
Multi-UAV Mission Coordination using Signal Temporal Logic

Specifications

Nuno Ricardo Ferreira Duarte
nuno.ferreria.duarte@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

September 14, 2016

Abstract

Temporal Logic has successfully been used for specifying a wide range of behaviors for systems
and environments. Previous works using Linear Temporal Logic (LTL) have synthesized controllers
when specifying properties of discrete time signals. However, these controllers are inconvenient to
handle continuous signals with time dependency, more specifically, when optimizing trajectories under
environmental uncertainties, such as static or dynamical obstacles, known and unknown obstacles. To
address these issues, we use Signal Temporal Logic (STL) instead and our aim is to design a reactive
strategy and trajectory planning for a search and rescue mission in a known environment; the mission
involves more than one autonomous aerial vehicle (UAV) working together to satisfy tasks such as
periodically monitoring areas, path planning, staying safe, and avoiding obstacles that can either be
object in the environment or a different autonomous vehicle that is attempting to satisfy its own
tasks. To avoid obstacles we will compare more that one solution using different methods such as STL
specifications that take into account the localization of all vehicles in the environment or a centralized
node that checks the localization of two vehicles in order to prevent any possible future collisions. The
simulations show that using a controller developed using this approach can generate trajectories for
a mission involving 3 UAVs performing a cooperative mission of grabbing 3 individual objects and 1
object that requires 2 UAVs for carrying with successful results and without any collisions.
Keywords: Logic, Planning, UAV, STL.

1. Introduction

The focus of this thesis is on multi-UAV mission
planning using signal temporal logic (STL) specifi-
cations. Mission coordination has been studied by
many researchers and in various problem settings
[2], [12], [11]. It is clear advantageous that it is
to develop a coordinated team of unmanned vehi-
cles to achieve a goal instead of using a single ve-
hicle. Additionally, missions involving surveillance,
rescue and reaching goals have been increasing in
complexity. In this context, it is important to de-
velop new aways of describing the missions speci-
fications. STL is a formal language used to define
constraints and specifications of continuous signals.
The use of this language instead of other well-known
languages ([7], [5] and [6]), is due to its application
in continuous and hybrid systems. Combining a
formal language to specify the tasks of multiple au-
tonomous vehicles will provide tremendous insight
to the performance of such specifications in a real-
life applications. Mission coordination has been
discussed for several years, either for humanitarian
missions or with a more military view [2], [12], [11].

Nonetheless, using aerial vehicles in a group instead
of a single quadrotor is more advantageous in terms
of allowing solutions for more complex tasks and
also being economically reliable than using a sin-
gle UAV with larger proportions and higher qual-
ity sensors and actuators. Mission coordination in-
volving multi-UAV has been a topic of tremendous
research using several different perspectives, and
describing formal specifications with mixed-integer
linear constraints of discrete or continuous signals
has been one of the most popular. Logic languages
are the most intuitive and easy to understand even
though it can be very computationally demanding
for complex problems. Temporal Logic such as Lin-
ear Temporal Logic (LTL), Metric Temporal Logic
(MTL), or Computational Tree Logic (CTL) are
some of the most well used to describe specifica-
tions for path planning. In this thesis, some back-
ground to the work done with some of those lan-
guages will be presented and comparisons to the
alternative chosen for this work.

1

2. Signal Temporal Logic
Most of the notation in this section mirrors that
in [9] and [10], and missing details can be found in
either works.

2.1. Discrete-Time Systems
We consider discrete-time systems of the form

xt+1 = f(xt, ut, wt) (1)

where t = 0, 1, . . . indicate the time steps, xt ∈ X ⊆
(Rnc×{0, 1}nl denotes the states, uT ∈ U ⊆ (Rmc×
{0, 1}ml) denotes the control inputs, wt ∈ W ⊆
(Rec×{0, 1}el denotes the external inputs or distur-
bances, and the initial state is x0 ∈ X . Note that all
the variables may have real-valued or binary compo-
nents. A run σ = (x0u0w0)(x1u1w1)(x2u2w2) . . .
is an infinite sequence of state, input, and dis-
turbance components at each time step t. Sim-
ilar to [9], the horizon-N run of a system mod-
eled by (1), denoted by σ = (x0,u

N ,wN) =
(x0,0 , w0)(x1, u1, w1)(x2, u2, w2) . . . (xN , uN , wN) is
assumed to be unique for an initial state x0 ∈ X ,
a control input sequence uN = u0u1u2 . . . uN−1 ∈
UN and a sequence of environment inputs wN =
w0w1w2 . . . wN−1 ∈ WN . We also consider a
generic cost function J(σ(x0,u.w)) that maps (in-
finite and finite) runs to R.

2.2. Syntax
STL formulas are defined recursively according to
the grammar

ϕ ::= µ | ¬µ | ϕ ∧ ψ | ϕ ∨ ψ | �[a,b] ψ | ϕ U[a,b] ψ

where µ is a predicate whose value is determined by
the sign of a function of an underlying signal x, i.e.,
µ ≡ µ(x) > 0, and ψ is an STL formula. The pred-
icate ¬µ is the negation of the predicate µ, using
boolean operators such as conjunction (∧), disjunc-
tion (∨), or until (U) we can write a set of predicates
denominated as a STL formula ψ. From [1] tempo-
ral operators ♦ (eventually) and � (always) can be
derived from the previous boolean operators.

All the STL formulas can be defined with respect
to signal x at time t in the following manner

(x, t) |= µ⇔ µ(xt) > 0

(x, t) |= ¬µ⇔ ¬((x, t) |= µ)

(x, t) |= ϕ ∧ ψ ⇔ (x, t) |= ϕ ∧ (x, t) |= ψ

(x, t) |= ϕ ∨ ψ ⇔ (x, t) |= ϕ ∨ (x, t) |= ψ

(x, t) |= �[a,b]ϕ⇔ ∀t′ ∈ [t+ a, t+ b], (x, t′) |= ϕ

(x, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (x, t′) |= ψ

∧ ∀t′′ ∈ [t, t′], (x, t′) |= ϕ

A signal x = x0x1x2 . . . satisfies ϕ, denoted by
x |= ϕ, if (x, 0) |= ϕ. Informally, x |= �[a,b]ϕ if ϕ
holds at every time step before a and b, and x |=

ϕ U[a,b] ψ if ϕ holds at some time step between a
and b until ψ becomes true. Additionally, ♦[a,b]ϕ =
> U[a,b] ϕ, so that x |= ♦[a,b]ϕ if ϕ holds at some
time step between a and b. STL formulas refer to
discrete time intervals of discrete-time systems.

An STL formula ϕ is bounded-time if it contains
no unbounded operators; the bound of ϕ is the max-
imum over the sums of all nested upper bounds on
the temporal operators, and provides a conservative
maximum trajectory length required to decided its
satisfiability. For example, for �[0,4]♦[3,6]ϕ, a tra-
jectory of length N ≥ 5 + 4 = 9 is sufficient to
determine whether the formula is satisfiable.

2.3. Robust Satisfaction of STL formulas and MILP
encoding

In this work, we consider the quantitative or robust
semantics for STL, which assigns a real value to
a predicate as an indication of to what extend a
formula is satisfied. Following [9], the robustness
function is defined as a real-valued function ρϕ of
signal x and t such that ρϕ(x, t) > 0 ≡ (x, t) |= ϕ
and they are computed recursively as follows

ρµ(x, t) = µ(xt)

ρ¬µ(x, t) = −µ(xt)

ρϕ∧ψ(x, t) = min(ρϕ(x, t), ρψ(x, t))

ρϕ∨ψ(x, t) = max(ρϕ(x, t), ρψ(x, t))

ρ�[a,b]ϕ(x, t) = min
t′∈[t+a,t+b]

ρϕ(x, t′)

ρϕ U[a,b] ψ(x, t) = max
t′∈[t+a,t+b]

(min(ρψ(x, t′),

min
t′′∈[t,t′]ρϕ(x,t′′))

For example, the robust satisfaction of µ1 ≡ x−5 >
0 at time 0 is ρµ1(x, 0) = x0 − 5.

To avoid the curse of dimensionality of the state
space abstraction, STL specifications can be en-
coded as mixed-integer linear constraints [9]. Ac-
cordingly, we restrict ourselves to discrete time sys-
tems and to linear or affine predicates. Note that in
case of dealing with continuous dynamics, we can
approximate them by their equivalent discretized
model using an appropriate sampling time. Using
this encoding, the optimal input sequence for sys-
tem 1 (as will be shown in the next section) can be
obtained by solving a mixed integer linear program-
ming (MILP) optimization problem at each time
step. The interested reader is referred to [9] for the
details of this encoding.

The advantage of this robustness-based encoding
is that it allows us to obtain a trajectory that max-
imizes or minimizes the robustness of satisfaction.
The objective function for the optimization prob-
lem can be then defined as the robustness function,
which will be maximized, or the robustness function
can be a complement to domain-specific objectives

2

on runs of the system.
As mentioned in [9], MILPs are NP-hard, and

hence impractical when the dimensions of the prob-
lem grow. We present the computational costs
of the above encoding in terms of the number of
variables and constraints in the resulting MILP.
If P is the set of predicates used in the formula
and |ϕ| is the length (i.e. the number of opera-
tors), and N is the number of STL formulas, then

O(N |̇P |) +O(N |̇ψ|) continuous variables are intro-
duced. In addition, O(N) binary variables are in-
troduced for every instance of a Boolean operator,
i.e. O(N |̇ϕ|) Boolean variables.

3. Synthesization of STL specifications
This encoding consists of system constraints and
STL constraints [9].

3.1. System Constraints
3.1.1 Propositional calculus and linear in-

teger programming

Consider Xi as a literal which can take values of
”T” (true) or ”F” (false). With this literals we use
boolean operators such as ∧ (and), ∨ (or), ¬ (not),
⇒ (implies), ⇔, (if and only if), ⊕, (exclusive or),
to write statements like the one represented below.

(X1 ∨X2) ∧X3 ⇒ X4 ⇔ ¬(X5 ⊕X6)

Correspondingly one can associate with a literal Xi

a logical variable δi ∈ {0, 1}, which has a value of
either 1 if Xi = T, or 0 otherwise. In [4] we get
that integer programming was considered an effi-
cient way to perform automated deduction. By con-
verting propositional logic problems into linear in-
equalities involving logical variables δi by means of
a linear integer program. Here are some examples
given that can prove that equivalence.

X1 ∨X2 is equivalent to δ1 + δ2 ≥ 1 (2a)

X1 ∧X2 is equivalent to δ1 = 1, δ2 = 1 (2b)

¬X1 is equivalent to δ1 = 0 (2c)

X1 ⇒ X2 is equivalent to δ1 − δ2 ≤ 0 (2d)

X1 ⇔ X2 is equivalent to δ1 − δ2 = 0 (2e)

As we are interested in systems which have both
logic and dynamics, we wish to establish a link be-
tween the two worlds. For this purpose, we end up

with mixed-integer linear inequalities, i.e linear in-
equalities involving both continuous variables x ∈
Rn and logical (indicator) variables δ ∈ {0, 1}.
Consider the statement X , [f(x) ≤ 0], where
f : Rn ⇒ R is linear, assume that x ∈ X , where
X is a given bounded set, and define

M , max
x∈X

f(x) (3a)

m , min
x∈X

f(x) (3b)

M and m are over and under estimates, respectively.
Therefore equation y = δf(x) is equivalent to

y ≤Mδ

y ≥ mδ
y ≤ f(x)−m(1− δ)
y ≥ f(x)−M(1− δ)

(4)

3.1.2 Mixed Logical Dynamical Systems

The tools obtained in the previous section will be
used now to express relations describing the evo-
lution of systems where physical laws, logic rules,
and operating constraints are interdependent. We
are able to do this by describing mixed logical dy-
namical (MLD) systems through the following lin-
ear relations [3]:

x(t+ 1) = Atx(t) +B1tu(t) +B2tδ(t) +B3tz(t)

y(t) = Ctx(t) +D1tu(t) +D2tδ(t) +D3tz(t)

E1tu(t) + E2tδ(t) + E3tz(t) + E4tx(t) ≤ E5t

(5)

where t ∈ Z,

x =

[
xc
xl

]
, xc ∈ Rnc , xl ∈ {0, 1}nl , n , nc + nl

is the state of the system, whose components are
distinguished between continuous xc and 0-1 xl;

y =

[
yc
yl

]
, yc ∈ Rpc , yl ∈ {0, 1}pl , p , pc + pl

is the output vector,

u =

[
uc
ul

]
, uc ∈ Rmc , ul ∈ {0, 1}ml ,m , mc +ml

is the command input, collecting both continuous
commands uc, and binary (on/off) commands ul;
δ ∈ {0, 1}rl and z ∈ Rrc represent respectively aux-
iliary logical and continuous variables. The contin-
uous variable is defined as follows z(t) = δ(t)x(t).

3

3.2. Signal Temporal Logic (STL) constraints
Given a formula ϕ, we introduce a variable zϕt ,
whose value is tied to a set of mixed integer lin-
ear (MIL) constraints represented above. In other
words, zϕt has an associated set of MILP constraints
such that zϕt = 1 if and only if ϕ holds at position t.
For zϕ0 represents the formula ϕ in the initial state
and whether or not it holds.

The predicates are represented by constraints on
system state variables. For each predicate µ ∈ P ,
a binary variable zµt ∈ {0, 1} is introduced. The
following constraints enforce that zµt = 1 if and only
if µ(xt) > 0:

µ(xt) ≤Mtz
µ
t − ∈t

−µ(xt) ≤Mt(1− zµt)− ∈t
(6)

whereMt is a sufficiently large positive number, and
∈t a sufficiently small positive number that serve to
bound µ(xt) away from 0. Mt is just like M and
m from section 3.1 instead that M = Mt and m =
−Mt.

The boolean operations on MILP variables de-
scribed above are defined by logical operations. The
logical operations on variables zϕt ∈ [0, 1] are the
following:

Negation: zϕt = ¬zψt which can also be represented

as zϕt = 1− zψt , zϕt ≤ z
ψi

ti , i = 1, . . . ,m

Conjunction: zϕt = ∧mi=1z
ψi

ti which can be represented

as zϕt ≥ 1−m+

m∑
i=1

zψi

ti , zϕt ≥ z
ψi

ti , i = 1, . . . ,m

Disjunction: zϕt = ∨mi=1z
ψi

ti which can be represented

as zϕt ≤
m∑
i=1

zψi

ti

Temporal operators � and ♦ also get appropriate
encoding:

Always: ϕ = �[a,b]ψ which can also be represented

as zϕt = ∧b
N
t

i=aNt
zψi

Let aNt = min(t + a,N) and bNt = min(t + b,N)
where N is the receding horizon.

Eventually: ϕ = ♦[a,b]ψ which can also be

represented as zϕt = ∨b
N
t

i=aNt
zψi

Until: ϕ = ψ1U[a,b]ψ2

The definition of until is not relevant for this thesis
so we don’t represent in succinct detailed. However,
its definition can be found in [9].

The combination of the STL constraints, system
constraints and loop constraints gives the MILP en-
coding, and this enables checking feasibility of this
set and find a solution using an MILP solver. After
determining an objective function of the system, it
is possible to find the optimal trajectory that satis-
fies the STL specifications.

3.3. Robustness-base encoding
In this section we give a short representation of
the robustness function discussed in the section
2.3. The robustness can be computed recursively
on the structure of the formula in conjunction with
the generation of the constraints. In addition,
since max and min operations can be expressed in
an MILP formulation using additional binary vari-
ables, this does not add complexity to the encoding.

The encodings of the temporal operators work
upon the encodings defined above. For each pred-
icate µ ∈ P , it is now introduced variables rµt for
time indices t = 0, 1, . . . , N , and set rµt = µ(xt).
For rϕt where ϕ is a Boolean formula, it is assumed
that each operand ϕ has a corresponding variable
rϕt = ρϕ(x, t). The Boolean operations are defined
as

Negation: rϕt = ¬rψt which can also be represented

as rϕt = −rψt
Conjunction: rϕt = ∧mi=1r

ψi

ti

m∑
i=1

ρψi

ti = 1

rϕt ≤ z
ψi

ti , i = 1, . . . ,m

rψiti − (1− ρψi

ti)M ≤ rϕt ≤ rψiti +M(1− ρψi

ti)

Together, these constraints enforce that rϕt =

min(rψi

ti).

Disjunction: rϕt = ∧mi=1r
ψi

ti

m∑
i=1

ρψi

ti = 1

rϕt ≥ z
ψi

ti , i = 1, . . . ,m

rψiti − (1− ρψi

ti)M ≤ rϕt ≤ rψiti +M(1− ρψi

ti)

Together, these constraints enforce that rϕt =

max(rψi

ti). The encoding for bounded temporal op-
erators is defined as in section 2.3; The advantage
of this encoding is that it allows to maximize ro-
bustness of satisfaction. Additionally, an encoding
based on robustness has the advantage of allow-
ing the STL constraints to be softened or hardened
as necessary. However, due to additional binary
variables is more computational expensive. On the

4

other hand, the robustness constraints are more eas-
ily relaxed, which allows a simpler cost function to
solve the same problem if it didn’t had robustness
in the objective function.

4. Results

After all problems have been addressed it is time to
add everything together with the purpose of repro-
ducing the Challenge 3 of the international com-
petition MBZIRC 2017. The mission, as it was de-
scribed previously, involves a coordinated mission
between 3 quadrotors to search and grab 3 individ-
ual objects and one object cooperatively in a dy-
namical environment. The first part consists of the
3 quadrotors starting from a known location and
searching the objects in the environment. The high
level controller developed in this thesis allows us to
focus primarily on the trajectory generated of each
model leaving the more low-end priorities such as
locating the objects and its physical characteristics
for the low level controllers. As such, we assume
a priori that the exact location of each object is
given to us before starting the mission. The start-
ing point of the mission can be seen in Figure 1(a).
The first mission is completed when each quadrotor
reaches its object and grabs it (Figure 1(b)). The
second objective, performed in Figure 1(c), is to re-
locate the objects to a new position and, when the
final destination of the object has been reached, the
quadrotor can drop the object. This summarizes
the first part of the mission we set out to do, where
all the different problems discussed in the previous
section can occur and where the alternative solu-
tions can provide a feasible option that avoids any
possible failing situations. The next and final part
is allocated for the cooperative mission involving
2 quadrotors grasping and transporting of a fairly
large size object (200×20×20 cm). This object re-
spects the dimensions provided by the MBZIRC
2017 competition guidelines. The object will be
grabbed by one quadrotor on each end to avoid any
unpredictable collisions.

This cooperative team work is achieved by ex-
pressing the desired movement of the two quadro-
tors present in this objective. In a cooperative mis-
sion two or more vehicles are working together to
fulfill a goal, in our case is to grab an object that
can’t be transported by just one quadrotor. Know-
ing that the current environment contains both
types of objects (individual objects and big ob-
jects), the quadrotors need to be able to distinguish
between the two in order to perform the right mis-
sion. For the scope of this thesis we don’t address
properties of the object such as weight, type of ma-
terial, etc. We assume that the quadrotor identifies
automatically what object is dealing with in con-
tact. The mission describes then a first quadrotor

(a) (b) (c)

(d) (e) (f) (g)

Figure 1: The final mission illustrated step-by-step
representing every major event. In (a) is the start-
ing point of the 3 quadrotors with the initial po-
sition of the 3 individual objects; (b) shows the
quadrotors reaching the objects and transporting
them to a new location; (c) illustrates the new lo-
cation for all 3 objects and the new starting points
of quadrotor 1 and 2; (d) is where the new mission
starts with the big object initialized, and quadro-
tor 3 is shown in its final position where it will
stay for the remaining of the time; (e), (f), and
(g) are the 3 step process of moving the big ob-
ject: quadrotor 1 goes to the object to evaluate its
size, then quadrotor 1 waits for quadrotor 2 to ar-
rive since it can’t transported by itself, and finally
both quadrotors moving the object to its final loca-
tion. YouTube video: https://www.youtube.com/
watch?v=Y-KO_NPfYvw

reaching its closest object, identifies that it is in fact
a big object, and waits for the second quadrotor to
come to its assistance. Note that the STL specifica-
tions written next are simplified to just one possible
case. This is the case when Object 1 is closer than
Object 2 or 3. However, this may not always be
the case as such additional STL specifications are
added to deal with all possible scenarios.

♦[0,3](x1x(t)−Obj1x(t))2 + (x1y (t)−Obj1y)2

< (x1x(t)−Obj2x(t))2 + (x1y (t)−Obj2y)2 ∧
(x1x(t)−Obj1x(t))2 + (x1y (t)−Obj1y (t))2

< (x1x(t)−Obj3x(t))2 + (x1y (t)−Obj3y t))2 =>

♦[0,3](x1x(t) ≈ Obj1x(t) ∧ x1y (t) ≈ Obj1y (t)

∧ x1z (t) ≈ 0)

(x1x(t) ≈ Obj1x(t) ∧ x1y (t) ≈ Obj1y (t) ∧ x1z (t) ≈ 0)

=> �[4,∞](x1x + 1 < x2x(t) < x1x + 2 ∧
x1y < x2y (t) < x1y + 0.2 ∧ x1z < x2z (t)

< x1z + 0.2) ∧
♦[4,8](x1x(t) ≈ Goalx(t) ∧ x1y (t) ≈ Goaly(t)

∧ x1z (t) ≈ Goalz(t))
♦[0,3](xiz (t) > 3 ∧ xiz (t) < 5)

The solution to the problem described above is rep-

5

https://www.youtube.com/watch?v=Y-KO_NPfYvw
https://www.youtube.com/watch?v=Y-KO_NPfYvw

resented in Figure 2. The first part of the equa-
tions describes simply the first quadrotor reaching
its closest object. The same identical STL specifica-
tion described in all missions involving quadrotors
attempting to grasp the closest individual object to
its position. The second equation is what allows the
mission to adapt to the situation and call for backup
when the object requires a second quadrotor to be
lifted. Again, we assume the moment quadrotor

7
6

5

t
0
1 !

4
3

x(m)

2

A t
8
2

1

A t
2
1

A t
1
1

0

A t
8
1

t
5
2

0

t
7
2

#

"

t
6
2
"

t
7
1

#

1

t
3
1 = t

4
1 = t

5
1 !

y(m)

2

t
4
2

#

3

A t
0
2 = t

1
2 = t

2
2

4

t
3
2 !

5
6

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

z(
m

)

Figure 2: The trajectories path of the quadrotors
involved in the cooperative mission of transporting
a big object.

1 reaches the object (t13) it has on-board sensors
that allow to distinguish the current object from
the ordinary single object as well as send a signal
to quadrotor 2 that it requires its assistance. Af-
ter those low-level conditions have been established
the second part of the equation can be used. This
equation will only hold true when the quadrotor 1
is on top of the object. After that the STL specifi-
cations applied to quadrotor 2 and the cooperative
mission will be in play. Note that quadrotor 2 is in
its initial position from time t = 0 to t = 2, this is
due to quadrotor 1 not having reached the object
at those time steps. When at time t = 3 quadrotor
1 reaches the object then the cooperative mission
starts, as the second equation holds true and or-
ders are given. This specifications are to the right
of the boolean operator (=>) to represent the next
steps to make after quadrotor 1 reaches the object.
This orders quadrotor 2 to converge its position to
the location of quadrotor 1 (t2 reach t13), at the
same time keep a safe distance to it and also re-
spect the object dimensions so it won’t miss the
grasping. This is the reason why t13 and t26 are not
the exact same location, due to the dimension of
the object defined previously. The last part of the
STL specification is regarding the new goal position
of the object to be dropped. Since the previous rule
needs to be kept from t = 4 until the end of the sim-
ulation (�[4,∞](x1x + 1 < x2x(t) < x1x + 2 ∧ x1y <
x2y (t) < x1y + 0.2 ∧ x1z < x2z (t) < x1z + 0.2))
by ordering quadrotor 1 to move to that new goal,
quadrotor 2 will automatically follow the same path

creating the so desired cooperative mission between
two quadrotors transporting a big object as seen
from Figure 1(f) until it is dropped viewed in sub-
picture (g). However to replicate this same parallel
motion into the Gazebo simulator, some changes
needed to be done to the way data is sent and pro-
cessed between nodes. As a result, from the mo-
ment the two quadrotors reach the object and the
object is grabbed the goal positions from the tra-
jectory generated by the STL solver will be sent at
the same time synchronized by each STLnode# of
each quadrotor. This prevents one of the quadro-
tors to move faster than the other one, making it
a smooth transportation of the object without any
disturbances.

5. Conclusions
The major achievements of the present work can
be summarized to being able to show the advan-
tages of using Signal Temporal Logic language to
describe the mission specifications on a high-end
level controller. Previous research papers have been
written on using different techniques with LTL lan-
guage that prove the feasibility of multi-vehicle co-
ordinated missions [7] [8]. In this thesis we present
the differences between the existing work using
LTL with the now new alternative language that is
STL. The advantageous being that its variables are
continuous-time signals rather than discrete-time
signals allowing for a more robust satisfaction pa-
rameter than the previous yes or no answer for the
satisfiability in discrete-time. Additionally, the use
of a MPC controller that allows us to adapt in real
time to the current situation to disturbances that
may happen ahead of time, giving us results less
prone to feasibility problems than the ones given
by previously researched methods.

Even though the major goals of this thesis were
achieved, it must be noted that this is still a very
particular example and it is only fully functional in
a completely known environment with perfect con-
ditions. It is true that the goal of this thesis was
to solve the problem Challenge 3 from the inter-
national competition MBZIRC 2017. Nevertheless,
it would be interesting to adapt our STL specifi-
cations to a mission with more than 3 quadrotors.
As some of the missions developed in this thesis are
limited to only 3 vehicles. Additionally, it would
be interesting to understand how to deal with un-
known or partially known object locations as well
as uncertainties in the quadrotor current location.
Athough a complete controller was developed and
simulated it was not possible to run the tests with
the real system. Due to the lack of knowledge on
the real hardware and not enough time to imple-
ment my own external algorithm, it was only possi-
ble to test the controller. The last thing to be noted
is that, despite only being tested for environments

6

adapted to the Challenge 3 problem, the contri-
bution of this thesis can be used as a development
environment and testbed for future work.

Acknowledgements

As I am writing these last words to finish my thesis,
the realization that this document will be the very
last milestone for graduating from my study at In-
stituto Superior Técnico, is slowly sicking in. It has
been an exciting, sometimes difficult, but always
very interesting journey, and my thesis project was
no different. First of all I would like to thank my
family and friends, for not only supporting me dur-
ing the complete time of my study in IST, but also
for being understanding whenever I was stressed out
or easily irritable, especially during the final weeks
of my thesis project. Then to my two supervisors
Prof. Pedro Lima and Prof. Richard Murray whose
support was instrumental for this thesis and who
was available to me whenever I needed. I want to
give my special thanks to Prof. Richard Murray and
Samira Farahani for giving me the opportunity to
work on a summer internship in Caltech. Without
it I would never have learned about Signal Tempo-
ral Logic and I wouldn’t have done a master thesis
on the subject. I would also like to thank all my
friends who supported me and made me feel happy
especially during the difficult times.

References

[1] C. Baier and J.-P. Katoen. Principles of Model
Checking. MIT press, 2008. ISBN 978-0-262-
02649-9.

[2] J. Bellingham, M. Tillerson, M. Alighanbari,
and J. How. Cooperative path planning for
multiple uavs in dynamic and uncertain envi-
ronments. 41st IEEE Conference on Decision
and Control Las Vegas NV, 3:2816 – 2822, Dec.
2002. doi:10.1109/CDC.2002.1184270.

[3] A. Bemporad and M. Morari. Control of
systems integrating logic, dynamics, and con-
straints. Automatica, 35:347–536, Mar. 1999.

[4] T. M. Cavalier, P. M. Pardalos, and A. L. Soys-
ter. Modeling and integer programming tech-
niques applied to propositional calculus. Com-
puters and Operations Research, pages 561–
570, 1990.

[5] M. Faied, A. Mostafa, and A. Girard. Dynamic
optimal control of multiple depot vehicle rout-
ing problem with metric temporal logic. Amer-
ican Control Conference Hyatt Regency River-
front St. Louis MO USA, June 2009.

[6] S. Karaman. Optimal planning with temporal
logic specifications. MIT, 2009.

[7] S. Karaman and E. Frazzoli. Linear tem-
poral logic vehicle routing with applications
to multi-uav mission planning. Interna-
tional Journal of Robust and Nonlinear Con-
trol, 21(12):1372?1395, Aug. 2011. doi:
10.1002/rnc.1715.

[8] B. Lacerda and P. Lima. Ltl-based decentral-
ized supervisory control of multi-robot tasks
modelled as petri nets. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and
Systems (IROS), 2011.

[9] V. Raman, A. Donzé, M. Maasoumy, R. Mur-
ray, A. Sangiovanni-Vincentelli, and S. Se-
shia. Model predictive control with signal tem-
poral logic specifications. 53rd IEEE Con-
ference on Decision and Control CDC Los
Angeles CA USA, pages 81–87, Dec. 2014.
doi:10.1109/CDC.2014.7039363.

[10] V. Raman, A. Donzé, D. Sadigh, R. Mur-
ray, and S. Seshia. Reactive synthesis from
signal temporal logic specifications. Hybrid
Systems: Computation and Control HSCC
Seattle WA USA, pages 239–248, Apr. 2015.
doi:10.1145/2728606.2728628.

[11] A. Richards, J. Bellingham, M. Tillerson, and
J. How. Coordination and control of multiple
uavs. AIAA Guidance Navigation and Control
Conference, 2002.

[12] M. Roberts, T. Apker, B. Johnson, B. Auslan-
der, B. Wellman, and D. W. Aha. Coordinating
robot teams for disaster relief. 28th Interna-
tional Florida Artificial Intelligence Research
Society Conference, 2014.

7

	Introduction
	Signal Temporal Logic
	Discrete-Time Systems
	Syntax
	Robust Satisfaction of STL formulas and MILP encoding

	Synthesization of STL specifications
	System Constraints
	Propositional calculus and linear integer programming
	Mixed Logical Dynamical Systems

	Signal Temporal Logic (STL) constraints
	Robustness-base encoding

	Results
	Conclusions

