
Practical use of Partially Homomorphic
Cryptography

Eugenio A. Silva
Instituto Superior Tecnico, Faculdade de Direito, Escola Naval

Abstract—Researchers and practitioners for decades assumed
that encrypted data cannot be processed. However, recently with
the emergence of cloud computing and Gentry’s work on homo-
morphic encryption a great interest appeared on the use of partial
homomorphic functions to process encrypted data. The paper
presents MorphicLib, a new partial homomorphic cryptography
library written in Java that can be used to implement a wide-range
of applications. The paper shows the usefulness of the library
with two services. HomomorphicSpace is coordination service, that
is a tuple space that stores encrypted tuples but still supports
operations like returning tuples with values withing a certain
range. HomoFuse is a remote file system for a Linux machine,
that keeps cloud data and metadata encrypted with cryptographic
schemes with homomorphic properties. Thanks to these properties
it is possible to perform a set of file search operations, at
server side, without any prior decoding. The paper presents an
experimental evaluation of the library, the coordination service,
and the remote filesystem service. We observed a negligible
overhead when homomorphic operations were used.

I. INTRODUCTION

Generally, it is necessary to decrypt the data before perform-
ing any operations over that data. This problem becomes spe-
cially important when large data resides in a public cloud [1],
[20]. In this case, there is a dilemma between two alternatives:
(1) either the data is decrypted in the server-side (in the cloud),
which poses security issues, namely the need to pass the key to
the server and to have the information exposed to insider threats
in the cloud [5], [25] at least during the operation; or (2) the data
is decrypted in the client-side, which involves downloading the
data from the cloud (typically expensive and slow) and prevents
using the computation power of the cloud.

A good solution to this dilemma would be to perform the
desired operations directly on the encrypted data, at the server-
side, where it is stored. The term homomorphic encryption
designates forms of encryption that allow operations to be per-
formed over encrypted data, without decrypting it. Homomor-
phic encryption became popular with Gentry’s work [13], which
was coincident with the emergence of cloud computing. Gen-
try’s scheme provides fully homomorphic encryption (FHE), so
it allows performing arbitrary computation on encrypted data.
Other FHE schemes were presented in the following years [28],
[29]. Although in theory FHE solves the problem of computing
encrypted data, the performance of these schemes is too poor
for practical applications [18].

For that reason, much effort has been placed in developing
and using partial homomorphic encryption (PHE) schemes
[3], [4], [10], [9], [11], [19], [24], [23]. PHE schemes allow
performing some computation over encrypted data, but not
arbitrary computation like FHE. CryptDB is an important

step towards the deployment of PHE in real systems [24].
CryptDB is a relational database management system that stores
encrypted data and allows doing SQL queries. The source code
is available in C++.

This paper presents MorphicLib, a new partial homomorphic
cryptography library that can be used to implement a wide-
range of applications. The library contains functions (normally)
executed at the client-side and functions for the server-side. For
the client-side there is the encryption scheme, i.e., functions
for encryption, decryption, and key generation. For the server-
side there are homomorphic equivalent operations (addition,
multiplication, comparison, etc.). The library was programmed
in Java in order to ensure portability, i.e., that it can be executed
in different platforms, both client and server-side. Moreover,
Java is arguably the most popular general purpose programming
language today [26], with a large set of APIs, and a strong
programming community.

The paper shows the usefulness of the library with two
services. The first one, that is interesting in its own right, is
the HomomorphicSpace coordination service which is based
on DepSpace [2], [7]. This is a tuple space, i.e., a coordination
service that follows Linda’s associative memory paradigm [12].
DepSpace is replicated, so it can tolerate arbitrary (Byzantine)
faults in some of its replicas.

HomomorphicSpace is an extension of DepSpace with homo-
morphic encryption (MorphicLib), so that data (tuples) can be
stored encrypted at the servers. DepSpace’s commands to read
and retrieve tuples were extended with operators for inequality,
less/greater relations, and keyword search, all over encrypted
data. Moreover, HomomorphicSpace supports addition and
multiplication of tuples in the server. All these operations are
done without decrypting the data.

The second application we have built, is a remote filesystem.
The file system uses as the physical repository, a set of files
with fully encrypted names, data and metadata, residing in the
file space of a webserver. This repository is a flat folder, without
any structure denouncing the hierarchy of the original folders.
From the user side, it is seen as a tree of normal files, with the
folder hierarchy defined by the user, correct metadata, and with
the content unencrypted. All encryption operations, and cipher
key management is done on the client side, but transparent to
the user. Moreover, the heavy search operations are done on the
server side, without any decryption, thanks to the homomorphic
capabilities of the cryptographic schemes used.

The paper presents an experimental evaluation of the library
and the two services. We observed no significant overhead for
the encrypted operations.



The main contributions of the paper are: (1) MorphicLib,
a library of PHE functions and operations in Java; (2) Ho-
momorphicSpace, a tuple space that leverages the library to
support coordination of distributed applications having the data
always encrypted at the servers; (3) HomoFuse, a remote file
system capable of executing complex searches on encrypted
files, without decrypt them.

II. MORPHICLIB LIBRARY

MorphicLib is a novel library of partial homomorphic cryp-
tographic functions written in Java and providing a Java API.
MorphicLib was not developed from scratch, but based on
existing source code whenever possible. The objective was both
to simplify the task and to avoid introducing bugs, which tend
to appear due to the complexity of cryptographic code. This
library can be used both at the client-side to encrypt and decrypt
data, and at the server-side to do operations over encrypted data.

The code of the library is organized in classes, one per
encryption scheme. Each scheme has four kinds of functions
(or methods):

• key generation function, typically used at client-side;
• encryption function, typically used at client-side;
• decryption function, typically used at client-side;
• homomorphic operation functions, which allow doing op-

erations over encrypted data, typically used at the server-
side.

Information about the properties of the PHE algorithm, the
operations supported, and the classes are in Table I.

TABLE I
MORPHICLIB’S MAIN CLASSES

Property Homomorphic
Operations

Class Input Data
Types

Random None (strong
cryptanalisys
resistance)

HomoRand Strings, Byte
Arrays

Deterministic Equality an in-
equality compar-
isons

HomoDet Strings, Byte
Arrays

Searchable Keyword search
in text

HomoSearch Strings

Order preserving Less, greater,
equality
comparisons

HomoOpeInt 32 bit Inte-
gers

Sum Add encrypted
values

HomoAdd BigInteger,
String

Multiplication Multiply
encrypted values

HomoMult BigInteger,
String

a) Random – Class HomoRand: This scheme, is called
Random because every time that a given value is encrypted, it
gives a different cryptogram. In fact, it is not an homomorphic
encryption system, but can be used in a general homomorphic
aware application precisely when no homomorphic property
is required for certain data. Random scheme is more secure
than any of the homomorphic encryption schemes as it is not
vulnerable to chosen plaintext attacks [17].

For this scheme we have used the Advanced Encryption Stan-
dard (AES) implementation of the javax.crypto package
with CBC mode and PKCS #5 padding. This algorithm is rec-
ommended for legacy and future use by ENISA [8]. What gives

this scheme the randomness property (same cleartext producing
different ciphertexts) is the use of a random Initialization Vector
(IV).

b) Deterministic – Class HomoDet: In order to make
possible equality comparison operations we need deterministic
encryption, i.e., encryption in which the same plaintext origi-
nates always the same ciphertext. The deterministic scheme is
essentially the same as the random encryption scheme, except
that the IV takes a fixed value. In order to avoid that plaintexts
with the same beginning have the same beginning on the
correspondent ciphertext, we make a second encryption with
the blocks in the reverse order. This form of encryption is
weaker than the random scheme, but necessary for equality
and inequality predicates [8], [24]. Needless to say, in this
encryption system an attacker will be able to notice that two
equal ciphertexts correspond to the same plaintext. Otherwise,
this encryption scheme is as strong as AES encryption.

c) Searchable – Class HomoSearch: The searchable
scheme aims to produce a ciphertext that allows searching for
words within it, without having to decrypt it. The trivial option
would be to encrypt the text word by word with a deterministic
encryption system. However, this approach would provide too
much information to an attacker: frequency of words, position
of the words in the text, and size of the words. To avoid
those drawbacks we have built a scheme closely following
the solution in CryptDB [24]. Encryption for this scheme is
implemented as the following sequence of steps:

1) it builds a list of unique words found in the text (hides
the frequency);

2) it encrypts each word with deterministic encryption;
3) it obtains a SHA 256 (also recommended by ENISA [8])

hash of each encrypted word (hides the size of words);
4) it orders the obtained list randomly (hides the position in

the text)
5) the text to be searched is encrypted with the random

scheme and the list of hashes is attached.
Searching for keywords in text consists in:
• the client encrypts and hashes the keyword(s) to be

searched;
• the server searches for these hashes in the list and returns

the text if there is a match.
To decrypt the text the list of hashes is not necessary.
The literature has several different searchable schemes, being

this subject one of most dynamic fields in homomorphic
encryption research [4], [9]. One of the innovative ideas in this
area is image search [10].

d) Order Preserving – Class HomoOpeInt: Order pre-
serving encryption aims to allow comparisons of encrypted
values such as greater than, less than, and greater or equal
to. We implemented this scheme by supporting the encryp-
tion of 32-bit signed integers (Java’s int primitive type).
Encryption maps each value into a positive number in the
range [0, MaxLong/2]. The algorithm implemented was the
one described by Boldyreva et al. [3]. The implementation was
based on CryptDB’s C++ implementation obtained in GitHub
[22]. A challenge of the implementation was to find a reverse



hypergeometric pseudo-random variate generator method, as
CryptDB’s code was too complex. Instead we used a Java
implementation of the algorithm described in [16], available
at GitHub [6].

e) Sum – Class HomoAdd: As partial homomorphic
scheme for the sum operation, we used the Paillier cryptosystem
[17]. In order to be able to work with numbers as large as
necessary, we decided to use as inputs big integers, namely
Java’s BigInteger class. For the implementation of Paillier
we have adapted the Java code authored by Hassan [14].

The Paillier cryptosystem is an asymmetric scheme with the
following two keys: public key – the pair (n, g); private key –
the pair (λ, µ). The parameters n, g, λ, and µ are generated
from two big prime numbers p and q. The parameter n = p.q,
is part of the public key. The security of the system is based on
the fact that an attacker cannot find p and q factorizing n. This
is the same problem used by RSA, so the length of n, two times
the length of p and q, should follow the recommendations for
RSA, and have at least 2048 bits [8].

This scheme also supports multiplication of encrypted values
by constants. For that purpose, we raise the encrypted value to
the constant (for a sufficiently large n):

Enc(a+ b mod n) = Enc(a).Enc(b)mod n2

Enc(k.mmod n) = Enc(m)k mod n2

Note that in PHE the operations performed with the en-
crypted data do not have to be the same that would be executed
with plaintext. Those operations just need to produce the
desired result, i.e., the result obtained must be the encryption
of the result that would be obtained executing the original
operation over the plaintext. This is the case with Paillier, in
which to obtain the encryption of a sum, a product is made.

f) Multiplication – Class HomoMult: For multiplication
we used RSA, again with big integers.

We used the standard Java functions in javax.crypto for
encryption, decryption, and key generation. No padding is used
to guarantee the homomorphic property. We implemented en-
cryption functions accepting inputs of the types BigInteger
or String (containing an integer).

Two aspects should be noted:

1) in this way of using RSA both keys must be kept secret,
otherwise chosen plaintext attacks would be possible;

2) the partial homomorphism for multiplication is valid for
the modular multiplication, being the module the same
used in the encryption scheme. As the RSA keys have
more than one thousand bits, that means that we can
confortably work with 32 bit integers or even 64 bit
long integers. Actually we can work with BigIntegers of
hundreds of bits provided that the multiplications do not
exceed the value of the module used in the encryption.

III. HOMOMORPHICSPACE COORDINATION SERVICE

This section presents HomomorphicSpace, a coordination
service that leverages MorphicLib to handle encrypted data at
the server. HomomorphicSpace is an extension of DepSpace,
so we start by presenting the latter.

Fig. 1. DepSpace architecture with 4 server replicas

A. DepSpace

DepSpace (Dependable Tuple Space) is a fault and intrusion-
tolerant tuple space [2]. Architecturally it is client-server system
implemented in Java (see Figure 1). The server-side is replicated
in order to tolerate arbitrary faults. The client-side is a library
that can be called by applications that use the service. Clients
communicate with the servers using a Byzantine fault-tolerant
total order broadcast protocol called BFT-Smart. The most
recent version supports extensions to the service [7]. A stable
prototype is available online.1

The service provides the abstraction of tuple spaces. A tuple
space can be understood as a shared memory that stores tuples,
i.e., sequences of fields (data items) such as (1, 2, a, hi). Tuples
are accessed using templates. Templates are special tuples
in which some fields have values and others have undefined
values, e.g., wildcards meaning any value (“*”). A template
matches any tuple of the space that has the same number of
fields, in which the values in the same position are identical,
and the undefined values match in some sense. For example,
the template (1, *, a, *), matches the tuples (1, 2, a, hi) and (1,
7, a, 14), but neither (1, 2, b, 4) nor (1, 2, a, hi, 5).

DepSpace supports a set of commands, issued by clients
and executed by the servers. Here we consider the following
commands:

• out tuple – inserts a tuple in the space;
• inp template – reads and removes from the space a tuple

that matches the template;
• rdp template – reads but does not remove from the space

a tuple that matches the template;
• inAll template – reads and removes from the space all

tuples that match the template;
• rdAll template – reads but does not remove from the

space all tuples that match the template.
DepSpace does not support homomorphic operations.

B. Threat Model

The threat model we consider for HomomorphicSpace is
similar to the threat model for DepSpace except for one, crucial
difference: we consider that any server may be adversarial and
try to read the content of the tuples it stores. We consider
that all tuples of their fields for which confidentiality has to
be preserved are encrypted using homomorphic encryption,
preventing malicious servers from doing such an attack.

1https://github.com/bft-smart/depspace



Similarly to DepSpace, adversaries may compromise up to
f out of 3f +1 servers and stop them or modify their behavior
arbitrarily. This is tolerated using replication and the BFT-Smart
protocol. Network messages may also be tampered with by the
adversary, but the system uses this using secure channels.

C. Commands

HomomorphicSpace extends DepSpace to allow commands
over tuples with encrypted data items. More precisely in com-
parison with DepSpace, HomomorphicSpace:

• supports the original match operations over encrypted data;
• extend matching beyond the equality and wildcards with

more complex matches, i.e., inequality, order comparisons
(lower, greater), and keyword presence in a text, all over
encrypted data;

• allow addition and multiplication off encrypted fields.
Besides values and wildcards (“*”), HomomorphicSpace’s

templates can include the following fields:
• % word1. . . wordn – matches a textual field containing all

the words indicated;
• > val – matches a numeric field containing a value greater

than val;
• >= val – matches a numeric field containing a value

greater or equal to val;
• < val – matches a numeric field containing a value lower

than val;
• <= val – matches a numeric field containing a value lower

or equal to val.
HomomorphicSpace adds three commands to those provided

by DepSpace (Section III-A).
The first is crypt id template and aims to define a tuple

encryption type. The command takes as input an identifier (id)
for the type it will create, and a template with the homomorphic
operation desired for each of the fields, which will determine
the homomorphic property. For example, if the template con-
tains for a given field the operation “=”, the system infers that
the encryption to be used for that field is deterministic, which
is the strongest that allows that operation. If no operation is
indicated, the field will not be encrypted.

The second command is rdSum template. This command
starts by collecting all the tuples that match the template
similarly to rdAll, then sums the (encrypted) fields with +
in the template. The function returns a single tuple with the
result.

The third command is rdProd template, which works
similarly to rdSum but does multiplication instead of sum.

D. Architecture and Functioning

Architecturally the HomomorphicSpace is similar to
DepSpace, with a client-side and a server-side. Figure 2 rep-
resents the system with 4 replicas, i.e., with f = 1. From the
confidentiality point of view, the server-side is untrusted and
the client-side trusted.

The server-side of the system is mostly DepSpace code
with the server-side of the MorphicLib and with extensions to
process the homomorphic operations. The client-side includes
MorphicLib’s and DepSpace’s client-side libraries. The main

Fig. 2. HomomorphicSpace architecture

functions of the client is to encrypt tuples and send them to the
tuple space, and to decrypt them before they are delivered to
the application. When a tuple is encrypted, the encryption keys
are stored in a key repository (a folder with one file per key).
Next we describe both sides in more detail.

a) Client side: When the crypt command is issued, the
library generates keys for every field of the tuple for which
homomorphic properties are desired. These keys are stored in
the key repository, associated with the id that identifies the tuple
encryption type.

All the other commands (out, inp, etc.) include the tuple
type id, that the library uses to retrieve the corresponding keys
from the repository. If the operation indicated in a field is
not compatible with the encryption defined with the crypt
command, the command returns an error.

The client uses the DepSpace client library to send to the
servers the command and the fields. If the command is an out,
the fields are encrypted with the scheme defined in the tuple
encryption type and the keys previously stored. If the command
involves reading tuples it contains the operation and encrypted
values. Note that each field of each id has its own key (or key
pair for RSA), but the same field for the same id is always
encrypted with the same key.

When the client receives a reply from the servers, it does
the opposite, i.e., it decrypts the encrypted fields using the
corresponding schemes and keys.

b) Server side: The server-side handles different com-
mands in different ways. The out command is executed the
same way as in DepSpace. The fields may be encrypted but
they come encrypted from the client so the tuple is stored
unmodified. The inp and rdp commands were modified using
DepSpace’s extension mechanism in order to support the =,
<>, >, >=, <, <=, and text search operations over encrypted
data, returning one of the matching tuples. The rdall and
inall commands work similarly, as rdp and inp, but return
all matching tuples. The rdSum and rdProd commands are
implemented as a modification of the original rdAll command
that returns a single tuple with the relevant fields respectively
added or multiplied.

IV. HOMOFUSE FILE SYSTEM

This chapter presents HomoFuse, a cloud file system that
leverages the functions provided by the MorphicLib library.
HomoFuse provides a POSIX-like interface, so it can be used



in Linux similarly to other file systems. The files are stored
encrypted in a server, accessed using a web interface.

A. Threat Model

For this service it is considered that the server side data can
be read or altered by an attacker.

The system does not address the problem of data loss,
what could be achieved by other methods, like redundancy.
The system also do not address client side security, which is
considered a trustworthy system.

The system guarantees that, if an attacker reads the data in
the server side, he will not obtain any information about the
content information, its structure, file and folder names and date
of creation and modification.

If the attacker manages to get write or update privileges, he
can not create understandable tampered information: meaning-
ful files inserted correctly in a folder.

B. Design

The objective is to provide a remote file system with the
following properties:

1) The server must store all the files in a standard POSIX
file system where:

a) The file content shall not be disclosed;
b) The file name must be encrypted;
c) Nothing should be revealed, on server-side, about

the files modification date;
d) The folder structure shall not be disclosed

2) The server must present to the outside world a REST
interface, what allows the use of a standard web server
and HTTP or HTTPS;

3) The server cannot access to any key;
4) The communication between the client and the server can

use a secure channel (HTTPS), including with client side
authentication;

5) At client side, the file system must be mounted with a
mount Linux command, being visible to the user as an
operating system unencrypted folder;

6) It should be possible to list all files created on a certain
date range, and the selection of these files should be made
on the server side;

7) It should be possible to list all files containing a particular
keyword, and the selection of these files should be made
on the server side.

The necessary homomorphic properties to achieve these goals
are:

• determinist - to search an encrypted file name;
• order preserving - to search for date range;
• searchable - to search text by keyword.
In addition to the homomorphic encryption, random encryp-

tion is used to encrypt whenever the data just needs to be hiden,
without the need to perform any operation on them, at the server
side.

The basic architecture for the implementation of the system,
shown in Figure 3, has very simple requirements: The client
side is composed by a Linux machine running Java. The server

side is a web server running PHP and communicating over
the HTTP or HTTPS protocol. This is a configuration almost
universally available in common webhosting services,

Fig. 3. Basic Architecture of HomoFuse

C. Implementation

The implementation of the client side is based on the FUSE
library, specifically on its implementation in Java, jnr-fuse [27].

The FUSE platform, is an interface for programs that run
in userspace of a Linux system, and can export a file system
to the kernel. FUSE provides a POSIX interface, which gives
it great potential as it allows to mount the file system as if
it were a normal file system. It was originally written in C++
by Tejun Heo and has since been at a constant evolution with
many contributions. The code is available on GitHub [15].

jnr-fuse is an implementation of Java, using Java Native
Runtime (JNR), written by Sergey Tselovalnikov, and available
on GitHub [27]. The Java Runtime Native (JNR) is a Java API
to integrate native libraries and memory.

A FUSE based project has three main components:
1) the interface module to the Linux kernel;
2) the library that can be invoked by a program running in

userspace without any privilege;
3) the implementation of the functions to be called by the

kernel. Those functions are intended to be programmed
by the final implementor. This is where we have worked.

In this thesis we name virtual file system the folder as viewed
by the user, and real file system the files as actually stored on
disk on the server file system.

In our implementation we have created a Java class, Ho-
moFuse, which extends the class FuseStubFS of the jnr-fuse
library: public class HomoFuse extends FuseStubFS

The main method of the class is very simple. It just creates
an object of itself and invokes the mount method, to which it
passes the mount point.

When the system is initialized (in the HomoFuse class
constructor) it checks if a file with the cryptographic keys
for the file system already exists. If not, this file is created
containing all the keys, of all the encryption schemes necessary
to the system. The key generation methods of the MorphicLib
library are used. From there on, these keys are always used,
in order to maintain the consistency of the encryption and
decryption operations.

The next step is to implement the relevant methods invoked
by the kernel. In our case we have implemented (overriding)



the following methods: getattr(); mkdir(); readdir(); create();
write(); read(); rmdir(); unlink().

This set of overrided methods allows to present to the
operating system a virtual file structure in a transparent way.
The user can create, modify or read the files as if they contained
no encrypted information, using the normal operating system
primitives.

All encryption operations, as well as decryptions and folder
structure management, are made without the user noticing the
complexity behind. On the other hand, at the server side, there
is a set of files with names and contents unreadable. In no case
is made any encryption or decryption operation at the server
side. No key is sent to the server.

The server repository is a flat folder without any hierarchical
structure, where there are two types of files:

1) files that represent folders on the virtual file system,
including one for the root folder;

2) files that represent files on the virtual file system.

The name of the files that represent folders consists of
the letter d, followed by a sha-256 hash of the deterministic
encryption of the full pathname.

The name of the files that represent files consists of the letter
f, followed by a sha-256 hash of the deterministic encryption
of the full pathname.

Note that the use of deterministic encryption allows one to
search files by name, despite this information being encrypted
at the server. The sha-256, in turn, ensures that the file names
(encoding the entire pathname) are not too long, and are
independent of the length of the actual pathname.

Each of these files of the server side, representing folders
or files of the virtual file system, contains at the begining one
metadata line, with the following content:

1) The original name of the file or the folder, encrypted with
the random encryption scheme of the Library;

2) The user ID and the group ID of the file or folder
owner, encrypted with the deterministic scheme. With this
scheme, we can look by file or folder owner at the server
side, passing to it the user and group ID;

3) The creation date, counted as the number of days after
January first of 1970. The number is encrypted with the
Order Preserving Encryption scheme, allowing search by
date range at server side.

4) The second inside the day, is also encrypted with an Order
Preserving Encryption.

In addition to the metadata line, files that represent folders
contain a line with the name of each file or subfolder inside it.
These names are encrypted with a random encryption. However
the key and the initial vector used is not the same as the one
used to encrypt the name in the file or subfolder metadata line.
Thus, it is not possible to know the contents of the folders.

In addition to the metadata line, the files that represent
files, include the net content (the payload), encrypted with the
scheme Searchable. The choice of this type of encryption will
allow us to search, on the server side, the files containing certain
keywords.

The manipulation of the physical folder on the server, is made
by a single PHP script that handles HTTP requests using the
POST method of this protocol.

The invocation of the script is performed by an Apache
web server, without any pluggin or additional functionality
beyond the PHP 5 execution capability. Thus, another type
of web server could be used, provided it can run PHP 5, for
example, NGINX (https://www.nginx.com/ ), or Microsoft IIS
(http://www.iis.net/ ). According to a recent survey, [21] these
three platforms equip about 75 % of the active sites.

At client side, the application HomoFuse after mounting the
virtual file system, checks whether the file corresponding to
the root folder is already created in the server. If not, it creates
one. This is the only initialization that is made on the server
for a new file system. In the case of a new file system, the keys
required for encryption are generated, and are stored in a file
on the client. This is the only initialization at the client side.
Thus, the creation of a new file system does not need any user
action.

From there on, the HomoFuse client application waits for an
invocation from the operating system. That invocation is made
through one of the overridden methods listed above.

In order to obtain a use case with greater use of homomorphic
encrypton schemes, we have created two special cases:

• File Search, with creation date between two dates;
• File Search of files containing a given word.

The searches are done using the command ” ls’ on pseudo-
folders, as explained bellow:

a) Search by date -: The files searched by dates can be
listed with the following commands:

• ls − options date Y Y Y YMMDD - Lists all files
created between the date indicated and the present;

• ls − options date Y Y Y YMMDD Y Y Y YMMDD
Lists all files created between the two dates indicated.

The pattern is detected by the function readdir, which
encrypts with an OPE scheme the date or the dates indicated.

As the date of file creation is contained in the line of
metadata, encrypted with a OPE scheme, the server can select
the desired files without any decoding.

b) Search keywords -: In this case one needs to give a
command: ls − options word keyword

The pattern is detected by the function readdir. The word
given is encrypted in the same way that the words are encrypted
by searchable encryption scheme (deterministic encryption fol-
lowed by an hash), and is sent to the server for this to search.

As the file contents are encrypted with searchable encryption,
which contains each distinct word encrypted in the same way,
the server can select the files that contain the word, without
requiring any decryption.

Figure 4 shows a folder tree of a virtual file system, obtained
with the tree command.



Fig. 4. Virtual File System

Figure 5 shows the corresponding folder list on the server.

Fig. 5. Real Files on the Server

Note that the names of the actual files on the server are
unintelligible and that the creation date is always January 1,
1990.

A file whose content is clear on the virtual file system as
shown in the Figure 6 corresponds, on the server, to the content
shown on Figure 7.

Fig. 6. Contents of a File in the Virtual File System

Fig. 7. Content of a File on the Server

As shown, the observation of the server content, discloses vir-
tually no information about the virtual file system represented.

V. EXPERIMENTAL EVALUATION

We did a set of experiments to evaluate the performance
of both MorphicLib and HomomorphicSpace. The experiments
were executed in two personal computers. The first had an In-
tel(R) Core(TM) i7-3537U CPU @ 2.00 GHz, 4 GB RAM, and
Windows 8.1 (64 bits). The second had an Intel(R) Core(TM)2
Duo CPU U9400 @ 1.40 GHz, 3,5 GB RAM, and Ubuntu
15.10 (64 bits). The Linux machine is 5 years older than the
Windows machine, so it has worse performance. The software
was executed using Java 1.8 with Oracle JDK in the Windows
Machine and OpenJDK in the Linux Machine. The 2 machines
were connected by an IEEE 802.11b/g/n switch (up to 54
Mbps).

A. MorphicLib Library Evaluation
For each method of the library tested, we obtained the

system time using Java’s System.currentTimeMillis
method, just before and immediately after the call to the code
to be measured, then we subtracted both. As the granularity
of that method is 1 millisecond and most of the operations
have a shorter duration, we have executed many (n) operations
between readings of time, in order to avoid rounding errors.

Let us compare the values obtained for a single
encryption/decryption with all schemes in the Linux machine
(see Table II). Clearly the slowest scheme is Paillier (sum),
with times of hundreds of milliseconds. The rest of the times
are all 4 orders of magnitude better except for decryption
of the multiplication scheme (2 orders) and the encryption
for the searchable scheme (3 orders). This means that for an
implementation like the HomomorphicSpace, the insertion and
retrieval of summable tuples will be much slower than other
operations.

TABLE II
ENCRYPTION/DECRYPTION EXECUTION TIMES FOR A SINGLE OPERATION

IN THE LINUX MACHINE

Encryption
Scheme

Encryption
Time
(ms)

Decryption
Time
(ms)

Random 0.017 0.018
Deterministic 0.038 0.037
Order Preserving 0.016 0.012
Searchable 0.633 0.024
Summable 222 207
Multiplicable 0.169 3

Table III shows the time for individual homomorphic opera-
tions. Text searches and comparisons are the faster. Sums and
multiplications are orders of magnitude slower. Anyway those
times can be acceptable by much applications.

TABLE III
HOMOMORPHIC OPERATION EXECUTION TIMES FOR A SINGLE OPERATION

IN THE LINUX MACHINE

Encryption
Scheme Operation Time

(ms)
Deterministic, order preserving Exact match 0.003
Order preserving Lesser, greater <0.001
Searchable Word search 0.003
Summable Sum 0.132
Summable Subtraction 3.233
Summable Multiply by constant 0.518
Multiplicable Multiplication 3.091

B. HomomorphicSpace Evaluation
To deploy the architecture depicted in Figure 2, we used

the Linux machine to run the client (left-hand side of the
figure), and the Windows machine to run the servers (right-
hand side of the figure). Although we used a single machine
for the server-side, it contained 4 server replicas. The client-
side application was a command line user interface that allows
inserting commands to be executed by the tuple space, for
example: out (a,b,1,2). The application also includes
special commands to execute and time sequences of insert and
query commands for performance evaluation purposes.



The performance of a tuple space, especially of the read
and retrieval commands, depends strongly on the load of the
space (the commands are slower if the tuple space has many
tuples, as the space has to be searched). As our focus is on the
homomorpic operations, we started all the experiments with an
empty tuple space. For each experiment we explain how it was
loaded.

a) Performance of tuple exact matching with encrypted
fields: In order to evaluate the performance of exact matching
(equality) with encrypted fields for the relevant encryption
schemes (and no encryption), we made the following test:

1) insert (out) 100 tuples with a single field in the tuple
space, which are encrypted in the cases of Determinist
and Order Preserving encryptions;

2) execute an exact match with rdp value and decrypt
the tuple retrieved (if encrypted);

3) retrieve all tuples from the space with inAll * and
decrypt the 100 tuples (if encrypted).

The tests made were all exact match (equality), independently
of the encryption scheme or no encryption used (see Step 2
above). However, the performance for inequalities (different,
greater than, greater or equal to, . . . ) would be very similar as
all of them are simple byte comparisons. Each test was executed
30 times and the times for the three steps were measured. The
results are in Table IV.

A first conclusion from the table is that encryption has no
impact in the match operations, as the comparisons without
encryption and with encryption take very similar times (column
for command rdp).

A second conclusion is that the use of encryption did
not cause observable delay in the experiments. This result
is consistent with the values obtained for the library, with
encryption/decryption times that are fractions of a millisecond.
Furthermore, the encryption/decryption load is at the client, not
at the server side, so it has no impact in the capacity of the
servers to process requests.

TABLE IV
EXACT MATCH EXECUTION TIMES (MS)

Encryption used out 100 tuples rdp 1 tuple inAll
No encryption 3659 ± 465 30 ± 5 235 ± 39
Deterministic 3747 ± 724 35 ± 5 342 ± 62
Order Preserving 3771 ± 580 32 ± 8 312 ± 75

b) Performance of the sum and multiplication operations:
The test for sum started with the insertion of 10 tuples with a
single field. For each of the tuples the field contained the value
1000, 2000, . . . , 10000, encrypted with the Paillier scheme.
The performance test itself consisted in executing the command
rdSum *, which sums all the (encrypted) tuples and returns
a single tuple with the encrypted result. This value (55000) is
then decrypted.

The test was executed 10 times and the average time was 391
milliseconds, with a standard deviation of 27 milliseconds. This
confirms that addition is much slower than other operations.
This kind of times may be acceptable in some applications with
a small number of commands, but probably not in a situation
with thousands of commands.

The test for the multiplication operation was simillar, except
that the encryption scheme used was RSA and the command
executed rdProd *. The result was also different (36288 ×
1032). The average time was 97 milliseconds, with a standard
deviation of 19 milliseconds.

c) Performance of text search: The performance of text
search was evaluated with the following experiment:

1) generate a random string containing a variable number of
distinct 5-character words separated by spaces;

2) insert (out) 10 tuples with this string;
3) insert one tuple with the same string with the word

“hello” appended;
4) send 10 rdp commands searching for the “hello” word;
5) calculate the average execution time of the 10 rdp

commands.
The number of distinct 5-character words was varied from

100 to 1000 in steps of 100. The process was repeated 10 times.
The average time varied from 332 ms for 100 words to 749 ms
for 1000 words, with an average of 554 ms. Figure 8 shows a
graph of the variation. Note that when the number of distinct
words is multiplied by 10, the execution time is multiplied only
by a factor of 2.1. Note also that the search time does not vary
with the number of identical words, as only the distinct words
are inserted in the encrypted search string.

Fig. 8. Search execution time versus number of distinct words

d) Performance of the ordered operations: In order to
evaluate the performance of the ordered operations we made
the following test:

1) insert (out) 100 tuples with a single field in the tuple
space, with values from 0 to 99, encrypted with the Order
Preserving scheme;

2) execute an rdp (read one matched tuple), with the
parameters indicated in the first column of Table V and
decrypt it;

3) execute an inAll (read and delete all matched tuples),
with the parameters indicated in the first column of Table
V and decrypt.

The test was repeated 30 times, in order to calculate the
average and the standard deviation of the execution times of
the operations rdp and inAll.

We can observe in the table that the execution times of the
rdp command are all inside the deviation intervals of each
other, meaning that the type of match does not affect the
execution times.



TABLE V
ORDERED OPERATIONS EXECUTION TIMES

Condition rdp (ms) inAll (ms) Tuples selected
∗ (match all) 35 ± 8 257 ± 27 100
= (match) 29 ± 9 33 ± 22 1
<> 50 28 ± 6 209 ± 7 99
< 50 31 ± 7 195 ± 46 50
<= 50 30 ± 8 174 ± 21 51
> 50 29 ± 7 181 ± 26 49
>= 50 34 ± 8 204 ± 53 50

For the inAll operation we can see that the slower opera-
tion in the one that reads all the tuples (*), the second slower is
the one that reads all minus one (<>), and the faster operation
is the one that reads just one tuple (=). The other operations
have execution times somewhere in the middle. This allow us
to conclude that the execution time of the inAll operation
depends not on the type of comparison, but on the number of
tuples retrieved. This is caused by the communication delay
caused by more data.

C. HomoFuse

This section aims to assess the usefulness, in terms of
execution times, of the HomoFuse filesystem.

The machine used was an HP EliteBook 2530p, running
Ubuntu 10.15. Both the server side, and the client side were
implemented on the same machine in order to get rid of the
latency introduced by the communications.

The Java version used on the client side was openJDK 1.8.
On the server side, the web server was an Apache server,
version 2.4.12.

In order to have a term of comparison for the measurements
made, a full copy of the virtual file system was created in a
folder of native machine file system, using the command cp
-a. It thus becomes possible to compare the execution times of
the operations over a local file system, and over the virtual file
system we have built.

a) command tree - Reading folders and attributes -:
To assess how the system behaves when reading folders and
file metadata, the command tree (Figure 4) was executed both
on the virtual system and on the copy created on the local
filesystem. The command was executed one hundred times in
each filesystem, in order to determine the average and the
standard deviation. The times were:

• 181.46± 100.86 for the virtual filesystem
• 2.88± 1.31 for the local filesystem
It is possible to observe that there is a significant difference in

the execution of the command in the two filesystems. However,
the virtual file system still has acceptable times for some
applications.

b) Write in the Virtual Filesystem - : In order to assess the
writing on the Virtual File System, we generated files with filler
text of the type “Lorem Ipsum”, using the application available
at http://pt.lipsum.com, with a content of 100, 500, 1000, 5000
and 10000 words.

We tested the copy of these files from a local folder of the
machine to the virtual file system and to the local file system.
The command (cp) was repeated 10 times in order to obtain
the average.

The results were those shown in the Figure 9.

Fig. 9. Execution times of the copy into the folder (ms)

As it can be seen, the execution time increases linearly with
the size of the files, and quite strongly. In fact, to copy a
file to the virtual folder, implies all the encryption operations.
Remarkably, the file content is encrypted with the searchable
encryption scheme which number of encryptions is proportional
to the number of distinct words.

c) Reading from the Virtual File System -: Proceeding in
the same way with copies from the virtual file system, to a local
folder on the machine, in order to test the reading, we got the
values shown in the graph of the figure 10.

Fig. 10. Execution times of the copy from the folder (ms)

It is evident that the copy runtimes out of the folder, which
correspond to read the repository are much smaller than those
of the writing to the repository. At the same time the growth
with the size of the files, is much slower. This is due to the
choice of cryptographic scheme Searchable, for the file contents
encryption. The more distinct words a file contains, the higher
the number of operations required, for the encryption made at
writing time. By other hand, for reading, there is no need to do
word by word decryption. Only the file net content, encrypted
with Random, has to be decrypted.

d) Search Files by dates and words -: In order to test
the execution times of the search by date (ls YYYYMMDD),
and keyword search (ls word yyyyyy), we have proceeded as
follows:

1) we copied 100 ” Lorem Ipsum ” files, filled with 100
words, into the virtual file system. An intentional pro-
gram error was introduced, so that the creation date was
registered 10 days before the actual test date, in order to
create a file 10 days on the past;

2) a new ” Lorem Ipsum ” file of 100 words, was copied
to the same folder, this time with the correct date of the
test;



3) in the latter file, the word “ xpto ”, which does not exist
in the remaining 100 files, was included;

4) then, we have executed ten times the command ls
date YYYYMMDD, where YYYYMMDD was the test
date, and obtained as expected the last copied file (the
only one with a date greater than or equal to the test
date);

5) the same way, we have executed ten times the command ls
word xpto, having obtained, as expected, the last copied
file (the one with the word ” xpto ”).

The resulted execution times are reported in the Table VI.

TABLE VI
SEARCH EXECUTION TIMES OVER 101 FILES

(miliseconds) Average STD
Commans ls date YYYYMMDD 51.6 3.1
Command ls word xpto 50.5 3.8

Then we repeated the test, but this time with 1000 files, in
order to determine the impact of searches by date and word, in
a folder ten times larger.

The results are reported in the Table VII.

TABLE VII
SEARCH EXECUTION TIMES OVER 1001 FILES

(miliseconds) Average STD
Command ls date YYYYMMDD 190.2 4.2
Command ls word xpto 189.9 4.5

As can be seen, the obtained times are still very low, on the
order of 200 milliseconds, being imperceptible to the human
user. This is due to the fact that these searches are done on
encrypted data without any encryption or decryption operation.

In a sufficiently fast web server, operations times would
approach to network latency times, in the order of tens of
milliseconds.

VI. CONCLUSION

We present MorphicLib, a Java Library intended to be used
in applications that use homomorphic encryption for protecting
data confidentiality. MorphicLib provides a set of useful ho-
momorphic properties: equality comparison, order preserving,
keyword searchable text, addition and multiplication. We be-
lieve this library has many different applications. We designed
and implemented the HomomorphicSpace based on Morphi-
cLib. HomomorphicSpace is a tuple space, that allows storing
and retrieving tuples. This service permits doing coordination
operations such as synchronization, locking, metadata storage.
In addition, we have shown that is possible to create a cloud
file system where the data and metadata is encrypted with
homomorphic encryption schemes, allowing heavy file search
operations running at the server side, without conducting any
decryption.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of
cloud computing. Communications of the ACM, 53(4):50–58, Apr. 2010.

[2] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga. DepSpace: a
Byzantine fault-tolerant coordination service. In Proceedings of the 3rd
ACM SIGOPS/EuroSys European Systems Conference, pages 163–176,
Apr. 2008.

[3] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving
symmetric encryption. In Proceedings of the 28th Annual International
Conference on Advances in Cryptology: The Theory and Applications of
Cryptographic Techniques, pages 224–241, 2009.

[4] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou. Privacy-preserving multi-
keyword ranked search over encrypted cloud data. IEEE Transactions on
Parallel and Distributed Systems, 25(1):222–233, Jan 2014.

[5] Cloud Security Alliance. The notorious nine: Cloud computing top threats
in 2013, Feb. 2013.

[6] M. H. Derkani. Hypergeometric.java. https://github.com/masih/sina/blob/
master/src/main/java/DistLib/hypergeometric.java, 2013.

[7] T. Distler, C. Bahn, A. Bessani, F. Fischer, and F. Junqueira. Ex-
tensible distributed coordination. In Proceedings of the 10th ACM
SIGOPS/EuroSys European Systems Conference, pages 10:1–10:16, 2015.

[8] ENISA. Algorithms, key size and parameters report – 2014, Nov. 2014.
[9] S. Faber, S. Jarecki, H. Krawczyk, Q. Nguyen, M. Rosu, and M. Steiner.

Rich queries on encrypted data: Beyond exact matches. In Computer
Security - ESORICS 2015 - 20th European Symposium on Research in
Computer Security, pages 123–145, 2015.

[10] B. Ferreira, J. Rodrigues, J. Leitão, and H. Domingos. Privacy-preserving
content-based image retrieval in the cloud. CoRR, abs/1411.4862, 2014.

[11] Y. Gahi, M. Guennoun, and K. El-Khatib. A secure database system using
homomorphic encryption schemes. CoRR, abs/1512.03498, 2015.

[12] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programing Languages and Systems, 7(1):80–112, Jan. 1985.

[13] C. Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing,
pages 169–178, 2009.

[14] O. Hasan. Paillier.java. http://liris.cnrs.fr/∼ohasan/pprs/paillierdemo/
Paillier.java, 2009.

[15] T. Heo. Filesystem in userspace. https://github.com/libfuse/libfuse, 2001.
[16] V. Kachitvichyanukul and B. Schmeiser. Computer generation of hy-

pergeometric random variates. Statistical Computation and Simulation,
22:127–145, 1985.

[17] J. Katz and Y. Lindell. Introduction to Modern Cryptography: Principles
and Protocols. Chapman & Hall/CRC, 2007.

[18] K. Lauter, M. Naehrig, and V. Vaikuntanathan. Can homomorphic
encryption be practical? In Proceedings of the 3rd ACM Workshop on
Cloud Computing Security, pages 113–124, 2011.

[19] D. Liu and S. Wang. Query encrypted databases practically. In Proceed-
ings of the 19th ACM Conference on Computer and Communications
Security, pages 1049–1051, 2012.

[20] P. Mell and T. Grance. The NIST definition of cloud computing. National
Institute of Standards and Technology, 2011.

[21] Netcraft. February 2016 web server survey. https://news.netcraft.com/
archives/2016/02/22/february-2016-web-server-survey.html, 2016.

[22] R. A. Popa et al. CryptDB webpage. https://css.csail.mit.edu/cryptdb/.
[23] R. A. Popa, F. H. Li, and N. Zeldovich. An ideal-security protocol for

order-preserving encoding. In Proceedings of the 2013 IEEE Symposium
on Security and Privacy, pages 463–477, 2013.

[24] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB:
Protecting confidentiality with encrypted query processing. In Proceed-
ings of the 23rd ACM Symposium on Operating Systems Principles, pages
85–100, 2011.

[25] F. Rocha and M. Correia. Lucy in the sky without diamonds: Stealing
confidential data in the cloud. In Proceedings of the 1st International
Workshop on Dependability of Clouds, Data Centers and Virtual Com-
puting Environments, 2011.

[26] TIOBE. Tiobe index. http://www.tiobe.com/tiobe index, 2016.
[27] S. Tselovalnikov. Jnr-fuse. https://github.com/SerCeMan/jnr-fuse, 2015.
[28] M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully

homomorphic encryption over the integers. In Advances in Cryptology –
EUROCRYPT 2010, pages 24–43. Springer, 2010.

[29] M. Yagisawa. Fully homomorphic encryption without bootstrapping.
Cryptology ePrint Archive, Report 2015/474, 2015. http://eprint.iacr.org/.


