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Resumo

Com o avango da tecnologia os robots estdao a tornar-se cada vez mais essenciais para a vida hu-
mana. De forma a tornar os robots mais auténomos, investigadores tém-se focado em criar algoritmos
de processamento de imagem cada vez mais robustos e capazes de interagir com o mundo real. Esta
tese aborda um case study proximo da realidade onde sdo aplicadas redes convolucionais. O conceito
do case study trabalhado é a classificagao de atividades levadas a cabo por humanos num ambiente
doméstico. O objetivo € determinar, em tempo-real, se 0 comportamento do(s) sujeito(s) & normal
ou anormal (potencialmente perigoso). A criagdo de um modelo como este permitira a vigilancia in-
stantanea e continua em todas as cameras conectadas ao algoritmo. Nesta tese foi criado um dataset
extenso sendo o mesmo aplicado a diferentes estruturas de redes de forma a determinar as arquiteturas
que obtém os melhores resultados. Os resultados finais mostram que redes convolucionais podem ser
aplicadas com sucesso a problemas de processamento de imagem, obtendo resultados tao bons ou

superiores aos obtidos com os métodos classicos de processamento de imagem.

Palavras-chave: redes-convolucionais, machine-learning, processamento-de-imagem
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Abstract

With the advance of technology robots are becoming essential in humans daily lives. In order to make
robots more autonomous lots of efforts are being made by researchers to create robust and efficient
image processing algorithms capable of interacting with the real world. This thesis addresses a semi
real-live situation by applying convolution neural networks. The case study concept is the classification
of humans activities performed in a domestic scenario. The main goal is to determine if the human real-
time continuous behavior is either normal or abnormal (potentially dangerous). The creation of such
model would allow instant and continuously surveillance in every connected camera. In this thesis an
extensive dataset was created and applied to different net architectures to determine which obtain better
results. The final results are very positive showing that convolution neural networks can successfully be
applied to image processing situations obtaining results that easily equalise or even overcome classic

methods from computer vision.

Keywords: convolution-neural-networks, image-processing, machine-learning
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Chapter 1

Introduction

1.1 Motivation

A new era of domestic robots is rising and many robotic investigation teams are focusing their efforts on
developing robots that can better perceive the world around them, increasing their grade of automation.
Over the last several years, Machine Learning techniques, particularly Neural Networks, have played an
increasingly important role in the design of pattern recognition systems. This thesis follows Lecun et al.
[1] that says that "better pattern recognition systems can be built by relying more on automatic learning,
and less in hand-designed heuristics”. This thesis is integrated in the SocRob@Home project which is
a project from an ISR (Institute for Systems and Robotics) team that competes in robotic competitions
such as RoCKIn[2] and RoboCup. This team focus is the scientific research in domestic robots. The
main purpose of this study is to help the team developing a model that correctly identifies abnormal
behaviors in indoor scenarios (ex: visitors in a house). The model must learn the correct classification

using a labeled dataset containing both normal and abnormal behaviors.

1.2 State of the art

In this section is described how Artificial Neural Networks (ANNs) evolved until reaching the current state
and in what situations ANNs proved to be successful.

ANN research has experienced three periods of extensive activity. The first peak in the 1940s was
due to McCulloch and Pitts’ pioneering The second occurred in the 1960s with Rosenblatt’s perceptron
convergence theorem and Minsky and Papert’s work showing the limitations of a simple perceptron.

In machine learning and cognitive science, artificial neural networks are a family of models inspired
by biological neural networks (the central nervous systems of animals, in particular the brain) which
are used to estimate or approximate functions that can depend on a large number of inputs and are
generally unknown.

Artificial Neural Networks appeared in the 1940s due to McCulloch and Pitts’ pioneering. The second

pick occurred in the 1960s with Rosenblatt’s perceptron convergence theorem and Minsky and Papert’s



work showing the limitations of a simple perceptron. The net could emulate a significant number of
functions. However the algorithm was slow and not very efficient. In 2005 Deep Learning emerged.
As the name suggests, the base in Deep Learning is in the use of deeper networks with much more
layers and units per layer. Deep learning kept on growing with the creation of new powerful algorithms
and techniques and with the increase of computational power. When trying to apply neural networks
to more complex datasets, such as image processing, come the necessity of developing methods that
could accept 2D inputs instead of only 1D. One of those methods is known as Convolutional Neural
Networks (CNNs) [3]. Convolutional Neural Networks are mostly used in image and video processing.
A big challenge in image processing is the size of the inputs. For instance, an image with a resolution
of 100x100 pixels will have 10000 inputs times 3 channels (RGB). The first layers of a CNN are 2D and
make the convolution between the image and the learned kernels (filters). The final layers are 1D (fully
connected). The basic idea of CNNs is that the net aims to learn which kernels weights are the most
effective. Each layer represents the input image in a different way. The first layers are considered low
level since they extract elementary visual features such as oriented edges, end-points and corners. In

deeper layers this features are then combined in order to detect high-order features (see Figure 1.1).
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Figure 1.1: Feature extraction of kernels along the multiple layers [4]

Deep learning proved to give positive results in a wide variety of research areas. The beginnings
of deep learning in 2006 focused on the MNIST ! digit image classification problem [5] [6]. The latest
records are still held by deep networks: Ciresan et al. [7] currently claim the title of state of the art for
the unconstrained version of the task (e.g., using a convolutional architecture), with 0.27 percent error.

Microsoft released in 2012 a new version of their Microsoft Audio Video Indexing Service speech
system based on deep learning[8]. These authors managed to reduce the word error rate on four major
benchmarks by about 30 percent compared to state-of-the-art models based on Gaussian mixtures for
the acoustic modeling and trained on the same amount of data (309 hours of speech).

These techniques have been applied in a big variety of datasets; not only in image processing but
also in other areas, for example speech recognition. The Convolution Neural Networks were introduced
by Fukushima et al.[9] and further developed by Lecun et al. [1] in 1998. Since then, many other

researchers have published papers presenting results that outperformed the older methods that used

"Mixed National Institute of Standards and Technology database



hand-designed features selectors like SIFT [10] and HOG [11]. In Krizhevsky et al. [12], a deep Con-
volutional Neural Network was trained to classify 1.2 million high resolution images in the ImageNet
LSVRC/2010 contest into 1000 different classes. Their network achieved top-1 and top-5 2 test error
rates of 37.5% and 17.0% where the best performance achieved during the ILSVRC-2010 competition
was 47.1% and 28.2% with an approach that averages the predictions produced from six sparse/coding
models trained on different features [13]. Krizhevsky et al. [12] used a network containing eight learned
layers (five convolutional and three fully-connected). In order to train the network it was needed two
NVIDIA GTX 580 GPU with 3GB of memory. The network was trained for 90 cycles through a training
set of 1.2 million images, which took five to six days. In Girshick et al [14] it was proposed an object
detection method that consisted in three modules: The first generates category-independent region pro-
posals, the second is a large convolutional neural network that extracts a fixed-length feature vector
and the third is a set of class specific linear SVMs (Support Vector Machines). In this paper the CNNS
were use as a mean of feature extraction and not classifiers. The authors used a method that combined
classical tools from computer vision with deep learning, achieving results of 30% relative improvement
over the best previous results on PASCAL VOC 2012.

All the above information is relative to image processing, but as the purpose of this work is to classify
behaviors from video sequences it is important to refer some work that has been done in the video
processing area. CNNs can be modified to accept videos sequences as input. This can be achieved
by modifying the filters on the first convolutional layer in the single-frame model by extending them to
be of size i * j x 3 x T, where i,j are the pixels positions on the 3 the channels RGB and T represents
some temporal extent. Andrej Karpathy et al. [15] provides an empirical evaluation of CNNS on a large
scale video classification using a new dataset of 1 million YouTube videos belonging to 487 classes. In
this work the authors observed that motion aware network clearly benefits from motion information in
some cases. However these seem to be relatively uncommon because in most of the cases single-frame

model already displays very strong performance.

1.3 Challenge Description

This thesis challenges can be categorized in two major topics: First, the study and understanding of
deep learning and convolution neural networks, focusing on finding the best way to implement them
and the best architectures to use. Second, applying this algorithms to a realistic scenario in order to
determine how likely convolution neural networks can contribute for the increasing of automation in the
area of robotics.

The realistic challenge of this study is to develop a model that correctly identifies abnormal behaviors
of humans in a domestic scenario. The model must learn the correct classification using a labeled
dataset containing both normal and abnormal behaviors.

As described in the RoCKIn Nutshell [16]: "RoCKIn@Home is a competition that aims at bringing

2top-x error, also known as rank-x error, is the error taking in consideration if the correct classification is present in the top x
predictions with the higher level of confidence



together the benefits of scientific benchmarking with the attraction of scientific competitions in the realm
of domestic service robotics. The objectives are to bolster research in service robotics for home applica-
tions and to raise public awareness of the current and future capabilities of such robot systems to meet
societal challenges like healthy ageing and longer independent living.” The basic idea of the scenario of
the competition is that there is a elderly, named “Granny Annie”, who lives in an apartment together with
some pets. Granny Annie is suffering from typical problems of aging people and the robot must be able
to perform a big variety of tasks that help to increase her life quality. The environment is an ordinary
European apartment equipped with a big variety of networkable devices such as: ceiling lamps, electric
shutters, camera-based intercom at the front door and a net of surveillance cameras spread around the
flat (figure 1.2).

Figure 1.2: Virtual representation of @home competitions scenario [16]

If Granny Annie is not in conditions of standing up the robot has to be able to handle visitors, who
arrive and ring the door bell. The robot must correctly decide which visitors are allowed to come in and
which ones are not. Even if the visitor is allowed to come in, the robot must always be aware of his

actions in order to make sure that the visitor is not doing nothing out of the ordinary.

1.4 Goals

The main purpose of the work developed in this thesis is to create a model that correctly classified
actions performed by house visitors in order to identify abnormal behaviors. To reach this goal several
intermediate goals were defined. The first intermediate goal was to develop a case study that in one
hand was simple enough so that it could be easily implemented and analysed and in the other hand was
robust enough so that the results could be compared with a real live scenario. The second intermediate
goal was the creation of the dataset following the details of the case study. The dataset should be big
enough so that it could be divided into a training and a test set and should be complex enough so that it
could embrace a big variety of cases. The third sub-goal was to study different nets structures in order
to find the one that best fits the case study and that provides the best outcome. Finally the last goal was

to test the model in a real life scenario and measure the obtained results.



1.5 Thesis Outline

The structure of this thesis contains six chapters.

In Chapter 2 (Background) the Convolution Neural Networks background is discussed. First this
chapter focus on introducing the Artificial Neural Networks and the algorithm of backpropagation with
gradient descent (a common method of training artificial neural networks, the method calculates the
gradient of a loss function with respect to all the weights in the network then the gradient is fed to the
optimization method which in turn uses it to update the weights, in an attempt to minimize the loss
function). Next there is an extensive study about Convolution Neural Networks, describing its main
concepts: Local Connectivity (2.2.1), Parameter Sharing (2.2.2), Pooling and Sub-Sampling (2.2.3),
Convolution (2.2.4), CNN backpropagation (2.2.5) and Dropout (2.2.6).

Chapter 3 (Case Study and Dataset), describes the main problem that this work proposes to solve
and how the dataset was obtained. It is specified the different actions present in the dataset (Actions
Description 3.3.1) and some of the frames are illustrated. It is also detailed how the dataset was divided
into Training Set and Validation Set (Spliting the Dataset 3.4.1).

In chapter 4 (Resutls) it is described how the results were obtained (section 4.1) and the experimental
results are displayed together with their analyses in sections: Two Classes Dataset (section 4.2), Three
Classes Dataset (section 4.3) and Four Classes Dataset (section 4.4).

Finally chapter 5 (Conclusion), provides an overview of the thesis, describes the most significant

conclusions and proposes possible extensions to the developed work.






Chapter 2

Background

2.1 Artificial Neural Network

2.1.1 Basic Concept

An ANN structure is constituted by one input layer, one output layer and the hidden layers, which are
between the first two. Both the unit inputs and the unit outputs are multiplied by weights. Each layer has
a certain number of units. The output of a unit is the weighted sum of its inputs plus a bias term. This
output is then passed in a sigmoid form function such as the tanh. In this section we will explain in more
detailed how ANNs work. The net structure described is the Multi-Layer Perceptron (MLP) (Figure 2.1)

using the back-propagation method with the algorithm gradient descent.

Attribute 1 ——

Attribute 2 —b

Attribute n —-

Input Layer Hidden Layer Output Layer
Figure 2.1: Representation of a Multi-Layer Perceptron
A MLP is a feedforward network and it is normally trained using a supervised method where the

objective is to minimize a loss function by updating the weights. Once again the main purpose of the

back propagation algorithm is to minimize an error function, such as:



being k the training input, e(k) the error, o(k) the output and d(k) the desired output. The loss function

most commonly used is the “least square error”:

E(k) = |le(k)|[? (2.2)

where E(k) is the loss function.

One common minimization algorithm is the gradient method. This method consists in iteratively

updating the weights in order to minimize the loss function:

w(n+1) :w(n)—lr*g—gf (2.3)

JE the derivative of the loss function in relation to the

being Ir the learning rate, w the weights and 5

weight.

Firstly, all the parameters of the feedforward net are calculated and the output is obtained. Having
the output it is possible to calculate E(k) and the derivative of the error is back-propagated. So the input
of the back propagation network is 2 * e(k). Next g—‘ff must be calculated for each weight where f—vff, is
equal to the input of the feedforward network times the input of the back-propagation net in the same
particularly branch. There are two types of training: the batch mode (offline training) and the online
mode. The batch size is the number of samples that are used in each iteration, so in the batch mode all

batch inputs are used in the weight update:

6E1+ Jr5En)
W oW

wn+1) =wn) —Ir=( (2.4)

In online mode the model does not have access to all the dataset at once and the training occurs

each time that a new input is available, so:

w(n+1) =w(n) —lr = (2.5)

being ni the new input

2.2 Convolution Neural Networks

The architecture of a CNN can be divided in two parts. The first layers are 2D and make the convolution
between the image and the learned kernels. After the convolution layers the net is constituted by 1D

fully-connected layers. This last layers are basic artificial neural networks (similar to MLPs).

CNNS have four base concepts: local connectivity, parameter sharing, pooling and sub-sampling

and convolution.



2.2.1 Local Connectivity

Local connectivity is the idea of connecting units to local receptive fields on the input. This idea goes
back to the MLPs and was almost simultaneous with Hubel and Wiesel’s discovery of locally-sensitive,
orientation-selective neurons in the cat’s visual system [17].

Local connectivity allows layers not to be fully connected to each other but only to be connected to a
limited number of units in the next layer. This property allows the local processing of an image.

Figure 2.2 illustrates the property of local connectivity. As can be seen the input image is divided
into different regions and each region is only connected to a specific unit from the next layer. When the
input has multiple channels (ex: RGB) the same region in each channel is connected to a specific unit,

as illustrated in figure 2.3

Figure 2.2: Representation of local connectivity

However distortion or shifts of the input can cause the position of salient features to vary. In addition,
elementary feature detectors of salient features might be useful across the entire image. This can be
accomplished by forcing a set of units, whose receptive fields are located at different places on the

image, to have identical weights. This propriety is called parameter sharing.



Figure 2.3: Representation of local connectivity in RGB

10



2.2.2 Parameter Sharing

Parameter Sharing is a property that allows each feature map to be applied to all the receptive fields
of the input image. Therefore the weights of each feature map are updated based on all the connected

receptive fields (as illustrated in figure 2.4) allowing a significant reduction on the net number of weights.

... ... '.'.” ......
* *® A
L

Figure 2.4: Representation of parameter sharing

2.2.3 Pooling and Sub-Sampling

Once the feature has been detected, its exact location becomes less important. It is only relevant the
approximate position relative to other features. A good way to illustrate this statement is to think in
the characters classification: once we know that the input image contains the endpoint of a roughly
horizontal segment in the upper left area, a corner in the upper right area, and the endpoint of a roughly
vertical segment in the lower portion of the image, we can tell the input image is a 7. All the other features
beyond these are irrelevant and might even contribute to a poorer classification. Pooling and Sub-
Sampling is a way to reduce the precision of the feature map in order to highlight the most representative
features. The pooling technique takes from a patch of hidden units the most representative value. There
are different kinds of pooling but the most used are the max-pooling and the average-pooling. The

max-pooling as the name suggests takes the maximum value in a certain neighborhood:

y(i,j) = maxN (z(i, j)) (2.6)

where (i, j) is the value of the pixel located in ¢, j and N(z) is the neighborhood of (i, j)
The average-pooling (equation 2.7), again as the name suggests, takes the average value of a certain

neighborhood,

Wi.d) = (—3) % 3 NG ) @7)

11



where m? is the squared value of the size of the reception field

The reason why it is also called sub-sampling is because there is a reduction in the feature map
resolution. Besides contributing to the elimination of irrelevant features [1] this technique also contributes
to save a lot of weights allowing to increase the number o kernels of the next layer without substantial

increase of the processing power. In figure 2.5 is represented the result of an "Average Pooling” and a

"Max Pooling”.
2118 | 8 (12
1211919 |7
8 110| 4
1811219 |10
1519 21112
1217 18110
Average Pooling Max Pooling

Figure 2.5: Representation of max pooling and average pooling [18] with a reduction of (2,2)

2.2.4 Convolution

The feature maps are created by the discrete convolution of the kernels with a portion of the input
(receptive field).

The discrete convolution is very similar to the continuous one but with the difference that it is com-
puted in a finite sequence of points.

+inf

> flmlgln—m] (2.8)

m=—inf
Equation 2.8 describes the convolution between f[m] and g[m|. The result will be the sum of the
product of f[m] and the reversed and shift n of g[m] for every m.
The matrix convolution has some significant differences from the processes described above. Matrix
convolution (figure 2.9) is used in image processing and it is between an image (I[u, v]) and a kernel
(ki ).

FMJi,jl =" N(I[u,v]) % k[i — u, j — v]) (2.9)

The first step to calculate the convolution is to flip the rows and the columns of the Kernel, which
means that instead of counting the kernel index from top right as being (0,0) we place the origin index in
the bottom right corner. The next step is to overlap the center of the kernel with the image pixel that we

want to calculate (I, j]) and obtain the sum of the overlapped values product.

12
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Figure 2.6: Representation of matrix convolution [19]

An helpful property of convolution is that it is shift invariant so if the neighborhood stays the same
the image can be shifted and the result will always be very similar. If the input has three channels the
output is going to be the sum of the result of the convolution in each channels. Then the result will be

the input of a sigmoid (for example a tanh). The new feature map will be constituted by the outputs of
the non-linear function.

2.2.5 CNN backpropagation

The algorithm of backpropagation in CNN’s works in a very similar way than with 1D neural networks.

Let’s analyse how backpropagation works in convolution units and pooling units.

Convolution Units

The algorithm of back-propagation [9] in CNNs its actually very similar to the one applied to fully con-

nected layers. The aim of each iteration is to obtain a new set of kernel weights (&[4, j]) that reduces the
model error.

kn+1) =k(n) —Irx (;—f (2.10)

where Ir is the learning rate and 2£ is the derivative of the loss function in order of the weights k.

13



In order to calculate 42 it is also needed to calculate the inputs of the backward net. As illustrated in
figure 2.7 instead of determining y(i, j) by making the convolution between (i, j) and k(i, j) we want to

calculate the opposite:

(i, j) = y(i, j) * k(i, J) (2.11)

Old Weights: X(1,j) New Weights: Y(,j)

Kernel: K(1,j)

Figure 2.7: Simplified representation of backward propagation

Finally to calculate 2 we need to calculate the convolution between the input of the unit in the

feedforward net and the input of the same unit in the backward net.

Pooling Units

For the case of the pooling units let’s analyse both the maxpooling and the average pooling situations.
In the case of the maxpooling the error derivative will only be backpropagated to the units that were

selected as the maximum in the forward propagation. All the other units will receive the value of zero.

Result: Backforward maxpooling

if i and j correspond to the max unit then

| x(i,j) = y(a,b)
else
X(i,j) = 0;
end

In the case of the average pooling all the units will receive the same gradient value (upsampling)

divided by the m? (m? is the squared value of the size of the reception field)
.. 1

2.2.6 Dropout

Dropout was introduced by Srivastava et al.[20] as a "Simple Way to Prevent Neural Networks from
Overfitting”. When training a neural network, specially when having limited training data, there are some
noise in the samples that might not be in the real data. This may cause the model to overfit to that

noise. Dropout reduces substantially the overfitting by preventing each unit to depend on their nearest
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neighbours. The term “dropout” refers from dropping out units which consists in temporarily removing
them from the network while the training is occurring. This is accomplished by, for each training iteration,
randomly setting to zero the weights of multiple units with a probability of p (the value of p is normally
0.25 or 0.5). The higher the value of p the higher the number of dropped units and consequently units
deppend less on their neighbours. In figure 2.8 is illustraded the net architecture before and after dropout
where the units with the cross were dropped.

At test time the entire network is used to make a prediction however its weights are a scale down
version of the trained weights. That can be accomplished by multiplying them by the value of p used
during the training process. Dropout units can also be used with the backprogation algorithm with
gradient descent. In this case some of the units are dropped out and a thinned version of the network
is used for the back and forward propagation. Each dropped out unit contributes with a gradient of 0 for

the connected parameters.

a) Standard Neural Net (b) After applying dropout.

Figure 2.8: Representation of dropout taken from [20]
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Chapter 3

Net Structure, Case Study and Dataset

3.1 Convolutional Net Characteristics

Finding the structures that performed the best for the current case study was one of the critical parts
in this study. Surprisingly, it is very difficult to find literature about the topic of selecting the best net
structures for each case. In most of the cases researches either use well known structures with proved
results or conducted a variety of tests with multiple structures [21] in order to find the most efficient one.
Since the used dataset was completely developed for this thesis it was not possible to use a well known
structure. In this thesis two different structures were taken in consideration: SmallNet and BigNet. As
the names suggests the big difference between these two structures is their size. The SmallNet has only
one convolution layer while the BigNet follows some characteristics used in the paper of Alex Krizhevsky
et al.[12] having five convolution layers. The main purpose on using these two different structures was

to find how the number of layers could interfere with the final results

3.1.1 SmallNet

As it is represented in the fig 3.1 the SmallNet convolution section is constituted by one convolution layer
with only one 3x3 kernel, followed by a non-linearity layer (relu), a maxpooling unit with a reducing scale
of (2,2) and finally a dropout unit.

The fully-connected section is constituted by one fully-connected layer that receives 4536 inputs and
has 100 outputs, followed by a non-linearity layer (relu), another fully-connected layers that is the output
layer receiving 100 inputs and having nclasses outputs. Where nclasses depends on the used dataset

configuration.
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Input image Maxpooling (2,2)

Dropout (0.5) Dropout (0.25)

|

’ ‘ Nonlinearity Nonlinearity
Convolutions  Nonlinearity

Convolution Layers Fully-connected Layers

Figure 3.1: Smallnet Structure

3.1.2 BigNet

As it is represented in the fig 3.2 the BigNet convolution section is constituted by 5 convolution layers
with 1,3,6,9 and 12 kernels where the first kernel is a 9x9 the second a 6x6 and the rest are 3x3. Each
convolution layer is followed by the same layers as the SmallNet (non-linearity and maxpooling layers).
The fully-connected structure is also similar to the SmallNet one having two dense layers where the first

converts 36 inputs in 100 outputs and the second 100 inputs in nclasses outputs.

1 kernel —9x9 3 kernel — 6x6 6 kernel — 3x3 9 kernel —3x3 12 kernel — 3x3

ik

/AN

Convolutions  Non-Linearity Maxpooling (2,2)

Dropout Non-Linearity

Convolution Layers Fully-connected Layers

Figure 3.2: Bignet Structure
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3.2 Case Study

The purpose of the case study was in one hand to be simple enough so that it could be easily imple-
mented and analysed and in the other hand it needs to be robust enough so that the results could be
compared with a real live scenario without being easily solved by applying the classic image processing
techniques. In the @Home competition the robot must be able to handle the visitors so it must make
a distinction between those visitors who are allowed to enter the house (for example: the plumber, the
medic, the milk man ...) and the ones that are not. However even if the robot is capable to recognise
the allowed guest with 100% of certainty, after they are inside the house the robot assumes that they
are trustworthy which is an huge vulnerability since it allows the guests to perform any action without
controlling them. This is exactly the problem that this thesis proposes to solve.

Although the visitors are allowed to enter, the robot must at all times be aware of their actions in order
to determine if they are acting normally or if they are having abnormal behaviors that can arm Granny
Annie or her belongings.

The scenario of this case study occurs in the apartment kitchen and the visitor is a plumber that
comes to fix the kitchen sink. While in the kitchen the subject has a lot of different actions from which
some are considered normal and others abnormal. The kitchen scenario is not static and changes
through the videos in order to avoid the creation of patterns that associate actions to the position of the

object.
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Figure 3.3: Kitchen scenario with table with plates and silverware

Figure 3.4: Kitchen scenario with table without anything on

Figure 3.5: Kitchen scenario without the table

3.3 Creating the Dataset

Obtaining the dataset was one of the most important parts of this thesis since that having a good set
of data is crucial for the training and testing process of CNNs. A lot of the most used datasets contain

a huge amount of data and are collected by big research teams and used by many researches. A
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few examples of the most fascinating collections of data are: "ImageNet” [22], containing more than 15
million images, separated in 22 thousand categories (very well explained by Dr. Fei Fei Li in the Ted Talk
"How We Teach Computers to Understand Pictures” [23]), "Caltech-101” [24], containing 101 classes of
300x200pxs images and "CIFAR” 10 and 100 [25] with 60 thousand images of 32x32 pxs. The datasets
referenced above are all constituted by single frames, however there are also some videos databases,
such as: "CAVIAR” [26], that include 384x288pxs images recorded at 25 frames per second and includes
different behaviors like walking, leaving bags unattended, people in groups, etc ... or "LIRIS” [27] that
was recorded using 2 different cameras (a kinect and a Sony consumer camcorder) and contains 10
different classes spread in 828 actions. Although very complete none of this examples could be used
in this thesis because of the need of applying the model to a specific context. In the sections bellow is

described the process of obtaining the dataset.

3.3.1 Actions Description

The first step for building the dataset was to record a big variety of actions performed in the kitchen of
the ISR test bed scenario (see figures 3.3, 3.4, 3.5). Generally all the recorded frames needed to have a
big variety of actions and features in order to avoid over-fitting (model become stuck in a local minimum).
In order to guarantee the variety of the dataset multiple actions were recorded with 4 different subjects
(three male and one female), where the same subject would use different clothes and the disposal of
the scenario would change from video to video. The result was a total of 471 actions where each action
was constituted by 30 frames summing up to a total of 14130 frames. In order to make the dataset
flexible enough so it could be split into various classes each action was classified with a specific label
such as: ’sit’, 'sit on the floor’/sit on the table’/sit on the sink’, ‘walk’;run’,steal’, ‘throw a chair’,throw
object’’throw’, fight’;move arms’,jump’,/shake’, 'fix’, 'drink’ and ’stop’. It's important to notice that each of
these labels contain multiple videos where these actions were performed multiple times by the subjects.

Bellow there are some examples of the collected frames.

Figure 3.6: Male subject 1 performing the action of jumping
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Figure 3.7: Male subject 1 performing the action of fixing the sink tap

Figure 3.8: Male subject 1 performing the action of fixing under the sink

Figure 3.9: Male subject 1 sited on the chair
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Figure 3.10: Female subject fixing the sink tap

Figure 3.11: Female subject moving her arms

Figure 3.12: Female subject standing still near the sink
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Figure 3.13: Male subject 2 fighting with female subject

Figure 3.14: Male subject 3 performing the action of throwing glass

Figure 3.15: Male subject 2 fixing the sink tap while female subject is sited
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Figure 3.16: Male subject 3 sited on the sink

Figure 3.17: Male subject 2 standing still in scenario without table

Figure 3.18: Male subject 1 performing action of drinking
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Figure 3.19: Male subject 2 performing action of stealing

Of course that the fact of giving to each action such a specific label allowed the clustering of labels
into different classes. In this thesis 3 different datasets were created by clustering the labels in different

global classes.

Two classes dataset
This dataset was constituted only by to classes: normal and abnormal.
e normal = 'sit’, ’sit on the floor’, 'walk’,run’,fix’, 'drink’ and 'stop’
e abnormal = ’sit on the table’, ’sit on the sink’, ’run’, ‘steal’, ‘throw a chair’, 'throw object’, 'throw’,

fight’, ‘'move’, 'arms’, 'jump’, 'shake’.

Three classes dataset

o fast movements = 'shake’,;throw the chair’/throw object’, run’ 'throw’ fight’, 'move the arms’, ’jump

e slow movements = 'walk’, 'fix’,’steal’, 'drink’

e stop movements = 'stop’,’sit’, ’sit on the floor’;sit on the table’/sit on the sink’

Four classes dataset

e seated = sit’, 'sit on the floor’;sit on the table’,’sit on the sink’

e moving = 'walk’;run’,steal’

¢ fighting = 'throw chair’,throw object’,throw’,fight’)move arms’,jump’,shake’

o still =fix’, 'drink’, 'stop’
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3.3.2 Frames Characteristics

The camera used to record the dataset was an ip RGB axis camera with a static position fixed to the
ceiling. The camera was recording with a resolution of 320x240 pixels, however the frames used in the
dataset were resized to 160x120 pixels because it did not require so much RAM from the computer which
allowed the use of a bigger net. The ip axis camera has an off-the-shelf driver that allows an integration
with ROS [28] (Robot Operative System). The topic generated by the camera allows to access to live

images which is perfect for the integration with the @Home challenge.

3.3.3 Recording the dataset

This thesis required a lot of software building in order to fulfill all the requirements. All the software was
written in python and is available for consultation in bitbucket cloud[29]. Above is described how the
recording of the dataset was implemented in the code. Figure 3.20 is a diagram that illustrates the flow

of the capture of the video.

Camera New Frame o
Topic _ Visualization _—

Covert bag to numpy array Save frames in array

Subscriber

Figure 3.20: Recording Dataset

The camera publishes the information in a topic that is subscribed by two modules. The first is
the viewer module that is an open source software (image_view) and displays the video. The second
is a subscriber developed by implementing the library "rospy” (implements ROS for python language).
This module is always saving the last 30 frames. The user that its visualizing the video through the
visualization module classifies each group of 30 frames with a label. Before saving the labeled frames
the subscriber module also rescales each individual image and removes the frames headers that per
default contain the time from when the image was taken.

To facilitate the classification process the videos were recorded in multiple .bag files! with a rate

of 20fps. However, the processing module does not save all the consecutive frames, always leaving

' bag correspond to rosbag files which are built in files from ROS that record all the information that was published to a certain
topic during the live occurrence of the system
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an interval of 10 frames between them. This interval has two important roles: one is to make sure
that the user is actually classifying the images that he is seeing at the same moment, because the
processing model is slower than the visualization model (which means that without the interval the user
would classify outdated images); the other role is to prevent the recording of redundant images since

consecutive images are very similar.

3.4 Training Process

3.4.1 Splitting the dataset

In the literature the dataset is normally divided into three types: training set (a subset that is used for
training the model and that is propagated through the net), the validation set (that is also used during the
training process but to implement the criteria of early stopping, generating an more independent error)
and finally the test set (used after the training to measure the model error against data never used in the
training process)

Since the dataset used in this thesis was not big enough the validation set was not used. Instead, it
was only used the training set and the test set (the test set had both role of test set and validation set).

The method used to generate both sets from the dataset is as follows:

1. Queue all frames (grouped by class) in an array

2. Start iterating through the actions, from left to right, splitting the dataset so that 1/3 was test set
and the rest 2/3 training set. Which means that 1 for every 3 actions would be test set and the

others training set.

It is important to notice that each action/video is constituted by 30 frames. The result is two datasets

that even though both having videos with the same label each of them have different frames.

3.4.2 Avoiding Overfitting

As the dataset used is small it was really important to avoid overfitting at all costs because if not the
model could only be applied to the current training set. The first technique used was dropout layers
(as described before). The technique of early stopping was also used. To implement early stopping,
for each iteration we should measure both the training error and the validation error. As long as the
validation error is getting lower the train might proceed. However the train must stop when the validation

error starts to increase, even if the training error is still reducing (as pointed out on figure 3.21).
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Figure 3.21: This figure shows the evolution of the training error (blue) and test error (red) through each
training iteration. The yellow triangle shows where the trainning should stop
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Chapter 4

Results

In this section the results for the three analysed datasets will be presented for the two used net struc-
tures. In this thesis it was used the library Keras[30] to implement the training and prediction using
CNNs.

4.1 Obtaining Error Rate

To better understand the results bellow it is important to describe how they were obtained. Even though
the inputs of the nets are single frames and the output does not depend on past frames, this case study
involves video processing and consequently its classification should depend on the classification of all
the frames in it. To accomplished that the frames belonging to a certain video were fed as input to the
model in the same order as they appear, the global classification of the video was the average of all the
belonging frames classification. As described in section 3.3.3, all the frames of the dataset are divided
in sets of 30. This means that the frames from 1 to 30 belong to the same action and then frames from

31 to 60 belong to a different action.
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Taking that in consideration the process to obtain the error rate is described bellow:

Result: Error Rate
while nFrame less then size(dataset) do
if nFrame is multiple of 30 then
top1 = average(30 last most probable classifications);
top2 = average(30 last second most probable classifications);
if top1 = ground truth then
errorl ++;
if top2 I= ground truth then
error2 ++;

end

end

else

nFrame ++;

end
end
Error1 = errori/Total number of frames * 100;

Error2 = error2/Total number of frames * 100;

4.2 Two Classes Dataset

This dataset was constituted by only two classes: Normal and Abnormal. And it was the most simple
case used in this study. The software developed in this thesis allowed, in an automated way, to test
different variations in the training parameters in order to see which combinations generated the best
results. The parameters tested in the train were the learning rate (using values of 0.01, 0.05 and 0.2)
and the batch size (using values of 30, 100 and 500). In this study was also tested how different weights

initializations could influence the results. Two different initializations were tested:

e The "lecun uniform”[31] initialization. This algorithm of initialization states that the weights should
not be to large so that the sigmoid would saturate resulting in small gradients and consequently
in a slow learning process. Neither to small causing the same effect. The weights should be

intermediate so that the sigmoid is primarily active in its linear region.

e Pre-trained initialization. This type of initialization states that applying weights obtained in the
training of other models, will lead to better and faster results.

In the graphs above is shown the error percentage for the multiple training variations performed in

this thesis. There are four different error types:
e Ts np - Testset without pre-training

e Ts p - Testset with pre-training
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e Trs n p - Training set without pre-training

e Trs p - Training set with pre-training

4.2.1 SmallNet Results
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Figure 4.1: SmallNet with learning rate of 0.01 for the different batch sizes
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Figure 4.2: SmallNet with learning rate of 0.05 for the different batch sizes
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Figure 4.3: SmallNet with learning rate of 0.2 for the different batch sizes
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For the SmallNet the pre-trained was obtain by training the same net in a smaller dataset (less
frames) and then applying the resulting weights as initialization of the train with the entire dataset. This
process helps the net to converge faster although with more epochs the training with no initialization

would probably reach the same results.

4.2.2 BigNet Results
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Figure 4.4: BigNet with learning rate of 0.01 for the different batch sizes
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Figure 4.5: BigNet with learning rate of 0.05 for the different batch sizes
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Figure 4.6: BigNet with learning rate of 0.2 for the different batch sizes
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BigNet was trained layer by layer. Which means that firstly all convolution layers but the first one were
removed and trained for 10 epochs, then the second one was added and the first layer was initialized
with the just learned weights. The process is repeated for the rest of the layers. As can be seen in the
graphics above, without weights initialization the training has poor results and never converges however

with the weights initialization the error rate decreases significantly (see figures 4.4, 4.5 and 4.6).

4.2.3 Results Analysis

H SmallNet 30 100 500 H BigNet 30 100 500 H
0.01 35,211% 35,915% 40,140% 0.01 30,281% 40,140% 40,140%
0.05 33,098% 32,394% 43,661% 0.05 30,281% 40,140% 40,140%

0.2 40,140% 40,140% 29,577% 0.2 40,140% 40,140% 29,577%

Table 4.1: Summarized results of the error rate of the test set without pre-training

H SmaliNet 30 100 500 H BigNet 30 100 500 H
0.01 18,367% 29,387%  41,224% 0.01 39,591% 41,224% 41,224%
0.05 4,897% 12,2446% 32,244% 0.05  41,224% 41,224% 41,224%

0.2 41,224%  41,224%  11,836% 0.2 41,224% 41,224% 29,795%

Table 4.2: Summarized results of the error rate of the train set without pre-training

H SmallNet 30 100 500 H BigNet 30 100 500 H
0.01 15,492% 16,901% 23,943% 0.01 29,577% 23,943% 35,211%
0.05 18,309% 12,676% 17,605% 0.05 33,802% 28,873% 27,464%

0.2 40,140% 40,140% 15,492% 0.2 23,943% 59,859% 25,352%

Table 4.3: Summarized results of the error rate of the test set with pre-training

H SmallNet 30 100 500 H BigNet 30 100 500 H
0.01 9,795%  20,408% 28,571% 0.01 6,530% 17,959% 35,918%
0.05 2,448%  6,938% 19,591% 0.05 2,857% 28,873% 25,714%

0.2 41,224% 41,224% 11,836% 0.2 19,183% 58,775% 12,653%

Table 4.4: Summarized results of the error rate of the train set with pre-training

From both net results it can be concluded that in order to increase the learning rate the batch size
has also to be increased. This can be observed by comparing figure 4.1 with figure 4.3 (for the SmallNet)
and figure 4.4 with figure 4.6 (for the BigNet). In both figures 4.1 and 4.4 the results are better with the
lower batch size, however in figures 4.3 and 4.6 the better results are obtain with the higher batch size.
This makes sense because having a higher batch size means that the algorithm uses a bigger variety
of inputs in each update so the learning rate can be reduced because each update is more moderate.

It can also be observed in figures 4.3, 4.4, 4.5 and 4.6 that in some cases different batch sizes have

the exact same error rate. This is due to both combinations had encountered the same local minimum,
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not being able to reduce the error any more after that. Finally in figure 4.6 both error rates from training
set and test set with pre-training with the batch size of 100 standout for being much higher than the
others. This can also be explained by the encounter of a local minimum during the training process that

prevented the model from learning the dataset.

4.3 Three Classes Dataset

In order to raise the complexity of the tests other datasets were created which included more classes
(as mentioned in section 3.3.1). Here are described the results for the dataset with three classes: "stop
movements”, "slow movements”, "fast movements”. Eventhought for the Two Classes Dataset the best
results were obtain with a combination of learning rate equal to 0.05 and batch size equal to 100, after
several tests the best combination for this case was obtain with a lower batch size and learning rate.
The values used were 0.01 for the learning rate and 30 for the batch size. Also in this situation using
the same methods of pre-initialization used for the two classes dataset proofed to be inefficient leading

to poor results. The best results were obtain by using the lecun uniform initialization.

4.3.1 SmallNet Results

For the SmallNet were obtain for the training error: 2.5477% for top-1 error and 0.955% for top-2 error.

Regarding the test error were: 26.7515% for top-1 error and 7.6433% for top-2 error.

38



100

el

80

70

60

50

Error Percentage

40
30
20

10
Ts np Trs np
HTopl HTop2
Figure 4.7: SmallNet error percentage for dataset with 3 classes
This model was trained using 400 epochs using the early-stop criteria to determine when to stop.

4.3.2 BigNet Results

This model was trained using 600 epochs using the early-stop criteria to determine when to stop. The
error rate obtain for the test set was, in the top-1 33,12% and for the top-2 was 8,91%. For the training
set the obtain error was 12.738% for the top-1 and 3.18% for the top-2.
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Figure 4.8: BigNet error percentage for dataset with 3 classes

4.3.3 Results Analysis

H SmallNet Top 1 Top 2 H BigNet Top 1 Top 2 H

test set 26,7515%  7,6433 test set 33% 8,91%
training set  2,5477%  0,9555% || training set 12,738% 3,18%

Table 4.5: Summarized results of Three Classes Dataset

Even though the training error increased comparing to the two classes dataset the results are still
very positive. It is also very interesting to see how the results of the SmallNet are as good or even better
than the results of the Bignet meaning that this case study does not requires a lot of neurons to create
a model that represents this dataset. Although the “lecun uniform” initialization tries to find intermediate
weights the algorithm is still random so in some situations the training process would be stuck in a local

minimum. In that case the only solution was to restart the training in order to obtain a better initialization.

4.4 Four Classes Dataset

This last dataset was also the most complex of this thesis. It was divided into 4 different classes: “still”,
"sited”, "moving” and "fighting”. The training process was identical to the one used for the "Three Classes
Dataset”.
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4.4.1 SmallNet Results

The results of the SmallNet were very positive. The error rate for the test set was 21,65% for the top-1
and 7% for the top-2. Regarding the training set the error rate was 0,636% for the top-1 and 0,32% for
the top-2.
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Figure 4.9: SmallNet error percentage for dataset with 4 classes

4.4.2 BigNet Results

Although the results were a little worse than the SmallNet results they are still very positive. The error
rate for the test set was 31,21% for the top-1 and 15,92% for the top-2. Regarding the training set the
error rate was 20,06% for the top-1 and 7% for the top-2.
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Figure 4.10: bigNet error percentage for dataset with 4 classes

4.4.3 Results Analysis

H SmallNet Top1 Top2 H BigNet Top 1 Top 2 H

test set 21,65% 7% test set 31,21% 15,92%
training set 0,636% 0,32% || training set 20,06% 7%

Table 4.6: Summarized results of Four Classes Dataset

The results of this dataset turned out to be very positive even with a small dataset in comparison with
the state of the art ones. Once again the results from the SmallNet are better than the results from the
BigNet.

4.5 Global Results Analyses

In this thesis the same dataset was divided into different classes, starting with only two classes until four
different ones. In the "Two classes dataset” results a big variety of combinations were tested and the
conclusion was that having a small learning (0.01) rate together with an also small batch size (30) turn
out to be the combination that led to better results. Choosing a batch size of 30 turned out to be very
efficient mostly because each action of the dataset was constituted by 30 frames. Another interesting
discover was that the SmallNet structure achieved better results than the BigNet which goes against the

majority of the literature where the bigger the net the better the results. This results are also very positive
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because the training and predicting process of the SmallNet is much faster than the BigNet. Of course
that the size of the net depends on the complexity of the case study and probably bigger datasets with

more classes would require bigger nets.
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Chapter 5

Conclusion

5.1 Thesis Overview

In this thesis convolution neural networks were used to learn to correctly distinguish different behaviors
in a real life situation. The case study is a real life problem adapted from the competition Rockin@Home.
Before this thesis this problem has never been tackled so all the work done started from ground zero and
was constructed along the way. In this thesis is presented how the case study dataset was constructed

and how the methods of CNNs were applied in order to obtain our results.

5.2 Thesis Conclusions

In this thesis the same dataset was used in three different situations by changing how the data was split.
The model was tested against a dataset divided into two, three and four classes. The results obtain for
each case were positive and allowed taking the following conclusions: Firstly it is definitely possible to
apply CNNs into the current case study. The model will autonomously find a way to classify the dataset
with less error possible. However there are no thumb rules that determine the structure of the net that
should be used to each case study so in order to find the best model is required to make a several tests
with different net structures and parameters. Secondly not always a deeper net obtains better results.
For this thesis case study the SmallNet structure obtain better results in less time than the bigger net,
bigger nets should only be used in more complex cases where the number of outputs are bigger or
for a situation that requires to give more relevance to small details. Thirdly keeping both training error
and test error in mind while training the dataset turned to be very useful to find the best models. Using
techniques like early-stopping or cross-validation is very important to obtain the best models. Fourthly
in video processing it is very important to obtain a big and miscellaneous dataset. By doing so it will
avoid the appearance of patterns that lead to over-fit and prevent the model from obtaining good results
in real life situations. As a last conclusion the results of this thesis show once more the potential of
autonomously learning methods to solve complex problems where human intuition is involved. There is

a lot of good documentation and machine learning libraries that allow researches to quickly start testing

45



their models and obtain good results.

5.3 Future Work

There are multiple ways to expand this work. In this thesis the dataset was only split into training set and
test set. Using a validation set in the training process could improve the results, also the method of cross-
validation could also be applied. In order to make sure that the model would obtain good classifications
in real live scenarios it is important to keep improving the dataset by collecting more videos with more
variety and to test the model in online mode (which means measuring the model error by making live
classifications). In the future the model should be capable of doing "online learning”. This means that
it should be continuously learning and collecting data and could be corrected by an Human every time
that it made poor classifications. Finally, as in video processing, the past frames are important for the
present classifications. Using recurrent neural networks could also improve the results and allow more

complex associations between frames.
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