
1

Recognition of Human Activity in Domestic
Environments Using Convolution Neural Networks

Tiago Ferreira,

Abstract—With the advance of technology robots are becoming
essential in humans daily lives. In order to make robots more
autonomous lots of efforts are being made by researchers to
create robust and efficient image processing algorithms capable of
interacting with the real world. This thesis addresses a semi real-
live situation by applying convolution neural networks. The case
study concept is the classification of humans activities performed
in a domestic scenario. The main goal is to determine if the
human real-time continuous behavior is either normal or abnor-
mal (potentially dangerous). The creation of such model would
allow instant and continuously surveillance in every connected
camera. In this thesis an extensive dataset was created and
applied to different net architectures to determine which obtain
better results. The final results are very positive showing that
convolution neural networks can successfully be applied to image
processing situations obtaining results that easily equalise or even
overcome classic methods from computer vision.

Keywords—convolution-neural-networks, image-processing,
machine-learning

I. INTRODUCTION

Artificial Neural Networks appeared approximately at the
same time as the field of Machine Learning but initially they
were highly criticize and they were only used with the input
and output layers (no hidden layers were used). In 1986
the ANNs reappeared but this time using intermediate layers
(hidden layers). The most used networks were the multi-layer
perceptrons with the algorithm of back propagation. The net
could emulate a significant number of functions. However
the algorithm was slow and not very efficient. In 2005 Deep
Learning emerged. As the name suggests, the base in Deep
Learning is in the use of deeper networks with much more
layers and units per layer. Deep learning kept on growing
with the creation of new powerful algorithms and techniques
and with the increase of computational power. When trying
to apply neural networks to more complex datasets, such as
image processing, come the necessity of developing methods
that could accept 2D inputs instead of only 1D. One of those
methods is known as Convolutional Neural Networks (CNNs).
Convolutional Neural Networks are mostly used in image and
video processing. The main challenge in image processing is
the size of the inputs. For instance, an image with a resolution
of 100x100 pixels will have 10000 inputs times 3 channels
(RGB). The first layers of a CNN are 2D and make the
convolution between the image and the learned kernels (filters).
The final layers are 1D (fully connected). The basic idea of
CNNs is that the net aims to learn which kernels weights are
the most effective. Each layer represents the input image in a

Manuscript received April 15, 2016.

different way. The first layers are considered more low level
since they extract elementary visual features such as oriented
edges, end-points and corners. In deeper layers this features
are then combined in order to detect high-order features

Fig. 1. Feature extraction of kernels along the multiple layers [1]

A. Related Work

Microsoft released in 2012 a new version of their Microsoft
Audio Video Indexing Service speech system based on deep
learning[2]. These authors managed to reduce the word error
rate on four major benchmarks by about 30 percent compared
to state-of-the-art models based on Gaussian mixtures for the
acoustic modeling and trained on the same amount of data
(309 hours of speech).

The main focus of this study relies on applying Convo-
lution Neural Networks into a real dataset recorded in the
ISR test bed. These techniques have been applied in a big
variety of datasets; not only in image processing but also in
other areas, for example speech recognition. The Convolution
Neural Networks were introduced by Fukushima et al.[3]
and further developed by Lecun et al. [4] in 1998. Since
then, many other researchers have published papers presenting
results that outperformed the older methods that used hand-
designed features selectors like SIFT [5] and HOG [6]. In
Krizhevsky et al. [7], a deep Convolutional Neural Network
was trained to classify 1.2 million high resolution images in
the ImageNet LSVRC/2010 contest into 1000 different classes.
Their network achieved top-1 and top-5 1 test error rates
of 37.5% and 17.0% where the best performance achieved
during the ILSVRC-2010 competition was 47.1% and 28.2%
with an approach that averages the predictions produced from

1top-x error, also known as rank-x error, is the error taking in consideration
if the correct classification is present in the top x predictions with the higher
level of confidence



2

six sparse/coding models trained on different features [8].
Krizhevsky et al. [7] used a network containing eight learned
layers (five convolutional and three fully-connected). In order
to train the network it was needed two NVIDIA GTX 580
GPU with 3GB of memory. The network was trained for 90
cycles through a training set of 1.2 million images, which
took five to six days. In Girshick et al [9] it was proposed
an object detection method that consisted in three modules:
The first generates category-independent region proposals, the
second is a large convolutional neural network that extracts
a fixed-length feature vector and the third is a set of class
specific linear SVMs (Support Vector Machines). In this paper
the CNNS were use as a mean of feature extraction and not
classifiers. The authors used a method that combined classical
tools from computer vision with deep learning, achieving
results of 30% relative improvement over the best previous
results on PASCAL VOC 2012.

All the above information is relative to image processing,
but as the purpose of this work is to classify behaviors from
video sequences it is important to refer some work that has
been done in the video processing area. CNNs can be modified
to accept videos sequences as input. This can be achieved by
modifying the filters on the first convolutional layer in the
single-frame model by extending them to be of size i ∗ j ∗
3 ∗ T , where i,j are the pixels positions on the 3 the channels
RGB and T represents some temporal extent. Andrej Karpathy
et al. [10] provides an empirical evaluation of CNNS on a
large scale video classification using a new dataset of 1 million
YouTube videos belonging to 487 classes. In this work the
authors observed that motion aware network clearly benefits
from motion information in some cases. However these seem
to be relatively uncommon because in most of the cases single-
frame model already displays very strong performance.

B. Challenge Description
This thesis challenges can be categorized in two major

topics: First, the study and understanding of deep learning
and convolution neural networks, focusing on finding the best
way to implement them and the best architectures to use.
Second, applying this algorithms to a realistic scenario in
order to determine how likely convolution neural networks
can contribute for the increasing of automation in the area
of robotics.

The realistic challenge of this study is to develop a model
that correctly identifies abnormal behaviors of humans in a
domestic scenario. The model must learn the correct classi-
fication using a labeled dataset containing both normal and
abnormal behaviors.

As described in the RoCKIn Nutshell [11]:
”RoCKIn@Home is a competition that aims at bringing
together the benefits of scientific benchmarking with the
attraction of scientific competitions in the realm of domestic
service robotics. The objectives are to bolster research in
service robotics for home applications and to raise public
awareness of the current and future capabilities of such robot
systems to meet societal challenges like healthy ageing and
longer independent living. The basic idea of the scenario

of the competition is that there is a elderly, named Granny
Annie, who lives in an apartment together with some pets.
Granny Annie is suffering from typical problems of aging
people and the robot must be able to perform a big variety of
tasks that help to increase her life quality. The environment
is an ordinary European apartment equipped with a big
variety of networkable devices such as: ceiling lamps, electric
shutters, camera-based intercom at the front door and a net of
surveillance cameras spread around the flat (figure 1.2).

Fig. 2. Virtual representation of @home competitions scenario [11]

If Granny Annie is not in conditions of standing up the
robot has to be able to handle visitors, who arrive and ring
the door bell. The robot must correctly decide which visitors
are allowed to come in and which ones are not. Even if the
visitor is allowed to come in, the robot must always be aware
of his actions in order to make sure that the visitor is not doing
nothing out of the ordinary.

II. BACKGROUND

The architecture of a CNN can be divided in two parts. The
first layers are 2D and make the convolution between the image
and the learned kernels. After the convolution layers the net is
constituted by 1D fully-connected layers. This last layers are
basic artificial neural networks.

CNNS have four base concepts: local connectivity, parame-
ter sharing, pooling and sub-sampling and convolution.

A. Local Connectivity
Local connectivity is the idea of connecting units to local

receptive fields on the input. This idea goes back to the
MLPs and was almost simultaneous with Hubel and Wiesel’s
discovery of locally-sensitive, orientation-selective neurons in
the cat’s visual system [12].

Local connectivity allows layers not to be fully connected
to each other but only to be connected to a limited number
of units in the next layer. This property allows the local
processing of an image.

However distortion or shifts of the input can cause the
position of salient features to vary. In addition, elementary
feature detectors of salient features might be useful across the
entire image. This can be accomplished by forcing a set of
units, whose receptive fields are located at different places on
the image, to have identical weights. This propriety is called
parameter sharing.



3

B. Parameter Sharing
Parameter Sharing is a property that allows each feature map

to be applied to all the receptive fields of the input image.
Therefore the weights of each feature map are updated based
on all the connected receptive fields allowing a significant
reduction on the net number of weights.

C. Pooling and Sub-Sampling
Once the feature has been detected, its exact location

becomes less important. It is only relevant the approximate
position relative to other features. A good way to illustrate this
statement is to think in the characters classification: once we
know that the input image contains the endpoint of a roughly
horizontal segment in the upper left area, a corner in the upper
right area, and the endpoint of a roughly vertical segment in
the lower portion of the image, we can tell the input image
is a 7. All the other features beyond these are irrelevant and
might even contribute to a poorer classification. Pooling and
Sub-Sampling is a way to reduce the precision of the feature
map in order to highlight the most representative features. The
pooling technique takes from a patch of hidden units the most
representative value. There are different kinds of pooling but
the most used are the max-pooling and the average-pooling.
The max-pooling as the name suggests takes the maximum
value in a certain neighborhood:

y(i, j) = maxN(x(i, j)) (1)

where x(i, j) is the value of the pixel located in i, j and
N(x) is the neighborhood of x(i, j)

The average-pooling (equation 2), again as the name sug-
gests, takes the average value of a certain neighborhood,

y(i, j) = (
1

m2
) ∗

∑
N(x(i, j)) (2)

where m2 is the squared value of the size of the reception
field

The reason why it is also called sub-sampling is because
there is a reduction in the feature map resolution. Besides
contributing to the elimination of irrelevant features [4] this
technique also contributes to save a lot of weights allowing
to increase the number o kernels of the next layer without
substantial increase of the processing power.

D. Convolution
The feature maps are created by the discrete convolution of

the kernels with a portion of the input (receptive field).
The discrete convolution is very similar to the continuous

one but with the difference that it is computed in a finite
sequence of points.

+inf∑
m=−inf

f [m]g[n−m] (3)

Equation 3 describes the convolution between f [m] and
g[m]. The result will be the sum of the product of f [m] and
the reversed and shit n of g[m] for every m.

The matrix convolution has some significant differences
from the processes described above. Matrix convolution (figure
4) is used in image processing and it is between an image
(I[u, v]) and a kernel (k[i, j]).

FM [i, j] =
∑

N(I[u, v]) ∗ k[i− u, j − v]) (4)

The first step to calculate the convolution is to flip the rows
and the columns of the Kernel, which means that instead of
counting the kernel index from top right as being (0,0) we
place the origin index in the bottom right corner. The next
step is to overlap the center of the kernel with the image pixel
that we want to calculate (I[i, j]) and calculate the sum of the
overlapped values product.

An helpful property of convolution is that it is shift invariant
so if the neighborhood stays the same the image can be shifted
and the result will always be very similar. If the input has three
channels the output is going to be the sum of the result of the
convolution in each channels. Then the result will be the input
of an non-linear function (ie: tanh). The new feature map will
be constituted by the outputs of the non-linear function.

E. CNN backpropagation
The algorithm of backpropagation in CNN’s works in a very

similar way than with 1D neural networks. Let’s analyse how
backpropagation works in convolution units and pooling units.

1) Convolution Units: The algorithm of back-propagation
in CNNs its actually very similar to the one applied to fully
connected layers. The aim of each iteration is to obtain a new
set of kernel weights (k[i, j]) that reduces the model error.

k(n+ 1) = k(n) + lr ∗ δE
δk

(5)

where lr is the learning rate and δE
δk is the derivative of the

loss function in order of the weights k.
In order to calculate δE

δk it is also needed to calculate the
inputs of the backward net. Instead of determining y(i, j) by
making the convolution between x(i, j) and k(i, j) we want
to calculate the opposite:

x(i, j) = y(i, j) ∗ k(i, j) (6)

Finally to calculate δE
δk we need to calculate the convolution

between the input of the unit in the feedforward net and the
input of the same unit in the backward net.

2) Pooling Units: For the case of the pooling units let’s
analyse both the maxpooling and the average pooling situa-
tions. In the case of the maxpooling the error derivative will
only be backpropagated to the units that were selected as the
maximum in the forward propagation. All the other units will
receive the value of zero.

Result: Backforward maxpooling
if i and j correspond to the max unit then

x(i,j) = y(a,b)
else

x(i,j) = 0;
end



4

In the case of the average pooling all the units will receive
the same gradient value (upsampling) divided by the m2 (m2

is the squared value of the size of the reception field)

x(i, j) =
1

m2
∗ y(a, b) (7)

F. Dropout

Dropout was introduced by Srivastava et al.[13] as a ”Simple
Way to Prevent Neural Networks from Overfitting”. When
training a neural network, specially when having limited
training data, there are some noise in the samples that might
not be in the real data. This may cause the model to overfit
to that noise. Dropout reduces substantially the overfitting by
preventing each unit to depend on their nearest neighbours. The
term ”dropout” refers from dropping out units which consists
in temporarily removing them from the network while the
training is occurring. This is accomplished by, for each training
iteration, randomly setting to zero the weights of multiple units
with a probability of p (the value of p is normally 0.25 or 0.5).
The higher the value of p the higher the number of dropped
units and consequently units depend less on their neighbours.

At test time the entire network is used to make a prediction
however its weights are a scale down version of the trained
weights. That can be accomplished by multiplying them by the
value of p used during the training process. Dropout units can
also be used with the backprogation algorithm with gradient
descent. In this case some of the units are dropped out and a
thinned version of the network is used for the back and forward
propagation. Each dropped out unit contributes with a gradient
of 0 for the connected parameters.

III. CONVOLUTIONAL NET CHARACTERISTICS

n this thesis two different structures were taken in con-
sideration: SmallNet and BigNet. As the names suggests the
big difference between these two structures is their size. The
SmallNet has only one convolution layer while the BigNet fol-
lows some characteristics used in the paper of Alex Krizhevsky
et al.[7] having five convolution layers. The main purpose on
using these two different structures was to find how the number
of layers could interfere with the final results

A. SmallNet

As it is represented in the fig III-A the SmallNet convolution
section is constituted by one convolution layer with only
one 3x3 kernel, followed by a non-linearity layer (relu), a
maxpooling unit with a reducing scale of (2,2) and finally a
dropout unit.

The fully-connected section is constituted by one fully-
connected layer that receives 4536 inputs and has 100 out-
puts, followed by a non-linearity layer (relu), another fully-
connected layers that is the output layer receiving 100 inputs
and having nclasses outputs. Where nclasses depends on the
used dataset configuration.

Fig. 3. Smallnet Structure

B. BigNet
As it is represented in the fig III-B the BigNet convolution

section is constituted by 5 convolution layers with 1,3,6,9 and
12 kernels where the first kernel is a 9x9 the second a 6x6
and the rest are 3x3. Each convolution layer is followed by the
same layers as the SmallNet. The fully-connected structure is
also similar to the SmallNet one having two dense layers where
the first converts 36 inputs in 100 outputs and the second 100
inputs in nclasses outputs.

Fig. 4. Bignet Structure

IV. CASE STUDY

The scenario of this case study occurs in the apartment
kitchen and the visitor is a plumber that comes to fix the
kitchen sink. While in the kitchen the subject has a lot of
different actions from which some are considered normal and
others abnormal. The kitchen scenario is not static and changes
through the videos in order to avoid the creation of patterns
that associate actions to the position of the object.

A. Obtaining dataset
The first step for building the dataset was to record a big

variety of actions performed in the kitchen of the ISR test
bed scenario (see figure 5). Generally all the recorded frames
needed to have a big variety of actions and features in order to
avoid over-fitting (model become stuck in a local minimum).
In order to guarantee the variety of the dataset multiple actions
were recorded with 4 different subjects (three male and one
female), where the same subject would use different clothes
and the disposal of the scenario would change from video to
video. The result was a total of 471 actions where each action
was constituted by 30 frames summing up to a total of 14130



5

Fig. 5. Kitchen scenario without the table

frames. In order to make the dataset flexible enough so it could
be split into various classes each action was classified with a
specific label such as: ’sit’, ’sit on the floor’,’sit on the ta-
ble’,’sit on the sink’, ’walk’,’run’,’steal’, ’throw a chair’,’throw
object’,’throw’,’fight’,’move arms’,’jump’,’shake’, ’fix’, ’drink’
and ’stop’. It’s important to notice that each of this labels
contain multiple videos where this actions were performed
multiple times by the subjects. Bellow there are some examples
of the collected frames.

Fig. 6. Male subject 1 performing the action of jumping

Fig. 7. Male subject 1 performing the action of fixing the sink tap

Fig. 8. Male subject 1 performing the action of fixing under the sink

Fig. 9. Male subject 2 performing action of stealing

Fig. 10. Female subject moving her arms

Of course that the fact of giving to each action such a
specific label allowed the clustering of labels into different
classes. In this thesis 3 different datasets were created by
clustering the labels in different global classes.

1) Two classes dataset: This dataset was constituted only
by to classes: normal and abnormal.
• normal = ’sit’, ’sit on the floor’, ’walk’,’run’,’fix’, ’drink’

and ’stop’
• abnormal = ’sit on the table’, ’sit on the sink’, ’run’,

’steal’, ’throw a chair’, ’throw object’, ’throw’, ’fight’,



6

’move’, ’arms’, ’jump’, ’shake’.
2) Three classes dataset:
• fast movements = ’shake’,’throw the chair’,’throw ob-

ject’, ’run’ ’throw’,’fight’, ’move the arms’, ’jump’
• slow movements = ’walk’, ’fix’,’steal’, ’drink’
• stop movements = ’stop’,’sit’, ’sit on the floor’,’sit on the

table’,’sit on the sink’
3) Four classes dataset:
• seated = ’sit’, ’sit on the floor’,’sit on the table’,’sit on

the sink’
• moving = ’walk’,’run’,’steal’
• fighting = ’throw chair’,’throw ob-

ject’,’throw’,’fight’,’move arms’,’jump’,’shake’
• still = ’fix’, ’drink’, ’stop’

V. TRAINING PROCESS

A. Splitting the dataset
In the literature the dataset is normally divided into three

types: training set (a subset that is used for training the model
and that is propagated through the net), the validation set
(that is also used during the training process but to implement
the criteria of early stopping, generating an more independent
error) and finally the test set (used after the training to measure
the model error against data never used in the training process)

Since the dataset used in this thesis was not big enough
the validation set was not used. Instead, it was only used the
training set and the test set (the test set had both role of test
set and validation set). The method used to generate both sets
from the dataset is as follows:

1) Queue all frames (grouped by class) in an array
2) Start iterating through the actions, from left to right,

splitting the dataset so that 1/3 was test set and the rest
2/3 training set. Which means that 1 for every 3 actions
would be test set and the others training set.

It is important to notice that each action/video is constituted
by 30 frames. The result is two datasets that even though both
having videos with the same label each of them have different
frames.

B. Avoiding Overfitting
As the dataset used is small it was really important to avoid

overfitting at all costs because if not the model could only
be applied to the current training set. The first technique used
was dropout layers (as described before). The technique of
early stopping was also used. To implement early stopping for
each iteration we should measure the training error. During
the training one should measure both the training error and
the testing error. Both should be decreasing in each iteration.
If at some point the testing error starts to increase even thought
the training error is decreasing that means the we are evolving
to a over fitted model. The idea behind early stopping is to stop
the training when the combination of the training error and the
testing error are in their lowest point. To implement that both
errors were measure in all the iterations and the final model
was select from the one with the lowest error combination.

VI. RESULTS

In this section the results for the three analysed datasets will
be presented for the two used net structures. In this thesis it
was used the library Keras[14] to implement the training and
prediction using CNNs.

A. Obtaining Error Rate
To better understand the results bellow it is important to

describe how they were obtained. Even though the inputs of the
nets are single frames and the output does not depend on past
frames, this case study involves video processing and conse-
quently its classification should depend on the classification of
all the frames in it. To accomplished that the frames belonging
to a certain video were fed as input to the model in the same
order as they appear, the global classification of the video was
the average of all the belonging frames classification. All the
frames of the dataset are divided in sets of 30. This means that
the frames from 1 to 30 belong to the same action and then
frames from 31 to 60 belong to a different action.

Taking that in consideration the process to obtain the error
rate was:

Result: Error rate
while nFrame less then size(dataset) do

if nFrame is multiple of 30 then
top1 = average(30 last most probable

classifications);
top2 = average(30 last second most probable

classifications);
if top1 != ground truth then

error1 ++;
if top2 != ground truth then

error2 ++;
end

end
else

nFrame ++;
end

end
Error1 = error1/Total number of frames * 100;
Error2 = error2/Total number of frames * 100;

B. Two Classes Dataset
This dataset was constituted by only two classes: Normal

and Abnormal. And it was the most simple case used in
this study. The software developed in this thesis allowed, in
an automated way, to test different variations in the training
parameters in order to see which combinations generated
the best results. The parameters tested in the train were the
learning rate (using values of 0.01, 0.05 and 0.2) and the batch
size (using values of 30, 100 and 500). In this study was also
tested how different weights initializations could influence the
results. Two different initializations were tested:
• The ”lecun uniform”[15] initialization. This algorithm

of initialization states that the weights should not be
to large so that the sigmoid would saturate resulting



7

in small gradients and consequently in a slow learning
process. Neither to small causing the same effect. The
weights should be intermediate so that the sigmoid is
primarily active in its linear region.

• Pre-trained initialization. This type of initialization states
that applying weights obtained in the training of other
models, will lead to better and faster results. If both
models are applied to similar datasets.

In the graphs above is shown the error percentage for the
multiple training variations performed in this thesis. There are
four different error types:

• Ts n p - Testset without pre-training
• Ts p - Testset with pre-training
• Trs n p - Training set without pre-training
• Trs p - Training set with pre-training

C. SmallNet Results
For the SmallNet the pre-trained was obtain by training the

same net in a smaller dataset (less frames) and then applying
the resulting weights as initialization of the train with the
entire dataset. This process helps the net to converge faster
although with more epochs the training with no initialization
would probably reach the same results.

D. BigNet Results
BigNet was trained layer by layer. Which means that firstly

all convolution layers but the first one were removed and
trained for 10 epochs, then the second one was added and
the first layer was initialized with the just learned weights.
The process is repeated for the rest of the layers. As can be
seen in the graphics above, without weights initialization the
training has poor results and never converges however with the
weights initialization the error rate decreases significantly.

E. Results Analysis

SmallNet 30 100 500 BigNet 30 100 500

0.01 35,2% 35,9% 40,1% 0.01 30,2% 40,1% 40,1%
0.05 33% 32,3% 43,6% 0.05 30,2% 40,1% 40,1%
0.2 40,1% 40,1% 29,5% 0.2 40,1% 40,1% 29,5%

TABLE I. SUMMARIZED RESULTS OF THE ERROR RATE OF THE TEST
SET WITHOUT PRE-TRAINING

SmallNet 30 100 500 BigNet 30 100 500

0.01 18,3% 29,3% 41,2% 0.01 39,5% 41,2% 41,2%
0.05 4,8% 12,2% 32,2% 0.05 41,2% 41,2% 41,2%

0.2 41,2% 41,2% 11,8% 0.2 41,2% 41,2% 29,7%

TABLE II. SUMMARIZED RESULTS OF THE ERROR RATE OF THE TRAIN
SET WITHOUT PRE-TRAINING

From both net results it can be concluded that in order
to increase the learning rate the batch size has also to be
increased. This makes sense because having a higher batch
size means that the algorithm uses a bigger variety of inputs

SmallNet 30 100 500 BigNet 30 100 500

0.01 15,4% 16,9% 23,9% 0.01 29,5% 23,9% 35,2%
0.05 18,3% 12,6% 17,6% 0.05 33,8% 28,8% 27,4%

0.2 40,1% 40,1% 15,4% 0.2 23,9% 59,8% 25,3%

TABLE III. SUMMARIZED RESULTS OF THE ERROR RATE OF THE TEST
SET WITH PRE-TRAINING

SmallNet 30 100 500 BigNet 30 100 500

0.01 9,7% 20,4% 28,5% 0.01 6,5% 17,9% 35,9%
0.05 2,4% 6,9% 19,5% 0.05 2,8% 28,8% 25,7%

0.2 41,2% 41,2% 11,8% 0.2 19,1% 58,7% 12,6%

TABLE IV. SUMMARIZED RESULTS OF THE ERROR RATE OF THE
TRAIN SET WITH PRE-TRAINING

in each update so the learning rate can be reduced because
each update is more moderate.

Some cases different batch sizes have the exact same error
rate. This is due to both combinations had encountered the
same local minimum, not being able to reduce the error any
more after that.

VII. THREE CLASSES DATASET

In order to raise the complexity of the tests other datasets
were created which included more classes. Here are described
the results for the dataset with three classes: ”stop movements”,
”slow movements”, ”fast movements”. After determining that
the best results were obtain with a lower batch size and
learning rate the values used were 0.01 for the learning rate and
30 for the batch size. In this situation using the same methods
of pre-initialization used for the two classes dataset proofed
to be inefficient leading to poor results. The best results were
obtain by using the lecun uniform initialization.

A. SmallNet Results
For the SmallNet were obtain for the training error: 2.5477%

for top-1 error and 0.955% for top-2 error. Regarding the test
error were: 26.7515% for top-1 error and 7.6433% for top-2
error.

This model was trained using 400 epochs using the early-
stop criteria to determine when to stop.

B. BigNet Results
This model was trained using 600 epochs using the early-

stop criteria to determine when to stop. The error rate obtain
for the test set was, in the top-1 33,12% and for the top-2 was
8,91%. For the training set the obtain error was 12.738% for
the top-1 and 3.18% for the top-2.

C. Results Analysis

SmallNet Top 1 Top 2 BigNet Top 1 Top 2

test set 26,7% 7,6 test set 33% 8,9%
training set 2,5% 0,9% training set 12,7% 3,1%

TABLE V. SUMMARIZED RESULTS OF Three Classes Dataset



8

Even though the training error increased comparing to the
two classes dataset the results are still very positive. It is also
very interesting to see how the results of the SmallNet are as
good or even better than the results of the Bignet meaning
that this case study does not requires a lot of neurons to
create a model that represents this dataset. Although the ”lecun
uniform” initialization tries to find intermediate weights the
algorithm is still random so in some situations the training
process would be stuck in a local minimum. In that case the
only solution was to restart the training in order to obtain a
better initialization.

VIII. FOUR CLASSES DATASET

This last dataset was also the most complex of this thesis. It
was divided into 4 different classes: ”still”, ”sited”, ”moving”
and ”fighting”. The training process was identical to the one
used for the ”Three Classes Dataset”.

A. SmallNet Results
The results of the SmallNet were very positive. The error

rate for the test set was 21,65% for the top-1 and 7% for the
top-2. Regarding the training set the error rate was 0,636% for
the top-1 and 0,32% for the top-2.

B. BigNet Results
Although the results were a little worse than the SmallNet

results they are still very positive. The error rate for the test set
was 31,21% for the top-1 and 15,92% for the top-2. Regarding
the training set the error rate was 20,06% for the top-1 and
7% for the top-2.

C. Results Analysis

SmallNet Top 1 Top 2 BigNet Top 1 Top 2

test set 21,6% 7% test set 31,2% 15,9%
training set 0,6% 0,3% training set 20% 7%

TABLE VI. SUMMARIZED RESULTS OF Four Classes Dataset

The results of this dataset turned out to be very positive
even with a small dataset in comparison with the state of the
art ones. Once again the results from the SmallNet are better
than the results from the BigNet.

IX. GLOBAL RESULTS ANALYSES

In this thesis the same dataset was divided into different
classes, starting with only two classes until four different
ones. In the ”Two classes dataset” results a big variety of
combinations were tested and the conclusion was that having a
small learning (0.01) rate together with an also small batch size
(30) turn out to be the combination that led to better results.
Choosing a batch size of 30 turned out to be very efficient
mostly because each action of the dataset was constituted by
30 frames. Another interesting discover was that the SmallNet
structure achieved better results than the BigNet which goes
against the majority of the literature where the bigger the

net the better the results. This results are also very positive
because the training and predicting process of the SmallNet
is much faster than the BigNet. Of course that the size of the
net depends on the complexity of the case study and probably
bigger datasets with more classes would require bigger nets.

X. THESIS CONCLUSIONS

In this thesis the same dataset was used in three different
situations by changing how the data was split. The model
was tested against a dataset divided into two, three and four
classes. The results obtain for each case were positive and
allowed taking the following conclusions: Firstly it is definitely
possible to apply CNNs into the current case study. The model
will autonomously find a way to classify the dataset with
less error possible. However there are no thumb rules that
determine the structure of the net that should be used to each
case study so in order to find the best model is required to make
a several tests with different net structures and parameters.
Secondly not always a deeper net obtains better results. For this
thesis case study the SmallNet structure obtain better results
in less time than the bigger net, bigger nets should only be
used in more complex cases where the number of outputs are
bigger or for a situation that requires to give more relevance to
small details. Thirdly keeping both training error and test error
in mind while training the dataset turned to be very useful to
find the best models. Using techniques like early-stopping or
cross-validation is very important to obtain the best models.
Fourthly in video processing it is very important to obtain a
big and miscellaneous dataset. By doing so it will avoid the
appearance of patterns that lead to over-fit and prevent the
model from obtaining good results in real life situations. As a
last conclusion the results of this thesis show once more the
potential of autonomously learning methods to solve complex
problems where human intuition is involved. There is a lot of
good documentation and machine learning libraries that allow
researches to quickly start testing their models and obtain good
results.

XI. FUTURE WORK

There are multiple ways to expand this work. In this thesis
the dataset was only split into training set and test set. Using a
validation set in the training process could improve the results,
also the method of cross-validation could also be applied. In
order to make sure that the model would obtain good classifi-
cations in real live scenarios it is important to keep improving
the dataset by collecting more videos with more variety and
to test the model in online mode (which means measuring
the model error by making live classifications). In the future
the model should be capable of doing ”online learning”. This
means that it should be continuously learning and collecting
data and could be corrected by an Human every time that it
made poor classifications. Finally, as in video processing, the
past frames are important for the present classifications. Using
recurrent neural networks could also improve the results and
allow more complex associations between frames.



9

REFERENCES

[1] Kernels along the layers.
[2] Frank Seide, Gang Li, and Dong Yu. Conversational speech transcrip-

tion using context-dependent deep neural networks. In Interspeech
2011. International Speech Communication Association, August 2011.

[3] Kunihiko Fukushima. Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift in
position. Biological Cybernetics, 36:193–202, 1980.

[4] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, Nov 1998.

[5] David G. Lowe. Distinctive image features from scale-invariant key-
points. Int. J. Comput. Vision, 60(2):91–110, November 2004.

[6] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
human detection. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05) -
Volume 1 - Volume 01, CVPR ’05, pages 886–893, Washington, DC,
USA, 2005. IEEE Computer Society.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira,
C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[8] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[9] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.
Rich feature hierarchies for accurate object detection and semantic
segmentation. CoRR, abs/1311.2524, 2013.

[10] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung,
Rahul Sukthankar, and Li Fei-Fei. Large-scale video classification with
convolutional neural networks. In CVPR, 2014.

[11] Rocking@home competition.
[12] D. H. HUBEL and T. N. WIESEL. Receptive fields, binocular

interaction and functional architecture in the cat’s visual cortex. The
Journal of physiology, 160:106–154, January 1962.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. Journal of Machine Learning Research,
15:1929–1958, 2014.

[14] Keras documentation.
[15] Yann Lecun, Lon Bottou, Yoshua Bengio, and Patrick Haffner.

Gradient-based learning applied to document recognition. In Proceed-
ings of the IEEE, pages 2278–2324, 1998.


