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Resumo

O objectivo do trabalho consiste em modelizar analiticamente a condi¢do de ressonéncia entre
particulas rapidas e ondas de Alfvén num tokamak. Em particular, considera-se a interaccédo de
particulas| resultantes de reaccdes de fusdo com TAEs (Toroidicity-induced Alfvén Eigenmodes) para
o0 cenario de p W 6 do Reactor Termonuclear Experimental Internacional (ITER). Pretende-se
desenvolver um formalismo para identificar as 6Orbitas das particulas em ressonancia com os TAEs.

Demonstra-se, partindo do formalismo de Porcelli, que as particulas com a energia de formacao dos
alfas de fusdo s&@o as mais eficientes a trocar energia com os TAEs. Escreve-se a condicdo de
ressonancia mantendo apenas termos de ordem zero e obtém-se previsdes analiticas discordantes dos
dados numéricos do CASTOR-K, justificando a necessidade de ordens superiores. Para fazé-lo
consistentemente, deriva-se um modelo analitico para equilibrios magnéticos locais, ajustando os
parametros com base no codigo HELENA.

Obtém-se um modelo analitico para as 6rbitas passantes de particulas carregadas partindo do
formalismo de Littlejohn para o movimento de centros-guia. O equilibrio local e as 6rbitas analiticas
demonstram boa concordancia com os resultados numéricos. Obtém-se expressdes analiticas para as
frequéncias de transito poloidal e toroidal das particulas com erros inferiores a p Pe conclui-se que o
meétodo possibilita a avaliacdo comparativa de cédigos focados no movimento de centros-guia.

Escreve-se a condicdo de ressonancia analitica e obtém-se as propriedades orbitais das particulas
ressonantes. Conclui-se que os resultados reproduzem aproximadamente o comportamento numerico,
providenciando estimativas analiticas para as 6rbitas das particulas que transferem mais energia para
os TAEs.

Palavras-chave

Tokamak, ITER, ressonancia onda-particula, particulas alfa, ondas de Alfvén, TAEs.



Abstract

This work aims to derive an analytical model for the resonance condition between fast particles and
Alfvén waves in a tokamak. In particular, it is considered the interaction of fusion-born| -particles with
TAEs (Toroidicity-induced Alfvén Eigenmodes) for the p W 0 baseline scenario of ITER (International
Thermonuclear Experimental Reactor). A formalism is intended to be developed in order to identify the
orbits of particles in resonance with TAEs.
Starting from Porcellid $ormalism for wave-particle interaction, the particles withtheal phads bi r t h
energy are the most efficient ones exchanging energy with the TAEs. The resonance condition is written
retaining only terms of zeroth order, the corresponding analytical predictions disagreeing with numerical
data from CASTOR-K, which justifies the need for higher order terms. To do that consistently, an
analytical model is derived for local magnetic equilibria, whose parameters are fitted according to the
HELENA code.
An analytic model is obtained for passing orbits of charged particles by using Littlejohné s f or mal i s m
for guiding center motion. The local equilibrium and analytical orbits show good agreement with
numerical results. Analytical forms for the par t i cl eds p ol dranditaffequemcied are or oi dal
obtained, the associated errors being lower than 1%. Therefore, the method can be used to benchmark
codes following guiding center motion.
The analytical resonance condition is written, allowing the determination of the orbital properties of
resonant particles. It is concluded that these results approximately agree with the behavior of numerical
data, providing analytical estimates for the orbits corresponding to maximum energy transfer to the
TAESs.
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| - TAE/fusion-born s -particles resonance and the need for analytical studies
1. Fusion energy, tokamaks and ITER

The search for sustainable long-term energy sources is undoubtedly one of the major global
challenges mankind is facing nowadays. Thisisled bythewo r | d 6 s pevepincteasing emargy
needs, together with the severe environmental issues associated to currently explored energy sources
such as fossil fuels and nuclear fission. One of the most promising paths being followed today towards
that ultimate goal is controlled nuclear fusion. It is based upon the idea of reproducing nuclear fusion
reactions taking place in the sun in order to access the huge amounts of energy released in the process.
One of the most widely used reaction in nuclear fusion research projects consists in deuterium-tritium
burning, generating an| particle (o& 0 ‘Q yoand a neutron (p ® 0 ‘Q Win the process,

O Yo 0Q ¢&. Q)
This is so because the D-T reaction has a higher cross section than D-D or other fusion reactions, thus
making it easier to initiate in an experimental reactor.

In order for nuclear fusion reactions to take place, the distance separating atomic nuclei must be
shortened enough for the strong nuclear force to prevail over electromagnetic repulsion. This requires
heating the fuel to temperatures of the order of p 10 (about 10 times the temperature in the sun core).
At these high temperatures, the D-T mixture becomes completely ionized, thus creating a plasma. In
order to preserve those high temperatures and keep fusion underway, the plasma must remain confined
inside the reactor. One of the most widely used confinement mechanism is based upon the imposition
of a strong magnetic-field by means of external magnetic coils, so that all magnetic-field lines remain
enclosed within the finite volume of the fusion device. This assures that the plasmad sharged particles
keep moving around magnetic-field lines inside the reactor. Consequently, a suitable confinement time
for both particles and energy may be achieved.

Several geometric configurations can be used to achieve the plasmad snagnetic confinement, the
tokamak being one of the most promising in what concerns reaching a viable fusion reactor [Wesson,
Tokamaks]. It consists of a toroidal magnetic chamber exhibiting axial symmetry where a strong toroidal
magnetic-field is created by external coils disposed along the torus. In order to reach an efficient plasma
confinement, an equilibrium force balance shall be provided, which requires the existence of a poloidal
component of the magnetic-field. This can be obtained by means of a transformer or some non-inductive
current drive mechanism (like Neutral Beam Injection or Lower-Hybrid waves), thus imposing a toroidal
electric current in the plasma which gives rise to the poloidal magnetic-field. As a result, a helical
magnetic-field is generated inside the tokamak thus making it possible to confine the charged particles
of the plasma in the core region of the chamber.

At this point, it shall be noted that not only the fuel confinement is important, as fusion products must
remain confined too, for their energy is crucial to keep the fusion plasma hot. In fact, other methods are
used in order to raise the plasma temperature during the first stages, when fusion energy is not available:
Ohmic heating generated by the toroidal plasma current is enough to heat it until o 'QQ,avhile processes
like radiofrequency heating (RF) or neutral beam injection (NBI) can be used to reach a X QQ®
temperature. Beyond that point, however, one must take advantage of the heating power of energetic

ions created in fusion reactions, such as the & 0 Q ¢ -particles generated by D-T burning. This means
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these energetic ions shall remain confined in the inner region of the reactor where they are meant to
heat the plasma, thus playing a crucial role on leading it to the desired ignition state (about p UQQ)w
Ensuring| -particle confinement is then a mandatory condition towards maintaining the burning-plasma
state inside a tokamak and allowing the fusion reaction to occur in a self-sustained way. Moreover, | -
particles and other fast ions must be prevented from escaping the core and hitting the reactor walls, as
their high energy constitute a major threat for plasma-facing components, thus pointing out the urgent
character of | -particle confinement.

The reactor geometry can be characterized by the tokamak aspect ratio, defined as the ratio between

'Y and &(both defined in figure 1). However, the inverse aspectratio- — L pis more commonly used

as an expansion parameter in tokamak research.

torus symmetry axis
1

Figure 1: Schematic representation of a tokamak showing the lengths 'Y (measured between the
symmetry and magnetic axes) and & (between the magnetic axis and the plasma boundary). Laboratory
coordinates 1 Hsh— can be used, with i being the distance from an arbitrary point to the magnetic axis,
normalized by & On the left side a magnetic flux surface & & is mepresented in orange, with the

enclosed equatorial surface “Ysignaled in blue.

There are several coordinate systems that can be used in toroidal geometry, one of the simplest
being the "YI%sérd coordinates. In this system, 'Y is the horizontally measured distance from the torus
symmetry axis to a given point and &is the distance vertically measured from the torus equatorial plane
to that point. YR then constitute a Cartesian coordinates system for the poloidal plane, while the
toroidal angle %oaccounts for a third dimension being added. The 1 Hs— coordinates defined in figure

1 are also frequent in literature and will be frequently used in this work, being henceforth named

11



laboratory coordinates. Both "Yiehd and 1Msh— are orthogonal coordinate systems, the ‘Y
coordinates being obtained from the i h— ones as
Y Y ®OIATS Yp -RBIOShH 2)
© AOE+ Y- OB+
Magnetic-field lines in a tokamak are located along geometric surfaces known as magnetic flux
surfaces. This is so because they can be labeled by the poloidal magnetic flux  crossing the equatorial

surface "Yenclosed within the magnetic flux surface (drawn in figure 1),
Piod8 (3)

Moreover, for each magnetic flux surface, the magnetic-f i e | d todology & @escribed by the
safety-factor —, where  %s the toroidal angle described by a magnetic-field line while it completes

a full ¢* orbit in the poloidal projection plane [Wesson, Tokamaks]. An analytical expression for rj can

easily be derived using the laboratory coordinates i fé—. This requires taking into account that the

magnetic-field lines necessarily verify the condition ——— , whereé ,6 and

6 stand respectively for the radial, poloidal and toroidal components of the magnetic-field &. The
safety-factor then comes as
p-ip

n — o -1

Qi }
o 0 .
5 -8 4)

= —‘|'D

o) o)

Although many tokamak experiments have been carried out worldwide, the expectations have never
been so high as they are now due to the ITER project: the International Thermonuclear Experimental
Reactor under construction in Cadarache, France. This huge device is being developed in the context
of an international consortium with the major goal of reaching the burning-plasma stage in order to show
the viability of nuclear fusion reactors for energy production. Therefore, a lot of theoretical research still
needs to be developed in order to prevent possible problems and ensure that an efficient plasma
confinement and heating is achieved when the machine starts operating.

Useful data also includes | T E Ryéosnetric dimensions, namely the torus major and minor radii,
respectively 'Y  (from the center of the torus to the center of the poloidal cross section) and &
(between the center of poloidal cross section and the plasma boundary), these being

) c8ta h
Y P& a8

These shall not be mistaken by the 'Y and &lengths having been presented in figure 1, which refer

(5)

to distances measured to and from the magnetic axis, its location depending on the particular equilibrium

associated with the baseline scenario being considered.
2. Shear-Alfvén wave stability
As it has already been highlighted, assuring an efficient confinement of the fusion-born| -particles is

one of the key factors accounting for a successful ITER operation [Fasoli, 2007]. In this context, the
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main concern on fast ions confinement comes from instabilities associated with shear-Alfvén waves in
the tokamak. These can be pictured as oscillations of the magnetic-field lines caused by magnetic-field
perturbations perpendicular to the background magnetic-field, which propagate in the direction parallel
to it. An MHD approach can be used to describe shear-Alfvén waves if their characteristic length scale
0 is much larger than the ion Larmor radius ” and mean-free path _ (01 ” ,_), their frequency] is
much smaller than the ion cyclotron frequency (¢ L ), all bulk-plasma species are locally
Maxwellian and all other finite Larmor radius effects are negligible. Under these conditions, the shear-

Alfvén waves dispersion relation is

1 Qoh (6)
where 7% is the parallel component of the wave vector and 0  —= stands for the Alfvén speed, 6
being the magnetic-field magnitude and ” the mass density of the plasma [Heidbrink, 2008].

The problem with Alfvén waves is that fusion-born | -particles move with velocities closer to the
Alfvén speed, which gives rise to wave-particle resonant interactions. This may lead to energy being
transferred from | -particles to Alfvén waves, thus making them grow unstable and put | -particle
confinement at risk. Nonetheless, not all Alfvén waves are equally susceptible to be driven unstable by
fast ions populations.

At first, a glance shall be taken at the specific features of Alfvén waves propagating inside a tokamak.
As a consequence of toroidal geometry, periodicity arises not only in the poloidal direction but also in
the axial one, thus imposing periodicity constraints to both poloidal and toroidal components of the
parallel wavelength. These constraints translate into a pair of integer mode numbers, the most
commonly used notation establishing & for the toroidal mode number and & for the poloidal mode
number. These mode numbers turn out to be the respective covariant components of the wave vector.
Moreover, the absolute value of the parallel wave vector taking part in the dispersion relation can be
written in terms of the mode numbers [Heidbrink, 2008],

q ¢ L P @
Q ¢ Y

It shall be noticed that both 7% and 0 have functional dependencies on the radial coordinate i, as 1,

"Yand " are functions of i . Hence,] in equation (6) is also a function of i , which means that the phase

velocity of the Alfvén waves is not constant for different radial locations. Alfvén waves propagating in
the plasma observing the dispersion relation in (6) and finite — are part of what is called the Alfvén

continuum. Due to their phase velocity depending on the radial location, these waves cannot propagate

in the plasma without suffering a huge dispersive effect, thus exhibiting a strong damping rate [ which
is proportional to the wave frequency radial gradient,[ © — [Heidbrink, 2008]. The Alfvén waves from

the continuum are then subject to a strong damping mechanism known as continuum damping, which
works to stabilize them. Therefore, Alfvén-continuum waves do not generally represent a significant
threat regarding fast-ion confinement and transport.

However, toroidal geometry gives rise to frequency gaps in the Alfvén continuum. This happens

because the magnetic-field toroidal component 6  inside a tokamak follows 6 — meaning that

the Alfvén speed U will exhibit a periodical dependence on the azimuthal coordinate —-thus leading to
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a periodical behavior of the refraction index 0 . Analogously to what is seen in other physical contexts,

the periodic variation of 0 is responsible for generating frequency gaps centered at a gap frequency

given by —, which depends on the radial location via fj, 'Y and 0 [Heidbrink, 2008]. As a result,

waves from the Alfvén continuum with their frequency inside the frequency gap shall not be observed.
Instead of it, a coupling is observed between waves with equal toroidal mode number ¢ and close
poloidal mode numbers & . This modifies the continuous spectrum by creating a frequency gap with a
frequency minimum above it and a frequency maximum below it, thus providing a thin region where the
frequency gradient vanishes. A weakly damped Alfvén eigenmode can then be generated in the radial
location where mode coupling was observed, its frequency approaching the central gap frequency.
There are several kinds of gap Alfvén Eigenmodes (AEs) which are named according to the order’
of the coupling that originated them. First order coupling ° p is associated with the so called
Toroidicity-induced Alfvén Eigenmodes (TAES) and is induced by toroidal geometry. These modes arise
from the coupling between two poloidal harmonics & and & p that propagate in opposite directions.

Matching the T%value in (7) forthe & and & p harmonics, leads to the condition

PP

o -3 (8)
which sets the TAEO sadial location for a given safety-factor profile ; . Moreover, combining (6), (7)
and (8) allows one to find the gap frequency to be
v .
T @

wi t h t hfequéndytbéirgy necessarily close to it.

Among other kinds of AEs, TAEs are likely to be driven unstable by interacting with fast ions moving
with speeds close to the Afvén velocity, thus being object of extensive research. In order to find out if
wave-particle resonances lead to damping or drive effects, the energetic-particled distribution function
shall be analyzed. The radial and energy gradients of the particles distribution function come out as the
factors determining whether this resonant energy transfer is responsible for damping the TAEs or rather
driving them unstable. For fusion-born| -particles, a negative energy gradient of the distribution function
is expected [Heidbrink, 2008]. At the same time, the | -particle distribution function usually has a
negative radial gradient, because they are born in fusion reactions taking place in the core. Therefore,
mode stability will be determined by the balance of the two factors. Still, there are several particle
populations in the plasma that may exchange energy with the TAEs, including both fast ions from
auxiliary heating systems (Neutral Beam Injection and lon-Cyclotron Resonant Heating) and thermal
species, thus making the TAE stability assessment a challenging task. Despite that complexity, | -
particle driven TAE instabilities can be theoretically predicted [Lauber, 2013], as well as their harming
effects on| -particle confinement. Indeed, these unstable oscillations may drag | particles away from
their original orbits, that delocalization being explained by non-linear dynamics [Heidbrink, 2008]. That
justifies the need to understand the physical mechanisms underlying this wave-particle resonance

towards foreseeing the TAE stability in a burning-plasma regime for specific ITER scenarios.
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3. Wave-particle resonant interaction

In order for an | -particle to be in resonance with a TAE, it is not enough that its velocity is of the
order of the Alfvén speed. In fact, a resonant energy transfer can only occur if the particles observe a
specific condition relating their velocity components with the TAE frequency and mode numbers. This is
usually referred to as the resonance condition and it can be derived in an almost straightforward way as
outlined below [Porcelli et al, 1994].

To begin with, fast ions motion shall be treated in terms of a guiding center motion approach, which
is valid as long as the relevant time scales are much larger than the gyromotion time scale, that is to

say, if the frequency of interest] satisfy the ordering condition
1 o
—L ph (10)

where is the ion cyclotron frequency. It also requires the particle Larmor radius to be much smaller
than some 0 length of interest (which in this work can be the TAE perturbations wavelength and the

typical length-scale of the magnetic-field), thus satisfying
—L ph
sgLke (11)

where” stands for the ion Larmor radius. If orderings (10) and (11) hold, the ions complete a full gyro-
orbit much faster than the overall guiding center motion. Therefore, gyro-averaged physical quantities
can be regarded at reasonable approximation as the values taken by those quantities at the particle
guiding center during the corresponding gyro-period. This allows one to describe energetic particle
motion based upon the guiding center properties, thus making possible to follow a guiding center
approach.

This is the case for fusion-born | -particles in this work. The guiding center Lagrangian is specified

in terms of the guiding center coordinates @ its parallel velocity ug and the magnetic moment *  —,

plus an angular coordinate | referring to the gyro-angle described by the particle in the context of its
Larmor rotations. This was first done by Littlejohn [Littlejohn, 1983], the guiding center Lagrangian being
written as

0 @fvgt h Nt h '® 6(0%55381‘;) - -alg W Qe (12)

where ¢ stands for the electrostatic potential, ®is the vector potential and & Gis the energy related

to the perpendicular velocity. Straightforward application of the Euler-Lagrange equations shows that

\ and‘ T which means ' is a constant of motion. The other invariants of motion are the particle

energy ‘Oand its canonical toroidal angular momentum 0 —, thus resulting in a set of three invariants

of motion 0 ROR that determine the particled s  dopdiogyt

. o .

0 ©OQ a"og—nh (13)
o]

. P, . v e it

0O Zavg & ®OQR (14)
C
and

‘ w8 15
3 (15)
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In order to study fast particle behavior, the time evolution of their distribution function "Qis found by
solving the Vlasov kinetic equation, which is written in the guiding center coordinates as
!‘Q aB8IQ v T—Q { ,"Q | Lo T8 (16)
7o S0, Yo '
If an equilibrium situation is considered, the particles will move along unperturbed orbits fully specified
by the invariants of motion 0 HOR plus an additional index ,, taking one of two possible values in order
to distinguish the two available directions for a given orbit. This means "Qwill be just an equilibrium
distribution function "Osatisfying — 1. However, when perturbations are added the distribution function

will change, the perturbed distribution function including terms of different orders. A suitable choice for

the ordering parameter is the normalized ion Larmor radius, ”  —. Neglecting terms of higher orders

than the first one, the fast ions distribution function gets the form "Q "O "Q , where "Q is the first-
order perturbed distribution function. The Vlasov equation can then be linearized, thus being written as
TQ T0O , 10

- E pX l J—
8 qaaou§T0§§ e M (17)

where @ , 0g and w are the first order perturbations in @ Ug and @ The term in — was taken to
zero because it vanishes when an integration over| is performed due to the fast gyromotion approach
being taken. Equation (17) shall now be rewritten with the equilibrium distribution function gradients

taken in respect to the invariants of motion 0 HOR hthus leading to

92 oaw o 1010 e an 4 1"0
o ® Ug T%TG (%) G O @ o
(18)
@ @, . 170
—— ® 8% — 18
o] o] !

By making use of the Euler-Lagrange equations and after some algebra, the quantities inside the
brackets in equation (18) can be obtained, which allows for its simplification. The first order perturbed
Vlasov equation can then be integrated over time to give the first order distribution function

- 10, T© 6 10 .

"Q ¥} T = we m ‘ TF "Q h (19)

where the three first terms constitute what is usually called the adiabatic response and Q stands for
the nonadiabatic part given by

gQ 1700 ey 1OND

™ 1070 “? T 7%

8 (20)

Specifying this nonadiabatic part will lead to the resonance condition, as shown by Porcelli [Porcelli,
1994], whose derivation is presented below. First, one notices that the leading order in " perturbed
Lagrangian 0 can be written as

0 O® 8 Oe ‘6 8 (21)
Then, a coordinates transformation is performed for the sake of convenience. Indeed, the so-called field-
aligned coordinates shall now be used, with the poloidal flux function replacing i as the radial
coordinate and the —coordinate being replaced by a generalized poloidal angleT . The{ coordinate is

defined by the condition
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o naoh (22)
@ and @ being the toroidal and poloidal contravariant components of the magnetic-field in field-aligned
coordinates. Unlike the laboratory coordinates i f%sh—, the field-aligned coordinates ~ Heéi  form a set
of non-orthogonal coordinates.

Another useful definition is that of the poloidal transit time T , which is the time taken by fast-passing

particles to describe a full closed orbit from7  1to]  ¢" inthe poloidal projection plane and can be

obtained as
Q Q—

t Qt T_T —h (23)
where the last equivalence stands for the fact that integrating over the poloidal angle from 1tto ¢* yields
the same result whether the7 or —coordinate is being used. Furthermore, a poloidal-transit averaged
value of a certain physical quantity & is an average calculated in a poloidal transit time T , according to

oy P PO, p W,

a0 — wQt— -Qf — -8

00 f o = (24)
The poloidal transit frequency ] can then be defined in field-aligned coordinates as the particle
poloidal velocity averaged over one complete poloidal transit period, 1 d O A poloidal-transit
averaged toroidal velocity @&tan be derived, too, both 8 Gand @following (24).

In order to specify "Q , the first order perturbed Lagrangian is then considered to take the form
0 o O o 6 AGPQ o ¢ % h (25)

where periodicity is imposed in time as well as in the axial direction %¢1 being the Alfvén eigenmode
frequency and ¢ its toroidal mode number. It must be noticed that 0  is an amplitude that depends on

the i coordinates and all the other perturbed quantities ( ,» ,6 ) must follow an analogous
form to (25). Making use of this in equation (20) and integrating it over time allows one to write the
nonadiabatic term as

0 170
70 °f%

0 o} b tO8 (26)

The computation of the integral (26) requires the axial coordinate %00 to be split in two terms,
%ot BT %ot h (27)
% T being a time-dependent oscillating part. This leads to the perturbed Lagrangian being written as
0 t 0tA@PpQ Ot with
Ot 0 th + AGPQ% T h (28)

Since 0 T is a periodic function of 1, it can be Fourier expanded,
0t & 0 foth AgpaQn th (29)

where & 0 RO h, are Fourier coefficients that can be obtained by computing a poloidal-transit
averaged quantity,

®O0fRoAh @Ot Aomn ta (30)
thus depending only on the invariants of motion 0 HOF and the , index. The perturbed Lagrangian

then becomes
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o f OO0 foth Agpa &3O n  th (31)

Taking advantage of Fourier series in (31), the integral in (26) can be carried out, the nonadiabatic

part of the perturbed distribution function finally yielding

"0 "0 . ... Agp EWO T o)
1o ,1° & O FOf R, 9 o0 N 8

Q — £ ‘ O
TO 1o 1 EM 1

(32)

The resonance condition thus corresponds to a singularity in 'Q due to a vanishing denominator in
(32):
1 EO 1 8 (33)
In the resonance condition (33), fjis an integer value (, 1 ph ¢M) arising from the Fourier series
expansion which can be related to the AEs poloidal mode number & as follows. To begin with,
expression (20) for the guiding center first order perturbed Lagrangian must be rewritten, this time
imposing periodicity in the poloidal direction 7 as well. This leads to the poloidal mode number &
appearing in the Lagrangian form,
6 o 0 0 AgPQ 0 ¢ % ai o 8 (34)
Assumingi can also be split into secular and oscillatory parts,7 ¥ @ & 7 T hand following the

same procedure having been used above, one finds the perturbed Lagrangian is given by
) w0 hoth AGPQ tmwd & a1 th (35)

where ais the new Fourier expansion index and ] & O Comparing forms (31) and (35) for the
perturbed Lagrangian highlights the relation between the integer 1} in resonance condition (33) and the
poloidal mode number & h
n a a8 (36)

Moreover, the physical meaning of dcan be understood after looking at form (21) for the perturbed
Lagrangian. There, one notices that & , » and ® are electromagnetic perturbations depending
only on the TAEs toroidal and poloidal mode numbers £ and & , @being the only physical quantity which
can be related to & In addition, since these are ideal MHD perturbations, the vector potential & is
perpendicular to the background magnetic-field &,

& n ® he b &h (37)
where P is an arbitrary displacement of the magnetic-field lines in a direction perpendicular to the
background magnetic-field. Therefore, 0 o depends on @only via the perpendicular drift-terms. This
means amust be regarded as the poloidal-harmonic index associated to the perpendicular drift-velocity

terms of the guiding center velocity @ A discussion on the relevant avalues will soon be undertaken.
However, the resonance condition by itself does not allow one to evaluate the energy transfer

between fast particles and Alfvén Eigenmodes. The amount of energy transferred via this wave-particle

resonant interaction can be derived starting from the linearized force balance equation, in which inertial

terms can be neglected providing only slow time scales are considered,
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e & 2 2P (38)
where 0 is the pressure associated to the plasma core and 0Pis the pressure contribution from high

energy particles. The fact that 0P has a tensorial form proceeds from the fast ions distribution function
being anisotropic, thus leading to different values of the parallel and perpendicular pressure

components, O s 0 . In order to determine the energy transfer from the Alfvén Eigenmodes to
fast particles, one shall find a way of calculating the work performed by the perturbed electric-field on

those fast particles,] @ . It comes out that, for an arbitrary displacement of the magnetic-field lines P ,

1 @ can be computed as the inner product of the last term on the left side of equation (38) and the

adjoint displacement P ‘ integrated over all space,
16 g 2’8 ¥p Qa8 (39)

The computation of the integral in (39) requires the perturbed pressure tensor 0P  to be suitably
defined [Antonsen and Lee, 1982]. Then, starting from (39) and after some algebraic calculations, an
explicit form can be obtained for the energy transfer| @ , all terms being specified in a detailed way.
Those terms may be fit into one of two groups: those which show no dependencies on the mode
parameters, thus producing the same value for all modes, and those depending on the mode frequency
1 and the toroidal mode number &, which account for the wave-particle energy transfer varying in
accordance with the specific mode considered. This mode-dependent term shall be represented by| w
and it can be written as

To .10, - . N

w - QuQv — &—— 0 0 Qh 40
Te g "o 7% (40)

o being the complex conjugate of the first order perturbed Lagranian (25). Making use of the

expansion in Fourier series of both 0 and 0 " and performing the time integration, a simplified form

is obtained for the mode-dependent energy transfer term,

. P nn .10 T0 N OA@Dan o
- Qw0 — £ Ao _——
T g Vo g @feBae TeaG (41)
At this point, the expression can be further simplified by changing the phase-space variables to more

convenient ones, including the invariants of motion 0 HOR as well as the %ocoordinate, the time along
the orbit 0 and the particle gyro-angle | . This is a simple exercise as the Jacobian is a constant given

by

p N N N i o B &
Qa0 a QD QO0Q° Q%O Q| (42)

the sum over ,, accounting for the two possible orbits for the same set of invariants of motion 0 HOH
Applying this transformation of coordinates to (41) and integrating] w over % 6and| (the phase-space
variables that are not constant around the orbit of the particle) allows one to obtain the| w term in its

most simplified way,

16 < o qoor 1 — &2 ® 8 43
(V] e — & z
58 7o 1T ECGE (43)
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Since| w constitutes the only term of the wave-particle energy transfer that depends on the mode,
expression (43) provides a guide to compare the energy transfer for different Alfvén Eigenmodes. Firstly,
it shall be pointed out that| & accounts for the energy transfer from the perturbed magnetic-field to the
fast particles, which results in1 @ Tif the Alfvén modes are damped and| &  mbeing the case for
drive effects. Hence, it now becomes clear that a negative energy gradient of the equilibrium distribution
function "Owill account for mode damping, while a negative radial gradient of "Gimplies that the "Ogradient

taken with respectto 0 is also negative, thus prompting drive rather than damping. The relative strength

of both — and — then comes as the key factor defining the direction of the energy transfer, as well as

the values of the mode frequency] and toroidal number £, which constitute weighting coefficients of
the energy and momentum gradients respectively. This balance is crucial to determine whether a certain
Alfvén Eigenmode will be damped or driven unstable by fast ions in resonance with them.

To sum up, both the resonance condition (33) and the mode-dependent energy transfer term (43)
play a capital role on the TAE stability analysis. While equation (33) allows one to identify the orbital
properties 0 AOH  of those | -particles in resonance with some specific TAE, expression (43) can be
used to evaluate the energy transfer taking place in those circumstances. As a consequence, answers
can be found for the following questions: what modes are the most likely to be driven unstable and what

values of the particle orbital properties maximize the energy being transferred.

4. ITER6 s 1 =baseline scenario

Considering how decisive it is to attain a strong knowledge on Alfvén Eigenmodes stability in a
burning-plasma regime, several research projects have already been conducted. In recent years, an
even greater effort has been done on searching for answers, since the first plasma experiments at ITER
are now scheduled for December 2025 and predicting the stability of TAEs and other AEs in the
presence of fusion-born | -particles for ITER baseline scenarios is a key factor towards its successful
operation. This means that theoretical research on TAE stability must be ITER-relevant in the sense that
all physical conditions considered must be those observed in the context of ITER operation, ranging
from the reactor geometry characterized by its aspect ratio to the magnetic-equilibrium associated to a
certain ITER baseline scenario.

The | b&&ibdescenario being considered in this work has been at the core of recent research
[Pinches, 2015; Lauber, 2015; Rodrigues, 2015; Figueiredo, 2016] and is characterized by a set of
magnetic-equilibrium related parameters, as well as density and temperature profiles being presented
here. According to what has been introduced in figure 1, the magnetic axis location determines both
dimensions 'Y and & Since the magnetic axis is slightly displaced from the geometric center of the

deviceds p oséciiondatlh ecsreo svsmatoh thase af thendévice dimensions 'Y  and @

in (5), so one must not confuse them. 'Y , ®and the inverse aspect ratio yield

© pwdh
Y @& 1mud (44)
- m@®pphu

where - can be considered small enough in order to be used as an expansion parameter.
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For the I TEROGs baseline scenario under sispu¥gp,
Since this is a key factor determining the magnetic features of the tokamak, this scenario is commonly
labeled as | T E Rpdus 0 baseline scenario, which will be used henceforth. Important magnetic-
equilibrium related parameters include the magnetic-field at the axis 6 , the on-axis Alfvén speed and
the poloidal magnetic flux at the plasma edge , which yield

6 v wT¥
0 X8x vgMai h (45)
PR TTY | OB
It must be noted that the poloidal magnetic flux labeling each flux surface can then be normalized to

, thus giving rise to a normalized poloidal magnetic flux i defined by

i —h (46)

Where { is allowed to vary within the range Tip . Therefore, if%éi can be used as field-aligned
coordinates instead of %k

Returning our attentions back to | T E Ppdis 0 baseline scenario, it is also characterized by being a
very low magnetic-shear scenario, which means the radial profile of the safety factor is very flat in the
core of the plasma. The ij-profile is presented in figure 2, together with the Alfvén continuum spectrum
for | T E Baus 0 baseline scenario, where several continuum gaps can be distinguished, the lower-

frequency ones corresponding to TAES.

2

wfeog”
-

Figure 2: Radial profile of 4 (yellow)and Al f v®n cont i nuumusdsoeemator u m

The presentation of the baseline scenario under consideration must also include density and
temperature profiles for both ions and electrons, as well as | -particles and helium ash density, since

this is a burning-plasma scenario. These profiles can be seen in figure 3.
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Figure 3: Radial profiles of ion and electron density and temperature, as well as | -particles and helium
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5. Current status of AE stability predictions for ITER

In the context of what has been previously explained, the TAEs have been attracting major attention
as results show they are among the most susceptible modes to be driven unstable by fusion-born | -
particles.

A February 2015 paper by Pinches et al [Pinches et al, 2015] explores a broad range of phenomena
involving energetic ions, regarding with special concern the AE stability in | T E Rodus 6 baseline
scenario with very low magnetic-shear in the plasma core. An analytical model is presented there in
order to evaluate TAE stability, accounting for several physical processes affecting it, from thermal ion-
induced damping to drive effects caused by fusion| particles or NBl-generated fast ions, also including
continuum damping and other phenomena. The instabilities growth rates were computed for different
TAEs, leading to the conclusion that unstable modes could only be observed in the outer region of the
plasma (i f& 1), where energetic-ion induced drive was found to dominate over a weak thermal-ion
damping due to the low temperature, while the higher temperature near the axis works to suppress any
energetic-ion drive.

These studies were further extended in a new article from April 2015 by Lauber [Lauber, 2015],
revealing it was possible to excite TAEs in the inner half of the plasma in the low-shear ITER baseline
scenario. This was based upon numerical simulations using LIGKA, a linear gyrokinetic spectral code.
Such an approach accounted for all particle species in the plasma in order that every single
phenomenon was included while assessing the stability of Alfvén Eigenmodes. Concerning TAEs, many
unstable modes were identified, including core-localized ones. Interesting breakthroughs also included

results for TAE damping for different values of the toroidal mode number €.
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Finally, another paper on TAE stability was published in June 2015 by Rodrigues et al [Rodrigues et
al, 2015]. A systematic strategy was developed in order to assess the linear stability of Alfvén
Eigenmodes in the presence of fusion-born | particles for an ITER baseline scenario. The method
consisted in using a hybrid model combining an ideal-MHD description of thermal species and a drift-
kinetic approach for| -particles, which required running the CASTOR-K code [Borba and Kerner, 1999].
CASTOR-K followst he Por c el | pgre§entedfinotire tast bectismin order to compute w from
(43), which is the output of the code, this being the major contribution for the total fast-ion/TAE energy
transfer| @ from (39). While computing] @ , all energetic particle populations in the plasma are taken
into account, as well as the energy transfer contributions from the thermal plasma. Summing up all terms
and numerically integrating over the whole phase space volume, growth rates were obtained for several

TAEs, these being depicted in figure 4.
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Figure 4: Growth rates of several TAEs computed by CASTOR-K plotted as a function of their toroidal
mode number ¢ and the radial location of their maximum amplitude i . Positive growth rates
correspond to instabilities, while the most unstable TAEs can be seen to belong to two distinct families

A and B located in the inner region of the plasma i 1@®.

The highest growth rates were found for TAEs with toroidal mode number ¢ lying in the range ¢ 1V
¢ Mo ntMoreover, these modes were found to be located in the inner half of the plasma, close to the
point where the radial gradient of the | particle density has a maximum, which is in accordance with
what has been discussed about expression (43). On the other hand, the ¢ M p TTAEs and modes far
from the core were found to be stable due to strong continuum damping. This has shed some light on
knowing what TAEs should deserve more attention on future research, the main CASTOR-K results
being presented in figure 4. There, two different TAE families can be seen to exhibit the highest growth
rates, thus showing further investigation shall be conducted on these modes. Particularly, the ¢ o© p

mode from the A family and the ¢ ¢ umode of the B family in figure 4 prove to be the most unstable
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ones from each family, thus making them the ones requiring most attention. The radial structure of these

two modes is presented in figure 5, while the radial structures of three distinct modes from the A family
can be found on figure 6.

0.8 T

0.6 -

0.4 -

0.2 -

-0.2

amplitude (a.u.)

-0.4 |

-0.6

-0.8 -

0.6 0.8 1

Figure 5: Radial structure of the ¢ ¢ UTAEs from the A family (red) and the B family (blue). Both of

them are located within the i ¥ T®&h® region.

1 T T
I
|
I
0.5 F I -
I
\
o IIIII
3 | \
X @" \ \\
% 0 < r‘%i‘hﬁ_‘h{ S
= \‘{'-.
E i\
[l L)
|IIII
|
-0.5 i ]
(1
1
V!
|
I|
1 ] | Ll | ]
0 0.2 0.4 0.6 0.8 1

5

Figure 6: Radial structure of three TAEs from the A family with three different poloidal mode numbers:
¢ ¢ ured), ¢ o plyellow)and ¢

o dgreen). These unstable modes are limited to the i ¥ T&®
region.
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At this point, one must understand which particles are most efficient on transferring energy to the
TAEs. This requires investigating the resonance condition (33) in order to determine the orbital
properties of those particles in resonance with the TAE, while expression (43) may provide further insight
on which of these particles drive the most unstable modes more efficiently. The analytical approach to
be performed in sections Il and IV of this work will produce a framework on which predictions can be
based, while numerical results from simulations will be used to check if the analytical assumptions made

are valid.

6. Analytical predictions at lowest order in £ and T+

The next steps will present a very simple zeroth order derivation towards determining the orbital
properties of the particles in resonance with the TAE. Its purpose is to show that such basic approach
is clearly insufficient and to motivate further developments to be carried out later.

To begin with, the poloidal-transit averaged quantities &&and1 @ Oin the resonance condition

(383) must be obtained, which requires determination of both %.and 7 . Since only zeroth-order results
are aimed, several approximations shall be considered at this stage, the first of which will be to take the
simplest magnetic-equilibrium with centered circular flux surfaces. It must also be noted that calculations
will be performed in orthogonal laboratory coordinates 1 66— rather than non-orthogonal field-aligned
coordinates i .Si nce p WEHREsaine scenario corresponds to a very low-shear regime at
i T, which encloses the radial location of the TAEs under concern, the magnetic-shear will be taken
to be zero, which leads to a constant A-profile being considered. This is in agreement with the 1-profile
shown in figure 2. Using this approximation, poloidal coordinates] and —agree at zeroth order, which
will become evident later in section V-1, where an analytical form relating? with laboratory coordinates

i h— is derived. Therefore, one is able to take] 6-Oat zeroth order.

In order to determine zeroth order approximations for %.and —one shall first note that these are two
of the contravariant components of the particle guiding center velocity expressed in i 46— coordinates.
This shall be easily verified starting from the intuitive velocity components,

® 0 W Y-iRY p - AT O %Y - +-8 (47)
The contravariant and covariant components of the velocity vector can then be obtained by means of
the metric tensor for the 1Msh— coordinates system, its non-zero covariant coefficients and the
associated metric® determinant being
QY -,
M Y p -ATS h
(48)
QY -,
QY -ip -ATS 8
Therefore, it follows from (47) and (48) that the contravariant velocity components are simply i fs— in
laboratory coordinates. In an analogous way, the contravariant velocity components are given in field-
aligned coordinates by i 9]
Applying the Euler-Lagrange equations to the Littlejohn Lagrangian (11) for the particle guiding

center provides the equations of motion for the guiding center, from which velocity components can be
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calculated [Littlejohn, 1983]. One will keep terms up to first order in the inverse ofthep a r t icyclotrerd s

frequency at the magnetic axis, — —— (with® ¢ for| -particles). Writing ivinstead of @as the particle

guiding center velocity to simplify notation, the guiding center equations of motion yield

0 - Og 6 . O .
5 =P B b 0P Lm@r@%h (49)

with @standing for the magnetic-field unitary vector. Equation (49) can be further simplified to give an
explicit expression for the components of the velocity vector, all terms of order greater than — being
neglected,

b U B ' aig @PAE (50)
However, as only a rough zeroth order estimate is intended, expression (50) shall be kept for future
reference. For now, only the first term can be consistently kept, as all other terms are of order 1 in —.

This allows one to write, at zeroth order,

VG (51)
The zeroth order contravariant velocity components can then be expressed as
i 035(1) ,
— g, (52)
%o Ugld N

where & Fd  are the contravariant components of the magnetic-field unitary vector, which shall be

determined next. The contravariant velocity components can also be given in field-aligned coordinates

as
T g,
. (53)
%o U§(A) h
where the radial component i vanishes at zeroth order since @  Tin field-aligned coordinates.
The components of the magnetic-field for a circular equilibrium model can be specified as
S I
® o6 W miph— h (54)

p -R&IS
where 1 is related to the safety-factor fj (event though they are not exactly the same, they agree at
zeroth order in -). As a result, the magnetic-field modulus will be given by
0 1 _
TATS ) (55)

Dividing the ®vector in (54) by its modulus in (55), the magnetic-field unitary vector becomes

L -

@ mMr———h—= (56)
-1 n -1 n
Finally, applying the metric coefficients in (48) gives the contravariant components of ¢h
ORORS N i 3 (57)
Yp -IAlOS -i n'y -i N

Now, neglecting all terms in -, the zeroth order contravariant components of Gdare obtained as
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YT (58)
Therefore, the contravariant velocity components %.and —given at zeroth order by

Uge
%o %ﬁh
Ug (59)
Y

Coming back to the resonance condition, an alternative form will be considered for the integer value
. Solving equation (8) in order to & and using the resulting solution in expression (36) allows one to

state ] as

. .. . P

N &n a ¢ 8 (60)
Before proceeding, one must determine the avalues of physical interest by checking the —dependencies

from the drift-velocity terms from (50) in order to find out which poloidal harmonics dominate at leading

order. One notices that both — and —£- are constant at leading order assuming only passing particles

are considered, so one must check the contravariant components of vector forms @& ™ and @ @80 @
using the circular magnetic-equilibrium from equations (54), (55) and (56). It then comes out that only

radial and poloidal contravariant components exhibit non-zero leading order terms, yielding

B B @A 0 OELH
(61)
FM ,B BPE 9 Al 08
Therefore, the first poloidal harmonic & p is proved dominant at leading order. As a consequence,
one shall take both these values later on. Fornow,| et 6 s si mpl y akeep on writing
It can then be noticed that, assuming the aforementioned leading order approximations, namely a
very simple cylindrical magnetic-equilibrium, with no toroidicity (- is neglected) and centered circular

magnetic flux surfaces, the two poloidal angles| and —agree at leading order. This will be properly

seen later in section IV-2. Replacing (60) in (33) and using7  — the third term in the resonance
condition can be written as ] £ O a - 6-Othus yielding
1 ke O dgé—OnS (62)

At this point, the zeroth order contravariant velocities shall be replaced by expressions (52). As for the

zeroth order mode frequency,]  will henceforth be used. Equation (62) then comes

1t d hd O ga)&&o 8 (63)
Therefore, using (22) and (58), the zeroth order resonance condition becomes
p g0
1 = = (64)
¢ YA
This equation can be normalized by the Alfvén angular frequency at the magnetic axis —, 0
being the Alfvén speed ati T, resulting in
oV O S
1 a B 2= (65)
cun
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where] — is the Alfvén-normalized mode frequency at zeroth order.

Now, the particle parallel velocity can be written as Og —= with , being the same sign
associated to the direction of the particle motion along the orbit that was mentioned before, with, p
for the particle traveling parallel to the magnetic-field line and ,, p for antiparallel motion. Qg is in turn

the parallel energy given by

(6]
Q O O ©Op ro) 8 (66)

Using (66) and expressing the perpendicular energy as ‘O @ the parallel velocity is written as

(0] ‘0
Vg . % P 59 (67)

The resonance condition can now be stated in a different way proceeding from (67),

.

1 ag’#%p 0616 O (68)
where @ — is a constant of motion (with 'O the Alfvén energy at the magnetic axis defined as O
-a0 )andQ —is aconstant of motion related to the particle perpendicular energy fraction (though
this is not exactly — due to the perpendicular energy being O  * dinstead of ‘ 6 ). It must be noticed

that wis a constant of motion that depends only on the particle energy O, while Qis determined by the
magnetic moment * and the particle energy ‘O. Therefore, the invariants of motion ‘Off used to identify
the particle orbits can be replaced by these two constants ¢ , the complete set of orbital parameters
being given by 0 Rafioh, .

Returning again to resonance condition (68), one easily notes that the ordering is not entirely
consistent since the 676 factor must be p at zeroth order in -. The zeroth order resonance condition

shall then be written as

] a P “l’/l—Q mh (69)
¢ A
which can still be simplified through dividing by the normalized mode frequency1
, @p Q
p a P L ™3 (70)
< n

The resonance condition at zeroth order depends only on1 and ¢ as well as the orbital properties

wand Q (but not 0 ) of the interacting particle. Nonetheless, it is independent of the toroidal mode

number €. On the other hand, recalling expression (9) for the TAE gap frequency] and noticing —

— at zeroth order in -, the zeroth order Alfvén-normalized frequency] is obtained as

P
] —8 71
cn (r1)
Replacing (71) into (70) and using the fact that ; and 1} agree at zeroth order leads to the resonance

condition being stated as

P Cx p, W Q T8 (72)
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As for ¢ its value must be & p, according to what have been seen in (61). Since , d@p Qis the
particleds parall el speed nor mal i zoe dpib2) tohoticed| f v®n v e
p corresponds to Oge U , while & p yields bge -0 , the minus sign meaning that the particle is

traveling in the direction opposi@neshaldhenttdketheveov e 6s di
cases separately. Assuming Q p, equation (70) can be solved in order to Q, yielding

Q p —hifa p,

5 (73)

Q p —hfa p.
It shall be noticed that (73) is independent on the value of , since , p for both , p possible
values. Therefore, the resonant lines in the ¢fiQ plane can be obtained at zeroth order by plotting
expressions (73), thus determining which orbits allow fusion-born | particles to establish resonant

interactions with the TAE. The corresponding resonance lines in the «fiQ phase-space are plotted in

figure 7.
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Figure 7: Resonant line in the &fiQ space at zeroth order for particles in resonance with a TAE, taking
both & p values and considering an arbitrary toroidal mode number £. Only wvalues on the left of

w p& o g(Egnaled by a black vertical line) have physical meaning.

Note that only positive values of wand Qar e consi dered, for negative valu
meaning. Interesting features of the resonant line include the existence of a minimum value of the
Alfvén-normalized velocity wfor resonant particles, which correspond to vanishing Qat w p (strongly
passing particles). Q increases monotonically with @ and converges to Q p as the particle energy
grows. Therefore, at zeroth order in -, passing particles with Q p cannot take part in resonant
interactions. However, only energy values lower than the fusion alphas birth energy O  o® 0 'Q care

of physical interest in this context. Using the on-axis Alfvén speed in (45)f or | @ & R baseline
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scenario and the| -par t i cl &6 sp® m@s sQ Qone then obtains the corresponding & value,
W pYPoYp

However, the resonant condition by itself tells nothing about the amount of energy being transferred
from the different tothe DAR anddr stydya as it only fewealdinfoonration dn she
properties of potential resonant particles. To assess the energy transfer due to each resonant orbit one

must recall expression (43) for the mode-dependent energy transfer term o .
To begin with, an assumption must be made for the squared modulus of the Fourier coefficients &

These have first been presented in expression (29) for the oscillatory part of the perturbed Lagrangian

0 T . & is then defined in (30), the poloidal-transit averaging in the later requiring an integral along a

given orbit. At t his point, it is assumed that the TAEO®GS

rational magnetic flux surface, its radial width being neglected. Then, aiming to obtain leading order

estimates, one assumes thatift he par t iiscdnterédsattohreb iTTAEG6 s r at i, thenadl

will get a finite value, while otherwise @ © 1. Therefore, & can be stated as being proportional to a
Dirac delta,

& 611 i h (74)
where i istheival ue of the TAEOGs r at andd ada comstapinfe eachcn
value. The Dirac Delta in (74) must be written in terms of the integration variables in (43), which can be
done by using equation (13) for 0 . This whole equation can be normalized, being divided by a &> '@ 'Y
normalization factor, which yields

0 a Y o6
GBY B8Y OBy ®8&

8 (75)

The left hand side can now be regarded as a normalized canonical toroidal angular momentum,

0 ﬁs (76)
Using (76) and the definition of the on-axis ion cyclotron frequency —, writing  in terms of i,
i hequation (75) becomes
- i p Y. 6
0 5y -y U$?8 (77)

At leading order, the second term on the right hand side vanishes and the radial coordinate i can be

mapped onto 0 , which then allows one to write the Dirac Delta in (74) in terms of 0 , yielding

® 610 0 h (78)
As for the denominator, which is but the resonance condition, it accounts for the singularity arising at
the resonance, being very small elsewhere. This means this quantity can be approximated as a Dirac

delta to be integrated over the particle orbit parameters 0 RO, which will be written as] @ , with

W ] g 1 . As a result, the mode-dependent term of the energy transfer | @ in (43)
becomes,
10 © D QOO ] 1o ‘sl) 61 0 0 1 ® 8 (79)
To 10 '

30

f

f

amp

| ux

u X



Since 1 is related to & and dby (36), the former being a constant for a given TAE, the sum over 1) in
(79) can be replaced by a sum over & This requires the resonance condition to written in terms of &
which can be done by following the zeroth order resonance condition in (72), yielding @ p
& - G, @dp Q Therefore,] & becomes
To 170

16 ® D QOoQr 1 .~ ¢

o D 69 0 0 1 ®8 (80)

At this point, one changes the coordinates system in use, taking the integral in (80) over «fQ instead

of O .Sinceonehas’®© —— @ and' ——— the determinant of the Jacobian matrix for the
‘o © GfQ transformation is given by —— . As a consequence, expression (80) can be written
as

1 10 10 v

g e 1~7 NV - _ e g g RV
1w QD QAT —c(IdOT(b STO 01 0 U 1 wh (81)

Regarding the | -particles equilibrium distribution function "Q which is fully determined by the orbital
parameters 0 ffiQ, one then assumes the distribution function to be separable, thus yielding

00 ki "Q 0 "Q ®»’Q Q. Assuming that the fusion-born| -particles are isotropic, the distribution
function is independent of Q, so one can write 'Q Q  p. This means the distribution function becomes
00 ki "Q 0 "Qw. As for the energy distribution of isotropic fusion-born | -particles, it is given

by the slowing-down distribution [Gaffey, 1976],

oA 6 ‘00 O .

Q0O o7 o7 h (82)
where 'O'0 'O is the Heaviside function, O stands for the | -particles birth energy O  o® 0 'Q cand
O is acriticalenergywh ose value for this 10 E®QJBigusiredo,i2016.

Converting (82) to the wparameter is straightforward, yielding

o 00w w .
Qw fh (83)
W
where O ——— @ and©O —— ® were used and 0 is a normalization constant.

One must now be aware of the fact that, for the ITER baseline scenario being considered here, the
gradients of "'O0 R with respect to wand 0 follow the relation

1 10
SO L oh (84)
.10
ST_G_
which can be found as follows. Taking advantage of separability, one has
1 10 —
o T® 7 Q U "Cpap .
10 ¢ e Qo
o

(85)

Computing — from (83) is straightforward, yielding, for® ®,
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"Cazo ow
"Qw W

8 (86)

On the other hand, obtaining requires taking equation (77) for 0 in order to express 'Q a) to

lowest order as

‘0 o p TQ p TQ p Q. g7
® O %evY 10 Wwaili wwaio (87)
where 0 is the characteristic i scale of variation of "Q . Therefore, one finally gets
)‘Q '3 3 )
o wQivs (88)
Pasting expressions (86) and (88) into (85) then allows one to estimate the two terms ratio,
1 10
o 10 v QDG
o T8 1 902 10¢% (89)
¢ 10 0 o b
Tu
This can be written in terms of normalized quantities as
1 10
o Tw ® 1
= - - —8 90
10 L VA (90)
Tu
where —— is the on-axis cyclotron frequency normalized by the on-axis Alfvén frequency. In order

to evaluate the order of magnitude of (90), all numerical values must be known. One then has & o tfor
the TAEs under study, O o® 0 ‘Q @nd O* @0 ‘Q aAs for] , one can take the zeroth order form in (71),
where ¢ p. The valuesof 'Y and ,6 ,0 arethose in (44) and (45), respectively. Finally, the radial
location of the TAEs of interest sets ix & according to figures 5 and 6, while the characteristic i scale
of variation of "Q can be taken as 0 ™®. Using these values to compute the terms ratio in (90) thus
yields

110

C(*DT—TOQ)X T8t oL ph (92)
10
hence proving condition (84) holds.

Returning to expression (81), one can take advantage of condition (84) to neglect the first term in

brackets and use separability while writing the second one, thus yielding

. \ -7 Nt~V ”n, 5 "O(b (“o 7% 5 5 )
Tw 8¢ QD QUoaOt Qaa)W 01 0 1 ®» 8 (92)
The poloidal transit time T shall then be written in terms of @ —and Q — at zeroth order by using
(23), (59) and (67). This yields
¢ N .
%h (93)
1 Aap Q

whered 06 andny 1 were taken since only zeroth order terms are considered. Taking advantage of

this fact allows] w in (92) to be expressed as
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nNQad  On o )

T 0E D OOIR——0 —— 61 0 0 1 ® 8 (94)
Alp @ @ o
Integration over 0 allows one to get rid of the Dirac delta] 0 0 , Which requires  and "Q &)

to be replaced byt he corresponding values atnt laed TAEOL s
These are constants, thus being brought out of the integral, where a minus sign is added so that one
reminds that] « 1, since’™Q 0 .1 w can then be written as
Tw 8 & QuwQQ — — -
AMp Q W
At this point, the sum over dand the & constants are brought out of the integral. Integration in Q

81 @8 (95)

allows one to get rid of the Dirac delta function| @ , since this will select, for each & the value of Qfor
which the particles are in resonance with the TAE. This is done using the resonance condition in (72),
which is inverted in order to express AMp  Qin terms of wand & yielding
1o & 5 R i p 22 @ (96)
W W
At this point, the sum over awill be simplified by recalling that the & p poloidal harmonics are
dominant in the drift-velocity terms. Therefore, these are the only values of aconsidered in the sum, the
other contributions being neglected. Considering the case & p,then ¢ca p pand| @ T which
means the TAE is being driven unstable. However, if & p is taken, then ¢a p gand| @ T,
which accounts for the TAE being damped instead of drive effects. Since our main concern in this work
is TAE instabilities driven by fusion-born | -particles, one must look at the & p case as the situation
of interest. The mode-dependent energy transfer term can finally be written as
1k & Q06 &8 97)
W W
The Heaviside function sets the upper limit of integration to @ @, while the lower limit of integration is
physically imposed as @ T, yielding thus
1w ® ¢ Q oow—S (98)
w W
Evaluating the integrand in (97) shows the relation between constants ¢ffQ for all resonant particles

with a given 0 and the amount of energy being transferred from each one to the TAE, thus revealing

which orbit maximizes that energy transfer. Because is a monotonically increasing function of w

as seen in figure 8, one finds out that fusion-born | -particles with @ ® (i.e., O 'O) are the most

efficient ones on transferring energy to the TAE.
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Figure 8: Plot of as a function of &y while taking @ —— with' O 1@®0 'QwThe function

increases monotonically and converges to p as w® Hb.

At the maximum energy transfer, the Q value can be obtained at zeroth order imposing @ @ in
equations (73), the results being
Qe g rifa ph
Qe o )fa ph

This shows that the | -particles that most efficiently drive TAEs unstable should be | -particles with

(99)

® o and high Qvalue. Moreover, this shall be valid for all values of the toroidal mode number ¢, since
the resonance condition proves independent on this mode parameter if only zeroth order is considered.
It shall also be noted that this rough estimate required all perpendicular drift-velocity terms to be
t he (B9, since theyaré first ordet

neglected in the contravariantc o mponent s of

terms in —. However, these very simple analytic estimates require validation by checking if they agree

with more accurate numerical simulations. This was not the case, as detailed in the next section.

7. Numerical results and need for further analytical studies

The CASTOR-K code was used towards validating these rough numerical estimates. As previously
explained, it computes the mode-particle energy transfer| &  for different sets of values so that the
whole 0 hfiQ space is covered. This shall reveal both the resonance surfaces location inthe 0 FoHQ
space and the energy transfer for particles lying on that surface, thus providing a systematic way of
determining what particles drive the TAEs unstable more efficiently.

By taking this systematic proceeding for the most unstable TAEs from families A and B having been
highlighted before, the CASTOR-K allows one to assess the energy transfer from | -particles to these

TAEs for different values of Q which is plotted in figure 9.
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Figure 9: Energy transfer from | particles to TAEs as a function of Q Results for modes from both A

and B families are presented, including the most unstable ones.

Taking a look at figure 9, one immediately notices the highest energy transfer is for all modes
observed at Q m&. There is also a lower peak at @ &), but this has no physical meaning since it is
caused by numerical convergence issues due to the boundary between trapped- and passing-orbit
topologies (these errors affect the determination of the poloidal transit time for these orbits). This totally

disagrees with the zeroth order analytical prediction that the most efficient particles exchanging energy

with the TAEs would be the ones with @ ® and Qe & (& p) or Qe T X(0 p). Moreover, the

energy transfer distribution in Qproves very different from TAE to TAE, its maximum being displaced to
lower Qvalue when higher mode numbers are considered. Distributions for modes from different families
with the same value of ¢ are also distinct.

The resonance lines in the GfiQ space were also obtained, which required fixing the value of O

(which can be doneduetod bei ng r el

ated to the average radi
fixed by the rational flux surface around which the TAE is centered) and then look at the energy transfer
computed by CASTOR-K for several samples in the corresponding «ffQ plane. For each value of Q,
the value of wmaximizing the energy transfer was noted, which allowed one to find the shape of the
resonance line in the ofiQ space. This was carried out for the aforementioned TAEs from the A and B
families, the corresponding results being represented in figures 10 and 11 respectively.

Once again, numerical data proved surprising, as differently-shaped curves were obtained for distinct
values of £ while considering TAEs from the same family. Moreover, | -particles with the birth energy
w p& o pbeing in resonance with any of the TAEs considered where found to have much lower Q
values than the ones predicted by zeroth order analytical estimates. What is more, even the highest

values of Q found for resonant particles are much lower than the zeroth order analytical prediction in
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figure 7, meaning that passing particles are the ones interacting the most with the TAEs, being

responsible for the energy transfer that drives them unstable.
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Figure 10: Resonance lines in the «fiQ phase-space at a well-defined radial location extracted from
numerical data obtained by the CASTOR-K code. TAEs from the A family were considered, taking &
¢ ugreendots), € o p(purple dots) and &€ ¢ dblue dots).

Figure 10 shows that the resonance lines from the A family are displaced towards lower values of Q
when the toroidal mode number ¢ is increased, this displacement being quite severe while comparing
theé ¢ uwandé o aesonance lines. The only one that allows one to estimate the Qvalue at the birth
energy ®w p& o ggthe ¢ o gesonance line, revealing this shall be about Qe 1. Despite the huge
differences produced by considering three different values of £, the three lines share the fact that they
never reach high values of Q asthe ¢ o dine never comesbeyond Q Tm8t 1theé o ne certainly
doesndt ©r mgsdimitand eventhe ¢ ¢ dine shall have the maximum Qlocated below Q
T8, L This shows that the | particles in resonance with the TAEs from this family for this radial location
are strongly passing particles, their Qvalue being of the order @ m®, which radically contradicts zeroth
order analytical predictions.

Figure 11 in turn refers to the B family and it reinforces late results from the figure 10. Although being
quite close to each other, &€ ¢ vand ¢ ¢ @resonance lines are clearly distinguishable from one
another, exhibiting the same displacement behavior observed before for the A family modes. The Q
value along the resonance line is considerably higher than that shown by TAEs in figure 10, but still not
beyond Q 1@ vuThe&¢ ¢ d@ine is the one accounting for determination of the & RQ point, giving Qe
T® o These Q values are less than half the Q 1 Tand Q 1o @values predicted by zeroth order
analytical calculations for particles with @ @, therefore highlighting the idea that only passing |
particles are important for transferring energy to the TAEs in the context of the resonant interaction

between them. Qcan be regarded as a small parameter then.
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Figure 11: Resonance lines in the ofiQ phase-space at a well-defined radial location extracted from
numerical data obtained by the CASTOR-K code. TAEs from the B family were considered, taking €&
¢ u(purple dots) and ¢ ¢ @(green dots), these being the & values of the TAEs proving the most

susceptible to be driven unstable by fast| particles.

The significant disparities found when comparing rough analytical predictions with numerical data
show that the zeroth order approximation is far from being sufficient in order to obtain physically
meaningful analytical results. Particularly, the resonance condition taken in (70) and (73) can never be
consistent with having Qe 1@ or even Qe 1@ dor points on the resonance line exhibitng ® p& ¢ @ p
Therefore, higher order terms shall be considered in the resonance condition (33), which requires taking
into account the drift velocity terms in (50).

The importance of considering perpendicular velocity terms can be reinforced if one notices that the
maximum energy transfer obtained for ® @ p& o @implies that these most interacting particles
travel with speed 0 p& G @p , given the way wis defined. As the zeroth order analytical approach
only keeps the parallel velocity terms, one should expect these predictions to yield 0  p&) 0 @p . A
zeroth order analytical estimate can be derived by taking equation (65) with] given by (71) and using

the fact that ; and r} agree at zeroth order. Considering the ¢ p case, one simply obtains cfl‘)§0i;:' v,
which accounts for a resonance between particles and waves traveling at the very same speed, while
a p yields cfl)@d;:- -0 , which stands for a resonance involving particles traveling opposite to the

wave with one third of its speed. Since these results do not match numerical results and theoretical
predictions based upon the formalism by Porcelli, one thus conclude drift terms must be taken into

accountinordertoyield0 p& o q@p .
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8. Further ordering considerations

The perpendicular drift-terms whose importance has just been pointed out are of first order in the

inverse on-axis ion cyclotron frequency —. These terms can be written so that this quantity comes

normalized by the on-axis Alfvén frequency 1 —, yielding 1 — —, which is precisely the

inverse of the normalized cyclotron frequency presented in section I-6. Using the parameters from (44)
and (45)f or | gF & Rlfaseline scenario, one is able to compute| , which finally yields
1 MWINI®Q (100)

This will be used from now on while discussing the ordering of terms involved. As a starting point, one

shall no longer mention — while discussing the orders of magnitude of the terms involved, replacing it

by1 .

An immediate conclusion arising from the need for first order terms inf is the fact that doing this also
requires terms of higher order in other expansion parameters to be kept in the analytical derivation of
the resonance condition, such as the inverse aspect ratio -. This means the magnetic-equilibrium must
be modelled in a more accurate way that includes higher order terms in -, the centered circular flux
surfaces approach being replaced by a more accurate analytical magnetic-equilibrium in order to obtain
a meaningful analytical form for the resonance condition.

One final reason supporting the need for drift terms shall be pointed out, this time coming directly
from the resonance condition as it is written in (62). While deriving the zeroth order form, all terms in &

were taken to be zero since only parallel velocity terms were considered and relation (22) holds for field-

aligned coordinates, thus leaving only the & - terms. However, &€ e o tfor the TAEs of interest, while

0 - is about 60 times smaller, yielding -fora  p, which is the dominant value of daccounting for

drive effects. At the same time, | is given by (100) for this ITER baseline scenario. Therefore, even if
neglecting terms in1 compared to parallel velocity terms seems reasonable, terms in £ | shall not be
neglected as they are nearly of the same order that parallel velocity terms multiplied by & -8This means
drift terms in] must be considered in the resonance condition in order to reach consistent ordering.

As a consequence, the extended derivation of the resonance condition starting from (33) is then
presented, starting from the magnetic-equilibrium model that is essential for particles velocities to be

obtained.
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Il - Local magnetic-equilibrium model for analytical studies in tokamaks
1. Method for deriving a local magnetic-equilibrium

As previously stated, a magnetic-equilibrium model including higher order terms in - needs to be
derived for obtaining an accurate form of the resonance relation (33) with consistent ordering. Because
analytical results must hold for all TAEs of interest, which may have distinct radial locations, a local
model will be derived for the magnetic-equilibrium in a tokamak, which requires a generic expression
for the magnetic-equilibrium with radially-varying parameters. These will be found by adjusting the
analytical expression to a numerical solution of the Grad-Shafranov equation by a least-square fitting
procedure.

The magnetic-equilibrium in a tokamak can be specified by the poloidal magnetic flux function
which must satisfy the Grad-Shafranov equation, usually written in the YRG0 coordinates system.
Grad-Shafranov equation then becomes

LS S o]
TYYTY T® Q
where O "O s the poloidal current density fluxand 0 0

C2

Q0
"Q—h (101)

Q
the pressure function, both depending
on the flux function . Therefore, the magnetic-equilibrium is determined by the plasma current and
pressure profiles. As an analytic solution for is intended, the simplest profiles proposed by Solovev in
1968 are considered, with — and "O— being constants.

Following a recent approach [Cerfon et al, 2010], one writes 'Y 'Y wand & 'Y cwhile taking
[ ,where is an arbitrary constant, whence the Grad-Shafranov equation
Y 0 Y 0
Ll LD Y I8 oo
o ® Tw T [

Solovev profiles for current and pressure are then simply given by defining constants 6 and 6,

. Y .WI O

o] —_— h
[

5

(103)
.Y 1o
R
As is an arbitrary constant, one may choose in order to have 6 06 1. The Grad-Shafranov
equation then becomes the linear inhomogeneous partial differential equation
N R RN (104)

0w © T

To solve it, one combines a homogeneous and a particular solution, i.e.,[ oo [ oo [ dw.

For the particular solution of (104), one has
[ © 6p<b‘|a>(b8 (105)
G q g

On the other hand, the homogeneous solution[  ¢hw is such that

gl e T o
wo T ow Tw

8 (106)

Assuming an up-down symmetric equilibrium, which shall be the case for the present case of interest, a

general form can be derived for the solution of (106) [Zheng et al, 1996], as a polynomial expression
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truncated at an arbitrary order. Keeping 'Y & terms with 'Q "Q 1 is enough to obtain a magnetic-
equilibrium accurate to second order terms in -. The general solution [ ofto of the Grad-Shafranov

equation, includingT  hw truncated as just defined, is thus

[ oo L o O @ o o h
q q Y
r ph
' wh (107)

r @ ol th

r ® TOoh

r Cw www ol b peonl t8

This is the generic form of the poloidal flux function [ ¢fto one has been looking for, apart from a
normalization constant. Now, several operations shall be carried out to write (107) in a more practical
form. First, @ p - i€+ and & - ii "Q& are replaced in order to return to toroidal i F6h—
coordinates. Next, the terms ini ip - i@wé 4+~ are expanded in series of - so that (107) becomes a
power series in -. Having performed these steps, the on-axis constraints for the magnetic flux function

must be imposed, these conditions being,

i T mth

T .

oo m (108)
T

— 8

T_

While the last constraint in (108) is automatically satisfied by the magnetic flux function (107), the first
and the second ones impose two constraints to the six constants in (107), thus allowing one to get rid
of ® and @. At the same time, these requires the zeroth and first order in - terms to vanish. Therefore,
only second and higher order in - terms survive. Collecting all terms with the same order in -, as well
as terms proportional to the same trigonometric function A T ©—for some integer £, one finds the

unnormalized magnetic flux function to be given at fourth order in - by

rih— i - p VAITG- 1- AT S -Al®& | - - — -
- - - -Al¢& AlG-h

0 p ® T wkh
o 6 ® . wo.

o &0 0 o oy (109)
¢ T T T

- ELIJ(:) om wh
5 .

L P QO U Y-8
(SN

The parameter 0 is closely related to the flux surfaces elongation, since it appears in the lowest order
term multiplied by A T €—. However, this is not exactly the usual elongation, which is defined as the
ratio between the semi-major and the semi-minor axis of the flux surface (this will become clearer later)

[Cerfon et al, 2010]. In a similar way, w is associated to the Shafranov shift, for it features the lowest
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order term proportional to A T -©, while — accounts for a triangularity-related parameter and is related
to quadrangularity because they are associated with A T ®&— and A | 15—, respectively.
The poloidal magnetic flux is yet to be determined, since[ is missing a multiplicative constant
One shall then write the poloidal magnetic flux as
i h— [ ih— 'Y Y [ ih=h (110)

where is the poloidal magnetic flux in the edge of the plasma given by (45), being introduced in the
expression for i h— so that one can look at the poloidal magnetic flux as some fraction 'Y Y ih—
of the total net flux; 'Y is included only for the purpose of easing the expressions for the magnetic-field
components to be derived next, while "Yis a multiplicative constant with dimensions of squared length.
The values of 0, w, —, , and "Yhave to be locally adjusted to numerical equilibria. The normalized

poloidal magnetic flux i having been introduced in (46) thus can be written as

iih— Y Y ih— (111)
The magnetic-field is written as
® 0 B % IS (112)
The toroidal component of the magnetic-field can then be written as 6 —, thus being determined

by the poloidal current-density flux 'O . Solovev profiles require "O— @& where Qis a constant given

by
® Y 6h
o . o (113)
0O v U 1Yh
which can be derived from the calculations performed between (103) and (110). The squared current
density flux can then be expressed as

"0 "on ¢ h (114)
where the plasma current density flux at the magnetic axis must satisfy 6 —. Therefore, using (113)

and (114), the poloidal current density flux can be stated as
"0 'Y ¢Y v 0 Y h (115)
Hence, following (112) and using (110) and (115), one is finally able to write the toroidal component of
the magnetic-field, as it must satisfy the condition
6 Y Y o

~ = P C— v 0 TYTh (116)
Y O [0}

where[ is once again the unnormalized magnetic flux function from (109). On the other hand, the radial

and poloidal contravariant components of the magnetic-field can be straightforwardly derived from (112)

as
pT
——*h
0] o —
(117)
s P g
G

where "Qis the metric determinant being given by (48). Similarly to (47), the magnetic field &

6 B M  becomes
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Another important physical quantity to be determined is the magnetic-field modulus 6, which can be
easily obtained once all three components are known, as well as the magnetic-field unitary vector @ its

components being those of the magnetic-field vector & divided by its modulus. These are then given by

) ) o) 6 h
5 (119)
@ 38
(0]

2. Local-equilibrium fitting

The local model for the magnetic-equilibrium is now fully determined apart from the local values for
the set of equilibrium parameters "YU fh-h  at each radial location of interest. The determination of
these parameters will be carried out by using an accurate numerical solution of the Grad-Shafranov
equation produced by the equilibrium code HELENA [Huysmans, 1991]. The code provides the surfaces’
shape in the poloidal plane, at a set of 201 radial locations 1 i p, viathe Y coordinates of 257
points along them. The 'Yh®d coordinates are then converted into ih— polar coordinates using
expressions (2) and solving them in order to i and —-which yields

i Y Y  @oh
"""" (120)

This enables one to write the normalized poloidal magnetic flux i at those points as a function of
the equilibrium parameters “Yo fh-h , which can be done by using expressions (109), (110) and (111)
and replacing the i h—occurrences by their respective values at the points over the flux surface. Then,
a least squares fitting procedure will be used to minimize a cost function defined as the sum over all flux
surface points of the squared differences between the value of i provided by HELENA and the one
achieved from (109) and (111) for a set of guess parameters "YU, &, —, and . This is made for a total
of 200 different flux surfaces covering all radial locations fromi m8tmwi p8t m,thus allowing one
to obtain a local magnetic-equilibrium valid for the whole poloidal cross section of the tokamak, which
can be given further use in the context of analytic studies in tokamaks. Moreover, values of the

equilibrium parameters can be determined for intermediate flux surfaces by interpolations.
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Since the TAEs of interest are located in the inner region, between i e T® and i e T®), values taken
by the equilibrium parameters inside this range shall be looked with particular attention, their radial

variation being represented in figure 12.
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Figure 12: Radial variation of the magnetic-equilibrium parameters "Y U, w, —, and  resulting from the

least squares fitting procedure using the numerical equilibrium from HELENA.

3. Why the local magnetic-equilibrium model by Miller was not used

Although a local model for the magnetic-equilibrium in a tokamak has just been derived, the idea of
obtaining analytic equilibrium models that are only valid for a certain region of the plasma is not new.
Indeed, other local models have been created in the past, as the one derived by Miller et al [Miller et al,
1998] that accounts for finite aspect ratio and noncircular flux surfaces around some predefined flux
surface. The approach starts from the Mercier and Luc equilibrium analysis, which is radially localized,
and is extended via a parametrization of the poloidal magnetic-field 6 in field-aligned coordinates.

Millerd mcal modelis fully determined by a set of 9 local dimensionless parameters. In order to define
them, special i h— coordinates are used, these being defined as the radial and poloidal coordinates
measured from the geometric center of each particular flux surface, while 'Y stands for the distance

from the torus symmetry axis to the centroid of a given magnetic flux surface. The Miller parameters list
as follows: the flux surfaces aspect ratio & —, the safety-factor r), the global magnetic shear , , the
radial pressure gradient | , the flux surface elongation Il, the triangularity parameter _ and the radial
gradient of both elongation, triangularity and the flux surface major radius Y .

The 'Y hd coordinates of some point on the flux surface "Yspecify its shape and are written in terms

of 6, I and _as
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where Il and _ account for the properly defined elongation and triangularity parameters, consistently
with definitions used in literature [Cerfon et al, 2010]. Obviously, I and _ are related with 0 and — in
(109), but not in a straightforward way.

The poloidal magnetic-field can be written as [Miller et al, 1998]
) —1I Y OEiI— oOE+ p oAl S
e 2 T o ~ o 2
Al G- Al @O E+ —Al © { i Al © p
i ®AT©S OE+ OEFR wOE+H h

(122)
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which is a transcendental combination of trigonometric functions. This is at odds with the expressions
in (109), which are linear or rational combinations of trigonometric functions and therefore more

amenable to analytical manipulation.

4. Analytical forms for the flux surfaces and the safety-factor profile

Following the poloidal magnetic flux function  obtained in (109) and (110) in the context of our local
equilibrium framework, it is possible to derive an expression relating both the radial and poloidal
coordinates i h— along a certain magnetic flux surface.

This requires replacing expression (109) into (110) and selecting some specific value for the
magnetic flux labeling a particular flux surface. Then, equation (110) can be solved to obtain i —.
Since expression (109) is a polynomial of fourth order in i, it can still be solved analytically, despite
technical difficulties involved along the process. Actually, the equation being solved is not (110) for
but (111) for the normalized flux i , which is equivalent from a formal point of view. By carrying out this
task, four different solutions are obtained, all of them requiring simplification in order to identify which of
them are of physical interest.

In the end, a final form is obtained for the magnetic flux surface shape i i —. Because the

magnetic flux function was truncated at the fourth order in - j it shall be noted that consistent ordering

forbids one to maintain terms of higher order in - than the fourth one inthei — power series. Therefore,
truncation to fourth order in - was considered, the i — power series yielding
. i i T - T - a [T
WYT coY (TARAZIN QR YT
(123)
xXt- o0 X8I T PRI .
peapy r !
where coefficients multiplying- i ,- i and- i have, respectively, been written as
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It shall be noticed that each of the terms in the solution follows the general formi - . Atthe same

time, taking into account local-equilibrium parameter values plotted in figure 12 and the value of &
presentedin (44)f or t hi s | TERO®s b aoteethecoefficiests muliglying io , - aredc
order p. Therefore, the order of the terms in (123) is given by i - , which means it depends on the
fl ux sur f ac e dis Inthiawarkathe lotation aftinterest is set by the radial structure of the
TAEs, corresponding to the T&f® region, which allows one to consider ix -. Therefore, the order of
the terms is roughly given by - , which can be used to see that the term in i - accounts for
contributions of the order of T8t p pthus meaning the relative error of i — is expected to be lower than
this value. However, if one considered the worst case of a flux surface near the plasma edge, where
ix p, then the order of the terms would be given by - , thus leading to much greater errors associated
with analytical expression (123)f or t he magnetic flux surfaceds shape.

Using form (123) for the magnetic flux surface shape, every flux surfaces can be plotted, which can
be used to compare analytically obtained flux surfaces for some specific i with the corresponding
numerical solutions obtained by HELENA. F o r now, | efordnstangeuhe i  m@axkrexlux
surface, since the "Yfo coordinates for 257 points along this surface where computed by HELENA.
These were then converted to i h— coordinates for each point. After that, analytic flux surfaces were
obtained by using expression (123) for i — at the same poloidal angles. This required using values
from (44) and local equilibrium parameters fori @& X T, )which yield

i m&xXTmYU
"Y & o0 éYh
0 T T Wk w
Y pgtp dw
- mroydoo
T8¢ p 18T W

Both analytic and numerical results are then converted again for "Yhd coordinates using (2) in order for

(125)

the analytic and numerical flux surfaces to be plotted (figure 13).
Analytic and numerical surfaces match each other, but a detailed analysis must also plot the relative
error associated to the analytical surface taking the numerical line as reference. This error is computed

for each poloidal location —as

i I .
Q ‘| p T Thb (126)

while plotting ‘Q as a function of —led to the graph shown in figure 14. This confirms the accuracy of the
results firstly shown in figure 13, since the relative error of the analytic surface is of the order of @t 1 p, b
always falling shorter than @&t 1t ¢. Bhis small error shows that truncating the poloidal magnetic flux
function at the fourth order in - does not compromise the accuracy of the analytical local-equilibrium

model.
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Figure 13: Analytic vs numerical magnetic flux surfaces fori 1@ X 1 ,with the analytical one having

been calculated up to fourth order terms. Only half flux surfaces are drawn since the equilibrium is

assumed to be up-down symmetric. Numerical flux surfaces with different values of i are also depicted.
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Figure 14: Relative error (in percentage) associated to the analytically obtained magnetic flux surface
labeled by i 1& X 11 aking the corresponding numerical surface as reference. The analytic surface

is calculated keeping fourth order terms.
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Moreover, it is also possible to determine an analytical form for the safety-factor r] radial profile. This
can be done by recalling expression (4) for the safety-factor, in which all occurrences of i have to be

replaced by the i — form in (123) describing the shape of a given magnetic flux surface, including all i
occurrences inside the magnetic-field components (118). As for the — term coming in the square root

in the numerator, one simply needs to compute the derivative of (123) in order to obtain the poloidal
derivative of the radial coordinate i along the magnetic flux surface.

The last step left will be evaluating the integral in (4) over the poloidal angle ‘Q— which requires the
integrand to be simplified by expanding it in a power series of both the inverse aspect ratio - and the
elongation-related parameter 0, which can also be regarded as a small parameter since its value can
be roughly taken as Ux T@& Uorthei N T&® range, as it can be seen in figure 12. The need for using
0 as an expansion parameter comes from the fact that 0 appears on the denominator of several terms,
requiring a further expansion on this parameter for the analytic integration to be achieved. The
expansion will be truncated by keeping terms up to 0 . However, after performing the integration, the
resulting analytical form is found to include recognizable power series in 0 multiplying each term. For

instance, the term of zeroth order in - is given by

6 0 0 a0 V] ou L . (127)
Y S g PO pCyY
where the terms in brackets can be seen to represent the expansion of —— in power series of U up to

terms in U . Doing this for all power series in 0 coming in the analytical expression of | allows one to
write them as rational functions of 0. Therefore, the series expansion earlier performed is reversed,
which means that absolute accuracy regarding U will be recovered in the end.

As for expanding in -, despite higher order terms bringing extra accuracy, one finds that analytical
calculations beyond the second order in - turn out to be tremendously complicated. Therefore, only

second order in - terms are kept in the safety-factor expression, which yields

(128)

— Cw — 8

Using expression (128) for the safety-factor, the radial profile of 1} can in principle be plotted.
However, one must notice that the set of equilibrium parameters "0 fh-h  is also dependent on
radial location, their values changing accordingly to the i value taken. Therefore, expression (128)
together with local values for the equilibrium parameters from figure 12 allow the safety factor to be
plotted for each radial location. The other values one needs in order to compute the safety-factor are
either basic geometric quantities or magnetic-equilibrium parameters from ITERS® spu 0 0 baseline
scenario from (44) and (45).

Figure 15 then shows the safety-factor radial profile, in good agreement with the one computed by
HELENA for the inner region of the plasma. The two lines disagree for i 1@ because higher order

terms (i - ,i -, €é) b ec o measiiinopaseas.tTherefore, figure 16 presents a zoomed version

a7



of the | profile in order to allow a more detailed analysis on the

while comparing to numerical data.

accuracy of this

analytical approach
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Figure 15: Radial profile of the safety-factor i, comparing both analytical (purple) and numerical (green)

results. Expression (128) was used while deriving the analytical profile with local values being taken for

the equilibrium parameters. Good agreement is found for the i

T® region.

The analytically derived radial profile of } at second order in - follows numerical results in an accurate

way fori 1@, their values deviating less than p b
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Figure 16: Zoom of figure 15 focusing the i
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In the context of the TAE{ -particle resonance being studied, there will be no explicit need for an
analytical form of fj in the tokamak. Nonetheless, the analytical profile of | provides an additional
benchmark with numerical data from HELENA, showing that fourth-order truncation in (109) is suitable

for this particular equilibrium. Finally, this analytical form for f} can also be used in the future for further
analytical research.
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lIl - Derivation of an analytical form for the » -particle orbit
1. Fast particle orbit equation and ordering consistency
In order for the resonance condition (33) to be written more accurately than equation (72), poloidal-
transit averaged velocities in (33) must be written in terms of the new magnetic-field components in
(118). These analytical forms exhibit dependencies on the poloidal angle —which shall not be regarded
as a problem, since performing the poloidal transit-averaging integration over —allows one to get rid of
them (one must recall that integration over —from 1tto ¢* is only valid for fast-passing particles, which
are the ones under concern in this work, as highlighted in section I-7). However, the components of &
depend also on the radial coordinate i. Therefore, all i occurrences have to be replaced by the
corresponding analytical form of the particle orbit in the poloidal projection plane i i —, so that
integration in —can then be done without any constraints. This requires solving the charged-par t i cl es 6
equation of motion relating the i and —coordinates along its path.
With that goal in mind, one shall start from equation (77) for the canonical toroidal angular momentum
0 , which relates i with the poloidal coordinate —along the orbit, the equilibrium parameters Y foh-h
and the constants of motion 0 AOR  characterizing the particle orbit. For the first term on the right hand
side of (77), one shall recall expressions (109) and (111) in order to express the poloidal flux as a
function of coordinates ih—, the inverse aspect ratio - and the equilibrium parameters. Therefore,
taking advantage of the[ ,[ and[ definitions in (124) in order to write the first term in a condensed
form, it yields
Y, . . .
L (129)
One can then use the values from (45) and figure 12 to notice  "¥ & holds, while both| and[ are
of order p. Therefore, the ordering of the first two terms in (129) is determined by the & exponentini - .

The first factor in the second term on the right hand side of (75) can be easily recognized as the on-

axis ion cyclotron frequency definition ——. On the other hand, recalling expression (67) and
making use of the normalized orbit parameters @ —and Q —, one may write the parallel velocity

Ug as
) L Q 0 8 (130)
Ug » @ P 5

Finally, one shall take advantage of the on-axis Alfvén frequency definition — in order to make

the] parameter appear in the equation, since] = —. Including all these changes and usingyY Y p
- {AT 6 , the second term can be written as

66

» Q—— AT € 131
T, QeE—ap -AIOS8 (131)
As a result, the orbit equation becomes
Y 6 6
e VoL VoL VoL N o ) IV L 132
0 ——i-7 1-7T &T-7 1,6 Q—Fp -AIO38 (132)
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However, some last steps shall be taken before evaluating ordering issues. At first, is shall be noted
that the order of all terms involved in equation (132) is determined by both] and - parameters. But each
time the inverse aspect ratio - comes in any term, the radial coordinate i comes also associated with it,
which leads to all terms being proportional to some power of - 1 This is so due to forms (118) for the
magnetic-field components always showing this coupling between - and i. For the orbits of interest in
thiswork (& [ T®), i* - holds and so i also plays an important role in determining the order of the
terms. Therefore, one could benefit from redefining the variables in use so that the radial coordinate can
be regarded as a zeroth order quantity, letting terms ordering being determined by an inverse aspect
ratio-related parameter. In order to do this, one may take the radial coordinate i as the product of a first

order in - constant i and a zeroth order radial coordinate i ¢

i 1 4 (133)
in which i  shall take a reasonable value close to the particle average radial location. On the other
hand, since - and i are always coming together in the orbit equation (132), this i constant can be

absorbed by the inverse aspect ratio parameter, thus giving rise to a new small parameter

-g 1 -8 (134)
This accounts for one being able to replace all - ioccurrences by an - &product, which makes ordering
evaluations much easier since %% p.

Despite i  being of the same order of magnitude as - for the orbits under study in this work, one
doesnd6t need to seti asimgeald x pecurrericeds inaraltinakcaltulations must
cancel in the end. Moreover, this approach is general in the sense that it could be used to study particle
orbits in all radial locations.

The order of the terms involved in the orbit equation is then fully determined by both the -gand

small parameters. Therefore, it is crucial to find out the relation between - @nd] . Assuming this relation

is given by
1 - 98 (135)
One can determine the value off simply as
I 11¢C
T (136)

1 iswel-d ef i ned fpalr 0bhstliReRséesario, its value being given by (99). As for - git is given
by (134) as the product of the inverse aspect ratio -, which is also a constant for this specific scenario,
by thei  parameter, which has the meaning of a radial location of reference. Therefore, f depends
only on the radial location of interest besides constants from the baseline scenario being studied,
yielding
I
i BES ;% i 8 (137)

Expression (137) can be evaluated taking the values of - and] from (44) and (99), yielding the plot in

figure 17. It shows that values off in the rangef N pl can be considered to hold in different radial
locations from the magnetic-axis to the plasma edge. Indeed, | p holds ati e m@&t p being thus

relevant only near the magnetic axis. For the particular case under study, one finds that | e p&at
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i ] andf e ¢&ati T®. Therefore,f * ¢ comes out as a reasonable assumption within this
range, yielding
1x -8 (138)

If a general expression was intended for | -particle orbits in every radial location in a tokamak, then
one should take the case T x p, for which|* -dolds, thus requiring one to keep as many orders in| as
the ones being kept in - gDespite being valid only for the orbits located closer to the magnetic axis, this
would be the most general approach, since it would include all terms being needed for all possible
ordering conditions (135). For higher values of | , one would be allowed to start from this generic
expression and achieve consistent ordering by neglecting those terms of higher order inf , according to
the specific value of f . However, since this work is only focused on the | -particles orbiting within the
i v T@A® range, for only these ones will undergo resonant interactions with the TAEs of greater
concern, there is no need for considering the most general case | * -éat first. Instead of it, one shall
directly write the orbit equation in (132) regarding ordering condition (138), so that consistent ordering

is observed right from the beginning.

] T T T T

Tarb

Figure 17: Plot off as a function of the radial location of interest according to (137).

Returning to the orbit equation (132), one can easily note that performing a series expansion in only
one variable would make it easier to deal with equation (132) rather than expanding it on two parameters.

This is now possible by taking advantage of ordering condition (138). This allows the whole equation to
be divided by - gin order for the second term on the right hand side to be proportional to —, which is of

order p. This ratio will give rise to a new variable [ of zeroth order that will eliminate the need for writing

7 and will be defined as

016 .
<5 v ph (139)
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where —— is a zeroth order multiplicative constant which is convenient to introduce in the definition of
[ . Indeed, since there is a — factor multiplying the denormalized poloidal flux[ in the first term on the

right hand side of (132), one finds it convenient to divide the whole equation by —. Moreover, dividing

it by a factor of ¢ will later prove useful due to easing parameter definition. Therefore, one divides

equation (132) by ——, which leads to
60 i6-4 i6-4 10-4 60 P
Q—— -BA | 140
¢-6 Y C-9 1P 0 o p Al o8 (140)

Finally, one could get rid of the| parameter, - deing now the only small parameter determining the
ordering of the terms and being used for expansions in power series. In order to ease notation, a new

renormalized toroidal angular momentum can be defined as
- 6 0 0 .
v — e ] (141)
-9 Y cy¥Y Y

thus yielding, for the orbit equation,

- ig -84 -610 66 N

One can then evaluate the order of the terms in equation (142), the second term on the right hand

side requiring proper treatment. First of all, one notices that there is a problem at high Qif, for a certain
poloidal location —the magnetic-field 6 is such that Q— p starts to hold. Indeed, this would yield an
imaginary result for the second term on the right hand side of (142) beyond a specific value of —which

is indeed expected for trapped particles. However, in this work, only strongly passing particles are

concerned, since | -particles with Q 7@ are the ones in resonance with the most unstable TAEs, as

seen in figure 6. Therefore, Q will be small enough for Q— p to hold at every poloidal location. Still,

one must note that the analytical orbits to be obtained will be valid only for passing particles. Having

assured this, the whole second term on the right hand side of (142) shall be expanded in powers of - g

thus yielding
,Mp Q ,rrmAl S , -46Q AT & h
o 2
o —=h
Mp Q
- 6 Q Y YQ pcQ ¢c0U QU x 1TWQ Tr] (143)
pé p QI |
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One must notice that the expansion has been carried out only until the second order in - &o that ordering
consistency is achieved, since the magnetic flux term in (142) is truncated at - gtoo.
This then accounts for the orbit equation in (132) being written in its final fully simplified form by

grouping equal powers of i dogether and defining new parameters for the sake of convenience,
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It is then useful to look at the orbit equation structure. Due to having divided the orbit equation by - g,
the coupling between - @nd i s broken for the first term on the right hand side of (142). Therefore, terms
coming from the first term follow the form i -4 , while the ones coming from the second term are of
the form i 4- 4. The ordering of the terms is then determined by the power of - @associated with each of
them, terms being kept to the second order in - gAnother key point being highlighted is that this equation
is of fourth degree in i gwhich means it is of the highest degree for which it can be solved by analytical
means. Therefore, this is the limiting border of the application range of the analytical procedure.

Notwithstanding the lack of generality of the orbit equation (144) that prevents it from being applied

to trapped orbits, it is still consistent for studying all particle orbits exhibiting Q — for all values of —

Therefore, it provides a useful framework for obtaining the orbits of all passing particles, including the

ones with Q @& that are of interest for this work.

2. An analytical form for the orbits of passing » -particles

Analytically solving equation (144) is not much different from the analytical procedure having been
followed while solving equation (111) for the shape of the flux surfaces in the poloidal plane. In fact, one
still has to solve a fourth degree polynomial equation in order to obtain an expression of the form i g
ig— for the poloidal projection of the particle orbit. Therefore, one will eventually find four different
analytical solutions, each of them requiring further simplification in order to find out which of them is the
physical solution of interest. This having been made, one expands that solution in power series of - &
truncating it at second order in - gafterwards simplifying the resulting terms in order to get the final form
for the i 3—. One shall recall, again, that i s a unitary order radial coordinate, the radial location being
givenbyi i g

The analytical form for the passing| -p a r tsiomil, lkeeéping terms up to second order in - gis

| o— - -6 - -¢h (145)

where all "Widwh K and[ parameters have already been defined, all of them but "Ydepending on
the poloidal angle —via some A1 ©O— This expression deserves further physical interpretation,

particularly concerning the zeroth order term. This can be written as

A T
r 7 p VAT &

in which[ and "Ydefinitions have been used. Moreover, taking the limit 0  1tfor an elongation-free

i6—e (146)

magnetic-equilibrium, one findsig Y, whi ch means t he p aintdependem éngher adi al
poloidal angle —remainingc onst ant al ong its orbit. Abeinggivembyart i cl e

i 1 igwithi thep ar t iawedage dadial location, it comes outthatig Y p at zeroth orderin - &
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with 0 1 This would be the case for a cylindrical magnetic-equilibrium, with no toroidicity nor
elongation.
Indeed, at leading order, the particle6 finite Larmor radius is not taken into account, which leads to
all drift corrections being neglected. Therefore, the p a r t iowit felléws the magnetic flux surface,
which is a circle for a circular magnetic-equilibrium and an ellipse for an elongated-equilibrium. The
elongation-related correction comes in the denominator of (146) and is obviously dependent on —by
means of a A | @— factor multiplying U, thus allowingthep ar t i cl eés radial | ocation t
Despite these slight deviations from the average radial location, i gnust be of order p according to i
i igwhich imposes that "Ymust be always close to p.
Extending this analysis to higher orders in - gone finds the first order terms to include contributions

from the poloidal flux term and the particle velocity term of the orbit equation (142). Indeed, the

contribution in 'O, rm:_A I -6 comes from the second term on the right hand side of (142), "Obeing

proportional to [ which in turn is proportional to the particle normalized energy @ and the inverse
normalized ion cyclotron frequency | . Therefore, this first order in - @&ontribution constitutes the major
correction to the zeroth order result coming from drift effects associated to finite Larmor radius. This
correction is also dependent on Q. On the other hand, the term in[ wAT © -AT & comesfrom
the first term on the right hand side of (142), thus being a magnetic-equilibrium correction accounting
for the deviation of the flux-surface's center from the magnetic axis via o and also triangularity-related
shaping by means of —.

Analytical orbits of passing particles following expression (145) can be plotted as soon as a given
set of parameters is provided. Therefore, one can plot a numerical orbit of physical interest and use the
corresponding parameter values in order to obtain the analytical orbit and compare it to the numerical
one. One then chooses the orbit obtained by CASTOR-K for the particles that transfer energy most
efficientlytothe ¢ o PTAE, from the A family, since this is a case of physical interest. The parameters
are

® pYPMXv
Q mp i (147)
0 Tmd8tputhye
so these will be used while plotting the analytical orbit. This also requires using values from | TERO s
p W 0 baseline scenario in (44) and (45), the corresponding value for the inverse normalized ion
cyclotron frequency 18t 11 tand the equilibrium parameters atthe modeé s r adi al | ocati on.

The TAEOGs r aigldbtained from tha mddedrs  s-tadtoe i given by (9), where one has
a & for TAEs. Therefore, taking&@ €& o pone finds

n %S@ PP QP& WT (148)
By consulting a table provided by HELENA with the values of 1| for several flux surfaces labeled by i,
one can obtain the radial location i of the TAE, since it is centered around the rational magnetic flux
surface whose safety-factor equals that of the mode, yielding i 1@ X ¢ .TH¢wever, since there is no
numerical data for this very specific flux surface, one must obtain the equilibrium parameter values by

performing a linear interpolation. These yield the following results:
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Using the above mentioned numerical values, one has all parameters needed to plot the analytic orbit

(149)

i — accordingly to (133) and (145). Then, by using expressions (2) together with (133) and (145), one
gets analytical forms for both'Y Y —and & & — coordinates along the particled s oA nbnetical

orbit computed by the CASTOR-K and its analytical corresponding are plotted together in figure 18.

1 E T T T T T T T ]
analytica| me—
numerical

0.5 - -
[t
-0.5 .
-1 | | | | | | | N
5 5.5 5] 6.5 7 7.5 3

Figure 18: Analytical and numerical orbits projected in the poloidal cross section for passing fast |
particles moving around the i @& X Tt thagnetic flux surface, with 0 TBIPULUL YU @O R TTX 0@

and Q 1 1.Several numerical magnetic flux surfaces are also represented.

Similarly to what had been previously noticed for the analytical magnetic flux surfaces, the analytical
and numerical orbits show a good agreement. In order to understand how accurately the analytical orbit
fits its numerical counterpart, one can use a similar procedure to the one earlier followed while plotting
theanal yti cal f 1l ux sur {126} bubd this time theorelativee @rcop assbdiared to the

analytical orbit will be plotted. This is done in figure 19.
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Figure 19: Relative error (in percentage) of the analytical orbit for passing | -particles moving around the
i 1 g miuxsurfacewithd TBIPpULUL PULVWORWTIYX aPQ TP TI.C

Discussing figure 19, one finds that the relative error associated to analytical orbits is of the order of
™ b lyinginthe Q ¥ 18t 0 A v Prange for all poloidal angle values. Of course only poloidal angles
in the —~ 1 interval were considered since up-down symmetry holds for the magnetic-equilibrium
under consideration, as can be stated by the particle orbit shape in figure 18. The values obtained for
the relative errors agree to what could be expected from checking the ordering of the terms involved in
the analytical form (145) for the zeroth order i gIndeed, the highest order terms in this expression are
thosein-g T8t p ywhich means the i @oordinate can be given by this analytical form until the second
decimal place, representing a p baccuracy. Therefore, relative errors of the order of Tp Pare expected,
which is precisely what one gets here. Terms in - gwould be needed for this error to be reduced, which
in principle cannot be taken into account due to consistent ordering issues previously explained.

To sum up, an analytici i — form has been obtained for the orbit of charged patrticles, which,
although not general for all Q values, can describe particle orbits for passing particles, the associated
error being of the order of T P This provides a crucial result to be used in the next stages, as well as

a useful analytical tool for studying fast particle motion.
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IV - Analytical TAE/» -particle resonance condition: results and conclusions
1. Obtaining the » -particle velocity components

With analytical models for the local magnetic equilibrium and particle orbit available, it is now possible
to compute the velocity components needed for writing the resonance condition in (33).

An important note must be added here: despite equation (33) requiring the poloidal transit-average
of quantitiesT and %, which are related to contravariant velocity components written in the field-aligned
coordinates system {96 , our choice here will be to compute the contravariant velocity components
in the orthogonal laboratory coordinates system i F%sh— and perform then a transformation back to the
field-aligned system. This is one of the possible ways of dealing with the problem, our choice being
justified by how much easier it is from an intuitive and analytical point of view to work with orthogonal
coordinates and then simply convert the velocity results to field-aligned ones.

The contravariant velocity components i f6— can be obtained from expression (50) for the particle

guiding center speed at first order in —. This deserves further simplification in order to be written in a

simpler way. Particularly, the second and third terms in (50) must be rewritten in terms of our usual
parameters, including , which is relevant for term ordering. For the third term one can take the numbers

out of the vector operator to obtain

Us « = ==

=3 @pah (150)
where 0g can be written accordingly to expression (130). Using this fact together with the definition of

u , one finds after a little algebra that the

the inverse normalized on-axis ion cyclotron frequency
term in (150) can be simply given by
1600 Y p Qoié B8P A8 (151)
As for the second term, the magnetic moment can be taken out of the vector operator yielding
d'—&a B 8 (152)

Once again, one can make use of the definition of] ,aswellasQ —andw — to perform

some algebra and write the term in (152) as
Q
100 'Y CT(B ) 8 (153)

Regarding the first term on the velocity form (50), this is simply given by the parallel velocity, thus only

requiring expression (130) for O to find
X -0
» @ p OFdB (154)
Adding up the terms given by (151), (153) and (154), the particle velocity can be stated as
B ,® p Qb,—(2*|oou Y p Q(,),—(E @B dh —— @ ™ h (155)

co
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in which the second and third terms will be rewritten in order to eliminate] from (155) by using the [

parameter given by (139). This yields

tm,,aano—CPC_ w'YpQ—O‘)cTO‘)ﬁ
® ¢éh (156)
® @ &@PAh
>® A W8

where the vector entities of each term have been renamed as ‘P, according to the notation in Borba and
Kerner [Borba and Kerner, 1999]. The second and third terms are the ones related to the drift-velocity
contributions, being given in terms of differential vector forms ‘®and 'CP.

It shall then be noted that all other variables in use in (156) are known parameters arising from the
ITER scenario under study, the local magnetic-equilibrium or the particle orbit properties. As for ‘@, ‘P
and '@ they depend only on the magnetic-equilibrium. This means one is then able to compute the
particle velocity components in laboratory coordinates i f6—. In order to do that, it will be useful to
recall the conversion rules between the components for an arbitrary @ vector and its contravariant and
covariant components. Using laboratory coordinates i fé—, orthogonality holds and eases these
conversions a lot, the resulting rules for obtaining the vector components and its covariant components
from the contravariant ones yielding

6 "Qo6h
. (157)
0 Qo6 h

where "Gstands for one of the laboratory coordinates i h-%o, Einsteinds not aTheon
covariant metric components "Q ,"Q and "Q are given by (48). The other rules for conversions among
the three component types being easy to derive from these basic ones.

For the ‘P contravariant components, one simply needs to take the components of Ggiven by (118)

and (119) and extract the corresponding contravariant components by following the second rule on
(157). The ‘P contravariant components are far more complex to obtain, the magnetic-field curvature
vector (®  @BP @ needing to be derived at the very first place. This requires taking in account the
vector identity

PG BB B P A h (158)
where ®@ p holds for the whole volume, thus accounting for the left hand side to vanish. As a resuilt,
the curvature vector yields

® B3 PR D (159)

Now, one shall be aware of the rules for obtaining the contravariant curl of a vector @ and the

contravariant cross product of two vectors @and win a right-handed coordinate set,
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where "Qis the metric& determinant presented in (48), - is the Levi-Civita symbol and! is the partial
derivative taken with respect to the ‘(toordinate which can be either i , —or %e One has now collected
all information needed to compute ‘CP. At first, the contravariant components of ® @ have to be
determined, which requires computing the covariant components of @& Then, ® @ must also be
expressed in covariant form so that the contravariant components of the curvature vector (® can be
determined. Finally, the covariant components of (Phave to be computed in order for ‘Pto be obtained.
This process only requires repeatedly making use of (157) and (160).

Now, ‘Pis the only missing vector quantity, its determination requiring the gradient of the magnetic-
field modulus 6 to be computed first. Then, having determined the components of %, one only has to
derive its covariant components in order to finally compute the cross product @ ™8 that is the definition
of ‘@ making use once again of (157).

The contravariant components of all three ‘@@, 'O and ‘(P having been determined, one has all
ingredients needed to obtain an analytic form for the contravariant components of the particle velocity

in laboratory coordinates, 0 1 Feb—.

2. Transformation from laboratory to field-aligned coordinates

Since the contravariant components of the particle velocity vector in the resonance condition (33)
are written in field-aligned coordinates i 966 , one must convert the velocity components just derived
to this new field-aligned coordinates system. This requires obtaining the coordinates transformation from
the laboratory coordinates to the new ones, 10— 0 i [P

At this point, one may argue that the velocity components do not have to be rewritten in the field-
aligned coordinates, for one could instead convert the TAE wave vector components from field-aligned
to the laboratory coordinates and then rewrite the resonance condition using the wave vector and the
velocity components in the | 66— coordinates. However, it is easier to use %6 because the TAE
perturbation is usually expanded as a Fourier series in the angles 7 and % as it can be seen in
expression (34), where a and € are respectively the poloidal and toroidal mode numbers. Therefore, it
shall be simpler to use the coordinates transformation to obtain the contravariant velocity components
in field-aligned coordinates? and %sthan doing the alternative process, since computing the wave vector
in laboratory coordinates and readapting the resonance condition would make calculations significantly
more difficult.

In order to obtain 7 and %. from the velocity contravariant components written in laboratory
coordinates, one obviously only has to care about{ , since the %ocoordinate remains the same. Using
the transformation rules for contravariant components, the poloidal velocity in field-aligned coordinates

T vyields
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Therefore, the derivatives of7 with respect to both i and —aboratory coordinates have to be obtained.
This means one has to derive an analytic form for the field-aligned poloidal coordinate as a function of
laboratory coordinates,7 7 ih—.
The starting point for doing this will be equation (22) relating the toroidal and poloidal contravariant
components of the magnetic-field via the safety-factor . Stating this condition in the laboratory

coordinates only requires & to be written in terms of G and @ .

o Lo Ton (162)
T T—
This in turn yields, from the field-aligned condition (22),
@ n;T—lw Il_w 8 (163)

in which the contravariant components of the magnetic-field unitary vector & fto ity have already been
derived in (118) and (119). Equation (163) must be solved in a local neighborhood of the magnetic flux
surface around which the particle drifts.

At this point, one must specify the assumptions being made for the safety factor. A general approach
for a low magnetic-shear scenario would be writing i as a linear function of i ,

AN Nee i Eh (164)
wherer] and A are respectively the values of the safety factor and its derivative at a certain radial
location of reference i , which in this work will be the rational magnetic flux surface of the TAEs
considered. However, as it was first stated in section I-6, one will further assume that rjagan be neglected
in the region of interest, givent hi s | TER® S s c e n a wverydow-shear reginseta n did.
This is also in agreement with the analytical profile of rj in (128), as well as the corresponding plots in
figures 15 and 16. Therefore, the safety factor will be considered locally constant, yielding i 1
From now on, analytical forms will continue being written in terms of i for the sake of simplicity, but this
will always refer to a constant

One has then all the information needed to find7 7 ih— by solving differential equation (163).
However, since both — and — are unknown, one first has to assume a general form for the 7 ih—

function, for which one can take without loss of generality
T ih— 0 —-1nh (165)

which expressesi as a polynomial function of i while accounting for all possible dependencies in —
One shall than expand the whole equation in series of -, this expansion being truncated at any desired
order. While writing the resonance condition up to terms in - 4, it was noticed that only zeroth and first
order in - terms from (165) arose. Consequently, the expansion of (163) in series of - will be performed
up to first order terms, thus allowing this equation to be split into a system of two differential equations,
each corresponding to a different order, which can be solved in order to determine the unknown poloidal
coefficients ® —and 0 —,
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where] —and[f —and[ — are the functions of —defined in (124). Still, this system can be solved
in a straightforward way by using a differential solver routine to compute & — from the first equation of
(166), then repeat the same process to obtain & — from the second equation. Therefore, one finally

obtains an analytic form for7 i h— at first order in -,

i ih— & — -® — Eh
5 OAT LU OA+
5 — ___Yp U (167)
¢cn Y U v
0 — 8
The expressions for & — and 86 — are exact in U, since no series expansions in U were made. One
is now able to rewrite © — in order to find that7 e —holds at leading order, as mentioned in section I-

6. Recalling the analytical form in (128) for the radial profile of 1j, the safety factor can be obtained at

leading order by imposing - mand 0 Tt (no toroidicity, centered circular flux surfaces), yielding
simply i ——. Using this result and imposing 0 Ttin the analytical form for 6 —, one finds that
0 — reduces trivially to

060 — -8 (168)

Therefore, one findsi  —at leading order.

Once having obtained (167), one can easily compute the derivatives of ] taken with respect to both
i and — Knowing — and —, one shall then use expression (161) to obtain the covariant poloidal

component of the velocity vector in field-aligned coordinates] . Since %owas already known, one is then
able to compute both1 @ Oand @by using expression (24). This is all one needs to compute the

resonance condition (33) to the second order in -.

3. Poloidal-transit averaged velocities and the resonance condition

Taking once again the resonance condition (33), one notices it can be fully specified by determining
the expressions for the poloidal-transit averaged velocities @%Qand] , for & and fj are two known
integers for the TAE under consideration and] is the mode frequency, which can be determined by a

simple method being described in the following section. From the definition (24) one finds

. %q .
oo = Zok
(169)
1 00 2 Lok

in which the poloidal transit-time t is given by (23) and the poloidal transit-averaging integration is

chosen to be performed over the laboratory poloidal angle — since %cand] are expressed in terms of
the laboratory coordinates i fsk—. Still, before performing the average over the poloidal transit time,

one must consider some important details.
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At first, it must be noted that all terms in both 7 and %owill exhibit a perfect coupling between the
inverse aspect ratio - and the radial coordinate i, for all i occurrences are associated with an - factor.
Therefore, one can once again use the - i -Bgdefinition, which can be really useful since all ig
occurrences can be replaced by the corresponding second order in - @nalytic form for i dyiven by (145).
Moreover, this allows one to never write explicitly the value of thei  parameter. The second idea that
must be retained here is that all —dependent variables having been previously used while presenting
analytic forms must now be written in their full extended way in order to make all theta dependences
explicit. This includes all condensed variables defined in (124) for writing the magnetic flux function and
those having been introduced in (143) and (144) while deriving the particle orbit. This is mandatory since
the poloidal transit-averaging operation requires and integration over —to be performed, according to
(23) and (24). However, the parameters named| and Y, having respectively been defined in (139) and
(144), have to be kept for now, not only because they are independent on —but mainly for the fact that
they are order-unity parameters relating -éand | . As a result, they prevent] from appearing in the
expressions for7 and %o.and let - de the only ordering parameter.

The last step needed towards performing the poloidal transit-averaging will be to perform series
expansions in - @nd 0, following the same procedure used to derive the analytic profile for . Expanding
in - s necessary not only to allow the integration to be performed but also because it accounts for the
terms being grouped according to their order in -gThis is carried out only to the second order in -gas
stated in our initial goal. Expanding in U is necessary to allow analytic integration of the elongation-
based correction p 0 AT @— appearing in the denominator of (145). This expansion is truncated to

keep 0 terms and lower, so that analytical expressions are still tractable. Therefore, series expansions
in - do the second order and U do the eighth order are carried out for both integrands in (169), — and —,

and the - integrand in expression (23) for the poloidal transit time T as well.

After performing the explicit integrations in (169) and also the integration in (23) defining the poloidal
transit time t , one simply has to divide the expressions found for the numerators by the analytical form
obtained for T . This will lead to expressions for both ] and @& which then need to be again
expanded in power series to the second order in - gAt this point, one notices that the resulting forms
include some terms which are multiplied by the power series expansion of rational functions of 0. For

instance, one of the terms in Myields
” GX _é LIJ C @ (AD

0 o U v 0O U O U h (170)
P Q°
where the sum of powers of U in brackets can immediately be recognized as — expanded in power

series of U up to terms in 0 . An analogous procedure allows one to express the other sums of powers
of 0 as condensed forms involving rational functions of 0.
Nonetheless, the resulting analytical forms for]  and &require further simplification in order for

one to get rid of the artificial zeroth order parameters [ . At this point, ordering concerns arise when
writing [ in its extended form, since ® —. The fact that all| occurrences in both and ®&come in

terms proportional to - g allows the - g factors to cancel out and these terms become proportional to @1.
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However, the ™Y parameter will be kept in the analytical transit frequencies instead of its extended
form. This is due to the fact that "Yis easier to estimate than 0 , which allows one to use "Yin the

analytical forms. This relates to the previous discussion on the "Yparameter following equation (146): "Y
must be approximately p, becoming exactly p in the limiting case -h) © T
As for the method to be used for obtaining ™Y, one can take a consistent leading order approximation
based upon equation (132) for the orbit of passing charged particles. This can be written as
- 66 . .

: . 00 B N 171
U],,QpQéép Al S 6rh (171)

where the unnormalized flux function[ has been used according to its definition in (109). Now, writing
the second term on the left hand side at leading order in - yields , @i Q Equation (171) can then

be written at leading order as

o . o
— 0 Lol Q 18 (172)

Dividing the whole equation by - g, the left-hand side thus becomes Y according to its definition in (144).

By using this result together with expressions (111) relating[ and i, one finally finds "Yto be given by

. 1 l y
M7 S A (173)

whereonehasused-g -i and- —The particl eds avie rissobt@Ened frardthea |

analytical form in (123) f or t he magnetic flux surface around

leading order approximation for i is found by taking the first term of i — in (123) and averaging it
over —N mit* . This yields

‘ i p P -
wY' ¢ p UAI @O
which thus allows the "Yparameter to be stated as
. c*
Y 8
b UAIO

It can then be seen that “Yis given by an elliptic integral performed over the flux surface that depends
only on the elongation parameter, yielding Y p if the limiting case 0  Ttis taken. The integration in
(175) can be computed by expanding the integrand in power series of 0 and performing the integration
of the resulting expression. This yields a not trivial sum of powers in U, which after some algebra can
be written in a condensed form. This allows one to state "Yas

>

o L)
o ¢ " Tecaly
v 1 _ S R R (176)
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where — stands for the floor function of —. Due to expression (176) being very complicated, one will

instead use the corresponding series expanded result to obtain the “Yvalues of interest.
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One last step shall be performed, which is the normalization of the resonance relation to the on-axis

Alfvén frequency in order for the terms involved to be of order p. Both ®%Oand]  shall then be fully
simplified by renaming some variables, which finally leads to the resonance condition (33) being written

as

1 E®O N nh

o, 7T —— 5 VW-gQ Tl ¢ 7al
g YY¥Y-g', ———h
T ~
1 ) VW-gQ TQl cQ 7al
g o YY-égQ'T, — —— — h
I ppoﬁ
o <Y oo (177)
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Interesting conclusions can be taken out of the analytic forms for @and ] in the resonance
relation (177). At first, it can be seen that taking these expressions at order zero one recovers those

results having been derived in section | for circular magnetic equilibria, since one obtains

1 E®mO 0 m

O, dp Oh (178)
. @p Q
e
n

Now, recalling that ) follows (60) and inserting this expression into the zeroth order resonant relation

(178), one straightforwardly returns to the zeroth order resonance condition (69) as expected.

4. Validating analytical predictions by comparing them with CASTOR-K results

Results from the CASTOR-K code will now be used to validate the poloidal and toroidal transit
frequencies in (177). This will require comparing numerical results for both @& and 8 Gobtained for the
orbit exchanging more energy with a certain TAE, with the corresponding analytic predictions.
Furthermore, the resonance condition will also be addressed, so that the analytical form can be
compared to the numerical results from CASTOR-K.
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Let us start by checking numerical results from CASTOR-K for particles in resonance with the &

o pTAE from the A family. The mo d erosnalized frequency ] as well ast he p a transitc| e 6 s

frequencies @and § Gare
1 ™ wuhlx

MO p& ¢ T (179)
30 p®» U @O

The validation of the analytical results will rely on how accurately the analytic predictions for ®&and

@ Omatch numerical data from (179). One then takes the analytic forms for @Qand 3 Ohaving been
derived in (177), for which a large set of parameters has to be considered. These include those values
from the ITER scenario under study from (44) and (45), as well as equilibrium parameter values from
(149) and the orbital properties of the | -particles in resonance with this TAE for which the maximum
energy transfer is observed, these being given by (147). The signal A  pis also returned by CASTOR-
K. The only value still needing to be computed is that of the Y parameter, which could be given by
expression (175), 0 being already known from (149). However, this will not be done for this particular
exercise, since CASTOR-K also outputs the orbital parameters. As a consequence, “Ywill instead be

computed from (144) using the 0 value given in (147).
All values being known, expressions (177) can be used in order to obtain &Qand & Q'which finally
yield
O p& o dim
30 ppwBe

These values are close to the numerical ones from (179), which can be further checked by calculating

(180)

the relative errors taking the numerical values for reference,
(% s T wh

Qo ™pB

(181)

It can be noticed that these relative errors are roughly of the same order of magnitude as the ones
associated with the analytic orbit plotted in figure 19. Thus, these analytic results are consistent with the
numerical ones, their associated errors coming from the approximations considered for the particle orbit.

One can at this point apply a similar procedure, but expressing "Yvia (175) by taking the parameter
values from (44) and (149), instead of using the 0 value from (147). Following this approach, one gets

Y 1o X gard the transit frequencies yield

%O p& o X
30 p®»w@o

which means only slight deviations are observed by taking the previously mentioned method for

(182)

estimating "Yinstead of using 0 . The relative errors also remain almost unchanged, yielding
Qo ™ XP

q. me (183)
0 O
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To sum up, expression (173) provides an accurate way towards predicting Y, whi ch doesndt af
analytical estimatesfort he transi t f r eqp erbbaseine scenar® is consid&d5This
is so because in this case the Larmor radius is small, thus leading to a low orbit width that accounts for
"Y being given by expression (173) wi t h good accuracy if the Opiarticled
unknown.

Now, analytical results for the ¢ ¢ UTAE from family B can be validated by comparing them to the
corresponding CASTOR-K results. The numerical results for this mode are

1 m™yYthpu

O pd @ hp (184)
30 p&c @1
According to expression (8), the safety-factor associated to this mode is 1 — p8t ¢ the

corresponding rational flux surface being foundati T& o o .W\fier a linear interpolation following (143)
is performed, the equilibrium parameters for this location yield
i Mooyuy
"Y i@ 0T ach
0 T T whpp
Y mowol g
- o yheop
TET ¢ T 18U ¢
As for the CASTOR-K values for the particle orbital properties, one has
@ pHX BT
Q ™ th
0 m8ip@dixm
. P8

The "Yparameter will be determined again by taking the numerical value for 0 from (186).

(185)

(186)

Using the above mentioned values to compute the transit frequencies, one then obtains
O p& @ bp
30 p&chy
which, compared to numerical results (184) yields, relative errors given by
Qg ™R
Qo ™UYB

These errors are again of order T@® b, thus proving very close to the relative errors associated to the

(187)

(188)

analytical orbits, which are of the same order of magnitude. This shows good agreement between the
analytical method followed and the corresponding numerical values when TAEs from the B family are
considered.

Next, in order to check the analytical resonance condition, the values of ¢ and ) must be known.
Considering the ¢ o pTAE from the A family, the value of 1] is given by (36), with the poloidal mode

number beingd@ o @nd the poloidal-harmonic index of interest being a p, since & p is dominant
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in the drift-velocity terms, but only & p accounts for the | -particles driving the TAEs unstable,
according to what has been explained in section I-6. Hence, 1 o gs the value of interest in this work,
corresponding to particles moving in the same direction as the wave with speeds closer to the Alfvén
velocity, as seen in section I-6. This will also be the case for any TAE with a given toroidal mode number
¢ from the A and B families previously mentioned in section I-5, the for i value of interest being 1
p &bysincea panda E.
One has now all information needed to compute an analytical resonance condition except the

normalized mode frequency] , which also needs to be determined, since the zeroth order approximation
1 — is not consistent with the second order in -ganalytical forms for ®Qand § O A consistent

analytical estimate for 7 will be found f ol | owi ng Nyqvi st and Sstandapovds
Sharapov, 2012].
To begin with, it must be noted that in a toroidicity-induced gap there can be two discrete frequency
AEs, their values lying close to the tips of the Alfvén continuum spectrum that can be seen in figure 2.
These two AEs may have their frequency given by 0 p, with 0 being a frequency-related quantity

defined as

0 1 1T TR,

TH > h
¢ -1 =y
at (189)
. Y Y
y Y h
C
ir oh

in which ¥ is the real Shafranov shift (not to be mistaken by the Shafranov shift-related equilibrium
parameter ¥) and i [is a radial coordinate labeling the magnetic flux surfaces with length dimensions. All
other quantities in (189) follow our own notation instead of the one used by Nyqvist and Sharapov.

By inverting the first relation on (189), the mode frequency can be expressed as

71 p OTH (190)

Therefore, analytical values for both 0 p cases can be derived as soon as 7 Hs known. Obtaining T HU
of interest for some specific TAE requires taking the { value for the rational magnetic surface around
which the mode is centered and finding an estimate for the radial derivative of the Shafranov shift at that

location. This is done by computing the Shafranov shift according to (189) using numerical data for the
magnetic flux surfaces, thus obtaining the pairs i FY for each known flux surface "QThen, taking

the "Qand "Q p flux surfaces enclosing the TAE rational flux surface, a reasonable estimate for the

Shafranov shift radial derivative will be given by

Yy y y
yr - . (191)

As a consequence, one is now able to compute all variables needed to obtain] from (190). Apart

from already known geometric parameters, the relevant quantities for the A family ¢ o pTAE are

n %%p&pmpﬁwn (192)
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Computing (190) while using definitions (189) and values (192) then yields
7 mxtfov ph
1 T wo o ph

T8t @ BY

(193)

which means the 0 p mode shall be taken as the TAE of interest, since it accounts for an] value
really close to the numerical normalized frequency from (179). Indeed, taking the last as the value of
reference, the relative error associated with the analytical prediction for the 0 p frequency is only
T® ¢ PAsforthe 0  p case, it corresponds to a different TAE.

The analytical resonance condition for particles interacting with the ¢ o pTAE (A family) can be
obtained at this stage. At first, the resonance condition is written in a slightly different way to the one

having been used in (177) and (178), the whole equation being normalized to] ,

% 00
o e2% 120 1 (194)

Taking a glance at equation (194), one immediately realizes the second and third terms on the left hand
side must be added together to yield p in order to cancel the first term. Computing this sum by using

analytic results (180) and making ¢ ¢ pand 1 o ¢one then obtains

A o} .
‘81'—0 r‘]?— o ¢ Tt o (195)

which leads to an associated relative error of 18t b. This error is greater than those of the transit
frequencies and the modebdés normalized frequeithery due
¢ or r), which are significantly higher than the unity ¢ o %t Although not so accurate as the analytical
estimates for the transit frequencies themselves, the analytic form derived for the resonance condition
can still provide a useful description of the physics involved in the particle-TAE resonance.

The same method can be applied to evaluate the resonance condition involving particles in
resonance with the most unstable TAE from the B family, for which one has ¢ ¢ vand ) ¢ oThe

normalized frequency] can be analytically derived by means of (189) and (190), with the Shafranov
y

shift radial derivative yielding T8t X ¢ thus leading to
1 1™ Yo forv ph
1 T X L form ph

Therefore, the 0 p case matches the one being modelled by CASTOR-K, the corresponding

(196)

analytical frequency being1 T X L .prms accounts for a relative error of ¢& v kaking the numerical
1 from (184) as value of reference, which is greater than the one found for the analytically derived]
whenthe ¢ o PTAE from the A family.

Computing the second and third terms in the resonance condition for particles interacting with the B

family ¢ ¢ UTAE then yields

O 80
T~

: mop Ph w (197)

69



which corresponds to a relative error of about y& b, which is larger than the error associated to the &

o pTAE resonance condition. Despite that, the analytical resonance condition still has a relative error
lower than p 1 pthus allowing an approximate determination of which | -particle orbits resonantly
interact with the TAEs.

5. Resonance lines in the ehe space and e®for particles with e oy for each TAE

The analytical approach derived thus far enables one to obtain analytical resonance lines in the ¢fQ
phase space in order to compare them with the numerical ones from figures 10 and 11. Moreover, since
the highest energy transfer is predicted for | -particles with o& 0 ‘Q it is also interesting to obtain the
value of Qfor particles with @ @ and in resonant interaction with the TAEs. This will provide analytical
predictions for the orbital properties of the most efficient particles at transferring energy to the TAEs,
which can also be compared to numerical data from section | and the zeroth order analytical estimates
fora  p plotted in figure 7.

In order to obtain the resonance lines in the ¢fiQ phase space referring to the particles in resonance
with some specific TAE, the whole resonance condition has to be written starting form (177). Similarly
to what was done in the last subsection, all parameters will be replaced by their corresponding
definitions, the Y parameter being obtained from the magnetic-equilibrium accordingly to (173). In the
end, the transit frequencies must be written in terms of geometric quantities, the equilibrium parameters
and the unknown orbital properties wand Q, all dependencies on wand Q being explicitly shown. One
can then select some TAE of interest, for which the &£ and rj values are known, and find its radial location
i from its safety-factor r] given by (8). After this, the equilibrium parameters can be computed, so that
one gets all numeric values involved in the resonance relation but wand Q

Having concluded the aforementioned steps, the left hand side of equation (177) will be used as a
two-variables function "QafiQ , with "QaHQ 1t standing for the resonance condition. This was done for
modes of both A and B TAE families, the corresponding numerical points in the ofiQ phase space being
plotted for comparison purposes.

As it can be seen in figures 20, 21 and 22, the analytically obtained resonance lines show reasonable
agreement with numerical data for TAEs from the A and B families, since the analytical curves show the
same general behavior exhibited by the points. However, it is quite evident that the analytical resonance
lines are significantly displaced from the numerical points. This shall be related to the limitations
mentioned before of the analytical method followed, mainly the ones concerning estimating the radial

location of the most interacting orbits, as well as estimating the modeé s f r e tpdeedndespite the

errors associated to the transit frequencies beingabout & Pand t he modeds frequency

of order p B the second and third terms in (194) are multiplied by large ¢ o Jt¢ and ) values, thus

causing the significant displacement of the analytical resonance lines with respect to numerical data.
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Figure 20: Analytical resonance line and CASTOR-K numerical points in the ¢fiQ phase space for
fusion-born | particles in resonance with TAEs from the A family. Results for &€ ¢ u(yellow), € o p

(green)and ¢ ¢ dblack) are presented. Only @ @ is considered.

Focusing our analyses on figure 20 for TAEs from the A family, the analytical resonance lines are
seen to be displaced from the numerical dots towards higher values of Q This displacement is smallest
for¢ o pwhichis not surprising since the relative error associated with the overall resonance condition
is only about T P The analytical lines forboth &€ ¢ tand& o GTAEs exhibit larger displacements, but
they are still found to roughly follow numerical dots. Therefore, interesting features on the resonance
lines behavior can be inferred from these analytical curves. For instance, it can be seen that rising the
TAE toroidal mode number brings the resonance lines downwards. The general shape of the Q @
function can be inferred from the analytical resonance condition (177), which can be written in the form

0Q0m 6Qm® 6Q m (198)
where 6 Q,6 Q and 6 Q are made to depend only on Qas long as all other parameters have been
replaced by their corresponding numerical values. Therefore, for a certain value of Q equation (198) will
have either none, one or two solutions, accordingly to the ‘Q value being considered. This means a
parabolic shape is expected for the Q @ function, which agrees with the curves shown in figure 20. One

canalsofindt he par abol aobslocaiedxil msm t o the partwcad.eds
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Figure 21: Analytical resonance lines and CASTOR-K numerical points in the ¢h phase space for

fusion-born| particles in resonance with the € ¢ @TAE from the B family.
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Figure 22: Analytical resonance line in the «fiQ phase space for fusion-born| particles in resonance
with a &€ ¢ UTAE. Numerical data provided by the CASTOR-K code for ¢ ¢ UTAEs from both A

(green) and B (yellow) families is plotted too.

Taking a look at figure 21, which refers to a TAE from the B family, one obtains similar conclusions
while comparing analytical and numerical results. The analytical resonance line exhibits the same
behavior shown by numerical dots and is pretty close to them for low energies, although they separate

when wincreases. The main difference found while comparing with figure 20 is that the resonance line
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lies below the numerical points for the B family TAE, opposite to what happened using numerical data
for the A family. This becomes even more evident by checking figure 22, in which again the analytical
resonance line foran ¢ ¢ UTAE was plotted, this time being compared to numerical data from both A
and B families. The B family dots lie above the A family ones with the analytical curve enclosed between
them, which agrees with the aforementioned behavior. Differences found at numerical results for TAEs
of different families with the same ¢ value relate to their frequencies being different. Their radial structure
is different too, thus resulting in a slightly different location of the orbit that exchanges more energy with
the mode, which therefore constitutes a second factor explaining those differences.

On the other hand, obtaining the Q values for particles on the resonance line with @ @ simply
requires one to take the aforementioned function "QafiQ and replace cwoccurrences with @  p&8) o ¢ p

Then, Qo HQ  mwill yield a single variable equation in Qwhich can be solved for a certain TAE. Doing

this yields
Q ™ wp ¢
Q hér b
0o XE ol (199)
Q mpchp op

0 mixhk odb
in which no differentiation can be made for the A and B families as explained above.

In order to compare these analytically predicted values with the numerically obtained ones, the
energy-exchange distribution is again plotted as a function of Qin figure 23 for the TAEs of family A with
¢ ¢ bo po oand the one from family B with & ¢ v but this time the analytical values of Q at G
corresponding to each of these values of € are plotted as superimposed vertical lines. It can then be
seen that, apart from the ¢ o oTAE, for which the analytically predicted Q of the most interacting
particles is about twice the corresponding numerical value, the analytical estimates show reasonable
agreement with the energy-exchange distribution maxima. Indeed, an error of about ¢ 1 Bs found for
the analytical predictions referringtothe ¢ o pgmode, while the € ¢ UTAE from the A family yields an
even smaller error, around p Tt PThe analytical prediction at zeroth order obtained in section 1-6 for &

p is also depicted, showing how much the analytical method developed here improved the leading
order estimates.

Despite the errors in the analytical predictions of Q being of the order of p 1t bthese results are far
much better than the zeroth order analytical estimates having been presented in section |. Besides that,
they finally show that the main goal was achieved: developing an analytical method allowing reasonable
estimates of the orbit properties for the most efficient particles at transferring energy to the TAE. Indeed,
these rough analytical estimates confirm that the highest energy transfer in the context of | particle-TAE
interactions happens for particles with low Q namely Q 1@& for the ITER scenario under consideration.
What is more, the strong dependence of the Qvalues on £ has been obtained by means of this analytical
study too, since (199) clearly show that decreasing the toroidal mode number ¢ increases the Qvalue

of interest.
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Figure 23: Energy-exchange distribution as a function of Qfor TAEs from families A and B. Vertical lines

corresponding to the values of Q listed in (199) are superimposed, as well as the Q & manalytical
prediction at zeroth order for & p (purple).
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V - Conclusion

To sum up, in this work, breakthroughs in distinct topics were achieved. Firstly, a high-accuracy
analytical local-equilibrium model was obtained, with relative errors around 18t 1T p Wwhen compared to
numerical data, thus providing a useful tool to be used in further analytic studies requiring easily
workable local-equilibrium models. This represents an innovation comparing to standardly used Miller-
based local-equilibrium models.

Secondly, an analytical form for passing-particle orbits was derived with a relative error of about
T b, in the region of interest (& 1 @), as well as analytical forms for their transit frequencies,
with associated errors of the same order. This is also an important milestone, since analytical orbits
obtained in the past were derived assuming much simpler magnetic-equilibrium models, thus providing
less accurate results. For instance, Wong et al [Wong et al, 1995] obtained phase-space trajectories of
energetic particles considering circular magnetic-equilibrium, neglecting the elongation of flux surfaces,
which appears at leading order in the analytical orbit derived in this work.

The| -particl eds t rweresalsotanafyticalygobtaimed, the orresponding results being

shown in subsection 1V-4. While comparing analytical and numerical results for the transit frequencies

@&and & Q'the errors are of order of T b This result validates the analytical expressions for the transit
frequencies in (177) that in turn provide a useful tool to benchmark gyrocenter-following codes like
CASTOR-K.

Finally, these results were used to obtain a consistent analytic form for the resonance condition
concerning interaction between fast fusion-born | -particles and the most unstable TAEs observed for
I T E R also6 baseline scenario, the corresponding relative errors lying between p band p 1t PAlthough
not enough for accurate predictions to be made, this constitutes a major breakthrough taking the state
of the art on the subject as a starting point.

As mentioned in section I-5, one of the most recent analytical studies on it was the one conducted
by Pinches et al, in which the most unstable TAEs were concluded to lie inthe i T region. These
results were somehow misleading because particles traveling at the Alfvén speed were the ones
expected to be in resonance with the TAEs, thus being regarded as the main responsible ones for driving
them unstable. Indeed, as it was shown in section I-6, the | -particles that most efficiently exchange
energy with the TAEs are the ones with energies close to the birth energy, thus moving with about twice
the Alfvén speed. The zeroth order estimates are also not accurate enough, since one once again falls
inthe e U situation. Moreover, if @ « is imposed on zeroth order estimates for the resonance
condition, one will obtain Q T 1 which does not agree with numerical data from CASTOR-K.
Therefore, the analytical form for the resonance condition is the first analytical approach providing
physically meaningful estimates for the orbit properties of the particles in resonance with the most
unstable TAEs, thus allowing successful, albeit approximate, analytical predictions for the behavior of
the resonance lines in the ofiQ plane. It is also the first time to date that an analytical estimate for the
orbit parameters of the most interacting particles in reasonable agreement with humerical results is
achieved.

On the other hand, two steps must be taken to improve predictions based on the analytical resonance

lines presented in IV-5. First, one must find a more accurate way of assessing the radial location of the
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particle orbit that more efficiently exchanges ener gy wi th the mode. Thi
structure shall be taken into account, instead of simply assuming that these particles drift around the
TAE rational surface established by ). Secondly, the estimate of the TAE's frequency must be improved,
because the errors associated to] also come up as a relevant source of errors affecting the analytical
resonance condition. Therefore, further investigation is needed on the analytical derivation of] for more
accurate results to be obtained.

Even though a further development in key issues would be needed in order to achieve accurate
analytic predictions, the method derived here reveals the generic behavior of the resonance lines in the

ofiQ phase space. Furthermore, by presenting analytic forms for the transit frequencies in (177), the

terms governing the resonance relation can be found and physically interpreted, thus providing some
clues towards the key factors determining which of the particle orbits are in resonance with TAEs.

Therefore, the initial objectives have been accomplished, despite further analytical investigation on
the radial location of the most significant orbits and TAE frequency being needed for the analytical

predictions to attain the desired accuracy levels.
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