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Resumo

Uma viagem de montanha russa consiste num veiculo a percorrer uma trajectoria caracterizada
por uma sequéncia de curvas com geometrias diferentes. Durante esse percurso, 0 passageiro é sujeito a
aceleracdes que dependem, ndo s6 da variacdo de velocidade do veiculo, mas também da curvatura da
pista. Estas aceleragcfes sdo sentidas pelo corpo humano, em direcgdes diferentes, com a intencdo de
provocar entusiasmo aos passageiros, com o minimo risco de lesdo. O projecto de geometrias de
montanhas russas requer ferramentas computacionais para simular o percurso da pista. Um dos aspectos
mais importantes para uma simulacao realista das solicitacfes sobre o passageiro é a modelagdo da
interacdo entre o veiculo e a pista. Estes estudos permitem analisar o risco de lesdo a que 0s passageiros
estdo sujeitos. Nesta dissertacdo, € proposto um modelo de interagdo entre o veiculo e a pista, que é
demonstrado com a implementagdo de dois novos constrangimentos de percurso prescrito. Estes
constrangimentos permitem assegurar que cada roda tem a sua trajectéria inscrita no percurso da
montanha russa. Com base na geometria da pista da montanha russa, sdo criadas duas trajectérias, uma
para cada carril. Neste trabalho, sdo criados modelos de multicorpo para representar tanto o veiculo
como 0 passageiro, que servem para simular e analisar duas montanhas russas especificas que servem
como exemplo de aplicacdo deste trabalho. Para analisar o risco de lesdo a que o passageiro esta sujeito,
foi criado um pos-processador para determinar as forcas-g e verificar se estas estdo dentro dos limites
da tolerancia humana, representados pelos critérios de lesdo mais comuns, como o0 Head Injury Criteria
(HIC) e 0 Result Head Accelerations (3ms). A ferramenta computacional, desenvolvida neste trabalho,
é finalmente usada para analisar o risco de lesdo de um passageiro de um veiculo em duas montanhas

russas diferentes.
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Abstract

A roller coaster ride consists of a vehicle negotiating a track characterized by a sequence of curves
with different geometries. During the track negotiation, the occupants are subjected to accelerations that
depend, not only on the car speed variation, but also on the instantaneous curvature of the track. These
accelerations are experienced by the human body, in different directions, and intend to provide
excitement to the occupants with a minimum risk of injury. The design of the roller coaster geometry
requires reliable computational tools to simulate the roller coaster rides. An important ingredient to
simulate realistically the exposure of the occupant to accelerations is the modelling of the vehicle-track
interaction. Such simulations allows to analyse the risk of injury of the occupants. In this thesis, an
approach to model the car-track interaction is proposed, being two new path motion constraints
implemented for the purpose. These constraints allow to prescribe the path of each wheelset along each
one of the track rails. Two paths are generated based on the roller coaster geometry, representing the
geometry of the rails of the track. Not only multibody models to represent the roller coaster vehicle are
developed, but also a biomechanical model to represent the roller coaster passenger is implemented. In
this work, two roller coasters models are simulated and analysed, serving as application examples of the
tools developed in this work. To analyse the risk of injury of the occupant, a post-processor is
implemented to evaluate the g-forces acting on the passenger and to confer if they are within the human
tolerance thresholds represented by regular injury criteria, such as the Head Injury Criteria (HIC) and
the Result Head Acceleration (3ms). The computational tools developed in this work are then used to
analyse the risk of injury of an occupant in two roller coasters, which correspond to an existing

commercial coaster and to a new potential roller coaster, not existing yet.
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1 Introduction

1.1 Motivation

Roller coaster/amusement parks are popular worldwide. The roller coaster rides attract and
entertain a substantial numbers of visitors to these parks. Some guests particularly enjoy rides in vehicle
traveling along a track, such as roller coasters, in which, one or more vehicles run along a complex track
geometry.

Injuries of occupants in roller coaster rides are periodically reported for normal operation conditions.
Contrary to common individuals that have occasional rides in fighter jets, roller coaster riders are not screened
beforehand to ensure that they can withstand high g-forces nor they are trained to endure them. Amidst
controversy in which evidence of fatal or serious injury in roller coasters [1] is opposed by data showing that
high g-force roller coasters still lead to head accelerations far below the minimum thresholds [2, 3].

Roller coasters seem to be relatively simple mechanical systems when compared to modern
railways or cars, but due to high nonlinearity their kinematics, standard design techniques for dynamic
systems have limitations. Moreover, since most of the roller coasters represent unique designs, extensive
testing and design of real world prototypes is not possible from an economical point of view. To avoid
expensive testing before the final installation of the roller coaster track, reliable computer aided design
tools are required. In order to support the engineering design of safe roller coaster rides this work presents
the development of a computational tool for the dynamic analysis of roller coasters with the ability to evaluate
the biomechanical injury thresholds [4-7] including those associated to g-forces.

The development proposed in this work address; the design, for creating a geometric model of the
track and vehicle; and the simulation, for evaluating the system behaviour in general, and the occupant
in particular.

In order to understand the behaviour of the roller coaster using numerical simulations, a detailed
model of the roller coaster is required. The design of the system requires the knowledge of the human
tolerances to injury [4-7]. In a way, the roller coaster cannot be boring, it must be exciting and
stimulating, but on the other hand, the roller coaster passenger should not be injured by riding it. The
physiological excitement of the passenger is achieved through the roller coaster track, which assures the
human body is subjected to accelerations in different directions, within the human tolerance thresholds
[4, 5], but not any further.

The objectives of this work are the development of a proper roller coaster vehicle for use in roller
coaster simulations, in the multibody dynamic analysis program DAP-3D and the development of a

biomechanical model to evaluate the risk of injuries in different roller coasters.



1.2 Literature Review

1.2.1 Multibody Formulation

The dynamic analysis of a multibody system involves the study absolute and relative motion
between the bodies that compose the system, over a period of time. This study is function of their initial
conditions, positions, orientations and velocities, external forces and/or prescribed motions [8]. The
mechanical system is characterized by a group of rigid bodies interconnected by joints and/or force
elements. The bodies structural deformation is neglected because only the large rigid body motions have
impact on the vehicle dynamic analysis [9]. The joints, also known as kinematic constraints, define the
relative motions between bodies. Basically, there are two types of force elements, passive and active. In
this work, it will only be used passive force elements, such as springs and dampers as no active elements,
such as actuators or muscle activation forces, are considered.

The multibody formulation results in a set of equations composed by Differential Algebric
Equations (DAE), which may lead to numerical instabilities and other numerical problems, such as
existence and uniqueness of solution. The alternative is to transform the DAE into a set of Ordinary
Differential Equations (ODE), which solution can be obtained, by integrating the ODE in time, using
direct integration methods. This transformation is known to introduce instabilities and drift problems in
integration process. Such problems can be attenuated by using Baumgarte method [10] or any other
suitable method [11].

1.2.2 Roller Coaster Modelling

Pombo and Ambrdsio [12-15] proposed a methodology for the accurate description of the track
centreline, in the general case of a fully three-dimensional track geometry with roller coaster
applications. Spatial geometric curve constraints are incorporated into multibody systems by Nikravesh
[16]. Pombo [8] presented a methodology for representing a spatial curve constraint in multibody
systems, using a Lagrange formulation of multibody dynamics.

The geometric description of the curve for a roller coaster analysis must allow the definition of a
moving frame, in which the tangent, normal and binormal vectors define an orthogonal frame. Both
Frenet and Dabroux frames are candidates to play the role of the required moving frame [17, 18]. Both
have singularities in general spatial curve geometries, as discussed by Tandl and Kecskemethy [19, 20].
The work of Pombo uses the fundamental theory of differential geometry and kinematics of motion
along spatial curves. For the differential-geometric analysis of spatial curves Frenet [17] introduced the
moving frame and the formulas for derivative axis unit vectors, which were also found by Serret [21].

The design and simulation of roller coasters uses curve guided motion, to design tracks, based on

numerical integration of equations of spatial point. The roller coaster position coordinates, the Frenet
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frame vectors and their respective derivatives are required for the definition of path motion kinematic
constraints. These calculations are made by a pre-processor, before the simulation, and provided to it in
the form of a database. For general roller coaster features, cubic splines are used when describing the
spatial trajectory [22]. The Dynamic Analysis Program (DAP-3D), described by Nikravesh [16], is used
to simulate the roller coaster, imposing path kinematic constraints, using a Frenet moving frame,
between the roller coaster vehicle and the track. During the roller coaster dynamic analysis, the
quantities involved in the general spatial curve constraint are obtained by interpolation of the tabulated
values.

A roller coaster [23] can be roughly divided into rails, the vehicle that moves along the rails, and
devices such as lifts, drives and brakes. In this work, only the track and the vehicle were modelled,
leaving the rest of the vehicle system to future developments. The vehicle is joined to the rail via a

suspension mechanism and can either be a single car or a train consisting of many connected cars.

1.2.3 Biomechanical Model of the Occupant

Biomechanics supports the development of reliable mathematical models of the human body, to
simulate the different human actions. These models provide a representation , with sufficient accuracy
of the mechanical behaviour of the human body in various conditions of its activity [24]. In a
biomechanical multibody system, the “gross-motion” simulators also represent the different segments
of the human body by a set of rigid bodies interconnected by different types of kinematic constraints
and force elements, with a varying degree of complexity, depending on the type of study[25].

The biomechanical systems are distinguished in two essential categories, detailed partial models,
for particular anatomical segments with high level of detail, and whole body responses models [25], for
the general characteristics. In this work, the whole body response model is used, since, right now, the
objective is to simulate the general responses of the human body, rather than obtaining highly detailed
information on particular components. The body response biomechanical model has a structure of
sixteen anatomical segments, based on the anthropometric data provided in the computer code SOM-
LA [26, 27]. The anthropometric model has the mass distribution and body size of the 50
anthropomorphic dummy [28].

Numerical methods and models are important tools since they allow to assess the human
biomechanical response in a large range of scenarios. Injury biomechanics uses the description of the
human body, via its mechanical principles, kinematics and dynamics, to provide relations that can be
associated to observed human physical trauma [29]. Common effects on the human body such as
blackout or loss of consciousness are associated to g-forces [6, 30-32]. When discussing the effects of
g-forces on the body, time emerges as one of the most critical factors. Commonly, in roller coaster

tracks, exposure to high g-forces lasts only a fraction of a second. Blackouts and other health problems
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associated with g’s require exposure to g-forces that are either greater in magnitude or of much longer
duration than those achieved by roller coasters. High g-forces are well tolerated during many activities
and, therefore, are a poor measure for the risk of brain injury [1]. Smith an Meaney [2] suggest using
rotational head accelerations, that can be caused by g-forces, to analyse potential for injury. Even for
their conservative worst-case scenario, estimated head rotational accelerations experienced by roller
coaster riders are nowhere near the range of established injury thresholds for severe forms of brain
injury.

In this work, in order to analyse the risk of brain injury, injury criterions, such as the Head Injury
Criteria (HIC), well known from the automotive industry and others, is used. HIC can be defined as a
biomechanical response index of exposure that quantifies the magnitude of a determined injury caused
by impact or large accelerations [7, 33, 34]. These qualifications can be regarded as a quantification of
human response to a given level of injury, resulting from external actions. The understanding of the
injury mechanisms is of great importance for passive safety improvement.

In the literature review, no computational tool for the simulation of roller coaster occupants was
identified. Therefore, no specific computational procedures for the calculation of the sustained g-forces
of the biomechanical model of the occupant based on its passive or active dynamic response are available

prior to this work.

1.3 Thesis Organization

Chapter 2 presents the multibody formulation that supports program DAP-3D, including the two
new kinematic path motion constraints, developed in this work, that are used as the basis for the
definition of the vehicle-track interaction. In Chapter 3, first, the track geometry is presented, being its
structure and database that support its geometry explained. Next, the roller coaster vehicle is developed,
being its suspension mechanisms described and discussed in function of the operation all requirements
of the system. In Chapter 4, the biomechanical model of the roller coaster occupant is presented, as well
as the relevant injury criteria and the human tolerance thresholds. Chapter 5 presents two case scenarios
of different roller coasters. One of the roller coaster is a current operating equipment, and the other is a
conceptual design. In both scenarios the dynamic response is shown by the velocities and accelerations
evaluated in the simulations, being depicted the impact that riding those roller coasters have in the
human body and its risk of injury. The conclusions of this work and discussion of future developments

are presented in Chapter 6.



2 Roller Coaster Dynamics

This chapter presents an introduction to the multibody formulation used to support the
methodologies implemented in this work. The dynamic analysis of a multibody system involves the
study of its motions and forces, transmitted during a given time period, as a function of the initial
conditions, external applied forces and/or prescribed motions. The emphasis of this overview is put on
the features required for the models developed hereafter.

Due to the application requirements of this work, a roller coaster model, the trajectory of the
wheelsets is based on the general spatial curve kinematic constraint, developed by Pombo [14].
However, to avoid over constrained wheels, two new path motion constraints are developed here. The
original motion constraint forces a body to follow a given trajectory and to rotate with respect to a Frenet
moving frame. The first new constraint, deemed as Prescribed Cylindrical Joint, frees the roll rotation,
while the second new constraint, the Prescribed Point Joint, frees all rotations maintaining only the
prescribed translation. The basis of the vehicle-track interaction in the roller coaster multibody system
is the prescribed point motion joint. All approaches are implemented in the computer program DAP-
3D[16].

2.1 Multibody Systems Dynamics

A multibody system can be defined by a collection of rigid and/or flexible bodies linked by
kinematic constraints and/or force elements. The kinematic joints restrain the relative motion between
the bodies, while the force elements represent the internal forces that develop between bodies due to
their relative motion. The external forces may be applied to the system components as a consequence of

their surrounding environment. A generic multibody system is represented in Figure 2.1.

Rigid Body Kinematic Joint

Simple Driver

Flexible Body

.

Force Elements

Contact Model

Nonideal Joints

Figure 2.1: Generic multibody system



2.1.1 Kinematic Analysis

Kinematics is the study of the motion of rigid bodies. It allows to study the motion of a mechanical
system without considering the forces that cause it. Kinematic and driving constraints are the only
restrictions that affect the relative motion of the bodies. Drivers are required in order to control the
degrees of freedom, making the system fully constrained and possible to be solved, kinematically.

The coordinates associated to a general rigid body i, Figure 2.2, are expressed [16]
q; ={riTvqiT}={Xv y,z,eo,el,ez,ea}: (2-1)

The vector r, ={x,y,z}' defines the position of the origin of the local reference frame (£,7,¢), in a
global reference frame (x,y,z). The vector p, ={e0,e1,e2,e3}iT define the body orientations, as Euler
Parameters [16].

For a general multibody system with nb bodies, the vector g that represents the coordinates of all

bodies is:
a={a,.a,".q, ) (2.2)

Leta point P be defined on abodyi , as shown in Figure 2.2. The vector s = {£°, 5", &7} defines
the location of point P with respect to the local reference frame origin of body i . Therefore, the position
of point P with respect to the global reference frame is given by the vector r” , expressed as:

rF=r+s’ =r+As’ (2.3)

where A, is the transformation matrix from local to global coordinates, and is given by [16]:

A=<2e§ —1)I+2(eeT +eoé) (2.9)

with e = {el,ez,eg}T and & is the skew-symmetric matrix, which is used to define the vector product.
The kinematic analysis consists of the study of the motion of a system, which involves the existing
kinematic joints interconnecting the different bodies, leading to the constraint equations. These

equations are grouped in a global position constraint vector, @, written as:

®(q,t)=0 (2.5)

where q is the generalized coordinates vector, defined in equation (2.2), and t represents time, which
is generally associated to driving constraints, used to control the system DOF. The solution of this set

of nonlinear equations is obtained using the Newton-Raphson method [16].



X
Figure 2.2: Rigid Body in Cartesian Coordinates

The first time derivative of the system of equations, equation (2.5), provides the velocities

equation written as:

®(q,q,t)=0 = D G=v (2.6)

where @, is the Jacobian matrix of the constraints, ¢ is the generalized velocity vector and v is the

vector containing partial derivatives of the constraints with respect to time:

oo
ot

v=

@.7)

The vector of the generalized accelerations, ¢ , is obtained by solving the second time derivative

of the systems equations, equation (2.5), given by:

®(q,q,4,t)=0 = ® G=7 (2.8)

where v is the vector that contains all terms in the equations that are not dependent on the accelerations,

written as:

2
y:—aat—(zl)—g(d)q)q (2.9)

The results of the kinematic analysis are obtained performing the following steps, using a solver
for linear systems of equations:

i.  Setup the initial conditions for the positions and initialize the time counter;

ii.  Construct the position constraint equations (2.5) and solve them to obtain q ;
iii.  Construct the velocity constraint equations (2.6) and solve them to obtain ¢ ;
iv.  Construct the acceleration constraint equation (2.8) and solve them to obtain ¢ ;

v.  Increment the time counter and: a) If time is smaller than final time, go to step ii); b) If
time exceeds the final time, stop the analysis.



It should be noted that in dynamics only the acceleration constraint equations are explicitly used.
Furthermore, time dependent constraints such as driving constraints are used generally in the framework
of control problems. However, a complete kinematic analysis may be required to establish initial
positions and velocities that are consistent with the kinematic constraints when the dynamic analysis

starts.

2.1.2 Dynamic Analysis

The dynamic analysis of a multibody systems already involves the forces and moments applied
on the respective bodies of the system, as well as their motion. The system of differential algebraic

equations (DAE) that describe the system constrained motion is written as [16]:

B’A (IZM ) m (2.10)

where M is the mass matrix, A is the vector of the Lagrange multipliers and g is the vector of the
external forces and moments applied on the bodies. The mass matrix is written as:

M, N
M = ;Mi:{ ‘ J.} (2.11)

N = m 2= J (2.12)

where, nb is the number of bodies of the system, m is the mass of body i,and J.., J, and J.,. are
the moments of inertia with respect to the principal axis of inertia (£,7,¢). The vector g comprises the
sum of the external forces acting on the system. The internal forces associated to the kinematic
constraints are calculated using the Lagrange multipliers method

g© =2 (2.13)

Note that the equations of motion for a rigid body, defined by equation (2.10), are for centroidal
fixed body reference frames. Furthermore, they assume that the orientation of the frame axis is along

the main inertia directions of the rigid body.

2.1.2.1 Integration of the Equations of Motion

The system of equations of motion, expressed at equation (2.10) has to be solved, and the resultant
velocities and accelerations integrated in time. This dynamic analysis is performed on the computer
program DAP-3D [16], where the new kinematic constraints are implemented. Its algorithm is depicted

schematically in Figure 2.3.and can be summarized by the following steps:



i Start, at time t,, with initial conditions for coordinates, d, » and velocities, d,

ii.  Check the consistency of the initial conditions and correct the positions and velocities, if
necessary;

iii.  Assemble the global mass matrix, M, compute the Jacobian of the constraints equations,
@, and compute vectors g and vy

iv.  Solve the system of equations (2.10) to obtain the acceleration vector, ¢ ;

v.  Numerically integrate the vector y=[q" ' ]T, composed by the accelerations and
velocities, to obtain the coordinates and velocities for the time step t + At ;

vi.  Update the time variable and check condition t+At >t ; if the condition is satisfied,

stop; otherwise go to step ii).

end ?

L L Solve:
Initial Conditions: Form: M &I g f
t= o 4y’ dceo)- M; @;f andy > [% oq] [—A] - [y]

Form and integrate:

; At
- [aw f trat [‘I(HM)] <
=|. - dt - y=|.
y [(I(t)] ¢ ¥y y q(t+At)

End

Figure 2.3: dynamic analysis program algorithm

The Baumgarte constraint stabilization method [10] is applied in the solution of the equations of
motion (2.10) in order to obtain a more stable integration process and control the constraint violations.
The solution of the second derivative of the constraints equation, ® =0, is known to be numerical
unstable. This constitutes a problem when the system of equations (2.10) is solved, for long periods of
time in particular, not only because small perturbations, due to numerical errors, have tendency to
increase but also because the position and velocity constraint equations are not explicitly used.
Therefore, the result of this numerical procedure provides positions and velocities that no longer satisfy
exactly the kinematic constraints equations (2.5). To control this problem, the Baumgarte stabilization
method is applied, which replaces the kinematic accelerations equation (2.8) by:

D+ 20D+ D=0 (2.14)

where @ and @ are the velocities and positions constraints equations, respectively, and « and g are

parameters whose values are constants, in this case, both are equal to 5. Therefore, the equation (2.10)

{M qﬂ{q}{ g 2} (2.15)
®, 0 ||-1] |y-200-p0

becomes [16]:



Note that although the Baumgarte stabilization controls the constraint violations, it does not
ensure that they are completely fulfilled. In case of these violations to grow above a required threshold,
only by using a coordinate partition method it is possible to eliminate such constraint violations [16].
As, in all applications pursued here, the constraint violations have always been kept under the speciefied

thresholds, the coordinate partition method is not used.

2.2 Path Motion Constraints

To define a path motion constraint, in which a rigid body has to follow a prescribed curve, as
shown in Figure 2.4, the geometric description of the curve must allow the definition of a moving frame
in which the tangent, normal and binormal vectors, defining an orthogonal frame, are obtained. In this
work, the Frenet Frame [22] is used for any curved part of the track, being the straight segments handled

with the procedure described by Pombo and Ambrdsio [14].

Figure 2.4: Path Motion Constraint

Using the moving frame definition selected for this work, a proper formulation for a path motion
kinematic constraint was obtained by Ambrosio et all [22]. A kinematic constraint that imposes a point
of a rigid body to follow a given curve, being its rotations with respect to the curve moving frame also
prescribed.

In this work, two new path motion constraints are proposed. A prescribed cylindrical constraint,
which allows the free roll of the body about the track tangent, and a prescribed point constraint allowing
all three rotations, i.e, only enforcing the body translation. This prescribed point constraint is proposed
to be used as the basis for the modelling of the vehicle-track interaction in the roller coaster multibody
system. The roller coaster track coordinates, the Frenet frame vectors and their respective derivatives

are required for the definition of the kinematic constraints.
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2.2.1 Curve Parameterization

Let a curve be described using an n order spline segments, interpolating a set of control points,
be defined as [35]:
x(u)

g(u)=1y(u)p=a,+au+a,u’+au’+..+au" (2.16)

z(u)
where g(u) is the vector locating a point on the curve, u is the local parametric variable and a, are
unknown algebraic coefficients that must be calculated using points with known coordinates. Although
Eqg. (2.16) is generic for any polynomial interpolation, in this work only cubic polynomials are

considered.

2.2.1.1 Curve Moving Frame

There are different available frames definitions that can be used to represent general curves, being
the Frenet frame used here, since provides an appropriate curve referential at every point. The definition
of the Frenet frame starts with the identification of the osculating plane, at a given point P on a curve,

which is the plane of closest contact to the curve in the neighborhood of P, as depicted in Figure 2.5.

Rectifying
plane
~
t
n
b

Osculating

Normal plane

plane

Figure 2.5: Frenet Frame of a given curve

The tangent vector t and the principal normal vector n are defined in the osculating plane. The

binormal vector b is defined as being normal to the other two vectors, as shown in Figure 2.5. These
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vectors are defined in the intersection of the normal, rectifying and osculating planes, point P, and can
be written as [14]

9" . K
t=r— n=0—r; b=tn (2.17)
g K]

where tn means a cross product and the auxiliary vector k is given by

u”
g

2

u

k:guu _g gu (2.18)

u

inwhich g and g are, respectively, the first and second derivatives of the parametric curve g(u) with

respect to the parametric variable u .

2.2.2 Prescribed Point Constraint

The curve parameter u does not ensure that the polynomial exhibits a constant velocity. For the
implementation of the prescribed point constraint, it is required that the piecewise polynomial parameter
u is replaced by a curve arc-length parameter L with respect to which the interpolating polynomial has
a constant velocity. Consider the parametric variable u®, corresponding to a point P , located on the k"
polynomial segment to which a curve length L} measured from the k" segment origin, is associated.

The parameter u® is obtained by [14]:

j gv gidu—L" =0 (2.19)
0

In terms of its computer implementation, the non-linear equation (2.19) is solved in the program pre-
processor, using Newton-Raphson method [16].

The prescribed point constraint is proposed to be used here as the basis for the definition of the
vehicle-track interaction in the roller coaster multibody system. The wheelsets of the vehicle model
move along the rails of the track and the kinematic constraint enforces each one of them to follow a
given roller coaster rail. The wheel-rail contact forces of the roller coaster vehicle are not explicitly used
during the dynamic analysis. It is considered that the wheelsets of the roller coaster cars are permanently
in contact with the rails and follow exactly the track geometry, according with the restrictions imposed
by the prescribed point constraint. That wheel-rail contact forces are related to the Lagrange multipliers
associated to this constraint and are naturally obtained by using Equation (2.10).

The objective of the prescribed point constraint is to define equations that enforce a certain point,
of a rigid body to follow a reference path. Consider a point P, located on rigid body i, that is
constrained to follow a specified path, as depicted in Figure 2.6. The path is defined by a parametric

curve g(L), which is controlled by a global parameter L that represent the length travelled by the point
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along the curve from the origin to the current location of point P . The constraint equations that enforce

point P to follow the reference path g(L) are written as [16]:

@O = 1F —g(L) =0

(2.20)

where r” represents the coordinates of point P with respect to the global coordinate system (x,y,z),

depicted in Figure 2.6.

X
Figure 2.6: Prescribed Point Constraint

The velocity equations for the prescribed point constraint can be obtained as the time derivative

of Equation (2.20), expressed as:

@ =0 = [I —STA, —d—g} ®'|=0

where the Jacobian matrix is

<I>q<”mc'3>:{1 —5FA, —d—g}
dL

The acceleration equation is the time derivative of Equation (2.21), being written as

2
@Y =0 = [I —5RA, —d—g} o' |=-eaAs?+ 39

dL L I I [ld] dLZ
where the right hand side of the acceleration equation is
.. . dig.
(pmc,3) ——H®.A. _P +—L2
Y ('olml |s| dLZ

(2.21)

(2.22)

(2.23)

(2.24)
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Therefore, the contribution of the prescribed point constraint to the constraint acceleration equations

(2.8) is written as

[q)gpmcﬁ) :|q — |:,Y(Pmcv3):| (225)

which must be assembled in the system Jacobian matrix.

2.2.3  Prescribed Cylindrical Constraint

The prescribed cylindrical constraint starts with the same formulation that the prescribed point
constraint, but also restrains orientations of body i, being the body only allowed to roll about the path,
i.e, the rotation around the prescribed path centreline along the longitudinal axis. The constraints
equations that enforces a point in a rigid body to follow the reference path are the same,
®®™d =" —g(L) =0, but in addition, there is a new local frames alignment constraint, that does not
include the constraint equation that would prevent its roll. Consider a rigid body i where (“f’“n’uc)i
represent unit vectors associated to the body fixed coordinate system (&,7,¢). . Consider also that the
Frenet frame of the general parametric curve g(L) is defined by the principal unit vectors (t,n,b) , as

depicted in Figure 2.7. The relative orientation between the body vectors (u oU,, U, )i and the curve local

frame (t,n,b),_is such that [22].
.
(D(Ifac,z)z nTAiug _ a =0 (226)
b Au, b

Inwhich Ifac stands for ‘local frame alignment constraint’,and {a b} = diag [Af A” } are constants
calculated at the initial time of the analysis, by using Eg. (2.26) with the initial conditions set by the

user.

X
Figure 2.7: Prescribed Cylindrical Constraint
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The velocity equations for this constraint can be obtained as the time derivative of Equations
(2.20) and (2.26), expressed as

dPd _ = l:l _”iRA _d_g} o'l=0 (227)

)~ = ®'|=0 (2.28)

where the Jacobian matrix associated to each part of the constraint is

(I)q(pmc,3) _ |:I —FA _:_E:| (2.29)

T
0" -n"A(d d_n Au,
P& dL i7¢

(I)glfac,z) _ : (230)
o —bTAiaf[g—Ej Au,

The acceleration equations are the time derivatives of Equations (2.27) and (2.28), being written as

2
dP3) _0 = |1 —5RA _dg ®" :_@_@.A_siPer_gL'z (2.31)
i dL L [ e | sz
T 2 T
. _nTAlaé(d_an e _lzL(% Ai03;+nTAi6);63;+L'2[z_L?J Ai}ué
.. dL y
(I)(Ifac,z) =0 = . @' |= (232)
0" b%,g(j-ﬁj Au, | L

T 2 \"
- ZL(@J A®; +b" A @@, +L° % A |u;
dL dL °

And the contribution of each part of the kinematic constraint to the right hand side of the acceleration

equations is

(pmc,3) ~ o~ 'P dzg 2
=-0,0,A8, +WL (2-33)

dnY . . .. o(dnY
—|12L| — | A®;+n A®,0, +L°| — | A |u;
dL dL °
T 2 T
- 2L(@j A® +b'A® 6 + L2 d E’ A, |u,
dL dL
Therefore, the contribution to the constraint acceleration equations (2.8) is written as

(I)(pmc,3) . ,Y(pmc,B)
L,‘Z.m,m }q = L(.fmz) (2.35)
q
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(Ifac,2) —

(2.34)




2.2.4  Prescribed Full Motion Constraint

The prescribed full motion constraint, that enforces a body to translate and rotate about a
speciefied curve, is developed by Pombo and Ambrosio [14], and presented hereafter. The constraint
equations that enforce point P to follow the reference path g(L) are written as [16]:

(I)(pmc,3) = riP _g(L) =0 (236)

Where " represents the coordinates of point P with respect to the global coordinate system(x,y,z),

depicted in Figure 2.8.

-
Rl

Figure 2.8: Prescribed Full Motion Constraint

The prescribed full motion constraint also ensures that the spatial orientation of body i remains
unchanged with respect to the moving Frenet frame (t,n,b) associated to the reference path curve,
represented in Figure 2.8. Consider a rigid body i where (u é,u,],ug)i represent unit vectors associated
to the body fixed coordinate system (&,7,£) . Consider also that the Frenet frame of the general
parametric curve g(L) is defined by the principal unit vectors (t,n,b), , as depicted in Figure 2.8. The
relative orientation between the body vectors (u,,u,,u, )i and the curve local frame (t,n,b),_is such that

[22].

n"Au.| (a
@"™% =p" A, t—1b}=0 (2.37)
n"Au,| |c

In which Ifac stands for ‘local frame alignment constraint’, and {a b ¢}’ =diag [Af A?T] are

constants calculated ate initial time of the analysis, by using Eq. (2.37) with the initial conditions.
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The velocity equations for this constraint can be obtained as the time derivative of Equations

(2.36) e (2.37), expressed as

f
®"Y =0 = |1 —5FA 48 o=
i dL .
L
— T ]
o —nTAlNJ( ] Au
iYe i~
i
d)(lfac,3):0 =107 —bTA-ﬁg( I

T TA
0 —nA.ug(

where the Jacobian matrix associated to each part of the constraint is

@, = [I —FA —d—g}
dL

o raa (™) Au |
-n iU; I iué

T
@9 =| 07 —bTAiﬁg(j—Ej Au,

.
0" -n"AQ, [S—Ej AU,

(2.38)

(2.39)

(2.40)

(2.41)

The acceleration equations are the time derivatives of Equations (2.38) and (2.39), and they are

written as
.
2
O =0 = |1 —s°A NP ——@,@,As” + ?LZ
dL L
L
. (dnY | - zL(d—”jT Ad +n"A@d +
0 -n AL, i A, I d
T r B T
PV =0 =100 bAG || Au |6 |=1- ZL(@j A +b A ® 6, +L°
. d
0" -n"Ad dnY AU (dnY :
by e - 2|_[_Lj Aia);+nTAi63,&;+L2(
(2.43)

(2.42)

and the contribution of each part of the kinematic constraint to the right hand side of the acceleration

equations is

(pmc,3)

(2.44)
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) .. . ... (dn !
-l 2L i A® +n A0,0,+L e A |u,
- : I
e —J_ 2L[%} A® +b"A®®, +L° (%) A |u, (2.45)
- ; ) -
- ZL(d—n] A,G),+nTAim,6),+L2(—?] A u,
L

Therefore, the contribution of the prescribed motion constraint to the constraint acceleration equations

(D(pmc,3) . ,Y(pmc,S)
|:(D?Ifac,3) }q = |:y(|fac,3) } (2.46)

q

(2.8) is written as

To understand the minimum requirements for the degree of the interpolating polynomials that can
be used in the formulation of the prescribed motion constraint, the order of the derivatives used in
Equations (2.20) through (2.30) must be identified. The right hand side vector in Eq. (2.43) involves
d°n/dL? , beingn =k/|k|, given by Eq. (2.17) and k =g" —(g““Tg“)g“/ i by Eq. (2.18). Therefore it

u

g
is required that the fourth derivative of the interpolating polynomial is used, being a quintic polynomial

the lowest odd degree polynomials that can be used to formulate the prescribed motion constraint.
However, as demonstrated by Ambrdésio, Antunes and Pombo [22], the errors introduced by using a
cubic polynomial are naturally controlled by the Baumgarte stabilization method, during integration.

Because cubic splines have a better local control, they are used here as interpolants for the curves.

2.3 Demonstrative Example

As a demonstrative example of each one of the prescribed path constraints, a simple pendulum is
modelled and simulated being its position prescribed by one of the rails of a roller coaster track. This
track is just a simple curve with 50 m radius used to demonstrate the differences between the kinematic
constraints described here when applied to the “hinge” of the pendulum, while this travels with a
constant longitudinal velocity.

As shown, in the first group of images in Figure 2.9 (a), which represents the prescribed full
motion constraint, the pendulum only assumes the inclination of the track, i.e, the orientation of the
pendulum is always equal to the orientation of the track. In this case, the pendulum is not allowed the
tilt motion that would regulate its roll according to the centrifugal acceleration.

In the second group of images in Figure 2.9 (b), which represents the prescribed cylindrical
constraint, the pendulum exceeds the torsion angle of the track, since with this kinematic constraint it is

allowed to roll relative to the rail centreline and, therefore, roll according to the centrifugal forces.
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In the final set of images in Figure 2.9 (c), which represents the prescribed point constraint, the
pendulum has all orientations free, and it is allowed to rotate in any direction, since this kinematic
constraint only enforces the hinge point to follow the rail. Besides the roll motion, similar to that of the
prescribed cylindrical motion, the pendulum also exhibits yaw and pitch rotations due to changes in the
velocity, orientation, that excite such motions. This constraint is proposed to be used here as the basis
for the definition of the vehicle-track interaction in the roller coaster multibody system, being the only

one used in this work.

b

©
Figure 2.9: Prescribed motion constraints: (a) Full motion; (b) Cylindrical; (c) Point

In Figure 2.11 (a) it can be seen the reaction moments acting on the pendulum, which is prescribed
to follow the curve at a constant velocity. In Figure 2.10 (a), it is represented the force diagram of the
pendulum when in a curve with the prescribed full motion constraint. In both figures, it can be seen that

this kinematic constraint applies a moment on the pendulum, about the ¢ axis of the local reference
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frame (&,7,¢), that forces it to maintain the angle of the rail, the torsion angle. This reaction moment

counteracts the centrifugal acceleration.

(b)

Figure 2.10: Force Diagram for the pendulum with (a) Prescribed Full Motion Constraint (b)
Prescribed Cylindrical Constraint

In Figure 2.11 (a), it also can be seen the reaction moment about 7, which is always zero, since
the pendulum is prescribing the curve at constant velocity. In the transition between the straight line and
the curve, this moment is not zero, due to the sudden transition of torsion angle between the straight line
and the curve. In the straight line the torsion angle is equal to zero, and in the curve it has a constant
value. In this sudden transition the kinematic constraint experiences constraints violations that are
controlled with the Baumgarte Stabilization method until they stabilize when the torsion angle is

constant again.
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(b)
Figure 2.11: Reaction moments at the hinge of the pendulum for (a) Prescribed Full Motion Constraint
(b) Prescribed Cylindrical Constraint
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In Figure 2.11 (b), it is only presented the reaction moment in » direction, because with the
prescribed cylindrical constraint, the pendulum is allowed to roll, so there is no reaction moment in &,
to counteract the centrifugal acceleration, as depicted in Figure 2.10 (b). This reaction moment oscillates
around zero, because, despite the roll angle is free, the other local angles, pitch and yaw, are constrained
relatively to the track, and with the pendulum oscillating in the & direction, its reference local frame is
always changing of position, and so, the kinematic constraint is always trying to stabilize the pendulum

in its equilibrium position.
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3 Roller Coaster

The definition of roller coaster track geometries requires an accurate geometric description of the
centreline of the rails, done with the curve interpolation scheme described in chapter 2. The track is time
invariant, being a pre-processor used to define the spatial geometry of the centreline of each rail. In
order to achieve computational efficiency, pre-processor generates, in a tabular manner, as function of
the arc length, all the track position data local vectors and other general quantities required by the path
motion constraints implemented in the multibody code. The aim of this work is the dynamic analysis of
the roller coaster vehicle and its occupants, so, the track parameterization presented here only defines
the position and orientation of the rails. In this chapter, not only the track geometric description as used
in the analysis code, is described but also a three dimensional model of the roller coaster vehicle is
proposed. It consists of a collection of bodies and mechanical elements that can move along the track.

Due to their high structural stiffness, all vehicle bodies and wheelsets are considered as rigid bodies.

3.1 Track Geometry

The track geometry is part of the input information in the simulations performed in this work. It
is composed by two rails, which can be viewed as two side-by-side defined in a plane that sits in the
track centreline spatial curve, also called as the reference path. The two rails are independent, right and
left, being discretised by independent sets of nodal points. As depicted in Figure 3.1, the position of
each point is defined by vector r, being its coordinates measured with respect to the global reference
frame (x,y,z), and its orientation defined by the tangent, t, normal,n, and binormal, b, vectors. In
Figure 3.1, presents two points, i and j, in each side of the track that represent potential locations for

the vehicle wheelsets.

Figure 3.1: Position and orientation of the rails with their local reference frames

23



The three orientation vectors compose an orthogonal referential attached on the nodal points in
which the rail profile is defined. To achieve the proper parameterization, it is necessary to use an
appropriate modelling approach. A pre-processor, similar to that one implemented by Pombo [8], is used
to define the curve parameterization. As input data to each track, it is necessary to consider the three
coordinates (x,y,z), the normal and binormal vectors, n and b , respectively, in each nodal point of
the track centreline. Table 3.1 presents the structured input data for the pre-processor. These points are
used in the interpolation procedure of the centreline, using cubic splines, being their spacing defined by

the user taking into account for the accuracy required for the geometric description of the tracks.

(X,y,Z) (nx’ny’nz) (bx’by'bz)
(x.y.2); (neony e ), (b,.b,.b,),
(X, yvz)k (nx’ny’nl )k (bX’by’bZ)k

Table 3.1: Position of the track points and vectors defining the local frame orientation

The pre-processor evaluates the position of each rail and the orientation of its Frenet Frame using
the track centreline, based on the gauge defined by D, that corresponds to the distance between the
centres of the left and right rails and represented in Figure 3.1. In this work, the gauge is assumed to be
D=1 m.

The length parameter step, AL , adopted for the database construction also has to be chosen. Then,
the pre-processor constructs a table where all quantities required for the formulation of the kinematic
constraint are tabulated as function of the global length parameter, L. These geometric parameters are
organized in columns as function of the global length parameter, L of the rail, measured from its origin
point up to the actual point in the rail. The multibody program interpolates linearly the table in order to
obtain all required geometric characteristics of the track to formulate the constraints equations. If the
size of the length parameter step AL is set to be similar to the product of the vehicle lower velocity by
the average integration time step using during dynamic analysis, then only a few number of
interpolations, if any, will be performed in between two successive lines of the table.

Figure 3.2 presents the structure of the roller coaster track database obtained with the pre-
processor program, where the adopted step size for the track length is AL=0.2m. A roller coaster track
database consists of a table with 37 columns, for each rail. The first column of the database corresponds
to the track length L with a step size AL, and the corresponding Cartesian coordinates (x,y,z) are
stored in the following three columns. The next six columns are first and second derivatives of the
Cartesian coordinates with respect to L, respectively, that are required for the Jacobian matrix and for

the right hand side of the acceleration equations. Then, the next nine columns contain the information
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about the Cartesian components of the unit tangent vector t and its first and second derivative with
respectto L, respectively. The remaining columns contain the same information, but with respect to the

unit normal and binormal vectors n and b.

Input Data to Parameterize the Track Centreline

x |y |z |nc|n|n|b|b |5

A

Roller Coaster Pre-Processor ||1— D ;AL

Left Rail Database
dx dy dz | d’x | d’y | d%z d%, | d%b
== =2 - - - t y z
L X y z dL | dL | dL | d? e | di2 h S EPTE TE
0.0
0.2
Right Rail Database
dx | dy | dz | d’x | d’y | d% d®, | d%
- ht A il _— - t y z
L X y z dL | dL | dL | d® e | di2 b S BPTE ETE
0.0
0.2

Figure 3.2: Schematic representation of the input and output data of the Roller Coaster Pre-Processor

After the roller coaster track database is built, the track model is completely defined. This is used
in the multibody model of the track to roller coaster vehicle interaction during the dynamic analysis of
the whole system. A three dimensional representation of two complete roller coaster tracks is displayed
in Figure 3.3. It is depicted the track centreline with respective representation of the unitary vectors n
and b to allow better visualization of the track torsion and of its smoothness. Figure 3.4 presents zooms

of two selected sections of the tracks to show how the visualizations are used for visual inspection.
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Figure 3.3: Three-dimensional representation of the track centreline and a sweep of the unitary normal

and binormal vector. (a) Looping Star (b) Gate Keeper

(@) (b)
Figure 3.4: Zoom on selected sections of the roller coaster tracks: (a) Loop in Looping Star; (b) Screw
in Gate Keeper.
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3.2 Vehicle Model Development

In this section, a three dimensional model of the roller coaster vehicle is developed and presented.
It must be noted that not only the vehicle does not exist but also it is not intended to represent any
existing roller coaster vehicle. In general, the vehicle, as the one developed and presented in Figure 3.5,
consists of a collection of bodies and mechanical elements moving along the track. These bodies are
connected by a set of kinematic joints and flexible links, which are responsible to passively control their
relative motion. The mechanical elements and flexible links, such as springs and dampers, are used to
model the vehicle primary and secondary suspensions. The information required to assemble the vehicle
model includes the mass, inertia tensors, centre of mass coordinates, orientation and velocity for each
rigid body. It is also necessary information to assemble the kinematic constraints, which is defined in
the local reference frame of each body, located in their centres of mass. Furthermore, the suspensions
elements characteristics and the location of their attachment points, with respect to the body fixed

frames, are also required during the model assembling procedure.

3.2.1 Primary Suspension Mechanism

The objective of a primary suspension mechanism is the proper running of the wheelsets on the
rails and the control of any misalignments that may condition the smooth running of the vehicle along

the track. In the vehicle proposed here, the primary suspension mechanism is composed by spring-
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damper systems that link each wheelset to the vehicle frame, and by two types of constraint joints,
prismatic and revolute joints, which are fundamental to ensure that the wheelsets fit to the rails.

In a roller coaster track, it is not always possible to ensure that four points seat in the same plane,
so, in order for the four wheelsets to follow their respective rails path, it is necessary an hinge
mechanism, intra-vehicle, that allows a relative rotation between the front and the rear vehicle wheelsets.
The solution for fitting the wheelsets on the track, i.e, on the rails, is achieved by a revolute joint between
the rear axle and the frame of the vehicle, depicted in Figure 3.6, which allows that these two bodies
rotate relatively to each other. So there is only one relative degree of freedom between the front and rear
of the vehicle, allowing the vehicle wheelsets to seat in different tangent planes, which is what is
necessary for the vehicle to describe a curve without either the wheelsets to be out of contact with the
rail or the vehicle structure to have to widstand torsion deformations. From the numerical point of view,
the wheelsets being out of contact with the rail is perceived as violation of their respective path
constraints. The rotation between the rear and front vehicle wheelsets is clearly depicted in Figure 3.6

with the rear view of the vehicle.

Front Axle

,,/

Joint

Figure 3.6: Primary Suspension System: Perspective

The wheelsets are modelled as prescribed point constraints that force the reference local frames
origins, of each one of the wheelsets, to coincide with the rail path. When there are four points to be
prescribed along a roller coaster track, it is necessary to have three relative degrees of freedom between
the wheelsets and the rails, allowing the three relative rotations. This is because when the roller coaster
vehicle enters a curve, the two front wheelsets will have a different orientation not only with respect to
each other but also with respect to the rear wheelsets. It is not only necessary to allow the three relative
rotations between the vehicle and the rails, so that the vehicle follow the curve without bending, but also
to allow for the wheelsets in the same axis to separate or to come closer to allow a proper insertion on

the curve. For example, if the prescribed cylindrical constraint, which only allows the body to roll, is
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used in the system only has one relative degree of freedom, and, consequently, locks when entering a
curve not being possible for the vehicle to run the complete track. The solution is to allow the separation
between the wheelsets of the same axis, as seen in Figure 3.7, so that the vehicle not only is able to
follow the track without locking but also is not prevented from running due to geometric defects of the
track. This same mechanism also allows for the wheelsets to overcome eventual track imperfections that
can be reflected in gauge variations.

The solution for the wheelsets to adjust to the local gauge of the track, i.e, distance between rails,
is achieved with a prismatic joint between the wheelsets and the frame, as seen in Figure 3.7, allowing
them to move along a lateral common axis. However, the prismatic constraint only assures that both
bodies move along the same axis without rotating relatively to each other. Therefore, a force element
that returns these two bodies to their neutral relative position is required. If there were no force element
linking the two bodies, in the first curve, the wheelsets would open and no internal mechanism would
close them. From the numerical point of view this situation would be perceived as the frame moving
away along the wheelset axis. The spring-damper system also helps to compensate for track irregularities
or gauge variations. As the right and left rails are independent from each other, being each one described
by a different database, which along the simulation have different interpolations, so it is impossible to
always ensure that the gauge remains constant. If the wheelsets have a fixed distance between each
other, along their common axis, the smallest variation of gauge or rail irregularity, it would lead to
constraints violations in the case of the numerical model or vehicle locking in the track in the case of a

real prototype.

Prismatic
Joint Frame

Spring-Damper
i —/ - ;// LFront Axle
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N Wheelset Revolute
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Figure 3.7: Primary Suspension System: Back View
3.2.2 Secondary Suspension Mechanism

A vehicle moving along a circular curve is subjected to an inertial centrifugal acceleration, which
is perceived by the passenger as lateral acceleration. This lateral acceleration is not only felt by the

passengers as an uncomfortable sensation, but it presents some level of physiological danger for the

29



roller coaster user that, if not kept inside healthy limits eventually leading to the need to stop the roller
coaster operations. The acceleration perceived by a passenger is generally referred to us as g-forces,
being their different components, in the passenger local reference frame, depicted in Figure 3.8. The
human body has different level of tolerance to different directions of the g-forces.

The secondary suspension mechanism or passive tilting mechanism, has the objective of reducing
the uncomfortable sensation, or even motion sickness, that can occurs to a passenger when the roller
coaster vehicle is moving along a circular curve. Usually, the curves have torsion angle that is adjusted
to the vehicle travel speed. But either because the operation speed differs from the design speed for other
reasons such torsion may be deficient. The parameter used to assess the level of discomfort of the
passengers is the non-compensated lateral acceleration, NCA [36]. As it can be seen in Figure 3.8, the
objective of the secondary suspension system allow controlling, eventually to compensate at least in
part, the effects of the lateral accelerations acting on the roller coaster occupant by using a passive tilting
mechanisms.

Downwards
_QZ

Lateral Lateral
NCA
roy < ) = oy

UpWards
+Gz
(@) (b) (c)
Figure 3.8: Acceleration on the human body in a curve: (a) Nomenclature for acceleration
components; (b) acceleration on occupant of vehicle without tilting; (c) acceleration on occupant of
vehicle with tilting.

Traditionally, roller coaster vehicles are configured such that the passenger compartment is rigidly
mounted to the chassis, which follows the roller coaster path. While this provides a well-known experience
that is relatively predictable to the passenger, the lateral forces resultant from such rigid mounting can be
uncomfortable, especially when over-the shoulder restraints are used to secure passengers within the
passenger compartment [37]. The secondary suspension system provides the passengers compartment,
carbody, a roll degree of freedom. The carbody is attached to the roller coaster track via a chassis, in such
way that the carbody has a roll degree of freedom relative to the chassis, as seen in Figure 3.9.

This roll degree of freedom is achieved computationally with a revolute joint between the carbody
and the chassis. To materialize this concept, although it is a passive tilting mechanism, it is necessary to

impose a limited range of roll variation, so the carbody does not rotate freely. The control of lateral
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accelerations is achieved by allowing the passenger platform of the carbody, to roll, within a limited range.
These limits are achieved physically by using joint stops, which only allow a specified roll variation. The
passive control of roll motions is also achieved with a spring-damper arrangements, as depicted in Figure
3.9. Such force elements not only smooth the tilting within its limited range, but also damp the vibrations.

The passive tilting mechanism with a revolute joint between the occupant compartment and the
frame is a model that is materialized by a radial mount between the carbody and the chassis. In any case,
the relative center of rotation between the passenger platform and the frame of the chassis, modeled as

a revolute joint, is located above the assembly center of mass, as depicted in Figure 3.9 and Figure 3.10.

- T~
~

w _,_,,_,_,,_,_7."Carbody
7

7
el

——— Frame
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o—: means —[Eﬁl— Where the attaching points are for
the: oFrame, < Carbody

Figure 3.9: Secondary Suspension System

3.2.3 Non-compensated Acceleration

As the non-compensated acceleration reduction plays an important role in the vehicle secondary
suspension design, its characterization is important at this stage. The NCA is defined by a relation
between the centrifugal and gravitational accelerations applied on the carbody in its local lateral
direction. The NCA, depicted in Figure 3.10, is obtained by:

NCA=a_cos(p+0)—-gsin(p+0)=a,,,-a, (3.1)
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where a_,, is the local lateral acceleration of the carbody due to the centrifugal acceleration a,, ¢ is

p+0
the torsion angle, ¢ is the roll angle between the carbody and the chassis, due to the passive tilting
mechanism, as depicted in Figure 3.10 and g is the gravitational acceleration. Notice that the centrifugal
acceleration can be estimated using the relation a, =v?/R, where v is the velocity of the vehicle and R

is the radius of the curve.

IR oty i

Figure 3.10: Graphical scheme to show the non-compensated acceleration (NCA)

For the vehicle running in the roller coaster track depicted in Figure 3.3(a), the NCA is displayed
in Figure 3.11 for a vehicle with the passive tilting mechanism and a traditional vehicle with the
passengers compartment rigidly mounted to the chassis. The Figure 3.11 shows a slight reduction of the
NCA acting on the roller coaster vehicle, equipped with the tilting mechanism. A large difference can
be seen, for example, between the 32s and 33s, approximately, where there is a reduction of 30% of the

NCA experienced by the occupants.
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Figure 3.11: Non-Compensated Acceleration (NCA)

This reduction happens in longer curves with smaller radius, where guest compartment has time
to stabilize after entering the curve. It is for this type of curves that the tilting mechanism is more
important, since it is when the lateral accelerations on the passenger exists for larger time periods. In the
majority of the curves, the graph reveals a smaller reduction of the NCA, not so significant, because
there are curves with smaller length, and eventually with a balanced torsion, in which the mechanism
has no time to stabilize and do its job. Certainly a fine tuning of the spring-damper characteristics of the
suspension can contribute to a better dynamic response.

The passive tilting mechanism also reduces, slightly, the velocity of the vehicle. With the
wheelsets trajectory being prescribed by a kinematic constraint, and the carbody, or passenger
compartment, rigidly attached to the chassis, the primary suspension system is the only mechanism that
dissipates some energy. With the secondary suspension system, some extra energy is dissipated, what
causes the vehicle to slow down when compared with a vehicle without secondary suspension.

In the final seconds of the simulation, it can be seen that the NCA has two peaks, much higher for
the vehicle with the tilting mechanism. This happens because the final two curves of the roller coaster
have not sufficient torsion angle, for the small radius of the curve and for the velocity that the vehicle
arrives to these curves, so the joint stops are reached. This means that the roll rotation limited range of
the occupant compartment is reached, and stops the relative rotation immediately. This sudden stop
causes the peak of lateral accelerations. These peaks are expected, because in real roller coasters, this
final part of the tracks is traveled at a much lower speed by acting brakes that slow down the vehicle, so
the vehicle reaches the final part of the track progressively reducing its velocity until it stops at the

arrival/departure station.

33



It must be mentioned that in loops for which the resulting accelerations on the passenger platform
are downwars, this is, —Gz according to the convention in Figure 3.8, the secondary suspension must be

locked to prevent the platform inversion. Such locking mechanism is not studied here.

3.2.4 Vehicle Construction

The multibody model of the roller coaster vehicle is assembled using eight rigid bodies, identified,

in Figure 3.12 and Figure 3.13, with the numbers 1 to 8, and their local reference frames.

o—e means —Qﬁ— Where the attaching points are for
the: o Frame, ® Wheelset,
iz Carbody, : Axle

Figure 3.12: Rear view of the multibody model

The vehicle is set in such a way that the wheelsets reference local frames are coincident with the
path that each rail describes, so, the reference local frame origin of each wheelset is the point to be
prescribed. In the prescribed constraint, this point is the basis for the definition of the vehicle-track
interaction. The prescribed point constraint enforces this point, the wheelset reference local frame origin,
to move along the rail path, therefore, there are four prescribed point constraints, each one applied to a
wheelset. It is considered that the wheelsets of the roller coaster vehicle are permanently in rigid contact

with the rails and follow exactly the track geometry, according with the restrictions imposed by the
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prescribed point constraint. The wheel-rail contact forces are related to the Lagrange multipliers
associated to the prescribed point constraint and are obtained by post-processing the dynamic analysis

response of the vehicle.

Cad =

Figure 3.13: Side view of the multibody model

A local reference frame (&£,7,¢) is rigidly attached to the centre of mass (CM) of each body. The
spatial orientations of the local reference frames are such that they are aligned with the principal inertia
directions of the respective rigid body. The mass and the inertia properties, with respect to the three
principal local axes, of each body are presented in Table 3.2. In the first column of the table, the ID
numbers identify the rigid bodies in the vehicle model presented in Figure 3.12 and Figure 3.13. The
mass and inertia properties have been estimated based on the geometry of each body with the help of
the software SOLIDWORKS [38].

The geometric representation of each body and of its body fixed frames is shown in Figure 3.14.
In this figure, it is not possible to see the wheelset that correspond to the body number 7, in Table 3.2,

since it is covered by the carbody.
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Mass Inertia Properties (Kg.m?)

ID Rigid Bodies
(Kg) I Ly I

1 Wheelset Front Left 10.1 0.14115 0.13446 0.93322
2 Wheelset Front Right 10.1  0.14115 0.13446  0.93322
3 Front Axle 51.5 0.097884 2.3432  2.34232
4 Frame 245 13.0706  77.8762  90.9305
5 Rear Axle 51.5 0.097884 2.3432  2.34232
6  Wheelset Rear Left 10.1 0.14115 0.13446 0.93322
7  Wheelset Rear Right 10.1  0.14115 0.13446  0.93322
8 Carbody 280 30.7503 127.8009 145.6759
Table 3.2: Physical properties of each body

Rear Axle

Cs

N3
Front Axle
T

&
Wheelset

Figure 3.14: Geometric representation of body fixed frame for each individual body in the vehicle

The initial positions, orientations and velocities of each body are presented in Table 3.3. The
initial position of each rigid body is given by the location of its body fixed frame origin, coincident with

its centre of mass, with respect to the global reference frame (x,y,z) .
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Initial Position (M)

Orientation Velocity (M/S)

ID

Xy Yo Zy & & € Vo Vo Y
1 -21 05 0 0 O 1 26 0 O
2 -21 -05 0 0 O 0 26 0 O
3 21 0 0125 0 O -07071 -26 0 O
4 -11 0O 018 0 O 1 26 0 O
5 -01 0 0125 0 O -07071 -26 0 O
6 -01 05 0 0 O 1 26 0 O
7 -01 -05 0 0 O 0 26 0 O
8 -1175 0 048 0 O 1 26 0 O

Table 3.3: Initial positions, orientations and velocities

Note that the initial velocity of 26 m/s is used to take the vehicle to the top of the highest point of

the roller coaster track, so that if reaches such point at an almost null velocity. In reality, such guidance

is achieved with other type of control, not modelled in this work.

) ] _ Bodies Attachment Points Local Coordinates (m)

ID Kinematic Constraint = . . : i j
b Sp Sq Sp S

1 Prescribed Point 1 Rail [0;0;0] - - -

2 Prescribed Point 2 Rail [0;0;0] - - -

3 Prescribed Point 6 Rail [0;0;0] - - -

4 Prescribed Point 7 Rail [0;0;0] - - -

5 Prismatic 3 1 [0.1;0;0] [0.2;0;0] [0;0.1;0.125] [0;0.2;0.125]

6 Prismatic 3 2 [-0.1;0;0] [-0.2;0;0] [0;0.1;0.125] [0;0.2;0.125]

7 Prismatic 5 6 [-0.1;0;0] [-0.2;0;0] [0;0.1;0.125]  [0;0.2;0.125]

8 Prismatic 5 7 [0.1;0;0] [0.2;0;0] [0;0.1;0.125]  [0;0.2;0.125]

9 Revolute 4 5 [-1;0;0] [-1.1;0;0] [0;0;0.06] [0;0.1;0.06]

10 Revolute 4 8 [1.05;0;1.05] [1.075;0;1.05] [0.975;0;0.755] [0.95;0;0.755]

11 Rigid 3 4 [0;0;0] - [0;0;0] -

Table 3.4: Kinematic Joints

In the roller coaster vehicle model, four prescribed point constraints are used to guide each

wheelset on a rail path. These kinematic constraints are defined between the vehicle wheelsets and the

rails centerlines, in order to enforce the wheelsets to move along the roller coaster, with their spatial

position prescribed according to the track geometry. The remaining kinematic constraints are used to

assemble the roller coaster vehicle model, all kinematic constraint data is presented in Table 3.4, which

includes the number of the bodies connected and the local coordinates of the attached points.

The suspension of the roller coaster vehicle consists of a group of flexible links that ensure the

transmission of forces between the wheelsets and the carbody with the frame, as shown in Figure 3.12.

In fact, the primary suspension system links the wheelset with the axles, front and rear. But as these
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ones are constrained with the frame by rigid joints, it can be said that the three bodies, front and rear

axle and frame are equivalent to a bogie in a railway application.

Bodies Attachment Points Local Coordinates (m)
i ,

ID K (N/m) ¢(Ns/m) 1, (m)

j Sp Sh
1 8x10° 4x%10* 0.1 3 1 [0.2;0;0] [0;0.2;0]
2 8x10° 4x10* 0.1 3 2 [-0.2;0;0] [0;0.2;0]
3 8x10° 4x10* 0.1 5 6 [-0.2;0;0] [0;0.2;0]
4 8x10° 4x10* 0.1 5 7 [0.2;0;0] [0;0.2;0]
5 2x10* 1x10° 07577 3 1 [-0.9;0.35;0] [-0.975;-0.35;0.00505]
6 2x10* 1x10° 0.7577 3 2 [-0.9;-0.35;0] [-0.975;-0.35;-0.00505]

Table 3.5: Characteristics of the spring-damper systems

The flexible links, or force elements, correspond to spring-damper systems, and all their
characteristics, bodies connected and local coordinates of the attachment points are presented in Table
3.5. The spring-damper system is characterized by three parameters, the stiffnessk , the unformed length
I, and the damping coefficient c. The bodies that are connected and the coordinates of the spring-

damper system attached points are also depicted in Table 3.5.

Figure 3.15: Demonstration Vehicle on the track
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It must be noted, at this point, the mechanical properties of the suspension elements are defined
only for the feasibility studies, presented hereafter. A fine tuning of these properties is crucial for the
safe running of the roller coaster vehicle.

A demonstration of the roller coaster vehicle, developed in this work, is shown in Figure 3.15.
After the dynamic analysis of the roller coaster, the SAGA [39] program is used for the visualization
and animation of the mechanical system. This program receives an input file that contains the history of
positions and orientations of the rigid bodies of the roller coaster vehicle and displays the system
components in their actual positions and orientations, thus providing an animated output of the motion.

Selected frames of these animations are displayed throughout this work.
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4 Biomechanical Model of Occupant

The use of biomechanical models to describe, from the mathematical point of view, the human
body in terms of its anthropometry, physiology and topology, has been developed, with different
purposes and with different approaches, depending on the nature of the research and the objectives of
the analysis. There are two type of mathematical approaches that are used to construct and describe
biomechanical models, multibody formulations and finite element methods. In this work, it is used the
multibody approach, usually applied in simulation cases where gross-motions are involved and when
complex interactions with the surrounding environment are to be modelled and analysed [26].

In many situations, these “gross-motion ” simulators [40] are preferred to the more expensive
finite element based models because the dynamic responses that need to be measured can be predicted
with equal accuracy by any of the approaches. In the “gross-motion” simulators the different segments
of the human body are typically represented within the framework of multibody systems by a set of rigid
bodies connected by different types of joints and flexible links with a varying degree of complexity [28].
In a roller coaster the posture of the human occupant can be considered as a typical case of passive
human motion case, making sense to use a multibody approach with an anthropometric model of the
occupant. In order to have more reliable measures of the human exposure to roller coaster induced forces
and vibrations, the use of a biomechanical model of the occupant seated in the vehicle seat is required

in this work.

4.1 The Anthropometric Model

The anthropometric model is considered to be a representation of the static body geometry, in
which relevant dimensions and physical properties are described [41]. These relevant dimensions and
physical properties include, among others, the body size, shape and proportion as well as the mass,
inertia and centres of mass location of its principal anatomical segments. The anthropometric model
used here is based on the one presented in the computer simulation code SOMLA [26], regarding the
uniform mass distribution and body size of the 50" percentile dummy. The model considers the human
body divided in sixteen anatomical segments, presented in Figure 4.1, being briefly described in Table
4.1.

4.2 Occupant Model

The occupant model is used in the complete roller coaster model as a subsystem. In this section,
the relevant anthropometric characteristics, required for the construction of the biomechanical model

are presented based on the work by Silva and Ambrésio [28]. The model is described using 16 rigid
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bodies, shown in Figure 4.2, which represent independent anatomical segments, interconnected by 15

kinematic joints, which represent anatomical joints.

Figure 4.1: Human body divided in sixteen anatomical segments

ID Name Description
I Right Foot From ankle to toe
Il Right Lower Leg From knee to ankle
Il Right Upper Leg From hip to knee
v Lower Torso From the first lumbar vertebrae to the bony pelvis
Vv Left Upper Leg From hip to knee
VI Left Lower Leg From knee to ankle
Vil Left Foot From ankle to toe
VIl Right Hand From wrist to finger tips
IX Right Lower Arm From elbow to wrist
X Right Upper Arm From shoulder to elbow
XI Upper Torso From the first thoracic joint to the twelfth
XIl Left Upper Arm From shoulder to elbow
X Left Lower Arm From elbow to wrist
XV Left Hand From wrist to finger tips
XV Neck From the first cervical vertebrae to the seventh
XVI Head Cranium, upper and lower jaws

Table 4.1: Description of the anatomical segments of the anthropometric model [25]
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Figure 4.2: Global and local reference frames.

A local reference frame is rigidly attached to the centre of mass of each body, as shown in Figure
4.2. The principal characteristics of the 16 rigid bodies are related to the description of the anatomical
segments in Table 4.1. The physical properties of each rigid body are presented in Table 4.2, and indude
the masses and the moments of inertia with respect to the three principal axes of each rigid body.

In Table 4.3, the initial positions, orientations and velocities of each body, for a seated occupant,
are presented. The initial positions and velocities are consistent with the vehicle and track subsystems,
which means that the global reference frame is unique to all subsystems, and the positions, orientations
and velocities of the occupant model are compatible with the others subsystems. The spatial orientation
of the local reference frames is given in such a way that the moments of inertia required in the definition
of each body are all principal moments.

The joints used in the biomechanical model are of three types, revolute, spherical and universal
joints, being that the universal joint is only used between the lower and upper torso. Spherical joints,
with three degrees of freedom, are used to model the hip or shoulder, and revolute joints, with only one
degree of freedom, used to model anatomical segments that only flex and extend, as the knee and the

elbow.
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Mass Inertia Properties (107Kg.m?)
(Kg) I, L, I
1 Right Foot 1.182  0.1289 0.128 2.569
2 Right Lower Leg 3.626 1.086 3.83 3.14
3 RightUpperLeg 9.843 1.435 15.94 3.14
4 Lower Torso 14.2 26.22 13.45 26.22
5 Left Upper Leg  9.843 1.435 15.94 3.14
6
7
8
9

ID Rigid Bodies

Left Lower Leg  3.626 1.086 3.83 3.14

Left Foot 1182 0.1289  0.128 2.569

Right Hand 0.489  0.067 0.146 0.148

Right Lower Arm 1.402  0.124 0.964 0.298

10 Right Upper Arm 1991  1.492 1.356 2.487
11 Upper Torso 24948 8.625 21.198 13.638
12 LeftUpper Arm 1991  1.492 1.356 2.487
13  Left Lower Arm 1402 0.124 0.964 0.298
14 Left Hand 0.489  0.067 0.146 0.148
15 Neck 1.061  0.268 0.215 0.215

16 Head 4241  2.453 22249  2.034
Table 4.2: Physical properties of each body (from Silva and Ambrésio [28])

Initial Position (M) Orientation Velocity (M/s)

XO yO z 0 el eZ e3 vxo Vyo vZu
1 -1809 -0306 0469 0 O 1 26 0 O
2 -1809 -0306 0792 0 O 1 26 0 O
3 -1.59 -0306 0943 0 O 1 26 0 O
4 -1.375 -04 1007 0 O 1 26 0 O
5 -1.59 -0494 0943 0 O 1 26 0 O
6 -1809 -0494 0792 0 O 1 26 0 O
7 -1809 -0494 0469 0 O 1 26 0 O
8 -17056 -0.3278 1217 O O -09914 -26 0O O
9 -14931 -0.2708 1217 O O -09914 -26 0O O
10 -1375 -0239 1359 0 0 -09914 -26 0 O
11 -1.375 -04 1319 0 O 1 26 0 O
12 -1375 -0561 1359 0 0 09914 -26 0 O
13 -1.4931 -05291 1217 O O 09914 -26 0 O
14 -1.7056 -04722 1217 0O O 09914 -26 0 O
15 -1.375 -04 1573 0 O 1 26 0 O
16 -1.426 -0.4 1654 0 O 1 26 0 O

Table 4.3: Initial positions, orientations and velocities for the biomechanical model of the seated roller
coaster vehicle occupant
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Kinematic  Bodies Attachment Points Local Coordinates (m)

o

Constraint i  j Se So s; &
1  Spherical 1 2 [0;0;0.035] - [0;0;-0.288] -
2 Revolute 2 3 [0;0;0.151] [0;0,1;0.151] [0.219;0;0] [0.219;-0.1;0]
3  Spherical 3 4 [-0.215;0;0] - [0;-0.094;-0.064] -
4  Spherical 4 5 [0;0.094;-0.064] - [-0.215;0;0] -
5 Revolute 5 6 [0.219;0;0] [0.219;-0.1;0] [0;0;0.151] [0;0.1;0.151]
6  Spherical 6 7 [0;0;-0.288] - [0;0;0.035] -
7  Spherical 8 9 [-0.093;0;0] - [0.127;0;0] -
8 Revolute 9 10 [-0.123;0;0] [0;-0.1;-0.142] [0;0;-0.142] [0;-0.1;-0.142]
9  Spherical 10 11 [0;0;0.153] - [0;-0.161;0.193] -
10 Spherical 11 12 [0;0.161;0.193] - [0;0;0.153] -
11  Revolute 12 13 [0;0;-0.142] [0;-0.1;-0.142] [-0.123;0;0] [0;-0.1;-0.142]
12 Spherical 13 14 [0.127;0;0] - [-0.093;0;0] -
13 Universal 4 11 [0;0;0.211] [0;0.1;0.211] [0;0;-0.101] [0.1;0;-0.101]
14  Spherical 11 15 [0;0;0.193] - [0;0;-0.061] -
15 Revolute 15 16 [0;0;0.061] [0;0.1;0.061] [-0.051;0;-0.02] [-0.051;0.1;-0.02]

Table 4.4: Kinematic Joints used in the biomechanical model

In a real roller coaster vehicle the occupant is restrained to the seat by a varied number of safety
systems that effectively prevent its gross motions with respect to the seat. Generally the arms and legs

are free to move, although through muscle actions such relative motions have resistance.

o Ty]

. 5

o—e Mmeans —[&’f}— Where the attaching points are for
the: oDummy, @ Seat

Figure 4.3: Biomechanical model seated
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In this work a very sophisticated model of the seat restraints or muscle bracing actions is out of
its scope. So, alternative forms of modelling the relative kinematics between seat and occupant, and
between its anatomical segments is devised.

The objective here is to maintain the biomechanical model seated and slightly stuck to the seat,
only allowing small movements, as for a roller coaster vehicle occupant that is restrained to the seat.
The objective is to represent the natural resistance of the relative motion between anatomical segments

as an occupant of a roller coaster, by using spring-damper restraints, as shown in Figure 4.3.

Bodies Attachment Points Local Coordinates (m)

ID K (N/m) ¢ (N.s/m) 1, (m) ; S g

1 1x10* 5x10° 0.06 Seat 11 [0.14;0.3195;1.032] [0;-0.805;0.193]
2 1x10* 5x10° 0.06 Seat 11 [0.14;0.4805;1.032] [0;0.805;0.193]
3 1x<10* 5x10? 0.0805 Seat 11 [0.275;0.3195;1.032] [0;0;0]

4 1x10* 5x102  0.0805 Seat 11 [0.275;0.4805;1.032] [0;0;0]

5 5x10* 5x10° 0.083 Seat 3 [0.5;0.306;0.38] [0.085;0;0]

6 5x10* 5x10° 0.103 Seat 3 [0.5;0.203;0.463] [0.085;0;0]

7 5x10* 5x10° 0.083 Seat 5 [0.5;0.494;0.38] [0.085;0;0]

8 5x10* 5x10° 0.103 Seat 5 [0.5;0.597;0.463] [0.085;0;0]

9 5x10* 5x10° 0.103 Seat 2 [0.634;0.203;0.024] [0;0;-0.288]
10 5x10* 5x10° 0.103 Seat 6 [0.634;0.597;0.024] [0;0;-0.2881]
11  1x10° 5x10* 0.106 Seat 10 [0.2;0.133;0.832] [0;0;-0.047]
12 1x10° 5x10° 0.06 Seat 10 [0.14;0.239;0.832] [0;0;-0.047]

13  1x10° 5x10° 0.106 Seat 12 [0.2;0.667;0.832] [0;0;-0.047]
14  1x10° 5x10° 0.06 Seat 12 [0.14;0.561;0.832] [0;0;-0.047]
15 s5x10° 5x10°  0.1378 Seat 9  [0323;0.133;0.737] [0;0;0]

16 5x10* 5x10° 0.1378 Seat 13 [0323;0.667;0.737] [0;0;0]

17  1x10° 5x102 0.459 2 3 [0;0;-0.288] [0.085;0;0]
18  1x10° 5x102 0.459 6 5 [0;0;-0.288] [0.085;0;0]
19 7.5x10®° 7.5x10? 0.0805 15 11 [0;0;0.061] [-0.0805;0;0.315]
20 75x10° 7.5x10? 0.0805 15 11 [0;0;0.061] [0;-0.0805;0.315]
21 75x10® 7.5x10%2 0.0805 15 11 [0;0;0.061] [0;0.0805;0.315]
22  1x10* 1x10° 0.0805 16 11 [0;0;0] [0.051;-0.0805;0.335]
23  1x10* 1x10° 0.0805 16 11 [0;0;0] [0.051;0.0805;0.335]
24  1x10* 1x103 0.0805 16 11 [0;0;0] [0.051;0;0.2545]
25  1x10* 1x10° 0.075 8 14 [0.092;0;0] [0.092;0;0]

26  1x10* 1x102 0.2674 9 10 [0.127;0;0] [0;0;-0.047]
27  1x10* 1x10? 0.2674 13 12 [0.127;0;0] [0;0;-0.047]
28  1x10* 1x10° 0.188 2 6 [0;0;-0.288] [0;0;-0.288]
29  1x10* 1x10° 0.188 3 5 [0.085;0;0] [0.085;0;0]

Table 4.5: Characteristics of the spring-damper systems of the biomechanical model

It is assumed that for the passenger safety system there are shoulder restraints applied. To
represent such restrictions, the lower torso is fixed to the seat by a kinematic rigid joint. The other links
between the biomechanical model and the seat are all simulated by spring-damper systems. Spring-
damper systems also represent the passive resistance of the biomechanical joints due stiffening that

results from muscles resistance, because of muscle bracing. The spring-damper systems, their
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characteristics, bodies connected and local coordinates of the attachment points are presented in Table
4.5.

4.3 Injury Biomechanics

Injury biomechanics uses the mechanical description of the human body, in particular via its
mechanical principles, kinematics and dynamics, to provide relations that can be associated to observed
human physical trauma. Injury occurs if the individual loading is so severe that the biological system is
loaded beyond a recoverable limit, resulting in damage to anatomical structures and alteration of its the
normal function.

Numerical methods and models are important tools since they allow to assess the human
biomechanical response in a large range of scenarios. In this work, the 50" anthropomorphic dummy,
described in Section 4.2 is used. Note that for a thorough study on the human exposure to injury in roller
coasters it is necessary to consider that there are different sizes and gender of human bodies, with
different characteristics, that affect the human response and tolerance. The mass, height or even the age
are factors to take into account in the human models and numerical methods development for injury
assessment. In fact, in the biomechanical response analysis it is not only important to understand and
quantify injury mechanisms, but also to define injury thresholds for each type of injury criterion.

Some relevant injury criteria for users of roller coasters are overviewed here. These criteria
provide information regarding the severity of the injuries produced in specific anatomical segments of
the biomechanical model, as a consequence of the exposure of the body to external actions. This work
focus the exposure of the head and other body parts and on their tolerance to g-forces. Common effects
on the human body, related with extreme ride, such blackout or loss of consciousness or overload of the
blood vessels are associated to g-forces [23].

An injury criterion can be defined as a biomechanical response index of exposure that quantifies
the magnitude of a determined injury caused by impact or large accelerations. These qualifications of a
criteria can be regarded as a quantification of human response to a given level of injury resulting from
an external action. Injury criteria result from the interpretation of data collected by several experiments
or numeric simulations done using different kinds human beings, animals or models and then correlation
with injuries effectively observed by medical doctors. They are, in fact, the engineering measures of
injury that can be used a roller coaster track design or vehicle improvement, among many other fields
of application.

The understanding of the injury mechanisms is of great importance for passive safety
improvement. The existence of some injury scales such as AIS (Abbreviated Injury Scale) [42], Table
4.6, together with loading conditions during this external actions are important qualification that the

result from medical observation of real life injuries that complement the injury criteria classification and
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fill the information bridge between engineers and medical doctors. The injury criteria implemented in
this work are:

e Head Injury Criterion (HIC);

o Result Head Acceleration (3ms);

e G-force induced loss of consciousness (GLOC).

Although initially applied to aerospace and automotive crashworthiness cases, these indicators
can also be applied in other areas of activity, such as the one presented in the current work as a roller
coaster analysis. Notice that other injury measures may be considered, but the literature is inexistent for

this type of application to roller coaster rides.

AIS Injury Category
1 Minor
2 Moderate
3 Serious
4 Severe
5
6

Critical
Survival not sure
Table 4.6: Abbreviated Injury Scale [29]

4.3.1 Head Injury Criterion (HIC)

The Head Injury Criterion (HIC) is based on the Wayne State Tolerance Curve (WSTC), and
establishes a relationship between the average acceleration and the time duration in which this average
acceleration occurs. The resulting tolerance curve, illustrated in Figure 4.4, indicates the potential for a
given acceleration to cause severe head injuries, when above the tolerance curve, or to be within the

human tolerance levels, if below the tolerance curve.

200,0

150,0 1

100,0 1

algl

50,0 1

0,0

0,0 5,0 100 150 200 250 30,0 350 40,0 450 50,0
Duration [ms]

Figure 4.4: The Wayne State Tolerance Curve (Adapted from Walz [7])
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The Head Injury Criteria (HIC) is the most frequently used criterion to quantify head injury

potential in all commonly application areas. The HIC is computed as [7]:

HIC = max ﬂt iti tj’a(t)dtr5 (t, —tl)} (4.1)

2 t

where {, and t, are the time limits of the acceleration pulse, measured in [sec], and a(t) is the resultant
head acceleration, measured in the center of mass of the head in multiples of the gravity acceleration
[g]. Itis considered that the maximum allowable time interval that produces suitable HIC values is 36
ms for accelerations pulses not involving direct head impact, although the interval of 15 ms is also used
in some fields. A tolerance level of 1000 is used in this criterion as the threshold for permanent head
injuries for the 50" percentile male. In Figure 4.5, it can be seen the relation between the HIC and the
AlS.

Although, there are some limitations in this criterion, since that only considers linear acceleration
which is not a limited representation of reality as angular motion may play a role on head injuries.
Despite this, HIC is the most used criterion in crashworthiness research and considered to be an
appropriate discriminator between contact and non-contact impact responses. Because many of current
developments of passive safety are based on this criteria, industry and regulations are not inclined to

change it.

AIS

0,0

0,0 250,0 500,0 750,0 1000,0 1250,0 1500,0 1750,0 2000,0
HIC

Figure 4.5: Relation between HIC and AIS(Adapted from Shojaati [29])

4.3.2 Result Head Acceleration (3ms)

The 3ms criterion is also based on the WSTC [7]. It is defined as the acceleration level exceeded
for a duration of 3 ms and should not exceed 80g. Generally, large accelerations acting more than 60 ms
are called sustained accelerations, while those below 60 ms are called transitory accelerations, or impact

[43]. This criterion is an essential element to assess hon-contact injuries of the head.
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4.3.3 Human Tolerance to G-Force

The human body is considered to be a fluid-filled, hydraulic system responding to changes in
acceleration fields, and limiting human tolerance. Acceleration takes place when the velocity of a body
changes either in magnitude or direction. The human body has different tolerances and reactions to
different directions. The acceleration applied to the human body should be considered with respect with
its direction and magnitude. In Figure 4.6, the common nomenclature for directional accelerations is

shown.

Downwards

Lateral Forward

+Gy Vf +GX
Backward o 7\//\

Lateral
-Gx -Gy

Upwards
+Gz

Figure 4.6: Nomenclature for acceleration components

4.3.3.1 Upwards +Gz

The effects of upward acceleration are primarily due to hydrostatic pressure changes in the
cardiovascular system. The effects of +Gz are limited by visual symptoms and loss of consciousness, it
drives blood downward to the feet of a seated or standing person. When an occupant of a vehicle is
exposed to an increase in +Gz, the pressure required to perfuse the eyes and the brain increases and
blood begins to pool in the capacity blood vessels of the lower limbs. With increased acceleration levels,
the perfusion pressure requirements increase and the volume of blood returning to the heart decreases
further. The eyes and the brain receive an ever-decreasing amount of oxygenated blood, eventually
leading to a G-force induced loss of conscience (GLOC) The common symptoms due to +Gz are listed
below , in Table 4.7 [43]:
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+1 Gz Erect/seated terrestrial posture;

+2 Gz Increase in weight; Movement against
acceleration is difficult;
+3t04 Gz Difficult to raise arms and legs; Dimming of

vision after 3-4s; progressive tunnelling of
vision; arterial oxygen saturation falls to 93%;
+45t06 Gz Progressive blackout after 5s; hearing and then
G-induced loss of consciousness (GLOC) if
continued,
Table 4.7: Upwards +Gz [43]

The loss of consciousness has different effects depending on the aggression to the central nervous
system. These effects depend mainly on the time duration and magnitude of +Gz, its repetition and on
the individual tolerance to +Gz. If the exposure to +Gz is high and/or repeated enough, it can cause other
injuries such as hernias or cardiac dysrhythmias. To long durations of exposure to +Gz, symptoms will
manifest by loss of peripheral vision, proceed to total loss of vision, if the acceleration is high and long
enough. With the increase of acceleration, the passenger will lose consciousness, and so, loss of postural
control. The passenger would regain consciousness once the acceleration level is below the human
threshold tolerance to +Gz, which will higher than normal due to activation of cardiac compensation
mechanisms. One of the concerns of the GLOC with respect to a roller coaster is the lack of postural

control due to loss of consciousness, which might result in an injury.

43.3.2 Downwards -Gz

Tolerance to downwards —Gz, which drives blood to the head is lower when compared to +Gz.
Initially during —Gz acceleration, the arterio-venous oxygen difference is maintained, but increasing
loads, increased carotid sinus pressure causes bradycardia and fall in arterial pressure, while venous
pressure is still maintained. This results in fall of arterio-venous oxygen difference, leading to the

tolerance limiting symptoms such as confusion and unconsciousness.

-1 Gz Sense of pressure and fullness in the head

-210-3Gz Throbbing headache; Red out, blood laden lower
eyelid being pulled into the field of vision;

-4 t0 -6 Gz Seldom tolerated beyond 6 seconds; causes

mental confusion and unconsciousness;
Table 4.8: Downwards -Gz [43]

4.3.3.3 Forward +Gx

Forward acceleration +Gx is primarily limited by respiratory problems, although minimal
hydrostatic effects persist. In general, human tolerance to g-forces in this direction are much higher than

other axes. The human body is better to tolerate g-forces perpendicular to the spine.
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+1 Gx Slight increase in abdominal pressure;
respiratory rate increases;

+2 to 3 Gx Difficulty in spatial orientation; +2 Gx tolerable
up to 24 hours
+3 to 6 GX Progressive tightness of chest; Difficulty in

breathing; Blurring of vision; Cardiac rhythm
disturbances;

+6 to 9 Gx Head cannot move at +9 Gx; Blurring and
tunnelling of vision; Arterial oxygen saturation
falls below 85%;

+9 to 12 Gx Reduced peripheral vision and dimness of
central vision; Ventilation-perfusion inequalities
in the lungs increase further;

> +12 GX Breathing extremely difficult, Pain in the chest;
Loss of vision;

Table 4.9: Forward +Gx [43]

4.3.3.4 Backward -Gx

The response to backward acceleration are similar to +Gx, but the respiratory problems are less
severe. The hydrostatic effects that occur in +Gx are reversed. Although, the human body has higher
tolerance to forward +Gx than to backward —Gx, since blood vessels in the retina appear more sensitive

in the latter direction.

-6 Gx No deterioration of lung vital capacity; blurring
of vision, probably due to mechanical effects;
-8 Gx Cardiac arrhythmias; abundant lacrimation;

restraint of human body difficult;
Table 4.10: Backward —Gx [43]

4.3.3.5 Lateral -Gy and +Gy

The information on the human tolerance to lateral +/-Gy is limited. It is known that haemorrhages
in the dependent limbs can occur around +/-5 Gy. These lateral accelerations can cause an uncomfortable
sensation or even motion sickness in the roller coaster passenger. The measure of this level of discomfort

is the non-compensated lateral acceleration, NCA , described in Section 3.2.2.

4.3.3.6 General Thresholds for Tolerance to G-forces

The simple observation of the graphs acceleration vs time does not allow a clea