

AIDA-C: Evolutionary Optimization Techniques applied to

Analog IC Design

André Ricardo Henriques Ferreira

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisor: Prof. Nuno Cavaco Gomes Horta

Prof. Nuno Calado Correia Lourenço

Examination Committee

Chairperson: Prof. Horácio Cláudio de Campos Neto

Supervisor: Prof. Nuno Calado Correia Lourenço

Member of the Comittee Prof. Manuel Fernando Martins de Barros

May 2016

https://fenix.tecnico.ulisboa.pt/publico/finalDegreeWorks.do?method=viewFinalDegreeWorkProposal&finalDegreeWorkProposalOID=2396592283126&_request_checksum_=79a31a7f39e4bc5731d2517762d64db4883b79fb

i

Abstract

The work presented in this report belongs to the field of Electronic Design Automation (EDA),

particularly, to the domain of Analog IC Design Automation. Despite the advances on the state-of-the

art, nowadays most of the automatic synthesis tools address circuit level synthesis and the setup is

very much dependent on the designers expertise when specifying, e.g., design search space, design

constraints, topology selection, etc., which limits the efficiency of the design automation process. In

this work the automatic constraint generation is addressed not only to increase the level of automation

but also give more support to the designer. The state-of-the-art shows that just a few approaches

addressed the topic of automatic constrain generation, basically, considering two alternatives one

using a pattern recognition approach and other a signal flow graph approach. These approaches will

be further investigated to enhance AIDA-C, a state-of-the-art circuit level synthesis tool developed at

IT (Institudo de Telecomunicações), and validated with a diversified set of examples including circuits

such as, LC-VCO, LNA, OpAmps, Bandgaps, etc.

Keywords

Analog Integrated Circuits, Electronic Design Automation, , Design Constraints Generation, Signal

Flow Graphs, AIDA-C

iii

Resumo

O trabalho apresentado está relacionado com o campo de Automatização de Projecto Electrónico

(EDA), com especial ênfase no domínio da automatização de projecção de circuitos integrados

analógicos. Apesar dos mais recentes avanços tecnológicos, a maioria das ferramentas de

sintetização automática foca-se mais ao nível do circuito, e a configuração depende bastante da

experiência e conhecimentos do projectista aquando a especificação de características como por

exemplo selecção de topologia, definição do espaço de procura, definição de constraints, etc,

limitando a eficiência do processo de automatização do projecto. Neste trabalho a geração automática

de constraints não será só para incrementar o grau de automatização, mas também para assistir o

projectista no processo de design. O estado da arte mostra que esta vertente não tem sido seguida,

havendo poucos trabalhos a abordar o problema da geração automática de constraints, considerando

apenas duas alternativas: uma, onde se procuram padrões no circuito, e outra que consiste na análise

da propagação do sinal. Estas abordagens foram estudadas mais aprofundadamente para serem

integradas e validadas no AIDA-C, uma ferramenta de síntese a nível do circuito desenvolvida no IT

(Instituto de Telecomunicações) bastante referenciada com um conjunto diversificado de exemplos,

incluindo circuitos como o LC-VCO, LNA, AmpOps, Bandgaps, etc. O método conseguido gera

constraints baseados em matching de transístores, simetrias, e proximidades com sucesso e com um

tempo de processamento de alguns segundos.

Palavras Chave

Circuitos Integrados Analógicos, Automação do Projecto de Circuitos, Geração Automática de

Restrições Funcionais, Grafos de Fluxo de Sinal, AIDA-C

v

Table of Contents

ABSTRACT ...I

KEYWORDS ..I

RESUMO ...III

PALAVRAS CHAVE ...III

TABLE OF CONTENTS .. V

1 INTRODUCTION ..1

1.1 Analog Design Flow ... 1

1.2 Analog IC Design Optimization .. 3

1.3 Motivation .. 3

1.4 Goals ... 4

1.5 Document Structure ... 5

2 STATE-OF-THE-ART ...7

2.1 Analog IC Design Automation Tools .. 7

2.2 Simulation-based automatic circuit sizing .. 8

2.3 Automatic constraint generation applied to analog circuit sizing 9

2.4 Sizing Rules Method .. 11

2.4.1 Automatic Building Block recognition ... 11

2.4.2 Recognition Algorithm ... 12

2.5 Hierarchical Placement Rules’ SSFG .. 12

2.5.1 Definition ... 12

2.5.2 SSFG Generation .. 12

2.5.3 Hierarchical Symmetry Assignment ... 13

2.5.4 MARS Enhanced Structural Signal Flow Graph ... 14

2.5.5 ESFG Generation .. 14

2.6 Conclusions ... 14

3 AIDA OVERVIEW .. 17

3.1 AIDA-C Architecture .. 17

3.1.1 AIDA Setup ... 18

3.2 Efficient Setup with Automatic Constraint Extraction .. 21

3.3 Conclusions ... 22

4 AUTOMATED CONSTRAINTS GENERATION MODULE ... 23

4.1 Overview ... 23

4.2 Reading the netlist ... 24

4.3 Pattern configuration, constraints, and subgraphs ... 25

vi

4.3.1 Level 0 .. 25

4.3.2 Level 1 .. 26

4.3.3 Level 2. ... 29

4.4 Pattern Detection ... 31

4.5 Finding symmetry .. 35

4.5.1 Generating the signal flow graph ... 35

4.5.2 Finding symmetric nodes ... 35

4.5.3 Determining symmetric devices ... 36

4.6 Generating constraints ... 36

4.6.1 Sizing and electronic constraints ... 36

4.6.2 Proximity constraints ... 36

4.6.3 Symmetry constraints .. 37

4.7 Designing new patterns ... 37

4.7.1 Connections configuration ... 37

4.7.2 Constraints generation .. 37

4.7.3 Subgraph generation ... 38

4.7.4 Remaining details .. 38

4.8 Integration with AIDA ... 39

4.8.1 Netlist .. 40

4.8.2 Electrical Constraints and Measures ... 40

4.9 Running Example .. 41

4.10 Observations... 45

5 EXPERIMENTAL RESULTS ... 47

5.1 Folded Cascode .. 47

5.2 Fully Differential two-stage Folded Cascode .. 50

5.3 Fully Differential OTA ... 53

5.4 Folded Cascode Optimization Project .. 54

5.5 Conclusions ... 56

6 CONCLUSIONS AND FUTURE WORK ... 57

6.1 Conclusion ... 57

6.2 Future work ... 57

7 REFERENCES .. 59

APPENDIX A ... 67

A.1 FOLDED CASCODE .. 67

A.2 FULLY DIFFERENTIAL TWO-STAGE FOLDED CASCODE ... 72

A.3 FULLY DIFFERENTIAL OTA ... 78

vii

1

1 Introduction

Since IC technology has been developed and made accessible, it has seen exponential growth

throughout the decades of its development that enabled a multitude of life-changing applications like

cellphones, personal computers, and the self-driving cars are expected to be available in the near

future. The level of integration in modern very large scale integration technologies (VLSI), enables

extremely complex, multi million transistors electronic circuits to be integrated in a few mm
2
 with

reduced costs (in mass production), which allowed circuit designers to create IC’s that, meet the needs

of the demanding microelectronics market, for new functionalities, smaller devices, lower production

costs, higher power efficiency, etc.. These complex single IC designs are established in

telecommunications, medical and multimedia applications, where blocks of AMS, digital processors

and memory blocks appear together. To increase the performance of ICs, i.e. enhance functionalities

and/or lower power consumption, there is an exponential increase of transistor density in ICs, as

described by Moore’s law. This means that the designers deal with the project ICs containing billions

of transistors, under extreme competitive market conditions. [1].

Although the analog component of the SoC only occupies approximately 20% of the global circuit area

(as shown in Figure 1.1) the design effort is considerably higher when compared to its digital

counterpart. In digital design, it is usual to reuse digital projects, leading to an increased productivity of

design. By contrast, in analog design there are no mature and well-defined strategies to address a

problem, leading to custom solutions that are difficult to reuse. Several Electronic Design Automation

(EDA) tools and design methodologies are available for digital IC’s that assist the designers in

managing the increased complexity systems, as well as keeping up with the fast-paced progress

offered by the technology. On the other hand, and despite the developments achieved in recent years

in analog design automation, analog design automation keeps lagging behind with practically no

automation and very few design reuse appearing in the designers’ flow. [2]

Figure 1.1 - Comparison between Analog and Digital design efforts

1.1 Analog Design Flow

Although several design flows for analog circuits can be found, a generally well accepted and used by

many analog design automation works developed in the last years follow the design flow introduced by

Gielen and Rutenbar [3]. This design flow for AMS IC circuits, illustrated in Figure 1.2, consists of a

Circuit Size Design Effort

Analog

Digital

2

series of top-down design steps repeated from the system level to the device-level, and bottom-up

layout generation and verification. By adopting a hierarchical top-down design methodology, it is

possible to perform system architectural exploration, obtaining a better overall system optimization at a

higher level before starting more detailed implementations at device level. Problems are found in the

early stages of the design flow, and as a result have a higher chance of first-time success, with fewer

or no overall time consuming redesign iterations [4]. The number of hierarchy levels depends on the

complexity of the system being handled, and the steps between any two hierarchical levels can be the

top-down electrical synthesis, with topology selection, circuit sizing at its lowest level, and design

verification. Then, there’s the bottom up physical synthesis, which includes layout generation and

detailed design verification after extraction.

Circuit

Level

Level i

Verification

Extraction

Verification

Topology

Selection

Specification

Translation

Layout

Generation

R
e

d
e

s
ig

n

Specification (level i+1) Layout (level i+1)

Specification (level i) Layout (level i)

System

Level

Device

Level

More

Abstract

More

Concrete

Backtracking

Redesign

Validation

Backtracking

Level i+1
...

...

Top-Down Electrical

Synthesis

Bottom-Up Physical

Synthesis

Validation

Redesign

Figure 1.2 – Top-down and bottom-up tasks of design flow [5]

Topology selection is the step of determining the most appropriate circuit topology in order to meet a

set of given specifications of the current hierarchy level. This topology can be either chosen from a set

of available topologies or be newly created. Specification translation is the step of mapping the high-

level specifications for the selected topology block under design into individual specifications for each

of the sub-blocks, at the lowest level the sub blocks are single devices, thus becoming circuit sizing.

Specifications translation is verified by means of simulations before proceeding down in the hierarchy.

Since no device-level sizing is available at higher levels, behavioral simulations are needed and

electrical simulations are used at the lowest design hierarchy level. The specifications for each of the

blocks are passed to the next level of the hierarchy and the process is repeated until the top-down flow

is completed. Some recent works based on Pareto Optimal Fronts (POF) have been very successful

exploring the tradeoff during synthesis [6], and have already been applied at system level sizing. To

aid in the task, designers resort to several CAD tools that became widely used throughout the years,

rendering the standard for IC design editing and evaluation. ADiT, Questa, Eldo [7]; HSPICE [8],

3

nanosim, HSim [9]; Spectre [10]; ngspice [11] and SMASH [12] are among the most used tools in the

latest years.

Layout generation consists of creating the geometrical layout of the block under design at the lowest

level in the design hierarchy, or place and route the layouts of the sub-blocks at higher levels. In the

presented design flow, it is important to notice the presence of a detailed verification step over the

extraction of the layout. In order to ascend to higher hierarchical levels is necessary that no potential

problems are detected at the lowest levels and the layout meet the target requirements. When the

topmost level verification is complete, the system is considered to be designed. Some of the most

used CAD tools available for layout edition are IC Station Layout [7], Galaxy Custom Designer LE [9]

and Virtuoso Layout Editor [10]. CALIBRE [7], Hercules [9] and DIVA, Assura [10] can be used for

Design Rule Checking (DRC) and layout extraction.

1.2 Analog IC Design Optimization

While design automation of analog IC has advanced greatly in the last couple of decades, it has not

improved as much as digital IC design. This issue comes from the analog design IC itself, which has a

significantly higher level of complexity, even for small problem sizes, and which lacks a sufficiently

comprehensive and exact descriptiveness with conventional approaches.

Analog circuit sizing automation is becoming more and more common, and is mostly achieved using

optimization techniques, which may or may not use a circuit simulator to aid in performance evaluation

of possible solutions during the optimization process. Some commercially available tools, such as

Cadence’s Virtuoso Custom Design Platform GXL [10], Synopsys Titan ADX [9], or MunEDA-GNO [13]

already have this optimization approach implemented. However, these tools focus on a single-

objective optimization, providing only one solution, thus giving the designer no other goal to maximize

or tradeoff with [14].

AIDASoft is an Analog IC Design automation framework, fully developed at Instituto de

telecomunicações’ Integrated Circuits Group. AIDA-C, is the frameworks’ circuit optimizer, where

circuit-level sizing optimization is performed, enhancing the robustness of solutions by considering

process and operating variations (i.e. PVT corners), and for circuit’s performance figures, they are

measured with electrical circuit simulators, like Spectre [10], eldo [7], or HSPICE. Once the

optimization process is complete, a Pareto Optimal Front is given, showing all the non-dominated

solutions, in which the designer can explore design tradeoffs and choose a specific design. An

overview of the AIDA can be seen in Figure 1.3, showing how the design process works.

1.3 Motivation

The quality of a design is generally determined by the degree to which compliance constraints have

been met and predefined optimization goals achieved. Due to the lack of identical expression and

interpretation of design constraints in the analog design flow context, most of the constraints in analog

designs are specified and considered manually by expert designers. Therefore, analog constraints are

implicitly based on a designer’s experience, rather than being explicitly defined, preventing their

4

systematic use in design automation and leading to an error prone flow. Progress in analog IC design

automation is needed due to increasing design sizes and aggravating challenges (e.g. required

robustness), as well as a widening verification gap [15].

Analog IC Design Automation

Circuit
Simulator

Analog
Module

Generator

AIDA-C
Circuit Sizing

AIDA-L
Layout

Generation

Design
Specs

Design Kit

Validation

Figure 1.3 - AIDA Architecture and Design Flow [14]

In the last decades, analog topology synthesis, nominal design optimization, and sizing with respect to

tolerances were in the focus of research interest. Certain approaches include equation-based

methods, where design equations are derives with the help of symbolic analysis and simulation-based

methods. Sizing tasks have a key potential for providing automation support to the designer,

particularly when considering mismatch and process and operating tolerances [16].

Specifying circuit design goals (e.g. gain or bandwidth of an amplifier) are often not enough to prevent

optimizers from meeting a mathematical solution while not reaching the IC design solution, and when

an IC design solution is found, it often has a high sensitivity to process and operating variations and to

noise [17]. Adding constraints on lower levels of the IC design process, e.g. transistor sizing and

placing, or enforcing certain transistor voltages to keep them in the desired operating region. These

constraints (or sizing rules) can be generated as equalities or inequalities, either for physical design

(e.g. transistor dimensions) or for electrical design (e.g. drain-source voltage), and both kinds of

constraints are desired, as they aid in not only reaching an IC design solution, but to optimize the

relation between design performance and process yield.

1.4 Goals

This work has as main objective the automatic generation of constraints to be implemented and

embedded in the AIDA-C optimizer. Since AIDA-C’s method is to search in a given search space,

more complex circuits generate many degrees of freedom, and finding a solution requires a lot of

processing time. By automatically adding constraints, the search space is reduced and solution finding

5

takes less time. The constraints generation module will be validated with typical analog building

blocks.

1.5 Document Structure

This document is organized as:

Chapter 2 presents state-of-the-art and the latest research in automatic constraint generation.

Chapter 3 presents a more detailed work of AIDA-C and plans for implementation of automatic

constraint generation.

Chapter 4 presents the Automated Constraint Generation Architecture, describing the pattern search,

symmetry search, and constraint generation.

Chapter 5 presents experimental results, using example circuits and showing the detected patterns,

symmetries, and generated constraints, and some optimization results.

Chapter 6 draws the conclusions and presents future work topics.

7

2 State-of-the-art

In the last 25 years, many techniques were approached by the scientific community for the automation

of the analog circuit sizing. In this chapter those approaches are briefly surveyed with further emphasis

on the methods used to define the design constraints, and a summary describing how current

knowledge will be applied in an optimization tool in order to achieve automation in the field of

constraint generation.

2.1 Analog IC Design Automation Tools

Generally speaking, analog circuit sizing automation techniques are classified in two main groups: the

knowledge-based approaches and the optimization based approaches [18]. This classification is based

on the fundamental techniques used to address the problem, as illustrated in Figure 2.1.

DESIGN SPECSDESIGN SPECS

DESIGN PLAN

EXECUTION

KERNEL

DESIGN PLAN

AUTHORING

Design Plan

D
E

S
IG

N
 P

L
A

N

L
IB

R
A

R
Y

Design

Parameters

OPTIMIZATION

KERNEL

E
V

A
L

U
A

T
IO

N

E
N

G
IN

E Spice Simulations

Equations

Model (SVM, NN)

Layout Inclusive

...

Circuit

Performances

Design

Parameters

SIZED CIRCUIT SIZED CIRCUIT

(a) (b)

Figure 2.1 - Automatic circuit sizing approaches [18]

(a) knowledge-based (b) optimization-based

Most early automation tools [19, 20, 21, 22] did not use optimization, and tried instead to systematize

the design by using a design plan that was originated from expert knowledge. These tools relied on

design equations used to build a plan and a design strategy that produces the component sizes that

meet the performance requirements. These knowledge-based approaches were applied with some

level of success, with short execution time being the main advantage of this knowledge-based

approach. However, deriving the design plan is both hard and time consuming, and once the design

plan is achieved, requires constant maintenance to keep up with the progress being made, and still

does not manage to achieve optimal results. The following generations of sizing tools apply

optimization techniques to analog IC sizing, which can be further classified into equation-based or

simulation-based, considering the method used to evaluate the circuit’s performance.

The equation-based methods use analytic design equations to create a relationship between the

circuit’s performance goals and the design variables. Different optimization techniques are used, both

deterministic and stochastic. Taking advantage of knowing the equations and their properties allows

8

the use of classical optimization methods. In OPASYN [23] the optimization is performed using

steepest descent, and similarly in STAIC [24] is used a successive solution refinements technique.

Maulik et. al. [25, 26] defined the sizing problem as a constrained nonlinear optimization problem using

spice models and DC operating point constraints, solving it through sequential quadratic programming.

Matsukawa et. al. [27] designed ΔΣ and pipeline analog to digital converters solving via convex

optimization the equations that relate the performance of the converter to the size of the components.

In GPCAD [28] a posynomial circuit model is optimized using Geometrical Programming (GP), the

execution time is in the order of few seconds, but the general application of posynomial models is

difficult and the time to derive the model for new circuits is still high. Kuo-Hsuan et. al. [29] revisited the

posynomial modeling recently, solving the accuracy issue by introducing an additional generation step,

where local optimization using simulated annealing (SA) and a circuit simulator is performed. The

same strategy is applied in FASY [30, 31], where analytical expressions are solved to generate an

initial solution and a simulation-based optimization is performed to further improve the solution.

Other equation based approaches do not limit the problem formulation in order to use a specific

optimization technique, relying on heuristic optimization instead. OPTIMAN [32] uses SA applied to

analytical models, and, in ASTRX/OBLX [33], a SA optimization is also performed using a cost function

defined by equations for dc operation point, and small signal Asymptotic Waveform Evaluation (AWE)-

based simulation, this evaluation technique is also used in DARWIN [34], which uses Genetic

Algorithms (GA) instead. Doboli et. al. [35] also applies genetic programming techniques to

simultaneously derive the sub-blocks specifications, sub-block topology selection and transistor sizing.

The equation-based methods’ main advantage is the short evaluation time, making them highly suited

to find first-cut designs as the knowledge-based approaches were. On the other hand, despite the

advances in symbolic analysis, equations are unable to accurately simulate the behavior of the design

characteristics, making the generalization of the method to different circuits very difficult. The

approximations introduced in the equations also yield lower accuracy designs as circuit complexity

increases, requiring additional work to ensure that the circuit meets the needed specifications.

2.2 Simulation-based automatic circuit sizing

Recent increases in access to processing power and memory capacity allowed simulation based

optimization to also develop, being the most common method found in recent approaches, since

simulation allows for better accuracy designs. In simulation-based sizing, as in the case of AIDA-C, a

circuit simulator, e.g., SPICE [36], is used to evaluate the circuit.

Early approaches to simulation based automatic sizing used local optimization around a “good”

solution, where SA [37] is the most common optimization technique used. SA mimics the annealing of

material under slow cooling to minimize the internal energy, as the name suggests. In

DELIGTH.SPICE [38] the optimization algorithm (phase I-II-III method of feasible directions) is used to

perform local design optimization around a user provided starting point. Kuo-Hsuan et. al. [29] and

FASY [31, 30] use equation-based techniques to derive an approximate solution, and then use

9

simulation within a SA kernel to optimize the design. Cheng et al. [39] also uses SA but considers the

transistor bias conditions to constrain the problem, and, instead of solving the circuit by finding

transistor sizes, the problem is solved by finding the bias of the transistors. FRIDGE [40] aims for

general applicability approach by using an annealing-like optimization without any restriction to the

starting point. Castro-Lopez et al. [41] use SA followed by a deterministic method for fine-tuning to

perform the optimization.

Swarm intelligence algorithms [42] can also be found in the literature applied to analog circuit sizing.

The fundament of swarm intelligence algorithms is to use many simple agents that lead an intelligent

global behavior, like the one observed in many insect hives. From these methods, the most common

are the ant colony optimization (ACO), which was successfully applied in [43, 44], and particle swarm

optimization (PSO) that can be found in [45, 46, 47].

Circuit sizing is in its essence a multi-objective multi constraint problem, and the designer often

explores the tradeoff between contradictory performance measures. For example, minimizing power

consumption while maximizing bandwidth, or maximizing gain and minimizing area of an amplifier. As

such, the usage of multi-objective optimization techniques is becoming increasingly common. When

considering multiple objectives the output is not one solution, but a set of optimal design tradeoff

solutions, usually referred as Pareto Optimal front (POF). Given the multiple elements already present

in both evolutionary and swarm intelligence algorithms, these are the natural candidates to implement

such approach. In GENOM-POF [48, 49] and MOJITO [50] the evolutionary multi-objective methods

are applied, respectively, to circuit sizing and both sizing and topology exploration, whereas in [47] the

particle swarm optimization is explored in both single and multi-objective approaches. A different

approach is taken by Pradhan and Vemuri in [51], where the multi-objective simulated annealing

(MOSA) is used.

From the study of analog circuit sizing and optimization approaches proposed by the scientific

community recently, it is clear that there is not a specific trend to consider a single best algorithm, but

many were experimented with. In the next section the summary of the surveyed approaches is

presented, and finally the objectives for this work are refined, namely the selection of the optimization

kernels to be initially included in the platform.

2.3 Automatic constraint generation applied to analog circuit sizing

The analog sizing tools approaches surveyed are summarized in Table 2-1. In the equation-based

systems the usage of classical optimization methods is possible. However, models’ accuracy and the

derivation of such equations strongly limits applicability. This limitation of the equation based systems

is overcome at the expense of evaluation time by using accurate circuit simulation to evaluate the

performance figures being optimized.

Although most experienced circuit designers have heuristic knowledge when manually creating

constraints for a determined circuit, some of the constraints might be overlooked, either because the

designer is not aware of the constraint, or the constraint is not considered to be of much relevance to

10

the end result, making circuit optimizers take longer optimization times to find the solution. An

automatic constraint generation would allow to a more complete constraint generation, making the

circuit solutions more robust as well as saving setup time and reducing optimization time.

This work will focus on the automatic generation of design constraints in the scope of AIDA-C. In

AIDA-C, the circuit sizing and optimization problem, which will be described in detail in chapter 3, is

modeled as a multi-objective multi-constraint optimization problem. In this context special relevance is

given to the constraints.

From a brief perusal of the tools available in the state of the art, it is noticed that despite the relevance

of constraints in the design of analog circuits, there are few approaches to automatically generate such

constraints. In the next sections the most relevant approaches are detailed, first the work by Massier et

al [16], that focuses on the generation of constrains for circuit sizing, then another work from the same

research group, that focuses on layout related constraints, namely placement [52].

Table 2-1 – Summary of analoc IC design automation tools for sizing and optimization

Tool\Author Design Plan/Optimization Method Evaluation Constraints Definition

IDAC [21] 1987 Design plan plus SA post-optimization Equations Manual

DELIGTH.SPICE [38] 1988 Feasible directions Optimization Simulator Manual

OPASYN [23] 1990 Steepest descent Equations Manual

OPTIMAN [32] 1990 SA Equations Manual

STAIC [24] 1992 2 step optimization Equations Manual

Maulik et al. [25, 26] 1993 B&B, and Seq. Quadratic Progr. Equations and BSIM models Manual

FRIDGE [40] 1994 SA Simulator Manual

DARWIN [34] 1995 GA small signal, analytical expressions. Manual

ISAID [19, 20] 1995 Qualitative reasoning + post optimization Equations and Qualitative reasoning Manual

FASY [31, 30] 1996 SA + Gradient Simulator Manual

ASTRX/OBLX [33] 1996 SA AWE Equations Manual

Koza [53] 1997 GA Simulator Manual

GPCAD [28] 1998 Geometric Programming Posynomial Manual

MAELSTROM [54] 1999 GA+SA Simulator Manual

ANACONDA [55] 2000 Stochastic pattern search Simulator Manual

Sripramong [56] 2002 GA Simulator Manual

Alpaydin [57] 2003 Evolutionary strategies + SA Fuzzy + NN trained with Simulator Manual

Shoou-Jin [58] 2006 GA Equations Manual

Barros [18, 59, 60] 2006 GA Simulator Manual

Castro-Lopez [41] 2008 SA + Powels method Simulator Manual

Santos-Tavares [61] 2008 GA Simulator Manual

MOJITO [50] 2009 NSGA-II Simulator Manual

Pradhan [51] 2009 Multi-Objective SA Layout aware MNA models Manual

Matsukawa [27] 2009 Convex Optimization Convex functions Manual

Cheng [39] 2009 SA Equations Manual

Hongying [62] 2010 GA with VDE Simulator Manual

Fakhfakh [47] 2010 Multi-objective PSO Equations Manual

Pehl [63] 2010 SQP and B&B Simulation Automatic

Kuo-Hsuan [29] 2011 Convex optimization; Stochastic Fine Tuning Posynomial Simulator Manual

Habal [64] 2011 Deterministic non-linear optimization Evaluation Automatic

Roca et al. [65] 2012 NSGA-II Simulator Manual

Genom-POF [49, 48] 2012 NSGA-II Simulator Manual

AIDA-GM [66, 67, 2] 2013 NSGA-II Simulator Manual

Liao et al. [68] 2013 Look-up Table Equations and Lookup Tables Automatic

Afacan et al. [69] 2014 MBHO, IMBHO Equations Manual

AIDA [14, 70, 71] 2014 NSGA-II Simulator Manual

11

2.4 Sizing Rules Method

Automatic sizing has seen slow progress due to often incomplete circuit specifications. Generally,

specifying only the circuit performance (e.g. dc gain, bandwidth of an operational amplifier) is not

enough for optimizers to reach a solution, and even if a solution is found (i.e. that works according to

the specifications), it tends to be very sensitive to process and operation variations and to noise [24].

Additional sizing rules for transistor geometry and voltages have to be considered (i.e. constraints), so

the circuit becomes increasingly robust. Research has been conducted when considering the

importance that constraints have in finding a solution in an IC design. However, for most works, in the

end responsibility falls on the designer when specifying constraints. An automated process that would

generate some sizing rules when the circuit is read would aid optimizers in finding a solution with little

to no effort required from the designer.

The Sizing Rules Method (SRM) approach is to find certain matching patterns, so that it can generate

sizing rules without any aid from the designer. This reduces setup time and effort, as well as

optimization times. Sizing rules can efficiently capture design knowledge on the technology-specific

level of transistor-pair groups. The Sizing Rules Method also helps in further general circuit sizing,

design centering, response surface modeling or analog placement, bysetting the foundations to further

create layout-oriented constraints.

2.4.1 Automatic Building Block recognition

In order to generate design constraints, some circuit patterns need to be recognized, so constraints

can be assigned to their respective transistors in their building blocks.

Much of the electrical circuit design process is composed of several sets of transistors (e.g., a current

mirror, an amplifier). This aids the designer in dividing a circuit design into multiple sub-circuit designs

(or building blocks), and thus breaking down design into multiple, lower complexity problems. This

method allows the designer to define transistor specifications based on its function in the building

block it is in. Some building blocks can also be merged to form a new, higher level building block (e.g.

a Simple Current Mirror and a Level Shifter can form a Cascode Current Mirror). This allows the

generation of additional constraints when considering the necessary relations between the different

building blocks. Thus, having a hierarchical system of building blocks, where each level is a

combination of multiple building blocks from lower levels, seems to be a good approach to the problem

at hand.

The main benefit from the hierarchically organized block building is that new building blocks can be

generated by merging existing ones. This simplifies the assignment of constraints by having the new

building block inherit the constraints from its’ forming blocks. In other words, when a new building

block is generated, only a few constraints are added. In a given circuit schematic, the block recognition

algorithm detects all building blocks that correspond to the respective elements in the library, starting

from simple building blocks on low levels, and going up the hierarchy into more complex blocks, in

higher levels. [16]

12

2.4.2 Recognition Algorithm

Set M starts initialized with all circuit elements contained in the netlist (level 0 modules), and two

relations R1 and R2 are initialized.

Whenever a new module is found, a new ordered pair will be added to both relations. The upper

submodule mλ(with index 1), and the new module mµ, are stored as an ordered pair in R1, while the

lower submodule mκ(index 2) is also stored as a pair with the new module, mµ, in R2. These relations

are used to handle recognition ambiguities. The algorithm scans through all the library elements above

L0, i.e. library elements that consist of more than a single transistor. This means that each element in

the hierarchical library is only checked once by the algorithm. Each element builds into the Cl(1), l(2)

relation. For each element in the library, all possible module pairs mκ and mλ are analyzed and

compared. If patterns of Cl(1), l(2) and Cκ,λ match, then (mκ,mλ) forms a new building block, as well as a

new module, mµ, with µ = |M| + 1, which is instantiated and added to set M. Although a new module is

created, its’ forming sub-modules remain in the set M, considering that a single module can belong to

multiple different building blocks. After a new module is instantiated, its pins are connected to the

appropriate nets of its submodules.

After fully analyzing the circuit all the modules have been created (i.e. set M is complete), sizing rules

will be assigned in a top-down order. Should a transistor or a certain building block not be assigned to

a hierarchical library element, it becomes uncertain, and no sizing rules are generated for them, except

that they must be in saturation. Instead, these modules are provided to the designer for further actions.

2.5 Hierarchical Placement Rules’ SSFG

SSFG (Structural Signal Flow Graph) representation combines structural and qualitative behavioral

information. Through SSFG, the problem size is reduced and its additional structural information

prevents the symmetry computation from exploring many infeasible solutions. [52]

2.5.1 Definition

A SSFG is a directed graph. Its nodes represent nets of the circuit and the edges indicate the ways

through which signal can propagate. An edge pointing from node ni to another node nj means that a

change in voltage and/or current in ni can cause a change in voltage and/or current in nj.

2.5.2 SSFG Generation

Each building block in the library has its corresponding sub-SSFG. Because the current library is

small, each sub-SSFG can be manually created.

After assigning a sub-SSFG to each building block of a circuit, a graph union operation merges all the

sub-SSFGs into the circuit’s SSFG, GS

13

 𝐺𝑆 = ⋃ 𝐺𝑆,𝑏

𝑏𝜖𝐵

(2.1)

 𝐺(𝑁, 𝐸) = ⋃ 𝐺𝑖(𝑁𝑖 , 𝐸𝑖)

𝑖

 ⇔ 𝑁 = ⋃ 𝑁𝑖 ∧ 𝐸 = ⋃ 𝐸𝑖

𝑖𝑖

 (2.2)

For the follow-up symmetry assignment, each edge is given three attributes: the type of building block

which originated the edge, along with the names of the two associated pins. For example, a NMOS

simple current mirror (n-scm) from pin pa to pb gets the attributes (n-scm, a, b).The graph is setup so

that there are no parallel edges with equal attributes.

2.5.3 Hierarchical Symmetry Assignment

The symmetry assignment algorithm generates pairs of symmetric nodes and edges from the SSFG

according to the following definitions. Two nodes, ni and nj are symmetric if they are differential inputs

or outputs, or if symmetric edges (ei, ej) start or end at ni, nj. Two edges, ei and ej, are symmetric if

they start and end at two symmetric nodes (ni, nj) and have identical attributes. It is also important to

note self-symmetric edges, which connect two symmetric nodes, confirming the symmetry path

possibility that was being checked.

Ambiguities often arise, and this is due to different symmetric edge pairs being formed if said edges

have equal attributes and begin at the same node. These ambiguities can be resolved through a

backtracking approach, which starts by considering one symmetry assignment to be correct. The

search is then continued as normally, and if it remains valid, then it is part of the solution. If not, the

search is repeated with a different assignment, starting from the latest ambiguity. A solution may be

verified through two processes: In one hand, the search ends at two nodes connected by a self-

symmetric edge, or at two nodes without any successors (including when they are differential outputs).

On the other hand, any edge starting at ni must be symmetric to another edge starting at a symmetric

pair node, nj, and vice versa.

Symmetrical Building blocks are then generated from the symmetry assignments made to the edges

and nodes the SSFG. Two building blocks are determined symmetrical if they belong to the same type

and have symmetrical edges. A building block can also be self-symmetrical if its edges are

symmetrical and/or self-symmetrical.

Finalizing the top-down symmetry attribution, devices themselves are determined symmetrical through

symmetry conditions from building blocks. When two building blocks are symmetrical, it means that

their corresponding devices must also be symmetrical between each other. When a building block is

self-symmetrical, the device symmetry is previously specified for each building block type. In the end,

a set S is formed, with all the symmetric elements of the circuit

14

2.5.4 MARS Enhanced Structural Signal Flow Graph

The ESFG (Enhanced Structural Signal Flow Graph), as the name indicates, is an improvement of the

SSFG. It complements the SSFG by including the handling of input and output terminals, as well as

passive, one-port devices [72]. It can be defined as

 𝐺𝐸 = (𝑁𝐺𝐸
, 𝐸𝐺𝐸

, 𝜑𝐺𝐸
, 𝛼𝐺𝐸

, 𝛽𝐺𝐸
) (2.3)

where

 𝑁𝐺𝐸
 is a set of nodes containing all nets N, and terminals, T of the circuit

 𝑁𝐺𝐸
⊆ 𝑁 ∪ 𝑇 (2.4)

 𝐸𝐺𝐸
 is the set of edges, which similarly to the SSFG, represent ways of signal propagation.

 𝛼𝐺𝐸
 is a set of attributes which characterize its corresponding edge. This kind of information

was already implemented in the original SSFG concept, but it had not been formally

characterized. For example, a NMOS simple current mirror (n-scm) from pin pa to pb is

represented by edge e1, with 𝛼(𝑒1) = (𝑛 − 𝑠𝑐𝑚, 𝑝𝑎 , 𝑝𝑏).

 𝛽𝐺𝐸
 is the set of devices that physically implementing each edge e. For example, if e1 is an

edge representing a scm (simple current mirror) with transistors M1 and M2, then

𝛽(𝑒1) = {𝑀1, 𝑀2}.

Unlike SSFG, the ESFG of a circuit may have two equal edges, i.e. they make the same connection

between two nodes, have equal attributes, and represent the same physical devices.

2.5.5 ESFG Generation

The generation of an ESFG is simple once the SSFG generation algorithm has been implemented.

First, additional sub-graphs are created to model single-port, passive devices (which were not included

in the SSFG method). Then, the set of all subgraphs is generated, similarly to the SSFG method. Then

the node set of the ESFG is formed by all nodes that are the the starting or ending of edges.

2.6 Conclusions

In this chapter a survey of techniques and approaches to the automation of analog circuit sizing were

presented. The different approaches were classified in terms of the techniques used and the most

significant aspect observed was the setup and the execution time, as well as the accuracy in the

evaluation of the solutions. In this survey were presented several ADA tools and analyzed to better

understand the advantages, and, drawbacks that can be improved in the future. It was also possible to

identify that a wide range of optimization techniques are considered in the field and new ones are

always being introduced.

Although automatic constraint generation is not yet diversified, existing works have contributed

significantly to automatic generation of crucial sizing rules in terms of optimization times, and is a very

reasonable starting point to implement in AIDA-C.

15

In this work, Automatic Generation of Analog IC Design Constraints enhances AIDA-C by reducing

degrees of freedom when optimizing a circuit. The building block hierarchy is still relatively small, so

some future work might consist of adding more building block elements to the hierarchical library, if

further patterns are considered to be necessary.

17

3 AIDA Overview

The work developed targets the automation of the constraint definition for analog IC circuit design, and

is to be implemented in the AIDA framework, illustrated in Figure 3.1. This chapter starts with an

overview of AIDA. A detailed analysis of the tools’ setup with special emphasis to the constraint

definition is the presented, from the study of the tool’s setup the contributions to be made in this work

are revisited.

3.1 AIDA-C Architecture

AIDA is an analog IC design automation framework with two branches: AIDA-C and AIDA-L. AIDA-C,

featured in Figure 3.1, targets optimization of device sizing through state-of-the art and innovative

techniques. It is based in state-of-the-art multi-objective, multi-constraint optimization techniques and

targets highly robust designs by considering PVT corner simulations. AIDA-L takes as inputs the

device sizes that AIDA-C provides as well as the best floorplan templates, and generates a layout by

placing and routing the devices using internal Design-Rule Check (DRC) and Layout-Vs-Schematic

(LVS) methods, finishing the circuit design process.

Circuit-Level Synthesis
AIDA-C

Typical

Corner

NSGA-II
KERNEL

Floorplanner

Netlist

Layout Template

Input

Circuit
Simulator

Analog
Module

Generator

AIDA-L
Layout

Generator

Technology
Design Kit

CALIBRE

Validation

Figure 3.1 – AIDA-C Overview

Figure 3.2 details AIDA-C composed by two main modules: the Setup & Monitoring module, and the

Optimizer module. The Setup & Monitoring module assists the designer through the design process

and aid in using the circuit optimizer. The Optimizer solves the circuit through multi-objective

techniques, where the circuit’s performance is measured through industrial circuit simulators for

electrical measures, as well as through AIDA-L, for layout-related characteristics. In the scope of this

work the Setup Assistant will be analysed with special focus.

The Setup Assistant helps the setup by generating some statements and drafts automatically. For

example, for the active devices some default measures and the correspondent constraint statements

for overdrives and saturation margin (delta) are generated automatically with the purpose of having all

transistors working in the saturation region. The measures for the currents in all circuit nodes are also

generated by AIDA-C. In addition, a draft for the layout guides is generated from the netlist directly.

Using these aids, the setup productivity is somewhat enhanced, but the level of setup automation is

limited.

18

Analog IC Design Automation –
Circuit Level Synthesis

Netlist

Layout Guides

Specifications

Design

Circuit
Simulator

Technology
Design Kit

Setup and Monitoring

Optimizer

Setup
Assistant

Variables
Constraints
Measures

Graphical User Interface

Ranges, Objectives,
Constraints

Optimization
Kernel AIDA-L

Layout
Generation

AIDA
Analog
Module

Generator
Sampling

Gradient
Model

Evaluation

Pareto
Optimized

Front
Circuits

Figure 3.2– AIDA-C Architecture

3.1.1 AIDA Setup

In this section, it is explained how to setup all the necessary elements to use AIDA-C. The setup of a

design in AIDA-C is mostly made at file level. The inputs from the designer are the circuit and test-

bench(es) in the form of spice-like netlist(s). The netlist(s) must have the optimization variables as

parameters, and must include means to measure the circuit’s performance. Corner’s parameter

variations are also included in the netlist. In addition, the designer defines ranges for the optimization

variables, design constraints, and optimization objectives. If a layout-aware circuit sizing optimization

is intended, the AIDA-L’s layout guides must also be provided.

Adding a circuit to AIDA-C is a two-step operation. First, the circuit netlist needs to be properly

parameterized, and then, using AIDA-C’s setup assistant to accelerate the process, AIDA-C design

structure, as shown in Figure 3.1, needs to be created. The project is organized by a set of files, with

“design.xml” as the main description file. XML is a markup language that defines a set of rules for

encoding documents in a format that is both human- and machine-readable. The image is optional,

and is used to show the circuit schematic to ease the identification of the devices and parameters

when using the tool (commonly a screenshot of the schematic). The folder “layout” contains multiple

layout guide files and the folder “tech_netlist” contains the circuit and testbenches.

19

design.xml

img.png

<tech_netlist>

circuit.cir

testbench_1.cir

testbench_1.corners.cir

testbench_2.cir

testbench_2.corners.cir

<layout>

floorplan_1.xml

floorplan_2.xml

partition_A.xml

<design root folder>

Figure 3.3 - AIDA-C design structure.

Starting from the circuit netlist, designed by hand or exported from a schematic editor, the design

variables are defined. This is done by taking into consideration what are the values the optimizer may

change (usually the sizes of the devices). In this stage, matching of devices can be enforced. The

design variables are defined as parameters and are used in the netlist appropriately. Figure 3.4 shows

the parameterized netlist used for the Miller amplifier example.

*** Cell name: opamp_a

.SUBCKT OPAMP_A DD IN IP OUT REF SS

 XCO0 OUT D12 SS momcaps_sy_mm l=_lc nf='_nfc'

 MP8 REF REF DD DD P_12_HSL130E w=_wb l=_lb m= 2

 MP5 NETZ52 REF DD DD P_12_HSL130E w=_wb l=_lb m=_mbp

 MP6 OUT REF DD DD P_12_HSL130E w=_wb l=_lb m=_mb2

 MP1 D11 IN NETZ52 DD P_12_HSL130E w=_wp l=_lp m=_mp

 MP2 D12 IP NETZ52 DD P_12_HSL130E w=_wp l=_lp m=_mp

 MN3 D11 D11 SS SS N_12_HSL130E w=_wal l=_lal m=_mal

 MN4 D12 D11 SS SS N_12_HSL130E w=_wal l=_lal m=_mal

 MN7 OUT D12 SS SS N_12_HSL130E w=_w2g l=_l2g m=_m2g

.ENDS*** End of subcircuit definition.

M8

VinN VinP
Vout

Iref

M5 M6

M1 M2

M3 M4 M7

(a) Parameterized netlist (circuit.cir) (b) Schematic
Figure 3.4 - Single-ended two-stage Miller amplifier.

From the parameterized netlist, the setup assistant automatically generates structural measures

(overdrives, deltas and active area) for all transistors. In addition, DC current measures for all device

terminals, which are needed for AIDA-L’s router, are also generated. These measures, shown in

Figure 3.5, are not mandatory, and are up to the designer to be included or not in the relevant

testbenches.

*********** Transistor Bias Measures ***************

** OVERDRIVES **

**

.MEASURE DCAC vov_m20 = param('ABS(VGS(X1.mp20)-lv9(X1.mp20))')

.MEASURE DCAC vov_m14 = param('ABS(VGS(X1.mp14)-lv9(X1.mp14))')

<. . .>

** MARGINS **

.MEASURE AC delta_m20 = param('ABS(VDS(X1.mp20)-VDSAT(X1.mp20))')

.MEASURE AC delta_m14 = param('ABS(VDS(X1.mp14)-VDSAT(X1.mp14))')

<. . .>

** Device Active Area **

.MEASURE DCAC aa_mp20 = param('_wb*_lb*')

.MEASURE DCAC aa_mp14 = param('_wb*_lb*_mbp')

<. . .>

** IDC currents for EM-aware router **

.EXTRACT DCAC label=IDC_MP20_drain I(X1.MP20.1)

.EXTRACT DCAC label=IDC_MP20_gate I(X1.MP20.2)

.EXTRACT DCAC label=IDC_MP20_source I(X1.MP20.3)

.EXTRACT DCAC label=IDC_MP20_bulk I(X1.MP20.4)

<. . .>

Figure 3.5 - DC measures for ELDO™ AC testbench

20

At this point, the netlist for the circuit and its testbenches are completed. The next step is to create the

“design.xml” file where the circuit setup is described. Again, the “setup assistant” is used to accelerate

the setup by generating a draft of the “design.xml” from the data in the netlist and some technology-

dependent default values (overdrives, ranges, etc.) that are stored in AIDA’s design kit. The circuit

netlist is parsed and the variables are detected, as well as the devices. With this data, the setup

assistant generates a partially filled design.xml, where the designer is responsible for adding the

missing data fields. The complete setup for the Miller amplifier is shown in Figure 3.6.

 1: <?xml version="1.0" encoding="ISO-8859-1"?>

 2: <!DOCTYPE Design SYSTEM "design-1.0.dtd">

 3: <Design name="OPAMP_A">

 4: <Circuit netlist="2stage.cir" techNode="UMC_013">

 5: <Layout template="t1a.xml"/>

 ...

16: <Layout template="t3d.xml"/>

17:

18: <Var id="_lc" range="4.4e-6:1e-7:1.0e-4"/>

19: <Var id="_nfc" range="14:2:198"/>

20: <Var id="_wb _wp _wal _w2g" range="1.00e-6:1e-7:10e-6"/>

21: <Var id="_lb _lp _lal _l2g" range="0.12e-6:5e-8:10e-6"/>

22: <Var id="_mbp _mb2 _mp _mal _m2g" range="1:2:1000"/>

23: </Circuit>

24: <TestbenchSetup simulator="eldo" inputMethod="LAM">

25: <TestCase name="wp_avdd_max_dvdd_max_temp_min_1_vcm_max"/>

26: <TestCase name="ws_avdd_min_dvdd_min_temp_max_8_vcm_max"/>

27: <TestCase name="wp_avdd_max_dvdd_max_temp_min_1_vcm_min"/>

28: <TestCase name="ws_avdd_min_dvdd_min_temp_max_8_vcm_min"/>

29:

30: <NominalTb netlist=" ac_testbench.cir.eldo">

31: <Meas name="idd" description="I VDD [A]"/>

32: <Meas name="gdc" description="Gain DC [Hz]"/>

33: <Meas name="gbw" description="Unity Gain Frequency [Hz]"/>

34: <Meas name="pm" description="Phase margin [degrees]"/>

35: <Meas name="psrr" description="Power Supply Rejection Ratio [Hz]"/>

36: <Meas name="sr" description="Slew Rate [V/s]"/>

37: <Meas name="voff" description="Structural Offset [V]"/>

38: <Meas name="no" description="Noise [V]"/>

39: <Meas name="sn" description="Noise Density [V/sqrt(Hz)]"/>

40: <Meas name="device_area" description="Area from net list [m2]"/>

41: <Meas id="vov_mp20 vov_mp14 vov_mp22 vov_mp11 vov_mp12 vov_mp9 ..." desc="Overdrive [V]"/>

42: <Meas id="delta_mp20 delta_mp14 delta_mp22 delta_mp11 delta_mp12 ..." desc="Delta [V]"/>

43: </NominalTb>

44: <WorstCaseTb netlist=" ac_testbench.cir.eldo.corners">

45: <Meas importFrom="ac_testbench.cir.eldo"/>

46: </WorstCaseTb>

47: </TestbenchSetup>

48: <Constraint op="GE" value="0.10" meas="vov_mp20 vov_mp14 vov_mp22 vov_mp11 vov_mp12 vov_mp9 ..."/>

49: <Constraint op="GE" value="0.10" meas=" delta_mp20 delta_mp14 delta_mp22 delta_mp11 ..." />

50: </Design>

Figure 3.6 – Completed circuit setup

When layout effects are to be considered, layout guides must be provided. The AIDA-L’s layout

guides, which are also described in XML, describe the floorplan and are parameterized to include the

design variables. The floorplan is defined using simple rectangular constructs that capture the

proximity and topological relations that the designer wishes to impose. The information used for

placement is the type and relative placement of the cells, and also, the symmetry, matching and

combine requirements. The high level floorplan of each cell is described by a box shape. The size of

this box has no meaning, only the relative position between cells (boxes) is of concern. The topological

constraints that are enforced by the tool are inferred from the boxes’ placement directly.

Symmetry is specified locally in each floorplan (or sub-floorplan) by two properties: ‘symGroupId’ that

identifies a group of cells that share the same symmetry axe; and ‘symCellId’ that identifies a pair of

the cells that are to be placed symmetrically in relation to the symmetry axe. By default, cells are self-

symmetric and do not share their symmetry axis. Matching is enforced in the device parameterization,

21

where the devices that the designer deemed to be matched share some or all parameters (in both

layout guides and netlist). Finally, combine operations can be used to replace a group of basic cells

with more complex layout structures, e.g., merged structures or interdigitated/common-centroid layout

styles.

In Figure 3.7 (a) part of the XML description of the hierarchically defined layout guides, and in (b) the

corresponding graphical representation is shown. The devices in blue are defined hierarchically in the

sub-template for partition P1A. The expected location of the power supply nets, VSS and VDD, are

illustrated in the image running on top and bottom of the layout, respectively, although there is no

explicit definition in the template.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE Template SYSTEM "template4.dtd">

<Template name="T1a">

 <CellList>

 <Cell name="P1" symGroupId="1">

 <Box x="-1250" y="1000" w="2500" h="1500" />

 <TemplateCellView file="p1a.xml" />

<!-- including part of p1a.xml’s CellList element inline-->

 <Cell name="MN9" symGroupId="2" symCellId="3">

 <Box x="-750" y="2000" w="1000" h="500" />

 <MOSFET type="N" width="wal*nfal" length="lal" nf="nfal" nrows="nral" />

 </Cell>

 <Cell name="MN10" symGroupId="2" symCellId="3">

 <Box x="750" y="2000" w="1000" h="500" />

 <MOSFET type="N" width="wal*nfal" length="lal" nf="nfal" nrows="nral" />

 </Cell>

 <Combine id0="MN9" id1="MN10" />

 <Cell name="MP11" symGroupId="2" symCellId="1">

 <Box x="-750" y="1000" w="1000" h="500" />

 <MOSFET type="P" width="wp*nfp" length="lp" nf="nfp" nrows="nrp" />

 </Cell>

 <Cell name="MP12" symGroupId="2" symCellId="1">

 <Box x="750" y="1000" w="1000" h="500" />

 <MOSFET type="P" width="wp*nfp" length="lp" nf="nfp" nrows="nrp" />

 </Cell>

 <Combine id0="MP11" id1="MP12" />

<!-- inline part of p1a.xml’s CellList element end -->

 </Cell>

 <Cell name="MP14" symGroupId="1" rotate="MX">

 <Box x="-300" y="0000" w="600" h="500" />

 <MOSFET type="P" width="wb*nfb" length="lb" nf="nfb" nrows="nrb"/>

 </Cell>

 ...

 </CellList>

</ Template>

 (a)

VDD

VSS

MN21

XC1

MP22MP20MP14

P1A
CC: MN9-MN10

CC: MP11 – MP12

(b)

Figure 3.7- Single ended two-stage amplifier layout guides

(a) Part of the XML description of the layout guides (floorplan.xml), showing the constructs and
illustrating the hierarchy, with part of the sub-floorplan file for partition P1A shown inline;

(b) Graphical representation of a template showing the relative location of the devices.

3.2 Efficient Setup with Automatic Constraint Extraction

After reviewing how the setup is done in AIDA, this work’s contribution becomes clear and can be

defined with more detail.

 Starting from the netlist shown in Figure 3.4 (a), where all the matching is done manually,

using pattern identification techniques can make matching between devices possible to

automatize.

22

 The measures for each device are generated but are not included automatically in the netlist

because there is no processing of the circuit other than identifying individual devices. Due to

the same reason only device related constraints (overdrive and saturation margin) are

automatically considered. With the blocks properly identified, all measures and constraints that

are needed can be introduced automatically.

 In terms of the desing.xml, the setup assistant generated only a very simplified version. Using

more knowledge will permit the automatic generation of a more complete setup file, leading to

considerable savings in terms of setup in addition to preventing potential configuration errors.

 The layout guides are mostly manual, and further automation of the template generation is

possible using circuit recognition and rule extraction to define symmetry, grouping and

hierarchical partitioning.

3.3 Conclusions

In this chapter AIDA’s architecture was reviewed, with special emphasis on constraint definition and

circuit sizing. Considering PVT corners analysis and the usage of industrial circuit simulators allows

AIDA to find a set of optimal multi-objective sizing solutions denominated Pareto Optimal Front (POF).

The resulting sizing solutions represent a trade-off between the two optimized variables, where no

solution is strictly better than another. Constraints are determined during optimization setup, so that to

aid in the optimization process by restricting the search space, and reducing optimization time, as well

as finding more robust solutions. Once the optimization project is finished, one sizing solution can then

be sent to AIDA-L for layout generation.

23

4 Automated Constraints Generation Module

In this chapter, the Constraint Generation Module will be thoroughly explained. A brief overview will

explain the general working method of the module, and then each stage is analysed with further detail.

Then a running example will be presented, using a simple OpAmp, and explaining with detailhow each

stage will work with the given circuit.

4.1 Overview

Figure 4.1 illustrates how the Automated Constraints Generation works. The module receives as input

a non-sized circuit netlist, and according to the provided technology specific variables and the library of

patterns and their respective constraints and subgraphs, generates outputs according to the desired

constraints, in the form of a parameterized netlist, electrical constraints, and their respective measure

commands.

Technology specific

variables file

MP1 source
MP2 source

.

.

.

Netlist parsing and
transistor detection

Pattern
detection

Sizing and pattern-specific
constraints assignment

Circuit graph generation
Symmetry
detection

Symmetry-related
constraints assignment

Automated Constraint Generation
Classes with Building block

patterns and respective

constraints and matchings

Configuration
Constraints
SubGraph

...

Non-sized circuit netlist

MP1 ... L=L1 W=W1
MP2 ... L=L2 W=W1

.

.

.

Sized netlist

Vds(MP1)-Vds(MP2) <= 5mV
.
.
.

Constraints

Meas(Vds(MP1)-Vds(MP2))
.
.
.

Measures

Figure 4.1 – Automated Constraint Generation Architecture

24

4.2 Reading the netlist

The netlist format for transistors is as follows:

Mx Drain Gate Source Bulk Model W=MW L=ML M=MM

The transistors are stored in a data structure with several variables as shown in Figure 4.2. Most of the

variables used in the structure are Strings, either to store the transistor name and model (Name,

Model), the node names connected to the transistor’s ports (Drain, Gate, Source, Bulk), or the sizing

variables (Width, Length, Fingers). Integers are used to assign symmetry and proximity groups to the

transistor (SPIG, SGID, GID), as these only utilize numbers. A state variable is also used to determine

if the transistor should be working in the saturation or in the linear region (State).

Transistor Data Structure

State State Linear Saturation

String Model mod

String Width W_MN21

String Length L_MN21

String Fingers M_MN21

String MN21

String Drain IRef

String Gate IRef

String Source VDD

String Bulk VDD

Name

Int SPID 1

Int GID 1

Int SGID 1

Figure 4.2 – Transistor Data Structure with field examples

Two lists of transistors are created, one list for p-type transistors and the other for n-type transistors,

as shown in Figure 4.3. Determining the type of transistor is made by checking the second character of

the name, as it is always either P or N. Any line that is not commented nor is a valid transistor is stored

in a list of strings to be placed in the output netlist.

N type
list

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

P type
list

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

25

Figure 4.3 – Transistor lists according to type

Although the original netlist might be parameterized, the module ignores the transistors dimensions,

and only reads the transistor’s name, model, and port nodes. All information after that is discarded.

Once the transistor is read, the w, l, and m variables are assigned according to the name. (e.g. MN6

will have W=W_MN6, L=L_MN6, M=M_MN6).

4.3 Pattern configuration, constraints, and subgraphs

Patterns are implemented in files that contain all the information needed to characterize the intended

building blocks. These are categorized in two levels, 1 and 2. Level 0 contains the single transistors,

which are not patterns.

4.3.1 Level 0

Level 0 building blocks are the individual transistor, required mostly to apply saturation or linear region

constraints. Even though these are the simplest building blocks, they are also very common and are

where most of the constraints are generated. Should a transistor not be matched into a building block,

it is set as being in saturation by default.

4.3.1.1 Transistor

Transistor-assigned constraints come mainly from the state they are in (saturation/linear). The state is

assigned by the building block the transistor is in. If the transistor is not found to be in any building

block then it is considered to be in saturation by default. The constraints generated to transistors in

saturation are as follows:

 𝑣𝑑𝑠 − (𝑣𝑔𝑠 − 𝑉𝑡ℎ) ≥ 𝑉𝑆𝐴𝑇𝑚𝑖𝑛
 (4.1)

 𝑣𝑑𝑠 ≥ 0 (4.2)

 𝑣𝑔𝑠 − 𝑉𝑡ℎ ≥ 0 (4.3)

 𝑤 × 𝑙 ≥ 𝐴𝑚𝑖𝑛𝑆𝐴𝑇
 (4.4)

 𝑤 ≥ 𝑤𝑚𝑖𝑛𝑆𝐴𝑇
 (4.5)

 𝑙 ≥ 𝐿𝑚𝑖𝑛𝑆𝐴𝑇
 (4.6)

The constraints generated for transistors that are working in the linear region generate the following

constraints:

 (𝑣𝑔𝑠 − 𝑉𝑡ℎ) − 𝑣𝑑𝑠 ≥ 𝑉𝑙𝑖𝑛𝑚𝑖𝑛
 (4.7)

 𝑣𝑑𝑠 ≥ 0 (4.8)

 𝑣𝑔𝑠 − 𝑉𝑡ℎ ≥ 0 (4.9)

26

4.3.2 Level 1

Level 1 patterns consist of two transistors that are connected according to a given configuration.

These configurations often imply some constraints to aid in transistor matching and improve circuit

performance, as well as aiding in a simpler way to represent circuits. Although some patterns do not

have any constraints associated, they are used to help detecting higher level patterns.

Level 1 Pattern structure

MN21A

Transistor MN22B

String SCM1Name

Transistor

Figure 4.4 – Level 1 Building Block Data Structure with field examples

Figure 4.5 – Level 1 Patterns and Subgraphs

4.3.2.1 Simple Current Mirror

The Simple Current Mirror is the basic building block of current mirrors, providing a constant current

equal to a reference current multiplied by a desired ratio, 𝑅. The pattern’s configuration consists of two

transisors with a connection between their sources and another connection between their gates and

one of the drains. Constraints will set the transistors to match so that there is enough precision in the

output current, and the widths are also matched, leaving the currents’ ratio to be set by the number of

fingers. Both transistors are set as saturated.

 𝑙1 = 𝑙2 (4.10)

 𝑤1 = 𝑤2 (4.11)

 𝑚2 = 𝑚1 × 𝑅1_2 (4.12)

 𝑣𝑔𝑠1,2
− 𝑉𝑡ℎ1,2

≥ 𝑉𝑔𝑠𝑚𝑖𝑛
 (4.13)

(a) Simple Current Mirror

(b) – Differential Pair

(c) Level Shifter

(d) Cross-coupled Pair

(e) – Voltage

Reference I

(f) Voltage

Reference II

(g) Current Mirror

Load

(h) Cascode Pair

27

The SRM [16] method included a small difference between the Drain-Source voltages of the

transistors. The optimizer was not finding good circuit solutions with this constraint, mainly because

this forces a voltage at the current source node, which is not intended. The intention of the Simple

Current Mirror is to establish a current. This constraint would essentially create a voltage source,

rather than a current source.

The subgraph associated with this pattern consists of a single edge pointing from the driver’s drain to

the driven’s drain.

4.3.2.2 Level Shifter

The Level Shifter has a similar configuration as the Simple Current Mirror, with the difference that the

sources are not connected. This means that the configuration of a Level Shifter consists of a single

connection between the transistors gates as well as one of the transistor’s drain. Constraints are also

similar.

 𝑙1 = 𝑙2 (4.14)

 𝑤1 = 𝑤2 (4.15)

 𝑚2 = 𝑚1 × 𝑅1_2 (4.16)

 𝑣𝑔𝑠1,2
− 𝑉𝑡ℎ1,2

≥ 𝑉𝑔𝑠𝑚𝑖𝑛
 (4.17)

Unlike the Simple Current Mirror, the Level Shifter is not expected to be connected to vdd or vss, so

the sub-graph is more elaborate. Although HPR [52] has a much more complex sub-graph, which was

not adopted. Although the signal flow is of that complexity, this sub-graph should be enough to find

circuit symmetries.

4.3.2.3 Voltage Reference I

The Voltage Reference I pattern does not generate any constraint or subgraph, and its only utility is to

assist in determining level 2 building blocks. The configuration consists of two transistors with the drain

of one (1) connected to the source of the other (2), as well as a connection between their gates and

the remaining drain (2).

4.3.2.4 Voltage Reference II

The Voltage Reference II pattern also does not generate any constraint or subgraph, and its only utility

is to assist in determining level 2 building blocks. The configuration consists of two transistors with the

drain of one (1) connected to the source of the other (2), as well as a connection between one gate (1)

and the remaining drain (2).

4.3.2.5 Current Mirror Load

The Current Mirror Load does not generate any constraint or subgraph, also only having the utility of

generating level 2 building blocks. The configuration consists of two transistors with a connection

between one drain and one source and another connection between their gates.

28

4.3.2.6 Cascode Pair

The Cascode Pair is one of the most generic patterns, and is the last one on the list of no-constraints

patterns. The configuration consists of a single connection between a drain and a source.

4.3.2.7 Differential Pair

The Differential Pair is the building block in circuits that reads a small differential input that is amplified

into a larger voltage differential output. To ensure that both the positive and negative parts of the

voltage, the building block should be symmetric, i.e. both transistors need to have the same

dimensions. Because this pattern is very generic, false detections are possible, but because this

pattern requires the sources to be connected to a current source, a verification of such connection is

made once all the building blocks are detected, easing the determination process of false detections.

The configuration consists of a single connection between the transistors’ sources. Constraints for this

pattern ensure that both transistors are working in similar conditions (same dimensions and same

working state) so that a symmetric behavior is achieved:

 𝑙1 = 𝑙2 (4.18)

 𝑤1 = 𝑤2 (4..19)

 |𝑣𝑑𝑠2
− 𝑣𝑑𝑠1

| ≤ ∆𝑉𝑑𝑠max(𝑑𝑝)
 (4.20)

 |𝑣𝑔𝑠2
− 𝑣𝑔𝑠1

| ≤ ∆𝑉𝑔𝑠𝑚𝑎𝑥
 (4.21)

The sub-graph of this pattern consists of two edges for each transistor, one from the gate to the drain,

and another from the source to the gate.

4.3.2.8 Cross-coupled Pair

The Cross-coupled Pair works as a Differential Pair where one input is connected to the opposite side

output. This creates an oscillating voltage at the outputs, as this is used mainly in voltage-controlled

oscillators. The configuration consists of a connection between two sources, and two symmetric

connections between one transistor’s gate and the other transistor’s drain. This pattern only generates

transistor sizing constraints, and no electrical constraints other than setting both transistors as

saturated.

 𝑙1 = 𝑙2 (4.22)

 𝑤1 = 𝑤2 (4.23)

The Cross-coupled Pair has a subgraph consisting of one edge from each transistor’s source to it’s

own drain.

29

4.3.3 Level 2.

Level 2 Pattern structure

SCM1A

Level 1 BB LS1B

String CCM1Name

Level 1 BB

Transistor MN22C

Figure 4.6 - Level 2 Building Block Data Structure with field examples

The level 2 patterns consist of current mirrors constructed by three or four transistors. This approach

requires level 1 building blocks to generate level 2 building blocks, and creates further constraints. All

the level 2 building blocks have the same subgraph, and only the first will be displayed. All the others

will not be displayed, as the subgraphs are similar.

(a) Wilson Current Mirror

(b) Cascode Current Mirror

(c) 4-Transistor Current Mirror

(d) Improved Wilson Current Mirror

(e) Wide Swing Cascode Current Mirror

Figure 4.7 – Level 2 patterns and subgraphs

4.3.3.1 Wilson Current Mirror

The Wilson Current Mirror is the only level 2 pattern consisting of three transistors, working as a

regular Simple Current Mirror with an additional transistor connected to the driver transistor. However,

the driven and driver transistor roles are reversed. The Wilson Current Mirror consists of a Simple

Current Mirror and a single transistor, where the single transistor’s source is connected to the SCM’s

driver’s drain, and the single transistor’s gate is connected to the SCM’s driven’s drain. This pattern

does not generate any constraint additional to the Simple Current Mirror, with the exception that the

single transistor is set as saturated.

30

This pattern’s subgraph consists of an edge from the single transistor’s drain to the source, and from

the single transistor’s drain to the gate.

4.3.3.2 Cascode Current Mirror

The Cascode Current Mirror is the standard current mirror composed of four transistors. The pattern

consists of a Simple Current Mirror and a Level Shifter. The configuration estabilishes a connection

between the SCM’s driver transitor drain and the LS’s driver transistor source, and a similar

connection between both driven transistors. The constraints generated consist of similar Drain-Source

voltages on the SCM transistors, so the Level Shifter’s transistors are working at similar voltage points.

 |𝑣𝑑𝑠2
− 𝑣𝑑𝑠1

|
(𝑐𝑚)

≤ ∆𝑉𝑑𝑠max(𝑐𝑚)
 (4.24)

The subgraph consists of two edges from the drain to the source of each Level Shifter transistor, as

well as another edge from the Level Shifter’s driver transistor drain to the driven transistor drain.

4.3.3.3 4-Transistor Current Mirror

The 4-Transistor Current Mirror consists of four transistors with all their gates and one of the “Level

Shifter’s” drain connected. Although the transistor sizing constraints and subgraph generated are

similar to the CCM, their detection is made by matching a Voltage Reference I to a Current Mirror

Load, and the two upper transistors are set as working in the linear region. Observing this pattern’s

configuration shows that there is a Level Shifter false detection shown in Figure 4.8, which must be

removed.

Figure 4.8 – Level Shifter false detection in a 4-Transistor Current Mirror

The transistors shown in the shade area meet the connection configuration of a Level Shifter.

However, the transistors are not to be matched.

4.3.3.4 Improved Wilson Current Mirror

Similar to the Cascode Current Mirror, the Improved Wilson Current Mirror consists of a Simple

Current Mirror and a Level Shifter, with the difference that the connections configuration is reversed.

However, the constraints and subgraph are similar to the Cascode Current Mirror.

4.3.3.5 Wide Swing Cascode Current Mirror

The Wide Swing Cascode Current Mirror consists of four transistors with a configuration similar to the

4-Transistor Current Mirror, with the difference that the two lower transistor gates are not connected to

the upper two transistor gates. Although the transistor sizing constraints and subgraph generated are

similar to the CCM, their detection is made by matching a Voltage Reference II to a Cascode Pair, and

the two upper transistors are set as working in the linear region.

31

4.4 Pattern Detection

All constraints are based on either certain sub-circuits that are commonly found throughout a large

variety of analog circuit designs, also known as Building Blocks. These consist mainly of differential

pairs and current mirrors. For any given circuit, detecting these building block will aid in generating the

desired constraints, as well as a signal flow graph to detect symmetries.

Given the configuration of some patterns, certain transistor pairs that match certain patterns will also

match other patterns. Despite this, the SRM [16] approach searches for possible transistor pair

matches for each pattern. Considering that a given pair of transistors never becomes more than one

building block, and that certain patterns will also match to other patterns (as mentioned previously),

this method might not be the most efficient, requiring a follow-up search to remove certain building

blocks that share the same transistor pair as other building blocks.

The search method implemented, on the other hand, does not require this after step, because

searches are made for possible patterns for each given transistor pair, making some ambiguities

easier to deal with. However, the order in which the pattern matching is done for each pair has to be

considered, or there is a risk that the transistor pair is attributed the wrong pattern.

For example, a Level Shifter consists of two transistors with their gates and one of the drains

connected. A Differential Pair consists of two transistors with their sources connected. A Current Mirror

consists of two transistors with their gates and one of the drains connected, and also their sources

connected. This means that if a Differential Pair setup is checked first, all Current Mirrors will be

recognized as being Differential Pairs, and the same thing happens if Level Shifter is checked first. To

avoid this problem, the Current Mirror setup must be checked before the Level Shifter and the

Differential Pair. Figure 4.9 illustrates the problem described. The column on the left shows the

connection verifications for the Simple Current Mirror, the middle column shows the connection

verifications for the Level Shifter, and the column on the right shows the connection verifications for

the Differential Pair.

32

Source(1) – Source (2)
Connected

Source(1) – Source (2)
Connected

Gate(1) - Gate(2)
Connected

Gate(1) - Gate(2)
Connected

Gate(1) - Drain(1)
Connected

Gate(1) - Drain(1)
Connected

Gate(1) - Gate(2)
Connected

Gate(1) - Gate(2)
Connected

Gate(1) - Drain(1)
Connected

Gate(1) - Drain(1)
Connected

Source(1) – Source (2)
Connected

Source(1) – Source (2)
Connected

(a)

Gate(1) - Gate(2)
Connected

Gate(1) - Gate(2)
Connected

Gate(1) - Drain(1)
Connected

Gate(1) - Drain(1)
Connected

Source(1) - Source(1)
Not Connected

Source(1) - Source(1)
Not Connected

Gate(1) - Gate(2)
Connected

Gate(1) - Gate(2)
Connected

Gate(1) - Drain(1)
Connected

Gate(1) - Drain(1)
Connected

Source(1) – Source(2)
Not Connected

Source(1) – Source(2)
Not Connected

(b)

Gate(1) - Gate(2)
Not Connected

Gate(1) - Gate(2)
Not Connected

Gate(1) - Drain(1) Not
Connected

Gate(1) - Drain(1) Not
Connected

Source(1) – Source(2)
Connected

Source(1) – Source(2)
Connected

Gate(1) - Gate(2)
Not Connected

Gate(1) - Gate(2)
Not Connected

Gate(1) - Drain(1) Not
Connected

Gate(1) - Drain(1) Not
Connected

Source(1) – Source(2)
Connected

Source(1) – Source(2)
Connected

(c)

Figure 4.9 – Pattern detection ambiguity examples with (a) Simple Current Mirror (b) Level Shifter
(c) Differential Pair

The illustration shows that a Simple Current Mirror will verify all Level Shifter and Differential Pair

connections. However, neither the Level Shifter nor the Differential Pair will be verified in the Simple

Current Mirror pattern check.

A complete hierarchy is shown in Figure 4.10, showing which patterns must be compared before other

patterns. The arrows represent which patterns must be compared beforehand.

33

SCM

VR I

VR II

CML

CP

LS

CCP

DP

Figure 4.10 – Hierarchy in building block search

After reading the netlist and establishing the transistor database, a search for patterns begins,

comparing each combination of transistor and matching to patterns in the library, generating the first

level of building blocks of the circuit.

Choose a pair of
transistors

Compare the transistor
connections to a

building block
configuration.

Add pair as a new module to building blocks set

Patterns Match?

More patterns in
library?

YES

YES

NO

NO

START

Figure 4.11 - Flowchart of implemented building block recognition

Because some level 1 building blocks have a very generic configuration, many detected building

blocks may be false positives (for example, the Cascode Pair is just a transistor’s drain connected to

another transistor’s source). To determine the false detections, the level 2 building blocks are

determined first.

Once the first-level building blocks of a circuit are determined, the level 2 building blocks are

generated through a similar search, where the search is done for each combination of building blocks,

or combination of building blocks and transistors, and are matched with the level 2 patterns. Some

level 1 ambiguous building blocks can then be determined to be false detections and removed.

Some level 1 patterns do not have constraints associated to them, so their only function is to generate

into level 2 building blocks. In the case one of the building blocks does not generate any level 2

building block, nor generates any constraint, then the building block has no utility in the module. Once

the level 2 building blocks are detected, a search is made to detect the level 1 building blocks that do

34

not have constraints and did not generate any higher level building block, and these blocks are

removed, considering that they are highly likely to be false detections. For example, as shown in

Figure 4.12, a Cascode Current Mirror, the correctly detected level 1 building blocks are the Current

Mirror, and the Level Shifter. However, due to the configuration of the transistors, two Cascode Pairs

are detected, which is clearly a false detection. Once the level 2 building blocks are found, the

program realizes the Cascode Pairs did not generate any level 2 building block and removes them.

Figure 4.3 shows a graphical representation of the CCM example, with the correct level 1 building

blocks in green, and the incorrect in red.

Cascode Pair Cascode Pair

Current Mirror

Level Shifter

Figure 4.12 - Example of false level 1 detections

Lastly, the Differential Pair is the last level 1 pattern that while having constraints, also has a generic

configuration, which is prone to many false detections. But because most Differential Pairs have their

sources connected to a current source, each Differential Pair detected is checked if their sources are

connected to a port of any kind of current mirror. If no current mirror is found to be connected to their

sources, the building block is considered a false detection and is discarded.

Another possible way to detect false detections is by searching building blocks that share transistors.

Although this is a possible way of removing false detections, some building blocks are still valid even

when sharing transistors with other building blocks, as is shown in Figure 4.13. This method would

also not remove invalid building blocks that happen to not share transistors with any other building

block.

Wide Swing
Cascode Current

Mirror

Level Shifter Bank

Figure 4.13 – Level Shifter Bank sharing transistors with a Wide Swing Cascode Current Mirror

The above example shows a case where two different building blocks have two transistors in common,

both being valid. This configuration will be later found in one of the example circuits in the results

section. The Level Shifter driver transistor is being used to polarize the lower transistor gates of the

Wide Swing Cascode Current Mirror.

35

4.5 Finding symmetry

4.5.1 Generating the signal flow graph

After determining all the building blocks in a circuit, a signal flow graph is created to aid in finding

symmetries in the circuit. Each pattern brings an associated graph, representing the signal flow as well

as the current flow. Unlike HPR [52] and MARS [72], which symmetries are applied at the block level

(p.e, determining two cascode current mirrors as symmetric would mean that they would have two

symmetric pairs of transistors), the approach used determines symmetry at the transistor level,

reducing the implementation complexity of determining symmetric devices, and potentially increasing

flexibility of new building block implementations in finding symmetries.

The nodes of the graph correspond to nodes in the circuit, and edges correspond to the flow of signal

or current. To better facilitate symmetry detection, the edges are attributed a string variable to store

characteristics: if the edge is just representing signal or is also a current path, the name of the

originating pattern, and if the pattern has transistors of n-type or p-type.

Usage of current representing edges will help determine self-symmetric nodes and devices, i.e.

devices that are placed or centered on the symmetry axis.

4.5.2 Finding symmetric nodes

Search for symmetric nodes is the same as the HPR [52] approach. Starting at the found Differential

Pair, the gate nodes of the transistors are considered symmetric.

The search for additional symmetric nodes starts with a pair that is already determined to be

symmetric, and each node of the pair has similar edges pointing to (or from) another pair of nodes.

The process repeats for the new found symmetric pair.

If a pair of nodes has multiple similar edges each, each combination is tested with a verification if the

paths further in the graph are also symmetric. If the paths in the graph merge into a single node then

the entire path is considered symmetric. If the paths are similar in their paths but do not merge then

are also considered symmetric. Otherwise, they are not considered symmetric and a different

combination of edges is tested.

If a symmetric pair of nodes has edges pointing to/from a single node, and the edges represent current

pathways, then the node is considered self-symmetric. If the node has further single edges

representing current, the self-symmetry propagates. If the node has two similar edges representing

current, and diverges to two nodes, then the nodes are considered symmetric and a regular symmetry

search continues.

The method used includes backtracking, which was not implemented in HPR[ref]. This aids in

determining further symmetries that would otherwise not be detected.

36

4.5.3 Determining symmetric devices

After determining all the symmetric nodes in a circuit, finding symmetry at the device level becomes a

simple task. For each possible pair of transistors, the ports are checked if they are connected to the

same node, or connected to symmetric nodes. If this condition applies to all the ports of a given pair of

devices, they are considered to be symmetric..

4.6 Generating constraints

4.6.1 Sizing and electronic constraints

Sizing and electronic constraints are determined from the building blocks and the patterns’ associated

constraints. The main difference is that because AIDA also designs multiple finger transistors, some

current mirror building blocks have their transistor widths (per finger) matched (i.e equal), with the

number of fingers determining the current ratio. For example, the simple current mirror, constraints are

as follows:

𝑤1 = 𝑤2

𝑖2

𝑖1

=
𝑚2

𝑚1

Where 𝑤 is the finger width, 𝑖 is the source-drain current, and 𝑚 is the number of fingers of a

transistor. A transistor can be considered to have a total width of 𝑤 × 𝑚.

Whenever a new sizing match is applied, a search is made throughout the transistor database to

assign the new parameter to transistors that share the same parameter to be changed. For example,

M2 needs to have the same length as M1, so M2 will have L=L_M1. If there is a M3 that also needs to

have the same length as M2, then M2 will have L=L_M3, and the transistor database will also be

searched for transistors that have L=L_M1, so transistor M1 will now have L=L_M3.

4.6.2 Proximity constraints

HPR [52] mentions two levels of proximity: a low priority proximity for any devices that are connected

with each other, and a higher priority proximity for certain building blocks.

Because AIDA considers single proximity groups, only the higher priority proximity is considered,

because:

-In a given circuit, if a low proximity constraint translates to including two any transistors that are

connected in the same group, the whole circuit will become a proximity group.

-There is only a single proximity grouping method, so the highest priority proximity is considered.

The higher proximity constraints refer to devices in the same building.

37

4.6.3 Symmetry constraints

Multiple lists of symmetry pairs might be generated. Each list consists of all the symmetry pairs that

share the same symmetry axis. Symmetric transistors are matched to have the same Length, Width

and number of fingers (geometric symmetry)

4.7 Designing new patterns

The Automated Constraint Generation module allows for new patterns to be added to the library, as

well as editing or removing existing ones. The designer has the possibility of creating patterns by

indicating the connections configuration, constraints it generates, and the signal and current subgraph.

4.7.1 Connections configuration

Because the transistor structure contains the node information stored as a String with the node name,

connections are found by comparing two port strings and checking if they match. The module is run in

Java, so the checks have the following template:

if(transistorA.portA.equals(transistorA.portB) && transistorA.portC.equals(transistorB.portA)):

This template checks if transistor A has ports A and B connected, and if transistor A has port C

connected to transistor B port A.

One additional detail when checking if a pair of transistors match into a pattern, is if the pattern is

symmetrical or not. If the pattern is symmetrical, only one check is necessary, otherwise a second

check with the transistors swapped must be made. For example, if transistors M5 and M6 are being

checked to see if they form a Simple Current Mirror, with transistor A as driver transistor, and transistor

B as driven transistor, then a check is made with M5 as transistor A and M6 as transistor B, and then

another check is made with M6 as transistor A and M5 as transistor B.

When dealing with higher level patterns, these are formed by at least other building blocks. The check

is similar to only transistors, except the connections require specification of the building block’s

transistor in addition to the transistor’s port, in addition to checking the building block’s assigned

pattern (e.g when checking for a Cascode Current Mirror, the building blocks are analyzed to check if

their patterns are Simple Current Mirrors and Level Shifters). Below is a template featuring patterns of

level higher than 1.

if(bblockA.namebblockA.equals(scm) && transistorA.portA.equals(bblockB.transistorA.portB && …)

4.7.2 Constraints generation

Constraints are saved in arrays of 3 strings: variable name, whether it is a maximum or a minimum

constraint, and the limit’s value.

Variable name specifies if the constraint is a voltage between two ports in a transistor (e.g. VDS,

VGS), voltage differential between two pairs of ports (e.g. psids, psigs, which represent the VDS or

VGS difference between two transistors), length, width, or area.

38

Maximum or minimum is a string that contains either “LE” (Lower or Equal) or “GE” (Greater or Equal).

As the name states, it is used to determine if the constraint is an upper or a lower limit.

The limit’s value is determined from a variables file which is provided by the designer.

As an example, the constraint associated in a given transistor Mx in saturated mode, with delta > 0.01

(where 0.01 is a number representing the lower limit for the delta voltage, and delta is vds -vgs), the

constraint generated is as follows:

temp_constr[0] = "GE";

temp_constr[1] = “0.01”;

temp_constr[2] = “delta_Mx”

4.7.3 Subgraph generation

The subgraph is used to show if a change in current/voltage in a given node will influence

current/voltage change in another node. It is important to note that these are for signal flow graph.

Edges representing current flow could also be used. These are mostly only between a given

transistor’s Drain and Source. Edges need to have information, stating whether signal or current is

being represented, which N or P type of transistors are involved, and the pattern. The following

example shows a signal flow edge added from a Simple Current Mirror

adj.addAdj(a.drain, b.drain, "s " + type + "-scm");

Another example showing a current and signal flow from a Differential Pair

adj.addAdj(a.drain, b.drain, "sc " + type + "-dp");

The type is not needed to be specified, as the information is already stored within each building block

and is read from it.

4.7.4 Remaining details

Besides electrical configuration, constraints, and subgraph, some additional information is required.

The update function is used to add or change nodes in the circuit that are considered a current source.

For example, a Simple Current Mirror will add the driven transistor’s drain node to the list, and a

Cascode Current Mirror will remove the Simple Current Mirror’s node from the list and add the Level

Shifter driven transistor’s drain. The Cascode Current Mirror’s code lists all the lines involved with this

function:

srcList.remove(a.b.drain);

if(!srcList.contains(b.b.drain)) srcList.add(b.b.drain);

The function hasSource returns true or false and is only used for patterns that require a current source

to be in a certain node, such as a Differential Pair’s source node. Patterns that do not require a current

39

source will just return true, and patterns that do require a current source will need to have a check if

the required node is a current source or not, with the following line:

return (srcList.contains(a.source));

The function hasConstraints also returns true or false, depending on whether the pattern generates

constraints or not.

If the pattern configuration is composed of two similar components and is symmetric only one of the

configuration check is necessary. A second check with the transistor positions switched is not needed.

4.8 Integration with AIDA

Constraint input in AIDA varies, depending on the type of constraint. Sizing constraints, where

transistor dimensions are parameterized are included in the netlist, so another netlist is created as the

Automated Constraint Generation’s output, which is fed as input to AIDA. Current and voltage

constraints are generated as strings, both to declare the constraint variables, and to generate the

measures. Symmetry and proximity constraints are also generated as strings, this time to declare

symmetry and proximity groups, and are sent to AIDA-L, considering that these are layout constraints.

Figure 4.14 shows the AIDA interface with the Automated Constraint Generation module included. A

new tab with the parameterized netlist is added, and the design XML will show the new constraints

added. This allows the designer to verify the sized netlist and the generated constraints, and make

changes if needed.

Figure 4.14 – AIDA Interface with the new module included

40

4.8.1 Netlist

As mentioned earlier, any transistor sizing in the netlist is ignored, and the module creates the size

variables assigned to each transistor. Any non-empty string that is not a comment nor a transistor is

stored in a string table to be reproduced in the output netlist, as it might contain other elements (e.g.

capacitance) that are not considered in this module, or contain relevant commands.

The string table is split in two, one table for the strings before the transistor lines, and one table for the

strings after the transistor lines. The module is assuming there are no other strings mixed in with the

declaration of transistors, and any that is will be placed in the string table after the transistor lines.

Figure 4.15 shows the netlist from the circuit found in Figure 3.1, (a) being the module input netlist,

and (b) the output, which is sent to AIDA.

*** Cell name: opamp_a

.SUBCKT OPAMP_A DD IN IP OUT REF SS

 XCO0 OUT D12 SS momcaps_sy_mm l=_lc nf='_nfc'

 MP8 REF REF DD DD P_12_HSL130E

 MP5 NETZ52 REF DD DD P_12_HSL130E

 MP6 OUT REF DD DD P_12_HSL130E

 MP1 D11 IN NETZ52 DD P_12_HSL130E

 MP2 D12 IP NETZ52 DD P_12_HSL130E

 MN3 D11 D11 SS SS N_12_HSL130E

 MN4 D12 D11 SS SS N_12_HSL130E

 MN7 OUT D12 SS SS N_12_HSL130E

.ENDS*** End of subcircuit definition.

(a) Unparameterized netlist (circuit.cir)

*** Cell name: opamp_a

.SUBCKT OPAMP_A DD IN IP OUT REF SS

 XCO0 OUT D12 SS momcaps_sy_mm l=_lc nf='_nfc'

 MP8 REF REF DD DD P_12_HSL130E W=W_MP20 L=L_MP20 M=M_MP20

 MP5 NETZ52 REF DD DD P_12_HSL130E W=W_MP20 L=L_MP20 M=M_MP14*R_MP20_MP14

 MP6 OUT REF DD DD P_12_HSL130E W=W_MP20 L=L_MP20 M=M_MP22*R_MP20_MP22

 MP1 D11 IN NETZ52 DD P_12_HSL130E W=W_MP11 L=L_MP11 M=M_MP11

 MP2 D12 IP NETZ52 DD P_12_HSL130E W=W_MP11 L=L_MP11 M=M_MP11

 MN3 D11 D11 SS SS N_12_HSL130E W=W_MN9 L=L_MN9 M=M_MN9

 MN4 D12 D11 SS SS N_12_HSL130E W=W_MN9 L=L_MN9 M=M_MN9

 MN7 OUT D12 SS SS N_12_HSL130E W=W_MN21 L=L_MN21 M=M_MN21

.ENDS*** End of subcircuit definition.

(b) Parameterized netlist (circuit.cir)
Figure 4.15 – Unparamaterized and parameterized netlists

The parametrized netlist shows that the module attributes variable names according to the name of the

transistor. Using this terminology to determine transistor variables will also aid the designer in finding

the desired sizing equalities (e.g. transistor MP14 has L=L_MP20, meaning that MP14 has the same

length as MP20), in case the netlist needs to be read.

4.8.2 Electrical Constraints and Measures

Electrical constraints are required to set each transistor in the desired working state (saturation or

linear), and to match transistors so the pairs are in the intended working conditions (e.g. the gate-

source voltages are very similar, so the current per transistor width dimension ratios are equal).

41

AIDA requires declaration of variables, so constraints can effectively be applied to them. After

declaring a variable, it is assigned as a voltage between a pair of nodes, a voltage difference between

two pairs of nodes, and the same applies to currents. Then the constraint is set with a lower limit, an

upper limit, or both.

4.9 Running Example

The two-stage amplifier found in Figure 3.4 is used as an example to describe in detail the constraint

generation process, being a circuit with a low degree of complexity and number of transistors.

Once the netlist is sent as input, the transistors are read and stored in their p-mos or n-mos list. Then,

the level 1 building blocks are detected. Figure 4.16 shows all the Level 1 detected building blocks,

with a detailed list in Table 4-1.

M8

VinN VinP
Vout

Iref

M5 M6

M1 M2

M3 M4 M7

SCM Bank

DP

SCM

M8

VinN VinP
Vout

Iref

M5 M6

M1 M2

M3 M4 M7

CP

DP

DP

(a) Correct (b) Incorrect
Figure 4.16 – Two-Stage detected Level 1 building blocks

Table 4-1 – List of Two-Stage detected Level 1 building blocks

Building Block Transistor 1 Transistor 2 Correct Building Block Transistor 1 Transistor 2 Correct

Simple Current Mirror 1 M8 M5 Differential Pair 3 M3 M7

Simple Current Mirror 2 M8 M6 Differential Pair 4 M4 M7

Simple Current Mirror 3 M3 M4 Cascode Pair 1 M5 M1

Differential Pair 1 M1 M2 Cascode Pair 2 M5 M2

Differential Pair 2 M5 M6

After determining the level 1 building blocks, the module does not differentiate between correct and

incorrect detections, and goes on to search for the level 2 building blocks. However, due to the

simplicity of the circuit, there is no level 2 building block to be detected. The search is still executed,

but nothing is found.

After determining the second level of building blocks, the incorrect detections can be found. Because

none of the Cascode Pairs generate into a higher level building block, they are removed. And

Differential Pairs 2-4 do not have their transistor sources connected to a current mirror/source, and are

removed too.

Now the graph generation process begins. Each building block provides its own subgraph to be added

to the circuit graph. Figure 4.17 shows the final circuit graph.

42

M8

VinN VinP
Vout

Iref

M5 M6

M1 M2

M3 M4 M7

Figure 4.17 – Two-Stage Signal and Current Flow Graph

Once the circuit graph is generated, the search for symmetry begins. The search starts at the gate

nodes of the Differential Pair, as the building block is assumed to be symmetric. The edges pointing

from M4 and M5 gate’s to their drains are matched and considered symmetric, and the drain nodes

are considered a symmetric pair. Then, the edges from M4 and M5 sources to their drains are

considered symmetric, and the source node (M4 and M5 have their sources connected to the same

node) is considered self-symmetric. Because these edges merge into a single node, the module

checks if they represent current, and considers the symmetry valid if they do. After all the symmetric

edges and nodes are found, the device symmetry pairing is determined. Two devices are symmetric if

their port nodes are either symmetric or connected to each other. Figure 4.18 shows the two stage

edge and device symmetry pairs.

VinN VinP
Vout

Iref

2 2

1 13

M8

VinN VinP
Vout

Iref

M5 M6

M1 M2

M3 M4 M7

(a) Symmetric edges (b) Symmetric Devices
Figure 4.18 – Two-Stage symmetry pairs

All the building blocks and symmetric devices are now determined. Transistors are sized, proximity

and symmetry groups are created, and electrical constraints are generated. Figure 4.19 shows the

proximity groups and the matched devices. Both figures are similar, mostly due to the circuit being

simple, and the only detected building blocks were the Simple Current Mirror and Differential Pair, both

having matched devices as constraints, as well as proximity groups being directly determined from

building blocks, while no building block sharing a transistor with another building block. Additionally,

matched transistors have the same Length and Width per finger, but not the same amount of fingers.

43

M8

VinN VinP
Vout

Iref

M5 M6

M1 M2

M3 M4 M7

DP

M8

VinN VinN
Vout

Iref

M5 M6

M1 M2

M3 M4 M7

SCM Bank

DP

SCM

(a) Proximity groups (b) Matched devices
Figure 4.19 - Two-Stage proximity groups and matched devices

All constraints are sent in a text format to AIDA

<Variable name="W_MP8" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MP8" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MP8" min="1" step="1" max="8"/>

<Variable name="R_MP8_MP5" min="0.5" step="0.1" max="10"/>

<Variable name="R_MP8_MP6" min="0.5" step="0.1" max="10"/>

<Variable name="W_MP1" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MP1" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MP1" min="1" step="1" max="8"/>

<Variable name="W_MN3" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MN3" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MN3" min="1" step="1" max="8"/>

<Variable name="R_MN3_MN4" min="0.5" step="0.1" max="10"/>

<Variable name="W_MN7" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MN7" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MN7" min="1" step="1" max="8"/>

<MeasureDescription name="vov_MP8" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MP5" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MP8" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MP6" description="Overdrive" units="[V]" />

<MeasureDescription name="psiDS_MP1_MP2" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MP1_MP2" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="vov_MN3" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MN4" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MN3" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MN3" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MN3" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MN4" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MN4" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MN4" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MN7" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MN7" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MN7" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MN7" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MP8" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MP8" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MP8" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MP5" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MP5" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MP5" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MP6" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MP6" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MP6" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MP1" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MP1" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MP1" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MP1" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MP2" description="VDSat - VDS" units="[V]" />

44

<MeasureDescription name="A_MP2" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MP2" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MP2" description="Overdrive" units="[V]" />

<MeasureDescription name="psiDS_MP1_MP2" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MP1_MP2" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_MN3_MN4" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MN3_MN4" description="VGS_X1 - VGS_X2" units="[V]" />

<Constraint op="GE" value="0.1" meas="vov_MP8" />

<Constraint op="GE" value="0.1" meas="vov_MP5" />

<Constraint op="GE" value="0.1" meas="vov_MP8" />

<Constraint op="GE" value="0.1" meas="vov_MP6" />

<Constraint op="LE" value="0.1" meas="psiDS_MP1_MP2" />

<Constraint op="LE" value="0.05" meas="psigs_MP1_MP2" />

<Constraint op="GE" value="0.1" meas="vov_MN3" />

<Constraint op="GE" value="0.1" meas="vov_MN4" />

<Constraint op="GE" value="0.1" meas="delta_MN3" />

<Constraint op="GE" value="6.0E-14" meas="A_MN3" />

<Constraint op="GE" value="0.00" meas="VDS_MN3" />

<Constraint op="GE" value="0.1" meas="delta_MN4" />

<Constraint op="GE" value="6.0E-14" meas="A_MN4" />

<Constraint op="GE" value="0.00" meas="VDS_MN4" />

<Constraint op="GE" value="0.1" meas="delta_MN7" />

<Constraint op="GE" value="6.0E-14" meas="A_MN7" />

<Constraint op="GE" value="0.00" meas="VDS_MN7" />

<Constraint op="GE" value="0.00" meas="vov_MN7" />

<Constraint op="GE" value="0.1" meas="rev_delta_MP8" />

<Constraint op="GE" value="6.0E-14" meas="A_MP8" />

<Constraint op="GE" value="0.00" meas="VDS_MP8" />

<Constraint op="GE" value="0.1" meas="rev_delta_MP5" />

<Constraint op="GE" value="6.0E-14" meas="A_MP5" />

<Constraint op="GE" value="0.00" meas="VDS_MP5" />

<Constraint op="GE" value="0.1" meas="rev_delta_MP6" />

<Constraint op="GE" value="6.0E-14" meas="A_MP6" />

<Constraint op="GE" value="0.00" meas="VDS_MP6" />

<Constraint op="GE" value="0.1" meas="rev_delta_MP1" />

<Constraint op="GE" value="6.0E-14" meas="A_MP1" />

<Constraint op="GE" value="0.00" meas="VDS_MP1" />

<Constraint op="GE" value="0.00" meas="vov_MP1" />

<Constraint op="GE" value="0.1" meas="rev_delta_MP2" />

<Constraint op="GE" value="6.0E-14" meas="A_MP2" />

<Constraint op="GE" value="0.00" meas="VDS_MP2" />

<Constraint op="GE" value="0.00" meas="vov_MP2" />

<Constraint op="LE" value="0.1" meas="psiDS_MP1_MP2" />

<Constraint op="LE" value="0.05" meas="psigs_MP1_MP2" />

<Constraint op="LE" value="0.1" meas="psiDS_MN3_MN4" />

<Constraint op="LE" value="0.05" meas="psigs_MN3_MN4" />

45

4.10 Observations

As shown in a thorough description of the Automated Constraint Generation architecture, this module

provides constraints to the designer by automating the constraint determination process. This

generation also guarantees consistency between constraints in any given circuit, as different

transistors within similar circuit configurations are met with similar constraints.

By reading the circuit netlist, the module reads all the transistors and electrical connections, compares

multiple configurations, finds patterns in the circuits, makes a graph to find symmetries, and generates

constraints according to the detected patterns and symmetries within the circuit.

An example has been shown to demonstrate how the module works step-by-step, using a simple Two-

Stage OpAmp, and displaying the end result of the constraints generated in a compatible format with

AIDA.

46

47

5 Experimental results

This section shows the detected patterns, generated graphs, and detected symmetries for a series of

circuits. The circuit netlists were sent as input for the Automated Constraint Generation module, and all

the expected building blocks were found, and their respective constraints generated. All circuits are

composed of multiple patterns and a variety of level 2 building blocks. The circuits also have non-

symmetrical sections to check how the symmetry detection behaves in non-symmetrical components.

5.1 Folded Cascode

Figure 5.1 shows the Folded Cascode, an Operational Amplifier that uses several current sources, as

well as active loads that use existing current source patterns.

M2 M3 M7

M1 M4

M8 M9

M10 M11

M12 M13

M14 M15

M5

M6

VinP VinN

Vout

M16

M17

Iref
M18M19

Figure 5.1 – Folded Cascode

Once the module reads the netlist and stores the transistor information, the first level patterns are

found Figure 5.2 shows the level 1 building blocks, with (a) being the correctly detected building

blocks, and (b) the incorrected building blocks. In image (b), the Differential Pairs detected are every

possible combination of transistors in the shaded group with the exception of detected Simple Current

Mirrors, and the Cascode Pair is two building blocks, both being M7 and one for each of the

Differential Pair’s transistor.

LS Bank

LS Bank

SCM Bank

SCM Bank

DP

M2 M3 M7

M1 M4

M8 M9

M10 M11

M16M17

M12 M13

M14 M15

M5

M6

VinP VinN

Vout

M16

M17

Iref

VR II CP

DP

M2 M3 M7

M1 M4

M8 M9

M10 M11

M16M17

M12 M13

M14 M15

M5

M6

VinP VinN

Vout

M16

M17

Iref

CP

DP

CP CP

CPCPCP

(a) Correct (b) Incorrect
Figure 5.2 – Folded Cascode detected Level 1 building blocks (a) correct (b) incorrect

48

Table 5-1 – Folded Cascode detected Level 1 building blocks

Building Block Transistor 1 Transistor 2 Correct Building Block Transistor 1 Transistor 2 Correct

Simple Current Mirror 1 M2 M3 Differential Pair 10 M15 M17

Simple Current Mirror 2 M2 M7 Differential Pair 11 M2 M8

Simple Current Mirror 3 M6 M14 Differential Pair 12 M2 M9

Simple Current Mirror 4 M6 M15 Differential Pair 13 M2 M16

Simple Current Mirror 5 M6 M17 Differential Pair 14 M3 M16

Level Shifter 1 M1 M4 Differential Pair 15 M7 M16

Level Shifter 2 M1 M10 Differential Pair 16 M8 M16

Level Shifter 3 M1 M11 Differential Pair 17 M9 M16

Level Shifter 4 M5 M12 D ifferential Pair 18 M15 M17

Level Shifter 5 M5 M13 Cascode Pair 1 M9 M11

Differential Pair 1 M16 M17 Cascode Pair 2 M7 M16

Differential Pair 2 M3 M7 Cascode Pair 3 M7 M17

Differential Pair 3 M3 M8 Cascode Pair 4 M1 M2

Differential Pair 4 M3 M9 Cascode Pair 5 M3 M4

Differential Pair 5 M7 M8 Cascode Pair 6 M8 M10

Differential Pair 6 M7 M9 Cascode Pair 7 M5 M6

Differential Pair 7 M8 M9 Cascode Pair 8 M12 M14

Differential Pair 8 M14 M15 Cascode Pair 9 M13 M15

Differential Pair 9 M14 M17 Voltage Reference II 1 M8 M10

At this stage, the module does not differentiate between correctly and incorrectly detected building

blocks, and moves on to construct the second level on building blocks. The level 2 detections are

shown in Figure 5.3.

Cascode
Current Mirror

Cascode Current
Mirror Bank

Wide Swing Cascode
Current Mirror

M2 M3 M7

M1 M4

M8 M9

M10 M11

M16M17

M12 M13

M14 M15

M5

M6

VinP VinN

Vout

M16

M17

Iref

Figure 5.3 – Folded Cascode Level 2 detected building blocks

Table 5-2 – Folded Cascode Level 2 detected building blocks

Building Block Building Block 1 Building Block 2

Cascode Current Mirror 1 Simple Current Mirror 1 Level Shifter 1

Cascode Current Mirror 2 Simple Current Mirror 4 Level Shifter 4

Cascode Current Mirror 3 Simple Current Mirror 5 Level Shifter 5

Wide Swing Cascode Current Mirror 4 Cascode Pair 1 Voltage Reference II

Once the level 2 building blocks are found, the false level 1 detections can be determined and

removed. Because none of the Differential Pairs in Figure 5.2 (b) (2 to 10) have their transistors’

sources connected to any Current Mirror, they are removed, and the Cascode Pairs do not generate

any level 2 building block, and are also removed.

The remaining building blocks are then used to create the circuit’s graph. Figure 5.4 shows the signal

and current flow graph generated in the Folded Cascode circuit.

49

M2 M3 M7

M1 M4

M8 M9

M10 M11

M12 M13

M14 M15

M5

M6

VinP VinN

Vout

M16

M17

Iref
M16M17

Figure 5.4 – Folded Cascode Signal and Current Flow Graph

The Differential Pair assigns the nodes VinP and VinN to be symmetric, and the symmetry search

begins with those two nodes, following the algorithm explained in section 4. Figure 5.5 (a) shows the

symmetric edges found in the circuit graph. Symmetric pairs have the same numbers. Figure 5.5 (b)

shows the symmetric transistor pairs. The box with a single transistor means the transistor must be

centered in the symmetry axis.

VinP VinN

Vout

Iref

1 1

2
2

3 3

4

4

5

5 66
VinP VinN

Vout

Iref

(a) Symmetric edges (b) Symmetric Devices
Figure 5.5 – Folded Cascode Symmetric edges (a) and devices (b)

Now the constraints are assigned according to the detected patterns and symmetries. The transistors

are sized, the electrical constraints are generated for each transistor and for transistor pairs, and the

proximity and symmetry groups are assigned for each transistor. Proximity groups are shown in Figure

5.6 (a), and transistors that have the same Widths (per finger) and Lengths are shown in Figure 5.6

(b). Transistors that have the same Widths or Lengths may or may not have different numbers of

fingers between them.

M2 M3 M7

M1 M4

M8 M9

M10 M11

M16M17

M12 M13

M14 M15

M5

M6

VinP VinN

Vout

M16

M17

Iref

M2 M3 M7

M1 M4

M8 M9

M10 M11

M16M17

M12 M13

M14 M15

M5

M6

VinP VinN

Vout

M16

M17

Iref

(a) Proximity groups (b) Matched devices
Figure 5.6 – Proximity groups (a) and matched devices (b)

All constraints have been determined, and are sent to AIDA in the form of text. A thorough list of

constraints can be found in Appendix A.1.

50

5.2 Fully Differential two-stage Folded Cascode

Figure 5.7 shows a fully differential two-stage Folded Cascode, found in [73]. This circuit consists of

several current mirrors and has a differential section that is symmetrical even though most of the

transistors do not fit into any of the building block patterns (M14, M15 and M18 to M23). The following

figures show the same steps as the previous projects.

M2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22 M23

M24

VinP VinN

Iref
VoutP VoutN

VCMFB

VCMFB1

Figure 5.7 – Fully Differential two-stage Folded Cascode

Differential
Pair

Level Shifter Bank

Simple Current
Mirror Bank

Simple Current MirrorM2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22 M23

M24

VinP VinN

Iref

VR II CP CP

VoutP VoutN

M2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22 M23

M24

VinP VinN

Iref
DP

DP

CP CP

CP

CP

DP

VoutP VoutN

(a) Correct (b) Incorrect
Figure 5.8 – Fully Differential two-stage Folded Cascode detected Level 1 building blocks (a)

correct (b) incorrect

51

Table 5-3 – OTA Edinei detected level 1 building blocks

Building Block Transistor 1 Transistor 2 Correct Building Block Transistor 1 Transistor 2 Correct

Simple Current Mirror 1 M1 M2 Differential Pair 22 M10 M15
Simple Current Mirror 2 M1 M3 Differential Pair 23 M13 M14
Simple Current Mirror 3 M10 M13 Differential Pair 24 M13 M15
Level Shifter 1 M4 M5 Differential Pair 25 M14 M15
Level Shifter 2 M4 M8 Differential Pair 26 M6 M9
Level Shifter 3 M4 M11 Differential Pair 27 M6 M12
Level Shifter 4 M4 M18 Differential Pair 28 M6 M20
Level Shifter 5 M4 M19 Differential Pair 29 M6 M21
Differential Pair 1 M1 M7 Differential Pair 30 M6 M24
Differential Pair 2 M1 M10 Differential Pair 31 M9 M12
Differential Pair 3 M1 M13 Differential Pair 32 M9 M20
Differential Pair 4 M1 M14 Differential Pair 33 M9 M21
Differential Pair 5 M1 M15 Differential Pair 34 M9 M24
Differential Pair 6 M2 M3 Differential Pair 35 M12 M20
Differential Pair 7 M2 M7 Differential Pair 36 M12 M21
Differential Pair 8 M2 M10 Differential Pair 37 M12 M24
Differential Pair 9 M2 M13 Differential Pair 38 M20 M21
Differential Pair 10 M2 M14 Differential Pair 39 M20 M24
Differential Pair 11 M2 M15 Differential Pair 40 M21 M24
Differential Pair 12 M3 M7 Differential Pair 41 M22 M23
Differential Pair 13 M3 M10 Cascode Pair 1 M8 M9
Differential Pair 14 M3 M13 Cascode Pair 2 M11 M12
Differential Pair 15 M3 M14 Cascode Pair 3 M18 M20
Differential Pair 16 M3 M15 Cascode Pair 4 M19 M21
Differential Pair 17 M7 M10 Cascode Pair 5 M24 M22
Differential Pair 18 M7 M13 Cascode Pair 6 M24 M23
Differential Pair 19 M7 M14 Cascode Pair 7 M13 M16
Differential Pair 20 M7 M15 Cascode Pair 8 M13 M17
Differential Pair 21 M10 M14 Voltage Reference II 1 M5 M6

Wide Swing Cascode
Current Mirror Bank

M2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22 M23

M24

VinP VinN

Iref
VoutP VoutN

Figure 5.9 - – Fully Differential two-stage Folded Cascode detected Level 2 building blocks

Table 5-4 – Fully Differential two-stage Folded Cascode detected Level 2 building blocks

Building Block Building Block 1 Building Block 2

Wide Swing Cascode Current Mirror 1 Voltage Reference II 1 Cascode Pair 1

Wide Swing Cascode Current Mirror 2 Voltage Reference II 1 Cascode Pair 2

52

M2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22
M23

M24

VinP VinN

Iref
VoutP VoutN

Figure 5.10 – Fully Differential two-stage Folded Cascode Signal and Current Flow Graph

Figure 5.11 shows that all transistors in the differential section are determined symmetric. All the

unassigned transistors have their subgraph and the graph analysis aids in determining their

symmetries.

VinP VinN

Iref

1 1
2 2

3

3

4 45 5

6 6

7 7

8 8
9 9

VoutP VoutN

Differential
Pair

M2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22 M23

M24

VinP VinN

Iref
VoutP VoutN

\

(a) Symmetric edges (b) Symmetric Devices
Figure 5.11 – Fully Differential two-stage Folded Cascode Symmetric edges (a) and devices (b)

Transistor M24 should be matched with M6, but according to Figure 5.12 (b) this is not the case. This

happens because M24 does not fulfill any pattern configuration. Matching comes from constraints

generated by building blocks, and as M24 is not assigned to any building block, the transistor is not

matched to any other transistor.

M2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22 M23

M24

VinP VinN

Iref
VoutP VoutN

M2M1 M3

M4 M5

M6

M7

M8

M9

M10

M11

M12

M13

M14 M15

M16 M17

M19M18

M20 M21

M22 M23

M24

VinP VinN

Iref
VoutP VoutN

(a) Proximity groups (b) Matched devices
Figure 5.12 – Fully Differential two-stage Folded Cascode Proximity groups (a) and matched

devices (b)

53

All constraints have been determined, and are sent to AIDA in the form of text. A thorough list of

constraints can be found in Appendix A.2

5.3 Fully Differential OTA

Figure 5.13 shows a fully differential circuit, found in [74]. Due to the circuit configuration, the standard

Differential Pair cannot be found, and an initial node symmetry must be determined in an alternative

way. In this case, inputs VinP and VinP were considered as being symmetric nodes and the symmetry

search started there. This circuit is used as a running example to show symmetry detection results, as

shown in Figure 5.13, Figure 5.14, Figure 5.15, and Figure 5.16 and most of the pattern detection

process is not shown, as the circuit also has only two first level building blocks detected.

M3

M12

M1 M2 M4

M5 M6

M7 M8

M9 M10

M11

Simple Current Mirror Simple Current Mirror

VinP VinN

VinPVinN

VoutP VoutN

VCM

Figure 5.13 – Fully Differential OTA level 1 building blocks

Because most of the circuit’s transistors are not assigned a pattern, most of the graph is generated

from a transistor subgraph configuration. Figure 5.14 a shows the circuit graph. All the edges are

generated from a transistor’s subgraph with the exception of the edges going from M2 to M1 and M4 to

M3. From the initial symmetric nodes VinP and VinN, the symmetric edges determined are shown in

Figure 5.14 (b). Although not much of the circuit seems to be determined symmetric, most nodes are

inter-connected, and are considered symmetric.

M3

M12

M1 M2 M4

M5 M6

M7 M8

M9 M10

M11

VinP VinN

VinPVinN

VoutP VoutN

VinP VinN

VinPVinN

1

3

2 12

3

VoutP VoutN

(a) Flow graph (b) Symmetric edges
Figure 5.14 – Fully Differential OTA Signal and Current Flow Graph (a) and symmetric edges (b)

54

With a list of symmetric nodes and edges, the module can now find symmetry pairs in the circuit,

shown in Figure 5.15.

M3

M12

M1 M2 M4

M5 M6

M7 M8

M9 M10

M11

VinP VinN

VinPVinN

VoutP VoutN

Figure 5.15 – Fully Differential OTA symmetric devices

With the symmetries determined, the matching of devices can be determined, either from the

symmetry constraint, or from the SCM constraint. Figure 5.16 shows the matched devices in the Fully

Differential OTA.

M3

M12

M1 M2 M4

M5 M6

M7 M8

M9 M10

M11

VinP VinN

VinPVinN

VoutP VoutN

Figure 5.16 – Fully Differential OTA matched devices

5.4 Folded Cascode Optimization Project

An optimization project was performed for the Folded Cascode shown in Figure 5.1, with manually

created constraints used in a previous project, and with the automated constraints generated by the

module. Results will be shown as a POF where the current (Idd) and gain-gandwidth (Gbw) are the

optimized variables, and then a Monte Carlo analysis is run with some selected solutions. Figure 5.17

shows the POF resulting from an AIDA-C optimization process, with both the manual and automatic

constraints. The manually written constraints yield a wider set of solutions, while the automatically

generated constraints result in a reduced set of solutions that are very close to the solutions found with

manual constraints.

55

Figure 5.17 – POF achieved with manual and automatic constraints in the Folded Cascode

Two sizing solutions, one from each POF, were selected and a Monte Carlo analysis was applied with

a sample size of 450. The sizing solutions were determined by selecting the one with the highest DC

gain in the respective POF. Then, a second solution was chosen from the manual POF that was close

to the automated sizing solution in terms of optimized variables to also be analyzed in Monte Carlo.

The analysis results can be seen in Table 5-5 in regards to the optimized variables and the offset

voltage, which is the most problematic variable in this project.

Table 5-5 – Monte Carlo Analysis for the Folded Cascode

 Current Consumption Gain-Bandwidth Offset Voltage

Simulation Nominal
[mA]

Std.
Deviation

Nominal
[MHz]

Std.
Deviation

Average
[mV]

Std.
Deviation

Manual 1 33,71 0.219 14,9 0.330

21,79 16.97

Manual 2 2,486 0.014

1,55 0.013 9,757 7.56

Automated 3,175 0.016 1,77 0.008 3,032 2.25

The simulation labeled Manual 1 is the sizing solution with the highest variances. This translates to the

solutions towards that area being more sensitive and less robust, and that the constraints generated

automatically will filter out the sizing solutions that are highly sensitive.

On the other hand, the Manual 2 simulation has similar nominal values, and is in the same region of

the POF as the automated simulation, meaning that this solution is in a region that is “safer” and less

sensitive. Although the current variance is similar in both, the gain-bandwidth in the manual 2 has a

higher variance than the automated solution. The offset voltage not only has a higher variance, but

also has a higher average than the automated solution.

Figure 5.18, Figure 5.19 and Figure 5.20 show histograms resulting from a total of 450 samples each,

taking in consideration nominal values for the optimized variables and the average for the offset

voltage. Although current consumptions in the automatic solution and the manual 2 show similar levels

of dispersion, the gain-bandwidth and offset voltages are less dispersed in the automatic solution. This

means that the sizing solution from the automatic POF is less sensitive to the random changes applied

by the Monte Carlo analysis, and that the circuit is more robust.

56

0

50

100

150

200

0,812 1 1,027

0

40

80

120

160

0,934 1 1,027

0

25

50

75

0,986 1 1,014

Figure 5.18 – Gain-Bandwidth histograms for Monte Carlo (a) manual 1 (b) manual 2 (c) automatic

0

20

40

60

80

0,979 1 1,017

0

15

30

45

60

75

90

0,981 1 1,020

0

20

40

60

80

0,982 1 1,018

Figure 5.19 – Current histograms for Monte Carlo (a) manual 1 (b) manual 2 (c) automatic

0

15

30

45

60

75

0,115 1 3,809
0

20

40

60

80

0,138 1 4,543

0

25

50

75

100

0,154 1 5,073

Figure 5.20 – Offset Voltage histograms for Monte Carlo (a) manual 1 (b) manual 2 (c) automatic

5.5 Conclusions

All the correct building blocks were detected in all three circuits, and the false detections were also

correctly detected. The only matching that was not determined is in OTA Edinei’s transistor M24, as

mentioned previously. This is indicative that the field of automated constraint generation for analog

circuits still has room for progress of further determining constraints.

Both the Folded Cascode and OTA Edinei have differential sections but are not fully differential circuits

(i.e. have non-differential sections). All symmetries and self-symmetries were detected, and no

inadequate symmetry is being detected. One circuit had very few transistors with assigned patterns,

but the symmetries were still correctly determined considering the transistors without assigned

patterns provided their own subgraphs.

One of the circuits was run for a full optimization project to compare previously written constraints with

the automatically generated constraints, and although the automated constraints yield a reduced POF,

the found solutions have lower sensitivities to random alterations that happen in circuit manufacturing.

This allows the circuit designer to trade between maximizing the nominal solutions or circuit

robustness.

57

6 Conclusions and future work

6.1 Conclusion

Constraint generation is approached in the automation of the field of IC design process. The current

state of the art in this field was studied and shown that automated constraint generation has not seen

much progress. Considering that constraints are currently being manually determined by the designer

for each different circuit, automating the process would reduce setup time and accelerate the

optimization process, as well as allow additional constraints that were not being included to be used.

Most of the research found was around finding predetermined patterns in the circuits, assigning

constraints according to the patterns found, and find symmetries based on graphs also determined by

the patterns found.

A new module based on this approach was implemented in AIDA, an analog IC design automation tool

that optimizes circuit sizing. A non-sized netlist is used as input, and the module sends a sized netlist,

along with the electrical constraints to the optimizer. This aids the optimizer in finding a set of robust

solutions that have lower sensitivity to process variations.

6.2 Future work

Generating a more thorough set of constraints will yield more robust circuits, but will also result in a

reduced set of solutions. This means that there’s a trade-off between nominal performance and

robustness. A possible way of dealing with this is if the designer can choose to start with a good set of

nominal sizing solutions, or start with solutions that are already robust. Categorizing constraints with

different priorities would give the designer flexibility to choose robust solutions, good nominal

solutions, or a set of solutions somewhere in the middle. This could be accomplished by defining

constraints to be e.g. essential, recommended, or optional, and in a given project the designer would

choose to include constraints up to a certain priority.

Another suggestion for future work would be to research more possible patterns and associated

constraints, as the current library does not cover every possible configuration, as shown in the fully

differential folded cascade.

59

7 References

[1] R. Martins, N. Lourenço and N. Horta, "LAYGEN II - Automatic Layout Generation of Analog

Integrated Circuits," IEEE Transactions on Compututer-Aided Design of Integrated Circuits and

Systems, vol. 32, no. 11, pp. 1641-1654, November 2013.

[2] F. Rocha, R. Martins, N. Lourenço and N. Horta, "Enhancing a Layout-aware Synthesis

Methodology for Analog ICs by Embedding Statistical Knowledge into the Evolutionary

Optimization Kernel," in Doctoral Conference on Computing, Electrical and Industrial Systems,

Lisbon, 2013.

[3] G. Gielen and R. Rutenbar, "Computer-aided design of analog and mixed-signal integrated

circuits," Proceedings of the IEEE, vol. 88, no. 12, pp. 1825-1854, December 2000.

[4] G. Gielen, "CAD tools for embedded analogue circuits in mixed-signal integrated systems on

chip," IEE Proceedings on Computers and Digital Techniques, vol. 152, no. 3, pp. 317-332, May

2005.

[5] N. e. a. Lourenço, "Automatic Analog IC Sizing and Optimization Constrained with PVT Corners

and Layout Effects," 2014.

[6] E. Roca, R. Castro-López and F. Fernández, "Hierarchical synthesis based on pareto-optimal-

fronts," Europen Conference on Circuit Theory and Design, pp. 755-758, August 2009.

[7] "Mentor Graphics," [Online]. Available: http://www.mentor.com.

[8] Synopsys, "HSPICE® User Guide: Basic Simulation and Analysis, Version G-2012.06-SP2,"

December 2012.

[9] "Synopsys," [Online]. Available: http://www.synopsys.com.

[10] "Cadence Design System Inc.," [Online]. Available: http://www.cadence.com.

[11] "gEDA Project," [Online]. Available: http://www.gpleda.org.

[12] "Dolphin Integration," [Online]. Available: http://www.dolphin.fr.

[13] "MunEDA," [Online]. Available: http://www.muneda.com.

60

[14] N. Lourenço, A. Canelas, R. Póvoa, R. Martins and N. Horta, "Floorplan-aware analoc IC sizing

and optimization based on topological constraints," Integration, the VLSI Journal, vol. 48, no. 1,

pp. 183-197, January 2015.

[15] G. Jerke and J. Liening, "Constraint-driven Design - The Next Step Towards Analog Design

Automation," in Proceedings of the 2009 international symposium on Physical design, 2009.

[16] T. Massier, H. Graeb and U. Schlichtmann, "The Sizing Rules Method for CMOS and Bipolar

Analog Integrated Circuit Synthesis," IEEE Transactions on Compututer-Aided Design of

Integrated Circuits and Systems, vol. 27, no. 12, pp. 2209-2222, December 2008.

[17] T. Mukherjee, L. R. Carley and R. Rutenbar, "Efficient handling of operating range and

manufacturing line variations in analog cell synthesis," IEEE Transactions on Compututer-Aided

Design of Integrated Circuits and Systems, vol. 19, no. 8, pp. 825-839, August 2000.

[18] M. F. M. Barros, J. M. C. Guilherme and N. C. G. Horta, Analog circuits and systems optimization

based on evolutionary computation techniques, Berlin: Springer, 2010.

[19] C. A. Makris and a. C. Toumazou, "Analog IC design automation. II. Automated circuit correction

by qualitative reasoning," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 14, no. 2, pp. 239-254, 1995.

[20] C. Toumazou and C. A. Makris, "Analog IC design automation. I. Automated circuit generation:

new concepts and methods," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 14, no. 2, pp. 218-238, 1995.

[21] M. G. R. Degrauwe, O. Nys, E. Dijkstra, J. Rijmenants, S. Bitz, B. L. A. G. Goffart, E. A. Vittoz, S.

Cserveny, C. Meixenberger, G. V. D. Stappen and H. J. Oguey, "IDAC: an interactive design tool

for analog CMOS circuits," IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 1106-1116,

1987.

[22] N. Horta, "Analogue and Mixed-Signal Systems Topologies Exploration Using Symbolic Methods,"

Analog Integrated Circuits and Signal Processing, vol. 31, no. 2, pp. 161-176, 2002.

[23] H. Y. Koh, C. H. Sequin and P. R. Gray, "OPASYN: a compiler for CMOS operational amplifiers,"

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 2,

pp. 113-125, 1990.

[24] J. P. Harvey, M. I. Elmasry and B. Leung, "STAIC: an interactive framework for synthesizing

CMOS and BiCMOS analog circuits," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 11, no. 11, pp. 1402-1417, 1992.

61

[25] P. C. Maulik, L. R. Carley and D. J. Allstot, "Sizing of cell-level analog circuits using constrained

optimization techniques," IEEE Journal of Solid-State Circuits, vol. 28, no. 3, pp. 223-241, 1993.

[26] P. C. Maulik, L. R. Carley and R. A. Rutenbar, "Integer programming based topology selection of

cell-level analog circuits," IEEE Transactions on omputer-Aided Design of Integrated Circuits and

Systems, vol. 14, no. 4, pp. 401-412, 1995.

[27] K. Matsukawa, T. Morie, Y. Tokunaga, S. Sakiyama, Y. Mitani, M. Takayama, T. Miki, A.

Matsumoto, K. Obata and S. Dosho, "Design methods for pipeline & delta-sigma A-to-D

converters with convex optimization," in Asia and South Pacific Design Automation Conference,

Yokohama, 2009.

[28] M. d. M. Hershenson, S. P. Boyd and T. H. Lee, "GPCAD: a tool for CMOS op-amp synthesis," in

IEEE/ACM International Conference on Computer-Aided Design, San Jose, 1998.

[29] M. Kuo-Hsuan, P. Po-Cheng and C. Hung-Ming, "Integrated hierarchical synthesis of analog/RF

circuits with accurate performance mapping," in International Symposium on Quality Electronic

Design, Santa Clara, 2011.

[30] A. J. Torralba, J. Chavez and L. G. Franquelo, "Fuzzy-logic-based analog design tools," Micro,

IEEE, vol. 16, no. 4, pp. 60-68, 1996.

[31] A. Torralba, J. Chavez and L. G. Franquelo, "FASY: a fuzzy-logic based tool for analog synthesis,"

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 7,

pp. 705-715, 1996.

[32] G. G. E. Gielen, H. C. C. Walscharts and W. M. C. Sansen, "Analog circuit design optimization

based on symbolic simulation and simulated annealing," IEEE Journal of Solid-State Circuits, vol.

25, no. 3, pp. 707-713, 1990.

[33] E. S. Ochotta, R. A. Rutenbar and L. R. Carley, "Synthesis of high-performance analog circuits in

ASTRX/OBLX," IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 15, no. 3, pp. 273-294, 1996.

[34] W. Kruiskamp and D. Leenaerts, "DARWIN: CMOS opamp synthesis by means of a genetic

algorithm," in Design Automation Conference, San Francisco, 1995.

[35] A. Doboli, N. Dhanwada, A. Nunez-Aldana and R. Vemuri, "A two-layer library-based approach to

synthesis of analog systems from VHDL-AMS specifications," ACM Transactions on Design

Automation of Electronic Systems, vol. 9, no. 2, pp. 238-271, 2004.

62

[36] L. W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor Circuits," EECS

Department, University of California, Berkeley, 1975.

[37] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, "Optimization by Simulated Annealing," Science, vol.

220, no. 4598, pp. 671-680, 1983.

[38] W. Nye, D. Riley, A. Sangiovanni-Vincentelli and A. Tits, "DELIGHT.SPICE: an optimization-based

system for the design of integrated circuits," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 7, no. 4, pp. 501-519, 1988.

[39] L. Cheng-Wu, S. Pin-Dai, S. Ya-Ting and C. Soon-Jyh, "A bias-driven approach for automated

design of operational amplifiers," in International Symposium on VLSI Design, Automation and

Test, Hsinchu, 2009.

[40] F. Medeiro, F. Fernandez, R. Dominguez-Castro and A. Rodriguez-Vazquez, "A Statistical

Optimization-based Approach For Automated Sizing Of Analog Cells," in International Conference

Computer-Aided Design, 1994.

[41] R. Castro-Lopez, O. Guerra, E. Roca and F. Fernandez, "An Integrated Layout-Synthesis

Approach for Analog ICs," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 27, no. 7, pp. 1179-1189, 2008.

[42] S.-C. Chu, H.-C. Huang, J. F. Roddick and J.-S. Pan, "Overview of Algorithms for Swarm

Intelligence," in Computational Collective Intelligence. Technologies and Applications, Berlin

Heidelberg, Springer , 2011, pp. 28-41.

[43] H. Gupta and B. Ghosh, "Analog Circuits Design Using Ant Colony Optimization," International

Journal of Electronics, Computer & Communications Technologies, vol. 2, no. 3, pp. 9-21, 2012.

[44] B. Benhala, A. Ahaitouf, M. Fakhfakh and A. Mechaqrane, "New Adaptation of the ACO Algorithm

for the Analog Circuits Design Optimization," International Journal of Computer Science Issues,

vol. 9, no. 3, pp. 360-367, 2012.

[45] S. Kamisetty, J. Garg, J. Tripathi and J. Mukherjee, "Optimization of Analog RF Circuit parameters

using randomness in particle swarm optimization," in World Congress on Information and

Communication Technologies, 2011.

[46] P. P. Kumar and K. Duraiswamy, "An Optimized Device Sizing of Analog Circuits using Particle

Swarm Optimization," Journal of Computer Science, vol. 8, no. 6, pp. 930-935, 2012.

63

[47] M. Fakhfakh, Y. Cooren, A. Sallem, M. Loulou and P. Siarry, "Analog circuit design optimization

through the particle swarm optimization technique," Analog Integrated Circuits and Signal

Processing, vol. 63, no. 1, pp. 71-82, 2010.

[48] N. Lourenço and N. Horta, "GENOM-POF: Multi-Objective Evolutionary Synthesis of Analog ICs

with Corners Validation," in Genetic and Evolutionary Computation Conference, Philadelphia,

2012.

[49] N. Lourenço, R. Martins, M. Barros and N. Horta, "Analog Circuit Design based on Robust POFs

using an Enhanced MOEA with SVM Models," in Analog/RF and Mixed-Signal Circuit Systematic

Design, Berlin, Springer, 2013, pp. 149-167.

[50] T. McConaghy, P. Palmers, M. Steyaert and G. Gielen, "Trustworthy Genetic Programming-Based

Synthesis of Analog Circuit Topologies Using Hierarchical Domain-Specific Building Blocks," IEEE

Transactions on Evolutionary Computation, vol. 15, no. 4, pp. 557-570, 2011.

[51] A. Pradhan and R. Vemuri, "Efficient Synthesis of a Uniformly Spread Layout Aware Pareto

Surface for Analog Circuits," in International Conference on VLSI Design, New Delhi, 2009.

[52] M. Eick, M. Strasser, K. Lu, U. Schlichtmann and H. Graeb, "Comprehensive Generation of

Hierachical Placement Rules for Analog Integrated Circuits," IEEE Transactions on Compututer-

Aided Design of Integrated Circuits and Systems, vol. 30, no. 2, pp. 180-193, February 2011.

[53] J. R. Koza, F. I. Bennett, D. Andre, M. A. Keane and F. Dunlap, "Automated synthesis of analog

electrical circuits by means of genetic programming," IEEE Transactions on Evolutionary

Computation, vol. 1, no. 2, pp. 109-128, 1997.

[54] M. Krasnicki, R. Phelps, R. Rutenbar and L. Carley, "MAELSTROM: efficient simulation-based

synthesis for custom analog cells," in Design Automation Conference, New Orleans, 1999.

[55] R. Phelps, M. Krasnicki, R. Rutenbar, L. Carley and J. Hellums, "Anaconda: simulation-based

synthesis of analog circuits via stochastic pattern search," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 19, no. 6, pp. 703-717, 2000.

[56] T. Sripramong and C. Toumazou, "The invention of CMOS amplifiers using genetic programming

and current-flow analysis," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 21, no. 11, pp. 1237-1252, 2002.

[57] G. Alpaydin, S. Balkir and G. Dundar, "An evolutionary approach to automatic synthesis of high-

performance analog integrated circuits," IEEE Transactions on Evolutionary Computation, vol. 7,

no. 3, pp. 240-252, 2003.

64

[58] C. Shoou-Jinn, H. Hao-Sheng and S. Yan-Kuin, "Automated passive filter synthesis using a novel

tree representation and genetic programming," IEEE Transactions on Evolutionary Computation,

vol. 10, no. 1, pp. 93-100, 2006.

[59] M. Barros, J. Guilherme and N. Horta, "Analog circuits optimization based on evolutionary

computation techniques," Integration, the VLSI Journal, vol. 43, no. 1, pp. 136-155, 2010.

[60] M. Barros, J. Guilherme and N. Horta, "GA-SVM feasibility model and optimization kernel applied

to analog IC design automation," in ACM Great Lakes symposium on VLSI, Stresa-Lago

Maggiore, 2007.

[61] R. Santos-Tavares, N. Paulino, J. Higino, J. Goes and J. P. Oliveira, "Optimization of Multi-Stage

Amplifiers in Deep-Submicron CMOS Using a Distributed/Parallel Genetic Algorithm," in

International Symposium on Circuits and Systems , Seattle, 2008.

[62] Y. Hongying and H. Jingsong, "Evolutionary design of operational amplifier using variable-length

differential evolution algorithm," in International Conference on Computer Application and System

Modeling, Taiyuan Shanxi, 2010.

[63] M. Pehl, M. Zwerger and H. Graeb, "Sizing analog circuits using an SQP and Branch and Bound

based approach," in 17th IEEE International Conference on Electronics, Circuits, and Systems

(ICECS), Athens, 2010.

[64] H. Habal and H. Graeb, "Constraint-Based Layout-Driven Sizing of Analog Circuits," IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 8, pp.

1089-1102, 2011.

[65] E. Roca, M. Velasco-Jiménez, R. Castro-López and F. V. Fernández, "Context-dependent

transformation of Pareto-optimal performance fronts of operational amplifiers," Analog Integrated

Circuits and Signal Processing, vol. 73, no. 1, pp. 65-76, 2012.

[66] F. Rocha, N. Lourenço, R. Póvoa, R. Martins and N. Horta, "A New Metaheuristic Combining

Gradient Models with NSGA-II to Enhance Analog IC Synthesis," in EEE Congress on

Evolutionary Computation, 2013.

[67] F. Rocha, R. Martins, N. Lourenço and N. Horta, Electronic Design Automation of Analog ICs

combining Gradient Models with Multi-Objective Evolutionary Algorithms, Springer, 2014.

[68] Y.-C. Liao, Y.-L. Chen, X.-T. Cai, C.-N. Liu and T.-C. Chen, "LASER: layout-aware analog

synthesis environment on laker," in Proceedings of the 23rd ACM international conference on

Great lakes symposium on VLSI, 2013.

65

[69] E. Afacan, S. Ay, F. Fernandez, G. Dundar and F. Basckaya, "Model based hierarchical

optimization strategies for analog design automation," in Design, Automation and Test in Europe

Conference and Exhibition, Dresden, 2014.

[70] R. Póvoa, R. Lourenço, N. Lourenço, A. Canelas, R. Martins and N. Horta, "Synthesis of LC-

Oscillators using Rival Multi-Objective/Multi-Constraint Optimization Kernels," in Performance

Optimization Techniques in Analog, Mixed-Signal, and Radio-Frequency Circuit Design, IGI

Global, 2014, p. (in press).

[71] R. Póvoa, R. Lourenço, N. Lourenço, A. Canelas, R. Martins and N. Horta, "LC-VCO Automatic

Synthesis Using Multi-Objective Evolutionary Techniques," in Proceedings of the International

Symposium on Circuits and Systems, Melbourne, 2014.

[72] M. Eick and H. Graeb, "MARS: Matching-Driven Analog Sizing," IEEE Transactions on

Compututer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 8, pp. 1145-1158,

August 2013.

[73] E. Santin, L. B. Oliveira, B. Nowacki and J. Goes, "A Fully Integrated and Reconfigurable

Architecture for Coherent Self-Testing of High Speed Analog-to-Digital Converters," Transactions

on Circuits and Systems – I, vol. 58, no. 7, pp. 1531-1541, Jul 2011.

[74] R. Póvoa, N. Lourenço, N. Horta, R. Santos Tavares and J. Goes, "Single-Stage Amplifiers with

Gain Enhancement and Improved Energy-Efficiency employing Voltage-Combiners," in Very

Large Scale Integration (VLSI-SoC), 2013 IFIP/IEEE 21st International Conference, 2013.

[75] G. Gielen, T. McConaghy and T. Eeckelaert, "Performance space modeling for hierarchical

synthesis of analog integrated circuits," in Design Automation Conference, 2005.

[76] Y.-L. Chen, W.-R. Wu, C.-N. Liu and J.-M. Li, "Simultaneous Optimization of Analog Circuits With

Reliability and Variability for Applications on Flexible Electronics," IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems , vol. 33, no. 1, pp. 24-35, 2014.

[77] Mentor Graphics Corporation, "Eldo user's manual, Release 13.1," 2013.

67

Appendix A

A.1 Folded Cascode

Netlist testing for circuit

.SUBCKT OPAMP VDD VSS IREF VIN VIP VOUT

Device list

MPB2 VPOLAP VPOLAP VDD VDD P_12_HSL130E L=L_MPB2 W=W_MPB2 M=M_MPB2

MPB1 IREF IREF VPOLAP VDD P_12_HSL130E L=L_MPB1 W=W_MPB1 M=M_MPB1

MPB3 21 VPOLAP VDD VDD P_12_HSL130E L=L_MPB2 W=W_MPB2 M=M_MPB2*R_MPB2_MPB3

MPB4 VPOLAN1 IREF 21 VDD P_12_HSL130E L=L_MPB1 W=W_MPB1 M=M_MPB1*R_MPB1_MPB4

MPB7 31 VPOLAP VDD VDD P_12_HSL130E L=L_MPB2 W=W_MPB2 M=M_MPB2*R_MPB2_MPB7

MP18 43 VIN 31 VDD P_12_HSL130E L=L_MP18 W=W_MP18 M=M_MP18

MP19 53 VIP 31 VDD P_12_HSL130E L=L_MP18 W=W_MP18 M=M_MP18

MPB8 41 42 VDD VDD P_12_HSL130E L=L_MPB8 W=W_MPB8 M=M_MPB8*R_MPB8_MPB9

MPB10 42 IREF 41 VDD P_12_HSL130E L=L_MPB1 W=W_MPB1

 M=M_MPB1*R_MPB1_MPB10*R_MPB10_MPB11

MPB9 51 42 VDD VDD P_12_HSL130E L=L_MPB8 W=W_MPB8 M=M_MPB8*R_MPB8_MPB9

MPB11 52 IREF 51 VDD P_12_HSL130E L=L_MPB1 W=W_MPB1

 M=M_MPB1*R_MPB1_MPB10*R_MPB10_MPB11

MP16 VOUT 52 VDD VDD P_12_HSL130E L=L_MP16 W=W_MP16 M=M_MP16

MNB5 VPOLAN1 VPOLAN1 VPOLAN VSS N_12_HSL130E L=L_MNB5 W=W_MNB5 M=M_MNB5

MNB6 VPOLAN VPOLAN VSS VSS N_12_HSL130E L=L_MNB6 W=W_MNB6 M=M_MNB6

MN12 42 VPOLAN1 43 VSS N_12_HSL130E L=L_MNB5 W=W_MNB5 M=M_MNB5*R_MNB5_MN13

MN14 43 VPOLAN VSS VSS N_12_HSL130E L=L_MNB6 W=W_MNB6 M=M_MNB6*R_MNB6_MN15

MN13 52 VPOLAN1 53 VSS N_12_HSL130E L=L_MNB5 W=W_MNB5 M=M_MNB5*R_MNB5_MN13

MN15 53 VPOLAN VSS VSS N_12_HSL130E L=L_MNB6 W=W_MNB6 M=M_MNB6*R_MNB6_MN15

MN17 VOUT VPOLAN VSS VSS N_12_HSL130E L=L_MNB6 W=W_MNB6 M=M_MNB6*R_MNB6_MN17

<Variable name="W_MPB2" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MPB2" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MPB2" min="1" step="1" max="8"/>

<Variable name="W_MPB1" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MPB1" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MPB1" min="1" step="1" max="8"/>

<Variable name="R_MPB2_MPB3" min="0.5" step="0.1" max="10"/>

<Variable name="R_MPB1_MPB4" min="0.5" step="0.1" max="10"/>

<Variable name="R_MPB2_MPB7" min="0.5" step="0.1" max="10"/>

<Variable name="W_MP18" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MP18" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MP18" min="1" step="1" max="8"/>

<Variable name="W_MPB8" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MPB8" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MPB8" min="1" step="1" max="8"/>

<Variable name="R_MPB8_MPB9" min="0.5" step="0.1" max="10"/>

<Variable name="R_MPB1_MPB10" min="0.5" step="0.1" max="10"/>

<Variable name="W_MP16" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MP16" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MP16" min="1" step="1" max="8"/>

<Variable name="W_MNB5" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MNB5" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MNB5" min="1" step="1" max="8"/>

<Variable name="W_MNB6" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MNB6" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MNB6" min="1" step="1" max="8"/>

<Variable name="R_MNB5_MN13" min="0.5" step="0.1" max="10"/>

<Variable name="R_MNB6_MN15" min="0.5" step="0.1" max="10"/>

<Variable name="R_MNB6_MN17" min="0.5" step="0.1" max="10"/>

<MeasureDescription name="vov_MPB3" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MPB7" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MPB1" description="Overdrive" units="[V]" />

68

<MeasureDescription name="vov_MPB4" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MPB10" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MPB11" description="Overdrive" units="[V]" />

<MeasureDescription name="psiDS_MP18_MP19" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MP18_MP19" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="vov_MNB5" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MN12" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MN13" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MN14" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MN15" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MN17" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MPB9" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MNB5" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNB5" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNB5" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MNB6" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNB6" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNB6" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MNB6" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MN12" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MN12" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MN12" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MN14" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MN14" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MN14" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MN13" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MN13" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MN13" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MN15" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MN15" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MN15" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MN17" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MN17" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MN17" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MPB2" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPB2" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPB2" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MPB2" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPB1" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPB1" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPB1" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MPB3" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPB3" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPB3" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MPB4" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPB4" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPB4" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MPB7" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPB7" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPB7" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MP18" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MP18" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MP18" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MP18" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MP19" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MP19" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MP19" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MP19" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPB8" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPB8" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPB8" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MPB8" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPB10" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPB10" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPB10" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MPB9" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPB9" description="Area" units="[m²]" />

69

<MeasureDescription name="VDS_MPB9" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MPB11" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPB11" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPB11" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MP16" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MP16" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MP16" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MP16" description="Overdrive" units="[V]" />

<MeasureDescription name="psiDS_MP18_MP19" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MP18_MP19" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_MPB8_MPB9" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MPB8_MPB9" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_MPB10_MPB11" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MPB10_MPB11" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_MN12_MN13" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MN12_MN13" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_MN14_MN15" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MN14_MN15" description="VGS_X1 - VGS_X2" units="[V]" />

.MEAS DC vov_MPB3 PARAM = 'LV9(XAMP.MPB3)-VGS(XAMP.MPB3)'

.MEAS DC vov_MPB7 PARAM = 'LV9(XAMP.MPB7)-VGS(XAMP.MPB7)'

.MEAS DC vov_MPB1 PARAM = 'LV9(XAMP.MPB1)-VGS(XAMP.MPB1)'

.MEAS DC vov_MPB4 PARAM = 'LV9(XAMP.MPB4)-VGS(XAMP.MPB4)'

.MEAS DC vov_MPB10 PARAM = 'LV9(XAMP.MPB10)-VGS(XAMP.MPB10)'

.MEAS DC vov_MPB11 PARAM = 'LV9(XAMP.MPB11)-VGS(XAMP.MPB11)'

.MEAS DC psiDS_MP18_MP19 = PARAM('ABS(VDS(XAMP.MP18)-VDS(XAMP.MP19))')

.MEAS DC psigs_MP18_MP19 = PARAM('ABS(VGS(XAMP.MP18)-VGS(XAMP.MP19))')

.MEAS DC vov_MNB5 PARAM = 'LV9(XAMP.MNB5)-VGS(XAMP.MNB5)'

.MEAS DC vov_MN12 PARAM = 'LV9(XAMP.MN12)-VGS(XAMP.MN12)'

.MEAS DC vov_MN13 PARAM = 'LV9(XAMP.MN13)-VGS(XAMP.MN13)'

.MEAS DC vov_MN14 PARAM = 'LV9(XAMP.MN14)-VGS(XAMP.MN14)'

.MEAS DC vov_MN15 PARAM = 'LV9(XAMP.MN15)-VGS(XAMP.MN15)'

.MEAS DC vov_MN17 PARAM = 'LV9(XAMP.MN17)-VGS(XAMP.MN17)'

.MEAS DC vov_MPB9 PARAM = 'LV9(XAMP.MPB9)-VGS(XAMP.MPB9)'

.MEAS DC delta_MNB5 PARAM = 'VDS(XAMP.MNB5) - VDSAT(XAMP.MNB5)'

.MEAS DC A_MNB5 = PARAM('L_MNB5*W_MNB5*M_MNB5')

.MEAS DC VDS_MNB5 PARAM = 'VDS(XAMP.MNB5)'

.MEAS DC delta_MNB6 PARAM = 'VDS(XAMP.MNB6) - VDSAT(XAMP.MNB6)'

.MEAS DC A_MNB6 = PARAM('L_MNB6*W_MNB6*M_MNB6')

.MEAS DC VDS_MNB6 PARAM = 'VDS(XAMP.MNB6)'

.MEAS DC vov_MNB6 PARAM = 'LV9(XAMP.MNB6)-VGS(XAMP.MNB6)'

.MEAS DC delta_MN12 PARAM = 'VDS(XAMP.MN12) - VDSAT(XAMP.MN12)'

.MEAS DC A_MN12 = PARAM('L_MNB5*W_MNB5*M_MNB5*R_MNB5_MN13')

.MEAS DC VDS_MN12 PARAM = 'VDS(XAMP.MN12)'

.MEAS DC delta_MN14 PARAM = 'VDS(XAMP.MN14) - VDSAT(XAMP.MN14)'

.MEAS DC A_MN14 = PARAM('L_MNB6*W_MNB6*M_MNB6*R_MNB6_MN15')

.MEAS DC VDS_MN14 PARAM = 'VDS(XAMP.MN14)'

.MEAS DC delta_MN13 PARAM = 'VDS(XAMP.MN13) - VDSAT(XAMP.MN13)'

.MEAS DC A_MN13 = PARAM('L_MNB5*W_MNB5*M_MNB5*R_MNB5_MN13')

.MEAS DC VDS_MN13 PARAM = 'VDS(XAMP.MN13)'

.MEAS DC delta_MN15 PARAM = 'VDS(XAMP.MN15) - VDSAT(XAMP.MN15)'

.MEAS DC A_MN15 = PARAM('L_MNB6*W_MNB6*M_MNB6*R_MNB6_MN15')

.MEAS DC VDS_MN15 PARAM = 'VDS(XAMP.MN15)'

.MEAS DC delta_MN17 PARAM = 'VDS(XAMP.MN17) - VDSAT(XAMP.MN17)'

.MEAS DC A_MN17 = PARAM('L_MNB6*W_MNB6*M_MNB6*R_MNB6_MN17')

.MEAS DC VDS_MN17 PARAM = 'VDS(XAMP.MN17)'

.MEAS DC rev_delta_MPB2 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPB2 = PARAM('L_MPB2*W_MPB2*M_MPB2')

.MEAS DC VDS_MPB2 PARAM = 'VDS(XAMP.MPB2)'

.MEAS DC vov_MPB2 PARAM = 'LV9(XAMP.MPB2)-VGS(XAMP.MPB2)'

.MEAS DC rev_delta_MPB1 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPB1 = PARAM('L_MPB1*W_MPB1*M_MPB1')

.MEAS DC VDS_MPB1 PARAM = 'VDS(XAMP.MPB1)'

.MEAS DC rev_delta_MPB3 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPB3 = PARAM('L_MPB2*W_MPB2*M_MPB2*R_MPB2_MPB3')

.MEAS DC VDS_MPB3 PARAM = 'VDS(XAMP.MPB3)'

70

.MEAS DC rev_delta_MPB4 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPB4 = PARAM('L_MPB1*W_MPB1*M_MPB1*R_MPB1_MPB4')

.MEAS DC VDS_MPB4 PARAM = 'VDS(XAMP.MPB4)'

.MEAS DC rev_delta_MPB7 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPB7 = PARAM('L_MPB2*W_MPB2*M_MPB2*R_MPB2_MPB7')

.MEAS DC VDS_MPB7 PARAM = 'VDS(XAMP.MPB7)'

.MEAS DC rev_delta_MP18 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MP18 = PARAM('L_MP18*W_MP18*M_MP18')

.MEAS DC VDS_MP18 PARAM = 'VDS(XAMP.MP18)'

.MEAS DC vov_MP18 PARAM = 'LV9(XAMP.MP18)-VGS(XAMP.MP18)'

.MEAS DC rev_delta_MP19 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MP19 = PARAM('L_MP18*W_MP18*M_MP18')

.MEAS DC VDS_MP19 PARAM = 'VDS(XAMP.MP19)'

.MEAS DC vov_MP19 PARAM = 'LV9(XAMP.MP19)-VGS(XAMP.MP19)'

.MEAS DC rev_delta_MPB8 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPB8 = PARAM('L_MPB8*W_MPB8*M_MPB8*R_MPB8_MPB9')

.MEAS DC VDS_MPB8 PARAM = 'VDS(XAMP.MPB8)'

.MEAS DC vov_MPB8 PARAM = 'LV9(XAMP.MPB8)-VGS(XAMP.MPB8)'

.MEAS DC rev_delta_MPB10 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPB10 = PARAM('L_MPB1*W_MPB1*M_MPB1*R_MPB1_MPB10*R_MPB10_MPB11')

.MEAS DC VDS_MPB10 PARAM = 'VDS(XAMP.MPB10)'

.MEAS DC rev_delta_MPB9 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPB9 = PARAM('L_MPB8*W_MPB8*M_MPB8*R_MPB8_MPB9')

.MEAS DC VDS_MPB9 PARAM = 'VDS(XAMP.MPB9)'

.MEAS DC rev_delta_MPB11 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPB11 = PARAM('L_MPB1*W_MPB1*M_MPB1*R_MPB1_MPB10*R_MPB10_MPB11')

.MEAS DC VDS_MPB11 PARAM = 'VDS(XAMP.MPB11)'

.MEAS DC rev_delta_MP16 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MP16 = PARAM('L_MP16*W_MP16*M_MP16')

.MEAS DC VDS_MP16 PARAM = 'VDS(XAMP.MP16)'

.MEAS DC vov_MP16 PARAM = 'LV9(XAMP.MP16)-VGS(XAMP.MP16)'

.MEAS DC psiDS_MP18_MP19 = PARAM('ABS(VDS(XAMP.MP18)-VDS(XAMP.MP19))')

.MEAS DC psigs_MP18_MP19 = PARAM('ABS(VGS(XAMP.MP18)-VGS(XAMP.MP19))')

.MEAS DC psiDS_MPB8_MPB9 = PARAM('ABS(VDS(XAMP.MPB8)-VDS(XAMP.MPB9))')

.MEAS DC psigs_MPB8_MPB9 = PARAM('ABS(VGS(XAMP.MPB8)-VGS(XAMP.MPB9))')

.MEAS DC psiDS_MPB10_MPB11 = PARAM('ABS(VDS(XAMP.MPB10)-VDS(XAMP.MPB11))')

.MEAS DC psigs_MPB10_MPB11 = PARAM('ABS(VGS(XAMP.MPB10)-VGS(XAMP.MPB11))')

.MEAS DC psiDS_MN12_MN13 = PARAM('ABS(VDS(XAMP.MN12)-VDS(XAMP.MN13))')

.MEAS DC psigs_MN12_MN13 = PARAM('ABS(VGS(XAMP.MN12)-VGS(XAMP.MN13))')

.MEAS DC psiDS_MN14_MN15 = PARAM('ABS(VDS(XAMP.MN14)-VDS(XAMP.MN15))')

.MEAS DC psigs_MN14_MN15 = PARAM('ABS(VGS(XAMP.MN14)-VGS(XAMP.MN15))')

<Constraint op="GE" value="0.1" meas="vov_MPB3" />

<Constraint op="GE" value="0.1" meas="vov_MPB7" />

<Constraint op="GE" value="0.1" meas="vov_MPB1" />

<Constraint op="GE" value="0.1" meas="vov_MPB4" />

<Constraint op="GE" value="0.1" meas="vov_MPB10" />

<Constraint op="GE" value="0.1" meas="vov_MPB11" />

<Constraint op="LE" value="0.1" meas="psiDS_MP18_MP19" />

<Constraint op="LE" value="0.05" meas="psigs_MP18_MP19" />

<Constraint op="GE" value="0.1" meas="vov_MNB5" />

<Constraint op="GE" value="0.1" meas="vov_MN12" />

<Constraint op="GE" value="0.1" meas="vov_MN13" />

<Constraint op="GE" value="0.1" meas="vov_MN14" />

<Constraint op="GE" value="0.1" meas="vov_MN15" />

<Constraint op="GE" value="0.1" meas="vov_MN17" />

<Constraint op="GE" value="0.1" meas="vov_MPB9" />

<Constraint op="GE" value="0.1" meas="delta_MNB5" />

<Constraint op="GE" value="6.0E-14" meas="A_MNB5" />

<Constraint op="GE" value="0.00" meas="VDS_MNB5" />

<Constraint op="GE" value="0.1" meas="delta_MNB6" />

<Constraint op="GE" value="6.0E-14" meas="A_MNB6" />

<Constraint op="GE" value="0.00" meas="VDS_MNB6" />

<Constraint op="GE" value="0.00" meas="vov_MNB6" />

<Constraint op="GE" value="0.1" meas="delta_MN12" />

<Constraint op="GE" value="6.0E-14" meas="A_MN12" />

71

<Constraint op="GE" value="0.00" meas="VDS_MN12" />

<Constraint op="GE" value="0.1" meas="delta_MN14" />

<Constraint op="GE" value="6.0E-14" meas="A_MN14" />

<Constraint op="GE" value="0.00" meas="VDS_MN14" />

<Constraint op="GE" value="0.1" meas="delta_MN13" />

<Constraint op="GE" value="6.0E-14" meas="A_MN13" />

<Constraint op="GE" value="0.00" meas="VDS_MN13" />

<Constraint op="GE" value="0.1" meas="delta_MN15" />

<Constraint op="GE" value="6.0E-14" meas="A_MN15" />

<Constraint op="GE" value="0.00" meas="VDS_MN15" />

<Constraint op="GE" value="0.1" meas="delta_MN17" />

<Constraint op="GE" value="6.0E-14" meas="A_MN17" />

<Constraint op="GE" value="0.00" meas="VDS_MN17" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPB2" />

<Constraint op="GE" value="6.0E-14" meas="A_MPB2" />

<Constraint op="GE" value="0.00" meas="VDS_MPB2" />

<Constraint op="GE" value="0.00" meas="vov_MPB2" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPB1" />

<Constraint op="GE" value="6.0E-14" meas="A_MPB1" />

<Constraint op="GE" value="0.00" meas="VDS_MPB1" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPB3" />

<Constraint op="GE" value="6.0E-14" meas="A_MPB3" />

<Constraint op="GE" value="0.00" meas="VDS_MPB3" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPB4" />

<Constraint op="GE" value="6.0E-14" meas="A_MPB4" />

<Constraint op="GE" value="0.00" meas="VDS_MPB4" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPB7" />

<Constraint op="GE" value="6.0E-14" meas="A_MPB7" />

<Constraint op="GE" value="0.00" meas="VDS_MPB7" />

<Constraint op="GE" value="0.1" meas="rev_delta_MP18" />

<Constraint op="GE" value="6.0E-14" meas="A_MP18" />

<Constraint op="GE" value="0.00" meas="VDS_MP18" />

<Constraint op="GE" value="0.00" meas="vov_MP18" />

<Constraint op="GE" value="0.1" meas="rev_delta_MP19" />

<Constraint op="GE" value="6.0E-14" meas="A_MP19" />

<Constraint op="GE" value="0.00" meas="VDS_MP19" />

<Constraint op="GE" value="0.00" meas="vov_MP19" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPB8" />

<Constraint op="GE" value="6.0E-14" meas="A_MPB8" />

<Constraint op="GE" value="0.00" meas="VDS_MPB8" />

<Constraint op="GE" value="0.00" meas="vov_MPB8" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPB10" />

<Constraint op="GE" value="6.0E-14" meas="A_MPB10" />

<Constraint op="GE" value="0.00" meas="VDS_MPB10" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPB9" />

<Constraint op="GE" value="6.0E-14" meas="A_MPB9" />

<Constraint op="GE" value="0.00" meas="VDS_MPB9" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPB11" />

<Constraint op="GE" value="6.0E-14" meas="A_MPB11" />

<Constraint op="GE" value="0.00" meas="VDS_MPB11" />

<Constraint op="GE" value="0.1" meas="rev_delta_MP16" />

<Constraint op="GE" value="6.0E-14" meas="A_MP16" />

<Constraint op="GE" value="0.00" meas="VDS_MP16" />

<Constraint op="GE" value="0.00" meas="vov_MP16" />

<Constraint op="LE" value="0.1" meas="psiDS_MP18_MP19" />

<Constraint op="LE" value="0.05" meas="psigs_MP18_MP19" />

<Constraint op="LE" value="0.1" meas="psiDS_MPB8_MPB9" />

<Constraint op="LE" value="0.05" meas="psigs_MPB8_MPB9" />

<Constraint op="LE" value="0.1" meas="psiDS_MPB10_MPB11" />

<Constraint op="LE" value="0.05" meas="psigs_MPB10_MPB11" />

<Constraint op="LE" value="0.1" meas="psiDS_MN12_MN13" />

<Constraint op="LE" value="0.05" meas="psigs_MN12_MN13" />

<Constraint op="LE" value="0.1" meas="psiDS_MN14_MN15" />

<Constraint op="LE" value="0.05" meas="psigs_MN14_MN15" />

72

A.2 Fully Differential two-stage Folded Cascode

Netlist testing for circuit

.subckt nova_diff cmfb gnd vdd vin vip von vop

Device list

mpm1 von net15 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4*R_mpm4_mpm3

mpm2 net15 net15 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4

mpm3 vop net024 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4*R_mpm4_mpm3

mpm4 net024 net024 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4

mnm5 net15 vip crossa crossa N_HG_33_L130E L=L_mnm6 W=W_mnm6 M=M_mnm6

mnm7 vdd vip crossb crossb N_HG_33_L130E L=L_mnm8 W=W_mnm8 M=M_mnm8

mnm9 crossb vin gnd gnd N_HG_33_L130E L=L_mnm10 W=W_mnm10 M=M_mnm10

mnm11 von cmfb gnd gnd N_HG_33_L130E L=L_mnm12 W=W_mnm12 M=M_mnm12

mnm12 vop cmfb gnd gnd N_HG_33_L130E L=L_mnm12 W=W_mnm12 M=M_mnm12

mnm6 net024 vin crossb crossb N_HG_33_L130E L=L_mnm6 W=W_mnm6 M=M_mnm6

mnm8 vdd vin crossa crossa N_HG_33_L130E L=L_mnm8 W=W_mnm8 M=M_mnm8

mnm10 crossa vip gnd gnd N_HG_33_L130E L=L_mnm10 W=W_mnm10 M=M_mnm10

<Variable name="W_MP0" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MP0" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MP0" min="1" step="1" max="8"/>

<Variable name="W_MPM17" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MPM17" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MPM17" min="1" step="1" max="8"/>

<Variable name="W_MPM10" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MPM10" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MPM10" min="1" step="1" max="8"/>

<Variable name="R_MPM10_MPM13" min="0.5" step="0.1" max="10"/>

<Variable name="W_MPM15" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MPM15" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MPM15" min="1" step="1" max="8"/>

<Variable name="W_MPM1" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MPM1" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MPM1" min="1" step="1" max="8"/>

<Variable name="R_MPM1_MPM3" min="0.5" step="0.1" max="10"/>

<Variable name="R_MPM1_MPM2" min="0.5" step="0.1" max="10"/>

<Variable name="W_MPM7" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MPM7" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MPM7" min="1" step="1" max="8"/>

<Variable name="W_MN0" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MN0" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MN0" min="1" step="1" max="8"/>

<Variable name="W_MNM4" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MNM4" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MNM4" min="1" step="1" max="8"/>

<Variable name="R_MNM4_MNM19" min="0.5" step="0.1" max="10"/>

<Variable name="R_MNM4_MNM5" min="0.5" step="0.1" max="10"/>

<Variable name="W_MNM20" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MNM20" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MNM20" min="1" step="1" max="8"/>

<Variable name="W_MNM24" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MNM24" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MNM24" min="1" step="1" max="8"/>

<Variable name="W_MNM6" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MNM6" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MNM6" min="1" step="1" max="8"/>

<Variable name="R_MNM6_MNM9" min="0.5" step="0.1" max="10"/>

<Variable name="R_MNM6_MNM12" min="0.5" step="0.1" max="10"/>

<Variable name="W_MNM23" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_MNM23" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_MNM23" min="1" step="1" max="8"/>

<MeasureDescription name="psiDS_MPM17_MPM16" description="VDS_X1 - VDS_X2" units="[V]" />

73

<MeasureDescription name="psigs_MPM17_MPM16" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="vov_MPM13" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MPM3" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MPM2" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MNM4" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MNM18" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MNM19" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MNM5" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MNM11" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MNM8" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MNM12" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_MNM9" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MN0" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MN0" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MN0" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MN0" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MNM18" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM18" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM18" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MNM19" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM19" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM19" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MNM5" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM5" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM5" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MNM11" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM11" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM11" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MNM8" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM8" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM8" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MNM4" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM4" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM4" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MNM21" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="W_MNM21" description="Width" units="[m]" />

<MeasureDescription name="L_MNM21" description="Length" units="[m]" />

<MeasureDescription name="A_MNM21" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM21" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MNM21" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MNM20" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM20" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM20" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MNM20" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MNM24" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM24" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM24" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MNM24" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MNM9" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM9" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM9" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MNM12" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM12" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM12" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="delta_MNM6" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM6" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM6" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MNM6" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MNM22" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="W_MNM22" description="Width" units="[m]" />

<MeasureDescription name="L_MNM22" description="Length" units="[m]" />

<MeasureDescription name="A_MNM22" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM22" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MNM22" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_MNM23" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_MNM23" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MNM23" description="Drain-Source Voltage" units="[V]" />

74

<MeasureDescription name="vov_MNM23" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MP0" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MP0" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MP0" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MP0" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPM17" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPM17" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM17" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MPM17" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPM16" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPM16" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM16" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MPM16" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPM13" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPM13" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM13" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MPM10" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPM10" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM10" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MPM10" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPM14" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="W_MPM14" description="Width" units="[m]" />

<MeasureDescription name="L_MPM14" description="Length" units="[m]" />

<MeasureDescription name="A_MPM14" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM14" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MPM14" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPM15" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPM15" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM15" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MPM15" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPM3" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPM3" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM3" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MPM1" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPM1" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM1" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MPM1" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_MPM2" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPM2" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM2" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_MPM7" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_MPM7" description="Area" units="[m²]" />

<MeasureDescription name="VDS_MPM7" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_MPM7" description="Overdrive" units="[V]" />

<MeasureDescription name="psiDS_MPM17_MPM16" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MPM17_MPM16" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_MPM14_MPM15" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MPM14_MPM15" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_MNM18_MNM19" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MNM18_MNM19" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_MNM21_MNM20" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MNM21_MNM20" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_MNM22_MNM23" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_MNM22_MNM23" description="VGS_X1 - VGS_X2" units="[V]" />

.MEAS DC psiDS_MPM17_MPM16 = PARAM('ABS(VDS(XAMP.MPM17)-VDS(XAMP.MPM16))')

.MEAS DC psigs_MPM17_MPM16 = PARAM('ABS(VGS(XAMP.MPM17)-VGS(XAMP.MPM16))')

.MEAS DC vov_MPM13 PARAM = 'LV9(XAMP.MPM13)-VGS(XAMP.MPM13)'

.MEAS DC vov_MPM3 PARAM = 'LV9(XAMP.MPM3)-VGS(XAMP.MPM3)'

.MEAS DC vov_MPM2 PARAM = 'LV9(XAMP.MPM2)-VGS(XAMP.MPM2)'

.MEAS DC vov_MNM4 PARAM = 'LV9(XAMP.MNM4)-VGS(XAMP.MNM4)'

.MEAS DC vov_MNM18 PARAM = 'LV9(XAMP.MNM18)-VGS(XAMP.MNM18)'

.MEAS DC vov_MNM19 PARAM = 'LV9(XAMP.MNM19)-VGS(XAMP.MNM19)'

.MEAS DC vov_MNM5 PARAM = 'LV9(XAMP.MNM5)-VGS(XAMP.MNM5)'

.MEAS DC vov_MNM11 PARAM = 'LV9(XAMP.MNM11)-VGS(XAMP.MNM11)'

.MEAS DC vov_MNM8 PARAM = 'LV9(XAMP.MNM8)-VGS(XAMP.MNM8)'

75

.MEAS DC vov_MNM12 PARAM = 'LV9(XAMP.MNM12)-VGS(XAMP.MNM12)'

.MEAS DC vov_MNM9 PARAM = 'LV9(XAMP.MNM9)-VGS(XAMP.MNM9)'

.MEAS DC delta_MN0 PARAM = 'VDS(XAMP.MN0) - VDSAT(XAMP.MN0)'

.MEAS DC A_MN0 = PARAM('L_MN0*W_MN0*M_MN0')

.MEAS DC VDS_MN0 PARAM = 'VDS(XAMP.MN0)'

.MEAS DC vov_MN0 PARAM = 'LV9(XAMP.MN0)-VGS(XAMP.MN0)'

.MEAS DC delta_MNM18 PARAM = 'VDS(XAMP.MNM18) - VDSAT(XAMP.MNM18)'

.MEAS DC A_MNM18 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM19')

.MEAS DC VDS_MNM18 PARAM = 'VDS(XAMP.MNM18)'

.MEAS DC delta_MNM19 PARAM = 'VDS(XAMP.MNM19) - VDSAT(XAMP.MNM19)'

.MEAS DC A_MNM19 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM19')

.MEAS DC VDS_MNM19 PARAM = 'VDS(XAMP.MNM19)'

.MEAS DC delta_MNM5 PARAM = 'VDS(XAMP.MNM5) - VDSAT(XAMP.MNM5)'

.MEAS DC A_MNM5 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM5')

.MEAS DC VDS_MNM5 PARAM = 'VDS(XAMP.MNM5)'

.MEAS DC delta_MNM11 PARAM = 'VDS(XAMP.MNM11) - VDSAT(XAMP.MNM11)'

.MEAS DC A_MNM11 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM5*R_MNM5_MNM11')

.MEAS DC VDS_MNM11 PARAM = 'VDS(XAMP.MNM11)'

.MEAS DC delta_MNM8 PARAM = 'VDS(XAMP.MNM8) - VDSAT(XAMP.MNM8)'

.MEAS DC A_MNM8 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM5*R_MNM5_MNM8')

.MEAS DC VDS_MNM8 PARAM = 'VDS(XAMP.MNM8)'

.MEAS DC delta_MNM4 PARAM = 'VDS(XAMP.MNM4) - VDSAT(XAMP.MNM4)'

.MEAS DC A_MNM4 = PARAM('L_MNM4*W_MNM4*M_MNM4')

.MEAS DC VDS_MNM4 PARAM = 'VDS(XAMP.MNM4)'

.MEAS DC delta_MNM21 PARAM = 'VDS(XAMP.MNM21) - VDSAT(XAMP.MNM21)'

.MEAS DC W_MNM21 = PARAM('W_MNM20*M_MNM20')

.MEAS DC L_MNM21 = PARAM('L_MNM20')

.MEAS DC A_MNM21 = PARAM('L_MNM20*W_MNM20*M_MNM20')

.MEAS DC VDS_MNM21 PARAM = 'VDS(XAMP.MNM21)'

.MEAS DC vov_MNM21 PARAM = 'LV9(XAMP.MNM21)-VGS(XAMP.MNM21)'

.MEAS DC delta_MNM20 PARAM = 'VDS(XAMP.MNM20) - VDSAT(XAMP.MNM20)'

.MEAS DC A_MNM20 = PARAM('L_MNM20*W_MNM20*M_MNM20')

.MEAS DC VDS_MNM20 PARAM = 'VDS(XAMP.MNM20)'

.MEAS DC vov_MNM20 PARAM = 'LV9(XAMP.MNM20)-VGS(XAMP.MNM20)'

.MEAS DC delta_MNM24 PARAM = 'VDS(XAMP.MNM24) - VDSAT(XAMP.MNM24)'

.MEAS DC A_MNM24 = PARAM('L_MNM24*W_MNM24*M_MNM24')

.MEAS DC VDS_MNM24 PARAM = 'VDS(XAMP.MNM24)'

.MEAS DC vov_MNM24 PARAM = 'LV9(XAMP.MNM24)-VGS(XAMP.MNM24)'

.MEAS DC delta_MNM9 PARAM = 'VDS(XAMP.MNM9) - VDSAT(XAMP.MNM9)'

.MEAS DC A_MNM9 = PARAM('L_MNM6*W_MNM6*M_MNM6*R_MNM6_MNM9')

.MEAS DC VDS_MNM9 PARAM = 'VDS(XAMP.MNM9)'

.MEAS DC delta_MNM12 PARAM = 'VDS(XAMP.MNM12) - VDSAT(XAMP.MNM12)'

.MEAS DC A_MNM12 = PARAM('L_MNM6*W_MNM6*M_MNM6*R_MNM6_MNM12')

.MEAS DC VDS_MNM12 PARAM = 'VDS(XAMP.MNM12)'

.MEAS DC delta_MNM6 PARAM = 'VDS(XAMP.MNM6) - VDSAT(XAMP.MNM6)'

.MEAS DC A_MNM6 = PARAM('L_MNM6*W_MNM6*M_MNM6')

.MEAS DC VDS_MNM6 PARAM = 'VDS(XAMP.MNM6)'

.MEAS DC vov_MNM6 PARAM = 'LV9(XAMP.MNM6)-VGS(XAMP.MNM6)'

.MEAS DC delta_MNM22 PARAM = 'VDS(XAMP.MNM22) - VDSAT(XAMP.MNM22)'

.MEAS DC W_MNM22 = PARAM('W_MNM23*M_MNM23')

.MEAS DC L_MNM22 = PARAM('L_MNM23')

.MEAS DC A_MNM22 = PARAM('L_MNM23*W_MNM23*M_MNM23')

.MEAS DC VDS_MNM22 PARAM = 'VDS(XAMP.MNM22)'

.MEAS DC vov_MNM22 PARAM = 'LV9(XAMP.MNM22)-VGS(XAMP.MNM22)'

.MEAS DC delta_MNM23 PARAM = 'VDS(XAMP.MNM23) - VDSAT(XAMP.MNM23)'

.MEAS DC A_MNM23 = PARAM('L_MNM23*W_MNM23*M_MNM23')

.MEAS DC VDS_MNM23 PARAM = 'VDS(XAMP.MNM23)'

.MEAS DC vov_MNM23 PARAM = 'LV9(XAMP.MNM23)-VGS(XAMP.MNM23)'

.MEAS DC rev_delta_MP0 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MP0 = PARAM('L_MP0*W_MP0*M_MP0')

.MEAS DC VDS_MP0 PARAM = 'VDS(XAMP.MP0)'

.MEAS DC vov_MP0 PARAM = 'LV9(XAMP.MP0)-VGS(XAMP.MP0)'

.MEAS DC rev_delta_MPM17 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPM17 = PARAM('L_MPM17*W_MPM17*M_MPM17')

.MEAS DC VDS_MPM17 PARAM = 'VDS(XAMP.MPM17)'

.MEAS DC vov_MPM17 PARAM = 'LV9(XAMP.MPM17)-VGS(XAMP.MPM17)'

.MEAS DC rev_delta_MPM16 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

76

.MEAS DC A_MPM16 = PARAM('L_MPM17*W_MPM17*M_MPM17')

.MEAS DC VDS_MPM16 PARAM = 'VDS(XAMP.MPM16)'

.MEAS DC vov_MPM16 PARAM = 'LV9(XAMP.MPM16)-VGS(XAMP.MPM16)'

.MEAS DC rev_delta_MPM13 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPM13 = PARAM('L_MPM10*W_MPM10*M_MPM10*R_MPM10_MPM13')

.MEAS DC VDS_MPM13 PARAM = 'VDS(XAMP.MPM13)'

.MEAS DC rev_delta_MPM10 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPM10 = PARAM('L_MPM10*W_MPM10*M_MPM10')

.MEAS DC VDS_MPM10 PARAM = 'VDS(XAMP.MPM10)'

.MEAS DC vov_MPM10 PARAM = 'LV9(XAMP.MPM10)-VGS(XAMP.MPM10)'

.MEAS DC rev_delta_MPM14 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC W_MPM14 = PARAM('W_MPM15*M_MPM15')

.MEAS DC L_MPM14 = PARAM('L_MPM15')

.MEAS DC A_MPM14 = PARAM('L_MPM15*W_MPM15*M_MPM15')

.MEAS DC VDS_MPM14 PARAM = 'VDS(XAMP.MPM14)'

.MEAS DC vov_MPM14 PARAM = 'LV9(XAMP.MPM14)-VGS(XAMP.MPM14)'

.MEAS DC rev_delta_MPM15 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPM15 = PARAM('L_MPM15*W_MPM15*M_MPM15')

.MEAS DC VDS_MPM15 PARAM = 'VDS(XAMP.MPM15)'

.MEAS DC vov_MPM15 PARAM = 'LV9(XAMP.MPM15)-VGS(XAMP.MPM15)'

.MEAS DC rev_delta_MPM3 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPM3 = PARAM('L_MPM1*W_MPM1*M_MPM1*R_MPM1_MPM3')

.MEAS DC VDS_MPM3 PARAM = 'VDS(XAMP.MPM3)'

.MEAS DC rev_delta_MPM1 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPM1 = PARAM('L_MPM1*W_MPM1*M_MPM1')

.MEAS DC VDS_MPM1 PARAM = 'VDS(XAMP.MPM1)'

.MEAS DC vov_MPM1 PARAM = 'LV9(XAMP.MPM1)-VGS(XAMP.MPM1)'

.MEAS DC rev_delta_MPM2 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPM2 = PARAM('L_MPM1*W_MPM1*M_MPM1*R_MPM1_MPM2')

.MEAS DC VDS_MPM2 PARAM = 'VDS(XAMP.MPM2)'

.MEAS DC rev_delta_MPM7 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_MPM7 = PARAM('L_MPM7*W_MPM7*M_MPM7')

.MEAS DC VDS_MPM7 PARAM = 'VDS(XAMP.MPM7)'

.MEAS DC vov_MPM7 PARAM = 'LV9(XAMP.MPM7)-VGS(XAMP.MPM7)'

.MEAS DC psiDS_MPM17_MPM16 = PARAM('ABS(VDS(XAMP.MPM17)-VDS(XAMP.MPM16))')

.MEAS DC psigs_MPM17_MPM16 = PARAM('ABS(VGS(XAMP.MPM17)-VGS(XAMP.MPM16))')

.MEAS DC psiDS_MPM14_MPM15 = PARAM('ABS(VDS(XAMP.MPM14)-VDS(XAMP.MPM15))')

.MEAS DC psigs_MPM14_MPM15 = PARAM('ABS(VGS(XAMP.MPM14)-VGS(XAMP.MPM15))')

.MEAS DC psiDS_MNM18_MNM19 = PARAM('ABS(VDS(XAMP.MNM18)-VDS(XAMP.MNM19))')

.MEAS DC psigs_MNM18_MNM19 = PARAM('ABS(VGS(XAMP.MNM18)-VGS(XAMP.MNM19))')

.MEAS DC psiDS_MNM21_MNM20 = PARAM('ABS(VDS(XAMP.MNM21)-VDS(XAMP.MNM20))')

.MEAS DC psigs_MNM21_MNM20 = PARAM('ABS(VGS(XAMP.MNM21)-VGS(XAMP.MNM20))')

.MEAS DC psiDS_MNM22_MNM23 = PARAM('ABS(VDS(XAMP.MNM22)-VDS(XAMP.MNM23))')

.MEAS DC psigs_MNM22_MNM23 = PARAM('ABS(VGS(XAMP.MNM22)-VGS(XAMP.MNM23))')

<Constraint op="LE" value="0.1" meas="psiDS_MPM17_MPM16" />

<Constraint op="LE" value="0.05" meas="psigs_MPM17_MPM16" />

<Constraint op="GE" value="0.1" meas="vov_MPM13" />

<Constraint op="GE" value="0.1" meas="vov_MPM3" />

<Constraint op="GE" value="0.1" meas="vov_MPM2" />

<Constraint op="GE" value="0.1" meas="vov_MNM4" />

<Constraint op="GE" value="0.1" meas="vov_MNM18" />

<Constraint op="GE" value="0.1" meas="vov_MNM19" />

<Constraint op="GE" value="0.1" meas="vov_MNM5" />

<Constraint op="GE" value="0.1" meas="vov_MNM11" />

<Constraint op="GE" value="0.1" meas="vov_MNM8" />

<Constraint op="GE" value="0.1" meas="vov_MNM12" />

<Constraint op="GE" value="0.1" meas="vov_MNM9" />

<Constraint op="GE" value="0.1" meas="delta_MN0" />

<Constraint op="GE" value="6.0E-14" meas="A_MN0" />

<Constraint op="GE" value="0.00" meas="VDS_MN0" />

<Constraint op="GE" value="0.00" meas="vov_MN0" />

<Constraint op="GE" value="0.1" meas="delta_MNM18" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM18" />

<Constraint op="GE" value="0.00" meas="VDS_MNM18" />

<Constraint op="GE" value="0.1" meas="delta_MNM19" />

77

<Constraint op="GE" value="6.0E-14" meas="A_MNM19" />

<Constraint op="GE" value="0.00" meas="VDS_MNM19" />

<Constraint op="GE" value="0.1" meas="delta_MNM5" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM5" />

<Constraint op="GE" value="0.00" meas="VDS_MNM5" />

<Constraint op="GE" value="0.1" meas="delta_MNM11" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM11" />

<Constraint op="GE" value="0.00" meas="VDS_MNM11" />

<Constraint op="GE" value="0.1" meas="delta_MNM8" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM8" />

<Constraint op="GE" value="0.00" meas="VDS_MNM8" />

<Constraint op="GE" value="0.1" meas="delta_MNM4" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM4" />

<Constraint op="GE" value="0.00" meas="VDS_MNM4" />

<Constraint op="GE" value="0.1" meas="delta_MNM21" />

<Constraint op="GE" value="3.0E-7" meas="W_MNM21" />

<Constraint op="GE" value="1.5E-7" meas="L_MNM21" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM21" />

<Constraint op="GE" value="0.00" meas="VDS_MNM21" />

<Constraint op="GE" value="0.00" meas="vov_MNM21" />

<Constraint op="GE" value="0.1" meas="delta_MNM20" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM20" />

<Constraint op="GE" value="0.00" meas="VDS_MNM20" />

<Constraint op="GE" value="0.00" meas="vov_MNM20" />

<Constraint op="GE" value="0.1" meas="delta_MNM24" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM24" />

<Constraint op="GE" value="0.00" meas="VDS_MNM24" />

<Constraint op="GE" value="0.00" meas="vov_MNM24" />

<Constraint op="GE" value="0.1" meas="delta_MNM9" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM9" />

<Constraint op="GE" value="0.00" meas="VDS_MNM9" />

<Constraint op="GE" value="0.1" meas="delta_MNM12" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM12" />

<Constraint op="GE" value="0.00" meas="VDS_MNM12" />

<Constraint op="GE" value="0.1" meas="delta_MNM6" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM6" />

<Constraint op="GE" value="0.00" meas="VDS_MNM6" />

<Constraint op="GE" value="0.00" meas="vov_MNM6" />

<Constraint op="GE" value="0.1" meas="delta_MNM22" />

<Constraint op="GE" value="3.0E-7" meas="W_MNM22" />

<Constraint op="GE" value="1.5E-7" meas="L_MNM22" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM22" />

<Constraint op="GE" value="0.00" meas="VDS_MNM22" />

<Constraint op="GE" value="0.00" meas="vov_MNM22" />

<Constraint op="GE" value="0.1" meas="delta_MNM23" />

<Constraint op="GE" value="6.0E-14" meas="A_MNM23" />

<Constraint op="GE" value="0.00" meas="VDS_MNM23" />

<Constraint op="GE" value="0.00" meas="vov_MNM23" />

<Constraint op="GE" value="0.1" meas="rev_delta_MP0" />

<Constraint op="GE" value="6.0E-14" meas="A_MP0" />

<Constraint op="GE" value="0.00" meas="VDS_MP0" />

<Constraint op="GE" value="0.00" meas="vov_MP0" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPM17" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM17" />

<Constraint op="GE" value="0.00" meas="VDS_MPM17" />

<Constraint op="GE" value="0.00" meas="vov_MPM17" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPM16" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM16" />

<Constraint op="GE" value="0.00" meas="VDS_MPM16" />

<Constraint op="GE" value="0.00" meas="vov_MPM16" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPM13" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM13" />

<Constraint op="GE" value="0.00" meas="VDS_MPM13" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPM10" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM10" />

<Constraint op="GE" value="0.00" meas="VDS_MPM10" />

<Constraint op="GE" value="0.00" meas="vov_MPM10" />

78

<Constraint op="GE" value="0.1" meas="rev_delta_MPM14" />

<Constraint op="GE" value="3.0E-7" meas="W_MPM14" />

<Constraint op="GE" value="1.5E-7" meas="L_MPM14" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM14" />

<Constraint op="GE" value="0.00" meas="VDS_MPM14" />

<Constraint op="GE" value="0.00" meas="vov_MPM14" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPM15" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM15" />

<Constraint op="GE" value="0.00" meas="VDS_MPM15" />

<Constraint op="GE" value="0.00" meas="vov_MPM15" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPM3" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM3" />

<Constraint op="GE" value="0.00" meas="VDS_MPM3" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPM1" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM1" />

<Constraint op="GE" value="0.00" meas="VDS_MPM1" />

<Constraint op="GE" value="0.00" meas="vov_MPM1" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPM2" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM2" />

<Constraint op="GE" value="0.00" meas="VDS_MPM2" />

<Constraint op="GE" value="0.1" meas="rev_delta_MPM7" />

<Constraint op="GE" value="6.0E-14" meas="A_MPM7" />

<Constraint op="GE" value="0.00" meas="VDS_MPM7" />

<Constraint op="GE" value="0.00" meas="vov_MPM7" />

<Constraint op="LE" value="0.1" meas="psiDS_MPM17_MPM16" />

<Constraint op="LE" value="0.05" meas="psigs_MPM17_MPM16" />

<Constraint op="LE" value="0.1" meas="psiDS_MPM14_MPM15" />

<Constraint op="LE" value="0.05" meas="psigs_MPM14_MPM15" />

<Constraint op="LE" value="0.1" meas="psiDS_MNM18_MNM19" />

<Constraint op="LE" value="0.05" meas="psigs_MNM18_MNM19" />

<Constraint op="LE" value="0.1" meas="psiDS_MNM21_MNM20" />

<Constraint op="LE" value="0.05" meas="psigs_MNM21_MNM20" />

<Constraint op="LE" value="0.1" meas="psiDS_MNM22_MNM23" />

<Constraint op="LE" value="0.05" meas="psigs_MNM22_MNM23" />

A.3 Fully Differential OTA

Netlist testing for circuit

.subckt nova_diff cmfb gnd vdd vin vip von vop

Device list

mpm1 von net15 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4*R_mpm4_mpm3

mpm2 net15 net15 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4

mpm3 vop net024 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4*R_mpm4_mpm3

mpm4 net024 net024 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4

mnm5 net15 vip crossa crossa N_HG_33_L130E L=L_mnm6 W=W_mnm6 M=M_mnm6

mnm7 vdd vip crossb crossb N_HG_33_L130E L=L_mnm8 W=W_mnm8 M=M_mnm8

mnm9 crossb vin gnd gnd N_HG_33_L130E L=L_mnm10 W=W_mnm10 M=M_mnm10

mnm11 von cmfb gnd gnd N_HG_33_L130E L=L_mnm12 W=W_mnm12 M=M_mnm12

mnm12 vop cmfb gnd gnd N_HG_33_L130E L=L_mnm12 W=W_mnm12 M=M_mnm12

mnm6 net024 vin crossb crossb N_HG_33_L130E L=L_mnm6 W=W_mnm6 M=M_mnm6

mnm8 vdd vin crossa crossa N_HG_33_L130E L=L_mnm8 W=W_mnm8 M=M_mnm8

mnm10 crossa vip gnd gnd N_HG_33_L130E L=L_mnm10 W=W_mnm10 M=M_mnm10

<Variable name="W_mpm4" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_mpm4" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_mpm4" min="1" step="1" max="8"/>

<Variable name="R_mpm4_mpm3" min="0.5" step="0.1" max="10"/>

<Variable name="W_mnm6" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_mnm6" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_mnm6" min="1" step="1" max="8"/>

<Variable name="W_mnm8" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_mnm8" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

79

<Variable name="M_mnm8" min="1" step="1" max="8"/>

<Variable name="W_mnm10" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_mnm10" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_mnm10" min="1" step="1" max="8"/>

<Variable name="W_mnm12" min="3.0E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="L_mnm12" min="1.5E-7" step="5.0E-7" max="1.0E-4"/>

<Variable name="M_mnm12" min="1" step="1" max="8"/>

<MeasureDescription name="vov_mpm1" description="Overdrive" units="[V]" />

<MeasureDescription name="vov_mpm3" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_mnm5" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="W_mnm5" description="Width" units="[m]" />

<MeasureDescription name="L_mnm5" description="Length" units="[m]" />

<MeasureDescription name="A_mnm5" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mnm5" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mnm5" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_mnm7" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="W_mnm7" description="Width" units="[m]" />

<MeasureDescription name="L_mnm7" description="Length" units="[m]" />

<MeasureDescription name="A_mnm7" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mnm7" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mnm7" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_mnm9" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="W_mnm9" description="Width" units="[m]" />

<MeasureDescription name="L_mnm9" description="Length" units="[m]" />

<MeasureDescription name="A_mnm9" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mnm9" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mnm9" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_mnm11" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="W_mnm11" description="Width" units="[m]" />

<MeasureDescription name="L_mnm11" description="Length" units="[m]" />

<MeasureDescription name="A_mnm11" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mnm11" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mnm11" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_mnm12" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_mnm12" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mnm12" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mnm12" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_mnm6" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_mnm6" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mnm6" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mnm6" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_mnm8" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_mnm8" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mnm8" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mnm8" description="Overdrive" units="[V]" />

<MeasureDescription name="delta_mnm10" description="VDS - VDSat" units="[V]" />

<MeasureDescription name="A_mnm10" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mnm10" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mnm10" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_mpm1" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="W_mpm2" description="Width" units="[m]" />

<MeasureDescription name="L_mpm2" description="Length" units="[m]" />

<MeasureDescription name="A_mpm1" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mpm1" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_mpm2" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_mpm2" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mpm2" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mpm2" description="Overdrive" units="[V]" />

<MeasureDescription name="rev_delta_mpm3" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_mpm3" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mpm3" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="rev_delta_mpm4" description="VDSat - VDS" units="[V]" />

<MeasureDescription name="A_mpm4" description="Area" units="[m²]" />

<MeasureDescription name="VDS_mpm4" description="Drain-Source Voltage" units="[V]" />

<MeasureDescription name="vov_mpm4" description="Overdrive" units="[V]" />

80

<MeasureDescription name="psiDS_mpm2_mpm4" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_mpm2_mpm4" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_mnm5_mnm6" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_mnm5_mnm6" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_mnm7_mnm8" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_mnm7_mnm8" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_mnm9_mnm10" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_mnm9_mnm10" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_mpm1_mpm3" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_mpm1_mpm3" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_mpm2_mpm4" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_mpm2_mpm4" description="VGS_X1 - VGS_X2" units="[V]" />

<MeasureDescription name="psiDS_mnm11_mnm12" description="VDS_X1 - VDS_X2" units="[V]" />

<MeasureDescription name="psigs_mnm11_mnm12" description="VGS_X1 - VGS_X2" units="[V]" />

.MEAS DC vov_mpm1 PARAM = 'LV9(XAMP.mpm1)-VGS(XAMP.mpm1)'

.MEAS DC vov_mpm3 PARAM = 'LV9(XAMP.mpm3)-VGS(XAMP.mpm3)'

.MEAS DC delta_mnm5 PARAM = 'VDS(XAMP.mnm5) - VDSAT(XAMP.mnm5)'

.MEAS DC W_mnm5 = PARAM('W_mnm6*M_mnm6')

.MEAS DC L_mnm5 = PARAM('L_mnm6')

.MEAS DC A_mnm5 = PARAM('L_mnm6*W_mnm6*M_mnm6')

.MEAS DC VDS_mnm5 PARAM = 'VDS(XAMP.mnm5)'

.MEAS DC vov_mnm5 PARAM = 'LV9(XAMP.mnm5)-VGS(XAMP.mnm5)'

.MEAS DC delta_mnm7 PARAM = 'VDS(XAMP.mnm7) - VDSAT(XAMP.mnm7)'

.MEAS DC W_mnm7 = PARAM('W_mnm8*M_mnm8')

.MEAS DC L_mnm7 = PARAM('L_mnm8')

.MEAS DC A_mnm7 = PARAM('L_mnm8*W_mnm8*M_mnm8')

.MEAS DC VDS_mnm7 PARAM = 'VDS(XAMP.mnm7)'

.MEAS DC vov_mnm7 PARAM = 'LV9(XAMP.mnm7)-VGS(XAMP.mnm7)'

.MEAS DC delta_mnm9 PARAM = 'VDS(XAMP.mnm9) - VDSAT(XAMP.mnm9)'

.MEAS DC W_mnm9 = PARAM('W_mnm10*M_mnm10')

.MEAS DC L_mnm9 = PARAM('L_mnm10')

.MEAS DC A_mnm9 = PARAM('L_mnm10*W_mnm10*M_mnm10')

.MEAS DC VDS_mnm9 PARAM = 'VDS(XAMP.mnm9)'

.MEAS DC vov_mnm9 PARAM = 'LV9(XAMP.mnm9)-VGS(XAMP.mnm9)'

.MEAS DC delta_mnm11 PARAM = 'VDS(XAMP.mnm11) - VDSAT(XAMP.mnm11)'

.MEAS DC W_mnm11 = PARAM('W_mnm12*M_mnm12')

.MEAS DC L_mnm11 = PARAM('L_mnm12')

.MEAS DC A_mnm11 = PARAM('L_mnm12*W_mnm12*M_mnm12')

.MEAS DC VDS_mnm11 PARAM = 'VDS(XAMP.mnm11)'

.MEAS DC vov_mnm11 PARAM = 'LV9(XAMP.mnm11)-VGS(XAMP.mnm11)'

.MEAS DC delta_mnm12 PARAM = 'VDS(XAMP.mnm12) - VDSAT(XAMP.mnm12)'

.MEAS DC A_mnm12 = PARAM('L_mnm12*W_mnm12*M_mnm12')

.MEAS DC VDS_mnm12 PARAM = 'VDS(XAMP.mnm12)'

.MEAS DC vov_mnm12 PARAM = 'LV9(XAMP.mnm12)-VGS(XAMP.mnm12)'

.MEAS DC delta_mnm6 PARAM = 'VDS(XAMP.mnm6) - VDSAT(XAMP.mnm6)'

.MEAS DC A_mnm6 = PARAM('L_mnm6*W_mnm6*M_mnm6')

.MEAS DC VDS_mnm6 PARAM = 'VDS(XAMP.mnm6)'

.MEAS DC vov_mnm6 PARAM = 'LV9(XAMP.mnm6)-VGS(XAMP.mnm6)'

.MEAS DC delta_mnm8 PARAM = 'VDS(XAMP.mnm8) - VDSAT(XAMP.mnm8)'

.MEAS DC A_mnm8 = PARAM('L_mnm8*W_mnm8*M_mnm8')

.MEAS DC VDS_mnm8 PARAM = 'VDS(XAMP.mnm8)'

.MEAS DC vov_mnm8 PARAM = 'LV9(XAMP.mnm8)-VGS(XAMP.mnm8)'

.MEAS DC delta_mnm10 PARAM = 'VDS(XAMP.mnm10) - VDSAT(XAMP.mnm10)'

.MEAS DC A_mnm10 = PARAM('L_mnm10*W_mnm10*M_mnm10')

.MEAS DC VDS_mnm10 PARAM = 'VDS(XAMP.mnm10)'

.MEAS DC vov_mnm10 PARAM = 'LV9(XAMP.mnm10)-VGS(XAMP.mnm10)'

.MEAS DC rev_delta_mpm1 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC W_mpm2 = PARAM('W_mpm4*M_mpm4')

.MEAS DC L_mpm2 = PARAM('L_mpm4')

.MEAS DC A_mpm1 = PARAM('L_mpm4*W_mpm4*M_mpm4*R_mpm4_mpm3')

.MEAS DC VDS_mpm1 PARAM = 'VDS(XAMP.mpm1)'

.MEAS DC rev_delta_mpm2 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_mpm2 = PARAM('L_mpm4*W_mpm4*M_mpm4')

.MEAS DC VDS_mpm2 PARAM = 'VDS(XAMP.mpm2)'

.MEAS DC vov_mpm2 PARAM = 'LV9(XAMP.mpm2)-VGS(XAMP.mpm2)'

81

.MEAS DC rev_delta_mpm3 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_mpm3 = PARAM('L_mpm4*W_mpm4*M_mpm4*R_mpm4_mpm3')

.MEAS DC VDS_mpm3 PARAM = 'VDS(XAMP.mpm3)'

.MEAS DC rev_delta_mpm4 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)'

.MEAS DC A_mpm4 = PARAM('L_mpm4*W_mpm4*M_mpm4')

.MEAS DC VDS_mpm4 PARAM = 'VDS(XAMP.mpm4)'

.MEAS DC vov_mpm4 PARAM = 'LV9(XAMP.mpm4)-VGS(XAMP.mpm4)'

.MEAS DC psiDS_mpm2_mpm4 = PARAM('ABS(VDS(XAMP.mpm2)-VDS(XAMP.mpm4))')

.MEAS DC psigs_mpm2_mpm4 = PARAM('ABS(VGS(XAMP.mpm2)-VGS(XAMP.mpm4))')

.MEAS DC psiDS_mnm5_mnm6 = PARAM('ABS(VDS(XAMP.mnm5)-VDS(XAMP.mnm6))')

.MEAS DC psigs_mnm5_mnm6 = PARAM('ABS(VGS(XAMP.mnm5)-VGS(XAMP.mnm6))')

.MEAS DC psiDS_mnm7_mnm8 = PARAM('ABS(VDS(XAMP.mnm7)-VDS(XAMP.mnm8))')

.MEAS DC psigs_mnm7_mnm8 = PARAM('ABS(VGS(XAMP.mnm7)-VGS(XAMP.mnm8))')

.MEAS DC psiDS_mnm9_mnm10 = PARAM('ABS(VDS(XAMP.mnm9)-VDS(XAMP.mnm10))')

.MEAS DC psigs_mnm9_mnm10 = PARAM('ABS(VGS(XAMP.mnm9)-VGS(XAMP.mnm10))')

.MEAS DC psiDS_mpm1_mpm3 = PARAM('ABS(VDS(XAMP.mpm1)-VDS(XAMP.mpm3))')

.MEAS DC psigs_mpm1_mpm3 = PARAM('ABS(VGS(XAMP.mpm1)-VGS(XAMP.mpm3))')

.MEAS DC psiDS_mpm2_mpm4 = PARAM('ABS(VDS(XAMP.mpm2)-VDS(XAMP.mpm4))')

.MEAS DC psigs_mpm2_mpm4 = PARAM('ABS(VGS(XAMP.mpm2)-VGS(XAMP.mpm4))')

.MEAS DC psiDS_mnm11_mnm12 = PARAM('ABS(VDS(XAMP.mnm11)-VDS(XAMP.mnm12))')

.MEAS DC psigs_mnm11_mnm12 = PARAM('ABS(VGS(XAMP.mnm11)-VGS(XAMP.mnm12))')

<Constraint op="GE" value="0.1" meas="vov_mpm1" />

<Constraint op="GE" value="0.1" meas="vov_mpm3" />

<Constraint op="GE" value="0.1" meas="delta_mnm5" />

<Constraint op="GE" value="3.0E-7" meas="W_mnm5" />

<Constraint op="GE" value="1.5E-7" meas="L_mnm5" />

<Constraint op="GE" value="6.0E-14" meas="A_mnm5" />

<Constraint op="GE" value="0.00" meas="VDS_mnm5" />

<Constraint op="GE" value="0.00" meas="vov_mnm5" />

<Constraint op="GE" value="0.1" meas="delta_mnm7" />

<Constraint op="GE" value="3.0E-7" meas="W_mnm7" />

<Constraint op="GE" value="1.5E-7" meas="L_mnm7" />

<Constraint op="GE" value="6.0E-14" meas="A_mnm7" />

<Constraint op="GE" value="0.00" meas="VDS_mnm7" />

<Constraint op="GE" value="0.00" meas="vov_mnm7" />

<Constraint op="GE" value="0.1" meas="delta_mnm9" />

<Constraint op="GE" value="3.0E-7" meas="W_mnm9" />

<Constraint op="GE" value="1.5E-7" meas="L_mnm9" />

<Constraint op="GE" value="6.0E-14" meas="A_mnm9" />

<Constraint op="GE" value="0.00" meas="VDS_mnm9" />

<Constraint op="GE" value="0.00" meas="vov_mnm9" />

<Constraint op="GE" value="0.1" meas="delta_mnm11" />

<Constraint op="GE" value="3.0E-7" meas="W_mnm11" />

<Constraint op="GE" value="1.5E-7" meas="L_mnm11" />

<Constraint op="GE" value="6.0E-14" meas="A_mnm11" />

<Constraint op="GE" value="0.00" meas="VDS_mnm11" />

<Constraint op="GE" value="0.00" meas="vov_mnm11" />

<Constraint op="GE" value="0.1" meas="delta_mnm12" />

<Constraint op="GE" value="6.0E-14" meas="A_mnm12" />

<Constraint op="GE" value="0.00" meas="VDS_mnm12" />

<Constraint op="GE" value="0.00" meas="vov_mnm12" />

<Constraint op="GE" value="0.1" meas="delta_mnm6" />

<Constraint op="GE" value="6.0E-14" meas="A_mnm6" />

<Constraint op="GE" value="0.00" meas="VDS_mnm6" />

<Constraint op="GE" value="0.00" meas="vov_mnm6" />

<Constraint op="GE" value="0.1" meas="delta_mnm8" />

<Constraint op="GE" value="6.0E-14" meas="A_mnm8" />

<Constraint op="GE" value="0.00" meas="VDS_mnm8" />

<Constraint op="GE" value="0.00" meas="vov_mnm8" />

<Constraint op="GE" value="0.1" meas="delta_mnm10" />

<Constraint op="GE" value="6.0E-14" meas="A_mnm10" />

<Constraint op="GE" value="0.00" meas="VDS_mnm10" />

<Constraint op="GE" value="0.00" meas="vov_mnm10" />

<Constraint op="GE" value="0.1" meas="rev_delta_mpm1" />

<Constraint op="GE" value="3.0E-7" meas="W_mpm2" />

82

<Constraint op="GE" value="1.5E-7" meas="L_mpm2" />

<Constraint op="GE" value="6.0E-14" meas="A_mpm1" />

<Constraint op="GE" value="0.00" meas="VDS_mpm1" />

<Constraint op="GE" value="0.1" meas="rev_delta_mpm2" />

<Constraint op="GE" value="6.0E-14" meas="A_mpm2" />

<Constraint op="GE" value="0.00" meas="VDS_mpm2" />

<Constraint op="GE" value="0.00" meas="vov_mpm2" />

<Constraint op="GE" value="0.1" meas="rev_delta_mpm3" />

<Constraint op="GE" value="6.0E-14" meas="A_mpm3" />

<Constraint op="GE" value="0.00" meas="VDS_mpm3" />

<Constraint op="GE" value="0.1" meas="rev_delta_mpm4" />

<Constraint op="GE" value="6.0E-14" meas="A_mpm4" />

<Constraint op="GE" value="0.00" meas="VDS_mpm4" />

<Constraint op="GE" value="0.00" meas="vov_mpm4" />

<Constraint op="LE" value="0.1" meas="psiDS_mpm2_mpm4" />

<Constraint op="LE" value="0.05" meas="psigs_mpm2_mpm4" />

<Constraint op="LE" value="0.1" meas="psiDS_mnm5_mnm6" />

<Constraint op="LE" value="0.05" meas="psigs_mnm5_mnm6" />

<Constraint op="LE" value="0.1" meas="psiDS_mnm7_mnm8" />

<Constraint op="LE" value="0.05" meas="psigs_mnm7_mnm8" />

<Constraint op="LE" value="0.1" meas="psiDS_mnm9_mnm10" />

<Constraint op="LE" value="0.05" meas="psigs_mnm9_mnm10" />

<Constraint op="LE" value="0.1" meas="psiDS_mpm1_mpm3" />

<Constraint op="LE" value="0.05" meas="psigs_mpm1_mpm3" />

<Constraint op="LE" value="0.1" meas="psiDS_mpm2_mpm4" />

<Constraint op="LE" value="0.05" meas="psigs_mpm2_mpm4" />

<Constraint op="LE" value="0.1" meas="psiDS_mnm11_mnm12" />

<Constraint op="LE" value="0.05" meas="psigs_mnm11_mnm12" />

