one to estimate the Ώ value at the birth 

energy ὼ ρȢψσφρ is the ὲ σρ resonance line, revealing this shall be about ΏḙπȢρ. Despite the huge 

differences produced by considering three different values of ὲ, the three lines share the fact that they 

never reach high values of Ώ, as the ὲ σσ line never comes beyond Ώ πȢπτ, the ὲ σρ one certainly 

doesnôt cross the Ώ πȢρς limit and even the ὲ ςυ line shall have the maximum Ώ located below Ώ

πȢςυ. This shows that the  particles in resonance with the TAEs from this family for this radial location 

are strongly passing particles, their Ώ value being of the order Ώͯ πȢρ, which radically contradicts zeroth 

order analytical predictions. 

Figure 11 in turn refers to the B family and it reinforces late results from the figure 10. Although being 

quite close to each other, ὲ ςυ and ὲ ςφ resonance lines are clearly distinguishable from one 

another, exhibiting the same displacement behavior observed before for the A family modes. The Ώ 

value along the resonance line is considerably higher than that shown by TAEs in figure 10, but still not 

beyond Ώ πȢσυ. The ὲ ςφ line is the one accounting for determination of the ὼȟΏ point, giving Ώḙ

πȢσσ. These Ώ values are less than half the Ώ πȢχπ and Ώ πȢωφ values predicted by zeroth order 

analytical calculations for particles with ὼ ὼ, therefore highlighting the idea that only passing  

particles are important for transferring energy to the TAEs in the context of the resonant interaction 

between them. Ώ can be regarded as a small parameter then. 



37 

 

 

Figure 11: Resonance lines in the ὼȟΏ phase-space at a well-defined radial location extracted from 

numerical data obtained by the CASTOR-K code. TAEs from the B family were considered, taking ὲ

ςυ (purple dots) and ὲ ςφ (green dots), these being the ὲ values of the TAEs proving the most 

susceptible to be driven unstable by fast  particles. 

 

The significant disparities found when comparing rough analytical predictions with numerical data 

show that the zeroth order approximation is far from being sufficient in order to obtain physically 

meaningful analytical results. Particularly, the resonance condition taken in (70) and (73) can never be 

consistent with having ΏḙπȢρ or even ΏḙπȢσσ for points on the resonance line exhibiting ὼ ρȢψσφρ. 

Therefore, higher order terms shall be considered in the resonance condition (33), which requires taking 

into account the drift velocity terms in (50). 

The importance of considering perpendicular velocity terms can be reinforced if one notices that the 

maximum energy transfer obtained for ὼ ὼ ρȢψσφρ implies that these most interacting particles 

travel with speed ὺ ρȢψσφρ ὺ , given the way ὼ is defined. As the zeroth order analytical approach 

only keeps the parallel velocity terms, one should expect these predictions to yield ὺȿȿ ρȢψσφρ ὺ . A 

zeroth order analytical estimate can be derived by taking equation (65) with given by (71) and using  

the fact that ή and ή agree at zeroth order. Considering the ὰ ρ case, one simply obtains ộὺȿȿỚḙὺ , 

which accounts for a resonance between particles and waves traveling at the very same speed, while 

ὰ ρ yields ộὺȿȿỚḙ ὺ , which stands for a resonance involving particles traveling opposite to the 

wave with one third of its speed. Since these results do not match numerical results and theoretical 

predictions based upon the formalism by Porcelli, one thus conclude drift terms must be taken into 

account in order to yield ὺ ρȢψσφρ ὺ . 
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8. Further ordering considerations 

The perpendicular drift-terms whose importance has just been pointed out are of first order in the 

inverse on-axis ion cyclotron frequency . These terms can be written so that this quantity comes 

normalized by the on-axis Alfvén frequency  , yielding  , which is precisely the 

inverse of the normalized cyclotron frequency presented in section I-6. Using the parameters from (44) 

and (45) for ITERôs ρυ ὓὃ baseline scenario, one is able to compute , which finally yields 

  πȢππτσφȢ (100) 

This will be used from now on while discussing the ordering of terms involved. As a starting point, one 

shall no longer mention  while discussing the orders of magnitude of the terms involved, replacing it 

by .  

An immediate conclusion arising from the need for first order terms in  is the fact that doing this also 

requires terms of higher order in other expansion parameters to be kept in the analytical derivation of 

the resonance condition, such as the inverse aspect ratio ‐. This means the magnetic-equilibrium must 

be modelled in a more accurate way that includes higher order terms in ‐, the centered circular flux 

surfaces approach being replaced by a more accurate analytical magnetic-equilibrium in order to obtain 

a meaningful analytical form for the resonance condition.  

One final reason supporting the need for drift terms shall be pointed out, this time coming directly 

from the resonance condition as it is written in (62). While deriving the zeroth order form, all terms in ὲ 

were taken to be zero since only parallel velocity terms were considered and relation (22) holds for field-

aligned coordinates, thus leaving only the ὰ  terms. However, ὲḙσπ for the TAEs of interest, while 

ὰ  is about 60 times smaller, yielding  for ὰ ρ, which is the dominant value of ὰ accounting for 

drive effects. At the same time,  is given by (100) for this ITER baseline scenario. Therefore, even if 

neglecting terms in  compared to parallel velocity terms seems reasonable, terms in ὲ shall not be 

neglected as they are nearly of the same order that parallel velocity terms multiplied by ὰ Ȣ This means 

drift terms in  must be considered in the resonance condition in order to reach consistent ordering.  

As a consequence, the extended derivation of the resonance condition starting from (33) is then 

presented, starting from the magnetic-equilibrium model that is essential for particles velocities to be 

obtained. 
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II - Local magnetic-equilibrium model for analytical studies in tokamaks 

1. Method for deriving a local magnetic-equilibrium 

As previously stated, a magnetic-equilibrium model including higher order terms in ‐ needs to be 

derived for obtaining an accurate form of the resonance relation (33) with consistent ordering. Because 

analytical results must hold for all TAEs of interest, which may have distinct radial locations, a local 

model will be derived for the magnetic-equilibrium in a tokamak, which requires a generic expression 

for the magnetic-equilibrium with radially-varying parameters. These will be found by adjusting the 

analytical expression to a numerical solution of the Grad-Shafranov equation by a least-square fitting 

procedure.  

The magnetic-equilibrium in a tokamak can be specified by the poloidal magnetic flux function  , 

which must satisfy the Grad-Shafranov equation, usually written in the Ὑȟὤȟ‰  coordinates system. 

Grad-Shafranov equation then becomes 
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where Ὂ Ὂ   is the poloidal current density flux and ὖ ὖ   the pressure function, both depending 

on the flux function  . Therefore, the magnetic-equilibrium is determined by the plasma current and 

pressure profiles. As an analytic solution for   is intended, the simplest profiles proposed by Solovev in 

1968 are considered, with  and Ὂ  being constants. 

Following a recent approach [Cerfon et al, 2010], one writes Ὑ Ὑὼ and ὤ Ὑώ while taking  

 , where    is an arbitrary constant, whence the Grad-Shafranov equation 
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Solovev profiles for current and pressure are then simply given by defining constants ὃ and ὅ, 
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(103) 

As    is an arbitrary constant, one may choose    in order to have ὃ ὅ τ. The Grad-Shafranov 

equation then becomes the linear inhomogeneous partial differential equation 
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τ ὃὼ ὃȟ (104) 

To solve it, one combines a homogeneous and a particular solution, i.e., ὼȟώ  ὼȟώ  ὼȟώ. 

For the particular solution of (104), one has 
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On the other hand, the homogeneous solution  ὼȟώ is such that 

 ὼ


ὼ

ρ

ὼ

 ὼȟώ

ὼ

 ὼȟώ

ώ
πȢ (106) 

Assuming an up-down symmetric equilibrium, which shall be the case for the present case of interest, a 

general form can be derived for the solution of (106) [Zheng et al, 1996], as a polynomial expression 
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truncated at an arbitrary order. Keeping Ὑὤ  terms with Ὦ Ὧ τ is enough to obtain a magnetic-

equilibrium accurate to second order terms in ‐. The general solution ὼȟώ of the Grad-Shafranov 

equation, including  ὼȟώ truncated as just defined, is thus 
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(107) 

This is the generic form of the poloidal flux function ὼȟώ one has been looking for, apart from a 

normalization constant. Now, several operations shall be carried out to write (107) in a more practical 

form. First, ὼ ρ ‐ὶ ὧέί— and ώ ‐ὶ ίὭὲ— are replaced in order to return to toroidal ὶȟ‰ȟ— 

coordinates. Next, the terms in ÌÎρ ‐ὶ ὧέί—  are expanded in series of ‐ so that (107) becomes a 

power series in ‐. Having performed these steps, the on-axis constraints for the magnetic flux function 

must be imposed, these conditions being, 
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(108) 

While the last constraint in (108) is automatically satisfied by the magnetic flux function (107), the first 

and the second ones impose two constraints to the six constants in (107), thus allowing one to get rid 

of ὧ and ὧ. At the same time, these requires the zeroth and first order in ‐ terms to vanish. Therefore, 

only second and higher order in ‐ terms survive. Collecting all terms with the same order in ‐, as well 

as terms proportional to the same trigonometric function ÃÏÓὲ— for some integer ὲ, one finds the 

unnormalized magnetic flux function to be given at fourth order in ‐ by   

 

ὶȟ— ὶ‐ ρ ὑ ÃÏÓς— ὶ‐ ῳ ÃÏÓ— –ÃÏÓσ— ὶ‐

ÃÏÓς—  ÃÏÓτ— ȟ  

ὑ ρ ὧ τ ὧ ω ὧȟ 

ῳ
σ

ς

ὃ

τ

ὧ

τ
ὧ

ωὧ

τ
ȟ  

–
ρ

σ
ψ ὧ σπ ὧ ῳȟ  

 
ρ

σς
ρ φτ ὧ ὑ ψ –Ȣ 

(109) 

The parameter ὑ is closely related to the flux surfaces elongation, since it appears in the lowest order 

term multiplied by ÃÏÓς—. However, this is not exactly the usual elongation, which is defined as the 

ratio between the semi-major and the semi-minor axis of the flux surface (this will become clearer later) 

[Cerfon et al, 2010]. In a similar way, ῳ is associated to the Shafranov shift, for it features the lowest 
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order term proportional to ÃÏÓ—, while – accounts for a triangularity-related parameter and   is related 

to quadrangularity because they are associated with ÃÏÓσ— and ÃÏÓτ—, respectively.  

The poloidal magnetic flux   is yet to be determined, since  is missing a multiplicative constant   . 

One shall then write the poloidal magnetic flux as  

  ὶȟ—  ὶȟ— Ὑ  Ὕ    ὶȟ—ȟ (110) 

where    is the poloidal magnetic flux in the edge of the plasma given by (45), being introduced in the 

expression for  ὶȟ— so that one can look at the poloidal magnetic flux as some fraction Ὑ  Ὕ ὶȟ— 

of the total net flux; Ὑ  is included only for the purpose of easing the expressions for the magnetic-field 

components to be derived next, while Ὕ is a multiplicative constant with dimensions of squared length. 

The values of ὑ, ῳ, –,  , and Ὕ have to be locally adjusted to numerical equilibria. The normalized 

poloidal magnetic flux ί having been introduced in (46) thus can be written as 

 ίὶȟ—  Ὑ  Ὕ ὶȟ— (111) 

The magnetic-field is written as   

 ὄᴆ Ὂ  ᴆɳ‰
ρ

Ὑ
ᴆɳ  ὩᴆȢ (112) 

The toroidal component of the magnetic-field can then be written as ὄ , thus being determined 

by the poloidal current-density flux Ὂ  . Solovev profiles require Ὂ ὣ, where ὣ is a constant given 

by  

 
ὣ Ὕ ὃȟ 

ὃ υ ὑ τЎȟ 
(113) 

which can be derived from the calculations performed between (103) and (110). The squared current 

density flux can then be expressed as 

 Ὂ  Ὂπ ςὣ ȟ (114) 

where the plasma current density flux at the magnetic axis must satisfy ὄ . Therefore, using (113) 

and (114), the poloidal current density flux can be stated as  

 Ὂ  ὄ Ὑ ςὝ  υ ὑ τЎ ȟ (115) 

Hence, following (112) and using (110) and (115), one is finally able to write the toroidal component of 

the magnetic-field, as it must satisfy the condition 
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where  is once again the unnormalized magnetic flux function from (109). On the other hand, the radial 

and poloidal contravariant components of the magnetic-field can be straightforwardly derived from (112) 

as  
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where Ὣ is the metric determinant being given by (48). Similarly to (47), the magnetic field ὄᴆ

ὄ ȟὄ ȟὄ  becomes 
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     (118) 

Another important physical quantity to be determined is the magnetic-field modulus ὄ, which can be 

easily obtained once all three components are known, as well as the magnetic-field unitary vector ὦᴆ, its 

components being those of the magnetic-field vector ὄᴆ divided by its modulus. These are then given by 
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(119) 

 

2.  Local-equilibrium fitting 

The local model for the magnetic-equilibrium is now fully determined apart from the local values for 

the set of equilibrium parameters Ὕȟὑȟῳȟ–ȟ   at each radial location of interest. The determination of 

these parameters will be carried out by using an accurate numerical solution of the Grad-Shafranov 

equation produced by the equilibrium code HELENA [Huysmans, 1991]. The code provides the surfaces' 

shape in the poloidal plane, at a set of 201 radial locations π ί ρ, via the Ὑȟὤ coordinates of 257 

points along them. The Ὑȟὤ coordinates are then converted into ὶȟ— polar coordinates using 

expressions (2) and solving them in order to ὶ and —, which yields 
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(120) 

This enables one to write the normalized poloidal magnetic flux ί at those points as a function of 

the equilibrium parameters Ὕȟὑȟῳȟ–ȟ  , which can be done by using expressions (109), (110) and (111) 

and replacing the ὶȟ— occurrences by their respective values at the points over the flux surface. Then, 

a least squares fitting procedure will be used to minimize a cost function defined as the sum over all flux 

surface points of the squared differences between the value of ί provided by HELENA and the one 

achieved from (109) and (111) for a set of guess parameters Ὕ, ὑ, ῳ, –, and   . This is made for a total 

of 200 different flux surfaces covering all radial locations from ί πȢππυ to ί ρȢπππ, thus allowing one 

to obtain a local magnetic-equilibrium valid for the whole poloidal cross section of the tokamak, which 

can be given further use in the context of analytic studies in tokamaks. Moreover, values of the 

equilibrium parameters can be determined for intermediate flux surfaces by interpolations. 
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Since the TAEs of interest are located in the inner region, between ίḙπȢς and ίḙπȢυ, values taken 

by the equilibrium parameters inside this range shall be looked with particular attention, their radial 

variation being represented in figure 12. 

 

Figure 12: Radial variation of the magnetic-equilibrium parameters Ὕ, ὑ, ῳ, –, and   resulting from the 

least squares fitting procedure using the numerical equilibrium from HELENA.  

 

3. Why the local magnetic-equilibrium model by Miller was not used 

Although a local model for the magnetic-equilibrium in a tokamak has just been derived, the idea of 

obtaining analytic equilibrium models that are only valid for a certain region of the plasma is not new. 

Indeed, other local models have been created in the past, as the one derived by Miller et al [Miller et al, 

1998] that accounts for finite aspect ratio and noncircular flux surfaces around some predefined flux 

surface. The approach starts from the Mercier and Luc equilibrium analysis, which is radially localized, 

and is extended via a parametrization of the poloidal magnetic-field ὄ  in field-aligned coordinates.  

Millerôs local model is fully determined by a set of 9 local dimensionless parameters. In order to define 

them, special ὶȟ—  coordinates are used, these being defined as the radial and poloidal coordinates 

measured from the geometric center of each particular flux surface, while Ὑ  stands for the distance 

from the torus symmetry axis to the centroid of a given magnetic flux surface. The Miller parameters list 

as follows: the flux surfaces aspect ratio ὃ , the safety-factor ή, the global magnetic shear ‚, the 

radial pressure gradient , the flux surface elongation ‖, the triangularity parameter ‗ and the radial 

gradient of both elongation, triangularity and the flux surface major radius Ὑ .  

The Ὑȟὤ  coordinates of some point on the flux surface Ὓ specify its shape and are written in terms 

of ὃ, ‖ and ‗ as   
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Ὑ Ὑ ὶ ÃÏÓ— ίὭὲ‗ ÓÉÎ— ȟ 

ὤ ‖ ὶ ÓÉÎ— ȟ 
(121) 

where ‖ and ‗ account for the properly defined elongation and triangularity parameters, consistently 

with definitions used in literature [Cerfon et al, 2010]. Obviously, ‖ and ‗ are related with ὑ and – in 

(109), but not in a straightforward way.  

The poloidal magnetic-field can be written as [Miller et al, 1998] 
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which is a transcendental combination of trigonometric functions. This is at odds with the expressions 

in (109), which are linear or rational combinations of trigonometric functions and therefore more 

amenable to analytical manipulation. 

 

4. Analytical forms for the flux surfaces and the safety-factor profile 

Following the poloidal magnetic flux function   obtained in (109) and (110) in the context of our local 

equilibrium framework, it is possible to derive an expression relating both the radial and poloidal 

coordinates ὶȟ— along a certain magnetic flux surface.  

This requires replacing expression (109) into (110) and selecting some specific value for the 

magnetic flux   labeling a particular flux surface. Then, equation (110) can be solved to obtain ὶ—. 

Since expression (109) is a polynomial of fourth order in ὶ, it can still be solved analytically, despite 

technical difficulties involved along the process. Actually, the equation being solved is not (110) for   

but (111) for the normalized flux ί, which is equivalent from a formal point of view. By carrying out this 

task, four different solutions are obtained, all of them requiring simplification in order to identify which of 

them are of physical interest.  

In the end, a final form is obtained for the magnetic flux surface shape ὶ ὶ—. Because the 

magnetic flux function was truncated at the fourth order in ‐ὶ, it shall be noted that consistent ordering 

forbids one to maintain terms of higher order in ‐ than the fourth one in the ὶ— power series. Therefore, 

truncation to fourth order in ‐ was considered, the ὶ— power series yielding 
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where coefficients multiplying ‐ὶ, ‐ὶ and ‐ὶ have, respectively, been written as 
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It shall be noticed that each of the terms in the solution follows the general form ί ‐. At the same 

time, taking into account local-equilibrium parameter values plotted in figure 12 and the value of ὥ 

presented in (44) for this ITERôs baseline scenario, one notes the coefficients multiplying ί ‐ are of 

order ρ. Therefore, the order of the terms in (123) is given by ί ‐, which means it depends on the 

flux surfaceôs radial location ί. In this work, the location of interest is set by the radial structure of the 

TAEs, corresponding to the πȢςȟπȢυ region, which allows one to consider ίͯ‐. Therefore, the order of 

the terms is roughly given by ‐ , which can be used to see that the term in ί‐ accounts for 

contributions of the order of πȢπρϷ, thus meaning the relative error of ὶ— is expected to be lower than 

this value. However, if one considered the worst case of a flux surface near the plasma edge, where 

ίͯρ, then the order of the terms would be given by ‐, thus leading to much greater errors associated 

with analytical expression (123) for the magnetic flux surfaceôs shape. 

Using form (123) for the magnetic flux surface shape, every flux surfaces can be plotted, which can 

be used to compare analytically obtained flux surfaces for some specific ί with the corresponding 

numerical solutions obtained by HELENA. For now, letôs just take for instance the ί πȢσχπχυ flux 

surface, since the Ὑȟὤ coordinates for 257 points along this surface where computed by HELENA. 

These were then converted to ὶȟ— coordinates for each point. After that, analytic flux surfaces were 

obtained by using expression (123) for ὶ— at the same poloidal angles. This required using values 

from (44) and local equilibrium parameters for ί πȢσχπχυ, which yield 
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(125) 

Both analytic and numerical results are then converted again for Ὑȟὤ coordinates using (2) in order for 

the analytic and numerical flux surfaces to be plotted (figure 13).  

Analytic and numerical surfaces match each other, but a detailed analysis must also plot the relative 

error associated to the analytical surface taking the numerical line as reference. This error is computed 

for each poloidal location — as 

 Ὡ
ὶ ὶ

ὶ
ρππϷȟ (126) 

while plotting Ὡ as a function of — led to the graph shown in figure 14. This confirms the accuracy of the 

results firstly shown in figure 13, since the relative error of the analytic surface is of the order of πȢππρϷ, 

always falling shorter than πȢππςϷ. This small error shows that truncating the poloidal magnetic flux 

function at the fourth order in ‐ does not compromise the accuracy of the analytical local-equilibrium 

model.  
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Figure 13: Analytic vs numerical magnetic flux surfaces for ί πȢσχπχυ, with the analytical one having 

been calculated up to fourth order terms. Only half flux surfaces are drawn since the equilibrium is 

assumed to be up-down symmetric. Numerical flux surfaces with different values of ί are also depicted.  

 

 

Figure 14: Relative error (in percentage) associated to the analytically obtained magnetic flux surface 

labeled by ί πȢσχπχυ, taking the corresponding numerical surface as reference. The analytic surface 

is calculated keeping fourth order terms. 
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Moreover, it is also possible to determine an analytical form for the safety-factor ή radial profile. This 

can be done by recalling expression (4) for the safety-factor, in which all occurrences of ὶ have to be 

replaced by the ὶ— form in (123) describing the shape of a given magnetic flux surface, including all ὶ 

occurrences inside the magnetic-field components (118). As for the  term coming in the square root 

in the numerator, one simply needs to compute the derivative of (123) in order to obtain the poloidal 

derivative of the radial coordinate ὶ along the magnetic flux surface.  

The last step left will be evaluating the integral in (4) over the poloidal angle Ὠ—, which requires the 

integrand to be simplified by expanding it in a power series of both the inverse aspect ratio ‐ and the 

elongation-related parameter ὑ, which can also be regarded as a small parameter since its value can 

be roughly taken as ὑͯ πȢσυ for the ίɴ πȢςȟπȢυ range, as it can be seen in figure 12. The need for using 

ὑ as an expansion parameter comes from the fact that ὑ appears on the denominator of several terms, 

requiring a further expansion on this parameter for the analytic integration to be achieved. The 

expansion will be truncated by keeping terms up to ὑ . However, after performing the integration, the 

resulting analytical form is found to include recognizable power series in ὑ multiplying each term. For 

instance, the term of zeroth order in ‐ is given by  
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where the terms in brackets can be seen to represent the expansion of  in power series of ὑ up to 

terms in ὑ . Doing this for all power series in ὑ coming in the analytical expression of ή allows one to 

write them as rational functions of ὑ. Therefore, the series expansion earlier performed is reversed, 

which means that absolute accuracy regarding ὑ will be recovered in the end. 

As for expanding in ‐, despite higher order terms bringing extra accuracy, one finds that analytical 

calculations beyond the second order in ‐ turn out to be tremendously complicated. Therefore, only 

second order in ‐ terms are kept in the safety-factor expression, which yields 
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ςῳ Ȣ  

(128) 

Using expression (128) for the safety-factor, the radial profile of ή can in principle be plotted. 

However, one must notice that the set of equilibrium parameters Ὕȟὑȟῳȟ–ȟ   is also dependent on 

radial location, their values changing accordingly to the ί value taken. Therefore, expression (128) 

together with local values for the equilibrium parameters from figure 12 allow the safety factor to be 

plotted for each radial location. The other values one needs in order to compute the safety-factor are 

either basic geometric quantities or magnetic-equilibrium parameters from ITERôs  ρυ ὓὃ baseline 

scenario from (44) and (45).  

Figure 15 then shows the safety-factor radial profile, in good agreement with the one computed by 

HELENA for the inner region of the plasma. The two lines disagree for ί πȢυ because higher order 

terms (ί‐, ί‐, é) become important as ί increases. Therefore, figure 16 presents a zoomed version 
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of the ή profile in order to allow a more detailed analysis on the accuracy of this analytical approach 

while comparing to numerical data. 

 

Figure 15: Radial profile of the safety-factor ή, comparing both analytical (purple) and numerical (green) 

results. Expression (128) was used while deriving the analytical profile with local values being taken for 

the equilibrium parameters. Good agreement is found for the ί πȢυ region. 

 

The analytically derived radial profile of ή at second order in ‐ follows numerical results in an accurate 

way for ί πȢυ, their values deviating less than ρϷ. 

 

Figure 16: Zoom of figure 15 focusing the ί πȢυ region of interest. 
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In the context of the TAE--particle resonance being studied, there will be no explicit need for an 

analytical form of ή in the tokamak. Nonetheless, the analytical profile of ή provides an additional 

benchmark with numerical data from HELENA, showing that fourth-order truncation in (109) is suitable 

for this particular equilibrium. Finally, this analytical form for ή can also be used in the future for further 

analytical research.   
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III - Derivation of an analytical form for the ♪-particle orbit 

1. Fast particle orbit equation and ordering consistency 

In order for the resonance condition (33) to be written more accurately than equation (72), poloidal-

transit averaged velocities in (33) must be written in terms of the new magnetic-field components in 

(118). These analytical forms exhibit dependencies on the poloidal angle — which shall not be regarded 

as a problem, since performing the poloidal transit-averaging integration over — allows one to get rid of 

them (one must recall that integration over — from π to ς“ is only valid for fast-passing particles, which 

are the ones under concern in this work, as highlighted in section I-7). However, the components of ὄᴆ 

depend also on the radial coordinate ὶ. Therefore, all ὶ occurrences have to be replaced by the 

corresponding analytical form of the particle orbit in the poloidal projection plane ὶ ὶ—, so that 

integration in — can then be done without any constraints. This requires solving the charged-particlesô 

equation of motion relating the ὶ and — coordinates along its path.  

With that goal in mind, one shall start from equation (77) for the canonical toroidal angular momentum 

ὖ , which relates ὶ with the poloidal coordinate — along the orbit, the equilibrium parameters Ὕȟὑȟῳȟ–ȟ   

and the constants of motion ὖȟὉȟ‘ characterizing the particle orbit. For the first term on the right hand 

side of (77), one shall recall expressions (109) and (111) in order to express the poloidal flux   as a 

function of coordinates ὶȟ—, the inverse aspect ratio ‐ and the equilibrium parameters. Therefore, 

taking advantage of the  ,   and   definitions in (124) in order to write the first term in a condensed 

form, it yields 

 
 Ὕ

ὄ
ὶ‐ ὶ‐ ὶ‐ ȟ (129) 

One can then use the values from (45) and figure 12 to notice   Ὕͯ ὄ holds, while both   and   are 

of order ρ. Therefore, the ordering of the first two terms in (129) is determined by the ὲ exponent in ὶ‐. 

The first factor in the second term on the right hand side of (75) can be easily recognized as the on-

axis ion cyclotron frequency definition   . On the other hand, recalling expression (67) and 

making use of the normalized orbit parameters ὼ  and Ώ , one may write the parallel velocity 

ὺȿȿ as  

 ὺȿȿ „ὼὺ ρ Ώ
ὄ

ὄ
Ȣ (130) 

Finally, one shall take advantage of the on-axis Alfvén frequency definition   in order to make 

the  parameter appear in the equation, since  . Including all these changes and using Ὑ Ὑ ρ

‐ὶ ÃÏÓ — , the second term can be written as 

ὼρ„  Ώ
ὄ

ὄ

ὄ

ὄ
ρ ‐ὶÃÏÓ— Ȣ (131) 

As a result, the orbit equation becomes 

 ὖ
  Ὕ

ὄ
ὶ‐ ὶ‐ ὶ‐ ὼρ„ Ώ

ὄ

ὄ

ὄ

ὄ
ρ ‐ὶÃÏÓ— Ȣ (132) 
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However, some last steps shall be taken before evaluating ordering issues. At first, is shall be noted 

that the order of all terms involved in equation (132) is determined by both  and ‐ parameters. But each 

time the inverse aspect ratio ‐ comes in any term, the radial coordinate ὶ comes also associated with it, 

which leads to all terms being proportional to some power of ‐ὶ. This is so due to forms (118) for the 

magnetic-field components always showing this coupling between ‐ and ὶ. For the orbits of interest in 

this work (πȢς ί πȢυ), ὶͯ‐ holds and so ὶ also plays an important role in determining the order of the 

terms. Therefore, one could benefit from redefining the variables in use so that the radial coordinate can 

be regarded as a zeroth order quantity, letting terms ordering being determined by an inverse aspect 

ratio-related parameter. In order to do this, one may take the radial coordinate ὶ as the product of a first 

order in ‐ constant ὶ  and a zeroth order radial coordinate ὶǿ,   

 ὶ ὶ ὶǿȟ (133) 

in which ὶ  shall take a reasonable value close to the particle average radial location. On the other 

hand, since ‐ and ὶ are always coming together in the orbit equation (132), this ὶ  constant can be 

absorbed by the inverse aspect ratio parameter, thus giving rise to a new small parameter 

 ‐ǿ ὶ ‐Ȣ (134) 

This accounts for one being able to replace all ‐ὶ occurrences by an ‐ǿὶǿ product, which makes ordering 

evaluations much easier since ὶǿͯρ. 

Despite ὶ  being of the same order of magnitude as ‐ for the orbits under study in this work, one 

doesnôt need to set any explicit value for ὶ , since all ὶ  occurrences in analytical calculations must 

cancel in the end. Moreover, this approach is general in the sense that it could be used to study particle 

orbits in all radial locations. 

The order of the terms involved in the orbit equation is then fully determined by both the ‐ǿ  and  

small parameters. Therefore, it is crucial to find out the relation between ‐ǿ and . Assuming this relation 

is given by 

  ‐ǿȢ (135) 

One can determine the value of  simply as 

 
ÌÏÇ

ÌÏÇ‐ǿ
Ȣ (136) 

 is well-defined for ITERôs ρυ ὓὃ baseline scenario, its value being given by (99). As for ‐ǿ, it is given 

by (134) as the product of the inverse aspect ratio ‐, which is also a constant for this specific scenario, 

by the ὶ  parameter, which has the meaning of a radial location of reference. Therefore,  depends 

only on the radial location of interest besides constants from the baseline scenario being studied, 

yielding 

 
ÌÏÇ

ÌÏÇ‐ ÌÏÇὶ
Ȣ (137) 

Expression (137) can be evaluated taking the values of ‐ and  from (44) and (99), yielding the plot in 

figure 17. It shows that values of  in the range ᶰρȟυ can be considered to hold in different radial 

locations from the magnetic-axis to the plasma edge. Indeed,  ρ holds at ὶ ḙπȢπρ, being thus 

relevant only near the magnetic axis. For the particular case under study, one finds that  ḙρȢω at 
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ὶ πȢς and ḙςȢω at ὶ πȢυ. Therefore, ͯ ς comes out as a reasonable assumption within this 

range, yielding   

ͯ  ‐ǿȢ (138) 

If a general expression was intended for -particle orbits in every radial location in a tokamak, then 

one should take the case ͯ ρ, for which ͯ ‐ǿ holds, thus requiring one to keep as many orders in  as 

the ones being kept in ‐ǿ. Despite being valid only for the orbits located closer to the magnetic axis, this 

would be the most general approach, since it would include all terms being needed for all possible 

ordering conditions (135). For higher values of , one would be allowed to start from this generic 

expression and achieve consistent ordering by neglecting those terms of higher order in , according to 

the specific value of . However, since this work is only focused on the -particles orbiting within the 

ίɴ πȢςȟπȢυ range, for only these ones will undergo resonant interactions with the TAEs of greater 

concern, there is no need for considering the most general case ͯ ‐ǿ at first. Instead of it, one shall 

directly write the orbit equation in (132) regarding ordering condition (138), so that consistent ordering 

is observed right from the beginning. 

 

Figure 17: Plot of  as a function of the radial location of interest according to (137). 

 

Returning to the orbit equation (132), one can easily note that performing a series expansion in only 

one variable would make it easier to deal with equation (132) rather than expanding it on two parameters. 

This is now possible by taking advantage of ordering condition (138). This allows the whole equation to 

be divided by ‐ǿ in order for the second term on the right hand side to be proportional to , which is of 

order ρ. This ratio will give rise to a new variable  of zeroth order that will eliminate the need for writing 

 and will be defined as 

 
ὼὄ

ς‐ǿ  Ὕ
ρͯȟ (139) 
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where  is a zeroth order multiplicative constant which is convenient to introduce in the definition of 

. Indeed, since there is a  factor multiplying the denormalized poloidal flux  in the first term on the 

right hand side of (132), one finds it convenient to divide the whole equation by . Moreover, dividing 

it by a factor of ς will later prove useful due to easing parameter definition. Therefore, one divides 

equation (132) by , which leads to 

 
ὄὖ

ς‐ǿ  Ὕ

ὶǿ‐ǿ ὶǿ‐ǿ ὶǿ‐ǿ

ς‐ǿ
„ρ Ώ

ὄ

ὄ

ὄ

ὄ
ρ ‐ǿὶǿÃÏÓ— Ȣ (140) 

Finally, one could get rid of the  parameter, ‐ǿ being now the only small parameter determining the 

ordering of the terms and being used for expansions in power series. In order to ease notation, a new 

renormalized toroidal angular momentum can be defined as 

 ὖ
ὄὖ

ς‐ǿ Ὕ

ὖ

ςὤὩ‐ǿὙ  Ὕ
ȟ (141) 

thus yielding, for the orbit equation, 

 ὖ
ὶǿ ‐ǿ ὶǿ ‐ǿ ὶǿ

ς
„ρ Ώ

ὄ

ὄ

ὄ

ὄ
ρ ‐ǿὶǿÃÏÓ— Ȣ (142) 

One can then evaluate the order of the terms in equation (142), the second term on the right hand 

side requiring proper treatment. First of all, one notices that there is a problem at high Ώ if, for a certain 

poloidal location —, the magnetic-field ὄ is such that Ώ ρ starts to hold. Indeed, this would yield an 

imaginary result for the second term on the right hand side of (142) beyond a specific value of —, which 

is indeed expected for trapped particles. However, in this work, only strongly passing particles are 

concerned, since -particles with Ώ πȢτ are the ones in resonance with the most unstable TAEs, as 

seen in figure 6. Therefore, Ώ will be small enough for Ώ ρ to hold at every poloidal location. Still, 

one must note that the analytical orbits to be obtained will be valid only for passing particles. Having 

assured this, the whole second term on the right hand side of (142) shall be expanded in powers of ‐ǿ, 

thus yielding 
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Ὤ
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ρφὄ ρ Ώ ϳ
Ȣ 

(143) 

One must notice that the expansion has been carried out only until the second order in ‐ǿ so that ordering 

consistency is achieved, since the magnetic flux term in (142) is truncated at ‐ǿ too. 

This then accounts for the orbit equation in (132) being written in its final fully simplified form by 

grouping equal powers of ὶǿ together and defining new parameters for the sake of convenience, 
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(144) 

It is then useful to look at the orbit equation structure. Due to having divided the orbit equation by ‐ǿ, 

the coupling between ‐ǿ and ὶǿ is broken for the first term on the right hand side of (142). Therefore, terms 

coming from the first term follow the form ὶǿ‐ǿ , while the ones coming from the second term are of 

the form ὶǿ‐ǿ. The ordering of the terms is then determined by the power of ‐ǿ associated with each of 

them, terms being kept to the second order in ‐ǿ. Another key point being highlighted is that this equation 

is of fourth degree in ὶǿ, which means it is of the highest degree for which it can be solved by analytical 

means. Therefore, this is the limiting border of the application range of the analytical procedure.   

Notwithstanding the lack of generality of the orbit equation (144) that prevents it from being applied 

to trapped orbits, it is still consistent for studying all particle orbits exhibiting Ώ  for all values of —. 

Therefore, it provides a useful framework for obtaining the orbits of all passing particles, including the 

ones with Ώ πȢτ that are of interest for this work.  

 

2. An analytical form for the orbits of passing ♪-particles 

Analytically solving equation (144) is not much different from the analytical procedure having been 

followed while solving equation (111) for the shape of the flux surfaces in the poloidal plane. In fact, one 

still has to solve a fourth degree polynomial equation in order to obtain an expression of the form ὶǿ

ὶǿ— for the poloidal projection of the particle orbit. Therefore, one will eventually find four different 

analytical solutions, each of them requiring further simplification in order to find out which of them is the 

physical solution of interest. This having been made, one expands that solution in power series of ‐ǿ 

truncating it at second order in ‐ǿ, afterwards simplifying the resulting terms in order to get the final form 

for the ὶǿ—. One shall recall, again, that ὶǿ is a unitary order radial coordinate, the radial location being 

given by ὶ ὶ ὶǿ.  

The analytical form for the passing -particleôs orbit, keeping terms up to second order in ‐ǿ, is 

 ὶǿ— Ⱦ ‐ǿ Ⱦ ‐ǿȟ  (145) 

where all ὟȟὋȟὡȟȟ  and   parameters have already been defined, all of them but Ὗ depending on 

the poloidal angle — via some ÃÏÓὲ—. This expression deserves further physical interpretation, 

particularly concerning the zeroth order term. This can be written as 

 ὶǿ—ḙ
Ὗ

 Ⱦ

ςὖ „Ѝρ Ώ

ρ ὑÃÏÓς—

Ⱦ

ȟ (146) 

in which   and Ὗ definitions have been used. Moreover, taking the limit ὑ π for an elongation-free 

magnetic-equilibrium, one finds ὶǿ Ὗ, which means the particleôs radial location is independent on the 

poloidal angle —, remaining constant along its orbit. As the particleôs radial coordinate is being given by 

ὶ ὶ ὶǿ, with ὶ  the particleôs average radial location, it comes out that ὶǿ Ὗ ρ at zeroth order in ‐ǿ 
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with ὑ π. This would be the case for a cylindrical magnetic-equilibrium, with no toroidicity nor 

elongation.  

Indeed, at leading order, the particleôs finite Larmor radius is not taken into account, which leads to 

all drift corrections being neglected. Therefore, the particleôs orbit follows the magnetic flux surface, 

which is a circle for a circular magnetic-equilibrium and an ellipse for an elongated-equilibrium. The 

elongation-related correction comes in the denominator of (146) and is obviously dependent on — by 

means of a ÃÏÓς— factor multiplying ὑ, thus allowing the particleôs radial location to vary along its orbit. 

Despite these slight deviations from the average radial location, ὶǿ must be of order ρ according to ὶ

ὶ ὶǿ, which imposes that Ὗ must be always close to ρ. 

Extending this analysis to higher orders in ‐ǿ, one finds the first order terms to include contributions 

from the poloidal flux term and the particle velocity term of the orbit equation (142). Indeed, the 

contribution in Ὃ „
Ѝ

ÃÏÓ— comes from the second term on the right hand side of (142), Ὃ being 

proportional to  which in turn is proportional to the particle normalized energy ὼ and the inverse 

normalized ion cyclotron frequency . Therefore, this first order in ‐ǿ contribution constitutes the major 

correction to the zeroth order result coming from drift effects associated to finite Larmor radius. This 

correction is also dependent on Ώ. On the other hand, the term in  ῳ ÃÏÓ— – ÃÏÓσ— comes from 

the first term on the right hand side of (142), thus being a magnetic-equilibrium correction accounting 

for the deviation of the flux-surface's center from the magnetic axis via ῳ and also triangularity-related 

shaping by means of –.  

Analytical orbits of passing particles following expression (145) can be plotted as soon as a given 

set of parameters is provided. Therefore, one can plot a numerical orbit of physical interest and use the 

corresponding parameter values in order to obtain the analytical orbit and compare it to the numerical 

one. One then chooses the orbit obtained by CASTOR-K for the particles that transfer energy most 

efficiently to the ὲ σρ TAE, from the A family, since this is a case of physical interest. The parameters 

are 

 

ὼ ρȢψπχσφȟ 

Ώ πȢρπςȟ 

ὖ πȢπρυυψφȟ 

(147) 

so these will be used while plotting the analytical orbit. This also requires using values from ITERôs 

ρυ ὓὃ baseline scenario in (44) and (45), the corresponding value for the inverse normalized ion 

cyclotron frequency  πȢππττ and the equilibrium parameters at the modeôs radial location.  

The TAEôs radial location is obtained from the modeôs safety-factor ή given by (9), where one has 

ά ὲ for TAEs. Therefore, taking ά ὲ σρ, one finds 

 ή
φσ

φς
ḙρȢπρφρσωπȢ (148) 

By consulting a table provided by HELENA with the values of ή for several flux surfaces labeled by ί, 

one can obtain the radial location ί of the TAE, since it is centered around the rational magnetic flux 

surface whose safety-factor equals that of the mode, yielding ί πȢσχςπψ. However, since there is no 

numerical data for this very specific flux surface, one must obtain the equilibrium parameter values by 

performing a linear interpolation. These yield the following results: 



56 

 

 

ί πȢσχςπψ 

Ὕ πȢςσσωψ ά ȟ 

ὑ πȢστωχωȟ 

Ў ρȢπρσφȟ 

– πȢπσψρσωȟ 

  πȢπςρπρψȢ 

(149) 

Using the above mentioned numerical values, one has all parameters needed to plot the analytic orbit 

ὶ— accordingly to (133) and (145). Then, by using expressions (2) together with (133) and (145), one 

gets analytical forms for both Ὑ Ὑ— and ὤ ὤ— coordinates along the particleôs orbit. A numerical 

orbit computed by the CASTOR-K and its analytical corresponding are plotted together in figure 18. 

 

Figure 18: Analytical and numerical orbits projected in the poloidal cross section for passing fast  

particles moving around the ί πȢσχςπψ magnetic flux surface, with ὖ πȢπρυυψυωσχυ, ὼ ρȢψπχσφ 

and Ώ πȢρπς. Several numerical magnetic flux surfaces are also represented. 

 

Similarly to what had been previously noticed for the analytical magnetic flux surfaces, the analytical 

and numerical orbits show a good agreement. In order to understand how accurately the analytical orbit 

fits its numerical counterpart, one can use a similar procedure to the one earlier followed while plotting 

the analytical flux surfaceôs error according to (126), but this time the relative error associated to the 

analytical orbit will be plotted. This is done in figure 19. 
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Figure 19: Relative error (in percentage) of the analytical orbit for passing -particles moving around the 

ί πȢσχςπψ flux surface with ὖ πȢπρυυψυωσχυ, ὼ ρȢψπχσφ and Ώ πȢρπς. 

 

Discussing figure 19, one finds that the relative error associated to analytical orbits is of the order of 

πȢρϷ, lying in the ὩᶰπȢπσϷȟπȢςυϷ range for all poloidal angle values. Of course only poloidal angles 

in the —ᶰπȟ“ interval were considered since up-down symmetry holds for the magnetic-equilibrium 

under consideration, as can be stated by the particle orbit shape in figure 18. The values obtained for 

the relative errors agree to what could be expected from checking the ordering of the terms involved in 

the analytical form (145) for the zeroth order ὶǿ. Indeed, the highest order terms in this expression are 

those in ‐ǿ πȢπρυυ, which means the ὶǿ coordinate can be given by this analytical form until the second 

decimal place, representing a ρϷ accuracy. Therefore, relative errors of the order of πȢρϷ are expected, 

which is precisely what one gets here. Terms in ‐ǿ would be needed for this error to be reduced, which 

in principle cannot be taken into account due to consistent ordering issues previously explained.  

To sum up, an analytic ὶ ὶ— form has been obtained for the orbit of charged particles, which, 

although not general for all Ώ values, can describe particle orbits for passing particles, the associated 

error being of the order of πȢρϷ. This provides a crucial result to be used in the next stages, as well as 

a useful analytical tool for studying fast particle motion. 
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IV - Analytical TAE/♪-particle resonance condition: results and conclusions 

1. Obtaining the ♪-particle velocity components  

With analytical models for the local magnetic equilibrium and particle orbit available, it is now possible 

to compute the velocity components needed for writing the resonance condition in (33). 

An important note must be added here: despite equation (33) requiring the poloidal transit-average 

of quantities dengila-dleif eht ni nettirw stnenopmoc yticolev tnairavartnoc ot detaler era hcihw ,‰ dna  

coordinates system ίȟ‰ȟstnenopmoc yticolev tnairavartnoc eht etupmoc ot eb lliw ereh eciohc ruo , 

in the orthogonal laboratory coordinates system ὶȟ‰ȟ— and perform then a transformation back to the 

field-aligned system. This is one of the possible ways of dealing with the problem, our choice being 

justified by how much easier it is from an intuitive and analytical point of view to work with orthogonal 

coordinates and then simply convert the velocity results to field-aligned ones. 

The contravariant velocity components ὶȟ‰ȟ— can be obtained from expression (50) for the particle 

guiding center speed at first order in . This deserves further simplification in order to be written in a 

simpler way. Particularly, the second and third terms in (50) must be rewritten in terms of our usual 

parameters, including , which is relevant for term ordering. For the third term one can take the numbers 

out of the vector operator to obtain  

 
ὺȿȿ

 
ὦᴆ ὦᴆȢɳᴆὦᴆȟ (150) 

where ὺȿȿ can be written accordingly to expression (130). Using this fact together with the definition of 

the inverse normalized on-axis ion cyclotron frequency 
Ⱦ

, one finds after a little algebra that the 

term in (150) can be simply given by 

ὼὺ  Ὑ ρ Ώ
ὄ

ὄ
ὦᴆ ὦᴆȢɳᴆὦᴆȢ (151) 

As for the second term, the magnetic moment can be taken out of the vector operator yielding  

 
‘

ά 
ὦᴆ ᴆɳὄȢ (152) 

Once again, one can make use of the definition of , as well as Ώ  and ὼ  to perform 

some algebra and write the term in (152) as 

ὼὺ  Ὑ
Ώ

ςὄ
ὦᴆ ᴆɳὄȢ (153) 

Regarding the first term on the velocity form (50), this is simply given by the parallel velocity, thus only 

requiring expression (130) for ὺȿȿ to find 

 „ὼὺ ρ Ώ
ὄ

ὄ
ὦᴆȢ (154) 

Adding up the terms given by (151), (153) and (154), the particle velocity can be stated as  

 ὺᴆ „ὼὺ ρ Ώ
ὄ

ὄ
ὦᴆ ὼὺ Ὑ ρ Ώ

ὄ

ὄ
ὦᴆ ὦᴆȢɳᴆὦᴆȟ

Ώ

ςὄ
ὦᴆ ᴆɳὄȟ (155) 
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in which the second and third terms will be rewritten in order to eliminate  from (155) by using the  

parameter given by (139). This yields 

 

ὺᴆ „ὼὺ ρ Ώ
ὄ

ὄ
Ὸᴆ

ς‐ǿ Ὕ

ὄ
ὼὺ Ὑ ρ Ώ

ὄ

ὄ
Ὸᴆ

Ώ

ςὄ
Ὸᴆȟ 

Ὸᴆ ὦᴆȟ 

Ὸᴆ ὦᴆ ὦᴆȢɳᴆὦᴆȟ 

Ὸᴆ ὦᴆ ᴆɳὄȢ 

(156) 

where the vector entities of each term have been renamed as Ὸᴆ, according to the notation in Borba and 

Kerner [Borba and Kerner, 1999]. The second and third terms are the ones related to the drift-velocity 

contributions, being given in terms of differential vector forms Ὸᴆ and Ὸᴆ.  

It shall then be noted that all other variables in use in (156) are known parameters arising from the 

ITER scenario under study, the local magnetic-equilibrium or the particle orbit properties. As for Ὸᴆ, Ὸᴆ 

and Ὸᴆ, they depend only on the magnetic-equilibrium. This means one is then able to compute the 

particle velocity components in laboratory coordinates ὶȟ‰ȟ—. In order to do that, it will be useful to 

recall the conversion rules between the components for an arbitrary όᴆ vector and its contravariant and 

covariant components. Using laboratory coordinates ὶȟ‰ȟ—, orthogonality holds and eases these 

conversions a lot, the resulting rules for obtaining the vector components and its covariant components 

from the contravariant ones yielding  

 
ό Ὣόȟ 

ό Ὣόȟ 
(157) 

where Ὥ stands for one of the laboratory coordinates ὶȟ—ȟ‰, Einsteinôs notation not being in use. The 

covariant metric components Ὣ , Ὣ  and Ὣ  are given by (48). The other rules for conversions among 

the three component types being easy to derive from these basic ones. 

For the Ὸᴆ contravariant components, one simply needs to take the components of ὦᴆ given by (118) 

and (119) and extract the corresponding contravariant components by following the second rule on 

(157). The  Ὸᴆ contravariant components are far more complex to obtain, the magnetic-field curvature 

vector Ὧᴆ ὦᴆȢɳᴆὦᴆ needing to be derived at the very first place. This requires taking in account the 

vector identity 

 ᴆɳὦᴆ ς ὦᴆȢɳᴆὦᴆ ὦᴆ ᴆɳὦᴆȟ (158) 

where ὦᴆ ρ holds for the whole volume, thus accounting for the left hand side to vanish. As a result, 

the curvature vector yields 

 Ὧᴆ ὦᴆȢɳᴆὦᴆ ᴆɳὦᴆ ὦᴆȢ (159) 

Now, one shall be aware of the rules for obtaining the contravariant curl of a vector όᴆ and the 

contravariant cross product of two vectors όᴆ and ὺᴆ in a right-handed coordinate set, 
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ᴆɳόᴆ
ρ

Ὣ
‐ όȟ 

 όᴆὺᴆ
ρ

Ὣ
‐ όὺȢ 

(160) 

where Ὣ is the metricôs determinant presented in (48), ‐  is the Levi-Civita symbol and  is the partial 

derivative taken with respect to the Ὦ coordinate which can be either ὶ, — or ‰. One has now collected 

all information needed to compute Ὸᴆ. At first, the contravariant components of ᴆɳὦᴆ have to be 

determined, which requires computing the covariant components of ὦᴆ. Then, ᴆɳὦᴆ must also be 

expressed in covariant form so that the contravariant components of the curvature vector Ὧᴆ can be 

determined. Finally, the covariant components of Ὧᴆ have to be computed in order for Ὸᴆ to be obtained. 

This process only requires repeatedly making use of (157) and (160). 

Now, Ὸᴆ is the only missing vector quantity, its determination requiring the gradient of the magnetic-

field modulus ὄ to be computed first. Then, having determined the components of ᴆɳὄ, one only has to 

derive its covariant components in order to finally compute the cross product ὦᴆ ᴆɳὄ that is the definition 

of Ὸᴆ, making use once again of (157).  

The contravariant components of all three Ὸᴆ, Ὸᴆ and Ὸᴆ having been determined, one has all 

ingredients needed to obtain an analytic form for the contravariant components of the particle velocity 

in laboratory coordinates, ὺ ὶȟ‰ȟ—. 

 

2. Transformation from laboratory to field-aligned coordinates  

Since the contravariant components of the particle velocity vector in the resonance condition (33) 

are written in field-aligned coordinates ίȟ‰ȟdevired tsuj stnenopmoc yticolev eht trevnoc tsum eno , 

to this new field-aligned coordinates system. This requires obtaining the coordinates transformation from 

the laboratory coordinates to the new ones, ὶȟ‰ȟ—ᴼ ίȟ‰ȟ. 

At this point, one may argue that the velocity components do not have to be rewritten in the field-

aligned coordinates, for one could instead convert the TAE wave vector components from field-aligned 

to the laboratory coordinates and then rewrite the resonance condition using the wave vector and the 

velocity components in the ὶȟ‰ȟ— coordinates. However, it is easier to use ίȟ‰ȟEAT eht esuaceb  

perturbation is usually expanded as a Fourier series in the angles ni nees eb nac ti sa ,‰ dna  

expression (34), where ά and ὲ are respectively the poloidal and toroidal mode numbers. Therefore, it 

shall be simpler to use the coordinates transformation to obtain the contravariant velocity components 

in field-aligned coordinates rotcev evaw eht gnitupmoc ecnis ,ssecorp evitanretla eht gniod naht ‰ dna  

in laboratory coordinates and readapting the resonance condition would make calculations significantly 

more difficult. 

In order to obtain yrotarobal ni nettirw stnenopmoc tnairavartnoc yticolev eht morf ‰ dna  

coordinates, one obviously only has to care about gnisU .emas eht sniamer etanidrooc ‰ eht ecnis , 

the transformation rules for contravariant components, the poloidal velocity in field-aligned coordinates 

sdleiy  
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ὶ
ὶ


—
—Ȣ (161) 

Therefore, the derivatives of .deniatbo eb ot evah setanidrooc yrotarobal — dna ὶ htob ot tcepser htiw  

This means one has to derive an analytic form for the field-aligned poloidal coordinate as a function of 

laboratory coordinates,  .—ȟὶ  

The starting point for doing this will be equation (22) relating the toroidal and poloidal contravariant 

components of the magnetic-field via the safety-factor ή. Stating this condition in the laboratory 

coordinates only requires ὦ  to be written in terms of ὦ and ὦ . 

 ὦ


ὶ
ὦ



—
ὦȟ (162) 

This in turn yields, from the field-aligned condition (22), 

 ὦ ή


ὶ
ὦ



—
ὦ Ȣ (163) 

in which the contravariant components of the magnetic-field unitary vector ὦȟὦȟὦ  have already been 

derived in (118) and (119). Equation (163) must be solved in a local neighborhood of the magnetic flux 

surface around which the particle drifts.  

At this point, one must specify the assumptions being made for the safety factor. A general approach 

for a low magnetic-shear scenario would be writing ή as a linear function of ί, 

 ή ή ήᴂ ί ί Ễȟ (164) 

where ή  and ήᴂ  are respectively the values of the safety factor and its derivative at a certain radial 

location of reference ί , which in this work will be the rational magnetic flux surface of the TAEs 

considered. However, as it was first stated in section I-6, one will further assume that ήᴂ can be neglected 

in the region of interest, given this ITERôs scenario corresponds to a very low-shear regime at ί πȢυ. 

This is also in agreement with the analytical profile of ή in (128), as well as the corresponding plots in 

figures 15 and 16. Therefore, the safety factor will be considered locally constant, yielding ή ή . 

From now on, analytical forms will continue being written in terms of ή for the sake of simplicity, but this 

will always refer to a constant ή . 

One has then all the information needed to find  .(361) noitauqe laitnereffid gnivlos yb —ȟὶ 

However, since both  and  are unknown, one first has to assume a general form for the —ȟὶ 

function, for which one can take without loss of generality 

 —ȟὶ ὃ — ‐ὶȟ (165) 

which expresses .— ni seicnedneped elbissop lla rof gnitnuocca elihw ὶ fo noitcnuf laimonylop a sa  

One shall than expand the whole equation in series of ‐, this expansion being truncated at any desired 

order. While writing the resonance condition up to terms in ‐ǿ, it was noticed that only zeroth and first 

order in ‐ terms from (165) arose. Consequently, the expansion of (163) in series of ‐ will be performed 

up to first order terms, thus allowing this equation to be split into a system of two differential equations, 

each corresponding to a different order, which can be solved in order to determine the unknown poloidal 

coefficients ὃ — and ὃ —,  
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ὄ ςήὝ   — ὃᴂ—ȟ 

ὄÃÏÓ— ήὝ  ςὑὃ —ÓÉÎς— σ — ὃᴂ— ς — ὃᴂ— Ȣ 
(166) 

where  — and  — and  — are the functions of — defined in (124). Still, this system can be solved 

in a straightforward way by using a differential solver routine to compute ὃ — from the first equation of 

(166), then repeat the same process to obtain ὃ — from the second equation. Therefore, one finally 

obtains an analytic form for ,‐ ni redro tsrif ta —ȟὶ 

 

—ȟὶ ὃ — ‐ὶὃ — Ễȟ 

ὃ —

ὄ ÔÁÎ
ρ ὑÔÁÎ—

Ѝρ ὑ

ςήὝ  Ѝρ ὑ
 

ὃ — Ȣ  

(167) 

The expressions for ὃ — and ὃ — are exact in ὑ, since no series expansions in ὑ were made. One 

is now able to rewrite ὃ — in order to find that -I noitces ni denoitnem sa ,redro gnidael ta sdloh —ḙ

6. Recalling the analytical form in (128) for the radial profile of ή, the safety factor can be obtained at 

leading order by imposing ‐ π and ὑ π (no toroidicity, centered circular flux surfaces), yielding 

simply ή . Using this result and imposing ὑ π in the analytical form for ὃ —, one finds that 

ὃ — reduces trivially to 

 ὃ — —Ȣ (168) 

Therefore, one finds  — at leading order. 

Once having obtained (167), one can easily compute the derivatives of htob ot tcepser htiw nekat  

ὶ and —. Knowing  and , one shall then use expression (161) to obtain the covariant poloidal 

component of the velocity vector in field-aligned coordinates neht si eno ,nwonk ydaerla saw ‰ ecniS . 

able to compute both  ộeht etupmoc ot sdeen eno lla si sihT .(42) noisserpxe gnisu yb Ớ‰ộ dna Ớ 

resonance condition (33) to the second order in ‐. 

 

3. Poloidal-transit averaged velocities and the resonance condition 

Taking once again the resonance condition (33), one notices it can be fully specified by determining 

the expressions for the poloidal-transit averaged velocities ộ‰Ớ and  , for ὲ and ὴ are two known 

integers for the TAE under consideration and is the mode frequency, which can be determined by a  

simple method being described in the following section. From the definition (24) one finds 

 

ộ‰Ớ
ρ

†

‰

—
Ὠ—ȟ 

 ộỚ
ρ

†



—
Ὠ—ȟ 

(169) 

in which the poloidal transit-time †  is given by (23) and the poloidal transit-averaging integration is 

chosen to be performed over the laboratory poloidal angle —, since ‰ and fo smret ni desserpxe era  

the laboratory coordinates ὶȟ‰ȟ—. Still, before performing the average over the poloidal transit time, 

one must consider some important details.  
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At first, it must be noted that all terms in both eht neewteb gnilpuoc tcefrep a tibihxe lliw ‰ dna  

inverse aspect ratio ‐ and the radial coordinate ὶ, for all ὶ occurrences are associated with an ‐ factor. 

Therefore, one can once again use the ‐ὶ‐ǿὶǿ definition, which can be really useful since all ὶǿ 

occurrences can be replaced by the corresponding second order in ‐ǿ analytic form for ὶǿ given by (145). 

Moreover, this allows one to never write explicitly the value of the ὶ  parameter. The second idea that 

must be retained here is that all —-dependent variables having been previously used while presenting 

analytic forms must now be written in their full extended way in order to make all theta dependences 

explicit. This includes all condensed variables defined in (124) for writing the magnetic flux function and 

those having been introduced in (143) and (144) while deriving the particle orbit. This is mandatory since 

the poloidal transit-averaging operation requires and integration over — to be performed, according to 

(23) and (24). However, the parameters named  and Ὗ, having respectively been defined in (139) and 

(144), have to be kept for now, not only because they are independent on — but mainly for the fact that 

they are order-unity parameters relating ‐ǿ and . As a result, they prevent  from appearing in the 

expressions for .retemarap gniredro ylno eht eb ǿ‐ tel dna ‰ dna  

The last step needed towards performing the poloidal transit-averaging will be to perform series 

expansions in ‐ǿ and ὑ, following the same procedure used to derive the analytic profile for ή. Expanding 

in ‐ǿ is necessary not only to allow the integration to be performed but also because it accounts for the 

terms being grouped according to their order in ‐ǿ. This is carried out only to the second order in ‐ǿ, as 

stated in our initial goal. Expanding in ὑ is necessary to allow analytic integration of the elongation-

based correction ρ ὑÃÏÓς— appearing in the denominator of (145). This expansion is truncated to 

keep ὑ  terms and lower, so that analytical expressions are still tractable. Therefore, series expansions 

in ‐ǿ to the second order and ὑ do the eighth order are carried out for both integrands in (169),  and , 

and the  integrand in expression (23) for the poloidal transit time †  as well.  

After performing the explicit integrations in (169) and also the integration in (23) defining the poloidal 

transit time † , one simply has to divide the expressions found for the numerators by the analytical form 

obtained for † . This will lead to expressions for both   and ộ‰Ớ, which then need to be again 

expanded in power series to the second order in ‐ǿ. At this point, one notices that the resulting forms 

include some terms which are multiplied by the power series expansion of rational functions of ὑ. For 

instance, one of the terms in ộ‰Ớ yields 

 
„ὼὟ‐ǿψ ςπΏ ωΏ

ρφρ Ώ
ρ ὑ ὑ ὑ ὑ ὑ ὑ ὑ ὑ ȟ (170) 

where the sum of powers of ὑ in brackets can immediately be recognized as  expanded in power 

series of ὑ up to terms in ὑ . An analogous procedure allows one to express the other sums of powers 

of ὑ as condensed forms involving rational functions of ὑ. 

Nonetheless, the resulting analytical forms for   and ộ‰Ớ require further simplification in order for 

one to get rid of the artificial zeroth order parameters . At this point, ordering concerns arise when 

writing  in its extended form, since θ . The fact that all  occurrences in both   and ộ‰Ớ come in 

terms proportional to ‐ǿ allows the ‐ǿ factors to cancel out and these terms become proportional to ὼ.  
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However, the Ὗ parameter will be kept in the analytical transit frequencies instead of its extended 

form. This is due to the fact that Ὗ is easier to estimate than ὖ , which allows one to use Ὗ in the 

analytical forms. This relates to the previous discussion on the Ὗ parameter following equation (146): Ὗ 

must be approximately ρ, becoming exactly ρ in the limiting case ‐ȟὑᴼπ.  

As for the method to be used for obtaining Ὗ, one can take a consistent leading order approximation 

based upon equation (132) for the orbit of passing charged particles. This can be written as 

 ὖ ὼρ„ Ώ
ὄ

ὄ

ὄ

ὄ
ρ ‐ὶÃÏÓ—

  Ὕ

ὄ
ȟ (171) 

where the unnormalized flux function  has been used according to its definition in (109). Now, writing 

the second term on the left hand side at leading order in ‐ yields „ὼЍρ Ώ. Equation (171) can then 

be written at leading order as 

 
ὄ

 Ὕ
ὖ „ὼЍρ Ώ Ȣ (172) 

Dividing the whole equation by ‐ǿ, the left-hand side thus becomes Ὗ  according to its definition in (144). 

By using this result together with expressions (111) relating  and ί, one finally finds Ὗ to be given by 

 Ὗ
ί

‐ǿὙὝȾ
ί

ὶ ὥὝȾ
ȟ (173) 

where one has used ‐ǿ ‐ὶ  and ‐ . The particleôs average radial location ὶ  is obtained from the 

analytical form in (123) for the magnetic flux surface around which the particleôs orbit is centered. A 

leading order approximation for ὶ  is found by taking the first term of ὶ— in (123) and averaging it 

over —ᶰπȟς“. This yields  

 ὶ
ί

ὥὝȾ
 
ρ

ς“

ρ

ρ ὑ ÃÏÓς—
ȟ (174) 

which thus allows the Ὗ parameter to be stated as 

 
Ὗ

ς“

᷿
ρ

ρ ὑ ÃÏÓς—

 Ȣ 
(175) 

It can then be seen that Ὗ is given by an elliptic integral performed over the flux surface that depends 

only on the elongation parameter, yielding Ὗ ρ if the limiting case ὑ π is taken. The integration in 

(175) can be computed by expanding the integrand in power series of ὑ and performing the integration 

of the resulting expression. This yields a not trivial sum of powers in ὑ, which after some algebra can 

be written in a condensed form. This allows one to state Ὗ as 

 Ὗ

ụ
Ụ
Ụ
Ụ
Ụ
ợ

ς
В

ῲ ςὮ
ρ
ς
ὑ

ῲ
Ὦ ρ
ς
 Б

ς Ὦῲ
Ὦ
ς

Ѝ“
 Б

ς ῲρ
Ὦ
ς

Ѝ“ Ứ
ủ
ủ
ủ
ủ
Ủ

ȟ (176) 

where  stands for the floor function of . Due to expression (176) being very complicated, one will 

instead use the corresponding series expanded result to obtain the Ὗ values of interest. 
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One last step shall be performed, which is the normalization of the resonance relation to the on-axis 

Alfvén frequency   in order for the terms involved to be of order ρ. Both ộ‰Ớ and   shall then be fully 

simplified by renaming some variables, which finally leads to the resonance condition (33) being written 

as  

 

 ὲộ‰Ớ ὴ πȟ 

ộ‰Ớ „ὼΏ Ⱦ ὄ   ὝὟ‐ǿΏ ȾΏ‖ ςΏ ȾΏ‖

ψ  ὝὟ‐ǿΏ Ⱦ„ ȟ  


Ⱦ

ὄ   ὝὟ‐ǿΏ ȾΏ‖ ςΏ ȾΏ‖

ψ  ὝὟ‐ǿΏ Ⱦ„ ȟ  

‖
ρ

ρ ὑ
ȟ 

‖
ς ὑ ςЎ σὑ–

ὑ ρ ὑ ρ
ȟ 

Ώ ρ Ώȟ 

Ώ τΏ Ώȟ 

Ώ ς σΏ Ώȟ 

Ώ ς υΏ σΏȟ 

Ώ ψ ςπΏ ωΏȟ 

„ τ ρ ὑ τЎȟ 

„ τ χ ὑ τЎȢ 

(177) 

Interesting conclusions can be taken out of the analytic forms for ộ‰Ớ and   in the resonance 

relation (177). At first, it can be seen that taking these expressions at order zero one recovers those 

results having been derived in section I for circular magnetic equilibria, since one obtains  

 

 ὲộ‰Ớ ὴ π, 

ộ‰Ớ „ὼЍρ Ώȟ 


„ὼЍρ Ώ

ή
Ȣ 

(178) 

Now, recalling that ὴ follows (60) and inserting this expression into the zeroth order resonant relation 

(178), one straightforwardly returns to the zeroth order resonance condition (69) as expected. 

 

4. Validating analytical predictions by comparing them with CASTOR-K results 

Results from the CASTOR-K code will now be used to validate the poloidal and toroidal transit 

frequencies in (177). This will require comparing numerical results for both ộ‰Ớ and ộeht rof deniatbo ,Ớ 

orbit exchanging more energy with a certain TAE, with the corresponding analytic predictions. 

Furthermore, the resonance condition will also be addressed, so that the analytical form can be 

compared to the numerical results from CASTOR-K. 
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Let us start by checking numerical results from CASTOR-K for particles in resonance with the ὲ

σρ TAE from the A family. The modeôs normalized frequency as well as the particleôs transit  

frequencies ộ‰Ớ and ộera Ớ 

 

 πȢσωυσχȟ 

ộ‰Ớ ρȢχςψπȟ 

ộỚ ρȢφψφσȢ 

(179) 

The validation of the analytical results will rely on how accurately the analytic predictions for ộ‰Ớ and 

ộneeb gnivah Ớộ dna Ớ‰ộ rof smrof citylana eht sekat neht enO .(971) morf atad laciremun hctam Ớ 

derived in (177), for which a large set of parameters has to be considered. These include those values 

from the ITER scenario under study from (44) and (45), as well as equilibrium parameter values from 

(149) and the orbital properties of the -particles in resonance with this TAE for which the maximum 

energy transfer is observed, these being given by (147). The signal ʎ ρ is also returned by CASTOR-

K. The only value still needing to be computed is that of the Ὗ parameter, which could be given by 

expression (175), ὑ being already known from (149). However, this will not be done for this particular 

exercise, since CASTOR-K also outputs the orbital parameters. As a consequence, Ὗ will instead be 

computed from (144) using the ὖ  value given in (147). 

All values being known, expressions (177) can be used in order to obtain ộ‰Ớ and ộyllanif hcihw ,Ớ 

yield 

 
ộ‰Ớ ρȢχσσπȟ 

ộỚ ρȢφωρφȢ 
(180) 

These values are close to the numerical ones from (179), which can be further checked by calculating 

the relative errors taking the numerical values for reference,  

 

Ὡ
ộỚ

πȢςωϷȟ 

Ὡ
ộỚ

πȢσρϷȢ 
(181) 

It can be noticed that these relative errors are roughly of the same order of magnitude as the ones 

associated with the analytic orbit plotted in figure 19. Thus, these analytic results are consistent with the 

numerical ones, their associated errors coming from the approximations considered for the particle orbit. 

One can at this point apply a similar procedure, but expressing Ὗ via (175) by taking the parameter 

values from (44) and (149), instead of using the ὖ  value from (147). Following this approach, one gets 

Ὗ πȢωχφπ and the transit frequencies yield 

 

 
ộ‰Ớ ρȢχσςχȟ 

ộỚ ρȢφωρσȢ 
(182) 

which means only slight deviations are observed by taking the previously mentioned method for 

estimating Ὗ instead of using ὖ . The relative errors also remain almost unchanged, yielding 

 

Ὡ
ộỚ

πȢςχϷȟ 

Ὡ
ộỚ

πȢσπϷȢ 
(183) 
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To sum up, expression (173) provides an accurate way towards predicting Ὗ, which doesnôt affect 

analytical estimates for the transit frequencies when ITERôs ρυ ὓὃ baseline scenario is considered. This 

is so because in this case the Larmor radius is small, thus leading to a low orbit width that accounts for 

Ὗ being given by expression (173) with good accuracy if the particleôs angular momentum ὖ  is 

unknown.  

Now, analytical results for the ὲ ςυ TAE from family B can be validated by comparing them to the 

corresponding CASTOR-K results. The numerical results for this mode are 

 

 πȢσψτρυȟ 

ộ‰Ớ ρȢσφτρȟ 

ộỚ ρȢσςφτȢ 

(184) 

According to expression (8), the safety-factor associated to this mode is ή ρȢπς, the 

corresponding rational flux surface being found at ί πȢτσσψψ. After a linear interpolation following (143) 

is performed, the equilibrium parameters for this location yield 

 

ί πȢτσσψψ 

Ὕ πȢςστρς ά ȟ 

ὑ πȢστωφρȟ 

Ў πȢωωωτψȟ 

– πȢπσψχφρȟ 

  πȢπςππυςȢ 

(185) 

As for the CASTOR-K values for the particle orbital properties, one has 

 

ὼ ρȢφχψτȟ 

Ώ πȢσττȟ 

ὖ πȢπρφςχπȟ 

„ ρȢ 

(186) 

The Ὗ parameter will be determined again by taking the numerical value for ὖ  from (186). 

Using the above mentioned values to compute the transit frequencies, one then obtains 

 
ộ‰Ớ ρȢσφψρȟ 

ộỚ ρȢσςψψȟ 
(187) 

which, compared to numerical results (184) yields, relative errors given by 

 

Ὡ
ộỚ

πȢσπϷȟ 

Ὡ
ộỚ

πȢρψϷȢ 
(188) 

These errors are again of order πȢρϷ, thus proving very close to the relative errors associated to the 

analytical orbits, which are of the same order of magnitude. This shows good agreement between the 

analytical method followed and the corresponding numerical values when TAEs from the B family are 

considered. 

Next, in order to check the analytical resonance condition, the values of ὲ and ὴ must be known. 

Considering the ὲ σρ TAE from the A family, the value of ὴ is given by (36), with the poloidal mode 

number being ά σρ and the poloidal-harmonic index of interest being ὰ ρ, since ὰ ρ is dominant 
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in the drift-velocity terms, but only ὰ ρ accounts for the -particles driving the TAEs unstable, 

according to what has been explained in section I-6. Hence, ὴ σς is the value of interest in this work, 

corresponding to particles moving in the same direction as the wave with speeds closer to the Alfvén 

velocity, as seen in section I-6. This will also be the case for any TAE with a given toroidal mode number 

ὲ from the A and B families previously mentioned in section I-5, the for ὴ value of interest being ὴ

ρ ὲ by since ὰ ρ and ά ὲ. 

One has now all information needed to compute an analytical resonance condition except the 

normalized mode frequency which also needs to be determined, since the zeroth order approximation , 

  is not consistent with the second order in ‐ǿ analytical forms for ộ‰Ớ and ộtnetsisnoc A .Ớ 

analytical estimate for will be found following Nyqvist and Sharapovôs approach [Nyqvist and  

Sharapov, 2012]. 

To begin with, it must be noted that in a toroidicity-induced gap there can be two discrete frequency 

AEs, their values lying close to the tips of the Alfvén continuum spectrum that can be seen in figure 2. 

These two AEs may have their frequency given by ύ ρ, with ύ being a frequency-related quantity 

defined as  

 

ύ   ȾǶ , 

Ƕ ς ‐ί
ὨЎ

ὨὶӶ
ȟ 

Ў Ὑ
Ὑ Ὑ

ς
ȟ 

ὶӶ ὥίȟ 

(189) 

in which Ў  is the real Shafranov shift (not to be mistaken by the Shafranov shift-related equilibrium 

parameter Ў) and ὶӶ is a radial coordinate labeling the magnetic flux surfaces with length dimensions. All 

other quantities in (189) follow our own notation instead of the one used by Nyqvist and Sharapov. 

By inverting the first relation on (189), the mode frequency can be expressed as  

   ρ ύǶ. (190) 

Therefore, analytical values for both ύ ρ cases can be derived as soon as Ƕ is known. Obtaining Ƕ 

of interest for some specific TAE requires taking the ί value for the rational magnetic surface around 

which the mode is centered and finding an estimate for the radial derivative of the Shafranov shift at that 

location. This is done by computing the Shafranov shift according to (189) using numerical data for the 

magnetic flux surfaces, thus obtaining the pairs ίȟЎ  for each known flux surface Ὥ. Then, taking 

the Ὥ and Ὥ ρ flux surfaces enclosing the TAE rational flux surface, a reasonable estimate for the 

Shafranov shift radial derivative will be given by 

 
Ў

Ӷ

Ў Ў
. (191) 

As a consequence, one is now able to compute all variables needed to obtain from (190). Apart  

from already known geometric parameters, the relevant quantities for the A family ὲ σρ TAE are 

 ή
φσ

φς
ḙρȢπρφρσωπȟ (192) 
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ί πȢσχςπψȟ 

ὨЎ

ὨὶӶ
πȢπφτχȢ 

Computing (190) while using definitions (189) and values (192) then yields 

 
 πȢυχτπψ for ύ ρȟ 

 πȢσωσσπ for ύ ρȟ 
(193) 

which means the ύ ρ mode shall be taken as the TAE of interest, since it accounts for an value  

really close to the numerical normalized frequency from (179). Indeed, taking the last as the value of 

reference, the relative error associated with the analytical prediction for the ύ ρ frequency is only 

πȢυςϷ. As for the ύ ρ case, it corresponds to a different TAE. 

The analytical resonance condition for particles interacting with the ὲ σρ TAE (A family) can be 

obtained at this stage. At first, the resonance condition is written in a slightly different way to the one 

having been used in (177) and (178), the whole equation being normalized to ,  

 ρ ὲ
ộ‰Ớ


ὴ
ộỚ


πȢ (194) 

Taking a glance at equation (194), one immediately realizes the second and third terms on the left hand 

side must be added together to yield ρ in order to cancel the first term. Computing this sum by using 

analytic results (180) and making ὲ σρ and ὴ σς, one then obtains 

 ὲ
ộ‰Ớ


ὴ
ộỚ


πȢωφπσσȟ (195) 

which leads to an associated relative error of τȢπϷ. This error is greater than those of the transit 

frequencies and the modeôs normalized frequency due to the fact that both terms are multiplied by either 

ὲ or ὴ, which are significantly higher than the unity ( σͯπ). Although not so accurate as the analytical 

estimates for the transit frequencies themselves, the analytic form derived for the resonance condition 

can still provide a useful description of the physics involved in the particle-TAE resonance. 

The same method can be applied to evaluate the resonance condition involving particles in 

resonance with the most unstable TAE from the B family, for which one has ὲ ςυ and ὴ ςφ. The 

normalized frequency can be analytically derived by means of (189) and (190), with the Shafranov  

shift radial derivative yielding 
Ў

Ӷ
πȢπχςρ, thus leading to 

 
 πȢυψσππ for ύ ρȟ 

 πȢσχυρπ for ύ ρȟ 
(196) 

Therefore, the ύ ρ case matches the one being modelled by CASTOR-K, the corresponding 

analytical frequency being  πȢσχυρπ. This accounts for a relative error of ςȢσυϷ taking the numerical 

from (184) as value of reference, which is greater than the one found for the analytically derived   

when the ὲ σρ TAE from the A family. 

Computing the second and third terms in the resonance condition for particles interacting with the B 

family ὲ ςυ TAE then yields  

 ὲ
ộ‰Ớ


ὴ
ộỚ


πȢωρψτωȟ (197) 
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which corresponds to a relative error of about ψȢςϷ, which is larger than the error associated to the ὲ

σρ TAE resonance condition. Despite that, the analytical resonance condition still has a relative error 

lower than ρπϷ, thus allowing an approximate determination of which -particle orbits resonantly 

interact with the TAEs. 

 

5. Resonance lines in the ●ȟ☻ space and ☻ for particles with ● ●╫ for each TAE 

The analytical approach derived thus far enables one to obtain analytical resonance lines in the ὼȟΏ 

phase space in order to compare them with the numerical ones from figures 10 and 11. Moreover, since 

the highest energy transfer is predicted for -particles with σȢυ ὓὩὠ, it is also interesting to obtain the 

value of Ώ for particles with ὼ ὼ and in resonant interaction with the TAEs. This will provide analytical 

predictions for the orbital properties of the most efficient particles at transferring energy to the TAEs, 

which can also be compared to numerical data from section I and the zeroth order analytical estimates 

for ὰ ρ plotted in figure 7. 

In order to obtain the resonance lines in the ὼȟΏ phase space referring to the particles in resonance 

with some specific TAE, the whole resonance condition has to be written starting form (177). Similarly 

to what was done in the last subsection, all parameters will be replaced by their corresponding 

definitions, the Ὗ parameter being obtained from the magnetic-equilibrium accordingly to (173). In the 

end, the transit frequencies must be written in terms of geometric quantities, the equilibrium parameters 

and the unknown orbital properties ὼ and Ώ, all dependencies on ὼ and Ώ being explicitly shown. One 

can then select some TAE of interest, for which the ὲ and ὴ values are known, and find its radial location 

ί from its safety-factor ή given by (8). After this, the equilibrium parameters can be computed, so that 

one gets all numeric values involved in the resonance relation but ὼ and Ώ.  

Having concluded the aforementioned steps, the left hand side of equation (177) will be used as a 

two-variables function ὪὼȟΏ, with ὪὼȟΏ π standing for the resonance condition. This was done for 

modes of both A and B TAE families, the corresponding numerical points in the ὼȟΏ phase space being 

plotted for comparison purposes. 

As it can be seen in figures 20, 21 and 22, the analytically obtained resonance lines show reasonable 

agreement with numerical data for TAEs from the A and B families, since the analytical curves show the 

same general behavior exhibited by the points. However, it is quite evident that the analytical resonance 

lines are significantly displaced from the numerical points. This shall be related to the limitations 

mentioned before of the analytical method followed, mainly the ones concerning estimating the radial 

location of the most interacting orbits, as well as estimating the modeôs frequency. Indeed, despite the 

errors associated to the transit frequencies being about πȢσϷ and the modeôs frequency having an error 

of order ρϷ, the second and third terms in (194) are multiplied by large ( σͯπ) ὲ and ὴ values, thus 

causing the significant displacement of the analytical resonance lines with respect to numerical data. 
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Figure 20: Analytical resonance line and CASTOR-K numerical points in the ὼȟΏ phase space for 

fusion-born  particles in resonance with TAEs from the A family. Results for ὲ ςυ (yellow), ὲ σρ 

(green) and ὲ σσ (black) are presented. Only ὼ ὼ is considered. 

 

Focusing our analyses on figure 20 for TAEs from the A family, the analytical resonance lines are 

seen to be displaced from the numerical dots towards higher values of Ώ. This displacement is smallest 

for ὲ σρ, which is not surprising since the relative error associated with the overall resonance condition 

is only about τϷ. The analytical lines for both ὲ ςυ and ὲ σσ TAEs exhibit larger displacements, but 

they are still found to roughly follow numerical dots. Therefore, interesting features on the resonance 

lines behavior can be inferred from these analytical curves. For instance, it can be seen that rising the 

TAE toroidal mode number brings the resonance lines downwards. The general shape of the Ώὼ 

function can be inferred from the analytical resonance condition (177), which can be written in the form 

 ὃΏὼ ὄΏὼ ὅΏ πȟ (198) 

where ὃΏ, ὄΏ and ὅΏ are made to depend only on Ώ as long as all other parameters have been 

replaced by their corresponding numerical values. Therefore, for a certain value of Ώ, equation (198) will 

have either none, one or two solutions, accordingly to the Ώ value being considered. This means a 

parabolic shape is expected for the Ώὼ function, which agrees with the curves shown in figure 20. One 

can also find the parabolaôs maximum to be located close to the particleôs birth energy, at ὼ ὼ. 
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Figure 21: Analytical resonance lines and CASTOR-K numerical points in the ὼȟ  phase space for 

fusion-born  particles in resonance with the ὲ ςφ TAE from the B family. 

 

Figure 22: Analytical resonance line in the ὼȟΏ phase space for fusion-born  particles in resonance 

with a ὲ ςυ TAE. Numerical data provided by the CASTOR-K code for ὲ ςυ TAEs from both A 

(green) and B (yellow) families is plotted too. 

 

Taking a look at figure 21, which refers to a TAE from the B family, one obtains similar conclusions 

while comparing analytical and numerical results. The analytical resonance line exhibits the same 

behavior shown by numerical dots and is pretty close to them for low energies, although they separate 

when ὼ increases. The main difference found while comparing with figure 20 is that the resonance line 
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lies below the numerical points for the B family TAE, opposite to what happened using numerical data 

for the A family. This becomes even more evident by checking figure 22, in which again the analytical 

resonance line for an ὲ ςυ TAE was plotted, this time being compared to numerical data from both A 

and B families. The B family dots lie above the A family ones with the analytical curve enclosed between 

them, which agrees with the aforementioned behavior. Differences found at numerical results for TAEs 

of different families with the same ὲ value relate to their frequencies being different. Their radial structure 

is different too, thus resulting in a slightly different location of the orbit that exchanges more energy with 

the mode, which therefore constitutes a second factor explaining those differences. 

On the other hand, obtaining the Ώ values for particles on the resonance line with ὼ ὼ simply 

requires one to take the aforementioned function ὪὼȟΏ and replace ὼ occurrences with ὼ ρȢψσφρ. 

Then, ὪὼȟΏ π will yield a single variable equation in Ώ which can be solved for a certain TAE. Doing 

this yields  

 

Ώ πȢςωψȟ ὲ ςυȟ 

Ώ πȢςχπȟ ὲ ςφȟ 

Ώ πȢρςφȟ ὲ σρȟ 

Ώ πȢπχπȟ ὲ σσȟ 

(199) 

in which no differentiation can be made for the A and B families as explained above.  

In order to compare these analytically predicted values with the numerically obtained ones, the 

energy-exchange distribution is again plotted as a function of Ώ in figure 23 for the TAEs of family A with 

ὲ ςυȟσρȟσσ and the one from family B with ὲ ςυ, but this time the analytical values of Ώ at ὼ 

corresponding to each of these values of ὲ are plotted as superimposed vertical lines. It can then be 

seen that, apart from the ὲ σσ TAE, for which the analytically predicted Ώ of the most interacting 

particles is about twice the corresponding numerical value, the analytical estimates show reasonable 

agreement with the energy-exchange distribution maxima. Indeed, an error of about ςπϷ is found for 

the analytical predictions referring to the ὲ σρ mode, while the ὲ ςυ TAE from the A family yields an 

even smaller error, around ρπϷ. The analytical prediction at zeroth order obtained in section I-6 for ὰ

ρ is also depicted, showing how much the analytical method developed here improved the leading 

order estimates.  

Despite the errors in the analytical predictions of Ώ being of the order of ρπϷ, these results are far 

much better than the zeroth order analytical estimates having been presented in section I. Besides that, 

they finally show that the main goal was achieved: developing an analytical method allowing reasonable 

estimates of the orbit properties for the most efficient particles at transferring energy to the TAE. Indeed, 

these rough analytical estimates confirm that the highest energy transfer in the context of  particle-TAE 

interactions happens for particles with low Ώ, namely Ώ πȢτ for the ITER scenario under consideration. 

What is more, the strong dependence of the Ώ values on ὲ has been obtained by means of this analytical 

study too, since (199) clearly show that decreasing the toroidal mode number ὲ increases the Ώ value 

of interest.   
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Figure 23: Energy-exchange distribution as a function of Ώ for TAEs from families A and B. Vertical lines 

corresponding to the values of Ώ listed in (199) are superimposed, as well as the Ώ πȢχπ analytical 

prediction at zeroth order for ὰ ρ (purple). 
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V - Conclusion 

To sum up, in this work, breakthroughs in distinct topics were achieved. Firstly, a high-accuracy 

analytical local-equilibrium model was obtained, with relative errors around πȢππρϷ when compared to 

numerical data, thus providing a useful tool to be used in further analytic studies requiring easily 

workable local-equilibrium models. This represents an innovation comparing to standardly used Miller-

based local-equilibrium models.  

Secondly, an analytical form for passing-particle orbits was derived with a relative error of about 

πȢρϷ, in the region of interest (πȢς ί πȢυ), as well as analytical forms for their transit frequencies, 

with associated errors of the same order. This is also an important milestone, since analytical orbits 

obtained in the past were derived assuming much simpler magnetic-equilibrium models, thus providing 

less accurate results. For instance, Wong et al [Wong et al, 1995] obtained phase-space trajectories of 

energetic particles considering circular magnetic-equilibrium, neglecting the elongation of flux surfaces, 

which appears at leading order in the analytical orbit derived in this work. 

The -particleôs transit frequencies were also analytically obtained, the corresponding results being 

shown in subsection IV-4. While comparing analytical and numerical results for the transit frequencies 

ộ‰Ớ and ộtisnart eht rof snoisserpxe lacitylana eht setadilav tluser sihT .ϷρȢπ fo redro fo era srorre eht ,Ớ 

frequencies in (177) that in turn provide a useful tool to benchmark gyrocenter-following codes like 

CASTOR-K. 

Finally, these results were used to obtain a consistent analytic form for the resonance condition 

concerning interaction between fast fusion-born -particles and the most unstable TAEs observed for 

ITERôs ρυ ὓὃ baseline scenario, the corresponding relative errors lying between ρϷ and ρπϷ. Although 

not enough for accurate predictions to be made, this constitutes a major breakthrough taking the state 

of the art on the subject as a starting point.  

As mentioned in section I-5, one of the most recent analytical studies on it was the one conducted 

by Pinches et al, in which the most unstable TAEs were concluded to lie in the ί πȢυ region. These 

results were somehow misleading because particles traveling at the Alfvén speed were the ones 

expected to be in resonance with the TAEs, thus being regarded as the main responsible ones for driving 

them unstable. Indeed, as it was shown in section I-6, the -particles that most efficiently exchange 

energy with the TAEs are the ones with energies close to the birth energy, thus moving with about twice 

the Alfvén speed. The zeroth order estimates are also not accurate enough, since one once again falls 

in the ὺḙὺ  situation. Moreover, if ὼ ὼ is imposed on zeroth order estimates for the resonance 

condition, one will obtain Ώ πȢχπ, which does not agree with numerical data from CASTOR-K. 

Therefore, the analytical form for the resonance condition is the first analytical approach providing 

physically meaningful estimates for the orbit properties of the particles in resonance with the most 

unstable TAEs, thus allowing successful, albeit approximate, analytical predictions for the behavior of 

the resonance lines in the ὼȟΏ plane. It is also the first time to date that an analytical estimate for the 

orbit parameters of the most interacting particles in reasonable agreement with numerical results is 

achieved.   

On the other hand, two steps must be taken to improve predictions based on the analytical resonance 

lines presented in IV-5. First, one must find a more accurate way of assessing the radial location of the 
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particle orbit that more efficiently exchanges energy with the mode. This means the TAEôs radial 

structure shall be taken into account, instead of simply assuming that these particles drift around the 

TAE rational surface established by ή.  Secondly, the estimate of the TAE's frequency must be improved, 

because the errors associated to also come up as a relevant source of errors affecting the analytical  

resonance condition. Therefore, further investigation is needed on the analytical derivation of for more  

accurate results to be obtained.  

Even though a further development in key issues would be needed in order to achieve accurate 

analytic predictions, the method derived here reveals the generic behavior of the resonance lines in the 

ὼȟΏ phase space. Furthermore, by presenting analytic forms for the transit frequencies in (177), the 

terms governing the resonance relation can be found and physically interpreted, thus providing some 

clues towards the key factors determining which of the particle orbits are in resonance with TAEs. 

Therefore, the initial objectives have been accomplished, despite further analytical investigation on 

the radial location of the most significant orbits and TAE frequency being needed for the analytical 

predictions to attain the desired accuracy levels. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




