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Instituto Superior Técnico, Lisboa, Portugal

May 2016

Abstract

The purpose of this work is to develop a computational model to optimize the reinforcement of
plan panels with standard beams, using, for this, discrete optimization methods, subject to different
loadings and boundary conditions, in order to increase its stiffness. For this, it is necessary to develop
a computational model that allows determining the optimal location of these reinforcements, as well as
the type of beams to be used, satisfying constraints of volume/weight of the reinforcements. Before
designing the program, it was necessary to define the formulation of the problem of optimization,
including the objective function (the total elastic strain energy), design variables and constraints. It
was used ANSYS, Inc. for finite element analysis, the GLODS (global and local optimization using
direct search) as optimization algorithm, and MATLAB, The MathWorks, Inc., to create an interface
between them. This model has been tested for several sets of reinforcement beams, and it determined
the best solutions in a wide range of case studies, which arose from two main groups of configurations
(configurations in schemes of 24 and 32 positions of beams to be introduced). The results concluded
that the discrete optimization program of 32 positions were, in general, more effective. However, there
are areas where it is advantageous to use the discrete optimization program of 24 positions.
Keywords: Finite Element Method, Optimization Algorithm, Totology Optimization, Structural
Analysis, Plate Theory

1. Introdution

The purpose of this work is to develop a com-
putational model to optimize the reinforcement of
plan panels with standard beams through discrete
optimization methods. It is intended to reinforce a
flat panel with beams of standard dimensions, sub-
ject to different loads and boundary conditions, in
order to increase its stiffness. For this, it is neces-
sary to develop a computational model that allows
determining the optimal location of these reinforce-
ments, as well as the type of beams to be used,
satisfying constraints of volume/weight of the rein-
forcement.

2. Motivation

The process of design and manufacture of rein-
forcements systems in structures have been devel-
oped over the last few centuries. In the complex
construction of most of metal structures of vehi-
cles, both in the aerospace and naval and in the au-
tomobile industry, the reinforcement of plates is a
constant need. The use of reinforcements on plates
aims to increase their stiffness and, thus, to obtain
an improvement of their mechanical characteristics.
This technique can significantly reduce the amount

of material used and reduce the weight/power ratio
of each vehicle in question. The optimization tech-
niques are widespread, have a wide range of applica-
bility in various fields and they are only limited by
the imagination or creativity of the engineers who
use them. The creation of the desired design, which
depends on the skills of the engineers, can some-
times lead to incorrect results in synthesizing com-
plex systems. In order to improve this critical phase
of the project, systems of computational methods
are being developed to optimize the topology of re-
inforcements on plates, using numerical and analyt-
ical methods for structural analysis.[2],[5]

3. Objectives

To achieve the goals, it is necessary to find the
most appropriate formulation for this study. By
using the finite element software (ANSYS, Inc.),
a computational model is built to simulate the
structural analysis. Through an iterative software
(MATLAB, The MathWorks, Inc.), a computa-
tional model is created to perform the optimiza-
tion. Finally, it is necessary to create an interface
between the structural part and numerical calcula-
tion to obtain the desired control and optimization.
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4. Optimization

Optimization is a peculiar concept in humanity,
who, by instinct and at any time, makes strate-
gic decisions in order to take full advantage of the
available resources without compromising the effec-
tiveness of the work performed. In basic terms, op-
timization is a mathematical discipline which con-
cerns the discovery of extremes (minimum and max-
imum) in numbers, functions or systems. The
resolution of problems of global optimization is a
challenging task, with additional difficulties when
derivatives are not available for use. However, there
are a number of practical applications in the real
world where a derivative-free global optimization is
required. The work of Custódio and Madeira was
the first attempt of global optimization by pattern
search (or direct search): GLODS (or global and lo-
cal optimization using direct search) [4]. The direct
search is a family of numerical methods of optimiza-
tion which does not require calculation of deriva-
tives. Therefore, it can be used in functions that
are not continuous or differentiable [6]. GLODS
is a new algorithm developed for single optimiza-
tion, suitable for limited constraints, global opti-
mization, and it’s free from derivatives. By us-
ing directional direct search, the method switches
between search step, where potentially good areas
are located, and poll step, where previously local-
ized regions are explored. This exploration is done
through the launch of several standard search meth-
ods (pattern search), one in each region of interest.
Differently from a multistart strategy, the several
methods of pattern search are going to fuse be-
tween each one when they are sufficiently close to
each other. The goal of GLODS is to eliminate the
largest number of active pattern searches, such as
the number of local minima, which easily would al-
low the location of the possible value of the global
extreme.

5. Structural optimization

The structural optimization is completely re-
lated to the improvement of its structural and me-
chanical characteristics, while minimizing the ma-
terial consumption and the final cost of the project.

5.1. Types of problems of structural optimization

The structural optimization problems are clas-
sified depending on their geometric feature. They
can be classified into three classes: dimensional op-
timization, geometrical optimization and topology
optimization. Subsequently, it is presented briefly
the most comprehensive optimization in structural
projects.

5.1.1 Topological optimization

In this method, the design variables are numer-
ical parameters that can change the distribution of
material throughout the structure in order to econ-
omize material in regions with reduced application
thereof. There are two types of design variables,
continuous or discrete; however, much of this work
was performed with discrete variables. In a discrete
case, e.g., a truss with cross-sectional areas of the
bars as design variables, one can allow these can go
down to zero, which makes it possible to remove the
truss bars which do not make no effort, as shown in
Figure 1.

Figure 1: Topology optimization

6. Stages of the formulation of the optimiza-
tion problem
The formulation of an optimization project aims

the translation of the description of the problem in
a well-defined math instruction. In most problems,
it is used a procedure of tasks to be performed in
each of the following stages [2]:

• 1st stage – objectives of the optimization prob-
lem;

• 2nd stage – data and information from the
problem;

• 3rd stage – identification and definition of the
design variables;

• 4th stage – identification of the objective func-
tion;

• 5th stage – identification of the constraints.

6.1. Objectives of the optimization problem
In this work, it is desired to reinforce a plan

panel with beams, submitted to various loads and
boundary conditions, in order to increase its stiff-
ness. To maximize this stiffness it is used a compu-
tational model to determine the optimal location of
these reinforcements, satisfying constraints of vol-
ume/weight of the reinforcement. To proceed with
the analysis of the problem, a base model was cre-
ated for the structure. This model consists of a
square panel, shown in Figure 2.

As shown in Figure 2, the panel is 5 meters in
side and its thickness is 2 centimeters. It was cre-
ated in this form to obtain the greatest number of
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Figure 2: Basic panel/model of the structure

planes of symmetry of the structure, in particular
the symmetry about the diagonals of the square.
Therefore, one can take advantage of the symme-
try in the creation of reinforcement when loads and
constraints also symmetric are applied to this plan.

6.2. Data and information from the problem
A plate is a flat structure which has a thickness

much smaller than the other dimensions. The plate
can be referred to the mean surface which bisects
the thickness at each point [7]. Many theories of
plates have been developed since the late nineteenth
century, but in engineering, two theories have been
accepted and are widely used and they are the fol-
lowing:

• Kirchhoff-Love, used to determine stresses
and strains in thin plates subject to applied
loads and momenta.

• Mindlin-Reissner, an extension of the
Kirchhoff-Love theory of plates and it is used to
calculate strains and stresses on plates whose
thickness is of the order of one tenth of the
planar dimensions.

As the design developed in this work includes
modeling a reinforcement in a thin plate, thereafter
it is presented the most adequate theory for this
analysis, which is in agreement with the plate el-
ement used, that is, the Kirchhoff-Love theory of
plates.

6.3. Identification and definition of the design vari-
ables

Next step in the formulation process is to identify
a set of design variables that describe the system.

This set of n design variables is commonly re-
ferred to as:

X = (x1, x2, ..., xn) (1)

In this work, the design variables are the cross
sections of the beams used to reinforce the panel.
Square beam sections were created, as can be seen
in Figure 3, and the design variables are, more pre-
cisely, the thickness of t section.

These beams of t thickness may have a thickness
of ”zero” and ”ten” centimeters, that is, the beams
to be placed as reinforcement in the panel can only

Figure 3: Shape of the beams/design variables.

be a measure of cross-section, which leads the op-
timization program to decide if it put or not the
beam in the predetermined site.

6.4. Identification of the objective function
The criterion is usually called objective function,

f(X), and it needs to be maximized or minimized,
depending on the requirements of the problem. To
maximize the stiffness of a structure which is found
in the elastic domain, the stiffness can be deter-
mined by minimizing the work done by the loads
imposed on the structure when this is in its equi-
librium state. This work is called compliance, C,
and, indirectly, the minimization of this measure al-
lows minimizing the displacements caused by these
loads. Therefore, one can consider the compliance,
C, as an objective function, F (X):

C = F (X) (2)

The field displacements, u, associated with the
equilibrium position of the structure can be ob-
tained by the equation:

F = [K]u (3)

where F is the vector of forces applied to the
structure. With the vector of forces, F , and the field
displacements, u, one can confirm the compliance,
C, given by:

C = FTu (4)

On the other hand, the total elastic strain energy
of the structure, U , is defined as:

U =
1

2
uT [K]u (5)

Combining equation (4), with equation (3), it’s
obtained the relationship between the compliance,
C, with the total elastic strain energy of the struc-
ture, U , that is:

C = FTu = uT [K]u = 2U (6)

3



where the compliance, C, is linearly related to
the total elastic strain energy of the structure, U
[3].

In a work with these features, both the compli-
ance and elastic strain energy can be treated as
the objective function. However, in carrying out
this project, to optimize the reinforcement of the
panel, the total elastic strain energy of the
structure, U, was chosen as the objective func-
tion. Keeping this, it can be said that the equation
for the objective function, f(X), to be treated is
given as:

f(X) = U (7)

7. Computational model
The structural analysis is performed by the fi-

nite element software (ANSYS) and the optimiza-
tion algorithm is the GLODS, which functions im-
plemented in the MATLAB.

7.1. Construction of the panel model
In order to shape the panel according to the ob-

jectives of the optimization problem previously de-
scribed in section 6.1, the panel was built in APDL
code (designated codigo.txt),so that it can access
the data sent by MATLAB (Constante.txt)and the
user can also change its dimensions if he wants. The
dimensions are defined in the codigo.txt file, like
width (a), length (b) and thickness (espessura).

The properties of the material used in the element
are shown in Table 1.

Properties of the material
Elastic modulus 290 GPa
Poisson’s ratio 0.3

Table 1: Properties of the material used.

The mesh is created in order to generate quadran-
gular elements, and their refining was established in
order to combine two important points, that is, to
get a good solution in the finite element analysis
(convergence of the solution), and, secondly, be a
process of calculation not too heavy computation-
ally.

7.1.1 Selection of the types of element

Analyzing the application of some types of ele-
ments, and the respective solutions envisaged, the
type of elements chosen to be used for computa-
tional modeling of the panel and beam were, re-
spectively, the SHELL93 and BEAM189 [1].

7.1.2 Defining panel reinforcements

For this study, it was designed two profiles of
possible positions to put the beams, a profile of 24

and other of 32 beams, that were created so that
the positions were evenly spaced and covering the
entire panel area, as shown in Figure 4.

Figure 4: Scheme of 24 (left) and 32 variables
(right).

Another interesting analysis for this study is to
take advantage of the symmetry of the structure,
in order to simplify the finite element program, by
halving the number of design variables, as shown in
Figure 5.

Figure 5: Scheme of 12 (left) and 16 variables
(right).

7.1.3 Boundary conditions

In the computer program built in the
codigo.txt file, it is created the boundary
condition, which is based on having the panel
simply supported on two consecutive sides, as
shown in Figure 6.

7.1.4 Applied loads

Three different loadings were performed, the first
(F1) in the central point of the panel, the second
(F2) deflected downward and to the right, and the
third (F3) on the edge of the panel, all applied to
the symmetry axis of the structure, as one can see
illustrated in Figure 7.

All these loadings carried out have the same ap-
plied force (F=5000 N), because when applied at
different locations, the reinforcement obtained will
also be different.
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Figure 6: Boundary conditions of the panel.

Figure 7: Boundary conditions of the panel.

8. Computational program
Throughout this work, it was necessary to divide
the project into different study cases; however, all
these converge to the same optimization method al-
though they follow a generation of results, which in-
dividually are going to be adapting to their distinct
limitations. For a better understanding of the vari-
ous cases studied and the way they are organized in
this work, it was used the construction of diagrams
that are shown in Figures 8 to 9.

Figure 8: Diagram of schemes to analysis.

In the diagram of Figure 8 is shown the main
concept of this work. It is divided into two sub-
groups of assessments; the first consists in the group
of configurations that allows to optimize the rein-
forcement without placing beams on the edge of the
panel (scheme of 24 beams), and the second is the
group of configurations that allows beams in the

end of the panel (scheme of 32 beams).
In Figure 9 is shown a continuation of the previ-

ous diagram, in which this diagram is representative
of both schemes (24 and 32 beams).

Figure 9: Representative diagram of the analysis
performed on each scheme.

In this study, for each case presented, it was se-
lected three quantities of beams to apply as rein-
forcement of the panel, ie, one can:

• apply 12 beams;

• apply 16 beams;

• or apply 20 beams.

These three enumerations were chosen in order to
be able to implement them in any of the schemes
submitted, and then to be able to compare the re-
sults obtained from the implemented schemes.

With these forces (F1, F2 e F3), introduced in the
plane of symmetry of each structure, it is obtained
a design divided in 36 study cases where in each
one was applied the same model of computational
optimization.

8.1. Symmetrical schemes
For the treatment of the results of symmetric

schemes, it was built a secondary program that aims
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to select the best and the worst set of solutions in
each evaluated scheme.

In Figures 10 and 11, , it is shown, above each
scheme, the amount of elastic strain energy of
the structure, U, represented here by the variable
f [N.m].], value that was used as objective function
and that goes to follow the remaining results from
here on out, thus serving as a comparison.

Figure 10: Representative schemes of the best eval-
uation.

Figure 11: Representative schemes of the worst
evaluation.

It is noted that, in these solutions that were
found, there are equal schemes and with the same
amount of elastic strain energy, f. This is due to
the fact of the evaluations find common local min-
ima among them, but this is not certain that all
meet the global minimum, as happened in the same
example. Therefore, it can be concluded that it
is important to make various analysis to the same
model in the study to make sure that one gets the
best possible reinforcement configuration.

8.2. Normal (or non-symmetric) schemes

In this program, one does not get folders with
the best and the worst groups of scheme solu-
tions under evaluation, because the program is con-
structed to check if from the best configuration
achieved in symmetric schemes it can improve to
a non-symmetrical solution.

As an example, Figure 12 as shows the solu-
tions obtained in a reinforcement constituted by 12
beams in the normal (not symmetrical) scheme of
24 positions and load applied to the center of the
panel (F1).

As one can see, the program found no better so-
lution than that found in the program shown above,
however, it was found two non-symmetric solutions
that even being worse than the symmetric solutions,

Figure 12: Representative solutions of normal (not
symmetrical) schemes.

they possibly would give an acceptable reinforce-
ment.

9. Analysis and discussion of results
9.1. Results of the schemes with 24 positions

Figure 13 illustrates succinctly the various cases
implemented in 24-position schemes, where are pre-
sented the loads applied to the panel; however,
these loads were used individually in relation to
each other. They are performed together in order
to remember the positions where they were placed,
as highlighted above.

Figure 13: Symmetrical scheme and normal scheme
of 24 positions, with loads represented.

For better visualization and comparison of results
obtained in the schemes mentioned above, it was
built the Table 2.

The N is the variable that corresponds to the
number of beams to be introduced on each rein-
forcement, that is, N = 12/24, means that one
wants to reinforce the panel by introducing 12
beams in a total of 24 available positions.

9.2. Results of the schemes with 32 positions
As the presentation of previous results, here it

was also presented a demonstrative scheme of the
cases studied. The scheme is represented in Figure
14 and briefly it shows the schemes of 32 positions
with three types of loadings applied to the panel.

For each of the cases illustrated in Figure 14,,
the optimization of the objective function and the
creation of the corresponding reinforcing structure
were successfully obtained. For better presentation
of them, they are also entered in Table 3as hap-
pened in previous cases.

Table 3 is organized in the same manner as the
table exposed in the previous subchapter, so as to
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Table 2: Configurations of the solutions of the
schemes of 24 beams.

Figure 14: Symmetrical scheme and normal sched-
ule of 32 positions, with loads represented.

be possible to see clearly all of the similarities and
differences between them.

9.3. Comparison of results between the schemes of
24 and 32 positions

• For load F1;

– It is concluded that, between the two
schemes, only there were differences in
outcomes of optimization using 20 beams
of reinforcement. This is because the load
F1 is applied to the center of the panel,
which leads the program of 32 positions
to use only to the positions of the edge
of the panel when the center is already
partly filled.

– The improvement found in the schema
of 32 positions is not significant. How-
ever it is a better solution, and presents a
more dispersed shape of structure, which
can benefit other structure characteristics
here not studied, as vibration modes, etc.

Table 3: Configurations of the solutions of the
schemes of 32 beams.

• For load F2;

– It was noticed a difference that occurred
in the optimization which used 20 beams
of reinforcement, where it was gotten an
improvement with the implementation of
positions on the panel edge. It was cre-
ated an equally symmetrical structure but
with a slight gain in the objective func-
tion.

– Another difference occurred in the opti-
mization in normal schemes of 12 and
16 beams, i.e., in the normal schemes of
24 positions, there were no changes com-
pared to symmetric schemes, but in nor-
mal schemes, with 32 positions, it was
achieved a slight improvement. This re-
lates to the location of local minima ob-
tained in the evaluation of the structure
as well as with the number of design vari-
ables. Therefore, when evaluating the
same analysis in both schemes (24 and
32 positions), in a single evaluation, the
scheme of 32 variables improved, while
that of 24 remained equal. To be able to
achieve the same results in the schemes of
24 variables, one should repeat the com-
putational evaluation few more times.

• For load F3;

– It was the only case in which all the solu-
tions obtained in the schemes of 32 posi-
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tions gave rise to different solutions com-
pared to the schemes of 24 positions. It
is easy to understand why this event. As
already mentioned, this was due to the
fact that the load is applied to a vertex of
the panel, where schemas of 24 beams do
not have access to the placement of these
beams.

– In nearly all evaluations in schemes of 32
positions, there was improvement of the
objective function in view of the analy-
sis carried out in the schemes of 24 vari-
ables, except in the normal scheme of
N=12/24 in which the solution obtained
was not won. As in the previous exam-
ple (load F2), here also should make some
more evaluations, and it could possibly
be found the same solution in the normal
scheme of 32 variables.

It is noted that all not symmetrical results pre-
sented here have exactly the same solution of ob-
jective function in the inverted configuration of re-
inforcement relative to the axis of symmetry of the
panel. As example, in Figure 15 is shown the two
solutions for N=12/24 in normal schemes using load
F3 applied.

Figure 15: Solutions with the same objective func-
tion but with inverted configurations relative to the
axis of symmetry of the panel.

10. Conclusions
The main conclusions are:

• Programs designed to 32-position schemas were
generally more effective than those for 24-
position schemes. However, the expended com-
putation time was, in average, higher. How-
ever, for the applied loads F1 and F2, the pro-
gram corresponding to the 24-position scheme
has some advantage when compared to the 32-
position scheme. The conclusion should be
that, taking into account the processing time,
in cases where the loads are applied in areas
closest to the center of the panel, it is advisable
to carry out the study with discrete optimiza-
tion program of 24 positions.

• When evaluating the group of the best solu-
tions obtained at each evaluation, it can be
concluded that solutions that appear after the
best solution have such good results such as the
best, but sometimes with configurations of re-
inforcement visibly quite different, which can
lead to better adaptation by these configura-
tions to some projects where the panels will be
applied. Another advantage in some of these
solutions is the simplification of the reinforce-
mentconstruction.

• Looking in a general way for all solutions ob-
tained in the tables 2, 3, it can be concluded
that only having as a starting point to max-
imize the stiffness and minimize the relation
energy/weight of the structure, the best pro-
gram to be used is the discrete optimization
program of 32 positions.
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Métodos anaĺıticos e aproximados. pages 1–14.
Technical report, 1982.

8


