
 

 

   

       
 

 

 

 

BEHAVIOUR OF COMPOSITE PLATES UNDER 
COMPRESSION 

  
 

 

Sven Stephan 
 

 

 
 

Thesis to obtain the Master of Science Degree in 

 Naval Architecture and Marine Engineering  
 

 

 
 

Examination Committee 

   

   
    

      

   

 

 

 

July 2016 

President of the Jury: 
Supervisor: 

Vogal: 

Prof. Yordan Garbatov 

Prof. Carlos Guedes Soares 

Dr. Leigh Sutherland 



 

 

 

 

 

 
 

  



 

 

 
 
 
 
 
 
 
 
 
 
 
 

DECLARAÇÃO 
 
 
 
 
 
 
Eu Sven Stephan, aluno do Instituto Superior Técnico nº ist179440, autor da dissertação para obtenção do Grau de 

Mestre em Engenharia e Arquitetura Naval, com o título Behaviour of Composite Plates under Compression 

concedo ao Instituto Superior Técnico uma licença perpétua, mas não exclusiva, para utilizar esta dissertação 

para fins de ensino ou investigação e autorizo-o a inseri-la, bem como ao seu resumo alargado, em formato pdf, 

na sua página da internet, com endereço www.tecnico.ulisboa.pt de modo a permitir a sua divulgação junto de 

todos os que acedam àquela página, e, com o mesmo propósito de divulgação, a responder favoravelmente aos 

pedidos de instituições de ensino ou de investigação e Centros de Documentação ou Bibliotecas, remetendo-lhes 

aqueles mesmos ficheiros em formato pdf, mas fazendo uma expressa menção, seja na sua página na internet 

seja quando da remessa atrás referida, à obrigação de quem assim aceda àquela minha dissertação e respectivo 

resumo alargado em salvaguardar os meus direitos de autor sobre estes documentos, que me são conferidos 

pelo Código do Direito de Autor e dos Direitos Conexos. 

 
 
 
Lisboa, a 14 de Julho de 2016 
 
 
 

O aluno n.º 79440 
 
 
_______________________________________________________________________________________________________

(Sven Stephan) 
 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In memory of Peter Jürgen Stephan  

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank  



 

 I 

 

 

ACKNOWLEDGEMENTS 
 

 
First and foremost, I would like to express my gratitude and appreciation to Navid Kharghani for 

his co-operation and help as my guide right from the inception of the problem to the final 

preparation of my master thesis. His profound knowledge of the presented subject and will to 

discuss made the submission of this work possible. 

I express my sincere thanks and appreciation to Professor Carlos Guedes Soares for his 

guidance, support and help during the time of the entire master degree.  

Furthermore, I want to thank all my colleagues and friends for their support and the great times 

we have had. 

Finally, I extend my gratitude to my mother Heike, my sister Anne and my girlfriend Laura for 

always standing by me and supporting me at all times.  

 

 

                                                                                                                                                   

Sven Stephan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank  



 

 III 

 

 

ABSTRACT 
 

 
Composite materials are widely used throughout different engineering fields for lightweight or 

high performance structures. The commercial use of these industries required analyses of 

various structural components as plates for example. This thesis handles an investigation about 

rectangular composite plates under uniaxial compressive loading comparing analytical and 

numerical calculations and practical experiments for pre- and post-buckling behaviour. Further, 

finite element analyses and mesh size analyses were computed to explore the impact of variation 

in element types and mesh sizes in the outcome of the numerical computations.  

Three different plate sizes were chosen. The boundary conditions of the glass reinforced plastic 

plate are clamped at the loaded edges and free at the unloaded edges (Clamped-Free-Clamped-

Free). The analytical calculations were developed on basis of the Classical Laminated Plate 

Theory (CLPT) and the First-Order Shear Deformation Theory (FSDT) as mathematical program 

codes in Maple. Numerical computations done in the finite element method (FEM) were 

conducted in Ansys. Practical experiments are done in a laboratory by applying equal boundary 

conditions. 

Comparisons of analytical, numerical and experimental results showed that the numerical 

method gives most accurate predictions, followed by FSDT, whilst CLPT is more suitable for 

thinner plates. However, all three approaches confirm experimental test result behaviour. The 

variation of element types revealed that lower order element types are sufficiently precise and 

are not as affected by mesh refinements. Generally recommended are element type Solid 45 and 

64 for uniaxial fibre direction composite plates, while Solid 46, as a layered element type, is in 

addition capable to be modelled in different fibre directions per layers.  

 

Keywords: composite materials, plates, buckling, Finite Element Method, FSDT, CLPT, element 

type analysis, mesh size analysis.  
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 V 

 

 

RESUMO 
 

 
O uso dos compósitos laminados é muito adoptado em diferentes ramos de engenharia como 

aplicações leves ou de alto desempenho. O uso comercial destas indústrias requereu análises 

de vários componentes estruturais, tais como placas por exemplo. Esta tese ocupa-se da 

investigação sobre placas rectangulares compósitas sujeitas a cargas não axiais compressivas 

de modo a comparar de análises analiticas, numéricas e experimentais no comportamento pre- 

e pós-encurvadura. 

Por isso, foram escolhidos três tamanhos diferentes de placas. No terminus da placa plástica 

reforçada com vidro as bordas com carga são fixadas, e soltas nas bordas sem carga (clamped-

free-clamped-free).  

Os cálculos analíticos foram desenvolvidos com base na Teoria Clássica de Placas Laminadas  

(CLPT) e a Teoria de Primeira Ordem da Deformaçao de Corte (FSDT) com códigos de 

programa matemáticas em Maple. Todos os cálculos numéricos foram feitas na base do Método 

dos Elementos Finitos realizado em Ansys. Além disso, os Tipos de elementos e as analises de 

dimensão de malha foram feita em Ansys. A parte prática foi feito num laboratório sob condições 

constantes.  

Os resultados mostraram que o método numérico deu as previsões mais precisos, seguido por 

FSDT, enquanto CLPT é mais adequado para as placas mais finas. No entanto, todas as três 

abordagens confirmam os resultados dos testes experimentais. A variação de tipos de 

elementos revelou que os elementos de ordem inferior são suficientemente precisos e não são 

tão afetados por refinamentos de dimensão de malha. Geralmente recomendado são os 

elementos do Tipo de Solid 45 e 64 para placas de compósitos de fibra de direção uniaxiais, 

enquanto Solid 46, como um tipo de elemento em camadas, é capaz de ser modelado em 

diferentes direções fibra por camadas. 

 

Palavras chave : materiais compósitos, encurvadura das placas, método dos elementos finitos, 

FSDT, CLPT, analise de dimensão de malha, analise de Tipo dos elementos finitos.  
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1 | INTRODUCTION 
 

 

1.1 Overview 

Composite materials in plate geometries are used widely throughout various engineering 

disciplines. Especially the shipbuilding, wind turbine and aerospace industry have strong interest 

in the advantages of composite materials. Those fibre-reinforced plastics (FRP) are a strongly 

emerging market with a bright future in lightweight and high performance structures.  

 

Modern Composite Materials consist of two or more identifiable different materials that show 

other mechanical properties when combined, than independent from each other. Typically, they 

consist of a matrix and a reinforcement material. The matrix material distributes the loads 

through the reinforcements and in between them. Further the matrix keeps the reinforcement 

materials in place. Composites can be of numerous different materials as they can vary in 

different types of matrix and in different types of reinforcements. [1]  

The most important advantage of composite materials is that their anisotropy or properties can 

be controlled effectively. This means that various mechanical properties can be achieved in 

different directions within one structural object. In order to do so, variables as fibre volume 

fraction, fibre direction and amount of layers can be varied. Longitudinal properties of laminates 

can be controlled by fibre properties, such as material choice and amount of reinforcements. The 

bond in between different layers in a laminate is generally assumed to be perfect. [2]  

This study focuses on unidirectional fibre composite plates to identify mechanical behaviour 

related to this specific axis. Further, the study handles a profound investigation on the numerical 

and analytical computation influences.  

With a small percentage of exceptions, the marine composite industry is usually defined by a low 

budget and relatively low requirement for weight reduction, compared with other composite 

industries as the aerospace for instance. [1] 

Marine composite materials are usually polymer matrix composites. More precisely the great 

majority in the marine industry are (FRP), containing glass fibres (“Glass Reinforced Plastics” - 

GRP). Depending on budget and application the quality of these GRP vary in form of different 

fibre materials, order and length of the glass fibres and the type of resin as a matrix. [1] 

In this study the focus lies on fibreglass reinforced marine composites, which are most commonly 

used in the yacht building industry (see table 1, page 17). More precisely the material chosen for 

this study is e-glass as reinforcement material in woven form and vinylester resin as matrix 

material. This combination of material is affordable and satisfies the requirements for the majority 

of the industry in terms of structural ability to weight ratio.  



 

 2 

 

Figure 1: Composite material sailing yacht “Encore” by Alloy Yachts. [3] 

 

The matrix material of vinylester brings advantages in form of superior corrosion resistance, 

better secondary bonding properties, better hydrolytic stability and excellent structural properties 

like fatigue and impact resistance. Vinylester is more expensive than polyester resin, but cheaper 

than the high performance epoxy resins. [1] 

E-glass fibre reinforcement material is one of the most affordable reinforcement materials in the 

industry. Its mechanical properties are relatively low compared to the more expensive materials 

like s-glass or carbon. However, e-glass fibres are satisfying the needs for most applications of 

the yacht building and marine industry. Only for projects with very high budget and in need of 

very high performance requirements or weight minimization, the expensive materials of carbon 

reinforcement fibres and epoxy resin are chosen. 

A detailed overview over the most common modern composite materials and their structural 

abilities can be found in [1].  

 

1.2 Objectives 

This study handles a detailed investigation about a specific buckling case of composite plates. 

The specific buckling case of a clamped-free-clamped-free composite material plate under 

uniaxial compression loading is investigated in three different ways. Analytical and finite element 
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analysis (FEA) computations are compared with the results of experimental laboratory tests. The 

analytical and numerical methods are in themselves investigated. By applying different plate 

theories to the analytical model and analysing different element types during the finite element 

calculations, this study presents the differences resulting from these options. In addition to that, 

this thesis handles an analysis of the influence of different mesh sizes during a finite element 

analysis.  

 

The aim of this thesis is to compare the analytical, numerical and experimental results of three 

different marine composite plate thicknesses for the buckling case. Throughout the calculations 

and experiments, the geometry and boundary conditions are held constant for each of the three 

plates.  

In order to achieve the goal of comparing and analysing the different approaches with each 

other, the scope of this thesis is distributed as follows:  

 

• First, analytical calculations are done using the software of Maple. As well classical 

laminated plate theory (CLPT), as first-order of shear deformation theory (FSDT) is 

applied to calculate out-of-plane deflections and maximum longitudinal strains resulting 

from in-plane deflections, also regarded as end-shortening.  

• The second step of this work is to perform a finite element analysis using the software of 

Ansys 11. Therefore, the composite plate is modelled and subjected to uniaxial 

compressive loading in form of in-plane end-shortening.  

• For comparison with realistic values, experimental tests of the previously simulated 

buckling cases are performed in the laboratory and documented precisely. 

• A comparison of different element types and mesh refinements of the group of structural 

3D elements in Ansys 11 is done.  

• Results are documented and compared with each other, as far as reasonable. 

• Finally, conclusions are stated based on the results of each chapter.  

 

 

2 | PLATE THEORIES 
 

 

Plates are defined as a structural element with plan form dimension that are large compared to 

its thickness. When uniaxial in-plane loads are applied to plates, it causes in-plane compression 

that is followed by a sudden lateral deflection of the plate when the load overcomes the critical 

buckling load. Because of its small thickness to in-plane dimension ratio is usually sufficient to 
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apply a 2D instead of a 3D model to the elasticity deformation relations. The two most relevant 

single layer theories (2D), which are applied in this study, are the following: 

 

• Classical Plate Theory (CLPT) 

• First-Order Shear Deformation Theory (FSDT) 

 

The CLPT theory is the simpler one of the two investigated. The theory was developed by 

Gustav R. Kirchhoff and is an extension of the Euler-Bernoulli Beam theory to composite 

laminated plates. [4] 

Based on the hypothesis of Reissner and Mindlin the theory of FSDT was developed. This theory 

is based on the CLPT theory and extended by removing the restriction that the transverse 

normals remain perpendicular to the mid-surface after deformation. A comparison of the two 

theories is graphically shown in figure 2. 

 

 

Figure 2: Undeformed and deformed plate for CLPT and FSDT. [5] 

 

The laminated plates are made out of plies, while each ply consists many parallel reinforcement 

fibres embedded in a matrix material. These special structural properties need to be taken into 

account in the calculations. Mathematical models discretize these aspects by considering the 

neutral axis and fibre direction of each ply. [6] 
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2.1 Classical Plate Theory (CLPT) 

The CLPT developed by Gustav R. Kirchhoff in 1850 is often also referred to as thin plate theory. 

The reason for this is that the theory is mostly suitable for thin plates or shell-like structures. This 

theory implies that the hypothesis of Kirchhoff holds, which consists of the following three 

parts.[6] 

 

 
• Straight lines perpendicular to the mid-surface of the flat plate remain perpendicular to 

the mid-surface after deformation.  

• The thickness of the plate is constant throughout the bending process. 

• The transverse normals to the mid-surface rotate in a way that they stay perpendicular to 

the mid-surface after deformation. 

 

These assumptions imply that the classical plate theory neglects transverse normals and shear 

stresses. This leads to a slight underestimation of buckling loads and deflection.  

 

Figure 3 shows the undeformed and deformed geometry of an edge of a plate under the 

assumption of the Kirchhoff hypothesis. 

 

 

Figure 3: Undeformed and deformed geometries of an edge of a plate under the assumptions of 

the Kirchhoff theory. [8] 
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2.1.1 Displacements and Strains 
The kinematic relation of displacements is expressed by the following set of equations (2.1 - 2.3). 

 

 
𝑢 𝑥, 𝑦, 𝑧 = 𝑢! x, y − z

∂w
∂x  (2.1) 

  

𝑣 𝑥, 𝑦, 𝑧 = 𝑣!(𝑥, 𝑦) − z
∂w
∂y  

 

(2.2) 

  

𝑤 𝑥, 𝑦, 𝑧 = 𝑤! 𝑥, 𝑦  

 

(2.3) 

 

where, u, v and z are the displacement components in x, y and direction respectively and 

𝑢!,  𝑣!,  𝑧! the displacements of the mid-surface in x, y and z direction respectively. [8] 

 

The strain-displacement relation including linear and non-linear strains are described by the 

following expression [9]: 

 

 
𝜀 =

𝜀!
𝜀!
𝛾!"

=
𝜀!,!
𝜀!,!
𝛾!,!"

+
𝜀!",!
𝜀!",!
𝛾!",!"

+ 𝑧
𝜓,!
𝜓!
𝜓!"

 (2.4) 

 

where 𝜀!  and  𝜀!  are the in-plane normal strains and   𝛾!"   the in-plane shear strain.  

 

The linear strain-displacement relation of classical plane elasticity theory is [9]: 

 

 

𝜀! =
𝜀!,!
𝜀!,!
𝛾!,!"

=

∂u!
∂x
∂v!
∂y

∂u!
∂y

+
∂v!
∂x

 (2.5) 

where 𝜀!,! , 𝜀!,!  and 𝛾!,!" are the mid-plane strains.  

 

The non-linear strain-displacement relation is [9]: 

 

𝜀!" =
𝜀!",!
𝜀!",!
𝛾!",!"

=

1
2
∂w!

∂x

!

1
2
∂u
∂y

!

∂w!

∂x
+
∂w!

∂y

 (2.6) 
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where 𝜀!",! , 𝜀!",!  and 𝛾!",!" are the non-linear strains which allow for large displacements. 

 

The bending strain-displacement relation is [9]: 

 

 

𝜓 =
𝜓,!
𝜓!
𝜓!"

=

−
∂!w!

∂x!

−
∂!u!
∂y!

−2
∂!w!

∂y ∂x

 (2.7) 

 

where 𝜓,! ,𝜓,!  and 𝜓,!" are the curvature changes of the mid-plane during deformations. 

 

This eventually leads to the strain expression in form of displacement as follows [9]: 

 

 

𝜀 =
𝜀!
𝜀!
𝛾!"

=   

∂
∂x 𝑢!
∂
∂y
𝑣!

∂
∂y
𝑢!

+

1
2
∂w!

∂x

!

1
2
∂u
∂y

!

∂w!

∂x
∂w!

∂y

+ 𝑧  

–
𝜕!𝑤!
∂𝑥!

−
𝜕!𝑤!
∂𝑥!

−2
𝜕!𝑤!
∂x ∂x

 (2.8) 

 

2.1.2  Material Law 
The stress-strain relation is given as follows [10]:  

 

 𝜎!
𝜎!
𝜏!"

=    𝑄
𝜀!
𝜀!
𝛾!"

=
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

𝜀!
𝜀!
𝛾!"

 (2.9) 

 

where [11]: 

 𝑄!! = 𝑄!!𝑐𝑜𝑠!𝜃 + 2 𝑄!" + 𝑄!! 𝑠𝑖𝑛!𝜃𝑐𝑜𝑠!𝜃 + 𝑄!!𝑠𝑖𝑛!𝜃 (2.10) 

 𝑄!" = (𝑄!! + 𝑄!! − 4𝑄!!)𝑠𝑖𝑛!𝜃𝑐𝑜𝑠!𝜃 + 𝑄!!(𝑠𝑖𝑛!𝜃 + 𝑐𝑜𝑠!𝜃) (2.11) 

 𝑄!" = (𝑄!! − 𝑄!! − 2𝑄!!)𝑠𝑖𝑛𝜃𝑐𝑜𝑠!𝜃 + (𝑄!! − 𝑄!! + 2𝑄!!)𝑠𝑖𝑛!𝜃𝑐𝑜𝑠𝜃 (2.12) 

 𝑄!! = 𝑄!!𝑠𝑖𝑛!𝜃 + 2 𝑄!" + 𝑄!! 𝑠𝑖𝑛!𝜃𝑐𝑜𝑠!𝜃 + 𝑄!!𝑐𝑜𝑠!𝜃 (2.13) 

 𝑄!" = (𝑄!! − 𝑄!! − 2𝑄!!)𝑐𝑜𝑠𝜃𝑠𝑖𝑛!𝜃 + (𝑄!! − 𝑄!! + 2𝑄!!)𝑐𝑜𝑠!𝜃𝑠𝑖𝑛𝜃 (2.14) 

 𝑄!! = (𝑄!! + 𝑄!! − 2𝑄!" − 2𝑄!!)𝑠𝑖𝑛!𝜃𝑐𝑜𝑠!𝜃 + 𝑄!!(𝑠𝑖𝑛!𝜃+𝑐𝑜𝑠!𝜃) (2.15) 

 

where 𝜃 is the lay-up angle of reinforcement. 
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and [10] 

 
𝑄!! =

𝐸!
1 − 𝑣!"𝑣!"

;   𝑄!" =
𝑣!"𝐸!

1 − 𝑣!"𝑣!"
;   𝑄!! =

𝐸!
1 − 𝑣!"𝑣!"

;   𝑄!! = 𝑄!"; (2.16) 

 

hence [10] 

 

 𝜎!
𝜎!
𝜏!"

=   
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

𝜀!,!
𝜀!,!
𝛾!,!"

+
𝜀!",!
𝜀!",!
𝛾!",!

+ 𝑧
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

𝜓,!
𝜓!
𝜓!"

 (2.17) 

   

 

2.1.3  Laminate Constitutive Equations 
Here, the relations between forces and moment resultants and strains are derived. We neglect 

the effects of temperature and piezoelectricity. Further, we assume that each layer obeys 

Hooke’s Law and that each ply is orthogonal with its symmetry lines.  

Since stresses throughout the laminate vary with each layer, it is convenient to simplify the 

system of layers to an equivalent system by integrating the corresponding stresses over the 

laminate thickness. 

 

In general form the membrane direct and shearing stress resultants per unit length N!, N! and 

N!" and the bending and twisting stress couples per unit length M!, M! and M!" are related to 

the in- and out-of-plane displacements as follows [11]. 

 

 N!
N!
N!"
M!
M!
M!"

=

𝜎!
𝜎!
𝜏!"
𝑧𝜎!
𝑧𝜎!
𝑧𝜏!"

𝑑𝑧

!
!

!!!

=    𝐴 𝐵
𝐵 𝐷

𝜀! + 𝜀!"
𝜓  (2.18) 

 

where [12] 

 

𝐴!" , 𝐵!" , 𝐷!" = 𝑄!"

!
!

!
!

1, 𝑧, 𝑧! 𝑑𝑧  ;𝑚, 𝑛 = 1,2,6 (2.19) 

   
This leads to the following normal force resultants with respect to the coordinate system [10]. 
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 𝑁!
𝑁!
𝑁!"

=
𝜎!
𝜎!
𝜏!"

!
!

!!
!

𝑑𝑧 =
𝜎!
𝜎!
𝜏!"

𝑑𝑧
!!

!!!!

!

!!!

 (2.20) 

 

Integrating the stresses multiplied with the lever arm to the mid-surface leads to the moment [10]. 

 

 𝑀!
𝑀!
𝑀!"

=
𝜎!
𝜎!
𝜏!"

!
!

!!
!

𝑧𝑑𝑧 =
𝜎!
𝜎!
𝜏!"

𝑑𝑧
!!

!!!!

!

!!!

 (2.21) 

 

The resulting normal forces are thus [10]: 

 

 𝑁!
𝑁!
𝑁!"

=
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

𝑑𝑧
𝜀!,!
𝜀!,!
𝛾!,!"

+
𝜀!",!
𝜀!",!
𝛾!",!"

!
!

!!
!

!

!!!

 

+
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

𝑑𝑧
𝜓,!
𝜓!
𝜓!"

!
!

!!
!

!

!!!

 

(2.22) 

 

hence [10] 

 

 

𝑁!
𝑁!
𝑁!"

=   
𝐴!! 𝐴!" 𝐴!"
𝐴!" 𝐴!! 𝐴!"
𝐴!" 𝐴!" 𝐴!!

∂
∂x
𝑢! +

1
2
∂w!

∂x

!

∂
∂y
𝑣! +

1
2
∂u
∂y

!

∂
∂y
𝑢! +

∂
∂x
𝑣! +

∂w!

∂x
∂w!

∂y

 

+
𝐵!! 𝐵!" 𝐵!"
𝐵!" 𝐵!! 𝐵!"
𝐵!" 𝐵!" 𝐵!!

–
𝜕!

∂𝑥!
𝑤!

−
𝜕!

∂𝑥!𝑤!

−2
𝜕!

∂x ∂x
𝑤!

 

(2.23) 

 

The resulting bending moments are thus [10]: 

 

 𝑀!
𝑀!
𝑀!"

= 𝑧
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

𝑑𝑧
𝜀!,!
𝜀!,!
𝛾!,!"

+
𝜀!",!
𝜀!",!
𝛾!",!"

!
!

!!
!

!

!!!

 

+ 𝑧!
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

𝑑𝑧
𝜓,!
𝜓!
𝜓!"

!
!

!!
!

!

!!!

 

(2.24) 
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hence [10] 

 

 

𝑀!
𝑀!
𝑀!"

=   
𝐵!! 𝐵!" 𝐵!"
𝐵!" 𝐵!! 𝐵!"
𝐵!" 𝐵!" 𝐵!!

∂
∂x
𝑢! +

1
2
∂w!

∂x

!

∂
∂y
𝑣! +

1
2
∂u
∂y

!

∂
∂y
𝑢! +

∂
∂x
𝑣! +

∂w!

∂x
∂w!

∂y

 

+
𝐷!! 𝐷!" 𝐷!!
𝐷!" 𝐷!! 𝐷!"
𝐷!" 𝐷!" 𝐷!!

–
𝜕!

∂𝑥!
𝑤!

−
𝜕!

∂𝑥!𝑤!

−2
𝜕!

∂x ∂x
𝑤!

 

(2.25) 

 

 
 

2.2 First-Order Shear Deformation Theory (FSDT) 

The FSDT developed by Reissner and Mindlin in 1951 relaxes the normality restrictions of the 

CLPT and therefore extends the kinematics. This means, that in FSDT arbitrary rotations of the 

transverse normals to the mid-plane are considered. Since the theory takes shear forces into 

account, it is more accurate than the classical theory. Depending on the relative plate thickness, 

the buckling load or deformations of the applied FSDT theory will always be higher than from of 

CLPT. 

 

Thus, the theory is based on the following assumptions [8]:  

 

• Straight lines perpendicular to the mid-surface of the flat plate remain perpendicular to 

the mid-surface after deformation.  

• The thickness of the plate is constant throughout the bending process. 

 

FSDT includes a gross transverse shear deformation in its kinematic assumptions. Shear strains 

are assumed to be constant with the distance from the mid-surface. The theory requires a shear 

correction factors (𝑘). This factor depends on lamination and geometric parameters and also on 

the loading and boundary conditions. It is chosen to be 𝑘 = 0.83. [8] 

The shear correction factor 𝑘 handles the discrepancy between the actual stress state and the, 

from the first-order shear theory predicted, constant stress state by multiplying the integrals in the 

shear force resultants calculation with a parameter 𝑘. [4] 
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2.2.1 Displacements and Strains 
The relation between in-plane and normal displacements is represented by the following set of 

equations (2.26 – 2.28). [8]  

 

 𝑢 𝑥, 𝑦, 𝑧 = 𝑢! x, y + zϕ!(𝑥, 𝑦) (2.26) 

  

𝑣 𝑥, 𝑦, 𝑧, 𝑡 = 𝑣! x, y + zϕ!(𝑥, 𝑦) (2.27) 

  

𝑤 𝑥, 𝑦, 𝑧 = 𝑤!(𝑥, 𝑦) (2.28) 

 

where u, v and z are the displacement components in x, y and z direction respectively, 

𝑢!,  𝑣!,  and  𝑧! the displacements of the mid-surface in x, y and z direction respectively and ϕ! , ϕ!   

rotations about the transverse normal about the x and y-axis respectively as shown in figure 4. 

 

 

Figure 4: Undeformed and deformed geometries of an edge of a plate under the assumptions of 

the Mindlin theory. [8] 

In the FSDT the strain vector implies the Green-Lagrange strain vector components in terms of 

the displacements with the non-linear strains included in the Von-Karman sense. [9]  

The strains depending on mid-plane displacements can be written as follows [12]: 

 𝜀
𝛾 =

𝜀!,!
0 +

𝜀!,!"
0 +

𝑧𝜀!
𝛾  (2.29) 
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The linear strain-displacement relation is [11]: 

 

 

𝜀! =
𝜀!,!
𝜀!,!
𝛾!,!"

=

∂u!
∂x
∂v!
∂y

∂u!
∂y

+
∂v!
∂x

 (2.30) 

 

 

The non-linear strain-displacement relation is [11]: 

 

 

𝜀!" =
𝜀!",!
𝜀!",!
𝛾!",!"

=

1
2
∂w!

∂x

!

1
2
∂u
∂y

!

∂w!

∂x
∂w!

∂y

 

 

 

 

 

(2.31) 

 

The bending strain-displacement relation is [11]:  

 

 

´ ψ =
𝜓,!
𝜓!
𝜓!"

=

!!!
!!
!!!
!!

!!!
!!

+
!!!
!!

 (2.32) 

 

The shear strain-displacement relation is [11]:  

 

 

𝛾 =
𝛾!"
𝛾!" =

ϕ! +
∂w!

∂y

ϕ! +
∂w!

∂x

 (2.33) 

 

This eventually leads to: 

 

 

𝜀 =
𝜀!
𝜀!
𝛾!"

=   

∂u!
∂x
∂v!
∂y

∂u!
∂y

+
∂v!
∂x

+

1
2
∂w!

∂x

!

1
2
∂u
∂y

!

∂w!

∂x
∂w!

∂y

+ 𝑧  

∂ϕ!
∂x
∂ϕ!
∂y

∂ϕ!
∂y

+
∂ϕ!
∂x

 (2.33) 
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and 

 

 

𝛾 =
𝛾!"
𝛾!" =

ϕ! +
∂w!

∂y

ϕ! +
∂w!

∂x

 (2.34) 

 

 

2.2.2 Material Law 
The stress-strain relation is given as follows [9]: 

 

 𝜎!
𝜎!
𝜏!"
𝜏!"
𝜏!"

=    𝑄

𝜀!
𝜀!
𝛾!"
𝛾!"
𝛾!"

=

𝑄!! 𝑄!" 0 0 𝑄!"
𝑄!" 𝑄!! 0 0 𝑄!"
0 0 𝑄!! 0 0
0 0 0 𝑄!! 0
𝑄!" 𝑄!" 0 0 𝑄!!

𝜀!
𝜀!
𝛾!"
𝛾!"
𝛾!"

 (2.35) 

 

where [11] 

 𝑄!! = 𝑄!!𝑐𝑜𝑠!𝜃 + 2 𝑄!" + 𝑄!! 𝑠𝑖𝑛!𝜃𝑐𝑜𝑠!𝜃 + 𝑄!!𝑠𝑖𝑛!𝜃 (2.36) 

 𝑄!" = (𝑄!! + 𝑄!! − 4𝑄!!)𝑠𝑖𝑛!𝜃𝑐𝑜𝑠!𝜃 + 𝑄!!(𝑠𝑖𝑛!𝜃 + 𝑐𝑜𝑠!𝜃) (2.37) 

 𝑄!" = (𝑄!! − 𝑄!! − 2𝑄!!)𝑠𝑖𝑛𝜃𝑐𝑜𝑠!𝜃 + (𝑄!! − 𝑄!! + 2𝑄!!)𝑠𝑖𝑛!𝜃𝑐𝑜𝑠𝜃 (2.38) 

 𝑄!! = 𝑄!!𝑠𝑖𝑛!𝜃 + 2 𝑄!" + 𝑄!! 𝑠𝑖𝑛!𝜃𝑐𝑜𝑠!𝜃 + 𝑄!!𝑐𝑜𝑠!𝜃 (2.39) 

 𝑄!" = (𝑄!! − 𝑄!! − 2𝑄!!)𝑐𝑜𝑠𝜃𝑠𝑖𝑛!𝜃 + (𝑄!! − 𝑄!! + 2𝑄!!)𝑐𝑜𝑠!𝜃𝑠𝑖𝑛𝜃 (2.40) 

 𝑄!! = (𝑄!! + 𝑄!! − 2𝑄!" − 2𝑄!!)𝑠𝑖𝑛!𝜃𝑐𝑜𝑠!𝜃 + 𝑄!!(𝑠𝑖𝑛!𝜃+𝑐𝑜𝑠!𝜃) (2.41) 

 

where 𝜃 is the lay-up angle of reinforcement 

and [10] 

 
𝑄!! =

𝐸!
1 − 𝑣!"𝑣!"

;   𝑄!" =
𝑣!"𝐸!

1 − 𝑣!"𝑣!"
;   𝑄!! =

𝐸!
1 − 𝑣!"𝑣!"

;   𝑄!! = 𝑄!" (2.42) 

 

This leads to the following stress-strain relation, while splitting it up into two parts, bending and 

shear. 

 

Bending stress-strain relation [10]: 
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𝜎!
𝜎!
𝜏!"

=   
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

∂
∂x 𝑢!
∂
∂y
𝑣!

∂
∂y
𝑢! +

∂
∂x
𝑣!

+ 𝑧
𝑄!! 𝑄!" 𝑄!"
𝑄!" 𝑄!! 𝑄!"
𝑄!" 𝑄!" 𝑄!!

∂ϕ!
∂x
∂ϕ!
∂y

∂ϕ!
∂y

+
∂ϕ!
∂x

 (2.43) 

 

Shear stress-strain relation [10]: 

 

 
𝜏!"
𝜏!" = 𝑘 𝑄!! 𝑄!"

𝑄!" 𝑄!!

𝛾!"
𝛾!" = 𝑘 𝑄!! 𝑄!"

𝑄!" 𝑄!!

ϕ! +
∂w!

∂y

ϕ! +
∂w!

∂x

 (2.44) 

 

where 𝑘 is the shear correction factor. 

 

2.2.3 Laminate Constitutive Equations 

In general form, the membrane direct and shearing stress resultants per unit length N!, N! and 

N!", the out-of-plane shearing stress resultants Q! and Q! per unit length and the bending and 

twisting stress couples per unit length M!, M! and M!" are related to the in- and out-of-plane 

displacements as follows. [10], [11] 

 

 N!
N!
N!"
M!
M!
M!"
Q!
Q!

=

𝜎!
𝜎!
𝜏!"
𝑧𝜎!
𝑧𝜎!
𝑧𝜏!!
𝜏!"
𝜏!"

𝑑𝑧

!
!

!!!

=   
𝐴 𝐵 0
𝐵 𝐷 0
0 0 𝐴!

𝜀! + 𝜀!"
𝜓
𝛾

 (2.45) 

 

where [11] 

 

𝐴!" , 𝐵!" , 𝐷!" = 𝑄!"

!
!

!
!

1, 𝑧, 𝑧! 𝑑𝑧      ;𝑚, 𝑛 = 1,2,6 (2.46) 

 

and [11] 
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𝐴𝑠!" = k 𝑄!"

!
!

!
!

𝑑𝑧      ;𝑚 = 4,5 (2.47) 

 

where 𝑘 is the shear correction factor. 

 

Following the same calculations as for CLPT to calculate the normal force, shear force and 

bending moment resultants can be expressed in terms of mid-plane displacements (𝑢!,   𝑣!, 𝑤!) 

by the following relations. 

 

The resulting normal forces are thus [10]: 

 

 

𝑁!
𝑁!
𝑁!"

=   
𝐴!! 𝐴!" 𝐴!"
𝐴!" 𝐴!! 𝐴!"
𝐴!" 𝐴!" 𝐴!!

∂
∂x 𝑢!
∂
∂y
𝑣!

∂
∂y
𝑢! +

∂
∂x
𝑣!

+
𝐵!! 𝐵!" 𝐵!"
𝐵!" 𝐵!! 𝐵!"
𝐵!" 𝐵!" 𝐵!!

∂ϕ!
∂x
∂ϕ!
∂y

∂ϕ!
∂y

+
∂ϕ!
∂x

 (2.48) 

 

The resulting bending moments are thus [10]: 

 

 

𝑀!
𝑀!
𝑀!"

=   
𝐵!! 𝐵!" 𝐵!"
𝐵!" 𝐵!! 𝐵!"
𝐵!" 𝐵!" 𝐵!!

∂
∂x 𝑢!
∂
∂y
𝑣!

∂
∂y
𝑢! +

∂
∂x
𝑣!

+
𝐷!! 𝐷!" 𝐷!"
𝐷!" 𝐷!! 𝐷!"
𝐷!" 𝐷!" 𝐷!!

∂ϕ!
∂x
∂ϕ!
∂y

∂ϕ!
∂y

+
∂ϕ!
∂x

 (2.49) 

 

The resulting shear forces are thus [10]: 

 

 𝑄!
𝑄!

= 𝑘 𝑄!! 𝑄!"
𝑄!" 𝑄!!

!!

!!!!

!

!!!

𝑑𝑧
𝛾!"!

𝛾!"!
 

= 𝑘 𝐴!! 𝐴!"
𝐴!" 𝐴!!

ϕ! +
∂w!

∂y

ϕ! +
∂w!

∂x

 

(2.50) 
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3 | EXPERIMENTAL PROGRAM 
 

 

To gain even more knowledge regarding the specific buckling case of this study, practical 

experiments are performed. In the experimental test laboratory three tests were performed, one 

for each plate thickness (7.92, 5.31 and 2.49 mm).  

 

In order to achieve compatible results, it is required to simulate the theoretical model as precise 

as possible and vice versa. Hence, it is of great advantage that scientists who study composite 

materials at Centro de Engenharia e Tecnologia Naval e Oceânica (CENTEC) benefit from the 

possibility of a experimental laboratory with several different test set-ups. The laboratory is  

capable of buckling experiments including the required clamped boundary conditions for this 

study. 

 

3.1 Specimen Specification 

Three different types of test specimens were ordered from the shipyard of Estaleiros Navais de 

Peniche SA in Portugal, in order to perform experimental plate buckling tests. Those three types 

of specimen plates have the same length and width but vary in their thickness. For each of those 

three thicknesses, all geometric specifications for the experimental tests are held constant 

throughout the computations for this work, in order to maximize comparability of results.  

The specimens are produced with the vacuum bagging method to gain a high fibre volume 

fraction and thus optimize structural abilities while reducing weight.  

3.1.1 Geometry 
The specimens are produced in the three following thicknesses: 

 

• 2.49 mm 

• 5.31 mm 

• 7.92 mm 

 

The length and width of the three plates are identical for each specimen. The delivered plates 

have the following base dimensions, as also shown in figure 5. 

 

• Real length: 320 mm (including clamped parts) 

• Length: 200 mm (+60 mm clamped boundary condition on each side) 

• Width: 50 mm 



 

 17 

 

Figure 5: Test specimen geometry without clamped ends. 

3.1.2 Specifications for Calculations & Tests 
The specifications of the test specimens used for numerical and analytical computations are 

based on real values as they are based on mechanical property tests made with the specimen 

material. 

 

• Reinforcement Material:  

o Fibre material: E-glass, 813 g/m2 per layer 
o Fibre constitution: Continuous, biaxial stitch 

o Producer/Company: Metyx Composites 

 

• Matrix Material: 

o Resin Material: Crystic VE679PA vinylester resin 

o Producer/Company: Scott Bader 
 

• Lay-up Specification: 
 

Table 1 describes the lay-up sequence for each of the three plate thicknesses. 

Table 1: Lay-up specification of test specimen 

Thickness 

[mm] 

No. of Layers 

[-] 
Ply Thickness [mm] Lay-up Sequence [°] 

2.49 3 0.830 0 ! 

5.31 6 0.885 0 ! 

7.92 9 0.880 0 ! 
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• Material Properties: 

o Young’s Modulus: 𝐸1 = 26400 MPa, 𝐸2 = 25200, 𝐸3 = 3000 MPa  

o Poisson Ratio: 𝑣12 = 0.24, 𝑣13 = 0.50, 𝑣23 = 0.06 

o Shear Modulus: 𝐺12 = 2200 MPa, 𝐺23 = 𝐺13 = 1200 MPa 

 

3.2 Experimental Procedure  

Prior to a practical experiment, a procedure shall be planned to avoid unnecessary errors and to 

make sure that all results are acquired following the same procedure. For this study, the following 

procedure was implemented throughout all three runs of the experiment. 

 

The experimental procedure involves the following stages. 

 

1. Preparation of specimen 

a. Preparing for strain gages (sanding, cleaning)   

b. Attaching strain gages to specimen (Gage type: 10 mm with two lead wires and 

120 Ω resistance). 

2. Installing of specimen in apparatus 

a. Attaching upper and lower clamps  

b. Correcting slight imperfections as far as possible 

3. Installing dial gages 

4. Attaching strain gages to computer 

5. Start of hydraulic pump 

6. Start of experiment (with connected software) 

a. Input speed of load cell 

b. Record video  

c. Take note of results 

7. End of experiment 

a. Set load cell back to initial position 

b. Stop hydraulic pump 

c. Unscrew specimen and strain gages 
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3.3 Experimental Test Set-up 

The apparatus of the composite material test laboratory is capable of applying the required 

boundary conditions of clamped ends to the test specimen. Further, it is possible to measure the 

in-plane displacements and the therefore resulting force applied to the plate. In order to measure 

the out-of-plane displacements we installed dial gauges on both sides of the installed test 

specimen to be prepared for the buckling case in any direction. The needles of the gauges were 

pointed perpendicular to the centre of the specimen surface to measure precisely lateral 

deflections.  

To measure the longitudinal tensile and compressive strains, strain gauges were attached onto 

the centre of the specimen surface on both sides prior to the tests and connected to the 

computer to collect their measurements. A picture of the apparatus is shown in figure 6. 

 

 

Figure 6: Apparatus and test set-up of the practical experiment. 
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4 | BUCKLING OF COMPOSITE PLATES 
 

Buckling is a sudden failure case that can occur to a plate, a column or a bar that are subjected 

to normal loading. When this load exceeds a critical load value, sudden deflections and thus 

buckling occurs. In this chapter, this type of failure is specifically explained for the application in 

this study, which means buckling for composite plates under uniaxial compressive loading. 

 

Buckling as a very important failure mode can be analysed in different ways in order to predict 

structural behaviour under compressive loading. To analyse structural components, researchers 

and engineers make most commonly use of tools like finite element analyses or analytical 

mathematical models. Another common possibility is to perform experimental tests. These tests 

are often combined with analytical or numerical calculations to validate theoretical results and 

possibly identify errors. 

 

With the increasing use of laminated composite plates in various industries, the accurate 

knowledge of critical buckling loads, mode shapes and post-buckling behaviour is essential for 

the design process. The yacht building and marine industry often uses thin plate elements that 

are subjected to normal compression forces. Figure 7 shows the discretised model applied to this 

kind of problem for numerical and analytical computations. 

 

 

Figure 7: Rectangular plate subjected to in-plane edge loading. [4] 

 
This input in form of in-plane forces or equivalent in-plane end-shortening causes deformations in 

different size and directions. If the input is small enough to result in in-plane displacements only, 

the state is described as stable (Case I in figure 8). As the magnitude of the input increases and 

reaches the critical buckling load, the state of equilibrium is so called neutral (Case II in figure 8). 
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Here, any increase of load input would lead to a sudden out-of-plane deflection. This state of 

equilibrium in case of an increase in input and the related deflection in z-direction is unstable 

(Case III in figure 8). [4] 

 

 

Figure 8: Buckling States of Equilibrium. [4]  

 

Every buckling process that leads from a stable to an unstable equilibrium passes through a 

neutral state. This point is also called point of bifurcation (see figure 9) and is a very important 

point in structural design since engineers are trying to avoid exceeding this value. This critical 

buckling load splits buckling into pre- and post buckling. [4] 

 

 

Figure 9: State of Bifurcation. [4] 
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However, the structure can still withstand greater loads before a total failure of the structural 

element occurs. The post-buckling analysis of flat plates is a difficult subject, since it is a non-

linear problem that includes large deformations. [4] 

 

Buckling can occur in different so called buckling modes (see in in figure 10). Each buckling 

mode is related to a different critical buckling load. In this study only the buckling mode for 𝑛 = 1 

is considered, since it relates to the smallest load or equivalent end-shortening. [4] 

 

 

Figure 10: Buckling mode shapes of a clamped-clamped column. [4] 

 

4.1 State of the art 

While the main purpose of a buckling analysis generally is to predict the critical buckling load of 

structures, it is also very important to predict post-buckling behaviour. To do so, there are several 

different techniques and mathematical models to be chosen from. The two main categories are 

analytical and numerical calculations. Each of these two types offers many options within the 

method, in order to customize the analysis to special needs. 

The most common way to perform a numerical analysis is to make use of finite element models. 

They have become one of the most accurate and thus widely used methods. Almost any 

geometry can be modelled and computed to the designer’s preferences. However, the finite 

element method is not necessarily a problem free procedure. Shear locking of elements is the 

likeliest source of errors in finite element analysis that leads to higher buckling loads. [19]  

 

In linear buckling analyses, the critical buckling loads are obtained by solving the eigenvalue 

problem of the stiffness matrix. Each eigenvalue is related to a critical buckling load of a specific 

buckling mode shape respectively. The smallest eigenvalue corresponds to the buckling initiation 
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value and usually to the mode shape of n=1 as shown in figure 5. An eigenvalue extraction 

algorithm suggested is Lanczos. It extracts multiple orders of eigenvalues in an efficient manner.  

Linear buckling analyses neglect geometrical imperfection and thus usually overestimate the 

carrying capacity slightly. Since linear buckling models are highly efficient in computing terms, 

they are widely used to predict structural performance. [19] 

Post-buckling analyses involve large deformations and need to apply a non-linear algorithm to 

predict structural behaviour. The main limitation of a non-linear analysis is the highly ineffective 

process of iteration during solving. [19]  

For rather simple geometries, as the one present in this study, it is very common to make use of 

non-linear analysis because of the higher accuracy of results. 

A more computing efficient alternative to numerical finite element models with acceptable 

accuracy are analytical methods. The majority of these methods are approximation models, 

which employ the energy principle to predict the critical buckling load or end-shortening value of 

structures. Commonly applied methods are the Rayleigh-Ritz, Galerkin or the Finite Strip 

method. Each of those methods implies orthotropic or anisotropic plate buckling theory for 

laminates, which are symmetrically stacked around the mid-plane axis. Unsymmetrically stacked 

laminates need more complicated models since they imply bending-stretching coupling. [19] 

The Rayleigh-Ritz method is based on the energy variational principle. According to the theory, 

the potential energy should be minimal to make the equilibrium stable. Therefore, the derivatives 

of the potential energy with respect to the so called Ritz-Coefficients is set equal to zero and 

solved with a non-linear solving method. A crucial step in this method is the choice of 

displacement function because of their great influence on the final results. These functions can 

be of polynomial, trigonometric, hyperbolic or of spline type.  

 

Several researchers study buckling and post-buckling behaviour of laminated composite plates. 

However, the specific combination of boundary conditions (CFCF) is rarely studied. A lot of 

information was found on finite element analysis of buckling of laminated composite plates with 

the software package of Ansys. 

 

With respect to the chosen methods in this study, the most relevant milestones were set by the 

following list of studies. 

 

In 1985, Leissa presented a report called “Buckling of Laminated Composite Plates and Shells”, 

which summarizes the technical literature on the subject to that date. It lists up several possible 

analytical approaches, governing differential equations, boundary conditions and types of shape 

functions. [14] 
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Seven years later, Dawe and Lam presented a “Non-linear Finite Strip Analysis of Rectangular 

Laminates under End-Shortening, using Classical Plate Theory”. For the finite strip analysis 

trigonometric shape functions are applied for the deflection shape assumptions. [15] 

Turvey and Marshall published in 1995 the book called “Buckling and Post-buckling of Composite 

Plates”, which puts the work of leading researches together and describes in detail the 

established mathematical models and theories. Especially the Rayleigh-Ritz theory, plate 

theories are explained in detail with worked examples. [6] 

The second edition of the book "Marine Composites" from Green in 1999 is a well rounded guide 

to overall knowledge of modern composite materials and its applications. The design processes 

are described in detail and structural abilities of various composite materials are listed up in great 

detail. [1] 

In 2006, Bhagwan and colleagues published a book with the title “Analysis and Performance of 

Fibre Composites”. It provides the fundaments for mechanical calculations of composite 

structures and contains various worked examples for analytical and numerical calculations with 

detailed explanation. [2] 

The following year, Reddy published the 2nd version of his book “Theory and Analysis of Elastic 

Plates and Shells”. It is a very complete guide to the subject of buckling of various geometric 

shapes and methods. [8] 

In 2009, Yang released his master thesis “Simplified Approaches to Buckling of Composite 

Plates” in which he presents a simplified analytical approach for the plate theories of CLPT, 

FSDT and Higher-Order Shear Deformation Theory in combination with the potential energy 

minimization of Rayleigh-Ritz. The applied shape functions are of trigonometric type. The 

boundary conditions applied in the study are either completely clamped or simply supported. The 

mathematical model is limited to linear strains and the input is chosen to be of load type. A finite 

element analysis is done with the software of Ansys and a comparison with the analytical results 

is presented. [10] 

In the same year, Kharazi and Ovesy published a paper on buckling of laminated composite 

plate buckling and delamination. Theories of CLPT, FSDT and HSDT are applied to a 

mathematical model in combination with polynomial shape functions. The Rayleigh-Ritz 

minimizing potential energy method is applied to solve the buckling problem. The mathematical 

model makes use of end-shortening as input. [9, 20, 21] 

Barbero released in 2010 the 2nd edition of his book “Introduction to Composite Materials 

Design”. It contains mechanical design of composite structures, fundamental knowledge of 

composite materials and explanations of modern procedures to produce composite materials. 

[16] 

In 2010, Ovesy and Kharazi published a conference paper called “Buckling of Composite 

Laminates with Through-The-Width Delamination Using a Novel Layerwise Theory”. The work 
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applies FSDT and polynomial shape functions in combination with the Rayleigh-Ritz method to a 

mathematical model. Further, it makes use of Green-Lagrange non-linear strains and end-

shortening as input. [11] 

Further, Xu and Zhao released in 2013 a paper about “A Critical Review on Buckling and Post-

Buckling Analysis of Composite Structures”. The article lists up the most common approaches to 

buckling analyses with its advantages and disadvantages. [7] 

In 2014, Pankajkumar released his master thesis with the title “Free Vibration and Buckling 

Behaviour of Laminated Composite Panels under Thermal and Mechanical Loading". The work 

consists analytical calculations including CLPT and FSDT as well as numerical computations 

done in Ansys. [5] 

 

No research was found on the analytical approach of applying trigonometric shape functions with 

the Rayleigh-Ritz method in combination with the present boundary conditions and end-

shortening as input. Therefore, it is safe to say that the present study fills a gap in research. 

 

4.2 Buckling Analysis  

4.2.1 Analytical Approach 
Based on the theoretical foundations of chapter 2 mathematical computation code in the software 

of Maple is written. The code is divided in two different programs, one applying the theory of 

CLPT and the other FSDT. Each of the programs are performing computations based on the 

same boundary conditions and same energy variation principle. The purpose of the development 

of two programs, which only vary in the applied plate theory, is to compare the influence of the 

theories on the final results. 

The mathematical code uses uniaxial compressive end-shortening as input. It is further capable 

of computing not only buckling initiation but also post-buckling behaviour. To calculate the 

minimum buckling load, the minimizing potential energy method of Rayleigh-Ritz is chosen. The 

problematic of non-linearity is eventually solved by applying the Newton-Raphson method. The 

following graphic in figure 11 shows a 2D schematic of the mathematical model including the 

applied end-shortening. 

 

 

Figure 11: Clamped-clamped plate under uni-axial compressive load. [10] 
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Boundary conditions for both plate theories are equal and of clamped-clamped type. The 

unloaded opposing two edges of the rectangular plate are free. This particular set of boundary 

conditions can be described as “clamped-free-clamped-free”. With two “free” edges, the problem 

can be simplified to a 2D model of deflections while it has to contain the mechanical properties of 

a 3D plate. Typically, the buckled shape of the first buckling mode is as in figure 12.  

 

 

Figure 12: First buckling mode shape of a clamped-clamped column. [10] 

 

The boundary conditions of the four plate edges are split up in two different types for each edge, 

geometrical (5.1, 5.2) and statical (5.3 – 5.6) boundary conditions: 

 

o Geometrical Boundary Conditions (Edge displacement in z-direction) [4]: 

  

𝑤 𝑥 = 0 =
∂w
∂x

= 0 
(4.1) 

  

𝑤 𝑥 = 𝑎 =
∂w
∂x

= 0 
(4.2) 

 

o Statical Boundary Conditions (Edge moment and edge shearing force in y-direction) [4]: 

  

𝑀! 𝑦 = 0 =
𝜕!𝑤
∂𝑥!

+ 𝑣
𝜕!𝑤
∂𝑦!

= 0 
(4.3) 

 

 

 

 

𝑀! 𝑦 = 𝑏 =
𝜕!𝑤
∂𝑥!

+ 𝑣
𝜕!𝑤
∂𝑦!

= 0 

 

(4.4) 
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𝑣! 𝑦 = 0 =

𝜕!𝑤
∂𝑥!

+ (𝑣 − 2)
𝜕!𝑤
∂x ∂𝑦!

= 0 (4.5) 

  

𝑣! 𝑦 = 𝑏 =
𝜕!𝑤
∂𝑥!

+ (𝑣 − 2)
𝜕!𝑤
∂x ∂𝑦!

= 0 

 

(4.6) 

 

4.2.1.1 Calculations with CLPT Method 

For both plate theories the energy method of Rayleigh-Ritz is chosen in order to solve the 

buckling problem. This method requires an initial assumption for the deflection shapes. The two 

most common approaches for this solution are polynomial and trigonometric terms. As advised 

by [4], the shape functions of the assumed solution are chosen of trigonometric type. Further, we 

neglect the term that describes the shape function in y-direction, since we assume the critical 

buckling load will occur without deformations in y-direction.  

 

A trigonometric out-of-plane deflection shape function in z-direction that satisfies the given 

boundary conditions is [4]: 

 

 
𝑤 = 𝑐! 𝑐𝑜𝑠

2𝑖𝜋𝑥
𝑎

− 1
!

!!!

 (4.7) 

 

The expression of the in-plane displacement in x-direction is assumed to be the following [15]:  

 
 

𝑢 = −
𝑒𝑝
𝑎
∗ 𝑥 + 𝑑!   𝑠𝑖𝑛

𝑖𝜋𝑥
𝑎

!

!!!

 (4.8) 

 

where 𝑒𝑝 is the applied end-shortening. 

 

where the so called Ritz-Coefficients 𝑐! and 𝑑! need to be determined to receive the final shape 

function including its amplitude. The choice of the shape function is of major importance for the 

quality of the final result of the buckling problem. 

Results are also highly dependent on the amount of degrees of freedom. If a high number of 

degrees of freedom is chosen, the results will be of high accuracy but computation time will be 

less efficient. Are they chosen too low, then the results are most likely too low. It is important to 

find a compromise related to this variable that leads to sufficient accuracy. In this study the 

amount of degrees of freedom is chosen to be seven 𝑀 = 7). 
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In order to apply the Rayleigh-Ritz Method, it is required to formulate the energy functional. The 

strain energy of laminated plates is given matrix form in the following equation [6]. 

 

 
Π =

1
2

𝜀
𝜓

! 𝐴 𝐵
𝐵 𝐷

𝜀
𝜓 = 0 (4.9) 

 

where 𝐴!" ,  𝐵!"  and  𝐷!" are the stiffnesses over the thickness of the laminated composite plates. [6] 

The composite plates of this study are of especially orthotropic laminate type. For this type, the 

equations allow us to be simplified as follows [10]: 

 

 𝐴!" = 𝐴!" = 0 (4.10) 

 𝐵!" = 0 (4.11) 

 𝐷!" = 𝐷!" = 0 (4.12) 

 

Taking these assumptions into account, the energy equation eventually becomes: 

 
Π =

1
2

𝐴!!𝜀!!
!

!
+ 𝐴!!𝜀!"! + 2  𝐴!!𝜀!𝜀!" + 𝐷!!𝜓!

!

!
𝑑𝑦  𝑑𝑥 (4.13) 

 

The method of Rayleigh-Ritz requires for the equilibrium that the potential energy term derived to 

each of the Ritz-Coefficients is equal to zero [6]. 

 

 𝜕Π
𝑤!

= 𝛿𝑤! = 0 (4.14) 

 

Thus [6], 

 

 𝜕Π
𝑤!

= 0 (4.15) 

 

After deriving the potential energy functional with respect to every degree of freedom, a set of 

equilibrium equations result. These equations are of non-linear type and need to be solved with 

an appropriate method. For this study, the Newton-Raphson iterative method is chosen to solve 

the equations. To receive converging results for all degrees of freedom, it is necessary to make 

initial estimated of sufficient quality. 
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Once the non-linear global equilibrium equations are solved for a chosen value of end-

shortening, the shape initially introduced estimate functions of 𝑤 and 𝑢 can be calculated and 

plotted.  

The CD handed with this dissertation includes the full Maple computation code of the CLPT, 

which includes every detail of the computations. 

 

4.2.1.2  Calculations with FSDT Method 

The boundary conditions of the four plate edges are the same as for CLPT. For best 

comparability, it is also chosen Rayleigh-Ritz energy minimization method to solve the problem. 

 

The out-of-plane buckling shape function in z-direction of trigonometric type is chosen to be the 

following [4].  

 

 
w = 𝑐! 𝑐𝑜𝑠

2𝑖𝜋𝑥
𝑎

− 1
!

!!!

 (4.16) 

 

The expression of the in-plane displacement in x-direction is assumed to be the following [15]. 
 
 

u = −
𝑒𝑝
𝑎
∗ 𝑥 + 𝑑!   𝑠𝑖𝑛

𝑖𝜋𝑥
𝑎

!

!!!

 (4.17) 

 

The expression of the rotation about the x-axis is assumed to be the following [15].  
 
 

ϕ! = 𝑒 𝑖   𝑠𝑖𝑛
𝑖𝜋𝑥
𝑎

!

!!!

 (4.18) 

 

As previously for CLPT, the Ritz-Coefficients (𝑐,𝑑  and  𝑒) need to be determined for every degree 

of freedom to receive the final shape function depending on the amount of degrees of freedom.  

 

The energy functional needs to be formulated to apply the Rayleigh-Ritz. The strain energy of 

laminated plates is given in matrix form in the following equation [6]. 

 

 
Π =

1
2

𝜀
𝜓
𝛾

!

  
𝐴 𝐵 0
𝐵 𝐷 0
0 0 𝐴!

𝜀
𝜓
𝛾

= 0 (4.19) 
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where 𝐴!" ,  𝐵!"  and  𝐷!" are the stiffnesses over the thickness of the laminated composite plates.[6] 

As previously for the CLPT method, the composite plates of this study are of especially 

orthotropic laminate type. For this type the equations allow us to be simplified as follows [10]: 

 

 𝐴!" = 𝐴!" = 0 (4.20) 

 𝐵!" = 0 (4.21) 

 𝐷!" = 𝐷!" = 0 (4.22) 

 

Eventually, the energy expression for the method of FSDT becomes: 
 
 

Π =
1
2

𝜀!!𝐴𝜀!
!

!
+ 𝜀!!𝐴𝜀! + 𝜀!!𝐵𝜀!+𝛾!𝐴!𝛾

!

!
𝑑𝑦  𝑑𝑥 (4.23) 

 

The method of Rayleigh-Ritz requires for the equilibrium that the potential energy term derived to 

each of the Ritz-Coefficients is equal to zero [6]. 

 

 𝜕Π
𝑤!

= 𝛿𝑤! = 0 (4.24) 

 

Thus [6], 

 

 𝜕Π
𝑤!

= 0 (4.25) 

 

 

As for the CLPT method, this results in a set of non-linear equations that are required to be 

solved for the final result. 

After applying the Newton-Raphson iterative method, the non-linear global equilibrium equations 

are solved for a chosen value of end-shortening. In the next step, the shape initially introduced 

estimate functions of 𝜙! , 𝑤 and 𝑢 can be calculated and plotted.  

 

The CD handed with this dissertation includes the full Maple computation code for the FSDT, 

which includes every detail of the computations. 
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5 | FINITE ELEMENT INVESTIGATIONS 
 

5.1 Principles of Finite element method 

 

The finite element analyses (FEA) performed in this thesis are based on the software of Ansys, 

version 11. This software enables the user to make use the finite element computational 

technique via a user interface. This chapter briefly outlines the theoretical foundations of the 

main computation procedures. 

 

Finite element methods are computation techniques that approximate solutions. Therefore, in the 

software any physical structure is represented in form of elements. Depending of the aim of 

analysis and of the physical characteristics different element types and geometric 

representations can be chosen from.  

A finite element computation usually requires at least three types of input, geometry, material 

values and a form of loading. The finite element program transforms the input of this information 

to an element stiffness matrix. The size of the stiffness matrix depends on the chosen mesh size 

and element type. The material constants reflect the resistance of the element to deformation 

that results from the loading.  

 

The three main steps during a FEA are [13]: 

1. Pre-processing: The user develops geometry of the model that is aimed to be analysed. 

Then this model is refined in sub regions, depending on the element type and mesh 

refinement. 

2. Analysis: The finite element software uses the dataset of the pre-processor as input to 

the finite element code itself. Depending on the analysis type a system of linear or non-

linear equations is constructed and solved. 

 

 𝐾!" 𝑢! =    𝑓!  (3.1) 

 

Where 𝐾!"  is the element stiffness matrix, 𝐹!  is the vector of applied forces and 𝑢!  the 

displacements. The stage of Analysis is a very crucial step during a buckling analysis and should 

be split up in three steps. 

 

• Static Linear: This type of analysis assumes the structure and thus the finite 

element model to behave linearly. Further, only small deflections are considered. 
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• Static Eigenvalue Buckling: This analysis represents the buckling analysis 

according to Euler. It predicts the critical buckling strength of the finite element 

structure. During this type of Analysis different eigenvalues are computed. Each 

of those eigenvalues represents the critical buckling load for a related buckling 

mode.  

• Static Non-Linear: This analysis type takes non-linearity into account. This non-

linearity can represent material, geometric or contact properties. Large 

deformations are considered. This analysis type is the especially important for a 

post-buckling analysis and thus fundamental for this study. The resulting system 

of non-linear equations is solved by implementing the Newton-Raphson method. 

 

3. Post-processing: In this stage the results of the Analysis are transformed into useful 

data. The broad set of acquired numbers is transformed to nodal displacements, reaction 

forces, stresses, strains, etc. 

 

5.2 Finite Element Buckling-Analysis 

 

Figure 13: Flow chart load of model in the software of Ansys. 

Choice of Element Type and Input of Orthotropic Material Properties 

Modelling and Meshing of the Laminate 

Extrusion of single Layers to final Lay-Up  

Input of Load in form of Displacements and Boundary Conditions 

Analysis: 
1.Linear Satic 

2.Eigen Bucking 
3. Nonlinear Static 

Postprocessing of Results 
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A series of finite element computations are realized with the same input data of the composite 

plates previously described in the specimen specifications. The software chosen for this 

simulation is the software package of Ansys version 11. Ansys is a powerful finite element 

computation tool with a great range of element types. With the purpose of verifying and 

comparing the previous analytical methods, a finite element model is developed as described in 

this chapter. The main procedure in the program of Ansys is described by the following flow 

chart. 

5.2.1 Finite Element Model 
The development of a finite element model involves many steps, in which choices are needed, 

that can influence the final results drastically. Therefore, this chapter lists up the most important 

necessary steps and settings in the computation procedure. The CD handed with this 

dissertation includes the detailed description in form of a command history of the procedure and 

the involved choices. The following procedure is modelled and computed in Ansys APDL. 

 

1. The first crucial step during the finite element modelling is the choice of an element type. 

Chapter 6 handles a detailed study on the different relevant Solid 3D structural element 

types of the software. For this chapter, the computing efficient and accurate element type 

of Solid 46, which is a layered version of Solid 45, is chosen.  

 

2. Material properties are brought into the model as “linear – elastic – orthotropic”. The 

material properties can be found in the specimen specification of chapter 4.2. 

 

3. In the next step, it is necessary to develop the plate geometry. This can be achieved in 

various different ways with the exact same result. Here, it was chosen to model the 2D 

geometry of the composite plates plane area at first and extrude it afterwards to achieve 

a 3D model. Each ply of the composite plate is modelled separately. In a later step of the 

model the single plies are merged together by merging their nodes. In this model the 

geometry is modelled including the clamped parts of the real tests specimen resulting in 

an additional length of 60 mm on each loaded edge. The centre of the coordinate system 

is chosen to be in the centre of the plates surface. 

 

4. Meshing of the model is another crucial point during the development of a finite element 

model. The mesh should be chosen not too fine, not too coarse in order to achieve high 

accuracy and acceptable computation time. Chapter 6 handles a detailed study 

regarding the mesh size. In rather complex geometries, it makes sense to define parts 

with finer or coarser mesh areas to optimize computation times and results. In this study 
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however, the geometry is constant and no mesh simplifications can be allowed. The 

mesh size was chosen to of 1 mm space in between each node in x- and y-directions. In 

z-direction the mesh is chosen to be depending on the ply thickness and thus be one 

element per composite ply. 

 

5. Boundary conditions are of major importance to simulate the same conditions as in 

analytical and in experimental approach. In Ansys this is commonly done by constraining 

displacements and rotations. This can be achieved by applying “structural 

displacements” on chosen nodes. In this particular model the geometry and the 

constraints in displacement are applied to the nodes of the additional length of the 

clamped parts of the plates. This aims to simulate the boundary condition of the 

clamped-clamped test apparatus of the experimental tests. In this stage of modelling, the 

end-shortening is assigned to the model. A total value of 2 mm in end-shortening is split 

up equally on the opposing loaded edges.  

 

The applied structural displacements to the model are the described as follows and are 

shown graphically in figure 14. The two opposing loaded edges are clamped while a 

displacement in x direction is applied on each side of 1 mm (2 mm total displacement). 

In the FEA software of Ansys this is simulated by applying structural displacement as 

follows. 

 

i. At nodes from +100  𝑚𝑚  to + 160  𝑚𝑚 the displacements applied are: 𝑈𝑍 =

0  𝑚𝑚, 𝑈𝑋 = −1  𝑚𝑚 on all nodes and 𝑈𝑌 = 0  𝑚𝑚 on the centre nodes (𝑦 =

0  𝑚𝑚) only.  

ii. At nodes from −100  𝑚𝑚  to − 160  𝑚𝑚 the displacements applied are: 𝑈𝑍 =

0  𝑚𝑚, 𝑈𝑋 = +1  𝑚𝑚 on all nodes and 𝑈𝑌 = 0 mm on the centre nodes (𝑦 =

0  𝑚𝑚) only. 

 

 

       
Figure 14: Applied boundary conditions in form of structural displacements in mm for a clamped-

free-clamped-free plate in Ansys. 
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At this stage the modelling part is finished and a range of analyses are possible. For this 

study, it is chosen a combination of three types of analyses that need to be executed in the 

following order.  

 

6. In the first step of the analyses, a static analysis is executed.  

 

7. Once the solution is completed, the static analysis is followed by an eigenvalues buckling 

analysis. Here the “Block Lanczos” method is chosen in combination of five buckling 

modes. 

 

8. The buckling eigenvalue analysis is followed by a large-deflection, non-linear analysis. A 

total of 20 sub-steps are chosen. For the solving process of the convergence analysis a 

maximum of 150 iterations per sub-step is determined. Following this procedure, the 

outcome is the final results of the finite element analysis. 

 
 

 

5.3 Calculations in Ansys: Element Analysis 

During a finite element analysis in Ansys 11, one gets confronted with the choice of element 

type. Different element types usually result in varying results. Consequently, it is of utmost 

importance to understand the differences of element types and their most suitable applications. 

For the present problem the list of available elements is already narrowed down by the physical 

field of Structural Analysis. 

Solid elements in Ansys are elements with displacements of degrees of freedom only, which 

means that no rotational degrees of freedom are possible. The Solid element types in the 

Program of Ansys 11 are split up into three main groups. [17] 

 

• Shell 2D 

• Plane 2D 

• Solid 3D 

 

In this study, only the third group of Solid 3D elements are investigated. The relevant Solid 3D 

element types in the software of Ansys 11 to be investigated are the following. [17] 

 

• Solid 45 

• Solid 46 

• Solid 185 
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• Solid 186 

• Solid 95 

• Solid 64 

 

5.3.1 Approach 
An investigation of this kind has to be performed under the same conditions each time. 

Consequently, a procedure is chosen according to the finite element analysis explained in 

chapter 5.3  

Boundary conditions and mesh sizes are held constant throughout this experiment and is chosen 

to be as described earlier on in Chapter 5.3. In addition, one of the three previously investigated 

plate thicknesses is chosen for this subject 

As an initial mesh size the corner lengths of 1x1 millimetres squares are chosen in the directions 

of x and y. This results in an overall amount of 320 and 50 elements in the directions of x and y 

respectively. The 5.31 mm thick plate enclosing 6 layers of composite fibres is assumed to be 

most suitable for this comparison. Accordingly, to the lay-up a total amount of 6 elements in z-

direction is chosen with an edge length of 0.885 mm of each element. 

 

5.3.2 Element Type Definitions 
A brief description of the investigated element types is introduced in this chapter. For any more 

detailed information about each plate element [17] can be consulted. 

 

The chosen element types can be divided into two groups, the lower order and the higher order 

elements. For most elements the program of Ansys contains a lower and a higher order version 

and for some it contains a third, the layered version. For instance, the Solid 45 element is the 

lower order version of the element Solid 95 and the layered version of Solid 45 is Solid 46.  [17] 

 

The main difference is that the higher order elements have 20 nodes, while the traditional, lower 

ones contain only 8 nodes. This means that in between each two nodes of the lower order 

elements an additional node exists in the higher order versions. One reason for that is that the 

lower order elements tend to encounter errors like locking that can be corrected by applying the 

higher order types.  

 

The two most common locking error types are shear locking and volumetric locking. 

Shear locking might occur with the lower order element types since the geometry only allows for 

linear lines as edges. Therefore, parasitic shear strains occur. Thus, the traditional elements are 

too stiff for the case of pure bending for instance. [18] 
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Volumetric locking is a function of the material and only occurs with nearly incompressible 

materials. This is not the case for composite materials and is thus not relevant for this study. [18] 

 

The element type of Solid 45 (3D 8-Node Structural Solid) is used to model Solid structures in 

3D. It is a lower order element and thus defined by 8 nodes of which each has three degrees of 

freedom in the directions of x, y and z.  The element is capable of handling plasticity, swelling, 

creep, stress stiffening, large deflection and large strain. Further, it handles orthotropic materials 

in relation to the three main degrees of freedom. [17] 

 

The Solid 46 (3D 8-Node Layered Structural Solid) element type is an extended the structural 8-

Node Solid 45. Solid 46 is especially designed to model layered thick shells or Solids of up to 

250 layers. The element is defined by 8 nodes of which each node has three degrees of freedom 

in the directions of x, y and z. As well as Solid 45, Solid 46 is capable of computing plasticity, 

swelling, creep, stress stiffening, large deflection and large strain. It handles orthotropic materials 

in respect to the three main degrees of freedom, as well.. [17] 

 

The Solid 64 (3D 8-Node Anisotropic Solid) element type is developed to model anisotropic Solid 

structures of three-dimensional type. It is a lower order element defined by eight nodes with three 

degrees of freedom for each in form of translation. Further, it is defined by the anisotropic or 

orthotropic material properties. The element has capabilities for handling stress stiffening and 

large deflections. This type of element is convenient for various applications such as crystals or 

composites. Due to many similarities Solid 95 shall be chosen if a higher order element type 

would be necessary.[17] 

 

Solid 95 (3D 20-Node Structural Solid) is a higher order element type based on the lower order 

version element type Solid 45. It tolerates irregular shapes without a major loss of accuracy. It is 

defined by 20 nodes per element with three degrees of freedom for each in the directions of x, y 

and z. The elements capabilities are plasticity, creep, stress stiffening, large deflections and large 

strains.[17] 

Solid 95 is an element type that tolerates irregular shapes without major losses in accuracy. The 

reason for this is that it is a higher order element type that has compatible displacement shapes. 

It is thus well suited to model curved boundaries. [17] 

 
This element type Solid 185 (3D 8-Node Structural Solid or Layered Solid) is another suitable 

lower order, 3D structural element defined by eight nodes with three translation directions for 

each node in the directions of x, y, and z. The element allows plasticity, hyper elasticity, stress 

stiffening, creep, large deflection and large strain. Further, it has mixed formulation capabilities to 

allow simulating deformations of nearly incompressible elastoplastic materials and fully 
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compressible hyperelastic materials. Alternative element types are Solid 45 and Solid 64 as 

advised by [17]. Solid 95 is suitable as a higher order element if needed. [17]  

 

Solid 186 (3D 20-Node Structural Solid or Layered Solid) is an element type of higher order 

including 20-nodes with three degrees of freedom of translation type in the directions of x, y and 

z. The element exhibits quadratic displacement behaviour. It supports plasticity, hyper elasticity, 

creep, stress stiffening, large deflection and large strain. [17] 

 

5.4 Calculations in Ansys: Mesh Size Comparison 

An additional study is performed to gain knowledge of the effect of different mesh sizes on the 

numerical computation results. For this study, the element type Solid 45 is chosen to be 

investigated. Solid 45 delivers a very high accuracy combined with the fastest computation time.  

 

The mesh corner lengths are defined as a, b and c, representing the corner lengths in x, y and z 

respectively. The mesh size in the direction of y and thus corner lengths of b are held at a 

constant value of one mm throughout this investigation. The focus of this study lies on the 

element size in the directions of x and z.  

As an indicator of result precision, the out-of-plane deflection in z-direction is chosen. To receive 

unmistakeable, results are noted for the surface node in the centre of the plate.  

Since mesh effects are studied in two different axes, the investigation is split up into two parts, 

the effect of mesh size in x- and z-direction. Precisely, mesh lengths in x-direction are 

investigated in the range of 0.5 to 10 mm, in z-direction from 0.885 to 5.31. 

As an example, the following figure 15 represents the finest calculated mesh geometry of this 

study. 

 

 

 

Figure 15: Finest calculated mesh geometry of this study. 



 

 39 

6 | ANALYSIS OF RESULTS 
 

This chapter lists up results of the applied methods and studies of the previous chapters. Results 

are reported for the analytical, numerical, experimental buckling analysis and for the element and 

mesh size investigation.  

 

6.1 Analytical, Numerical and Experimental Buckling Analysis  

The results of the analytical methods of CLPT and FSDT are compared to the numerical 

approach of Ansys and experimental. This is done in order to compare the results and thus the 

applied methods with each other for each plate thickness. For all approaches the compressive 

and tensile strain results are plotted for each of the three plate thicknesses and compared with 

each other. In addition to that, the out-of-plane displacement shapes of CLPT, FSDT and Ansys 

are plotted together for a fixed end-shortening value of u = 1.5 mm for each plate thickness.  

More details of the results and the related tables can be found in the spread sheet handed with 

this thesis.  

6.1.1 Out-of-plane vs. in-plane displacements 
The following plots (figure 16, 17 and 18) are presenting the resulting out-of-plane displacement 

from the input of end-shortening type. 

 

Figure 16: Displacement results for t = 7.92 mm 
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Figure 17: Displacement results for t = 5.31 mm 

 

 

Figure 18: Displacement results for t = 2.49 mm 
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Furthermore, table 2 presents the results of the corresponding discrepancies in form of relative 

errors over the different plate thicknesses and computation methods. 

 

Table 2: Relative Errors for u = 1.5 mm 

Plate Thickness [mm] CLPT - FSDT CLPT - ANSYS FSDT - ANSYS 

7.92 13,07 12,35 0,64 

5.31 1,36 4,20 2,81 

2.49 0,05 2,80 2,75 
 
 

6.1.2 Strains resulting from in-plane displacement 
For each plate thickness the results for the strains on the compressive and tensile surface of the 

plates are plotted together for the analytical, numerical and experimental approaches (see figure 

19, 20 and 21), divided into the different plate thicknesses. 

 

 

Figure 19: Compressive and tensile strain results for t = 7.92 mm 
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Figure 20: Compressive and tensile strain results for t = 5.31 mm 

 

 

 

Figure 21: Compressive and tensile strain results for t = 2.49 mm 
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6.2 Finite Element Analysis 

The results of the study of different structural 3D element types are listed up and compared with 

each other. The entire element comparison is based on the plate thickness of 5.31 mm. 

Elements are compared with each other for three different mesh sizes in x-direction (1 mm, 2 mm 

and 5 mm).  

 

Results are gained and compared for out-of-plane resulting from in-plane displacement (figure 

22, 23 and 24). Strains for compressive and tensile side of the plate are shown in appendix in 

figure 34, 35 and 36. In addition to that, the out-of-plane displacement shape is calculated and 

presented in the appendix in the tables 7, 8 and 9. 

 

 

 

Figure 22: w-deflections for element length of 1 mm in x-direction (t = 5.31 mm). 
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Figure 23: w-deflections for element length of 2 mm in x-direction (t = 5.31 mm). 

 

 

Figure 24: w-deflections for element length of 5 mm in x-direction (t = 5.31 mm). 
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6.3 Mesh Size Analysis 

For each element type the mesh size is varied in x-direction in order to gain knowledge about the 

influence of the element corner length in x-direction. Afterwards, to acquire even more detailed 

information about the mesh size effects, the element of Solid 45 is chosen to be compared in 

even more mesh size variations in x-direction and in a additional detailed investigation of the 

mesh size in z-direction. 

 
6.3.1 Mesh size Influence in x-direction for different element types 
Here, the results for each considered element types are compared with respect to the mesh size 

in x-direction. The three investigated mesh sizes are 1 mm, 2 mm and 5 mm in x-direction. 

 

The out of plane deflections for varying mesh sizes in x-direction are plotted in the figures 25 to 

31 for each single element type. In order to reference these results they are plotted with the 

analytical results of FSDT and the experimental results. 

 

 

 

Figure 25: Solid 46 mesh size influence of deflection in x-direction. 
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Figure 26: Solid 45 mesh size influence of deflection in x-direction. 

 

 

Figure 27: Solid 185 mesh size influence of deflection in x-direction. 
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Figure 28: Solid 186 mesh size influence of deflection in x-direction. 

 

 

Figure 29: Solid 95 mesh size influence of deflection in x-direction. 
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Figure 30: Solid 64 mesh size influence of deflection in x-direction. 

 

 

Figure 31: Average mesh size influence of deflection in x-direction. 
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6.3.2 Ansys mesh size Influence in x-direction and z-direction for Solid 45 
Following a basic mesh size comparison in x-axis, a more detailed investigation is done on the 

example of the Solid 45 element. The results are presented in figure 32 and 33 for a mesh 

refinement in z- and x-direction respectively. 

For mesh size comparison, it is chosen to be proven by the results of the out-of-plane deflection 

of a chosen node on the centre of the plane. 

 

Figure 32: Results of mesh size variation in z-direction (t=5.31 mm, u = 1.5 mm). 

 

 

Figure 33: Results of mesh size variation in x-direction (t = 5.31 mm, u = 1.5 mm). 
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6.4 Discussion of Results 

6.4.1 Analytical Buckling Analysis  
All analytical calculations based on the developed Maple codes are performed successfully. 

As the figures 22, 23 and 24 show, the plate theories behave related to plate thickness. While 

both theories predict pre- and post-buckling behaviour nicely, CLPT is underestimating deflection 

values slightly, especially for thicker plates, because it doesn’t take shear forces into account.  

For the plate thicknesses of 7.92 mm and 5.31 mm, the results of CLPT are slightly lower in 

terms of w-deflections than the FSDT. The discrepancy between those two theories increases 

with a higher plate thickness. This is nicely shown by the figures 22 and 23. This kind of 

behaviour of CLPT was expected since it is a plate theory for rather thin plates. Kirchhoff’s CLPT 

doesn’t include out-of-plane shear forces and is therefore rather useful for thin, shell-like plates. 

Mindlin improved this theory by taking shear forces into account in his first-order of shear theory. 

Therefore, his theory shall be more suitable for thicker plates, as well as for thin plates (see 

figure 24). The length over thickness ratios in x-direction of the three plates are 25.25, 37.66 and 

80.32 for the plate thicknesses of 7.92, 5.31 and 2.59 mm respectively. A higher ratio should 

result in closer results of the two mentioned theories. If the ratio decreases, the results of CLPT 

loose accuracy while those of FSDT do not. The results of the two theories (figure 22 to 24) 

approve those assumptions perfectly. For instance, the results for the thin plate thickness of 2.49 

mm (figure 24) of CLPT and FSDT are covering each other with high precision. The assumption 

of loss of accuracy for CLPT applied to thicker plates is reinforced by the relative errors in table 

2. For the plate thicknesses of 2.49 and 5.31 mm the critical point of buckling initiation is 

predicted very accurate and equally, while they vary much more for the thickness of 7.92 mm.  

An overestimated buckling initiation value, like in this case for CLPT, can be expected for a 

relatively thick plate. Results of strains (figures 25, 26 and 27) are directly related to the 

previously described w-deflections. Once again, the theories of CLPT and FSDT show similar 

behaviour for thin plate thickness as 2.49 mm (figure 27) and higher discrepancies for thicker 

plate thicknesses (figure 25 and 26). The same trend of the two theories related to plate 

thicknesses counts for the out-of-plane buckling shape comparisons in tables 3, 4 and 5. 

6.4.2 Finite Element Buckling Analysis  
The FEA was concluded with the software package of Ansys and based on the 3D element type 

Solid 46. Computation efficiency depends highly on the amount of elements and thus on the 

chosen mesh size. All numerical results show a smooth transition in between pre- and post-

buckling. Further, all results show realistic magnitudes in terms of out-of-plane deflections and 

longitudinal strains.  
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6.4.3 Experimental Results  
Practical experiments show typical pre- and post-buckling behaviour for all plate thicknesses. 

The specimen used for the practical experiments were of favourable quality, which reflects in the 

test results. 

6.4.4 Comparison of Analytical, Numerical and Experimental Results  

All three methods generally show roughly the same behaviour in terms of buckling pre- and post-

buckling. Hence, none of the applied methods resulted in complete failure of buckling prediction. 

Comparing the three methods in more detail with each other, it is clear, that numerical results 

show a smoother, more realistic transition from pre- to post-buckling than the sudden change in 

the analytical results. For finite element computations, the buckling initiation is predicted to occur 

roughly at the same value of displacement as for FSDT for all of the three plate thicknesses. 

Finite element results predict pre- and post-buckling behaviour for all three plate thicknesses with 

roughly the same accuracy. The pre-buckling behaviour of Ansys for the plate thickness 7.92 mm 

is nicely covering the experimental results until the buckling initiation occurs earlier during the 

numerical computation. In terms of safety predictions, the critical buckling loads/displacement 

can be interpreted to be conservative for all FSDT, most CLPT and the finite element results. 

Even clearer is the over-prediction of displacement during the post-buckling part. For all applied 

methods, the post-buckling behaviour is predicted to occur under less end-shortening than during 

the practical experiment results. The results of compressive and tensile strains are directly 

related to displacements and thus showing the same behaviour of over predicting results 

conservatively. Similar to the out-of-plane displacements, the graphs of strains are roughly 

parallel to the experimental results. Once again, this shows a satisfactory prediction of the 

general behaviour although of higher magnitude.  

6.4.5 Displacement Shape Comparison  
The out-of-plane displacement shape comparison for the end-shortening value of u = 1.5 mm 

shows the best comparison for the medium plate thickness of 5.31 mm. The three graphs of 

FSDT, CLPT and Ansys overlap each other with high precision. With the same trigonometric 

displacement assumption function and amount of degrees of freedom for FSDT and CLPT, the 

two graphs are expected to be the same if the amplitude of the transverse deflection shape is the 

same. The displacement shape of Ansys approves the trigonometric approach since the graphs 

are covering each other without obvious differences. 

6.4.6 Ansys: Element Type Comparison 
An investigation on different element types in the finite element software of Ansys has been done 

to figure out the main differences, advantages, disadvantages and their suitability to composite 

plates. The elements included lower and higher order elements of the group of Solid 3D. Further, 
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some layered elements and some with a layered option were included in the investigation. The 

comparison of elements is implemented on the plate thickness of 5.31 mm. All computations for 

this comparison are done for three different mesh sizes in x-axis (1 mm, 2 mm and 5 mm).  

The out-of-plane deflection comparison in the figures 28, 29 and 30 show all satisfying 

predictions of pre- and post-buckling behaviour. All element types predict especially the post 

buckling behaviour with high precision. This does also count for all three mesh sizes. Buckling 

initiation behaviour is slightly over predicted for the higher order element types of Solid 186 and 

95. These elements have 20 nodes per element instead of 8 for the lower order elements. These 

higher order elements are supposed to be more accurate, since they do not tend as much to 

result in locking errors. However, they vary in highest scale from the average of all element 

types, from experimental results and from the results of FSDT. In addition, they are highly 

inefficient compared to lower order elements. For a mesh size of 2 mm in x-direction the element 

type Solid 185 under predicts buckling initiation compared to the average elements. For mesh 

sizes of 1 mm (figure 28) and 5 mm (figure 30) all element types show good results and only vary 

slightly. 

Results of the out-of-plane deflections are directly related to the strains compressive and tensile 

strains. Figure 41, 42 and 43 build up the impression that all Solid 3D element types are capable 

of predicting behaviour of strain values with an exception for the mesh size of 2 mm.  

Table 3, 4 and 5 present the out-of-plane deflection shape for a fix end-shortening value of all 

element types. The results show that the higher order elements of Solid 186 and Solid 95 are 

more affected by the size of the mesh than lower order elements regarding the transverse 

deflection shape. 

6.4.7 Ansys: Mesh Size Comparison  
In the first step of the mesh size analysis the mesh sizes are inspected for all element types in 

the direction of the x-axis for three mesh sizes (1 mm, 2 mm and 5 mm). Results of these 

computations are shown in the figures 25 to 31 regarding out-of-plane deflection amplitude, 

figures 37 to 43 regarding strains and in the tables 10 to 16 regarding transverse deflection 

shapes. The outcome of Solid 46 calculations shows that all three mesh sizes are resulting with 

similar precision (figure 25). Solid 45 shows barely varying results for all three mesh sizes, as 

well (figure 26). Solid 185 shows altering results for all three mesh sizes with increasing values 

for finer mesh sizes (figure 27). As already stated earlier, the higher order elements 186 and 95 

show a higher influence of the mesh size in x-direction. Both element types show similar 

precision of results for element corner lengths of 1 mm and 2 mm, while results of the 5 mm 

mesh are varying exceptionally (see figure 28 and 29). Solid 46 is another element type that 

shows nearly no affection by the chosen mesh sizes (see figures 39 and 46) and high 

computation efficiency when compared with the average computation time. Figure 31 shows the 

average results of the mesh size analysis in x-direction of all elements. The general trend of all 
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elements combined show increasing deflection and strain results for finer mesh sizes than for 

coarser ones in x-direction. The results of the transverse deflections in table 10 to 16 present an 

equal trend for the element types as the out-of-plane deflections and strains. 

In addition to the three analysed mesh sizes in x-direction for all element types a more detailed 

investigation is implanted on the chosen element type of Solid 45. Solid 45 is chosen for this 

investigation because it shows the best computation efficiency while its result precision is very 

close to the average of all elements.  

 

The detailed investigations of the mesh size in regard of element type Solid 45 shows increasing 

magnitude of results with finer mesh sizes (see figure 32 and 33). Especially for very fine mesh 

sizes, both figures show a strong increase of result magnitude. 

 
 
 
 

7 | CONCLUSION 
 

7.1 Conclusion of Results 

A broad investigation of analytical, numerical and experimental buckling analysis procedures 

including their influencing factors resulted in this thesis.  

 

For the analytical approach the two widely known methods for thin and thick plates developed by 

Kirchhoff and Mindlin (CLPT and FSDT) have been applied to three different plate thicknesses of 

7.92, 5.31 and 2.49 mm. The plate theories behave related to plate thickness. While both 

theories predict pre- and post-buckling behaviour nicely, CLPT is underestimating deflection 

values slightly compared to FSDT, especially for thicker plates, because it doesn’t take shear 

forces into account.  

The trigonometric displacement assumption functions combined with the FSDT plate theory show 

great computation efficiency paired with high precision results, especially regarding post-buckling 

behaviour and the critical buckling load. Further the Rayleigh-Ritz method in combination with the 

Newton-Raphson method show good results when compared with other results while being 

highly efficient. 

 

Numerical calculations for the comparison with analytical and experimental results are achieved 

by applying the software of Ansys based on the layered Solid 3D element type SOLID 46. Once 

more, all three plates were modelled and calculated. Compared with the analytical methods of 

FSDT and CLPT they are highly inefficient. This is caused by the high number of elements of the 
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chosen mesh size and the fact that results are computed for more aspects than actually needed 

in this study. All numerical results are satisfactory as the graphs show typical pre- and post-

buckling behaviour including a realistic transition.  

Concluding the acquired knowledge of the buckling analysis approaches, we can say that the 

assumptions based on theories are confirmed by results of analytical and numerical approaches.  

The finite element approach is the most precise approach regarding pre- and post-buckling 

behaviour. The second best of the three methods is the analytical method of FSDT. CLPT is not 

to be recommended for a buckling analysis unless it is only concerned with thin plates, where the 

length over thickness ratio is higher than circa 40.  

 

To achieve higher certainty on experimental results, it is required to make more tests for each 

plate thickness. This is based on the fact that generally experimental test results are influenced 

by imperfections like imperfect bonding in between the plies or micro cracks in glass fibres in the 

laminated composite plates that can lead to lower buckling loads or delamination for instance. 

However, experimental results are on the secure side compared to analytical and finite element 

calculations because of their lower magnitude in deflections and strains. 

 

A comparison of the transverse deflection shapes of analytical and numerical results show very 

similar results and thus reinforce the choice of trigonometric shape functions during analytical 

computations. 

 

The Solid 3D element type and mesh comparison results in a recommendation of the lower 

element types of Solid 46, 45 and 64. All three element types are only slightly affected in their 

precision by the mesh refinement and highly computation efficient compared with the other 

element types. In addition to that they are close to the average results of all element types. This 

basically means that with those element types a very coarse mesh (e.g. 5 mm in x-direction) can 

be chosen without sacrificing much precision, while increasing computation efficiency 

considerably. Higher order element types as Solid 186 and 95 show a higher variance in results 

for different mesh sizes combined with a highly inefficient computation time compared to the 

average. Solid 185 is the only lower order element that shows higher affection of mesh size and 

is therefore not to be recommended. A mesh refinement in z-direction results in a strong increase 

in result magnitude but comes in cost of computation time. 

 

The study shows, that the interaction of theoretical results and practical experiments is of utmost 

importance. This is caused by the undeniable connection in between them. Especially in 

composite material structures, practical experiments are recommended because of their special 

characteristics due to anisotropic behaviour and possible delamination.  
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The outcome of this thesis can be seen as a guide for some specific chosen techniques including 

an analytical program for buckling analysis of composite plates and as a comprehensive 

reference of some important details.  

 

7.2 Limitations 

Despite, well rounded acquired knowledge regarding composite plate buckling and its analyses, 

this study shows also some limitations that are to be pointed out. 

 

The results theoretical analytical approaches of CLPT and FSDT are strongly dependent on the 

applied methods, shape functions and chosen amount of degrees of freedom. Even though, all of 

these variables are chosen according best possible knowledge, these methods are limited in 

their precision. 

As the finite element type analysis and mesh refinement analysis have shown, results of a FEA 

are depending on these choices and precision varies throughout those variables. During the finite 

element type comparison the problem of reference values arose and it was chosen to compare 

results to average values instead of experimental values. This means that element types could 

only be compared with each other instead. 

Since experimental results are lower in magnitude throughout this study, they are not the best 

reference values for theoretical results.  

 

7.3 Future Work 

With a profound knowledge in theoretical, numerical and analytical buckling analysis acquired by 

mathematicians and researchers over the last few centuries, it is nowadays a difficult task to 

push boundaries even further. Whereas, experimental test results are less investigated and can 

thus be improved easier compared to theory. Thus, it is recommended to gain more experimental 

results. Especially the amount of experiments for one specific plate type and thickness shall be 

increased, in order to achieve statistical certainty. Receiving plates from more than only one 

specimen supplier can achieve further improvements on experimental results. In doing so it could 

be possible to spot possible errors resulting from production processes. 

 

The analytical approach could be further investigated and compared in terms of the applied 

methods. For instance the Galerkin method can be implemented together with the plate theories 

of CLPT and FSDT and compared with the present results of the Rayleigh-Ritz method. Another 

interesting comparison would be the correlation in between the shape assumption of 

trigonometric and polynomial functions. 
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A | APPENDIX 

 

A.1 Buckling Analysis Results 

A.1.1 Out-of-plane buckling shape comparison 
The following plots present the out-of-plane displacement shapes for each plate thickness over 

the entire plate length in x direction (see table 3, 4 and 5). The results of CLPT, FSDT and Ansys 

are presented. 

 

Table 3: Out-of-plane transverse buckling shapes for t = 7.92 mm 

x	   ASNYS	   CLPT	   FSDT	  
0	   0,000	   0,000	   0,000	  
10	   0,214	   0,151	   0,170	  
20	   0,707	   0,588	   0,665	  
30	   1,451	   1,270	   1,436	  
40	   2,375	   2,128	   2,407	  
50	   3,398	   3,080	   3,483	  
60	   4,422	   4,032	   4,559	  
70	   5,344	   4,891	   5,530	  
80	   6,078	   5,572	   6,301	  
90	   6,551	   6,010	   6,795	  
100	   6,716	   6,160	   6,966	  
110	   6,551	   6,010	   6,795	  
120	   6,078	   5,572	   6,301	  
130	   5,344	   4,891	   5,530	  
140	   4,422	   4,032	   4,559	  
150	   3,398	   3,080	   3,483	  
160	   2,375	   2,128	   2,407	  
170	   1,451	   1,270	   1,436	  
180	   0,707	   0,588	   0,665	  
190	   0,214	   0,151	   0,170	  
200	   0,000	   0,000	   0,000	  

 

  



 

 iii 

 

Table 4: Out-of-plane transverse buckling shapes for t = 5.31 mm 

x	   ASNYS	   CLPT	   FSDT	  
0	   0,000	   0,000	   0,000	  
10	   0,279	   0,279	   0,227	  
20	   0,972	   0,972	   0,887	  
30	   2,010	   2,010	   1,915	  
40	   3,292	   3,292	   3,209	  
50	   4,705	   4,705	   4,645	  
60	   6,114	   6,114	   6,080	  
70	   7,380	   7,380	   7,375	  
80	   8,388	   8,388	   8,402	  
90	   9,037	   9,037	   9,062	  
100	   9,264	   9,264	   9,289	  
110	   9,037	   9,037	   9,062	  
120	   8,388	   8,388	   8,402	  
130	   7,381	   7,380	   7,375	  
140	   6,115	   6,114	   6,080	  
150	   4,706	   4,705	   4,645	  
160	   3,293	   3,292	   3,209	  
170	   2,011	   2,010	   1,915	  
180	   0,972	   0,972	   0,887	  
190	   0,279	   0,279	   0,227	  
200	   0,000	   0,000	   0,000	  

 

Table 5: Out-of-plane transverse buckling shapes for t = 2.49 mm 

x	   ASNYS	   CLPT	   FSDT	  
0	   0,000	   0,000	   0,000	  
10	   0,326	   0,261	   0,261	  
20	   1,185	   1,017	   1,017	  
30	   2,442	   2,194	   2,195	  
40	   3,956	   3,678	   3,680	  
50	   5,588	   5,323	   5,325	  
60	   7,188	   6,967	   6,971	  
70	   8,604	   8,451	   8,455	  
80	   9,720	   9,629	   9,634	  
90	   10,438	   10,385	   10,390	  
100	   10,688	   10,645	   10,651	  
110	   10,438	   10,385	   10,390	  
120	   9,720	   9,629	   9,634	  
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130	   8,604	   8,451	   8,455	  
140	   7,188	   6,967	   6,971	  
150	   5,588	   5,323	   5,325	  
160	   3,956	   3,678	   3,680	  
170	   2,442	   2,194	   2,195	  
180	   1,185	   1,017	   1,017	  
190	   0,326	   0,261	   0,261	  
200	   0,000	   0,000	   0,000	  

 

 

A.2 Ansys Element Analysis 

 

Table 6: Standard Deviation of w-deflections. 

u	   5mm	   2mm	   1mm	  
0,00	   0,0000	   0,0000	   0,0000	  
0,10	   0,2023	   0,0369	   0,0271	  
0,20	   0,0217	   0,1026	   0,0755	  
0,30	   0,0556	   0,2442	   0,1780	  
0,40	   0,1554	   0,4969	   0,2960	  
0,50	   0,1571	   0,3943	   0,1990	  
0,60	   0,1286	   0,2073	   0,1366	  
0,70	   0,1134	   0,1568	   0,1072	  
0,80	   0,1038	   0,1271	   0,0913	  
0,90	   0,0969	   0,1124	   0,0824	  
1,00	   0,0914	   0,1033	   0,0773	  
1,10	   0,0870	   0,0960	   0,0748	  
1,20	   0,0833	   0,0907	   0,0735	  
1,30	   0,0800	   0,0869	   0,0734	  
1,40	   0,0771	   0,0842	   0,0741	  
1,50	   0,0746	   0,0822	   0,0750	  
1,60	   0,0722	   0,0808	   0,0761	  
1,70	   0,0701	   0,0799	   0,0775	  
1,80	   0,0681	   0,0793	   0,0791	  
1,90	   0,0663	   0,0789	   0,0806	  
2,00	   0,0646	   0,0788	   0,0821	  
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Figure 34: Strains for element corner length of 1 mm in x-direction (t = 5.31 mm). 

 

 

 

Figure 35: Strains for element corner length of 2 mm in x-direction (t = 5.31 mm). 
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Figure 36: Strains for element corner length of 5 mm in x-direction (t = 5.31 mm). 

 

 Table 7: Deflection shape for element corner length of 1 mm. 

x	   Solid	  46	   Solid	  45	   Solid	  185	   Solid	  186	   Solid	  95	   Solid64	   Average	  
0,0	   0,000	   0,000	   0,000	   0,000	   0,000	   0,000	   0,000	  
10,0	   0,279	   0,325	   0,331	   0,302	   0,302	   0,281	   0,303	  
20,0	   0,972	   1,065	   1,080	   1,034	   1,033	   0,978	   1,027	  
30,0	   2,010	   2,134	   2,152	   2,118	   2,116	   2,024	   2,092	  
40,0	   3,292	   3,431	   3,454	   3,436	   3,434	   3,314	   3,394	  
50,0	   4,705	   4,844	   4,871	   4,878	   4,876	   4,735	   4,818	  
60,0	   6,114	   6,244	   6,274	   6,311	   6,309	   6,152	   6,234	  
70,0	   7,380	   7,496	   7,528	   7,585	   7,583	   7,426	   7,500	  
80,0	   8,388	   8,489	   8,522	   8,597	   8,595	   8,440	   8,505	  
90,0	   9,037	   9,128	   9,161	   9,250	   9,247	   9,093	   9,153	  
100,0	   9,264	   9,351	   9,384	   9,481	   9,478	   9,321	   9,380	  
110,0	   9,037	   9,130	   9,163	   9,250	   9,247	   9,093	   9,153	  
120,0	   8,388	   8,492	   8,525	   8,597	   8,595	   8,440	   8,506	  
130,0	   7,380	   7,501	   7,533	   7,585	   7,583	   7,427	   7,501	  
140,0	   6,114	   6,250	   6,280	   6,311	   6,309	   6,153	   6,236	  
150,0	   4,705	   4,850	   4,877	   4,878	   4,876	   4,736	   4,820	  
160,0	   3,292	   3,436	   3,460	   3,436	   3,434	   3,315	   3,396	  
170,0	   2,010	   2,138	   2,157	   2,118	   2,116	   2,024	   2,094	  
180,0	   0,972	   1,068	   1,080	   1,034	   1,033	   0,979	   1,028	  
190,0	   0,279	   0,326	   0,332	   0,302	   0,302	   0,281	   0,303	  
200,0	   0,000	   0,000	   0,000	   0,000	   0,000	   0,000	   0,000	  
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Table 8: Deflection shape for element corner length of 2 mm. 

x	   Solid	  46	   Solid	  45	   Solid	  185	   Solid	  186	   Solid	  95	   Solid64	   Average	  
0	   0,000	   0.0000	   0,000	   0.0000	   0.0000	   0,000	   0,000	  
10	   0,279	   0,281	   0,271	   0,301	   0,301	   0,281	   0,286	  
20	   0,971	   0,978	   0,951	   1,033	   1,032	   0,978	   0,991	  
30	   2,009	   2,023	   1,957	   2,116	   2,114	   2,023	   2,040	  
40	   3,292	   3,313	   3,204	   3,434	   3,431	   3,313	   3,331	  
50	   4,704	   4,734	   4,585	   4,876	   4,873	   4,734	   4,751	  
60	   6,113	   6,152	   5,978	   6,309	   6,304	   6,152	   6,168	  
70	   7,380	   7,426	   7,256	   7,583	   7,579	   7,426	   7,441	  
80	   8,387	   8,439	   8,299	   8,595	   8,591	   8,439	   8,458	  
90	   9,037	   9,093	   9,010	   9,248	   9,243	   9,093	   9,120	  
100	   9,263	   9,321	   9,319	   9,479	   9,474	   9,321	   9,363	  
110	   9,037	   9,093	   9,010	   9,248	   9,243	   9,093	   9,120	  
120	   8,387	   8,439	   8,299	   8,595	   8,591	   8,439	   8,458	  
130	   7,380	   7,426	   7,256	   7,583	   7,579	   7,426	   7,441	  
140	   6,113	   6,152	   5,978	   6,309	   6,304	   6,152	   6,168	  
150	   4,704	   4,734	   4,585	   4,876	   4,873	   4,734	   4,751	  
160	   3,292	   3,313	   3,204	   3,434	   3,431	   3,313	   3,331	  
170	   2,009	   2,023	   1,957	   2,116	   2,114	   2,023	   2,040	  
180	   0,971	   0,978	   0,951	   1,033	   1,032	   0,978	   0,991	  
190	   0,279	   0,281	   0,271	   0,301	   0,301	   0,281	   0,286	  
200	   0.0000	   0.0000	   0,000	   0,000	   0.0000	   0,000	   0,000	  

 

 

Table 9: Deflection shape for element corner length of 5 mm. 

x	   Solid	  46	   Solid	  45	   Solid	  185	   Solid	  186	   Solid	  95	   Solid64	   Average	  
0	   0,000	   0,000	   0,000	   0.0000	   0,000	   0,000	   0,000	  
10	   0,277	   0,279	   0,276	   0,302	   0,639	   0,279	   0,342	  
20	   0,969	   0,976	   0,968	   1,080	   1,555	   0,976	   1,088	  
30	   2,007	   2,021	   2,007	   2,143	   2,728	   2,021	   2,154	  
40	   3,289	   3,311	   3,292	   3,413	   4,059	   3,311	   3,446	  
50	   4,701	   4,732	   4,707	   4,781	   5,434	   4,732	   4,848	  
60	   6,110	   6,150	   6,118	   6,129	   6,730	   6,150	   6,231	  
70	   7,378	   7,425	   7,388	   7,338	   7,834	   7,425	   7,464	  
80	   8,386	   8,439	   8,397	   8,301	   8,646	   8,439	   8,435	  
90	   9,035	   9,093	   9,048	   8,933	   9,095	   9,093	   9,049	  
100	   9,261	   9,320	   9,274	   9,177	   9,140	   9,320	   9,249	  
110	   9,035	   9,093	   9,048	   8,933	   9,095	   9,093	   9,049	  
120	   8,386	   8,439	   8,397	   8,301	   8,646	   8,439	   8,435	  
130	   7,378	   7,425	   7,388	   7,338	   7,834	   7,425	   7,464	  
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140	   6,110	   6,150	   6,118	   6,129	   6,730	   6,150	   6,231	  
150	   4,701	   4,732	   4,707	   4,781	   5,434	   4,732	   4,848	  
160	   3,289	   3,311	   3,292	   3,413	   4,059	   3,311	   3,446	  
170	   2,007	   2,021	   2,007	   2,143	   2,728	   2,021	   2,154	  
180	   0,969	   0,976	   0,968	   1,080	   1,555	   0,976	   1,088	  
190	   0,277	   0,279	   0,276	   0,302	   0,639	   0,279	   0,342	  
200	   0.0000	   0,000	   0,000	   0.0000	   0,000	   0,000	   0,000	  

 

 

 

A.3 Ansys Mesh Size Analysis 

A.3.1 Strain comparison of element types 
The strain results for varying mesh sizes in x-direction are plotted in the figures 37-43 for each 

single element type. In order to reference these results they are plotted with the analytical results 

the experimental results. 

 

 

Figure 37: Solid 46 mesh size influence of strain in x-direction. 
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Figure 38: Solid 45 mesh size influence of strain in x-direction. 

 

 

Figure 39: Solid 185 mesh size influence of strain in x-direction. 
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Figure 40: Solid 186 mesh size influence of strain in x-direction. 

 

 

Figure 41: Solid 95 mesh size influence of strain in x-direction. 
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Figure 42: Solid 64 mesh size influence of strain in x-direction. 

 

 

Figure 43: Average element mesh size influence of strain in x-direction. 
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A.3.2 Out-of-plane deflection shape comparison  
The resulting out-of-plane shapes of each element type for a fixed end-shortening value of u = 

1.5 mm. Equal to the previous results the varied mesh size in x-direction ranges from 1 mm over 

2 mm and 5 mm element corner length. The results are presented in the tables number 10-16.  

 

Table 10: Solid 46 w-deflection shape. 

x	   5mm	   2mm	   1mm	  
0	   0,0000	   0,0000	   0,0000	  
10	   0,2773	   0,2786	   0,2789	  
20	   0,9694	   0,9713	   0,9717	  
30	   2,0067	   2,0094	   2,0102	  
40	   3,2889	   3,2918	   3,2924	  
50	   4,7011	   4,7041	   4,7046	  
60	   6,1104	   6,1134	   6,1141	  
70	   7,3777	   7,3799	   7,3803	  
80	   8,3855	   8,3872	   8,3875	  
90	   9,0352	   9,0365	   9,0369	  
100	   9,2613	   9,2629	   9,2636	  
110	   9,0352	   9,0365	   9,0369	  
120	   8,3855	   8,3872	   8,3875	  
130	   7,3777	   7,3799	   7,3803	  
140	   6,1104	   6,1134	   6,1141	  
150	   4,7011	   4,7041	   4,7046	  
160	   3,2889	   3,2918	   3,2924	  
170	   2,0067	   2,0094	   2,0102	  
180	   0,9694	   0,9713	   0,9717	  
190	   0,2773	   0,2786	   0,2789	  
200	   0.0000	   0.0000	   0,0000	  

 

 

Table 11: Solid 45 w-deflection shape. 

x	   5mm	   2mm	   1mm	  
0	   0,0000	   0.0000	   0,0000	  
10	   0,2793	   0,2806	   0,3247	  
20	   0,9764	   0,9780	   1,0649	  
30	   2,0206	   2,0228	   2,1341	  
40	   3,3109	   3,3132	   3,4309	  
50	   4,7318	   4,7340	   4,8439	  
60	   6,1496	   6,1517	   6,2442	  
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70	   7,4246	   7,4258	   7,4961	  
80	   8,4387	   8,4393	   8,4889	  
90	   9,0925	   9,0927	   9,1278	  
100	   9,3202	   9,3205	   9,3513	  
110	   9,0925	   9,0927	   9,1297	  
120	   8,4387	   8,4393	   8,4923	  
130	   7,4246	   7,4258	   7,5008	  
140	   6,1496	   6,1517	   6,2497	  
150	   4,7318	   4,7340	   4,8496	  
160	   3,3109	   3,3132	   3,4362	  
170	   2,0206	   2,0228	   2,1383	  
180	   0,9764	   0,9780	   1,0676	  
190	   0,2793	   0,2806	   0,3258	  
200	   0,0000	   0.0000	   0,0000	  

 

 

Table 12: Solid 185 w-deflection shape. 

x	   5mm	   2mm	   1mm	  
0	   0,0000	   0,0000	   0,0000	  
10	   0,2763	   0,2714	   0,3308	  
20	   0,9684	   0,9512	   1,0799	  
30	   2,0073	   1,9565	   2,1521	  
40	   3,2920	   3,2036	   3,4542	  
50	   4,7067	   4,5850	   4,8712	  
60	   6,1182	   5,9779	   6,2740	  
70	   7,3877	   7,2555	   7,5278	  
80	   8,3972	   8,2990	   8,5215	  
90	   9,0479	   9,0095	   9,1609	  
100	   9,2742	   9,3185	   9,3844	  
110	   9,0479	   9,0095	   9,1628	  
120	   8,3972	   8,2990	   8,5250	  
130	   7,3877	   7,2555	   7,5326	  
140	   6,1182	   5,9779	   6,2797	  
150	   4,7067	   4,5850	   4,8771	  
160	   3,2920	   3,2036	   3,4597	  
170	   2,0073	   1,9565	   2,1565	  
180	   0,9684	   0,9512	   1,0799	  
190	   0,2763	   0,2714	   0,3320	  
200	   0,0000	   0,0000	   0,0000	  

 

  



 

 xiv 

Table 13: Solid 186 w-deflection shape. 

x	   5mm	   2mm	   1mm	  
0	   0.0000	   0.0000	   0,0000	  
10	   0,3024	   0,3014	   0,3018	  
20	   1,0798	   1,0330	   1,0339	  
30	   2,1434	   2,1161	   2,1178	  
40	   3,4127	   3,4341	   3,4360	  
50	   4,7810	   4,8762	   4,8784	  
60	   6,1289	   6,3085	   6,3111	  
70	   7,3380	   7,5830	   7,5852	  
80	   8,3012	   8,5953	   8,5974	  
90	   8,9328	   9,2481	   9,2500	  
100	   9,1767	   9,4792	   9,4814	  
110	   8,9328	   9,2481	   9,2500	  
120	   8,3012	   8,5953	   8,5974	  
130	   7,3380	   7,5830	   7,5852	  
140	   6,1289	   6,3085	   6,3111	  
150	   4,7810	   4,8762	   4,8784	  
160	   3,4127	   3,4341	   3,4360	  
170	   2,1434	   2,1161	   2,1178	  
180	   1,0798	   1,0330	   1,0339	  
190	   0,3024	   0,3014	   0,3018	  
200	   0.0000	   0,0000	   0,0000	  

 

 

Table 14: Solid 95 w-deflection shape. 

x	   5mm	   2mm	   1mm	  
0	   0,0000	   0.0000	   0,0000	  
10	   0,6394	   0,3009	   0,3015	  
20	   1,5552	   1,0317	   1,0332	  
30	   2,7278	   2,1137	   2,1164	  
40	   4,0592	   3,4313	   3,4344	  
50	   5,4338	   4,8728	   4,8764	  
60	   6,7303	   6,3042	   6,3086	  
70	   7,8339	   7,5787	   7,5828	  
80	   8,6464	   8,5906	   8,5949	  
90	   9,0953	   9,2432	   9,2474	  
100	   9,1404	   9,4738	   9,4784	  
110	   9,0953	   9,2432	   9,2474	  
120	   8,6464	   8,5906	   8,5949	  
130	   7,8339	   7,5787	   7,5828	  
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140	   6,7303	   6,3042	   6,3086	  
150	   5,4338	   4,8728	   4,8764	  
160	   4,0592	   3,4313	   3,4344	  
170	   2,7278	   2,1137	   2,1164	  
180	   1,5552	   1,0317	   1,0332	  
190	   0,6394	   0,3009	   0,3015	  
200	   0,0000	   0.0000	   0,0000	  

 

 

Table 15: Solid 64 w-deflection shape. 

x	   5mm	   2mm	   1mm	  
0	   0,0000	   0,0000	   0,0000	  
10	   0,2793	   0,2806	   0,2808	  
20	   0,9764	   0,9780	   0,9783	  
30	   2,0206	   2,0228	   2,0235	  
40	   3,3109	   3,3132	   3,3137	  
50	   4,7318	   4,7340	   4,7345	  
60	   6,1496	   6,1517	   6,1524	  
70	   7,4246	   7,4258	   7,4262	  
80	   8,4387	   8,4393	   8,4397	  
90	   9,0925	   9,0927	   9,0930	  
100	   9,3202	   9,3205	   9,3212	  
110	   9,0925	   9,0927	   9,0934	  
120	   8,4387	   8,4393	   8,4403	  
130	   7,4246	   7,4258	   7,4270	  
140	   6,1496	   6,1517	   6,1533	  
150	   4,7318	   4,7340	   4,7355	  
160	   3,3109	   3,3132	   3,3146	  
170	   2,0206	   2,0228	   2,0242	  
180	   0,9764	   0,9780	   0,9787	  
190	   0,2793	   0,2806	   0,2809	  
200	   0,0000	   0,0000	   0,0000	  

 

 

Table 16: Average element w-deflection shape. 

x	   5mm	   2mm	   1mm	  
0	   0,0000	   0,0000	   0,0000	  
10	   0,3423	   0,2856	   0,3031	  
20	   1,0876	   0,9905	   1,0270	  
30	   2,1544	   2,0402	   2,0924	  
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40	   3,4458	   3,3312	   3,3936	  
50	   4,8477	   4,7510	   4,8182	  
60	   6,2312	   6,1679	   6,2341	  
70	   7,4644	   7,4415	   7,4997	  
80	   8,4346	   8,4585	   8,5050	  
90	   9,0494	   9,1205	   9,1527	  
100	   9,2488	   9,3626	   9,3801	  
110	   9,0494	   9,1205	   9,1534	  
120	   8,4346	   8,4585	   8,5062	  
130	   7,4644	   7,4415	   7,5015	  
140	   6,2312	   6,1679	   6,2361	  
150	   4,8477	   4,7510	   4,8203	  
160	   3,4458	   3,3312	   3,3956	  
170	   2,1544	   2,0402	   2,0939	  
180	   1,0876	   0,9905	   1,0275	  
190	   0,3423	   0,2856	   0,3035	  
200	   0,0000	   0,0000	   0,0000	  

 

 

 

 
 


