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Abstract 

The work presented in this report belongs to the field of Electronic Design Automation (EDA), 

particularly, to the domain of Analog IC Design Automation. Despite the advances on the state-of-the 

art, nowadays most of the automatic synthesis tools address circuit level synthesis and the setup is 

very much dependent on the designers expertise when specifying, e.g., design search space, design 

constraints, topology selection, etc., which limits the efficiency of the design automation process. In 

this work the automatic constraint generation is addressed not only to increase the level of automation 

but also give more support to the designer. The state-of-the-art shows that just a few approaches 

addressed the topic of automatic constrain generation, basically, considering two alternatives one 

using a pattern recognition approach and other a signal flow graph approach. These approaches  will 

be further investigated to enhance AIDA-C, a state-of-the-art circuit level synthesis tool developed at 

IT (Institudo de Telecomunicações), and validated with a diversified set of examples including circuits 

such as, LC-VCO, LNA, OpAmps, Bandgaps, etc. 
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Resumo 

O trabalho apresentado está relacionado com o campo de Automatização de Projecto Electrónico 

(EDA), com especial ênfase no domínio da automatização de projecção de circuitos integrados 

analógicos. Apesar dos mais recentes avanços tecnológicos, a maioria das ferramentas de 

sintetização automática foca-se mais ao nível do circuito, e a configuração depende bastante da 

experiência e conhecimentos do projectista aquando a especificação de características como por 

exemplo selecção de topologia, definição do espaço de procura, definição de constraints, etc, 

limitando a eficiência do processo de automatização do projecto. Neste trabalho a geração automática 

de constraints não será só para incrementar o grau de automatização, mas também para assistir o 

projectista no processo de design. O estado da arte mostra que esta vertente não tem sido seguida, 

havendo poucos trabalhos a abordar o problema da geração automática de constraints, considerando 

apenas duas alternativas: uma, onde se procuram padrões no circuito, e outra que consiste na análise 

da propagação do sinal. Estas abordagens foram estudadas mais aprofundadamente para serem 

integradas e validadas no AIDA-C, uma ferramenta de síntese a nível do circuito desenvolvida no IT 

(Instituto de Telecomunicações) bastante referenciada com um conjunto diversificado de exemplos, 

incluindo circuitos como o LC-VCO, LNA, AmpOps, Bandgaps, etc. O método conseguido gera 

constraints baseados em matching de transístores, simetrias, e proximidades com sucesso e com um 

tempo de processamento de alguns segundos. 
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1 Introduction 

Since IC technology has been developed and made accessible, it has seen exponential growth 

throughout the decades of its development that enabled a multitude of life-changing applications like 

cellphones, personal computers, and the self-driving cars are expected to be available in the near 

future. The level of integration in modern very large scale integration technologies (VLSI), enables 

extremely complex, multi million transistors electronic circuits to be integrated in a few mm
2
 with 

reduced costs (in mass production), which allowed circuit designers to create IC’s that, meet the needs 

of the demanding microelectronics market, for new functionalities, smaller devices, lower production 

costs, higher power efficiency, etc.. These complex single IC designs are established in 

telecommunications, medical and multimedia applications, where blocks of AMS, digital processors 

and memory blocks appear together. To increase the performance of ICs, i.e. enhance functionalities 

and/or lower power consumption, there is an exponential increase of transistor density in ICs, as 

described by Moore’s law. This means that the designers deal with the project ICs containing billions 

of transistors, under extreme competitive market conditions. [1]. 

Although the analog component of the SoC only occupies approximately 20% of the global circuit area 

(as shown in Figure 1.1) the design effort is considerably higher when compared to its digital 

counterpart. In digital design, it is usual to reuse digital projects, leading to an increased productivity of 

design. By contrast, in analog design there are no mature and well-defined strategies to address a 

problem, leading to custom solutions that are difficult to reuse. Several Electronic Design Automation 

(EDA) tools and design methodologies are available for digital IC’s that assist the designers in 

managing the increased complexity systems, as well as keeping up with the fast-paced progress 

offered by the technology. On the other hand, and despite the developments achieved in recent years 

in analog design automation, analog design automation keeps lagging behind with practically no 

automation and very few design reuse appearing in the designers’ flow. [2] 

 

Figure 1.1 - Comparison between Analog and Digital design efforts 

1.1 Analog Design Flow 

Although several design flows for analog circuits can be found, a generally well accepted and used by 

many analog design automation works developed in the last years follow the design flow introduced by 

Gielen and Rutenbar [3]. This design flow for AMS IC circuits, illustrated in Figure 1.2, consists of a 
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series of top-down design steps repeated from the system level to the device-level, and bottom-up 

layout generation and verification. By adopting a hierarchical top-down design methodology, it is 

possible to perform system architectural exploration, obtaining a better overall system optimization at a 

higher level before starting more detailed implementations at device level. Problems are found in the 

early stages of the design flow, and as a result have a higher chance of first-time success, with fewer 

or no overall time consuming redesign iterations [4]. The number of hierarchy levels depends on the 

complexity of the system being handled, and the steps between any two hierarchical levels can be the 

top-down electrical synthesis, with topology selection, circuit sizing at its lowest level, and design 

verification. Then, there’s the bottom up physical synthesis, which includes layout generation and 

detailed design verification after extraction.  
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Figure 1.2 – Top-down and bottom-up tasks of design flow [5] 

Topology selection is the step of determining the most appropriate circuit topology in order to meet a 

set of given specifications of the current hierarchy level. This topology can be either chosen from a set 

of available topologies or be newly created. Specification translation is the step of mapping the high-

level specifications for the selected topology block under design into individual specifications for each 

of the sub-blocks, at the lowest level the sub blocks are single devices, thus becoming circuit sizing. 

Specifications translation is verified by means of simulations before proceeding down in the hierarchy. 

Since no device-level sizing is available at higher levels, behavioral simulations are needed and 

electrical simulations are used at the lowest design hierarchy level. The specifications for each of the 

blocks are passed to the next level of the hierarchy and the process is repeated until the top-down flow 

is completed. Some recent works based on Pareto Optimal Fronts (POF) have been very successful 

exploring the tradeoff during synthesis [6], and have already been applied at system level sizing. To 

aid in the task, designers resort to several CAD tools that became widely used throughout the years, 

rendering the standard for IC design editing and evaluation. ADiT, Questa, Eldo [7]; HSPICE [8], 
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nanosim, HSim [9]; Spectre [10]; ngspice [11] and SMASH [12] are among the most used tools in the 

latest years. 

Layout generation consists of creating the geometrical layout of the block under design at the lowest 

level in the design hierarchy, or place and route the layouts of the sub-blocks at higher levels. In the 

presented design flow, it is important to notice the presence of a detailed verification step over the 

extraction of the layout. In order to ascend to higher hierarchical levels is necessary that no potential 

problems are detected at the lowest levels and the layout meet the target requirements. When the 

topmost level verification is complete, the system is considered to be designed. Some of the most 

used CAD tools available for layout edition are IC Station Layout [7], Galaxy Custom Designer LE [9] 

and Virtuoso Layout Editor [10]. CALIBRE [7], Hercules [9] and DIVA, Assura [10] can be used for 

Design Rule Checking (DRC) and layout extraction. 

1.2 Analog IC Design Optimization 

While design automation of analog IC has advanced greatly in the last couple of decades, it has not 

improved as much as digital IC design. This issue comes from the analog design IC itself, which has a 

significantly higher level of complexity, even for small problem sizes, and which lacks a sufficiently 

comprehensive and exact descriptiveness with conventional approaches. 

Analog circuit sizing automation is becoming more and more common, and is mostly achieved using 

optimization techniques, which may or may not use a circuit simulator to aid in performance evaluation 

of possible solutions during the optimization process. Some commercially available tools, such as 

Cadence’s Virtuoso Custom Design Platform GXL [10], Synopsys Titan ADX [9], or MunEDA-GNO [13] 

already have this optimization approach implemented. However, these tools focus on a single-

objective optimization, providing only one solution, thus giving the designer no other goal to maximize 

or tradeoff with [14].  

AIDASoft is an Analog IC Design automation framework, fully developed at Instituto de 

telecomunicações’ Integrated Circuits Group. AIDA-C, is the frameworks’ circuit optimizer, where 

circuit-level sizing optimization is performed, enhancing the robustness of solutions by considering 

process and operating variations (i.e. PVT corners), and for circuit’s performance figures, they are 

measured with electrical circuit simulators, like Spectre [10], eldo [7], or HSPICE. Once the 

optimization process is complete, a Pareto Optimal Front is given, showing all the non-dominated 

solutions, in which the designer can explore design tradeoffs and choose a specific design. An 

overview of the AIDA can be seen in Figure 1.3, showing how the design process works. 

1.3 Motivation 

The quality of a design is generally determined by the degree to which compliance constraints have 

been met and predefined optimization goals achieved. Due to the lack of identical expression and 

interpretation of design constraints in the analog design flow context, most of the constraints in analog 

designs are specified and considered manually by expert designers. Therefore, analog constraints are 

implicitly based on a designer’s experience, rather than being explicitly defined, preventing their 
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systematic use in design automation and leading to an error prone flow. Progress in analog IC design 

automation is needed due to increasing design sizes and aggravating challenges (e.g. required 

robustness), as well as a widening verification gap [15]. 

Analog IC Design Automation

Circuit 
Simulator
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Module 

Generator
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Circuit Sizing

AIDA-L
Layout 

Generation

Design
Specs

Design Kit

Validation

 

Figure 1.3 - AIDA Architecture and Design Flow [14] 

In the last decades, analog topology synthesis, nominal design optimization, and sizing with respect to 

tolerances were in the focus of research interest. Certain approaches include equation-based 

methods, where design equations are derives with the help of symbolic analysis and simulation-based 

methods. Sizing tasks have a key potential for providing automation support to the designer, 

particularly when considering mismatch and process and operating tolerances [16]. 

Specifying circuit design goals (e.g. gain or bandwidth of an amplifier) are often not enough to prevent 

optimizers from meeting a mathematical solution while not reaching the IC design solution, and when 

an IC design solution is found, it often has a high sensitivity to process and operating variations and to 

noise [17]. Adding constraints on lower levels of the IC design process, e.g. transistor sizing and 

placing, or enforcing certain transistor voltages to keep them in the desired operating region. These 

constraints (or sizing rules) can be generated as equalities or inequalities, either for physical design 

(e.g. transistor dimensions) or for electrical design (e.g. drain-source voltage), and both kinds of 

constraints are desired, as they aid in not only reaching an IC design solution, but to optimize the 

relation between design performance and process yield. 

1.4 Goals 

This work has as main objective the automatic generation of constraints to be implemented and 

embedded in the AIDA-C optimizer. Since AIDA-C’s method is to search in a given search space, 

more complex circuits generate many degrees of freedom, and finding a solution requires a lot of 

processing time. By automatically adding constraints, the search space is reduced and solution finding 
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takes less time. The constraints generation module will be validated with typical analog building 

blocks. 

 

1.5 Document Structure 

This document is organized as:  

Chapter 2 presents state-of-the-art and the latest research in automatic constraint generation.  

Chapter 3 presents a more detailed work of AIDA-C and plans for implementation of automatic 

constraint generation. 

Chapter 4 presents the Automated Constraint Generation Architecture, describing the pattern search, 

symmetry search, and constraint generation.  

Chapter 5 presents experimental results, using example circuits and showing the detected patterns, 

symmetries, and generated constraints, and some optimization results.   

Chapter 6 draws the conclusions and presents future work topics. 
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2 State-of-the-art 

In the last 25 years, many techniques were approached by the scientific community for the automation 

of the analog circuit sizing. In this chapter those approaches are briefly surveyed with further emphasis 

on the methods used to define the design constraints, and a summary describing how current 

knowledge will be applied in an optimization tool in order to achieve automation in the field of 

constraint generation. 

2.1 Analog IC Design Automation Tools 

Generally speaking, analog circuit sizing automation techniques are classified in two main groups: the 

knowledge-based approaches and the optimization based approaches [18]. This classification is based 

on the fundamental techniques used to address the problem, as illustrated in Figure 2.1. 
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Figure 2.1 - Automatic circuit sizing approaches [18] 

(a) knowledge-based (b) optimization-based 

Most early automation tools [19, 20, 21, 22] did not use optimization, and tried instead to systematize 

the design by using a design plan that was originated from expert knowledge. These tools relied on 

design equations used to build a plan and a design strategy that produces the component sizes that 

meet the performance requirements. These knowledge-based approaches were applied with some 

level of success, with short execution time being the main advantage of this knowledge-based 

approach. However, deriving the design plan is both hard and time consuming, and once the design 

plan is achieved, requires constant maintenance to keep up with the progress being made, and still 

does not manage to achieve optimal results. The following generations of sizing tools apply 

optimization techniques to analog IC sizing, which can be further classified into equation-based or 

simulation-based, considering the method used to evaluate the circuit’s performance.  

The equation-based methods use analytic design equations to create a relationship between the 

circuit’s performance goals and the design variables. Different optimization techniques are used, both 

deterministic and stochastic. Taking advantage of knowing the equations and their properties allows 
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the use of classical optimization methods. In OPASYN [23] the optimization is performed using 

steepest descent, and similarly in STAIC [24] is used a successive solution refinements technique.  

Maulik et. al. [25, 26] defined the sizing problem as a constrained nonlinear optimization problem using 

spice models and DC operating point constraints, solving it through sequential quadratic programming. 

Matsukawa et. al. [27] designed ΔΣ and pipeline analog to digital converters solving via convex 

optimization the equations that relate the performance of the converter to the size of the components. 

In GPCAD [28] a posynomial circuit model is optimized using Geometrical Programming (GP), the 

execution time is in the order of few seconds, but the general application of posynomial models is 

difficult and the time to derive the model for new circuits is still high. Kuo-Hsuan et. al. [29] revisited the 

posynomial modeling recently, solving the accuracy issue by introducing an additional generation step, 

where local optimization using simulated annealing (SA) and a circuit simulator is performed. The 

same strategy is applied in FASY [30, 31], where analytical expressions are solved to generate an 

initial solution and a simulation-based optimization is performed to further improve the solution.  

Other equation based approaches do not limit the problem formulation in order to use a specific 

optimization technique, relying on heuristic optimization instead. OPTIMAN [32] uses SA applied to 

analytical models, and, in ASTRX/OBLX [33], a SA optimization is also performed using a cost function 

defined by equations for dc operation point, and small signal Asymptotic Waveform Evaluation (AWE)-

based simulation, this evaluation technique is also used in DARWIN [34], which uses Genetic 

Algorithms (GA) instead. Doboli et. al. [35] also applies genetic programming techniques to 

simultaneously derive the sub-blocks specifications, sub-block topology selection and transistor sizing.  

The equation-based methods’ main advantage is the short evaluation time, making them highly suited 

to find first-cut designs as the knowledge-based approaches were. On the other hand, despite the 

advances in symbolic analysis, equations are unable to accurately simulate the behavior of the design 

characteristics, making the generalization of the method to different circuits very difficult. The 

approximations introduced in the equations also yield lower accuracy designs as circuit complexity 

increases, requiring additional work to ensure that the circuit meets the needed specifications. 

2.2 Simulation-based automatic circuit sizing  

Recent increases in access to processing power and memory capacity allowed simulation based 

optimization to also develop, being the most common method found in recent approaches, since 

simulation allows for better accuracy designs. In simulation-based sizing, as in the case of AIDA-C, a 

circuit simulator, e.g., SPICE [36], is used to evaluate the circuit. 

Early approaches to simulation based automatic sizing used local optimization around a “good” 

solution, where SA [37] is the most common optimization technique used. SA mimics the annealing of 

material under slow cooling to minimize the internal energy, as the name suggests. In 

DELIGTH.SPICE [38] the optimization algorithm (phase I-II-III method of feasible directions) is used to 

perform local design optimization around a user provided starting point. Kuo-Hsuan et. al. [29] and 

FASY [31, 30] use equation-based techniques to derive an approximate solution, and then use 
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simulation within a SA kernel to optimize the design. Cheng et al. [39] also uses SA but considers the 

transistor bias conditions to constrain the problem, and, instead of solving the circuit by finding 

transistor sizes, the problem is solved by finding the bias of the transistors. FRIDGE [40] aims for 

general applicability approach by using an annealing-like optimization without any restriction to the 

starting point. Castro-Lopez et al. [41] use SA followed by a deterministic method for fine-tuning to 

perform the optimization. 

Swarm intelligence algorithms [42] can also be found in the literature applied to analog circuit sizing. 

The fundament of swarm intelligence algorithms is to use many simple agents that lead an intelligent 

global behavior, like the one observed in many insect hives. From these methods, the most common 

are the ant colony optimization (ACO), which was successfully applied in [43, 44], and particle swarm 

optimization (PSO) that can be found in [45, 46, 47]. 

Circuit sizing is in its essence a multi-objective multi constraint problem, and the designer often 

explores the tradeoff between contradictory performance measures. For example, minimizing power 

consumption while maximizing bandwidth, or maximizing gain and minimizing area of an amplifier. As 

such, the usage of multi-objective optimization techniques is becoming increasingly common. When 

considering multiple objectives the output is not one solution, but a set of optimal design tradeoff 

solutions, usually referred as Pareto Optimal front (POF). Given the multiple elements already present 

in both evolutionary and swarm intelligence algorithms, these are the natural candidates to implement 

such approach. In GENOM-POF [48, 49] and MOJITO [50] the evolutionary multi-objective methods 

are applied, respectively, to circuit sizing and both sizing and topology exploration, whereas in [47] the 

particle swarm optimization is explored in both single and multi-objective approaches. A different 

approach is taken by Pradhan and Vemuri in [51], where the multi-objective simulated annealing 

(MOSA) is used. 

From the study of analog circuit sizing and optimization approaches proposed by the scientific 

community recently, it is clear that there is not a specific trend to consider a single best algorithm, but 

many were experimented with. In the next section the summary of the surveyed approaches is 

presented, and finally the objectives for this work are refined, namely the selection of the optimization 

kernels to be initially included in the platform. 

2.3 Automatic constraint generation applied to analog circuit sizing 

The analog sizing tools approaches surveyed are summarized in Table 2-1. In the equation-based 

systems the usage of classical optimization methods is possible. However, models’ accuracy and the 

derivation of such equations strongly limits applicability. This limitation of the equation based systems 

is overcome at the expense of evaluation time by using accurate circuit simulation to evaluate the 

performance figures being optimized. 

Although most experienced circuit designers have heuristic knowledge when manually creating 

constraints for a determined circuit, some of the constraints might be overlooked, either because the 

designer is not aware of the constraint, or the constraint is not considered to be of much relevance to 
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the end result, making circuit optimizers take longer optimization times to find the solution. An 

automatic constraint generation would allow to a more complete constraint generation, making the 

circuit solutions more robust as well as saving setup time and reducing optimization time. 

This work will focus on the automatic generation of design constraints in the scope of AIDA-C. In 

AIDA-C, the circuit sizing and optimization problem, which will be described in detail in chapter 3, is 

modeled as a multi-objective multi-constraint optimization problem. In this context special relevance is 

given to the constraints.  

From a brief perusal of the tools available in the state of the art, it is noticed that despite the relevance 

of constraints in the design of analog circuits, there are few approaches to automatically generate such 

constraints. In the next sections the most relevant approaches are detailed, first the work by Massier et 

al [16], that focuses on the generation of constrains for circuit sizing, then another work from the same 

research group, that focuses on layout related constraints, namely placement [52]. 

Table 2-1 – Summary of analoc IC design automation tools for sizing and optimization 

Tool\Author Design Plan/Optimization Method Evaluation Constraints Definition 

IDAC [21] 1987 Design plan plus SA post-optimization Equations Manual 

DELIGTH.SPICE [38] 1988 Feasible directions Optimization Simulator Manual 

OPASYN [23] 1990 Steepest descent Equations Manual 

OPTIMAN [32] 1990 SA Equations Manual 

STAIC [24] 1992 2 step optimization Equations Manual 

Maulik et al. [25, 26] 1993 B&B, and Seq. Quadratic Progr. Equations and BSIM models Manual 

FRIDGE [40] 1994 SA Simulator Manual 

DARWIN [34] 1995 GA small signal, analytical expressions. Manual 

ISAID [19, 20] 1995 Qualitative reasoning + post optimization Equations and Qualitative reasoning Manual 

FASY [31, 30] 1996 SA + Gradient Simulator Manual 

ASTRX/OBLX [33] 1996 SA AWE Equations Manual 

Koza [53] 1997 GA Simulator Manual 

GPCAD [28] 1998 Geometric Programming Posynomial Manual 

MAELSTROM [54] 1999 GA+SA Simulator Manual 

ANACONDA [55] 2000 Stochastic pattern search Simulator Manual 

Sripramong [56] 2002 GA Simulator Manual 

Alpaydin [57] 2003 Evolutionary strategies + SA Fuzzy + NN trained with Simulator Manual 

Shoou-Jin [58] 2006 GA Equations Manual 

Barros [18, 59, 60] 2006 GA Simulator Manual 

Castro-Lopez [41] 2008 SA + Powels method Simulator Manual 

Santos-Tavares [61] 2008 GA Simulator Manual 

MOJITO [50] 2009 NSGA-II Simulator Manual 

Pradhan [51] 2009 Multi-Objective SA Layout aware MNA models Manual 

Matsukawa [27] 2009 Convex Optimization Convex functions Manual 

Cheng [39] 2009 SA Equations Manual 

Hongying [62] 2010 GA with VDE Simulator Manual 

Fakhfakh [47] 2010 Multi-objective PSO Equations Manual 

Pehl [63] 2010 SQP and B&B Simulation Automatic 

Kuo-Hsuan [29] 2011 Convex optimization; Stochastic Fine Tuning Posynomial Simulator Manual 

Habal [64] 2011 Deterministic non-linear optimization Evaluation  Automatic 

Roca et al. [65] 2012 NSGA-II Simulator Manual 

Genom-POF [49, 48] 2012 NSGA-II Simulator Manual 

AIDA-GM [66, 67, 2] 2013 NSGA-II Simulator Manual 

Liao et al. [68] 2013 Look-up Table Equations and Lookup Tables Automatic 

Afacan et al. [69] 2014 MBHO, IMBHO Equations  Manual 

AIDA [14, 70, 71] 2014 NSGA-II Simulator Manual 



 
 

11 
 

2.4 Sizing Rules Method 

Automatic sizing has seen slow progress due to often incomplete circuit specifications. Generally, 

specifying only the circuit performance (e.g. dc gain, bandwidth of an operational amplifier) is not 

enough for optimizers to reach a solution, and even if a solution is found (i.e. that works according to 

the specifications), it tends to be very sensitive to process and operation variations and to noise [24]. 

Additional sizing rules for transistor geometry and voltages have to be considered (i.e. constraints), so 

the circuit becomes increasingly robust. Research has been conducted when considering the 

importance that constraints have in finding a solution in an IC design. However, for most works, in the 

end responsibility falls on the designer when specifying constraints. An automated process that would 

generate some sizing rules when the circuit is read would aid optimizers in finding a solution with little 

to no effort required from the designer. 

The Sizing Rules Method (SRM) approach is to find certain matching patterns, so that it can generate 

sizing rules without any aid from the designer. This reduces setup time and effort, as well as 

optimization times. Sizing rules can efficiently capture design knowledge on the technology-specific 

level of transistor-pair groups. The Sizing Rules Method also helps in further general circuit sizing, 

design centering, response surface modeling or analog placement, bysetting the foundations to further 

create layout-oriented constraints. 

2.4.1 Automatic Building Block recognition 

In order to generate design constraints, some circuit patterns need to be recognized, so constraints 

can be assigned to their respective transistors in their building blocks.  

Much of the electrical circuit design process is composed of several sets of transistors (e.g., a current 

mirror, an amplifier). This aids the designer in dividing a circuit design into multiple sub-circuit designs 

(or building blocks), and thus breaking down design into multiple, lower complexity problems. This 

method allows the designer to define transistor specifications based on its function in the building 

block it is in. Some building blocks can also be merged to form a new, higher level building block (e.g. 

a Simple Current Mirror and a Level Shifter can form a Cascode Current Mirror). This allows the 

generation of additional constraints when considering the necessary relations between the different 

building blocks. Thus, having a hierarchical system of building blocks, where each level is a 

combination of multiple building blocks from lower levels, seems to be a good approach to the problem 

at hand. 

The main benefit from the hierarchically organized block building is that new building blocks can be 

generated by merging existing ones. This simplifies the assignment of constraints by having the new 

building block inherit the constraints from its’ forming blocks. In other words, when a new building 

block is generated, only a few constraints are added. In a given circuit schematic, the block recognition 

algorithm detects all building blocks that correspond to the respective elements in the library, starting 

from simple building blocks on low levels, and going up the hierarchy into more complex blocks, in 

higher levels. [16] 
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2.4.2 Recognition Algorithm 

Set M starts initialized with all circuit elements contained in the netlist (level 0 modules), and two 

relations R1 and R2 are initialized. 

Whenever a new module is found, a new ordered pair will be added to both relations. The upper 

submodule mλ(with index 1), and the new module mµ, are stored as an ordered pair in R1, while the 

lower submodule mκ(index 2) is also stored as a pair with  the new module, mµ, in R2. These relations 

are used to handle recognition ambiguities. The algorithm scans through all the library elements above 

L0, i.e. library elements that consist of more than a single transistor. This means that each element in 

the hierarchical library is only checked once by the algorithm. Each element builds into the Cl(1), l(2) 

relation. For each element in the library, all possible module pairs mκ and mλ are analyzed and 

compared. If patterns of Cl(1), l(2) and Cκ,λ match, then (mκ,mλ) forms a new building block, as well as a 

new module, mµ, with µ = |M| + 1, which is instantiated and added to set M. Although a new module is 

created, its’ forming sub-modules remain in the set M, considering that a single module can belong to 

multiple different building blocks. After a new module is instantiated, its pins are connected to the 

appropriate nets of its submodules.  

After fully analyzing the circuit all the modules have been created (i.e. set M is complete), sizing rules 

will be assigned in a top-down order. Should a transistor or a certain building block not be assigned to 

a hierarchical library element, it becomes uncertain, and no sizing rules are generated for them, except 

that they must be in saturation. Instead, these modules are provided to the designer for further actions. 

 

2.5  Hierarchical Placement Rules’ SSFG 

SSFG (Structural Signal Flow Graph) representation combines structural and qualitative behavioral 

information. Through SSFG, the problem size is reduced and its additional structural information 

prevents the symmetry computation from exploring many infeasible solutions. [52] 

2.5.1 Definition 

A SSFG is a directed graph. Its nodes represent nets of the circuit and the edges indicate the ways 

through which signal can propagate. An edge pointing from node ni to another node nj means that a 

change in voltage and/or current in ni can cause a change in voltage and/or current in nj. 

2.5.2 SSFG Generation 

Each building block in the library has its corresponding sub-SSFG. Because the current library is 

small, each sub-SSFG can be manually created. 

After assigning a sub-SSFG to each building block of a circuit, a graph union operation merges all the 

sub-SSFGs into the circuit’s SSFG, GS 
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 𝐺𝑆 = ⋃ 𝐺𝑆,𝑏

𝑏𝜖𝐵

 

 

(2.1) 

 𝐺(𝑁, 𝐸) =  ⋃ 𝐺𝑖(𝑁𝑖 , 𝐸𝑖)

𝑖

 ⇔ 𝑁 = ⋃ 𝑁𝑖 ∧ 𝐸 = ⋃ 𝐸𝑖

𝑖𝑖

 (2.2) 

For the follow-up symmetry assignment, each edge is given three attributes: the type of building block 

which originated the edge, along with the names of the two associated pins. For example, a NMOS 

simple current mirror (n-scm) from pin pa to pb gets the attributes (n-scm, a, b).The graph is setup so 

that there are no parallel edges with equal attributes. 

2.5.3 Hierarchical Symmetry Assignment 

The symmetry assignment algorithm generates pairs of symmetric nodes and edges from the SSFG 

according to the following definitions. Two nodes, ni and nj are symmetric if they are differential inputs 

or outputs, or if symmetric edges (ei, ej) start or end at ni, nj. Two edges, ei and ej, are symmetric if 

they start and end at two symmetric nodes (ni, nj) and have identical attributes. It is also important to 

note self-symmetric edges, which connect two symmetric nodes, confirming the symmetry path 

possibility that was being checked. 

Ambiguities often arise, and this is due to different symmetric edge pairs being formed if said edges 

have equal attributes and begin at the same node. These ambiguities can be resolved through a 

backtracking approach, which starts by considering one symmetry assignment to be correct. The 

search is then continued as normally, and if it remains valid, then it is part of the solution. If not, the 

search is repeated with a different assignment, starting from the latest ambiguity. A solution may be 

verified through two processes: In one hand, the search ends at two nodes connected by a self-

symmetric edge, or at two nodes without any successors (including when they are differential outputs). 

On the other hand, any edge starting at ni must be symmetric to another edge starting at a symmetric 

pair node, nj, and vice versa. 

Symmetrical Building blocks are then generated from the symmetry assignments made to the edges 

and nodes the SSFG. Two building blocks are determined symmetrical if they belong to the same type 

and have symmetrical edges. A building block can also be self-symmetrical if its edges are 

symmetrical and/or self-symmetrical. 

Finalizing the top-down symmetry attribution, devices themselves are determined symmetrical through 

symmetry conditions from building blocks. When two building blocks are symmetrical, it means that 

their corresponding devices must also be symmetrical between each other. When a building block is 

self-symmetrical, the device symmetry is previously specified for each building block type. In the end, 

a set S is formed, with all the symmetric elements of the circuit 
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2.5.4 MARS Enhanced Structural Signal Flow Graph  

The ESFG (Enhanced Structural Signal Flow Graph), as the name indicates, is an improvement of the 

SSFG. It complements the SSFG by including the handling of input and output terminals, as well as 

passive, one-port devices [72]. It can be defined as 

 𝐺𝐸 = (𝑁𝐺𝐸
, 𝐸𝐺𝐸

, 𝜑𝐺𝐸
, 𝛼𝐺𝐸

, 𝛽𝐺𝐸
) (2.3) 

where 

 𝑁𝐺𝐸
 is a set of nodes containing all nets N, and terminals, T of the circuit 

 𝑁𝐺𝐸
⊆ 𝑁 ∪ 𝑇 (2.4) 

 𝐸𝐺𝐸
 is the set of edges, which similarly to the SSFG, represent ways of signal propagation. 

 𝛼𝐺𝐸
 is a set of attributes which characterize its corresponding edge. This kind of information 

was already implemented in the original SSFG concept, but it had not been formally 

characterized. For example, a NMOS simple current mirror (n-scm) from pin pa to pb is 

represented by edge e1, with 𝛼(𝑒1) = (𝑛 − 𝑠𝑐𝑚, 𝑝𝑎 , 𝑝𝑏). 

 𝛽𝐺𝐸
 is the set of devices that physically implementing each edge e. For example, if e1 is an 

edge representing a scm (simple current mirror) with transistors M1 and M2, then  

𝛽(𝑒1) = {𝑀1, 𝑀2}. 

Unlike SSFG, the ESFG of a circuit may have two equal edges, i.e. they make the same connection 

between two nodes, have equal attributes, and represent the same physical devices.  

2.5.5 ESFG Generation 

The generation of an ESFG is simple once the SSFG generation algorithm has been implemented. 

First, additional sub-graphs are created to model single-port, passive devices (which were not included 

in the SSFG method). Then, the set of all subgraphs is generated, similarly to the SSFG method. Then 

the node set of the ESFG is formed by all nodes that are the the starting or ending of edges. 

2.6 Conclusions 

In this chapter a survey of techniques and approaches to the automation of analog circuit sizing were 

presented. The different approaches were classified in terms of the techniques used and the most 

significant aspect observed was the setup and the execution time, as well as the accuracy in the 

evaluation of the solutions. In this survey were presented several ADA tools and analyzed to better 

understand the advantages, and, drawbacks that can be improved in the future. It was also possible to 

identify that a wide range of optimization techniques are considered in the field and new ones are 

always being introduced.  

Although automatic constraint generation is not yet diversified, existing works have contributed 

significantly to automatic generation of crucial sizing rules in terms of optimization times, and is a very 

reasonable starting point to implement in AIDA-C. 
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In this work, Automatic Generation of Analog IC Design Constraints enhances AIDA-C by reducing 

degrees of freedom when optimizing a circuit. The building block hierarchy is still relatively small, so 

some future work might consist of adding more building block elements to the hierarchical library, if 

further patterns are considered to be necessary. 
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3 AIDA Overview  

The work developed targets the automation of the constraint definition for analog IC circuit design, and 

is to be implemented in the AIDA framework, illustrated in Figure 3.1. This chapter starts with an 

overview of AIDA. A detailed analysis of the tools’ setup with special emphasis to the constraint 

definition is the presented, from the study of the tool’s setup the contributions to be made in this work 

are revisited. 

3.1 AIDA-C Architecture 

AIDA is an analog IC design automation framework with two branches: AIDA-C and AIDA-L. AIDA-C, 

featured in Figure 3.1, targets optimization of device sizing through state-of-the art and innovative 

techniques. It is based in state-of-the-art multi-objective, multi-constraint optimization techniques and 

targets highly robust designs by considering PVT corner simulations. AIDA-L takes as inputs the 

device sizes that AIDA-C provides as well as the best floorplan templates, and generates a layout by 

placing and routing the devices using internal Design-Rule Check (DRC) and Layout-Vs-Schematic 

(LVS) methods, finishing the circuit design process. 

Circuit-Level Synthesis
AIDA-C

Typical

Corner

NSGA-II 
KERNEL

Floorplanner

Netlist

Layout Template

Input

Circuit 
Simulator

Analog 
Module 

Generator

AIDA-L
Layout 

Generator

Technology 
Design Kit

CALIBRE

Validation

 

Figure 3.1 – AIDA-C Overview 

Figure 3.2 details AIDA-C composed by two main modules: the Setup & Monitoring module, and the 

Optimizer module. The Setup & Monitoring module assists the designer through the design process 

and aid in using the circuit optimizer. The Optimizer solves the circuit through multi-objective 

techniques, where the circuit’s performance is measured through industrial circuit simulators for 

electrical measures, as well as through AIDA-L, for layout-related characteristics. In the scope of this 

work the Setup Assistant will be analysed with special focus. 

The Setup Assistant helps the setup by generating some statements and drafts automatically. For 

example, for the active devices some default measures and the correspondent constraint statements 

for overdrives and saturation margin (delta) are generated automatically with the purpose of having all 

transistors working in the saturation region. The measures for the currents in all circuit nodes are also 

generated by AIDA-C. In addition, a draft for the layout guides is generated from the netlist directly. 

Using these aids, the setup productivity is somewhat enhanced, but the level of setup automation is 

limited. 
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Figure 3.2– AIDA-C Architecture 

3.1.1 AIDA Setup 

In this section, it is explained how to setup all the necessary elements to use AIDA-C. The setup of a 

design in AIDA-C is mostly made at file level. The inputs from the designer are the circuit and test-

bench(es) in the form of spice-like netlist(s). The netlist(s) must have the optimization variables as 

parameters, and must include means to measure the circuit’s performance. Corner’s parameter 

variations are also included in the netlist. In addition, the designer defines ranges for the optimization 

variables, design constraints, and optimization objectives. If a layout-aware circuit sizing optimization 

is intended, the AIDA-L’s layout guides must also be provided.  

Adding a circuit to AIDA-C is a two-step operation. First, the circuit netlist needs to be properly 

parameterized, and then, using AIDA-C’s setup assistant to accelerate the process, AIDA-C design 

structure, as shown in Figure 3.1, needs to be created. The project is organized by a set of files, with 

“design.xml” as the main description file. XML is a markup language that defines a set of rules for 

encoding documents in a format that is both human- and machine-readable. The image is optional, 

and is used to show the circuit schematic to ease the identification of the devices and parameters 

when using the tool (commonly a screenshot of the schematic). The folder “layout” contains multiple 

layout guide files and the folder “tech_netlist” contains the circuit and testbenches.  
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design.xml

img.png

<tech_netlist>

circuit.cir

testbench_1.cir

testbench_1.corners.cir

testbench_2.cir

testbench_2.corners.cir

<layout>

floorplan_1.xml

floorplan_2.xml

partition_A.xml

<design root folder>

 
Figure 3.3 - AIDA-C design structure. 

Starting from the circuit netlist, designed by hand or exported from a schematic editor, the design 

variables are defined. This is done by taking into consideration what are the values the optimizer may 

change (usually the sizes of the devices). In this stage, matching of devices can be enforced. The 

design variables are defined as parameters and are used in the netlist appropriately. Figure 3.4 shows 

the parameterized netlist used for the Miller amplifier example.  

 

*** Cell name: opamp_a 

.SUBCKT OPAMP_A DD IN IP OUT REF SS 

  XCO0 OUT D12 SS momcaps_sy_mm l=_lc nf='_nfc'    

  MP8 REF REF DD DD    P_12_HSL130E w=_wb l=_lb  m= 2 

  MP5 NETZ52 REF DD DD P_12_HSL130E w=_wb l=_lb  m=_mbp 

  MP6 OUT REF DD DD    P_12_HSL130E w=_wb l=_lb  m=_mb2 

  MP1 D11 IN NETZ52 DD P_12_HSL130E w=_wp l=_lp  m=_mp 

  MP2 D12 IP NETZ52 DD P_12_HSL130E w=_wp l=_lp  m=_mp 

  MN3 D11 D11 SS SS    N_12_HSL130E  w=_wal l=_lal  m=_mal 

  MN4 D12 D11 SS SS   N_12_HSL130E  w=_wal l=_lal  m=_mal 

  MN7 OUT D12 SS SS   N_12_HSL130E  w=_w2g l=_l2g  m=_m2g 

.ENDS*** End of subcircuit definition. 

M8

VinN VinP
Vout

Iref

M5 M6

M1 M2

M3 M4 M7

 

(a) Parameterized netlist (circuit.cir) (b) Schematic 
Figure 3.4 - Single-ended two-stage Miller amplifier. 

From the parameterized netlist, the setup assistant automatically generates structural measures 

(overdrives, deltas and active area) for all transistors. In addition, DC current measures for all device 

terminals, which are needed for AIDA-L’s router, are also generated. These measures, shown in 

Figure 3.5, are not mandatory, and are up to the designer to be included or not in the relevant 

testbenches.  

*********** Transistor Bias Measures *************** 

** OVERDRIVES ** 

**************************************************** 

.MEASURE DCAC vov_m20    = param('ABS(VGS(X1.mp20)-lv9(X1.mp20))') 

.MEASURE DCAC vov_m14    = param('ABS(VGS(X1.mp14)-lv9(X1.mp14))') 

<. . .> 

***************************************************** 

** MARGINS ** 

***************************************************** 

.MEASURE AC delta_m20    = param('ABS(VDS(X1.mp20)-VDSAT(X1.mp20))') 

.MEASURE AC delta_m14    = param('ABS(VDS(X1.mp14)-VDSAT(X1.mp14))') 

<. . .> 

***************************************************** 

** Device Active Area ** 

***************************************************** 

.MEASURE DCAC aa_mp20    = param('_wb*_lb*') 

.MEASURE DCAC aa_mp14    = param('_wb*_lb*_mbp') 

<. . .> 

***************************************************** 

** IDC currents for EM-aware router ** 

***************************************************** 

.EXTRACT DCAC label=IDC_MP20_drain   I(X1.MP20.1) 

.EXTRACT DCAC label=IDC_MP20_gate   I(X1.MP20.2) 

.EXTRACT DCAC label=IDC_MP20_source   I(X1.MP20.3) 

.EXTRACT DCAC label=IDC_MP20_bulk   I(X1.MP20.4) 

<. . .> 

Figure 3.5 - DC measures for ELDO™ AC testbench 
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At this point, the netlist for the circuit and its testbenches are completed. The next step is to create the 

“design.xml” file where the circuit setup is described. Again, the “setup assistant” is used to accelerate 

the setup by generating a draft of the “design.xml” from the data in the netlist and some technology-

dependent default values (overdrives, ranges, etc.) that are stored in AIDA’s design kit. The circuit 

netlist is parsed and the variables are detected, as well as the devices. With this data, the setup 

assistant generates a partially filled design.xml, where the designer is responsible for adding the 

missing data fields. The complete setup for the Miller amplifier is shown in Figure 3.6. 

 1: <?xml version="1.0" encoding="ISO-8859-1"?> 

 2: <!DOCTYPE Design SYSTEM "design-1.0.dtd"> 

 3: <Design name="OPAMP_A"> 

 4:   <Circuit netlist="2stage.cir" techNode="UMC_013"> 

 5:     <Layout template="t1a.xml"/> 

    ... 

16:     <Layout template="t3d.xml"/> 

17: 

18:     <Var id="_lc" range="4.4e-6:1e-7:1.0e-4"/> 

19:     <Var id="_nfc" range="14:2:198"/> 

20:     <Var id="_wb _wp _wal _w2g" range="1.00e-6:1e-7:10e-6"/> 

21:     <Var id="_lb _lp _lal _l2g" range="0.12e-6:5e-8:10e-6"/> 

22:     <Var id="_mbp _mb2 _mp _mal _m2g" range="1:2:1000"/> 

23:   </Circuit> 

24:   <TestbenchSetup simulator="eldo" inputMethod="LAM"> 

25:     <TestCase name="wp_avdd_max_dvdd_max_temp_min_1_vcm_max"/> 

26:     <TestCase name="ws_avdd_min_dvdd_min_temp_max_8_vcm_max"/> 

27:     <TestCase name="wp_avdd_max_dvdd_max_temp_min_1_vcm_min"/> 

28:     <TestCase name="ws_avdd_min_dvdd_min_temp_max_8_vcm_min"/> 

29: 

30:     <NominalTb netlist=" ac_testbench.cir.eldo"> 

31:       <Meas name="idd" description="I VDD [A]"/> 

32:       <Meas name="gdc" description="Gain DC [Hz]"/> 

33:       <Meas name="gbw" description="Unity Gain Frequency [Hz]"/> 

34:       <Meas name="pm" description="Phase margin [degrees]"/> 

35:       <Meas name="psrr" description="Power Supply Rejection Ratio [Hz]"/> 

36:       <Meas name="sr" description="Slew Rate [V/s]"/> 

37:       <Meas name="voff" description="Structural Offset [V]"/> 

38:       <Meas name="no" description="Noise [V]"/> 

39:       <Meas name="sn" description="Noise Density [V/sqrt(Hz)]"/> 

40:       <Meas name="device_area" description="Area from net list [m2]"/> 

41:       <Meas id="vov_mp20 vov_mp14 vov_mp22 vov_mp11 vov_mp12 vov_mp9 ..." desc="Overdrive [V]"/> 

42:       <Meas id="delta_mp20 delta_mp14 delta_mp22 delta_mp11 delta_mp12 ..." desc="Delta [V]"/> 

43:     </NominalTb> 

44:     <WorstCaseTb netlist=" ac_testbench.cir.eldo.corners"> 

45:       <Meas importFrom="ac_testbench.cir.eldo"/> 

46:     </WorstCaseTb> 

47:   </TestbenchSetup> 

48:   <Constraint op="GE" value="0.10" meas="vov_mp20 vov_mp14 vov_mp22 vov_mp11 vov_mp12 vov_mp9 ..."/> 

49:   <Constraint op="GE" value="0.10" meas=" delta_mp20 delta_mp14 delta_mp22 delta_mp11 ..." /> 

50: </Design> 

Figure 3.6 – Completed circuit setup 

When layout effects are to be considered, layout guides must be provided. The AIDA-L’s layout 

guides, which are also described in XML, describe the floorplan and are parameterized to include the 

design variables. The floorplan is defined using simple rectangular constructs that capture the 

proximity and topological relations that the designer wishes to impose. The information used for 

placement is the type and relative placement of the cells, and also, the symmetry, matching and 

combine requirements. The high level floorplan of each cell is described by a box shape. The size of 

this box has no meaning, only the relative position between cells (boxes) is of concern. The topological 

constraints that are enforced by the tool are inferred from the boxes’ placement directly. 

Symmetry is specified locally in each floorplan (or sub-floorplan) by two properties: ‘symGroupId’ that 

identifies a group of cells that share the same symmetry axe; and ‘symCellId’ that identifies a pair of 

the cells that are to be placed symmetrically in relation to the symmetry axe. By default, cells are self-

symmetric and do not share their symmetry axis. Matching is enforced in the device parameterization, 
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where the devices that the designer deemed to be matched share some or all parameters (in both 

layout guides and netlist). Finally, combine operations can be used to replace a group of basic cells 

with more complex layout structures, e.g., merged structures or interdigitated/common-centroid layout 

styles. 

In Figure 3.7 (a) part of the XML description of the hierarchically defined layout guides, and in (b) the 

corresponding graphical representation is shown. The devices in blue are defined hierarchically in the 

sub-template for partition P1A. The expected location of the power supply nets, VSS and VDD, are 

illustrated in the image running on top and bottom of the layout, respectively, although there is no 

explicit definition in the template.  

<?xml version="1.0" encoding="ISO-8859-1"?> 

<!DOCTYPE Template SYSTEM "template4.dtd"> 

<Template name="T1a"> 

  <CellList> 

    <Cell name="P1" symGroupId="1"> 

      <Box x="-1250" y="1000" w="2500" h="1500" /> 

      <TemplateCellView file="p1a.xml" /> 

<!-- including part of p1a.xml’s CellList element inline--> 

        <Cell name="MN9" symGroupId="2" symCellId="3"> 

          <Box x="-750" y="2000" w="1000" h="500" /> 

          <MOSFET type="N" width="wal*nfal" length="lal" nf="nfal" nrows="nral" /> 

        </Cell> 

        <Cell name="MN10" symGroupId="2" symCellId="3"> 

          <Box x="750" y="2000" w="1000" h="500" /> 

          <MOSFET type="N" width="wal*nfal" length="lal" nf="nfal" nrows="nral" /> 

        </Cell> 

        <Combine id0="MN9" id1="MN10" /> 

        <Cell name="MP11" symGroupId="2" symCellId="1"> 

           <Box x="-750" y="1000" w="1000" h="500" /> 

           <MOSFET type="P" width="wp*nfp" length="lp" nf="nfp" nrows="nrp" /> 

        </Cell> 

        <Cell name="MP12" symGroupId="2" symCellId="1"> 

          <Box x="750" y="1000" w="1000" h="500" /> 

          <MOSFET type="P" width="wp*nfp" length="lp" nf="nfp" nrows="nrp" /> 

        </Cell> 

        <Combine id0="MP11" id1="MP12" /> 

<!-- inline part of p1a.xml’s CellList element end --> 

    </Cell> 

    <Cell name="MP14" symGroupId="1" rotate="MX"> 

      <Box x="-300" y="0000" w="600" h="500" /> 

      <MOSFET type="P" width="wb*nfb" length="lb" nf="nfb" nrows="nrb"/> 

    </Cell> 

    ... 

  </CellList> 

</ Template> 

 (a) 

VDD

VSS

MN21

XC1

MP22MP20MP14

P1A
CC: MN9-MN10 

CC: MP11 – MP12

 
(b) 

Figure 3.7- Single ended two-stage amplifier layout guides 

(a) Part of the XML description of the layout guides (floorplan.xml), showing the constructs and 
illustrating the hierarchy, with part of the sub-floorplan file for partition P1A shown inline; 

(b) Graphical representation of a template showing the relative location of the devices. 

 

3.2 Efficient Setup with Automatic Constraint Extraction 

After reviewing how the setup is done in AIDA, this work’s contribution becomes clear and can be 

defined with more detail. 

 Starting from the netlist shown in Figure 3.4 (a), where all the matching is done manually, 

using pattern identification techniques can make matching between devices possible to 

automatize.  



 
 

22 
 

 The measures for each device are generated but are not included automatically in the netlist 

because there is no processing of the circuit other than identifying individual devices. Due to 

the same reason only device related constraints (overdrive and saturation margin) are 

automatically considered. With the blocks properly identified, all measures and constraints that 

are needed can be introduced automatically. 

 In terms of the desing.xml, the setup assistant generated only a very simplified version. Using 

more knowledge will permit the automatic generation of a more complete setup file, leading to 

considerable savings in terms of setup in addition to preventing potential configuration errors. 

 The layout guides are mostly manual, and further automation of the template generation is 

possible using circuit recognition and rule extraction to define symmetry, grouping and 

hierarchical partitioning. 

3.3 Conclusions 

In this chapter AIDA’s architecture was reviewed, with special emphasis on constraint definition and 

circuit sizing. Considering PVT corners analysis and the usage of industrial circuit simulators allows 

AIDA to find a set of optimal multi-objective sizing solutions denominated Pareto Optimal Front (POF). 

The resulting sizing solutions represent a trade-off between the two optimized variables, where no 

solution is strictly better than another. Constraints are determined during optimization setup, so that to 

aid in the optimization process by restricting the search space, and reducing optimization time, as well 

as finding more robust solutions. Once the optimization project is finished, one sizing solution can then 

be sent to AIDA-L for layout generation. 
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4 Automated Constraints Generation Module 

In this chapter, the Constraint Generation Module will be thoroughly explained. A brief overview will 

explain the general working method of the module, and then each stage is analysed with further detail. 

Then a running example will be presented, using a simple OpAmp, and explaining with detailhow each 

stage will work with the given circuit. 

4.1 Overview 

Figure 4.1 illustrates how the Automated Constraints Generation works. The module receives as input 

a non-sized circuit netlist, and according to the provided technology specific variables and the library of 

patterns and their respective constraints and subgraphs, generates outputs according to the desired 

constraints, in the form of a parameterized netlist, electrical constraints, and their respective measure 

commands. 

 

Technology specific 

variables file

MP1  source ....    
MP2   source ....   

.

.

.

Netlist parsing and 
transistor detection

Pattern 
detection

Sizing and pattern-specific 
constraints assignment

Circuit graph generation
Symmetry 
detection

Symmetry-related 
constraints assignment

Automated Constraint Generation
Classes with Building block 

patterns and respective 

constraints and matchings

Configuration
Constraints
SubGraph

...

Non-sized circuit netlist

MP1   ...    L=L1    W=W1
MP2   ...    L=L2    W=W1

.

.

.

Sized netlist

Vds(MP1)-Vds(MP2) <= 5mV
.
.
.

Constraints

Meas(Vds(MP1)-Vds(MP2))
.
.
.

Measures

 

Figure 4.1 – Automated Constraint Generation Architecture 
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4.2 Reading the netlist 

The netlist format for transistors is as follows: 

Mx Drain Gate Source Bulk Model W=MW L=ML M=MM 

 

The transistors are stored in a data structure with several variables as shown in Figure 4.2. Most of the 

variables used in the structure are Strings, either to store the transistor name and model (Name, 

Model), the node names connected to the transistor’s ports (Drain, Gate, Source, Bulk), or the sizing 

variables (Width, Length, Fingers). Integers are used to assign symmetry and proximity groups to the 

transistor (SPIG, SGID, GID), as these only utilize numbers. A state variable is also used to determine 

if the transistor should be working in the saturation or in the linear region (State). 

Transistor Data Structure

State State Linear Saturation

String Model mod

String Width W_MN21

String Length L_MN21

String Fingers M_MN21

String MN21

String Drain IRef

String Gate IRef

String Source VDD

String Bulk VDD

Name

Int SPID 1

Int GID 1

Int SGID 1

 

Figure 4.2 – Transistor Data Structure with field examples 

Two lists of transistors are created, one list for p-type transistors and the other for n-type transistors, 

as shown in Figure 4.3. Determining the type of transistor is made by checking the second character of 

the name, as it is always either P or N. Any line that is not commented nor is a valid transistor is stored 

in a list of strings to be placed in the output netlist. 

N type
list

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID
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Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor

Name

Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers
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SGID

State

Model

Transistor
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Drain

Gate

Source

Bulk
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Width

Length
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GID

SGID

State

Model

P type
list

Transistor
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Drain

Gate

Source

Bulk

SPID

Width

Length

Fingers

GID

SGID

State

Model

Transistor
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Drain

Gate

Source

Bulk
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Length

Fingers

GID

SGID

State
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Transistor
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Source

Bulk

SPID
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State

Model

Transistor

Name

Drain
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Drain

Gate

Source
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Figure 4.3 – Transistor lists according to type 

Although the original netlist might be parameterized, the module ignores the transistors dimensions, 

and only reads the transistor’s name, model, and port nodes. All information after that is discarded. 

Once the transistor is read, the w, l, and m variables are assigned according to the name. (e.g. MN6 

will have W=W_MN6, L=L_MN6, M=M_MN6). 

4.3 Pattern configuration, constraints, and subgraphs 

Patterns are implemented in files that contain all the information needed to characterize the intended 

building blocks. These are categorized in two levels, 1 and 2. Level 0 contains the single transistors, 

which are not patterns.  

4.3.1 Level 0 

Level 0 building blocks are the individual transistor, required mostly to apply saturation or linear region 

constraints. Even though these are the simplest building blocks, they are also very common and are 

where most of the constraints are generated. Should a transistor not be matched into a building block, 

it is set as being in saturation by default. 

4.3.1.1 Transistor 

Transistor-assigned constraints come mainly from the state they are in (saturation/linear). The state is 

assigned by the building block the transistor is in. If the transistor is not found to be in any building 

block then it is considered to be in saturation by default. The constraints generated to transistors in 

saturation are as follows: 

 𝑣𝑑𝑠 − (𝑣𝑔𝑠 − 𝑉𝑡ℎ) ≥ 𝑉𝑆𝐴𝑇𝑚𝑖𝑛
  (4.1) 

 𝑣𝑑𝑠 ≥ 0   (4.2) 

 𝑣𝑔𝑠 − 𝑉𝑡ℎ ≥ 0   (4.3) 

 𝑤 × 𝑙 ≥ 𝐴𝑚𝑖𝑛𝑆𝐴𝑇
   (4.4) 

 𝑤 ≥ 𝑤𝑚𝑖𝑛𝑆𝐴𝑇
   (4.5) 

 𝑙 ≥ 𝐿𝑚𝑖𝑛𝑆𝐴𝑇
   (4.6) 

The constraints generated for transistors that are working in the linear region generate the following 

constraints: 

 (𝑣𝑔𝑠 − 𝑉𝑡ℎ) − 𝑣𝑑𝑠   ≥ 𝑉𝑙𝑖𝑛𝑚𝑖𝑛
  (4.7) 

 𝑣𝑑𝑠 ≥ 0   (4.8) 

 𝑣𝑔𝑠 − 𝑉𝑡ℎ ≥ 0   (4.9) 
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4.3.2 Level 1 

Level 1 patterns consist of two transistors that are connected according to a given configuration. 

These configurations often imply some constraints to aid in transistor matching and improve circuit 

performance, as well as aiding in a simpler way to represent circuits. Although some patterns do not 

have any constraints associated, they are used to help detecting higher level patterns. 

Level 1 Pattern structure

MN21A

Transistor MN22B

String SCM1Name

Transistor

 

Figure 4.4 – Level 1 Building Block Data Structure with field examples 

Figure 4.5 – Level 1 Patterns and Subgraphs 

4.3.2.1 Simple Current Mirror 

The Simple Current Mirror is the basic building block of current mirrors, providing a constant current 

equal to a reference current multiplied by a desired ratio, 𝑅. The pattern’s configuration consists of two 

transisors with a connection between their sources and another connection between their gates and 

one of the drains. Constraints will set the transistors to match so that there is enough precision in the 

output current, and the widths are also matched, leaving the currents’ ratio to be set by the number of 

fingers. Both transistors are set as saturated. 

 𝑙1 = 𝑙2  (4.10) 

 𝑤1 = 𝑤2   (4.11) 

 𝑚2 = 𝑚1 × 𝑅1_2 (4.12) 

 𝑣𝑔𝑠1,2
− 𝑉𝑡ℎ1,2

≥ 𝑉𝑔𝑠𝑚𝑖𝑛
   (4.13) 

 

(a) Simple Current Mirror 

 

(b) – Differential Pair 

 

(c) Level Shifter 

 

(d) Cross-coupled Pair 

 

(e) – Voltage 

Reference I 

 

(f) Voltage 

Reference II 

 

(g) Current Mirror 

Load 

 

(h) Cascode Pair 
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The SRM [16] method included a small difference between the Drain-Source voltages of the 

transistors. The optimizer was not finding good circuit solutions with this constraint, mainly because 

this forces a voltage at the current source node, which is not intended. The intention of the Simple 

Current Mirror is to establish a current. This constraint would essentially create a voltage source, 

rather than a current source. 

The subgraph associated with this pattern consists of a single edge pointing from the driver’s drain to 

the driven’s drain. 

4.3.2.2 Level Shifter 

The Level Shifter has a similar configuration as the Simple Current Mirror, with the difference that the 

sources are not connected. This means that the configuration of a Level Shifter consists of a single 

connection between the transistors gates as well as one of the transistor’s drain. Constraints are also 

similar. 

 𝑙1 = 𝑙2  (4.14) 

 𝑤1 = 𝑤2   (4.15) 

 𝑚2 = 𝑚1 × 𝑅1_2 (4.16) 

 𝑣𝑔𝑠1,2
− 𝑉𝑡ℎ1,2

≥ 𝑉𝑔𝑠𝑚𝑖𝑛
   (4.17) 

Unlike the Simple Current Mirror, the Level Shifter is not expected to be connected to vdd or vss, so 

the sub-graph is more elaborate. Although HPR [52] has a much more complex sub-graph, which was 

not adopted. Although the signal flow is of that complexity, this sub-graph should be enough to find 

circuit symmetries. 

4.3.2.3 Voltage Reference I 

The Voltage Reference I pattern does not generate any constraint or subgraph, and its only utility is to 

assist in determining level 2 building blocks. The configuration consists of two transistors with the drain 

of one (1) connected to the source of the other (2), as well as a connection between their gates and 

the remaining drain (2). 

4.3.2.4 Voltage Reference II 

The Voltage Reference II pattern also does not generate any constraint or subgraph, and its only utility 

is to assist in determining level 2 building blocks. The configuration consists of two transistors with the 

drain of one (1) connected to the source of the other (2), as well as a connection between one gate (1) 

and the remaining drain (2). 

 

4.3.2.5 Current Mirror Load 

The Current Mirror Load does not generate any constraint or subgraph, also only having the utility of 

generating level 2 building blocks. The configuration consists of two transistors with a connection 

between one drain and one source and another connection between their gates.  
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4.3.2.6 Cascode Pair 

The Cascode Pair is one of the most generic patterns, and is the last one on the list of no-constraints 

patterns. The configuration consists of a single connection between a drain and a source. 

4.3.2.7 Differential Pair 

The Differential Pair is the building block in circuits that reads a small differential input that is amplified 

into a larger voltage differential output. To ensure that both the positive and negative parts of the 

voltage, the building block should be symmetric, i.e. both transistors need to have the same 

dimensions. Because this pattern is very generic, false detections are possible, but because this 

pattern requires the sources to be connected to a current source, a verification of such connection is 

made once all the building blocks are detected, easing the determination process of false detections. 

The configuration consists of a single connection between the transistors’ sources. Constraints for this 

pattern ensure that both transistors are working in similar conditions (same dimensions and same 

working state) so that a symmetric behavior is achieved: 

 𝑙1 = 𝑙2  (4.18) 

 𝑤1 = 𝑤2  (4..19) 

 |𝑣𝑑𝑠2
− 𝑣𝑑𝑠1

| ≤ ∆𝑉𝑑𝑠max(𝑑𝑝)
  (4.20) 

 |𝑣𝑔𝑠2
− 𝑣𝑔𝑠1

| ≤ ∆𝑉𝑔𝑠𝑚𝑎𝑥
   (4.21) 

The sub-graph of this pattern consists of two edges for each transistor, one from the gate to the drain, 

and another from the source to the gate. 

4.3.2.8 Cross-coupled Pair 

The Cross-coupled Pair works as a Differential Pair where one input is connected to the opposite side 

output. This creates an oscillating voltage at the outputs, as this is used mainly in voltage-controlled 

oscillators. The configuration consists of a connection between two sources, and two symmetric 

connections between one transistor’s gate and the other transistor’s drain. This pattern only generates 

transistor sizing constraints, and no electrical constraints other than setting both transistors as 

saturated. 

 𝑙1 = 𝑙2  (4.22) 

 𝑤1 = 𝑤2   (4.23) 

The Cross-coupled Pair has a subgraph consisting of one edge from each transistor’s source to it’s 

own drain. 
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4.3.3 Level 2. 

Level 2 Pattern structure

SCM1A

Level 1 BB LS1B

String CCM1Name

Level 1 BB

Transistor MN22C
 

Figure 4.6 - Level 2 Building Block Data Structure with field examples 

The level 2 patterns consist of current mirrors constructed by three or four transistors. This approach 

requires level 1 building blocks to generate level 2 building blocks, and creates further constraints. All 

the level 2 building blocks have the same subgraph, and only the first will be displayed. All the others 

will not be displayed, as the subgraphs are similar. 

 

(a) Wilson Current Mirror 

 

(b) Cascode Current Mirror 

 

(c) 4-Transistor Current Mirror 

 

(d) Improved Wilson Current Mirror 

 

(e) Wide Swing Cascode Current Mirror 

Figure 4.7 – Level 2 patterns and subgraphs 

4.3.3.1 Wilson Current Mirror 

The Wilson Current Mirror is the only level 2 pattern consisting of three transistors, working as a 

regular Simple Current Mirror with an additional transistor connected to the driver transistor. However, 

the driven and driver transistor roles are reversed. The Wilson Current Mirror consists of a Simple 

Current Mirror and a single transistor, where the single transistor’s source is connected to the SCM’s 

driver’s drain, and the single transistor’s gate is connected to the SCM’s driven’s drain. This pattern 

does not generate any constraint additional to the Simple Current Mirror, with the exception that the 

single transistor is set as saturated. 
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This pattern’s subgraph consists of an edge from the single transistor’s drain to the source, and from 

the single transistor’s drain to the gate. 

4.3.3.2 Cascode Current Mirror 

The Cascode Current Mirror is the standard current mirror composed of four transistors. The pattern 

consists of a Simple Current Mirror and a Level Shifter. The configuration estabilishes a connection 

between the SCM’s driver transitor drain and the LS’s driver transistor source, and a similar 

connection between both driven transistors. The constraints generated consist of similar Drain-Source 

voltages on the SCM transistors, so the Level Shifter’s transistors are working at similar voltage points. 

 |𝑣𝑑𝑠2
− 𝑣𝑑𝑠1

|
(𝑐𝑚)

≤ ∆𝑉𝑑𝑠max(𝑐𝑚)
   (4.24) 

The subgraph consists of two edges from the drain to the source of each Level Shifter transistor, as 

well as another edge from the Level Shifter’s driver transistor drain to the driven transistor drain. 

4.3.3.3 4-Transistor Current Mirror 

The 4-Transistor Current Mirror consists of four transistors with all their gates and one of the “Level 

Shifter’s” drain connected. Although the transistor sizing constraints and subgraph generated are 

similar to the CCM, their detection is made by matching a Voltage Reference I to a Current Mirror 

Load, and the two upper transistors are set as working in the linear region. Observing this pattern’s 

configuration shows that there is a Level Shifter false detection shown in Figure 4.8, which must be 

removed. 

 

Figure 4.8 – Level Shifter false detection in a 4-Transistor Current Mirror 

The transistors shown in the shade area meet the connection configuration of a Level Shifter. 

However, the transistors are not to be matched. 

4.3.3.4 Improved Wilson Current Mirror 

Similar to the Cascode Current Mirror, the Improved Wilson Current Mirror consists of a Simple 

Current Mirror and a Level Shifter, with the difference that the connections configuration is reversed. 

However, the constraints and subgraph are similar to the Cascode Current Mirror. 

4.3.3.5 Wide Swing Cascode Current Mirror 

The Wide Swing Cascode Current Mirror consists of four transistors with a configuration similar to the 

4-Transistor Current Mirror, with the difference that the two lower transistor gates are not connected to 

the upper two transistor gates. Although the transistor sizing constraints and subgraph generated are 

similar to the CCM, their detection is made by matching a Voltage Reference II to a Cascode Pair, and 

the two upper transistors are set as working in the linear region. 
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4.4 Pattern Detection 

All constraints are based on either certain sub-circuits that are commonly found throughout a large 

variety of analog circuit designs, also known as Building Blocks. These consist mainly of differential 

pairs and current mirrors. For any given circuit, detecting these building block will aid in generating the 

desired constraints, as well as a signal flow graph to detect symmetries. 

Given the configuration of some patterns, certain transistor pairs that match certain patterns will also 

match other patterns. Despite this, the SRM [16] approach searches for possible transistor pair 

matches for each pattern. Considering that a given pair of transistors never becomes more than one 

building block, and that certain patterns will also match to other patterns (as mentioned previously), 

this method might not be the most efficient, requiring a follow-up search to remove certain building 

blocks that share the same transistor pair as other building blocks. 

The search method implemented, on the other hand, does not require this after step, because 

searches are made for possible patterns for each given transistor pair, making some ambiguities 

easier to deal with. However, the order in which the pattern matching is done for each pair has to be 

considered, or there is a risk that the transistor pair is attributed the wrong pattern.  

For example, a Level Shifter consists of two transistors with their gates and one of the drains 

connected. A Differential Pair consists of two transistors with their sources connected. A Current Mirror 

consists of two transistors with their gates and one of the drains connected, and also their sources 

connected. This means that if a Differential Pair setup is checked first, all Current Mirrors will be 

recognized as being Differential Pairs, and the same thing happens if Level Shifter is checked first. To 

avoid this problem, the Current Mirror setup must be checked before the Level Shifter and the 

Differential Pair. Figure 4.9 illustrates the problem described. The column on the left shows the 

connection verifications for the Simple Current Mirror, the middle column shows the connection 

verifications for the Level Shifter, and the column on the right shows the connection verifications for 

the Differential Pair. 
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Source(1) – Source (2) 
Connected

Source(1) – Source (2) 
Connected

Gate(1) - Gate(2) 
Connected

Gate(1) - Gate(2) 
Connected

Gate(1) - Drain(1) 
Connected

Gate(1) - Drain(1) 
Connected

Gate(1) - Gate(2) 
Connected

Gate(1) - Gate(2) 
Connected

Gate(1) - Drain(1) 
Connected

Gate(1) - Drain(1) 
Connected

Source(1) – Source (2) 
Connected

Source(1) – Source (2) 
Connected

 

(a) 

Gate(1) - Gate(2) 
Connected

Gate(1) - Gate(2) 
Connected

Gate(1) - Drain(1) 
Connected

Gate(1) - Drain(1) 
Connected

Source(1) - Source(1) 
Not Connected

Source(1) - Source(1) 
Not Connected

Gate(1) - Gate(2) 
Connected

Gate(1) - Gate(2) 
Connected

Gate(1) - Drain(1) 
Connected

Gate(1) - Drain(1) 
Connected

Source(1) – Source(2) 
Not Connected

Source(1) – Source(2) 
Not Connected

 

(b) 

Gate(1) - Gate(2)   
Not Connected

Gate(1) - Gate(2)   
Not Connected

Gate(1) - Drain(1) Not 
Connected

Gate(1) - Drain(1) Not 
Connected

Source(1) – Source(2) 
Connected

Source(1) – Source(2) 
Connected

Gate(1) - Gate(2)   
Not Connected

Gate(1) - Gate(2)   
Not Connected

Gate(1) - Drain(1) Not 
Connected

Gate(1) - Drain(1) Not 
Connected

Source(1) – Source(2) 
Connected

Source(1) – Source(2) 
Connected

 

(c) 

Figure 4.9 – Pattern detection ambiguity examples with (a) Simple Current Mirror (b) Level Shifter 
(c) Differential Pair 

The illustration shows that a Simple Current Mirror will verify all Level Shifter and Differential Pair 

connections. However, neither the Level Shifter nor the Differential Pair will be verified in the Simple 

Current Mirror pattern check. 

A complete hierarchy is shown in Figure 4.10, showing which patterns must be compared before other 

patterns. The arrows represent which patterns must be compared beforehand. 
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SCM

VR I

VR II

CML

CP

LS

CCP

DP
 

Figure 4.10 – Hierarchy in building block search 

After reading the netlist and establishing the transistor database, a search for patterns begins, 

comparing each combination of transistor and matching to patterns in the library, generating the first 

level of building blocks of the circuit.  

Choose a pair of 
transistors

Compare the transistor 
connections to a 

building block 
configuration.

Add pair  as a new module to building blocks set

Patterns Match?

More patterns in 
library?

YES

YES

NO

NO

START

 

Figure 4.11 - Flowchart of implemented building block recognition 

Because some level 1 building blocks have a very generic configuration, many detected building 

blocks may be false positives (for example, the Cascode Pair is just a transistor’s drain connected to 

another transistor’s source). To determine the false detections, the level 2 building blocks are 

determined first. 

Once the first-level building blocks of a circuit are determined, the level 2 building blocks are 

generated through a similar search, where the search is done for each combination of building blocks, 

or combination of building blocks and transistors, and are matched with the level 2 patterns. Some 

level 1 ambiguous building blocks can then be determined to be false detections and removed. 

Some level 1 patterns do not have constraints associated to them, so their only function is to generate 

into level 2 building blocks. In the case one of the building blocks does not generate any level 2 

building block, nor generates any constraint, then the building block has no utility in the module. Once 

the level 2 building blocks are detected, a search is made to detect the level 1 building blocks that do 
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not have constraints and did not generate any higher level building block, and these blocks are 

removed, considering that they are highly likely to be false detections. For example, as shown in 

Figure 4.12, a Cascode Current Mirror, the correctly detected level 1 building blocks are the Current 

Mirror, and the Level Shifter. However, due to the configuration of the transistors, two Cascode Pairs 

are detected, which is clearly a false detection. Once the level 2 building blocks are found, the 

program realizes the Cascode Pairs did not generate any level 2 building block and removes them. 

Figure 4.3 shows a graphical representation of the CCM example, with the correct level 1 building 

blocks in green, and the incorrect in red. 

Cascode Pair Cascode Pair

Current Mirror

Level Shifter

 

Figure 4.12 - Example of false level 1 detections 

Lastly, the Differential Pair is the last level 1 pattern that while having constraints, also has a generic 

configuration, which is prone to many false detections. But because most Differential Pairs have their 

sources connected to a current source, each Differential Pair detected is checked if their sources are 

connected to a port of any kind of current mirror. If no current mirror is found to be connected to their 

sources, the building block is considered a false detection and is discarded. 

Another possible way to detect false detections is by searching building blocks that share transistors. 

Although this is a possible way of removing false detections, some building blocks are still valid even 

when sharing transistors with other building blocks, as is shown in Figure 4.13. This method would 

also not remove invalid building blocks that happen to not share transistors with any other building 

block. 

Wide Swing 
Cascode Current 

Mirror

Level Shifter Bank

 

Figure 4.13 – Level Shifter Bank sharing transistors with a Wide Swing Cascode Current Mirror 

The above example shows a case where two different building blocks have two transistors in common, 

both being valid. This configuration will be later found in one of the example circuits in the results 

section. The Level Shifter driver transistor is being used to polarize the lower transistor gates of the 

Wide Swing Cascode Current Mirror. 
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4.5 Finding symmetry 

4.5.1 Generating the signal flow graph 

After determining all the building blocks in a circuit, a signal flow graph is created to aid in finding 

symmetries in the circuit. Each pattern brings an associated graph, representing the signal flow as well 

as the current flow. Unlike HPR [52] and MARS [72], which symmetries are applied at the block level 

(p.e, determining two cascode current mirrors as symmetric would mean that they would have two 

symmetric pairs of transistors), the approach used determines symmetry at the transistor level, 

reducing the implementation complexity of determining symmetric devices, and potentially increasing 

flexibility of new building block implementations in finding symmetries.  

The nodes of the graph correspond to nodes in the circuit, and edges correspond to the flow of signal 

or current. To better facilitate symmetry detection, the edges are attributed a string variable to store 

characteristics: if the edge is just representing signal or is also a current path, the name of the 

originating pattern, and if the pattern has transistors of n-type or p-type. 

Usage of current representing edges will help determine self-symmetric nodes and devices, i.e. 

devices that are placed or centered on the symmetry axis. 

4.5.2 Finding symmetric nodes 

Search for symmetric nodes is the same as the HPR [52] approach. Starting at the found Differential 

Pair, the gate nodes of the transistors are considered symmetric.  

The search for additional symmetric nodes starts with a pair that is already determined to be 

symmetric, and each node of the pair has similar edges pointing to (or from) another pair of nodes. 

The process repeats for the new found symmetric pair. 

If a pair of nodes has multiple similar edges each, each combination is tested with a verification if the 

paths further in the graph are also symmetric. If the paths in the graph merge into a single node then 

the entire path is considered symmetric. If the paths are similar in their paths but do not merge then 

are also considered symmetric. Otherwise, they are not considered symmetric and a different 

combination of edges is tested. 

If a symmetric pair of nodes has edges pointing to/from a single node, and the edges represent current 

pathways, then the node is considered self-symmetric. If the node has further single edges 

representing current, the self-symmetry propagates. If the node has two similar edges representing 

current, and diverges to two nodes, then the nodes are considered symmetric and a regular symmetry 

search continues.  

The method used includes backtracking, which was not implemented in HPR[ref]. This aids in 

determining further symmetries that would otherwise not be detected. 
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4.5.3 Determining symmetric devices 

After determining all the symmetric nodes in a circuit, finding symmetry at the device level becomes a 

simple task. For each possible pair of transistors, the ports are checked if they are connected to the 

same node, or connected to symmetric nodes. If this condition applies to all the ports of a given pair of 

devices, they are considered to be symmetric.. 

4.6 Generating constraints 

4.6.1 Sizing and electronic constraints 

Sizing and electronic constraints are determined from the building blocks and the patterns’ associated 

constraints. The main difference is that because AIDA also designs multiple finger transistors, some 

current mirror building blocks have their transistor widths (per finger) matched (i.e equal), with the 

number of fingers determining the current ratio. For example, the simple current mirror, constraints are 

as follows: 

𝑤1 = 𝑤2 

𝑖2

𝑖1

=
𝑚2

𝑚1

 

Where 𝑤 is the finger width, 𝑖 is the source-drain current, and 𝑚 is the number of fingers of a 

transistor. A transistor can be considered to have a total width of 𝑤 × 𝑚. 

Whenever a new sizing match is applied, a search is made throughout the transistor database to 

assign the new parameter to transistors that share the same parameter to be changed. For example, 

M2 needs to have the same length as M1, so M2 will have L=L_M1. If there is a M3 that also needs to 

have the same length as M2, then M2 will have L=L_M3, and the transistor database will also be 

searched for transistors that have L=L_M1, so transistor M1 will now have L=L_M3. 

4.6.2 Proximity constraints 

HPR [52] mentions two levels of proximity: a low priority proximity for any devices that are connected 

with each other, and a higher priority proximity for certain building blocks. 

Because AIDA considers single proximity groups, only the higher priority proximity is considered, 

because: 

-In a given circuit, if a low proximity constraint translates to including two any transistors that are 

connected in the same group, the whole circuit will become a proximity group. 

-There is only a single proximity grouping method, so the highest priority proximity is considered. 

The higher proximity constraints refer to devices in the same building. 
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4.6.3 Symmetry constraints 

Multiple lists of symmetry pairs might be generated. Each list consists of all the symmetry pairs that 

share the same symmetry axis. Symmetric transistors are matched to have the same Length, Width 

and number of fingers (geometric symmetry) 

4.7 Designing new patterns 

The Automated Constraint Generation module allows for new patterns to be added to the library, as 

well as editing or removing existing ones. The designer has the possibility of creating patterns by 

indicating the connections configuration, constraints it generates, and the signal and current subgraph. 

4.7.1 Connections configuration 

Because the transistor structure contains the node information stored as a String with the node name, 

connections are found by comparing two port strings and checking if they match. The module is run in 

Java, so the checks have the following template: 

if(transistorA.portA.equals(transistorA.portB) && transistorA.portC.equals(transistorB.portA)): 

This template checks if transistor A has ports A and B connected, and if transistor A has port C 

connected to transistor B port A. 

One additional detail when checking if a pair of transistors match into a pattern, is if the pattern is 

symmetrical or not. If the pattern is symmetrical, only one check is necessary, otherwise a second 

check with the transistors swapped must be made. For example, if transistors M5 and M6 are being 

checked to see if they form a Simple Current Mirror, with transistor A as driver transistor, and transistor 

B as driven transistor, then a check is made with M5 as transistor A and M6 as transistor B, and then 

another check is made with M6 as transistor A and M5 as transistor B. 

When dealing with higher level patterns, these are formed by at least other building blocks. The check 

is similar to only transistors, except the connections require specification of the building block’s 

transistor in addition to the transistor’s port, in addition to checking the building block’s assigned 

pattern (e.g when checking for a Cascode Current Mirror, the building blocks are analyzed to check if 

their patterns are Simple Current Mirrors and Level Shifters). Below is a template featuring patterns of 

level higher than 1. 

if(bblockA.namebblockA.equals(scm) && transistorA.portA.equals(bblockB.transistorA.portB && …)  

4.7.2 Constraints generation 

Constraints are saved in arrays of 3 strings: variable name, whether it is a maximum or a minimum 

constraint, and the limit’s value. 

Variable name specifies if the constraint is a voltage between two ports in a transistor (e.g. VDS, 

VGS), voltage differential between two pairs of ports (e.g. psids, psigs, which represent the VDS or 

VGS difference between two transistors), length, width, or area. 
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Maximum or minimum is a string that contains either “LE” (Lower or Equal) or “GE” (Greater or Equal). 

As the name states, it is used to determine if the constraint is an upper or a lower limit. 

The limit’s value is determined from a variables file which is provided by the designer. 

As an example, the constraint associated in a given transistor Mx in saturated mode, with delta > 0.01 

(where 0.01 is a number representing the lower limit for the delta voltage, and delta is vds -vgs), the 

constraint generated is as follows: 

temp_constr[0] = "GE"; 

temp_constr[1] = “0.01”; 

temp_constr[2] = “delta_Mx” 

4.7.3 Subgraph generation 

The subgraph is used to show if a change in current/voltage in a given node will influence 

current/voltage change in another node. It is important to note that these are for signal flow graph. 

Edges representing current flow could also be used. These are mostly only between a given 

transistor’s Drain and Source. Edges need to have information, stating whether signal or current is 

being represented, which N or P type of transistors are involved, and the pattern. The following 

example shows a signal flow edge added from a Simple Current Mirror 

adj.addAdj(a.drain, b.drain, "s " + type + "-scm"); 

Another example showing a current and signal flow from a Differential Pair 

adj.addAdj(a.drain, b.drain, "sc " + type + "-dp"); 

The type is not needed to be specified, as the information is already stored within each building block 

and is read from it. 

4.7.4 Remaining details 

Besides electrical configuration, constraints, and subgraph, some additional information is required. 

The update function is used to add or change nodes in the circuit that are considered a current source. 

For example, a Simple Current Mirror will add the driven transistor’s drain node to the list, and a 

Cascode Current Mirror will remove the Simple Current Mirror’s node from the list and add the Level 

Shifter driven transistor’s drain. The Cascode Current Mirror’s code lists all the lines involved with this 

function: 

srcList.remove(a.b.drain); 

if(!srcList.contains(b.b.drain)) srcList.add(b.b.drain); 

The function hasSource returns true or false and is only used for patterns that require a current source 

to be in a certain node, such as a Differential Pair’s source node. Patterns that do not require a current 
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source will just return true, and patterns that do require a current source will need to have a check if 

the required node is a current source or not, with the following line: 

return (srcList.contains(a.source)); 

The function hasConstraints also returns true or false, depending on whether the pattern generates 

constraints or not. 

If the pattern configuration is composed of two similar components and is symmetric only one of the 

configuration check is necessary. A second check with the transistor positions switched is not needed. 

4.8 Integration with AIDA 

Constraint input in AIDA varies, depending on the type of constraint. Sizing constraints, where 

transistor dimensions are parameterized are included in the netlist, so another netlist is created as the 

Automated Constraint Generation’s output, which is fed as input to AIDA. Current and voltage 

constraints are generated as strings, both to declare the constraint variables, and to generate the 

measures. Symmetry and proximity constraints are also generated as strings, this time to declare 

symmetry and proximity groups, and are sent to AIDA-L, considering that these are layout constraints. 

Figure 4.14 shows the AIDA interface with the Automated Constraint Generation module included. A 

new tab with the parameterized netlist is added, and the design XML will show the new constraints 

added. This allows the designer to verify the sized netlist and the generated constraints, and make 

changes if needed. 

 

Figure 4.14 – AIDA Interface with the new module included 
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4.8.1 Netlist 

As mentioned earlier, any transistor sizing in the netlist is ignored, and the module creates the size 

variables assigned to each transistor. Any non-empty string that is not a comment nor a transistor is 

stored in a string table to be reproduced in the output netlist, as it might contain other elements (e.g. 

capacitance) that are not considered in this module, or contain relevant commands. 

The string table is split in two, one table for the strings before the transistor lines, and one table for the 

strings after the transistor lines. The module is assuming there are no other strings mixed in with the 

declaration of transistors, and any that is will be placed in the string table after the transistor lines. 

Figure 4.15 shows the netlist from the circuit found in Figure 3.1, (a) being the module input netlist, 

and (b) the output, which is sent to AIDA.  

 

*** Cell name: opamp_a 

.SUBCKT OPAMP_A DD IN IP OUT REF SS 

  XCO0 OUT D12 SS momcaps_sy_mm l=_lc nf='_nfc' 

  MP8 REF REF DD DD    P_12_HSL130E 

  MP5 NETZ52 REF DD DD P_12_HSL130E 

  MP6 OUT REF DD DD    P_12_HSL130E 

  MP1 D11 IN NETZ52 DD P_12_HSL130E 

  MP2 D12 IP NETZ52 DD P_12_HSL130E 

  MN3 D11 D11 SS SS    N_12_HSL130E 

  MN4 D12 D11 SS SS   N_12_HSL130E 

  MN7 OUT D12 SS SS   N_12_HSL130E 

.ENDS*** End of subcircuit definition. 

(a) Unparameterized netlist (circuit.cir) 
 

 

*** Cell name: opamp_a 

.SUBCKT OPAMP_A DD IN IP OUT REF SS 

  XCO0 OUT D12 SS momcaps_sy_mm l=_lc nf='_nfc'    

  MP8 REF REF DD DD    P_12_HSL130E W=W_MP20 L=L_MP20  M=M_MP20 

  MP5 NETZ52 REF DD DD P_12_HSL130E W=W_MP20 L=L_MP20  M=M_MP14*R_MP20_MP14 

  MP6 OUT REF DD DD    P_12_HSL130E W=W_MP20 L=L_MP20  M=M_MP22*R_MP20_MP22 

  MP1 D11 IN NETZ52 DD P_12_HSL130E W=W_MP11 L=L_MP11  M=M_MP11 

  MP2 D12 IP NETZ52 DD P_12_HSL130E W=W_MP11 L=L_MP11  M=M_MP11 

  MN3 D11 D11 SS SS    N_12_HSL130E  W=W_MN9 L=L_MN9  M=M_MN9 

  MN4 D12 D11 SS SS   N_12_HSL130E  W=W_MN9 L=L_MN9  M=M_MN9 

  MN7 OUT D12 SS SS   N_12_HSL130E  W=W_MN21 L=L_MN21  M=M_MN21 

.ENDS*** End of subcircuit definition. 

(b) Parameterized netlist (circuit.cir) 
Figure 4.15 – Unparamaterized and parameterized netlists 

The parametrized netlist shows that the module attributes variable names according to the name of the 

transistor. Using this terminology to determine transistor variables will also aid the designer in finding 

the desired sizing equalities (e.g. transistor MP14 has L=L_MP20, meaning that MP14 has the same 

length as MP20), in case the netlist needs to be read. 

4.8.2 Electrical Constraints and Measures 

Electrical constraints are required to set each transistor in the desired working state (saturation or 

linear), and to match transistors so the pairs are in the intended working conditions (e.g. the gate-

source voltages are very similar, so the current per transistor width dimension ratios are equal). 
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AIDA requires declaration of variables, so constraints can effectively be applied to them. After 

declaring a variable, it is assigned as a voltage between a pair of nodes, a voltage difference between 

two pairs of nodes, and the same applies to currents. Then the constraint is set with a lower limit, an 

upper limit, or both. 

4.9 Running Example 

The two-stage amplifier found in Figure 3.4 is used as an example to describe in detail the constraint 

generation process, being a circuit with a low degree of complexity and number of transistors. 

Once the netlist is sent as input, the transistors are read and stored in their p-mos or n-mos list. Then, 

the level 1 building blocks are detected. Figure 4.16 shows all the Level 1 detected building blocks, 

with a detailed list in Table 4-1. 
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(a) Correct       (b) Incorrect 
Figure 4.16 – Two-Stage detected Level 1 building blocks 

Table 4-1 – List of Two-Stage detected Level 1 building blocks 

Building Block Transistor 1 Transistor 2 Correct Building Block Transistor 1 Transistor 2 Correct 

Simple Current Mirror 1 M8 M5  Differential Pair 3 M3 M7 

Simple Current Mirror 2 M8 M6  Differential Pair 4 M4 M7 

Simple Current Mirror 3 M3 M4  Cascode Pair 1 M5 M1  

Differential Pair 1 M1 M2  Cascode Pair 2 M5 M2  

Differential Pair 2 M5 M6      

 

After determining the level 1 building blocks, the module does not differentiate between correct and 

incorrect detections, and goes on to search for the level 2 building blocks. However, due to the 

simplicity of the circuit, there is no level 2 building block to be detected. The search is still executed, 

but nothing is found. 

After determining the second level of building blocks, the incorrect detections can be found. Because 

none of the Cascode Pairs generate into a higher level building block, they are removed. And 

Differential Pairs 2-4 do not have their transistor sources connected to a current mirror/source, and are 

removed too. 

Now the graph generation process begins. Each building block provides its own subgraph to be added 

to the circuit graph. Figure 4.17 shows the final circuit graph. 
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Figure 4.17 – Two-Stage Signal and Current Flow Graph 

Once the circuit graph is generated, the search for symmetry begins. The search starts at the gate 

nodes of the Differential Pair, as the building block is assumed to be symmetric. The edges pointing 

from M4 and M5 gate’s to their drains are matched and considered symmetric, and the drain nodes 

are considered a symmetric pair. Then, the edges from M4 and M5 sources to their drains are 

considered symmetric, and the source node (M4 and M5 have their sources connected to the same 

node) is considered self-symmetric. Because these edges merge into a single node, the module 

checks if they represent current, and considers the symmetry valid if they do. After all the symmetric 

edges and nodes are found, the device symmetry pairing is determined. Two devices are symmetric if 

their port nodes are either symmetric or connected to each other. Figure 4.18 shows the two stage 

edge and device symmetry pairs. 
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(a) Symmetric edges      (b) Symmetric Devices 
Figure 4.18 – Two-Stage symmetry pairs 

All the building blocks and symmetric devices are now determined. Transistors are sized, proximity 

and symmetry groups are created, and electrical constraints are generated. Figure 4.19 shows the 

proximity groups and the matched devices. Both figures are similar, mostly due to the circuit being 

simple, and the only detected building blocks were the Simple Current Mirror and Differential Pair, both 

having matched devices as constraints, as well as proximity groups being directly determined from 

building blocks, while no building block sharing a transistor with another building block. Additionally, 

matched transistors have the same Length and Width per finger, but not the same amount of fingers. 
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(a) Proximity groups     (b) Matched devices 
Figure 4.19 - Two-Stage proximity groups and matched devices 

All constraints are sent in a text format to AIDA 

<Variable name="W_MP8" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MP8" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MP8" min="1" step="1" max="8"/> 

<Variable name="R_MP8_MP5" min="0.5" step="0.1" max="10"/> 

<Variable name="R_MP8_MP6" min="0.5" step="0.1" max="10"/> 

<Variable name="W_MP1" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MP1" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MP1" min="1" step="1" max="8"/> 

<Variable name="W_MN3" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MN3" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MN3" min="1" step="1" max="8"/> 

<Variable name="R_MN3_MN4" min="0.5" step="0.1" max="10"/> 

<Variable name="W_MN7" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MN7" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MN7" min="1" step="1" max="8"/> 

 

<MeasureDescription name="vov_MP8" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MP5" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MP8" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MP6" description="Overdrive" units="[V]" /> 

<MeasureDescription name="psiDS_MP1_MP2" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MP1_MP2" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="vov_MN3" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MN4" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MN3" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MN3" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MN3" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MN4" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MN4" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MN4" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MN7" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MN7" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MN7" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MN7" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MP8" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MP8" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MP8" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MP5" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MP5" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MP5" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MP6" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MP6" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MP6" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MP1" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MP1" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MP1" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MP1" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MP2" description="VDSat - VDS" units="[V]" /> 
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<MeasureDescription name="A_MP2" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MP2" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MP2" description="Overdrive" units="[V]" /> 

<MeasureDescription name="psiDS_MP1_MP2" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MP1_MP2" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_MN3_MN4" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MN3_MN4" description="VGS_X1 - VGS_X2" units="[V]" /> 

 

<Constraint op="GE" value="0.1" meas="vov_MP8" /> 

<Constraint op="GE" value="0.1" meas="vov_MP5" /> 

<Constraint op="GE" value="0.1" meas="vov_MP8" /> 

<Constraint op="GE" value="0.1" meas="vov_MP6" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MP1_MP2" /> 

<Constraint op="LE" value="0.05" meas="psigs_MP1_MP2" /> 

<Constraint op="GE" value="0.1" meas="vov_MN3" /> 

<Constraint op="GE" value="0.1" meas="vov_MN4" /> 

<Constraint op="GE" value="0.1" meas="delta_MN3" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MN3" /> 

<Constraint op="GE" value="0.00" meas="VDS_MN3" /> 

<Constraint op="GE" value="0.1" meas="delta_MN4" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MN4" /> 

<Constraint op="GE" value="0.00" meas="VDS_MN4" /> 

<Constraint op="GE" value="0.1" meas="delta_MN7" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MN7" /> 

<Constraint op="GE" value="0.00" meas="VDS_MN7" /> 

<Constraint op="GE" value="0.00" meas="vov_MN7" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MP8" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MP8" /> 

<Constraint op="GE" value="0.00" meas="VDS_MP8" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MP5" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MP5" /> 

<Constraint op="GE" value="0.00" meas="VDS_MP5" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MP6" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MP6" /> 

<Constraint op="GE" value="0.00" meas="VDS_MP6" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MP1" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MP1" /> 

<Constraint op="GE" value="0.00" meas="VDS_MP1" /> 

<Constraint op="GE" value="0.00" meas="vov_MP1" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MP2" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MP2" /> 

<Constraint op="GE" value="0.00" meas="VDS_MP2" /> 

<Constraint op="GE" value="0.00" meas="vov_MP2" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MP1_MP2" /> 

<Constraint op="LE" value="0.05" meas="psigs_MP1_MP2" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MN3_MN4" /> 

<Constraint op="LE" value="0.05" meas="psigs_MN3_MN4" /> 
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4.10 Observations 

As shown in a thorough description of the Automated Constraint Generation architecture, this module 

provides constraints to the designer by automating the constraint determination process. This 

generation also guarantees consistency between constraints in any given circuit, as different 

transistors within similar circuit configurations are met with similar constraints. 

By reading the circuit netlist, the module reads all the transistors and electrical connections, compares 

multiple configurations, finds patterns in the circuits, makes a graph to find symmetries, and generates 

constraints according to the detected patterns and symmetries within the circuit. 

An example has been shown to demonstrate how the module works step-by-step, using a simple Two-

Stage OpAmp, and displaying the end result of the constraints generated in a compatible format with 

AIDA. 
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5 Experimental results 

This section shows the detected patterns, generated graphs, and detected symmetries for a series of 

circuits. The circuit netlists were sent as input for the Automated Constraint Generation module, and all 

the expected building blocks were found, and their respective constraints generated. All circuits are 

composed of multiple patterns and a variety of level 2 building blocks. The circuits also have non-

symmetrical sections to check how the symmetry detection behaves in non-symmetrical components. 

5.1 Folded Cascode 

Figure 5.1 shows the Folded Cascode, an Operational Amplifier that uses several current sources, as 

well as active loads that use existing current source patterns. 
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Figure 5.1 – Folded Cascode 

Once the module reads the netlist and stores the transistor information, the first level patterns are 

found Figure 5.2 shows the level 1 building blocks, with (a) being the correctly detected building 

blocks, and (b) the incorrected building blocks. In image (b), the Differential Pairs detected are every 

possible combination of transistors in the shaded group with the exception of detected Simple Current 

Mirrors, and the Cascode Pair is two building blocks, both being M7 and one for each of the 

Differential Pair’s transistor. 
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(a) Correct      (b) Incorrect 
Figure 5.2 – Folded Cascode detected Level 1 building blocks (a) correct (b) incorrect 
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Table 5-1 – Folded Cascode detected Level 1 building blocks 

Building Block Transistor 1 Transistor 2 Correct Building Block Transistor 1 Transistor 2 Correct 

Simple Current Mirror 1 M2 M3  Differential Pair 10 M15 M17  

Simple Current Mirror 2 M2 M7  Differential Pair 11 M2 M8  

Simple Current Mirror 3 M6 M14  Differential Pair 12 M2 M9  

Simple Current Mirror 4 M6 M15  Differential Pair 13 M2 M16  

Simple Current Mirror 5 M6 M17  Differential Pair 14 M3 M16  

Level Shifter 1 M1 M4  Differential Pair 15 M7 M16  

Level Shifter 2 M1 M10  Differential Pair 16 M8 M16  

Level Shifter 3 M1 M11  Differential Pair 17 M9 M16  

Level Shifter 4 M5 M12  D ifferential Pair 18 M15 M17 

Level Shifter 5 M5 M13  Cascode Pair 1 M9 M11 

Differential Pair 1 M16 M17  Cascode Pair 2 M7 M16  

Differential Pair 2 M3 M7  Cascode Pair 3 M7 M17  

Differential Pair 3 M3 M8  Cascode Pair 4 M1 M2 

Differential Pair 4 M3 M9  Cascode Pair 5 M3 M4 

Differential Pair 5 M7 M8  Cascode Pair 6 M8 M10 

Differential Pair 6 M7 M9  Cascode Pair 7 M5 M6 

Differential Pair 7 M8 M9  Cascode Pair 8 M12 M14 

Differential Pair 8 M14 M15  Cascode Pair 9 M13 M15 

Differential Pair 9 M14 M17  Voltage Reference II 1 M8 M10 

 

At this stage, the module does not differentiate between correctly and incorrectly detected building 

blocks, and moves on to construct the second level on building blocks. The level 2 detections are 

shown in Figure 5.3. 
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Figure 5.3 – Folded Cascode Level 2 detected building blocks 

Table 5-2 – Folded Cascode Level 2 detected building blocks 

Building Block Building Block 1 Building Block 2 

Cascode Current Mirror 1 Simple Current Mirror 1 Level Shifter 1 

Cascode Current Mirror 2 Simple Current Mirror 4 Level Shifter 4 

Cascode Current Mirror 3 Simple Current Mirror 5 Level Shifter 5 

Wide Swing Cascode Current Mirror 4 Cascode Pair 1 Voltage Reference II 

 

Once the level 2 building blocks are found, the false level 1 detections can be determined and 

removed. Because none of the Differential Pairs in Figure 5.2 (b) (2 to 10) have their transistors’ 

sources connected to any Current Mirror, they are removed, and the Cascode Pairs do not generate 

any level 2 building block, and are also removed. 

The remaining building blocks are then used to create the circuit’s graph. Figure 5.4 shows the signal 

and current flow graph generated in the Folded Cascode circuit. 
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Figure 5.4 – Folded Cascode Signal and Current Flow Graph 

The Differential Pair assigns the nodes VinP and VinN to be symmetric, and the symmetry search 

begins with those two nodes, following the algorithm explained in section 4. Figure 5.5 (a) shows the 

symmetric edges found in the circuit graph. Symmetric pairs have the same numbers. Figure 5.5 (b) 

shows the symmetric transistor pairs. The box with a single transistor means the transistor must be 

centered in the symmetry axis. 
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(a) Symmetric edges     (b) Symmetric Devices 
Figure 5.5 – Folded Cascode Symmetric edges (a) and devices (b) 

Now the constraints are assigned according to the detected patterns and symmetries. The transistors 

are sized, the electrical constraints are generated for each transistor and for transistor pairs, and the 

proximity and symmetry groups are assigned for each transistor. Proximity groups are shown in Figure 

5.6 (a), and transistors that have the same Widths (per finger) and Lengths are shown in Figure 5.6 

(b). Transistors that have the same Widths or Lengths may or may not have different numbers of 

fingers between them. 

M2 M3 M7

M1 M4

M8 M9

M10 M11

M16M17

M12 M13

M14 M15

M5

M6

VinP VinN

Vout

M16

M17

Iref

M2 M3 M7

M1 M4

M8 M9

M10 M11

M16M17

M12 M13

M14 M15

M5

M6

VinP VinN

Vout

M16

M17

Iref

 

(a) Proximity groups      (b) Matched devices 
Figure 5.6 – Proximity groups (a) and matched devices (b) 

All constraints have been determined, and are sent to AIDA in the form of text. A thorough list of 

constraints can be found in Appendix A.1. 
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5.2 Fully Differential two-stage Folded Cascode 

Figure 5.7 shows a fully differential two-stage Folded Cascode, found in [73]. This circuit consists of 

several current mirrors and has a differential section that is symmetrical even though most of the 

transistors do not fit into any of the building block patterns (M14, M15 and M18 to M23). The following 

figures show the same steps as the previous projects. 
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Figure 5.7 – Fully Differential two-stage Folded Cascode 
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(a) Correct      (b) Incorrect 
Figure 5.8 – Fully Differential two-stage Folded Cascode detected Level 1 building blocks (a) 

correct (b) incorrect 
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Table 5-3 – OTA Edinei detected level 1 building blocks 

Building Block Transistor 1 Transistor 2 Correct Building Block Transistor 1 Transistor 2 Correct 

Simple Current Mirror 1 M1 M2  Differential Pair 22 M10 M15  
Simple Current Mirror 2 M1 M3  Differential Pair 23 M13 M14  
Simple Current Mirror 3 M10 M13  Differential Pair 24 M13 M15  
Level Shifter 1 M4 M5  Differential Pair 25 M14 M15  
Level Shifter 2 M4 M8  Differential Pair 26 M6 M9  
Level Shifter 3 M4 M11  Differential Pair 27 M6 M12  
Level Shifter 4 M4 M18  Differential Pair 28 M6 M20  
Level Shifter 5 M4 M19  Differential Pair 29 M6 M21  
Differential Pair 1 M1 M7  Differential Pair 30 M6 M24  
Differential Pair 2 M1 M10  Differential Pair 31 M9 M12  
Differential Pair 3 M1 M13  Differential Pair 32 M9 M20  
Differential Pair 4 M1 M14  Differential Pair 33 M9 M21  
Differential Pair 5 M1 M15  Differential Pair 34 M9 M24  
Differential Pair 6 M2 M3  Differential Pair 35 M12 M20  
Differential Pair 7 M2 M7  Differential Pair 36 M12 M21  
Differential Pair 8 M2 M10  Differential Pair 37 M12 M24  
Differential Pair 9 M2 M13  Differential Pair 38 M20 M21  
Differential Pair 10 M2 M14  Differential Pair 39 M20 M24  
Differential Pair 11 M2 M15  Differential Pair 40 M21 M24  
Differential Pair 12 M3 M7  Differential Pair 41 M22 M23  
Differential Pair 13 M3 M10  Cascode Pair 1 M8 M9  
Differential Pair 14 M3 M13  Cascode Pair 2 M11 M12  
Differential Pair 15 M3 M14  Cascode Pair 3 M18 M20  
Differential Pair 16 M3 M15  Cascode Pair 4 M19 M21  
Differential Pair 17 M7 M10  Cascode Pair 5 M24 M22  
Differential Pair 18 M7 M13  Cascode Pair 6 M24 M23  
Differential Pair 19 M7 M14  Cascode Pair 7 M13 M16  
Differential Pair 20 M7 M15  Cascode Pair 8 M13 M17  
Differential Pair 21 M10 M14  Voltage Reference II 1 M5 M6 
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Figure 5.9 - – Fully Differential two-stage Folded Cascode detected Level 2 building blocks 

Table 5-4 – Fully Differential two-stage Folded Cascode detected Level 2 building blocks 

Building Block Building Block 1 Building Block 2 

Wide Swing Cascode Current Mirror 1 Voltage Reference II 1 Cascode Pair 1 

Wide Swing Cascode Current Mirror 2 Voltage Reference II 1 Cascode Pair 2 
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Figure 5.10 – Fully Differential two-stage Folded Cascode Signal and Current Flow Graph 

Figure 5.11 shows that all transistors in the differential section are determined symmetric. All the 

unassigned transistors have their subgraph and the graph analysis aids in determining their 

symmetries. 
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(a) Symmetric edges      (b) Symmetric Devices 
Figure 5.11 – Fully Differential two-stage Folded Cascode Symmetric edges (a) and devices (b) 

Transistor M24 should be matched with M6, but according to Figure 5.12 (b) this is not the case. This 

happens because M24 does not fulfill any pattern configuration. Matching comes from constraints 

generated by building blocks, and as M24 is not assigned to any building block, the transistor is not 

matched to any other transistor. 
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(a) Proximity groups      (b) Matched devices 
Figure 5.12 – Fully Differential two-stage Folded Cascode Proximity groups (a) and matched 

devices (b) 
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All constraints have been determined, and are sent to AIDA in the form of text. A thorough list of 

constraints can be found in Appendix A.2 

5.3 Fully Differential OTA 

Figure 5.13 shows a fully differential circuit, found in [74]. Due to the circuit configuration, the standard 

Differential Pair cannot be found, and an initial node symmetry must be determined in an alternative 

way. In this case, inputs VinP and VinP were considered as being symmetric nodes and the symmetry 

search started there. This circuit is used as a running example to show symmetry detection results, as 

shown in Figure 5.13, Figure 5.14, Figure 5.15, and Figure 5.16 and most of the pattern detection 

process is not shown, as the circuit also has only two first level building blocks detected. 
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Figure 5.13 – Fully Differential OTA level 1 building blocks 

Because most of the circuit’s transistors are not assigned a pattern, most of the graph is generated 

from a transistor subgraph configuration. Figure 5.14 a shows the circuit graph. All the edges are 

generated from a transistor’s subgraph with the exception of the edges going from M2 to M1 and M4 to 

M3. From the initial symmetric nodes VinP and VinN, the symmetric edges determined are shown in 

Figure 5.14 (b). Although not much of the circuit seems to be determined symmetric, most nodes are 

inter-connected, and are considered symmetric. 
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(a) Flow graph      (b) Symmetric edges 
Figure 5.14 – Fully Differential OTA Signal and Current Flow Graph (a) and symmetric edges (b) 
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With a list of symmetric nodes and edges, the module can now find symmetry pairs in the circuit, 

shown in Figure 5.15. 
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Figure 5.15 – Fully Differential OTA symmetric devices 

With the symmetries determined, the matching of devices can be determined, either from the 

symmetry constraint, or from the SCM constraint. Figure 5.16 shows the matched devices in the Fully 

Differential OTA. 

M3

M12

M1 M2 M4

M5 M6

M7 M8

M9 M10

M11

VinP VinN

VinPVinN

VoutP VoutN

 

Figure 5.16 – Fully Differential OTA matched devices 

5.4 Folded Cascode Optimization Project 

An optimization project was performed for the Folded Cascode shown in Figure 5.1, with manually 

created constraints used in a previous project, and with the automated constraints generated by the 

module. Results will be shown as a POF where the current (Idd) and gain-gandwidth (Gbw) are the 

optimized variables, and then a Monte Carlo analysis is run with some selected solutions. Figure 5.17 

shows the POF resulting from an AIDA-C optimization process, with both the manual and automatic 

constraints. The manually written constraints yield a wider set of solutions, while the automatically 

generated constraints result in a reduced set of solutions that are very close to the solutions found with 

manual constraints. 
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Figure 5.17 – POF achieved with manual and automatic constraints in the Folded Cascode 

Two sizing solutions, one from each POF, were selected and a Monte Carlo analysis was applied with 

a sample size of 450. The sizing solutions were determined by selecting the one with the highest DC 

gain in the respective POF. Then, a second solution was chosen from the manual POF that was close 

to the automated sizing solution in terms of optimized variables to also be analyzed in Monte Carlo. 

The analysis results can be seen in Table 5-5 in regards to the optimized variables and the offset 

voltage, which is the most problematic variable in this project.  

Table 5-5 – Monte Carlo Analysis for the Folded Cascode 

 Current Consumption Gain-Bandwidth Offset Voltage 

Simulation Nominal 
[mA] 

Std. 
Deviation 

Nominal 
[MHz] 

Std. 
Deviation 

Average 
[mV] 

Std. 
Deviation 

Manual 1 33,71 0.219 14,9 0.330
 

21,79 16.97 

Manual 2 2,486 0.014
 

1,55 0.013 9,757 7.56 

Automated 3,175 0.016 1,77 0.008 3,032 2.25 

The simulation labeled Manual 1 is the sizing solution with the highest variances. This translates to the 

solutions towards that area being more sensitive and less robust, and that the constraints generated 

automatically will filter out the sizing solutions that are highly sensitive. 

On the other hand, the Manual 2 simulation has similar nominal values, and is in the same region of 

the POF as the automated simulation, meaning that this solution is in a region that is “safer” and less 

sensitive. Although the current variance is similar in both, the gain-bandwidth in the manual 2 has a 

higher variance than the automated solution. The offset voltage not only has a higher variance, but 

also has a higher average than the automated solution. 

Figure 5.18, Figure 5.19 and Figure 5.20 show histograms resulting from a total of 450 samples each, 

taking in consideration nominal values for the optimized variables and the average for the offset 

voltage. Although current consumptions in the automatic solution and the manual 2 show similar levels 

of dispersion, the gain-bandwidth and offset voltages are less dispersed in the automatic solution. This 

means that the sizing solution from the automatic POF is less sensitive to the random changes applied 

by the Monte Carlo analysis, and that the circuit is more robust. 



 
 

56 
 

0

50

100

150

200

0,812 1 1,027

0

40

80

120

160

0,934 1 1,027

0

25

50

75

0,986 1 1,014

 

Figure 5.18 – Gain-Bandwidth histograms for Monte Carlo (a) manual 1 (b) manual 2 (c) automatic 
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Figure 5.19 – Current histograms for Monte Carlo (a) manual 1 (b) manual 2 (c) automatic 
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Figure 5.20 – Offset Voltage histograms for Monte Carlo (a) manual 1 (b) manual 2 (c) automatic 

5.5 Conclusions 

All the correct building blocks were detected in all three circuits, and the false detections were also 

correctly detected. The only matching that was not determined is in OTA Edinei’s transistor M24, as 

mentioned previously. This is indicative that the field of automated constraint generation for analog 

circuits still has room for progress of further determining constraints. 

Both the Folded Cascode and OTA Edinei have differential sections but are not fully differential circuits 

(i.e. have non-differential sections). All symmetries and self-symmetries were detected, and no 

inadequate symmetry is being detected. One circuit had very few transistors with assigned patterns, 

but the symmetries were still correctly determined considering the transistors without assigned 

patterns provided their own subgraphs. 

One of the circuits was run for a full optimization project to compare previously written constraints with 

the automatically generated constraints, and although the automated constraints yield a reduced POF, 

the found solutions have lower sensitivities to random alterations that happen in circuit manufacturing. 

This allows the circuit designer to trade between maximizing the nominal solutions or circuit 

robustness. 
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6 Conclusions and future work 

6.1 Conclusion 

Constraint generation is approached in the automation of the field of IC design process. The current 

state of the art in this field was studied and shown that automated constraint generation has not seen 

much progress. Considering that constraints are currently being manually determined by the designer 

for each different circuit, automating the process would reduce setup time and accelerate the 

optimization process, as well as allow additional constraints that were not being included to be used. 

Most of the research found was around finding predetermined patterns in the circuits, assigning 

constraints according to the patterns found, and find symmetries based on graphs also determined by 

the patterns found. 

A new module based on this approach was implemented in AIDA, an analog IC design automation tool 

that optimizes circuit sizing. A non-sized netlist is used as input, and the module sends a sized netlist, 

along with the electrical constraints to the optimizer. This aids the optimizer in finding a set of robust 

solutions that have lower sensitivity to process variations. 

 

6.2 Future work 

Generating a more thorough set of constraints will yield more robust circuits, but will also result in a 

reduced set of solutions. This means that there’s a trade-off between nominal performance and 

robustness. A possible way of dealing with this is if the designer can choose to start with a good set of 

nominal sizing solutions, or start with solutions that are already robust. Categorizing constraints with 

different priorities would give the designer flexibility to choose robust solutions, good nominal 

solutions, or a set of solutions somewhere in the middle. This could be accomplished by defining 

constraints to be e.g. essential, recommended, or optional, and in a given project the designer would 

choose to include constraints up to a certain priority. 

Another suggestion for future work would be to research more possible patterns and associated 

constraints, as the current library does not cover every possible configuration, as shown in the fully 

differential folded cascade. 
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Appendix A  

A.1 Folded Cascode 

***Netlist testing for circuit*** 

.SUBCKT OPAMP VDD VSS IREF VIN VIP VOUT 

***Device list*** 

MPB2 VPOLAP VPOLAP VDD VDD P_12_HSL130E L=L_MPB2 W=W_MPB2 M=M_MPB2 

MPB1 IREF IREF VPOLAP VDD P_12_HSL130E L=L_MPB1 W=W_MPB1 M=M_MPB1 

MPB3 21 VPOLAP VDD VDD P_12_HSL130E L=L_MPB2 W=W_MPB2 M=M_MPB2*R_MPB2_MPB3 

MPB4 VPOLAN1 IREF 21 VDD P_12_HSL130E L=L_MPB1 W=W_MPB1 M=M_MPB1*R_MPB1_MPB4 

MPB7 31 VPOLAP VDD VDD P_12_HSL130E L=L_MPB2 W=W_MPB2 M=M_MPB2*R_MPB2_MPB7 

MP18 43 VIN 31 VDD P_12_HSL130E L=L_MP18 W=W_MP18 M=M_MP18 

MP19 53 VIP 31 VDD P_12_HSL130E L=L_MP18 W=W_MP18 M=M_MP18 

MPB8 41 42 VDD VDD P_12_HSL130E L=L_MPB8 W=W_MPB8 M=M_MPB8*R_MPB8_MPB9 

MPB10 42 IREF 41 VDD P_12_HSL130E L=L_MPB1 W=W_MPB1

 M=M_MPB1*R_MPB1_MPB10*R_MPB10_MPB11 

MPB9 51 42 VDD VDD P_12_HSL130E L=L_MPB8 W=W_MPB8 M=M_MPB8*R_MPB8_MPB9 

MPB11 52 IREF 51 VDD P_12_HSL130E L=L_MPB1 W=W_MPB1

 M=M_MPB1*R_MPB1_MPB10*R_MPB10_MPB11 

MP16 VOUT 52 VDD VDD P_12_HSL130E L=L_MP16 W=W_MP16 M=M_MP16 

MNB5 VPOLAN1 VPOLAN1 VPOLAN VSS N_12_HSL130E L=L_MNB5 W=W_MNB5 M=M_MNB5 

MNB6 VPOLAN VPOLAN VSS VSS N_12_HSL130E L=L_MNB6 W=W_MNB6 M=M_MNB6 

MN12 42 VPOLAN1 43 VSS N_12_HSL130E L=L_MNB5 W=W_MNB5 M=M_MNB5*R_MNB5_MN13 

MN14 43 VPOLAN VSS VSS N_12_HSL130E L=L_MNB6 W=W_MNB6 M=M_MNB6*R_MNB6_MN15 

MN13 52 VPOLAN1 53 VSS N_12_HSL130E L=L_MNB5 W=W_MNB5 M=M_MNB5*R_MNB5_MN13 

MN15 53 VPOLAN VSS VSS N_12_HSL130E L=L_MNB6 W=W_MNB6 M=M_MNB6*R_MNB6_MN15 

MN17 VOUT VPOLAN VSS VSS N_12_HSL130E L=L_MNB6 W=W_MNB6 M=M_MNB6*R_MNB6_MN17 

 

<Variable name="W_MPB2" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MPB2" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MPB2" min="1" step="1" max="8"/> 

<Variable name="W_MPB1" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MPB1" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MPB1" min="1" step="1" max="8"/> 

<Variable name="R_MPB2_MPB3" min="0.5" step="0.1" max="10"/> 

<Variable name="R_MPB1_MPB4" min="0.5" step="0.1" max="10"/> 

<Variable name="R_MPB2_MPB7" min="0.5" step="0.1" max="10"/> 

<Variable name="W_MP18" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MP18" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MP18" min="1" step="1" max="8"/> 

<Variable name="W_MPB8" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MPB8" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MPB8" min="1" step="1" max="8"/> 

<Variable name="R_MPB8_MPB9" min="0.5" step="0.1" max="10"/> 

<Variable name="R_MPB1_MPB10" min="0.5" step="0.1" max="10"/> 

<Variable name="W_MP16" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MP16" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MP16" min="1" step="1" max="8"/> 

<Variable name="W_MNB5" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MNB5" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MNB5" min="1" step="1" max="8"/> 

<Variable name="W_MNB6" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MNB6" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MNB6" min="1" step="1" max="8"/> 

<Variable name="R_MNB5_MN13" min="0.5" step="0.1" max="10"/> 

<Variable name="R_MNB6_MN15" min="0.5" step="0.1" max="10"/> 

<Variable name="R_MNB6_MN17" min="0.5" step="0.1" max="10"/> 

 

<MeasureDescription name="vov_MPB3" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MPB7" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MPB1" description="Overdrive" units="[V]" /> 
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<MeasureDescription name="vov_MPB4" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MPB10" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MPB11" description="Overdrive" units="[V]" /> 

<MeasureDescription name="psiDS_MP18_MP19" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MP18_MP19" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="vov_MNB5" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MN12" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MN13" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MN14" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MN15" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MN17" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MPB9" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MNB5" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNB5" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNB5" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MNB6" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNB6" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNB6" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MNB6" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MN12" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MN12" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MN12" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MN14" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MN14" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MN14" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MN13" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MN13" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MN13" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MN15" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MN15" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MN15" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MN17" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MN17" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MN17" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MPB2" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPB2" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPB2" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MPB2" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPB1" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPB1" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPB1" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MPB3" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPB3" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPB3" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MPB4" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPB4" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPB4" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MPB7" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPB7" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPB7" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MP18" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MP18" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MP18" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MP18" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MP19" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MP19" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MP19" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MP19" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPB8" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPB8" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPB8" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MPB8" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPB10" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPB10" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPB10" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MPB9" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPB9" description="Area" units="[m²]" /> 
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<MeasureDescription name="VDS_MPB9" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MPB11" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPB11" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPB11" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MP16" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MP16" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MP16" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MP16" description="Overdrive" units="[V]" /> 

<MeasureDescription name="psiDS_MP18_MP19" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MP18_MP19" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_MPB8_MPB9" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MPB8_MPB9" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_MPB10_MPB11" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MPB10_MPB11" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_MN12_MN13" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MN12_MN13" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_MN14_MN15" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MN14_MN15" description="VGS_X1 - VGS_X2" units="[V]" /> 

 

.MEAS DC vov_MPB3 PARAM = 'LV9(XAMP.MPB3)-VGS(XAMP.MPB3)' 

.MEAS DC vov_MPB7 PARAM = 'LV9(XAMP.MPB7)-VGS(XAMP.MPB7)' 

.MEAS DC vov_MPB1 PARAM = 'LV9(XAMP.MPB1)-VGS(XAMP.MPB1)' 

.MEAS DC vov_MPB4 PARAM = 'LV9(XAMP.MPB4)-VGS(XAMP.MPB4)' 

.MEAS DC vov_MPB10 PARAM = 'LV9(XAMP.MPB10)-VGS(XAMP.MPB10)' 

.MEAS DC vov_MPB11 PARAM = 'LV9(XAMP.MPB11)-VGS(XAMP.MPB11)' 

.MEAS DC psiDS_MP18_MP19 = PARAM('ABS(VDS(XAMP.MP18)-VDS(XAMP.MP19))') 

.MEAS DC psigs_MP18_MP19 = PARAM('ABS(VGS(XAMP.MP18)-VGS(XAMP.MP19))') 

.MEAS DC vov_MNB5 PARAM = 'LV9(XAMP.MNB5)-VGS(XAMP.MNB5)' 

.MEAS DC vov_MN12 PARAM = 'LV9(XAMP.MN12)-VGS(XAMP.MN12)' 

.MEAS DC vov_MN13 PARAM = 'LV9(XAMP.MN13)-VGS(XAMP.MN13)' 

.MEAS DC vov_MN14 PARAM = 'LV9(XAMP.MN14)-VGS(XAMP.MN14)' 

.MEAS DC vov_MN15 PARAM = 'LV9(XAMP.MN15)-VGS(XAMP.MN15)' 

.MEAS DC vov_MN17 PARAM = 'LV9(XAMP.MN17)-VGS(XAMP.MN17)' 

.MEAS DC vov_MPB9 PARAM = 'LV9(XAMP.MPB9)-VGS(XAMP.MPB9)' 

.MEAS DC delta_MNB5 PARAM = 'VDS(XAMP.MNB5) - VDSAT(XAMP.MNB5)' 

.MEAS DC A_MNB5 = PARAM('L_MNB5*W_MNB5*M_MNB5') 

.MEAS DC VDS_MNB5 PARAM = 'VDS(XAMP.MNB5)' 

.MEAS DC delta_MNB6 PARAM = 'VDS(XAMP.MNB6) - VDSAT(XAMP.MNB6)' 

.MEAS DC A_MNB6 = PARAM('L_MNB6*W_MNB6*M_MNB6') 

.MEAS DC VDS_MNB6 PARAM = 'VDS(XAMP.MNB6)' 

.MEAS DC vov_MNB6 PARAM = 'LV9(XAMP.MNB6)-VGS(XAMP.MNB6)' 

.MEAS DC delta_MN12 PARAM = 'VDS(XAMP.MN12) - VDSAT(XAMP.MN12)' 

.MEAS DC A_MN12 = PARAM('L_MNB5*W_MNB5*M_MNB5*R_MNB5_MN13') 

.MEAS DC VDS_MN12 PARAM = 'VDS(XAMP.MN12)' 

.MEAS DC delta_MN14 PARAM = 'VDS(XAMP.MN14) - VDSAT(XAMP.MN14)' 

.MEAS DC A_MN14 = PARAM('L_MNB6*W_MNB6*M_MNB6*R_MNB6_MN15') 

.MEAS DC VDS_MN14 PARAM = 'VDS(XAMP.MN14)' 

.MEAS DC delta_MN13 PARAM = 'VDS(XAMP.MN13) - VDSAT(XAMP.MN13)' 

.MEAS DC A_MN13 = PARAM('L_MNB5*W_MNB5*M_MNB5*R_MNB5_MN13') 

.MEAS DC VDS_MN13 PARAM = 'VDS(XAMP.MN13)' 

.MEAS DC delta_MN15 PARAM = 'VDS(XAMP.MN15) - VDSAT(XAMP.MN15)' 

.MEAS DC A_MN15 = PARAM('L_MNB6*W_MNB6*M_MNB6*R_MNB6_MN15') 

.MEAS DC VDS_MN15 PARAM = 'VDS(XAMP.MN15)' 

.MEAS DC delta_MN17 PARAM = 'VDS(XAMP.MN17) - VDSAT(XAMP.MN17)' 

.MEAS DC A_MN17 = PARAM('L_MNB6*W_MNB6*M_MNB6*R_MNB6_MN17') 

.MEAS DC VDS_MN17 PARAM = 'VDS(XAMP.MN17)' 

.MEAS DC rev_delta_MPB2 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPB2 = PARAM('L_MPB2*W_MPB2*M_MPB2') 

.MEAS DC VDS_MPB2 PARAM = 'VDS(XAMP.MPB2)' 

.MEAS DC vov_MPB2 PARAM = 'LV9(XAMP.MPB2)-VGS(XAMP.MPB2)' 

.MEAS DC rev_delta_MPB1 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPB1 = PARAM('L_MPB1*W_MPB1*M_MPB1') 

.MEAS DC VDS_MPB1 PARAM = 'VDS(XAMP.MPB1)' 

.MEAS DC rev_delta_MPB3 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPB3 = PARAM('L_MPB2*W_MPB2*M_MPB2*R_MPB2_MPB3') 

.MEAS DC VDS_MPB3 PARAM = 'VDS(XAMP.MPB3)' 
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.MEAS DC rev_delta_MPB4 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPB4 = PARAM('L_MPB1*W_MPB1*M_MPB1*R_MPB1_MPB4') 

.MEAS DC VDS_MPB4 PARAM = 'VDS(XAMP.MPB4)' 

.MEAS DC rev_delta_MPB7 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPB7 = PARAM('L_MPB2*W_MPB2*M_MPB2*R_MPB2_MPB7') 

.MEAS DC VDS_MPB7 PARAM = 'VDS(XAMP.MPB7)' 

.MEAS DC rev_delta_MP18 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MP18 = PARAM('L_MP18*W_MP18*M_MP18') 

.MEAS DC VDS_MP18 PARAM = 'VDS(XAMP.MP18)' 

.MEAS DC vov_MP18 PARAM = 'LV9(XAMP.MP18)-VGS(XAMP.MP18)' 

.MEAS DC rev_delta_MP19 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MP19 = PARAM('L_MP18*W_MP18*M_MP18') 

.MEAS DC VDS_MP19 PARAM = 'VDS(XAMP.MP19)' 

.MEAS DC vov_MP19 PARAM = 'LV9(XAMP.MP19)-VGS(XAMP.MP19)' 

.MEAS DC rev_delta_MPB8 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPB8 = PARAM('L_MPB8*W_MPB8*M_MPB8*R_MPB8_MPB9') 

.MEAS DC VDS_MPB8 PARAM = 'VDS(XAMP.MPB8)' 

.MEAS DC vov_MPB8 PARAM = 'LV9(XAMP.MPB8)-VGS(XAMP.MPB8)' 

.MEAS DC rev_delta_MPB10 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPB10 = PARAM('L_MPB1*W_MPB1*M_MPB1*R_MPB1_MPB10*R_MPB10_MPB11') 

.MEAS DC VDS_MPB10 PARAM = 'VDS(XAMP.MPB10)' 

.MEAS DC rev_delta_MPB9 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPB9 = PARAM('L_MPB8*W_MPB8*M_MPB8*R_MPB8_MPB9') 

.MEAS DC VDS_MPB9 PARAM = 'VDS(XAMP.MPB9)' 

.MEAS DC rev_delta_MPB11 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPB11 = PARAM('L_MPB1*W_MPB1*M_MPB1*R_MPB1_MPB10*R_MPB10_MPB11') 

.MEAS DC VDS_MPB11 PARAM = 'VDS(XAMP.MPB11)' 

.MEAS DC rev_delta_MP16 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MP16 = PARAM('L_MP16*W_MP16*M_MP16') 

.MEAS DC VDS_MP16 PARAM = 'VDS(XAMP.MP16)' 

.MEAS DC vov_MP16 PARAM = 'LV9(XAMP.MP16)-VGS(XAMP.MP16)' 

.MEAS DC psiDS_MP18_MP19 = PARAM('ABS(VDS(XAMP.MP18)-VDS(XAMP.MP19))') 

.MEAS DC psigs_MP18_MP19 = PARAM('ABS(VGS(XAMP.MP18)-VGS(XAMP.MP19))') 

.MEAS DC psiDS_MPB8_MPB9 = PARAM('ABS(VDS(XAMP.MPB8)-VDS(XAMP.MPB9))') 

.MEAS DC psigs_MPB8_MPB9 = PARAM('ABS(VGS(XAMP.MPB8)-VGS(XAMP.MPB9))') 

.MEAS DC psiDS_MPB10_MPB11 = PARAM('ABS(VDS(XAMP.MPB10)-VDS(XAMP.MPB11))') 

.MEAS DC psigs_MPB10_MPB11 = PARAM('ABS(VGS(XAMP.MPB10)-VGS(XAMP.MPB11))') 

.MEAS DC psiDS_MN12_MN13 = PARAM('ABS(VDS(XAMP.MN12)-VDS(XAMP.MN13))') 

.MEAS DC psigs_MN12_MN13 = PARAM('ABS(VGS(XAMP.MN12)-VGS(XAMP.MN13))') 

.MEAS DC psiDS_MN14_MN15 = PARAM('ABS(VDS(XAMP.MN14)-VDS(XAMP.MN15))') 

.MEAS DC psigs_MN14_MN15 = PARAM('ABS(VGS(XAMP.MN14)-VGS(XAMP.MN15))') 

 

<Constraint op="GE" value="0.1" meas="vov_MPB3" /> 

<Constraint op="GE" value="0.1" meas="vov_MPB7" /> 

<Constraint op="GE" value="0.1" meas="vov_MPB1" /> 

<Constraint op="GE" value="0.1" meas="vov_MPB4" /> 

<Constraint op="GE" value="0.1" meas="vov_MPB10" /> 

<Constraint op="GE" value="0.1" meas="vov_MPB11" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MP18_MP19" /> 

<Constraint op="LE" value="0.05" meas="psigs_MP18_MP19" /> 

<Constraint op="GE" value="0.1" meas="vov_MNB5" /> 

<Constraint op="GE" value="0.1" meas="vov_MN12" /> 

<Constraint op="GE" value="0.1" meas="vov_MN13" /> 

<Constraint op="GE" value="0.1" meas="vov_MN14" /> 

<Constraint op="GE" value="0.1" meas="vov_MN15" /> 

<Constraint op="GE" value="0.1" meas="vov_MN17" /> 

<Constraint op="GE" value="0.1" meas="vov_MPB9" /> 

<Constraint op="GE" value="0.1" meas="delta_MNB5" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNB5" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNB5" /> 

<Constraint op="GE" value="0.1" meas="delta_MNB6" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNB6" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNB6" /> 

<Constraint op="GE" value="0.00" meas="vov_MNB6" /> 

<Constraint op="GE" value="0.1" meas="delta_MN12" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MN12" /> 
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<Constraint op="GE" value="0.00" meas="VDS_MN12" /> 

<Constraint op="GE" value="0.1" meas="delta_MN14" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MN14" /> 

<Constraint op="GE" value="0.00" meas="VDS_MN14" /> 

<Constraint op="GE" value="0.1" meas="delta_MN13" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MN13" /> 

<Constraint op="GE" value="0.00" meas="VDS_MN13" /> 

<Constraint op="GE" value="0.1" meas="delta_MN15" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MN15" /> 

<Constraint op="GE" value="0.00" meas="VDS_MN15" /> 

<Constraint op="GE" value="0.1" meas="delta_MN17" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MN17" /> 

<Constraint op="GE" value="0.00" meas="VDS_MN17" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPB2" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPB2" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPB2" /> 

<Constraint op="GE" value="0.00" meas="vov_MPB2" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPB1" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPB1" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPB1" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPB3" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPB3" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPB3" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPB4" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPB4" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPB4" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPB7" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPB7" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPB7" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MP18" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MP18" /> 

<Constraint op="GE" value="0.00" meas="VDS_MP18" /> 

<Constraint op="GE" value="0.00" meas="vov_MP18" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MP19" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MP19" /> 

<Constraint op="GE" value="0.00" meas="VDS_MP19" /> 

<Constraint op="GE" value="0.00" meas="vov_MP19" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPB8" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPB8" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPB8" /> 

<Constraint op="GE" value="0.00" meas="vov_MPB8" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPB10" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPB10" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPB10" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPB9" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPB9" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPB9" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPB11" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPB11" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPB11" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MP16" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MP16" /> 

<Constraint op="GE" value="0.00" meas="VDS_MP16" /> 

<Constraint op="GE" value="0.00" meas="vov_MP16" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MP18_MP19" /> 

<Constraint op="LE" value="0.05" meas="psigs_MP18_MP19" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MPB8_MPB9" /> 

<Constraint op="LE" value="0.05" meas="psigs_MPB8_MPB9" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MPB10_MPB11" /> 

<Constraint op="LE" value="0.05" meas="psigs_MPB10_MPB11" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MN12_MN13" /> 

<Constraint op="LE" value="0.05" meas="psigs_MN12_MN13" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MN14_MN15" /> 

<Constraint op="LE" value="0.05" meas="psigs_MN14_MN15" /> 
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A.2 Fully Differential two-stage Folded Cascode 

***Netlist testing for circuit*** 

.subckt nova_diff cmfb gnd vdd vin vip von vop 

***Device list*** 

mpm1 von net15 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4*R_mpm4_mpm3 

mpm2 net15 net15 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4 

mpm3 vop net024 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4*R_mpm4_mpm3 

mpm4 net024 net024 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4 

mnm5 net15 vip crossa crossa N_HG_33_L130E L=L_mnm6 W=W_mnm6 M=M_mnm6 

mnm7 vdd vip crossb crossb N_HG_33_L130E L=L_mnm8 W=W_mnm8 M=M_mnm8 

mnm9 crossb vin gnd gnd N_HG_33_L130E L=L_mnm10 W=W_mnm10 M=M_mnm10 

mnm11 von cmfb gnd gnd N_HG_33_L130E L=L_mnm12 W=W_mnm12 M=M_mnm12 

mnm12 vop cmfb gnd gnd N_HG_33_L130E L=L_mnm12 W=W_mnm12 M=M_mnm12 

mnm6 net024 vin crossb crossb N_HG_33_L130E L=L_mnm6 W=W_mnm6 M=M_mnm6 

mnm8 vdd vin crossa crossa N_HG_33_L130E L=L_mnm8 W=W_mnm8 M=M_mnm8 

mnm10 crossa vip gnd gnd N_HG_33_L130E L=L_mnm10 W=W_mnm10 M=M_mnm10 

 

 

<Variable name="W_MP0" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MP0" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MP0" min="1" step="1" max="8"/> 

<Variable name="W_MPM17" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MPM17" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MPM17" min="1" step="1" max="8"/> 

<Variable name="W_MPM10" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MPM10" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MPM10" min="1" step="1" max="8"/> 

<Variable name="R_MPM10_MPM13" min="0.5" step="0.1" max="10"/> 

<Variable name="W_MPM15" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MPM15" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MPM15" min="1" step="1" max="8"/> 

<Variable name="W_MPM1" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MPM1" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MPM1" min="1" step="1" max="8"/> 

<Variable name="R_MPM1_MPM3" min="0.5" step="0.1" max="10"/> 

<Variable name="R_MPM1_MPM2" min="0.5" step="0.1" max="10"/> 

<Variable name="W_MPM7" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MPM7" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MPM7" min="1" step="1" max="8"/> 

<Variable name="W_MN0" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MN0" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MN0" min="1" step="1" max="8"/> 

<Variable name="W_MNM4" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MNM4" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MNM4" min="1" step="1" max="8"/> 

<Variable name="R_MNM4_MNM19" min="0.5" step="0.1" max="10"/> 

<Variable name="R_MNM4_MNM5" min="0.5" step="0.1" max="10"/> 

<Variable name="W_MNM20" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MNM20" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MNM20" min="1" step="1" max="8"/> 

<Variable name="W_MNM24" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MNM24" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MNM24" min="1" step="1" max="8"/> 

<Variable name="W_MNM6" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MNM6" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MNM6" min="1" step="1" max="8"/> 

<Variable name="R_MNM6_MNM9" min="0.5" step="0.1" max="10"/> 

<Variable name="R_MNM6_MNM12" min="0.5" step="0.1" max="10"/> 

<Variable name="W_MNM23" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_MNM23" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_MNM23" min="1" step="1" max="8"/> 

 

<MeasureDescription name="psiDS_MPM17_MPM16" description="VDS_X1 - VDS_X2" units="[V]" /> 
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<MeasureDescription name="psigs_MPM17_MPM16" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="vov_MPM13" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MPM3" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MPM2" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MNM4" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MNM18" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MNM19" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MNM5" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MNM11" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MNM8" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MNM12" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_MNM9" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MN0" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MN0" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MN0" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MN0" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MNM18" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM18" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM18" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MNM19" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM19" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM19" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MNM5" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM5" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM5" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MNM11" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM11" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM11" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MNM8" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM8" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM8" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MNM4" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM4" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM4" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MNM21" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="W_MNM21" description="Width" units="[m]" /> 

<MeasureDescription name="L_MNM21" description="Length" units="[m]" /> 

<MeasureDescription name="A_MNM21" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM21" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MNM21" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MNM20" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM20" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM20" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MNM20" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MNM24" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM24" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM24" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MNM24" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MNM9" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM9" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM9" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MNM12" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM12" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM12" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="delta_MNM6" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM6" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM6" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MNM6" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MNM22" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="W_MNM22" description="Width" units="[m]" /> 

<MeasureDescription name="L_MNM22" description="Length" units="[m]" /> 

<MeasureDescription name="A_MNM22" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM22" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MNM22" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_MNM23" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_MNM23" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MNM23" description="Drain-Source Voltage" units="[V]" /> 
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<MeasureDescription name="vov_MNM23" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MP0" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MP0" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MP0" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MP0" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM17" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPM17" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM17" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MPM17" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM16" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPM16" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM16" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MPM16" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM13" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPM13" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM13" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM10" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPM10" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM10" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MPM10" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM14" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="W_MPM14" description="Width" units="[m]" /> 

<MeasureDescription name="L_MPM14" description="Length" units="[m]" /> 

<MeasureDescription name="A_MPM14" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM14" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MPM14" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM15" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPM15" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM15" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MPM15" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM3" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPM3" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM3" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM1" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPM1" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM1" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MPM1" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM2" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPM2" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM2" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_MPM7" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_MPM7" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_MPM7" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_MPM7" description="Overdrive" units="[V]" /> 

<MeasureDescription name="psiDS_MPM17_MPM16" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MPM17_MPM16" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_MPM14_MPM15" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MPM14_MPM15" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_MNM18_MNM19" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MNM18_MNM19" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_MNM21_MNM20" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MNM21_MNM20" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_MNM22_MNM23" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_MNM22_MNM23" description="VGS_X1 - VGS_X2" units="[V]" /> 

 

.MEAS DC psiDS_MPM17_MPM16 = PARAM('ABS(VDS(XAMP.MPM17)-VDS(XAMP.MPM16))') 

.MEAS DC psigs_MPM17_MPM16 = PARAM('ABS(VGS(XAMP.MPM17)-VGS(XAMP.MPM16))') 

.MEAS DC vov_MPM13 PARAM = 'LV9(XAMP.MPM13)-VGS(XAMP.MPM13)' 

.MEAS DC vov_MPM3 PARAM = 'LV9(XAMP.MPM3)-VGS(XAMP.MPM3)' 

.MEAS DC vov_MPM2 PARAM = 'LV9(XAMP.MPM2)-VGS(XAMP.MPM2)' 

.MEAS DC vov_MNM4 PARAM = 'LV9(XAMP.MNM4)-VGS(XAMP.MNM4)' 

.MEAS DC vov_MNM18 PARAM = 'LV9(XAMP.MNM18)-VGS(XAMP.MNM18)' 

.MEAS DC vov_MNM19 PARAM = 'LV9(XAMP.MNM19)-VGS(XAMP.MNM19)' 

.MEAS DC vov_MNM5 PARAM = 'LV9(XAMP.MNM5)-VGS(XAMP.MNM5)' 

.MEAS DC vov_MNM11 PARAM = 'LV9(XAMP.MNM11)-VGS(XAMP.MNM11)' 

.MEAS DC vov_MNM8 PARAM = 'LV9(XAMP.MNM8)-VGS(XAMP.MNM8)' 
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.MEAS DC vov_MNM12 PARAM = 'LV9(XAMP.MNM12)-VGS(XAMP.MNM12)' 

.MEAS DC vov_MNM9 PARAM = 'LV9(XAMP.MNM9)-VGS(XAMP.MNM9)' 

.MEAS DC delta_MN0 PARAM = 'VDS(XAMP.MN0) - VDSAT(XAMP.MN0)' 

.MEAS DC A_MN0 = PARAM('L_MN0*W_MN0*M_MN0') 

.MEAS DC VDS_MN0 PARAM = 'VDS(XAMP.MN0)' 

.MEAS DC vov_MN0 PARAM = 'LV9(XAMP.MN0)-VGS(XAMP.MN0)' 

.MEAS DC delta_MNM18 PARAM = 'VDS(XAMP.MNM18) - VDSAT(XAMP.MNM18)' 

.MEAS DC A_MNM18 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM19') 

.MEAS DC VDS_MNM18 PARAM = 'VDS(XAMP.MNM18)' 

.MEAS DC delta_MNM19 PARAM = 'VDS(XAMP.MNM19) - VDSAT(XAMP.MNM19)' 

.MEAS DC A_MNM19 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM19') 

.MEAS DC VDS_MNM19 PARAM = 'VDS(XAMP.MNM19)' 

.MEAS DC delta_MNM5 PARAM = 'VDS(XAMP.MNM5) - VDSAT(XAMP.MNM5)' 

.MEAS DC A_MNM5 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM5') 

.MEAS DC VDS_MNM5 PARAM = 'VDS(XAMP.MNM5)' 

.MEAS DC delta_MNM11 PARAM = 'VDS(XAMP.MNM11) - VDSAT(XAMP.MNM11)' 

.MEAS DC A_MNM11 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM5*R_MNM5_MNM11') 

.MEAS DC VDS_MNM11 PARAM = 'VDS(XAMP.MNM11)' 

.MEAS DC delta_MNM8 PARAM = 'VDS(XAMP.MNM8) - VDSAT(XAMP.MNM8)' 

.MEAS DC A_MNM8 = PARAM('L_MNM4*W_MNM4*M_MNM4*R_MNM4_MNM5*R_MNM5_MNM8') 

.MEAS DC VDS_MNM8 PARAM = 'VDS(XAMP.MNM8)' 

.MEAS DC delta_MNM4 PARAM = 'VDS(XAMP.MNM4) - VDSAT(XAMP.MNM4)' 

.MEAS DC A_MNM4 = PARAM('L_MNM4*W_MNM4*M_MNM4') 

.MEAS DC VDS_MNM4 PARAM = 'VDS(XAMP.MNM4)' 

.MEAS DC delta_MNM21 PARAM = 'VDS(XAMP.MNM21) - VDSAT(XAMP.MNM21)' 

.MEAS DC W_MNM21 = PARAM('W_MNM20*M_MNM20') 

.MEAS DC L_MNM21 = PARAM('L_MNM20') 

.MEAS DC A_MNM21 = PARAM('L_MNM20*W_MNM20*M_MNM20') 

.MEAS DC VDS_MNM21 PARAM = 'VDS(XAMP.MNM21)' 

.MEAS DC vov_MNM21 PARAM = 'LV9(XAMP.MNM21)-VGS(XAMP.MNM21)' 

.MEAS DC delta_MNM20 PARAM = 'VDS(XAMP.MNM20) - VDSAT(XAMP.MNM20)' 

.MEAS DC A_MNM20 = PARAM('L_MNM20*W_MNM20*M_MNM20') 

.MEAS DC VDS_MNM20 PARAM = 'VDS(XAMP.MNM20)' 

.MEAS DC vov_MNM20 PARAM = 'LV9(XAMP.MNM20)-VGS(XAMP.MNM20)' 

.MEAS DC delta_MNM24 PARAM = 'VDS(XAMP.MNM24) - VDSAT(XAMP.MNM24)' 

.MEAS DC A_MNM24 = PARAM('L_MNM24*W_MNM24*M_MNM24') 

.MEAS DC VDS_MNM24 PARAM = 'VDS(XAMP.MNM24)' 

.MEAS DC vov_MNM24 PARAM = 'LV9(XAMP.MNM24)-VGS(XAMP.MNM24)' 

.MEAS DC delta_MNM9 PARAM = 'VDS(XAMP.MNM9) - VDSAT(XAMP.MNM9)' 

.MEAS DC A_MNM9 = PARAM('L_MNM6*W_MNM6*M_MNM6*R_MNM6_MNM9') 

.MEAS DC VDS_MNM9 PARAM = 'VDS(XAMP.MNM9)' 

.MEAS DC delta_MNM12 PARAM = 'VDS(XAMP.MNM12) - VDSAT(XAMP.MNM12)' 

.MEAS DC A_MNM12 = PARAM('L_MNM6*W_MNM6*M_MNM6*R_MNM6_MNM12') 

.MEAS DC VDS_MNM12 PARAM = 'VDS(XAMP.MNM12)' 

.MEAS DC delta_MNM6 PARAM = 'VDS(XAMP.MNM6) - VDSAT(XAMP.MNM6)' 

.MEAS DC A_MNM6 = PARAM('L_MNM6*W_MNM6*M_MNM6') 

.MEAS DC VDS_MNM6 PARAM = 'VDS(XAMP.MNM6)' 

.MEAS DC vov_MNM6 PARAM = 'LV9(XAMP.MNM6)-VGS(XAMP.MNM6)' 

.MEAS DC delta_MNM22 PARAM = 'VDS(XAMP.MNM22) - VDSAT(XAMP.MNM22)' 

.MEAS DC W_MNM22 = PARAM('W_MNM23*M_MNM23') 

.MEAS DC L_MNM22 = PARAM('L_MNM23') 

.MEAS DC A_MNM22 = PARAM('L_MNM23*W_MNM23*M_MNM23') 

.MEAS DC VDS_MNM22 PARAM = 'VDS(XAMP.MNM22)' 

.MEAS DC vov_MNM22 PARAM = 'LV9(XAMP.MNM22)-VGS(XAMP.MNM22)' 

.MEAS DC delta_MNM23 PARAM = 'VDS(XAMP.MNM23) - VDSAT(XAMP.MNM23)' 

.MEAS DC A_MNM23 = PARAM('L_MNM23*W_MNM23*M_MNM23') 

.MEAS DC VDS_MNM23 PARAM = 'VDS(XAMP.MNM23)' 

.MEAS DC vov_MNM23 PARAM = 'LV9(XAMP.MNM23)-VGS(XAMP.MNM23)' 

.MEAS DC rev_delta_MP0 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MP0 = PARAM('L_MP0*W_MP0*M_MP0') 

.MEAS DC VDS_MP0 PARAM = 'VDS(XAMP.MP0)' 

.MEAS DC vov_MP0 PARAM = 'LV9(XAMP.MP0)-VGS(XAMP.MP0)' 

.MEAS DC rev_delta_MPM17 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPM17 = PARAM('L_MPM17*W_MPM17*M_MPM17') 

.MEAS DC VDS_MPM17 PARAM = 'VDS(XAMP.MPM17)' 

.MEAS DC vov_MPM17 PARAM = 'LV9(XAMP.MPM17)-VGS(XAMP.MPM17)' 

.MEAS DC rev_delta_MPM16 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 
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.MEAS DC A_MPM16 = PARAM('L_MPM17*W_MPM17*M_MPM17') 

.MEAS DC VDS_MPM16 PARAM = 'VDS(XAMP.MPM16)' 

.MEAS DC vov_MPM16 PARAM = 'LV9(XAMP.MPM16)-VGS(XAMP.MPM16)' 

.MEAS DC rev_delta_MPM13 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPM13 = PARAM('L_MPM10*W_MPM10*M_MPM10*R_MPM10_MPM13') 

.MEAS DC VDS_MPM13 PARAM = 'VDS(XAMP.MPM13)' 

.MEAS DC rev_delta_MPM10 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPM10 = PARAM('L_MPM10*W_MPM10*M_MPM10') 

.MEAS DC VDS_MPM10 PARAM = 'VDS(XAMP.MPM10)' 

.MEAS DC vov_MPM10 PARAM = 'LV9(XAMP.MPM10)-VGS(XAMP.MPM10)' 

.MEAS DC rev_delta_MPM14 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC W_MPM14 = PARAM('W_MPM15*M_MPM15') 

.MEAS DC L_MPM14 = PARAM('L_MPM15') 

.MEAS DC A_MPM14 = PARAM('L_MPM15*W_MPM15*M_MPM15') 

.MEAS DC VDS_MPM14 PARAM = 'VDS(XAMP.MPM14)' 

.MEAS DC vov_MPM14 PARAM = 'LV9(XAMP.MPM14)-VGS(XAMP.MPM14)' 

.MEAS DC rev_delta_MPM15 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPM15 = PARAM('L_MPM15*W_MPM15*M_MPM15') 

.MEAS DC VDS_MPM15 PARAM = 'VDS(XAMP.MPM15)' 

.MEAS DC vov_MPM15 PARAM = 'LV9(XAMP.MPM15)-VGS(XAMP.MPM15)' 

.MEAS DC rev_delta_MPM3 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPM3 = PARAM('L_MPM1*W_MPM1*M_MPM1*R_MPM1_MPM3') 

.MEAS DC VDS_MPM3 PARAM = 'VDS(XAMP.MPM3)' 

.MEAS DC rev_delta_MPM1 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPM1 = PARAM('L_MPM1*W_MPM1*M_MPM1') 

.MEAS DC VDS_MPM1 PARAM = 'VDS(XAMP.MPM1)' 

.MEAS DC vov_MPM1 PARAM = 'LV9(XAMP.MPM1)-VGS(XAMP.MPM1)' 

.MEAS DC rev_delta_MPM2 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPM2 = PARAM('L_MPM1*W_MPM1*M_MPM1*R_MPM1_MPM2') 

.MEAS DC VDS_MPM2 PARAM = 'VDS(XAMP.MPM2)' 

.MEAS DC rev_delta_MPM7 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_MPM7 = PARAM('L_MPM7*W_MPM7*M_MPM7') 

.MEAS DC VDS_MPM7 PARAM = 'VDS(XAMP.MPM7)' 

.MEAS DC vov_MPM7 PARAM = 'LV9(XAMP.MPM7)-VGS(XAMP.MPM7)' 

.MEAS DC psiDS_MPM17_MPM16 = PARAM('ABS(VDS(XAMP.MPM17)-VDS(XAMP.MPM16))') 

.MEAS DC psigs_MPM17_MPM16 = PARAM('ABS(VGS(XAMP.MPM17)-VGS(XAMP.MPM16))') 

.MEAS DC psiDS_MPM14_MPM15 = PARAM('ABS(VDS(XAMP.MPM14)-VDS(XAMP.MPM15))') 

.MEAS DC psigs_MPM14_MPM15 = PARAM('ABS(VGS(XAMP.MPM14)-VGS(XAMP.MPM15))') 

.MEAS DC psiDS_MNM18_MNM19 = PARAM('ABS(VDS(XAMP.MNM18)-VDS(XAMP.MNM19))') 

.MEAS DC psigs_MNM18_MNM19 = PARAM('ABS(VGS(XAMP.MNM18)-VGS(XAMP.MNM19))') 

.MEAS DC psiDS_MNM21_MNM20 = PARAM('ABS(VDS(XAMP.MNM21)-VDS(XAMP.MNM20))') 

.MEAS DC psigs_MNM21_MNM20 = PARAM('ABS(VGS(XAMP.MNM21)-VGS(XAMP.MNM20))') 

.MEAS DC psiDS_MNM22_MNM23 = PARAM('ABS(VDS(XAMP.MNM22)-VDS(XAMP.MNM23))') 

.MEAS DC psigs_MNM22_MNM23 = PARAM('ABS(VGS(XAMP.MNM22)-VGS(XAMP.MNM23))') 

 

<Constraint op="LE" value="0.1" meas="psiDS_MPM17_MPM16" /> 

<Constraint op="LE" value="0.05" meas="psigs_MPM17_MPM16" /> 

<Constraint op="GE" value="0.1" meas="vov_MPM13" /> 

<Constraint op="GE" value="0.1" meas="vov_MPM3" /> 

<Constraint op="GE" value="0.1" meas="vov_MPM2" /> 

<Constraint op="GE" value="0.1" meas="vov_MNM4" /> 

<Constraint op="GE" value="0.1" meas="vov_MNM18" /> 

<Constraint op="GE" value="0.1" meas="vov_MNM19" /> 

<Constraint op="GE" value="0.1" meas="vov_MNM5" /> 

<Constraint op="GE" value="0.1" meas="vov_MNM11" /> 

<Constraint op="GE" value="0.1" meas="vov_MNM8" /> 

<Constraint op="GE" value="0.1" meas="vov_MNM12" /> 

<Constraint op="GE" value="0.1" meas="vov_MNM9" /> 

<Constraint op="GE" value="0.1" meas="delta_MN0" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MN0" /> 

<Constraint op="GE" value="0.00" meas="VDS_MN0" /> 

<Constraint op="GE" value="0.00" meas="vov_MN0" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM18" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM18" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM18" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM19" /> 
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<Constraint op="GE" value="6.0E-14" meas="A_MNM19" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM19" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM5" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM5" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM5" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM11" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM11" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM11" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM8" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM8" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM8" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM4" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM4" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM4" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM21" /> 

<Constraint op="GE" value="3.0E-7" meas="W_MNM21" /> 

<Constraint op="GE" value="1.5E-7" meas="L_MNM21" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM21" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM21" /> 

<Constraint op="GE" value="0.00" meas="vov_MNM21" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM20" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM20" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM20" /> 

<Constraint op="GE" value="0.00" meas="vov_MNM20" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM24" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM24" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM24" /> 

<Constraint op="GE" value="0.00" meas="vov_MNM24" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM9" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM9" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM9" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM12" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM12" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM12" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM6" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM6" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM6" /> 

<Constraint op="GE" value="0.00" meas="vov_MNM6" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM22" /> 

<Constraint op="GE" value="3.0E-7" meas="W_MNM22" /> 

<Constraint op="GE" value="1.5E-7" meas="L_MNM22" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM22" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM22" /> 

<Constraint op="GE" value="0.00" meas="vov_MNM22" /> 

<Constraint op="GE" value="0.1" meas="delta_MNM23" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MNM23" /> 

<Constraint op="GE" value="0.00" meas="VDS_MNM23" /> 

<Constraint op="GE" value="0.00" meas="vov_MNM23" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MP0" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MP0" /> 

<Constraint op="GE" value="0.00" meas="VDS_MP0" /> 

<Constraint op="GE" value="0.00" meas="vov_MP0" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPM17" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM17" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM17" /> 

<Constraint op="GE" value="0.00" meas="vov_MPM17" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPM16" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM16" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM16" /> 

<Constraint op="GE" value="0.00" meas="vov_MPM16" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPM13" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM13" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM13" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPM10" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM10" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM10" /> 

<Constraint op="GE" value="0.00" meas="vov_MPM10" /> 
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<Constraint op="GE" value="0.1" meas="rev_delta_MPM14" /> 

<Constraint op="GE" value="3.0E-7" meas="W_MPM14" /> 

<Constraint op="GE" value="1.5E-7" meas="L_MPM14" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM14" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM14" /> 

<Constraint op="GE" value="0.00" meas="vov_MPM14" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPM15" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM15" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM15" /> 

<Constraint op="GE" value="0.00" meas="vov_MPM15" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPM3" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM3" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM3" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPM1" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM1" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM1" /> 

<Constraint op="GE" value="0.00" meas="vov_MPM1" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPM2" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM2" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM2" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_MPM7" /> 

<Constraint op="GE" value="6.0E-14" meas="A_MPM7" /> 

<Constraint op="GE" value="0.00" meas="VDS_MPM7" /> 

<Constraint op="GE" value="0.00" meas="vov_MPM7" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MPM17_MPM16" /> 

<Constraint op="LE" value="0.05" meas="psigs_MPM17_MPM16" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MPM14_MPM15" /> 

<Constraint op="LE" value="0.05" meas="psigs_MPM14_MPM15" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MNM18_MNM19" /> 

<Constraint op="LE" value="0.05" meas="psigs_MNM18_MNM19" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MNM21_MNM20" /> 

<Constraint op="LE" value="0.05" meas="psigs_MNM21_MNM20" /> 

<Constraint op="LE" value="0.1" meas="psiDS_MNM22_MNM23" /> 

<Constraint op="LE" value="0.05" meas="psigs_MNM22_MNM23" /> 

 

A.3 Fully Differential OTA 

***Netlist testing for circuit*** 

.subckt nova_diff cmfb gnd vdd vin vip von vop 

***Device list*** 

mpm1 von net15 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4*R_mpm4_mpm3 

mpm2 net15 net15 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4 

mpm3 vop net024 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4*R_mpm4_mpm3 

mpm4 net024 net024 vdd vdd P_HG_33_L130E L=L_mpm4 W=W_mpm4 M=M_mpm4 

mnm5 net15 vip crossa crossa N_HG_33_L130E L=L_mnm6 W=W_mnm6 M=M_mnm6 

mnm7 vdd vip crossb crossb N_HG_33_L130E L=L_mnm8 W=W_mnm8 M=M_mnm8 

mnm9 crossb vin gnd gnd N_HG_33_L130E L=L_mnm10 W=W_mnm10 M=M_mnm10 

mnm11 von cmfb gnd gnd N_HG_33_L130E L=L_mnm12 W=W_mnm12 M=M_mnm12 

mnm12 vop cmfb gnd gnd N_HG_33_L130E L=L_mnm12 W=W_mnm12 M=M_mnm12 

mnm6 net024 vin crossb crossb N_HG_33_L130E L=L_mnm6 W=W_mnm6 M=M_mnm6 

mnm8 vdd vin crossa crossa N_HG_33_L130E L=L_mnm8 W=W_mnm8 M=M_mnm8 

mnm10 crossa vip gnd gnd N_HG_33_L130E L=L_mnm10 W=W_mnm10 M=M_mnm10 

 

 

<Variable name="W_mpm4" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_mpm4" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_mpm4" min="1" step="1" max="8"/> 

<Variable name="R_mpm4_mpm3" min="0.5" step="0.1" max="10"/> 

<Variable name="W_mnm6" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_mnm6" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_mnm6" min="1" step="1" max="8"/> 

<Variable name="W_mnm8" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_mnm8" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 
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<Variable name="M_mnm8" min="1" step="1" max="8"/> 

<Variable name="W_mnm10" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_mnm10" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_mnm10" min="1" step="1" max="8"/> 

<Variable name="W_mnm12" min="3.0E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="L_mnm12" min="1.5E-7" step="5.0E-7" max="1.0E-4"/> 

<Variable name="M_mnm12" min="1" step="1" max="8"/> 

 

<MeasureDescription name="vov_mpm1" description="Overdrive" units="[V]" /> 

<MeasureDescription name="vov_mpm3" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_mnm5" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="W_mnm5" description="Width" units="[m]" /> 

<MeasureDescription name="L_mnm5" description="Length" units="[m]" /> 

<MeasureDescription name="A_mnm5" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mnm5" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mnm5" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_mnm7" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="W_mnm7" description="Width" units="[m]" /> 

<MeasureDescription name="L_mnm7" description="Length" units="[m]" /> 

<MeasureDescription name="A_mnm7" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mnm7" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mnm7" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_mnm9" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="W_mnm9" description="Width" units="[m]" /> 

<MeasureDescription name="L_mnm9" description="Length" units="[m]" /> 

<MeasureDescription name="A_mnm9" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mnm9" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mnm9" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_mnm11" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="W_mnm11" description="Width" units="[m]" /> 

<MeasureDescription name="L_mnm11" description="Length" units="[m]" /> 

<MeasureDescription name="A_mnm11" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mnm11" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mnm11" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_mnm12" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_mnm12" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mnm12" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mnm12" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_mnm6" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_mnm6" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mnm6" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mnm6" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_mnm8" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_mnm8" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mnm8" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mnm8" description="Overdrive" units="[V]" /> 

<MeasureDescription name="delta_mnm10" description="VDS - VDSat" units="[V]" /> 

<MeasureDescription name="A_mnm10" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mnm10" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mnm10" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_mpm1" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="W_mpm2" description="Width" units="[m]" /> 

<MeasureDescription name="L_mpm2" description="Length" units="[m]" /> 

<MeasureDescription name="A_mpm1" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mpm1" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_mpm2" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_mpm2" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mpm2" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mpm2" description="Overdrive" units="[V]" /> 

<MeasureDescription name="rev_delta_mpm3" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_mpm3" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mpm3" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="rev_delta_mpm4" description="VDSat - VDS" units="[V]" /> 

<MeasureDescription name="A_mpm4" description="Area" units="[m²]" /> 

<MeasureDescription name="VDS_mpm4" description="Drain-Source Voltage" units="[V]" /> 

<MeasureDescription name="vov_mpm4" description="Overdrive" units="[V]" /> 
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<MeasureDescription name="psiDS_mpm2_mpm4" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_mpm2_mpm4" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_mnm5_mnm6" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_mnm5_mnm6" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_mnm7_mnm8" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_mnm7_mnm8" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_mnm9_mnm10" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_mnm9_mnm10" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_mpm1_mpm3" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_mpm1_mpm3" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_mpm2_mpm4" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_mpm2_mpm4" description="VGS_X1 - VGS_X2" units="[V]" /> 

<MeasureDescription name="psiDS_mnm11_mnm12" description="VDS_X1 - VDS_X2" units="[V]" /> 

<MeasureDescription name="psigs_mnm11_mnm12" description="VGS_X1 - VGS_X2" units="[V]" /> 

 

.MEAS DC vov_mpm1 PARAM = 'LV9(XAMP.mpm1)-VGS(XAMP.mpm1)' 

.MEAS DC vov_mpm3 PARAM = 'LV9(XAMP.mpm3)-VGS(XAMP.mpm3)' 

.MEAS DC delta_mnm5 PARAM = 'VDS(XAMP.mnm5) - VDSAT(XAMP.mnm5)' 

.MEAS DC W_mnm5 = PARAM('W_mnm6*M_mnm6') 

.MEAS DC L_mnm5 = PARAM('L_mnm6') 

.MEAS DC A_mnm5 = PARAM('L_mnm6*W_mnm6*M_mnm6') 

.MEAS DC VDS_mnm5 PARAM = 'VDS(XAMP.mnm5)' 

.MEAS DC vov_mnm5 PARAM = 'LV9(XAMP.mnm5)-VGS(XAMP.mnm5)' 

.MEAS DC delta_mnm7 PARAM = 'VDS(XAMP.mnm7) - VDSAT(XAMP.mnm7)' 

.MEAS DC W_mnm7 = PARAM('W_mnm8*M_mnm8') 

.MEAS DC L_mnm7 = PARAM('L_mnm8') 

.MEAS DC A_mnm7 = PARAM('L_mnm8*W_mnm8*M_mnm8') 

.MEAS DC VDS_mnm7 PARAM = 'VDS(XAMP.mnm7)' 

.MEAS DC vov_mnm7 PARAM = 'LV9(XAMP.mnm7)-VGS(XAMP.mnm7)' 

.MEAS DC delta_mnm9 PARAM = 'VDS(XAMP.mnm9) - VDSAT(XAMP.mnm9)' 

.MEAS DC W_mnm9 = PARAM('W_mnm10*M_mnm10') 

.MEAS DC L_mnm9 = PARAM('L_mnm10') 

.MEAS DC A_mnm9 = PARAM('L_mnm10*W_mnm10*M_mnm10') 

.MEAS DC VDS_mnm9 PARAM = 'VDS(XAMP.mnm9)' 

.MEAS DC vov_mnm9 PARAM = 'LV9(XAMP.mnm9)-VGS(XAMP.mnm9)' 

.MEAS DC delta_mnm11 PARAM = 'VDS(XAMP.mnm11) - VDSAT(XAMP.mnm11)' 

.MEAS DC W_mnm11 = PARAM('W_mnm12*M_mnm12') 

.MEAS DC L_mnm11 = PARAM('L_mnm12') 

.MEAS DC A_mnm11 = PARAM('L_mnm12*W_mnm12*M_mnm12') 

.MEAS DC VDS_mnm11 PARAM = 'VDS(XAMP.mnm11)' 

.MEAS DC vov_mnm11 PARAM = 'LV9(XAMP.mnm11)-VGS(XAMP.mnm11)' 

.MEAS DC delta_mnm12 PARAM = 'VDS(XAMP.mnm12) - VDSAT(XAMP.mnm12)' 

.MEAS DC A_mnm12 = PARAM('L_mnm12*W_mnm12*M_mnm12') 

.MEAS DC VDS_mnm12 PARAM = 'VDS(XAMP.mnm12)' 

.MEAS DC vov_mnm12 PARAM = 'LV9(XAMP.mnm12)-VGS(XAMP.mnm12)' 

.MEAS DC delta_mnm6 PARAM = 'VDS(XAMP.mnm6) - VDSAT(XAMP.mnm6)' 

.MEAS DC A_mnm6 = PARAM('L_mnm6*W_mnm6*M_mnm6') 

.MEAS DC VDS_mnm6 PARAM = 'VDS(XAMP.mnm6)' 

.MEAS DC vov_mnm6 PARAM = 'LV9(XAMP.mnm6)-VGS(XAMP.mnm6)' 

.MEAS DC delta_mnm8 PARAM = 'VDS(XAMP.mnm8) - VDSAT(XAMP.mnm8)' 

.MEAS DC A_mnm8 = PARAM('L_mnm8*W_mnm8*M_mnm8') 

.MEAS DC VDS_mnm8 PARAM = 'VDS(XAMP.mnm8)' 

.MEAS DC vov_mnm8 PARAM = 'LV9(XAMP.mnm8)-VGS(XAMP.mnm8)' 

.MEAS DC delta_mnm10 PARAM = 'VDS(XAMP.mnm10) - VDSAT(XAMP.mnm10)' 

.MEAS DC A_mnm10 = PARAM('L_mnm10*W_mnm10*M_mnm10') 

.MEAS DC VDS_mnm10 PARAM = 'VDS(XAMP.mnm10)' 

.MEAS DC vov_mnm10 PARAM = 'LV9(XAMP.mnm10)-VGS(XAMP.mnm10)' 

.MEAS DC rev_delta_mpm1 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC W_mpm2 = PARAM('W_mpm4*M_mpm4') 

.MEAS DC L_mpm2 = PARAM('L_mpm4') 

.MEAS DC A_mpm1 = PARAM('L_mpm4*W_mpm4*M_mpm4*R_mpm4_mpm3') 

.MEAS DC VDS_mpm1 PARAM = 'VDS(XAMP.mpm1)' 

.MEAS DC rev_delta_mpm2 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_mpm2 = PARAM('L_mpm4*W_mpm4*M_mpm4') 

.MEAS DC VDS_mpm2 PARAM = 'VDS(XAMP.mpm2)' 

.MEAS DC vov_mpm2 PARAM = 'LV9(XAMP.mpm2)-VGS(XAMP.mpm2)' 
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.MEAS DC rev_delta_mpm3 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_mpm3 = PARAM('L_mpm4*W_mpm4*M_mpm4*R_mpm4_mpm3') 

.MEAS DC VDS_mpm3 PARAM = 'VDS(XAMP.mpm3)' 

.MEAS DC rev_delta_mpm4 PARAM = 'VDSAT(XAMP.delta) - VDS(XAMP.delta)' 

.MEAS DC A_mpm4 = PARAM('L_mpm4*W_mpm4*M_mpm4') 

.MEAS DC VDS_mpm4 PARAM = 'VDS(XAMP.mpm4)' 

.MEAS DC vov_mpm4 PARAM = 'LV9(XAMP.mpm4)-VGS(XAMP.mpm4)' 

.MEAS DC psiDS_mpm2_mpm4 = PARAM('ABS(VDS(XAMP.mpm2)-VDS(XAMP.mpm4))') 

.MEAS DC psigs_mpm2_mpm4 = PARAM('ABS(VGS(XAMP.mpm2)-VGS(XAMP.mpm4))') 

.MEAS DC psiDS_mnm5_mnm6 = PARAM('ABS(VDS(XAMP.mnm5)-VDS(XAMP.mnm6))') 

.MEAS DC psigs_mnm5_mnm6 = PARAM('ABS(VGS(XAMP.mnm5)-VGS(XAMP.mnm6))') 

.MEAS DC psiDS_mnm7_mnm8 = PARAM('ABS(VDS(XAMP.mnm7)-VDS(XAMP.mnm8))') 

.MEAS DC psigs_mnm7_mnm8 = PARAM('ABS(VGS(XAMP.mnm7)-VGS(XAMP.mnm8))') 

.MEAS DC psiDS_mnm9_mnm10 = PARAM('ABS(VDS(XAMP.mnm9)-VDS(XAMP.mnm10))') 

.MEAS DC psigs_mnm9_mnm10 = PARAM('ABS(VGS(XAMP.mnm9)-VGS(XAMP.mnm10))') 

.MEAS DC psiDS_mpm1_mpm3 = PARAM('ABS(VDS(XAMP.mpm1)-VDS(XAMP.mpm3))') 

.MEAS DC psigs_mpm1_mpm3 = PARAM('ABS(VGS(XAMP.mpm1)-VGS(XAMP.mpm3))') 

.MEAS DC psiDS_mpm2_mpm4 = PARAM('ABS(VDS(XAMP.mpm2)-VDS(XAMP.mpm4))') 

.MEAS DC psigs_mpm2_mpm4 = PARAM('ABS(VGS(XAMP.mpm2)-VGS(XAMP.mpm4))') 

.MEAS DC psiDS_mnm11_mnm12 = PARAM('ABS(VDS(XAMP.mnm11)-VDS(XAMP.mnm12))') 

.MEAS DC psigs_mnm11_mnm12 = PARAM('ABS(VGS(XAMP.mnm11)-VGS(XAMP.mnm12))') 

 

<Constraint op="GE" value="0.1" meas="vov_mpm1" /> 

<Constraint op="GE" value="0.1" meas="vov_mpm3" /> 

<Constraint op="GE" value="0.1" meas="delta_mnm5" /> 

<Constraint op="GE" value="3.0E-7" meas="W_mnm5" /> 

<Constraint op="GE" value="1.5E-7" meas="L_mnm5" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mnm5" /> 

<Constraint op="GE" value="0.00" meas="VDS_mnm5" /> 

<Constraint op="GE" value="0.00" meas="vov_mnm5" /> 

<Constraint op="GE" value="0.1" meas="delta_mnm7" /> 

<Constraint op="GE" value="3.0E-7" meas="W_mnm7" /> 

<Constraint op="GE" value="1.5E-7" meas="L_mnm7" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mnm7" /> 

<Constraint op="GE" value="0.00" meas="VDS_mnm7" /> 

<Constraint op="GE" value="0.00" meas="vov_mnm7" /> 

<Constraint op="GE" value="0.1" meas="delta_mnm9" /> 

<Constraint op="GE" value="3.0E-7" meas="W_mnm9" /> 

<Constraint op="GE" value="1.5E-7" meas="L_mnm9" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mnm9" /> 

<Constraint op="GE" value="0.00" meas="VDS_mnm9" /> 

<Constraint op="GE" value="0.00" meas="vov_mnm9" /> 

<Constraint op="GE" value="0.1" meas="delta_mnm11" /> 

<Constraint op="GE" value="3.0E-7" meas="W_mnm11" /> 

<Constraint op="GE" value="1.5E-7" meas="L_mnm11" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mnm11" /> 

<Constraint op="GE" value="0.00" meas="VDS_mnm11" /> 

<Constraint op="GE" value="0.00" meas="vov_mnm11" /> 

<Constraint op="GE" value="0.1" meas="delta_mnm12" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mnm12" /> 

<Constraint op="GE" value="0.00" meas="VDS_mnm12" /> 

<Constraint op="GE" value="0.00" meas="vov_mnm12" /> 

<Constraint op="GE" value="0.1" meas="delta_mnm6" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mnm6" /> 

<Constraint op="GE" value="0.00" meas="VDS_mnm6" /> 

<Constraint op="GE" value="0.00" meas="vov_mnm6" /> 

<Constraint op="GE" value="0.1" meas="delta_mnm8" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mnm8" /> 

<Constraint op="GE" value="0.00" meas="VDS_mnm8" /> 

<Constraint op="GE" value="0.00" meas="vov_mnm8" /> 

<Constraint op="GE" value="0.1" meas="delta_mnm10" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mnm10" /> 

<Constraint op="GE" value="0.00" meas="VDS_mnm10" /> 

<Constraint op="GE" value="0.00" meas="vov_mnm10" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_mpm1" /> 

<Constraint op="GE" value="3.0E-7" meas="W_mpm2" /> 
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<Constraint op="GE" value="1.5E-7" meas="L_mpm2" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mpm1" /> 

<Constraint op="GE" value="0.00" meas="VDS_mpm1" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_mpm2" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mpm2" /> 

<Constraint op="GE" value="0.00" meas="VDS_mpm2" /> 

<Constraint op="GE" value="0.00" meas="vov_mpm2" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_mpm3" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mpm3" /> 

<Constraint op="GE" value="0.00" meas="VDS_mpm3" /> 

<Constraint op="GE" value="0.1" meas="rev_delta_mpm4" /> 

<Constraint op="GE" value="6.0E-14" meas="A_mpm4" /> 

<Constraint op="GE" value="0.00" meas="VDS_mpm4" /> 

<Constraint op="GE" value="0.00" meas="vov_mpm4" /> 

<Constraint op="LE" value="0.1" meas="psiDS_mpm2_mpm4" /> 

<Constraint op="LE" value="0.05" meas="psigs_mpm2_mpm4" /> 

<Constraint op="LE" value="0.1" meas="psiDS_mnm5_mnm6" /> 

<Constraint op="LE" value="0.05" meas="psigs_mnm5_mnm6" /> 

<Constraint op="LE" value="0.1" meas="psiDS_mnm7_mnm8" /> 

<Constraint op="LE" value="0.05" meas="psigs_mnm7_mnm8" /> 

<Constraint op="LE" value="0.1" meas="psiDS_mnm9_mnm10" /> 

<Constraint op="LE" value="0.05" meas="psigs_mnm9_mnm10" /> 

<Constraint op="LE" value="0.1" meas="psiDS_mpm1_mpm3" /> 

<Constraint op="LE" value="0.05" meas="psigs_mpm1_mpm3" /> 

<Constraint op="LE" value="0.1" meas="psiDS_mpm2_mpm4" /> 

<Constraint op="LE" value="0.05" meas="psigs_mpm2_mpm4" /> 

<Constraint op="LE" value="0.1" meas="psiDS_mnm11_mnm12" /> 

<Constraint op="LE" value="0.05" meas="psigs_mnm11_mnm12" /> 

 


