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Resumo

As baterias de lı́tio ferro fosfato (LiFePO4) despontam como uma nova gama de baterias de iões de

lı́tio no mercado de sistemas de armazenamento de energia. É, deste modo, essencial a utilização de

métodos precisos e fiáveis para a medição do seu estado de carga.

Após a revisão dos principais métodos de estimação do estado de carga, um novo procedimento

com a mesma finalidade é proposto, tendo por base a impedância interna da bateria e um sistema de

lógica difusa.

A resposta em frequência de uma bateria de LiFePO4, representando a sua impedância interna, é

adquirida por espectroscopia de impedância electroquı́mica. Devido à relação não-linear desta variável

para com o estado de carga, é sugerida uma abordagem por sistemas adaptativos. A impedância

interna adquirida representa a entrada de um sistema de lógica difusa, responsável pela estimação do

estado de carga da bateria através de uma análise comparativa entre a presente impedância adquirida

e impedâncias observadas anteriormente, associadas a certos valores de estado de carga. Para tal, o

sistema de inferência difusa é previamente composto, através da aplicação de sistemas adaptativos de

inferência neuro-difusa.

Um dispositivo é desenvolvido, através da plataforma Arduino Due e de uma placa de circuito im-

presso, de forma a que os processos mencionados acima sejam implementados. Os resultados verifi-

cados provam que o sistema é capaz de inferir correctamente o valor do estado de carga da bateria,

embora seja altamente dependente da quantidade de informação adquirida no passado, informação

essa responsável pelo modelo do sistema de inferência difusa.

Palavras-Chave: Arduino Due; Bateria de LiFePO4; Espectroscopia de impedância elec-

troquı́mica; Estimação de estado de carga ; Impedância interna; Lógica difusa; Sistema adaptativo de

inferência neuro-difusa.
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Abstract

Lithium iron phosphate batteries (LiFePO4) appear as a new type of lithium ion batteries on the energy

storage systems market. Therefore, it is essential to have accurate and reliable methods of measure-

ment of a LiFePO4 battery state-of-charge (SOC).

After revising the main SOC estimation methods, a new technique, based on the internal impedance

of the battery and fuzzy logic, is proposed.

The frequency response of a LiFePO4 battery cell, representing its internal impedance, is acquired

from an electrochemical impedance spectroscopy (EIS). This acquired variable has a non-linear rela-

tionship to SOC, thus, an adaptive methodology approach is taken. The result of the EIS measurement

renders the input to a fuzzy logic system designed for the battery SOC estimation, through a comparative

analysis between the current impedance measurement and previously observed ones, related to certain

values of SOC. To attain this comparative analysis, the fuzzy inference model is previously constructed

using an adaptive neuro-fuzzy inference system (ANFIS) technique, based on past EIS measurements,

for pre-defined SOC values.

A device is developed, using the Arduino Due platform and an assembled printed circuit board (PCB),

so that both processes mentioned above are implemented. The results proved that the implemented

system is capable of correctly inferring the battery SOC, although being highly dependent on the amount

of past information being acquired, modelling the fuzzy inference system.

Keywords: ANFIS; Arduino Due; EIS; Fuzzy Logic; Internal impedance; LiFePO4 battery; SOC

estimation.
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Chapter 1

Introduction

1.1 Motivation

With the rise of autonomous applications in the past years and its predicable growth in the forthcoming

ones, comes the ascent of energy storage systems demand. The progress in energy efficiency and the

decline of non-renewable sources of energy dictates the advancement in battery monitoring systems.

With this in mind, an accurate and reliable measurement of a battery state-of-charge (SOC) is of the

most priority to its active management. The SOC value describes the available stored energy in the

battery in relation to its full capacity. This indicator is not only relevant from the remaining capacity

point of view but also of extreme importance to the lifetime of the monitorized battery seeing that these

systems are sensitive to deep discharges or overcharges related to high or too low SOC values, states

capable of irreversible damaging the battery. A battery system, depending on the application, is usually

composed of more than one cell. With this rises another problem, related to the different usage times for

each cell, seeing that in these cases the SOC value is measured for the entire set of cells. This uneven

usage leads to rapid ageing of some cells resulting in its destruction, thereby decreasing the lifetime of

the entire pack. Therefore, battery SOC estimation methods are of great importance.

This work aims the implementation of a reliable and automatic SOC measurement system. The

ultimate goal is to this in a compact and low-cost way.

1.2 Objectives

Lithium iron phosphate (LiFePO4 or LFP) battery cells are emerging as a choice when a long cycle life

and safety supersedes energy density, such as in electric vehicles. This work addresses the develop-

ment of a system capable of measuring the SOC value of LiFePO4 cells. In that context, the proposed

sytem will be able to measure the impedance profile of a given cell, through the development of an EIS

measurement system, later inferring its SOC value using an adaptive neuro-fuzzy methodology. The im-

plemented system will automatically estimate this variable based on previous acquired cell impedance

profile measurements.
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1.3 Thesis Outline

This work is structured as follows:

Chapter 2 introduces the basic concepts of a battery as well as a brief description of LiFePO4 cells

characteristics with a comparison between the LiFePO4 and other batteries available on the market.

Chapter 3 reviews usual SOC estimation methods and introduces the proposed inference mecha-

nism.

Chapter 4 describes Fuzzy logic models and Adaptive Neuro-Fuzzy inference systems, later applied

in this work.

Chapter 5 details the proposed implemented system, while addressing the working principles of each

main block composing the system.

Chapter 6 aims to validate the developed system, described in Chapter 5, based on a proposed case

study and its results.

Lastly, the main conclusions of this work are summarized and some considerations about future work

are given.

1.4 Contribution of this thesis

The main contributions of this work are:

• Development of a novel monitoring system that measures the internal impedance of the battery

cell to infer its SOC value, employing adaptive neuro-fuzzy inference techniques.

• Test and validation of the proposed system applied to a LiFePO4 cell.
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Chapter 2

Batteries

2.1 Basic principles

A battery is a device consisting of one or more electrochemical cells that converts the chemical en-

ergy stored in its active materials into electric energy through an electrochemical oxidation-reduction

(redox) reaction. The battery cell is composed of a positive terminal or cathode, with its composition

differing among the types of Li-ion batteries; a negative terminal or anode, usually composed of carbon

or graphite on account of its low electrical resistivity; an electrolyte, providing the medium for transfer

of charge inside the cell and a separator between the anode and cathode and a separator, preventing

physical contact of the electrodes.

During discharge, the cathode, where lithium ions are reduced, accepts electrons flowing from the

anode(oxidized), through the electrical load. For rechargeable batteries, this procedure is reverted,

resulting in the oxidation of the positive electrode (cathode) and the reduction at the negative electrode

(anode). Both processes are represented in Figure 2.1.

Figure 2.1: Discharge a) and Charge b) mechanisms of lithium ion rechargeable batteries [1].
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2.2 LiFePO4 batteries

Lithium iron phosphate (LiFePO4 or LFP) cells were first described in [2] by John Goodenough’s research

group at the University of Texas in 1996 and are emerging as a choice when a long cycle life and safety

supersedes energy density, such as in electric vehicles.

The following characteristics of LiFePO4 (LFP) can be summarised: LFP shows an acceptable cell

voltage of 3.2 V, depending on the active materials, and it shows exceedingly good safety features.

LiFePO4 is chemically stable, non-toxic and shows no thermal runaway. It shows a long cycle life (>3000

cycles) and reasonable energy density, (110 to 140) Wh/kg. The rate of self-discharge of a LFP battery

is extremely low and it can be stored fully charged.

LiFePO4’s stability comes from its decomposition reaction when exposed to high temperature. Oxy-

gen is not released, at least for temperatures up to 350 ◦C as it can be seen in Figure 2.2. This happens

due to the strong P-O bond in the LiFePO4, therefore, there is a low risk of fire, giving it great safety

features when exposed to overcharge or short circuit conditions, when compared to other cathodes,

such as: Lithium Nickel Cobalt Aluminium Oxide (LiNiCoAlO2 or NCA), Lithium Cobalt Oxide (LiCoO2 or

LCO), Lithium Manganese Oxide (LiMn2O4 or LMO) .

Figure 2.2: Exothermic reaction evolution with temperature [3].

A possible disadvantage of these batteries cells is their voltage level, which is lower than those of the

other batteries available on the market. However, as stated previously, this issue is counterbalanced by

its enhanced safety, crucial in many applications.

A comparison between LiFePO4 and other positive electrode materials available on the market is

presented in Table 1, differing in specific energy density, specific capacity density, cycle life, charg-

ing/discharging voltages and peak current, operating temperature and cost.
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Specifications Lithium cobalt

oxide (LCO)

Nickel cobalt

aluminium

(NCA)

Nickel

manganese

cobalt (NMC)

Lithium

manganese

oxide (LMO)

Lithium iron

phosphate

(LFP)

Specific energy [Wh/Kg] 170 - 185 [4] 145 - 165 [4] 155 - 185 [4] 90 - 120 [4] 100 - 140 [4]

Specific capacity [Ah/Kg] 140 [5] 180 [5] 145 [5] 146 [5] 170 [5]

Cycle life [Number of cycles] 500 - 1000 [5] 2000 - 3000 [5] 2000 - 3000 [5] 1000 [5] >3000 [5]

Cell Voltage [V] 3.65 [4] 3.65 [4] 3.7 [4] 3.8 [4] 3.2 [4]

Charge cut-off voltage [V] 4.2 [6] 4.2 [6] 4.2 [6] 4.2 [6] 3.65 [6]

Discharge cut-off voltage [V] 2.5 [6] 3.0 [6] 2.5 [6] 2.5 [6] 2.5 [6]

Charge current peak [C] 0.7–1 C [6] 0.7 C [6] 0.7–1 C [6] 0.7–1 C [6] 1 C [6]

Discharge current peak [C] 1 C [6] 1 C [6] 1 C [6] 1 C [6] 1 C [6]

Operating temperature [ºC] (-20) - (60) [7] (-20) - (60) [7] (-20) - (60) [7] (-20) - (60) [7] (-20) - (60) [7]

Safety Poor [6] Poor [6] Moderate [6] Moderate [6] Very Good [6]

Price ($/kWh) 1 318 [8] 307 [8] 375 [8] 402 [8]

Table 2.1: Characteristics of the batteries available on the market.

1The price ($/kWh) of Lithium cobalt oxide (LCO) was not indicated in [8].
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Chapter 3

The State of Charge (SOC) Estimating

Methods

3.1 SOC Definition analysis and it’s estimation methods

The ratio of the amount of electrical energy stored in a cell (Q(t)) to its maximum capacity (Qn) is usually

referred to as the state-of-charge (SOC) of the cell. It can be defined as follows:

SOC(t) =
Q(t)

Qn
(3.1)

State-of-charge determination is an increasingly important issue in energy storage systems in terms of

both extending the life of the battery and also knowing the remaining capacity of the battery, crucial for

its management. Hence, it is necessary to have methods capable of accurately estimating battery SOC.

Its prediction can be performed trough invasive and non-invasive methods. The need for non-invasive

and instantaneous methods for the determination of SOC became dominant with remote and or sealed

battery technology.

The SOC of the battery is a non-linear function depending on various parameters. Some variables

affecting the SOC are temperature, charge-discharge rates, hysteresis, self-discharge, and cell age [9].

Several approaches have been proposed for the SOC estimation and some [10–13] allow a division into

three main estimator categories: the direct, the indirect or book-keeping methods, and finally adaptive

systems for SOC estimation.

3.1.1 Direct methods

Direct measurement methods concern the measurement of battery variables and later relating them to

SOC. These include the battery voltage (V), battery impedance (Z) and voltage relaxation time (τ ) when

a current step is applied. The great advantage of a direct measurement system is that it does not have to

be continuously coupled to the battery. The main problem resides in the relation between the measured
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battery variable and the SOC under all applicable conditions, including the discharge current values that

may suffer a great variation depending on the application, temperatures, storage times, among others

[13]. Some direct methods are reviewed, such as the open circuit voltage method, the EMF method and

the impedance measurement method.

3.1.1.1 The open circuit voltage method

Voltage measurement is a popular method but it does not produce the most accurate results. The open

circuit voltage (OCV) of a battery drops with the decrease of SOC. Thus, its value can be used as an

estimate of the battery SOC. To illustrate this relationship, the OCV of a standard LiFePO4 cell as a

function of SOC is presented in Figure 3.1.

Figure 3.1: Plot of OCV in function of SOC for a LiFePO4 cell [14].

The SOC value can be inferred using one of the following methods: a look-up table, where the values

of the measured voltages can be stored and used to indicate the value of SOC or a piecewise linear func-

tion, dividing the OCV in intervals corresponding to predefined values of SOC. However, some factors

can change the value of OCV for each defined battery SOC, consequently changing the initial OCV-SOC

relation. The most significant factors are temperature and the number of cycles (charge/discharge) of

the battery. When these parameters change, a small variation of OCV is observed, thus changing the

OCV-SOC relation, this way providing an inaccurate value for the battery SOC.

3.1.1.2 The EMF method

EMF denotes electromotive force. The EMF of a cell is equal to the cell terminal voltage when no current

flows and the voltage has relaxed to its equilibrium value. Otherwise, the EMF is proportional to the cell

terminal voltage and its relation to SOC does not change throughout the charging/discharging cycling of

the battery, with minimum dependency on the battery’s age and temperature, if the SOC is expressed

as a function of the cell capacity [13].

There are three methods of measuring the EMF: voltage relaxation, linear interpolation and linear

extrapolation. The first method is based on the relaxation of the battery terminal voltage to the EMF

value after interrupting the current flow. This is a slow process, particularly when the battery capacity
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is at a low level. In addition to this, there is an impreciseness in defining when the battery voltage has

fully relaxed. The second method, linear interpolation, is graphically represented for a lithium ion battery

in Figure 3.2, showing that the battery terminal voltage, Vch, during charging, is higher than the EMF ,

and lower than the terminal voltage ,Vd, during discharging. With this method, the EMF is given by the

average voltage obtained between Vch and Vd, when the absolute value of the charging current is equal

to the absolute value of the discharging current.

Figure 3.2: EMF curve obtained through linear interpolation [15].

The third and final method, linear extrapolation, is based on the measurement of different terminal

voltages obtained with different charging or discharging currents at the same SOC. With the measured

values, a polynomial fit relating the terminal voltages as function of the flowing current is established.

This polynomial is used to extrapolate the voltage value associated to a zero current value of flowing

current, illustrated in Figure 3.3, corresponding to the relaxation of the voltage to its equilibrium value,

the EMF.

Figure 3.3: EMF curve obtained through linear extrapolation[13].

The SOC of the battery is later estimated using the same methods previously described in 3.1.1.1,
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through a look-up table or a piecewise linear function.

3.1.1.3 Impedance measurements method

Electrochemical impedance spectroscopy (EIS) is an experimental technique with the purpose of char-

acterizing electrochemical systems as a function of frequency. This method measures the impedance

of a system over a defined range of frequencies, hence the frequency response of the system. The

impedance data obtained by EIS is usually represented graphically in a Nyquist plot or a Bode plot.

Bode plots express the impedance magnitude and phase angle in relation to frequency. A Nyquist plot,

or complex plane, expresses the imaginary impedance versus the real impedance of the system.

Impedance is measured in potentiostatic mode or galvanostatic mode. In potentiostatic mode, an AC

potential is imposed to a cell and its response current is measured. In galvanostatic mode, impedance

is measured imposing an excitation current to the cell, thereby measuring its response potential. In

galvanostatic mode, the excitation current, as a function of time, is stated as:

i(t) = I0 sin(ωt) (3.2)

where i(t) is the current at the time instant t, I0 is the amplitude of the signal, and ω is the angular

frequency.

The response signal, u(t), is shifted in phase (φ) and has an amplitude U0:

u(t) = U0 sin(ωt+ φ) (3.3)

Through Ohm’s Law, the impedance is calculated:

Z(t) =
u(t)

i(t)
=
U0 sin(ωt+ φ)

I0 sin(ωt)
= Z0

sin(ωt+ φ)

sin(ωt)
(3.4)

With Eulers relationship, the impedance is represented in the polar form of its complex number. With

this relationship, the excitation current is given by:

I = I0 exp(jωt) (3.5)

and the response voltage:

U = U0 exp(j(ωt+ φ)) (3.6)

Accordingly, the impedance is represented in the complex plane as:

Z =
U
I

= Z0 exp(jφ) (3.7)

The SOC of the battery is later estimated by measuring the current battery impedance spectra and

correlating it to known impedances at different SOC levels.
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3.1.2 Indirect methods

Indirect SOC measurement methods, or book-keeping methods, are based on coulometric systems,

measuring and integrating the battery charging/discharging current. When applying these methods,

additional variables are measured, such as voltage and temperature, resulting in a more precise system

in contrast to the previously described direct methods.

3.1.2.1 Coulomb counting method

The Coulomb counting method is based on the integration of the battery charging/discharging current

according to:

SOC(t) = SOC(0) +

∫ t

0

η · i(t)
Qn

dt (3.8)

where SOC(0) is the initial SOC, η being the coulombic efficiency, Qn the battery maximum capacity

and i(t) the discharge current. Thus, the accuracy of the coulomb counting method resorts primarily

to a precise measurement of the battery current and accurate estimation of the initial SOC [16]. The

inaccuracy of these parameters brings disadvantages, specific to a book-keeping system, due to the

accumulation of errors over time, seeing that the inaccuracy of the SOC value estimation at a given

moment will result in the incorrect initial SOC value for a future measurement. Therefore, these methods

often require re-calibration. With this in mind, the coulomb counting method is usually combined with

other battery parameters, such as its open circuit terminal voltage, directly related to the SOC value,

as described in section 3.1.1.1, thereby compensating the inaccuracy of the method. Furthermore, this

technique is unable to accurately match the non-linear behaviour of the battery over its entire lifetime,

not taking into account the ageing of the cell, corresponding to a decrease in the battery’s maximum

capacity, Qn.

3.1.3 Adaptive systems

The uncertainty of the battery and its management system behaviour, due to the influence of previously

mentioned parameters, is the main problem to an accurate SOC estimation. For this reason, adaptive

systems based on Fuzzy Logic [17], Artificial Neural Network (ANN) [18] and Kalman Filter (KF) [19]

combined with direct measurements, indirect measurements or both, offer a better solution for on-line

SOC estimation. These systems self-design themselves, conceding an automatic adjust to a change in

the system.

3.1.3.1 Fuzzy Logic based method

Fuzzy-Logic (FL) is a learning-based adaptive method capable of inferring information about the dynamic

behaviour of the system while modelling it through a set of rules that make up a ”linguistic” model.

This type of method allows to generalize, add or even change the information composing the model

when necessary. In a fuzzy system, data may be categorized by ‘crisp’ and/or ‘fuzzy’ sets. Crisp sets
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categorize data with certainty, for instance, a set of voltages between 60kV and 400kV. With fuzzy sets,

a set in which data can be categorized, is uncertain, for example, the voltage is ’high’. This linguistic

descriptor ‘high’ is a subset contained in the set of voltages (’low’, ’medium’ and ’high’) and is defined

by its membership function. The degree to which an element of the set ‘voltage’ belongs to the fuzzy

subset ‘high’ is indicated by a quantity referred to as its ‘degree of membership’ or fit fuzzy unit value

[20]. Hence, the membership function is the basic idea in fuzzy set theory. Its value measures degrees

to which objects satisfy certain properties.

The fuzzy system has four conceptual components: a rule base describing the relationship between

input and output variables; a data base that defines the membership functions for the input and output

variables; a reasoning mechanism that performs the inference procedure and a defuzzification block

which transforms the fuzzy output sets to a real-valued crisp [10].

Applying Fuzzy theory to SOC estimation, impedance spectra values from Electrochemical Impedance

Spectroscopy (EIS) [21] or Coulomb counting methods [22] give the input parameters for the fuzzy logic

model construction and then, through the membership functions and rule set, a value for the SOC of the

cell is obtained as output.

3.1.3.2 Artificial Neural Network based method

The Artificial Neural Network (ANN) is a data based system with a working principle based on the

mechanism of communication between the neurons present in the human brain. In ANN, data is received

in different parts of our body. Proceeding this, each bit of data is crossed with other input data to see

if there is any relation between them. If effectively there is a relation, a certain response is given by

the system. This method estimates the actual SOC using the recent history of current, voltage, and

temperature of the battery.

An architecture of a SOC estimating neural network is shown in Figure 3.4, taken from [23]. The ANN

contains an input layer with three neurons for terminal voltage, discharge current, and temperature; an

output layer with one neuron for SOC , and one hidden layer with g neurons. In the input layer, data is

introduced as it is in the network, without any kind of calculation. The hidden layer is where the input

variables are weighted in different combinations, with each node getting a certain output (wkio in Figure

3.4, where i is the starting node, o is the end node and k is index of the layer) . In the output layer, the

previous hidden layer outputs are gathered and evaluated in order to bring a solution to the problem.

A learning process is required so that the knowledge of the Neural Network is achieved. This consists

in a process where weights connection between nodes are regulated by a specific method to obtain

desired values. This is accomplished using a back propagation learning algorithm in order to guarantee

the error between the desired output (weight target) and the output of the network according to an ”error

goal”. The solution of the learning program is attained when the combination of weights which minimizes

the ”error goal”, is found. After the neural network is trained, it is ready to be validated and employed in

SOC estimation [22].
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Figure 3.4: The architecture of the SOC estimating neural network [23].

3.1.3.3 Kalman Filter based method

The Kalman filter (KF) is an algorithm capable of estimating the current value of the time-varying state

of a dynamic system through filtered measurements observed over time. The KF is a state estimator for

a linear system with the assumptions that the process noise and sensor noise are independent, zero-

mean, Gaussian noise processes. If the system is non-linear, a linearisation process is used at each

time step to approximate the non-linear system to a linear time varying one. This linearisation process

associated with the Kalman filter algorithm results in the extended Kalman filter (EKF) [24].

Figure 3.5 shows a block diagram of the Kalman Filter algorithm.

Figure 3.5: Block diagram of the Kalman Filter algorithm.

The algorithm is divided in four steps. The first step is expressing the model in a state-space rep-

resentation (Load Model); after this, the filter is initialized (Initialization). The third step, the prediction
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one, is where the KF estimates the present state variables and their uncertainties (Prediction). Finally,

when the following measurement is observed, the new estimates are corrected and updated trough a

weighted average, giving more weight to estimated variables with higher certainty (Correction).

In addition, to correctly estimate the SOC value using the EKF, the linearisation of the battery is

required. Thus, some models, such as the Shepherd Model; Unnewehr Universal Model; Nernst Model;

Linear Model and RC Model are presented in [25].

3.2 Proposed Method

In this project, a solution based on an impedance spectra database combined with fuzzy logic is de-

veloped in order to correctly estimate the battery SOC. In a first step, for pre-defined values of battery

SOCs, measured through a coulometric approach, described in section 3.1.2.1, an EIS measurement

is performed to the battery cell and this data is stored in a impedance spectra database. Later, the

calculation of SOC is performed through the comparison of the current battery impedance characteristic

with the impedance characteristic curves previously stored in the database. This inference between the

performed EIS and the stored database of impedances is accomplished using fuzzy logic, explained in

the next chapter. On this account, the developed system will be capable of automatically estimate the

battery SOC, through the combined implementation of two processes:

• The EIS technique, explained in 3.1.1.3.

• A fuzzy inference system, based on the previously acquired impedance spectras database and the

performed EIS.

The construction of the database of impedance spectras with their respective capacity begins with

the battery fully charged. Afterwards, the battery is discharged and through a coulomb count technique

described in 3.1.2.1, an EIS measurement is executed for specific SOC values (100%; 90%; 80%; 70%;

60%; 50%; 40%; 30%; 20%; 15%) resulting in an initial database of impedance spectras over the entire

range of SOC’s.

Seeing that the battery impedance is dependant of its age and number of cycles, this database needs

to be updated periodically, in order to correctly estimate the battery cell SOC. In this project, this process

will not be performed, leaving the update of the database with the increase number of charge/discharge

cycles for future work.
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Chapter 4

Fuzzy Logic and Adaptive Neuro

Fuzzy Inference Systems

In section 3.1.3.1, Fuzzy logic was introduced as an adaptive system that finds information on dynamic

behaviour of a system expressing data through a set of rules that make up a linguistic model. In this

chapter, the characteristics of a basic fuzzy model are presented and described, as an introduction to

the adaptive neuro fuzzy inference system(ANFIS) method, later applying this inference mechanism to

the project so that an accurate estimation of the battery SOC is achieved.

4.1 Characteristics of a fuzzy model

The structure of a fuzzy inference revolves around a model that maps input data to input membership

functions, input membership function to fuzzy rules, fuzzy rules to a set of output characteristics, output

characteristics to output membership functions and finally output membership functions to a single out-

put value. As an example, a simple functional relation is presented, taken from [26], in order to help the

reader understand the working principles of the model. Consider the function y = x2 , relating the input

(variable x) with the output (variable y), graphically represented in Figure 4.1.

Figure 4.1: Plot of the given function y = x2 [26].
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The function can be discretized for the values x = 1, 3, 5, 7 and 9, as shown in Figure 4.2, imposing

a set of relations, referred as crisp relations, since data is represented trough crisp values, expressed

as follows:

If x ∈ [0, 2] Then y = 12

If x ∈]2, 4] Then y = 32

If x ∈]4, 6] Then y = 52 (4.1)

If x ∈]6, 8] Then y = 72

If x ∈]8, 10] Then y = 92

Figure 4.2: Plot of the discretized function y = x2 [26].

4.1.1 Fuzzy sets and Membership functions

After the proposed discretization, the relation between the input and the output, x and y, respectively,

can’t be defined in a precise mathematical way, as before (y = x2), but can treated through a set of

linguistic rules such as:

Rule 1: If x is low, then y is low.

Rule 2: If x is moderate, then y is high.

Rule 3: If x is high, then y is very high.

Now, a set of linguistic values is used to represent the output as a function of the input. A set for

the input variable x is composed of three subsets: low, moderate, high; whereas the set for the output

variable y is characterized by the subsets low, high and very high. The degree to which an input x

belongs to a specific subset is indicated by its ’degree of membership’ to a membership function. A

membership function can be described as a mapping curve that ’translates’ how each point in the input

space is mapped to a membership value (or degree of membership) between 0 and 1. Applying this idea
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the given example, using triangular membership functions, one can say that a value of 1 for the subset

low of the input variable x would correspond to a crisp value of 0 and a value of 0.5 for the same subset

would correspond to a crisp value of 1. The linguistic rules describing the system are represented in

Figure 4.3.

Figure 4.3: Set of rules and membership functions describing the fuzzy system applied to the given
example [26].

Hence, it can be said that each linguistic term or subset of rules can be represented by its own

membership function (µf (x)), in this case, a triangular membership function:

Rule 1: If x is low︸︷︷︸
µ
(1)
A1

(x)

, then y is low︸︷︷︸
µ
(1)
B (y)

.

Rule 2: If x is moderate︸ ︷︷ ︸
µ
(2)
A2

(x)

, then y is high︸︷︷︸
µ
(2)
B (y)

.

Rule 3: If x is high︸︷︷︸
µ
(3)
A3

(x)

, then y is very high︸ ︷︷ ︸
µ
(3)
B (y)

.

Each membership function is defined as (for a triangular membership function):

µf (x) =



0, x ≤ a
x−a
b−a , a < x ≤ b
c−x
c−b , b < x ≤ c

0, x > c

where the parameters a, b, c (with a <b <c) determine the x coordinates of the three corners of the

underlying triangular membership functions.

An example for the fuzzy output of the linguistic fuzzy logic system presented is shown in Figure 4.4.
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Figure 4.4: Ouput of the linguistic fuzzy logic system of the given example [26].

4.1.2 Fuzzy inference system

In this project it is discussed the so-called Sugeno, or Takagi-Sugeno-Kang, method of fuzzy inference,

mapped over a neural network structure. This methodology uses a linear or constant level as the output

membership function rather than a distributed fuzzy set. This is known as a singleton output membership

function, ω. A typical rule for a system with two inputs in a Sugeno fuzzy model has following form:

If Input 1 = x and Input 2 = y, then Output is ω = g(x, y)

When g(x, y) is a first-order polynomial, the fuzzy inference method is a first-order Sugeno fuzzy

model:

ω = mx+ ny + k (4.2)

where the parameters m, n and k are the parameters describing the polynomial linear relation between

the inputs and the single value crisp output.

When g(x, y) is constant, the Sugeno fuzzy model is given by a zero-order polynomial (m = n = 0):

ω = k (4.3)

Changing the output subsets of the rules for the given example to singletons, the rules for the fuzzy

model of the functional relation (y = x2) are now represented as follows and observed in Figure 4.5:

Rule 1: If x is low, then y is ω(1).

Rule 2: If x is moderate, then y is ω(2).

Rule 3: If x is high, then y is ω(3).
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Figure 4.5: Representation of the fuzzy model rules using triangular membership functions and respec-
tive singletons [26].

4.1.3 Defuzzification

Since each rule has a crisp output, the overall output is obtained via weighted average of all rule outputs,

calculated as:

Y (x) =

∑c
l=1 µ

(l)
Al

(x)ω(l)∑c
l=1 µ

(l)
Al

(x)
(4.4)

In the previous expression, the variable x is the single crisp input; c represents the total number of

rules used in the inference, l is the number of the rule and Y (x) is the numerical value inferred through

the model.

4.1.3.1 Defuzzification for a system with two inputs

In the previous example, only one input was considered. If the system has two inputs, the fuzzy reason-

ing methodology changes. In this case, the singleton output of each rule, ω(i), is weighted by the firing

strength of the rule, f (l)(X1, X2) for both inputs, X1 and X2.

The firing strength gives the compatibility degree of the pattern with each rule. In order to calculate

the compatibility degree of the pattern with each rule, a T-norm operator is used, therefore, the degrees

of membership of the linguistics terms of the rule l (l = 1,. . . ,Total number of rules) for each input are

multiplied as a function of the inputs values. For example, if Input X1 = a and Input X2 = b, then the

firing strength for the rule l is calculated as:

f (l)(a, b) = µ
(l)
X1(a) · µ(l)

X2(b) (4.5)

where µ(l)
X1(a) and µ(l)

X2(b) are the values of degrees of membership for the rule l relative to Inputs 1 and
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2, considering the array of membership degree for each membership function according to:

µX1(k) = [µ
(1)
X1(k) µ

(2)
X1(k) µ

(3)
X1(k) · · · µ

(l)
X1(k)] (4.6)

µX2(k) = [µ
(1)
X2(k) µ

(2)
X2(k) µ

(3)
X2(k) · · · µ

(l)
X2(k)] (4.7)

The next process is calculating the ratio of the lth rule firing strength, f (l)(X1, X2), to the sum of all

rules firing strengths:

f (l)(a, b) =
f (l)(a, b)∑c
i=1 f

(i)(a, b)
(4.8)

where c represents the total number of rules used in the inference; l is the number of the rule.

After the normalization of each firing rule, this value is multiplied by the first-order polynomial that

describes the linear relation between the inputs and the single value output:

f (l)(a, b) · ω(l) = f (l)(a, b) · (mlX1 + nlX2 + kl) (4.9)

where the parameters ml, nl and kl are the modifiable parameters describing the output singleton to

each rule l.

The overall output Y is finally given by the sum of all the multiplied polynomial by their firing strengths,

representing the centre of gravity or the weighted average of all rule outputs:

Y =

c∑
i=1

(f (i)(a, b) · ω(i)) =

∑c
i=1(f (l)(a, b) · ω(i))∑c

i=1 f
(i)(a, b)

(4.10)

This process is exemplified through a basic example using two input variables, each one mapped

into five membership functions, represented in Figure 4.7. The combination of membership functions for

each variable results in different rules of the system:

Rule 1: If X1 is µ(1)
X1 and X2 is µ(1)

X2 , then ω(1) = m1X1 + n1X2 + k1

Rule 2: If X1 is µ(2)
X1 and X2 is µ(2)

X2 , then ω(2) = m2X1 + n2X2 + k2

Rule 3: If X1 is µ(3)
X1 and X2 is µ(3)

X2 , then ω(3) = m3X1 + n3X2 + k1

Rule 4: If X1 is µ(4)
X1 and X2 is µ(4)

X2 , then ω(4) = m4X1 + n4X2 + k4

Rule 5: If X1 is µ(5)
X1 and X2 is µ(5)

X2 , then ω(5) = m5X1 + n5X2 + k5

Figure 4.6 illustrates the reasoning mechanism for the Sugeno model applied to the given example.

In layer 1, every node is an adaptive node, for which the parameters can be changed, with a node

function equal to the membership function associated to each subset of each of the five rules. In layer

2, each node is fixed, having no parameters, and represents the firing strength associated to each rule.

In layer 3 each node is fixed and the incoming firing strength is normalized. In layer 4 each node is

adaptive and the firing rules are multiplied by their correspondent singletons. Layer 5 is composed by a

single node, computing the output as the sum of all incoming signals.
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Figure 4.6: Structure of the five-layer adaptive neuro-fuzzy system for the Sugeno model for the given
example.

The fuzzy singleton or ”centre of gravity” of each rule is obtained using qualitative observations as

displayed in Figure 4.8. This is achieved for the rule in Figure 4.7 using the set of elements which are in

the intersection of the domain of the two membership functions as shown in Figure 4.8, represented by

black dots.
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Figure 4.7: Graphical representation of rule 2.
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Figure 4.8: Set of examples relating to the rule defined by the membership function 2 [X1] and member-
ship function 2 [X2].

4.2 Fuzzy logic applied to a system with two inputs using learning

examples

Sometimes, it is not the best practice to establish the IF-THEN rules of a fuzzy system using a human

operator. Frequently, one cannot discern what the membership functions should look like simply from

observing the data. In other cases, the option of inferring the fuzzy output through a comparative analysis

between the current inputs and previous ones, representing the behaviour of the system, is preferred.

In these cases, the output of a given system is accomplished using a technique that provides a method

for the fuzzy modelling procedure to learn information about a previously acquired data set, rather than

choosing randomly the membership function parameters. Hence, for systems to which already exists a

collection of input/output data, neuro-adaptive techniques incorporated with fuzzy logic are used in order

to compute the membership function parameters that best allow the associated fuzzy inference system

to track the current input/output data. This is the idea behind ANFIS or adaptive neuro-fuzzy inference

systems, so that a membership function parameter adjustment is attained [27].

The parameter identification in the adaptive nodes in adaptive neuro-fuzzy inference systems is

achieved using a backpropagation learning algorithm. This algorithm searches for the minimum of error

function in weight space through a method of gradient descent. The solution of the learning program is

achieved when the combination of weights which minimizes the error function is found [28]. This error is

defined by the sum of the squared difference between actual and desired outputs. While this difference
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is propagated back through the five layers such as in Figure 4.6, the parameters m, n and k (from the

singleton’s) and the parameters describing each input membership function associated to each rule, are

adjusted.

In this project, this learning technique associated to the neuro-fuzzy inference system is applied to

the input/output data, resulting from the EIS implemented system presented in the next chapter, through

the Fuzzy Logic Toolbox function existent in MATLAB. This function works by introducing as an argument

an input/output data set so that the toolbox function named anfis constructs a fuzzy inference system

(FIS) output file in which the membership function and singleton parameters associated with each rule

are adjusted automatically. This way, a model describing the impedance spectra database is created,

containing the mentioned parameters, so that an IF-THEN rule based fuzzy inference system is later

implemented.
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Chapter 5

Implementation of the EIS

measurement and SOC estimation

systems

In this chapter the implementation of the proposed EIS measurement system is described. In addition,

the adopted solution applied to the LiFePO4 battery cell SOC estimation, describing the use of ANFIS

methodology previously introduced in chapter 4, is delineated.

The proposed system combines signal generation, acquisition, processing and SOC estimation. It is

composed by three main blocks, displayed in Figure 5.1. In Figure 5.2, these blocks are represented in

the developed device:

• An Arduino Due, providing a variable frequency voltage source (DDS and DAC in Figure 5.1).

• A customized PCB (Printed Circuit Board):

– First filtering the input signal from the voltage source Arduino (LP and HP filter in Figure 5.1).

– Afterwards, amplifying the signal using a linear voltage-controlled current source (VCCS), pro-

ducing a sinusoidal excitation current applied to the cell (Enhanced Howland current source

in Figure 5.1).

– Finally, acquiring both voltage and current signals, using a hall sensor and two external

analog-to-digital converters (Hall sensor and ADCs in Figure 5.1).

• Another Arduino Due microcontroller, responsible for the signals processing and SOC estimation:

– Firstly, imposing the sampling frequency to the external ADCs located in the PCB.

– Simultaneously, storing the acquired samples resulting from the ADC conversion, while ap-

plying oversampling and moving average filtering techniques (Oversampling and Averaging;

Moving Average Filter in Figure 5.1).
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– Proceeding this, applying the Discrete Fourier transform to both voltage and current in order

to obtain the impedance spectra of the cell (DFT blocks in Figure 5.1).

– Finally, inferring the SOC value, employing the ANFIS methodology, introduced in section 4.2

(ANFIS block in Figure 5.1).

Arduino Due (Source)

LP Filter HP Filter

Enhanced 
Howland 

Current Source

ADC

ADC

LiFePO4 Cell

V

Hall 
Sensor

Zk

DDS

DFT

DAC
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Vbatk

VIbatk Ibatk

IkVk

I2
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Oversampling 
and Averaging

Moving 
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Digital Filter

DFT

ANFIS SOC

Arduino Due (Acquisition + 
Processing + Estimation)

Bitstream

Bitstream

I

Figure 5.1: Block diagram of the proposed EIS measurement and SOC estimation systems.

Arduino Due (Source)Arduino Due (Acquisition + 
Processing + Estimation) PCB

Figure 5.2: Developed device composed by three main bocks: Arduino Due (source), PCB and Arduino
Due (responsible for the signal acquisition, processing and SOC estimation).
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5.1 Arduino Due

Both signal generation and signal acquisition were executed using a commercial Arduino Due plat-

form. The Arduino Due is a microcontroller board embedding a 32-bit ARM core microcontroller (Atmel

SAM3X8E), clocked at 84 MHz. It embeds a dual channel 12-bit digital to analog converter (DAC) output,

16 12-bit analog to digital converter (ADC) inputs, 54 digital pins that can be used as an input or output.

Each pin is able to provide a current of 3 mA or 15 mA, depending on the pin, or receive a current of 6

mA or 9 mA, depending on the pin. The Due has 512 KB of flash memory, where the Arduino sketch is

stored, and 96 KB of SRAM, where the sketch creates and manipulates variables while it runs.

In this project, two Arduino Due, displayed in Figure 5.3, were employed and a firmware has been

developed for each, one for the variable frequency voltage source and another one for the cell impedance

measurement system in addition to the SOC inference system based on the measured impedance data.

Figure 5.3: Arduino Dues used in the developed device.

5.2 Variable frequency voltage source

In order to polarize the cell and acquire its impedance over a wide range of frequencies, a variable

frequency voltage source is necessary.

An Arduino Due microcontroller board was used to implement the Digital Direct Synthesis (DDS)

technique. This converts digital numbers stored in an array into analogue signals through conversions
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executed by a Digital-to-Analogue Converter (DAC). The DDS technique processes data blocks read

from a look-up table in a Static Random-Access Memory (SRAM) to generate a form of frequency-

tunable and phase-tunable output signal with reference to a fixed frequency precision clock source [29].

The address counter steps through and accesses each of the SRAM’s memory locations and the con-

tents (the equivalent sine amplitude words) are presented to a DAC converter. The output frequency of

this DDS implemented technique is dependent on the frequency of the reference clock in addition to the

sine wave step size, previously programmed into the SRAM Arduino sketch.

With the introduction of a phase accumulator function into the digital signal chain, illustrated by the

”phase wheel” in Figure 5.4, this architecture becomes a numerically-controlled oscillator, now being

able to alter the frequency of the output sinwave. A counter and phase register are implemented in the

microcontroller before the sine lookup table.

M1

M2

Sine wave look-up table valuesPhase wheel

Figure 5.4: Digital Phase Wheel for two increment ammounts, M1 and M2.

One revolution of the vector around the phase wheel (2π rad) is divided into 2000 data points, repre-

senting a period of the sine wave stored in the look-up table [30]. Accordingly, an interruption sub-routine

is programmed in the microcontroller, summed at a specific rate, the frequency reference. Each time the

sub-routine is summed, an ”increment amount” is added to a Phase accumulator variable. When the

Phase accumulator overflows, a complete cycle of the sinewave is covered.

The magnitude of the ”increment ammount”, represented by the variable M in Figure 5.4, is deter-

mined by a digital word contained in the nPhaseIncrement array. Each position in the nPhaseIncrement

array contains the phase jump value equivalent in the phase wheel to a change in the frequency in the

variable voltage frequency source. Thus, this ”increment ammount”, M in Figure 5.4, effectively sets how

many points to skip around the phase wheel. The larger the jump size, the faster the phase accumu-

lator overflows and completes its equivalent of a sinewave cycle. This is how a change in frequency is

accomplished, changing the ”increment ammount” added to the accumulator, thus changing the speed
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at which the Phase accumulator overflows. In sum, the specific range of frequencies set in the voltage

source is defined through the nPhaseIncrement pre-stored array.

5.3 Band-pass Filter

An active band-pass filter is required to exclusively select frequencies inside the 0.01Hz-10kHz spec-

trum, as this range fully describes the battery cell behaviour. A lower cut-off frequency of 0.01Hz is

essential, this way filtering the DC offset included in the signal generated by the Arduino Due DAC.

There are some filter specifications: it requires a Butterworth response due to its nearly flat pass

band with unity gain and no ripple, this way obtaining a uniform frequency response for all the wanted

frequencies. The architecture that will be used is the Sallen-Key owing to its ability to operate under

unity amplifier gain. The Sallen-Key topology has a low-pass or high-pass roll off 20dB/dec for every

pole. Thus, an eight order Butterworth Band-pass filter will have an attenuation rate of -80dB/dec and

80 dB/dec. Such solution is recommended for this application, forming an eight-order Butterworth Band-

pass filter after cascading two stages of second-order low-pass filters with two stages of second-order

high-pass filters [31], illustrated in Figure 5.5.
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Figure 5.5: 8th Order Unity-Gain Sallen-Key Band-Pass Filter.

Table 5.1 lists the specifications for the desired Band-pass filter. Setting the following parameters,

the required filter characteristic is later obtained using PSpice A/D simulator from OrCAD Capture CIS

CIS 16.6 (2012 version) software.

Lower Cut-Off Frequency 10mHz

Higher Cut-Off Frequency 10kHz

Centre Frequency 10Hz

Band-pass Gain 1

Table 5.1: Filter Specifications.

5.3.1 Low-Pass Filter

The general transfer function of a low-pass filter is [32]:

A(s) =
A0∏

i

(1 + ais+ bis2)
(5.1)
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with A0 being the passband gain, ai and bi being the filter coefficients.

The equation represents a cascade of low-pass second order filters. Hence, for a single stage second

order filter:

A(s) =
A0

1 + ais+ bis2
(5.2)

The filter coefficients ai and bi distinguish Butterworth, Tschebyscheff, and Bessel filters, therefore

determining the gain behavior in the passband. The unity-gain for the proposed topology is analysed in

the following sections.

5.3.1.1 2nd order Unity-Gain Sallen-Key Low-Pass Filter

vin

−

+

vout

R1 R2

C2

C1

Figure 5.6: Unity-Gain Sallen-Key Low-Pass Filter.

The transfer function of the low-pass unity-gain Sallen-key filter, displayed in Figure 5.6 is:

A(s) =
1

1 + [ωcC1(R1 +R2)]s+ (ω2
cR1R2C1C2)s2

(5.3)

Comparing this transfer function to equation (5.2) outcomes:

A0 = 1 ,

a1 = ωcC1(R1 +R2) , (5.4)

b1 = ω2
cR1R2C1C2 ,

where ωc is the angular frequency associated to the higher cut-off frequency.

For a given C1 and C2, the resistor values for R1 and R2 are determined by:

R1,2 =
a1C2 ∓

√
a21C

2
2 − 4b1C1C2

4πfcC1C2
(5.5)

Following equation (5.5), C2 must satisfy the following condition, so that real values for R1 and R2
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are obtained:

C2 ≥ C1
4b1
a21

(5.6)

5.3.1.2 4th Order Unity-Gain Sallen-Key Low-Pass Filter

In order to obtain a fourth-order low-pass filter, two second-order filters are connected in series, as

illustrated in Figure 5.8, so that the product of the individual frequency responses results in the optimized

frequency response of the overall filter.

Figure 5.7: Cascading Filter Stages for a fourth-order Low-Pass filter.

For a fourth-order Butterworth filter type, the coefficients associated with each second order polyno-

mial in equation (5.2) are [32]:

• a1 = 1.85

• b1 = 1

• a2 = 0.77

• b2 = 1
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Figure 5.8: 4th Order Unity-Gain Sallen-Key Low-Pass Filter.

• First stage :

Specifying C1 = 100 pF, so that acceptable values for R1 and R2 are obtained, and invoking equation

(5.6), C2 results in:

C2 ≥ C1
4b1
a21

= 100 · 10−12 · 4 · 1
1.84782

= 117 pF→ C2 = 220 pF (5.7)
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With C1 =100 pF and C2 = 220 pF , R1 and R2 are calculated for a high cut-off frequency, fc, of 10

kHz, using equation (5.5):

R1 =
a1C2 −

√
a21C

2
2 − 4b1C1C2

4πfcC1C2
= 46.505 kΩ→ R1 = 47.4 kΩ (5.8)

R2 =
a1C2 +

√
a21C

2
2 − 4b1C1C2

4πfcC1C2
= 247.582 kΩ→ R2 = 240 kΩ (5.9)

• Second stage :

The process is repeated for this stage. For a value of C3 = 100 pF, C4 results in:

C4 ≥ C3
4b2
a22

= 100 · 10−12 · 4 · 1
0.76542

= 683 pF→ C4 = 820 pF (5.10)

With C3 = 100 pF and C4 = 820 pF, R1 and R2 are calculated as follows:

R3 =
a2C4 −

√
a22C

2
4 − 4b2C3C4

4πfcC3C4
= 36.992 kΩ→ R3 = 35.7 kΩ (5.11)

R4 =
a2C4 +

√
a22C

2
4 − 4b2C3C4

4πfcC3C4
= 85.824 kΩ→ R4 = 86.6 kΩ (5.12)

5.3.2 High-Pass Filter

The general transfer function of a high-pass filter is given by:

A(s) =
A∞∏

i

(1 + ai
s + bi

s2 )
(5.13)

with A∞ being the passband gain.

The equation stands for a cascade of High-pass second order filters, being the transfer function of a

single stage second order filter given by (5.14):

A(s) =
A∞

(1 + ai
s + bi

s2 )
(5.14)

Likewise, as with the low-pass filter, coefficients ai and bi distinguish Butterworth, Tschebyscheff,

and Bessel filters.
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5.3.2.1 2nd Order Unity-Gain Sallen-Key High-Pass Filter

vin

−

+

vout

C C

R2

R1

Figure 5.9: Unity-Gain Sallen-Key High-Pass Filter.

The transfer function of the second order unity-gain high-pass filter shown in Figure 5.9 is given by:

A(s) =
1

1 + 2
ωcR1C

· 1s + 1
ω2
cR1R2C2 · 1

s2

(5.15)

Comparing the previous transfer function to equation (5.14) results:

A∞ = 1 ,

a1 =
2

ωcR1C
, (5.16)

b1 =
1

ω2
cR1R2C2

,

where ωc is the angular frequency associated to the lower cut-off frequency.

For a certain value of C, the resistor values R1 and R2 are calculated over (5.17) and (5.18), respec-

tively:

R1 =
1

πfcCa1
(5.17)

R2 =
a1

4πfcCb1
(5.18)

The derivations and equations above were summarized from [32].

5.3.2.2 4th Order Unity-Gain Sallen-Key High-Pass Filter

Two high-pass second-order filters are cascaded (Figure 5.10) similarly to the low-pass filter, in order to

get a fourth-order filter. The cascade is presented in Figure 5.11.
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Figure 5.10: Cascading Filter Stages for a fourth-order High-Pass filter.

Again, for a fourth-order Butterworth filter type, the coefficients associated with each second order

polynomial in equation (5.15) are [32]:

• a1 = 1.85

• b1 = 1

• a2 = 0.77

• b2 = 1
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Figure 5.11: 4th Order Unity-Gain Sallen-Key High-Pass Filter.

• First stage :

Imposing C1 = 10µF, so that acceptable values for R1 and R2 are obtained, R1 and R2 are calculated

for a low cut-off frequency, fc, of 10 mHz, using (5.17) and (5.18), respectively:

R1 =
1

πfcC1a1
= 1.723 MΩ→ R1 = 1.74 MΩ (5.19)

R2 =
a1

4πfcC1b1
= 1.470 MΩ→ R2 = 1.47 MΩ (5.20)

• Second stage :

Assigning C2 = 10µF, follows:

R3 =
1

πfcC2a2
= 4.159 MΩ→ R3 = 4.53 MΩ (5.21)

R4 =
a2

4πfcC2b2
= 609.086 kΩ→ R4 = 619 kΩ (5.22)
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Using PSpice A/D simulator from OrCAD Capture CIS 16.6 (2012 version), a simulation was per-

formed to the complete filter configuration, displayed in Figure 5.5, with the listed values in table A.1.

The schematic diagram is shown in Figure 5.13. Figure 5.12 shows the gain-magnitude frequency re-

sponse of the eight order Butterworth Band-pass filter.
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Figure 5.12: Band-Pass filter frequency response using PSpice A/D simulator.
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Figure 5.13: Schematic diagram of the Band-Pass filter in OrCAD Capture CIS.
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R values [Ω] C values [F]

R1 47.4k R5 1.74M C1 100p C5 10µ

R2 240k R6 1.47M C2 220p C6 10µ

R3 35.7k R7 4.53M C3 100p

R4 86.6k R8 619k C4 820p

Table 5.2: Values for the filter components.

5.4 Enhanced Howland Current Source

EIS measurements are performed in potentiostatic or galvanostatic mode. In potentiostatic mode, a

sinusoidal potential perturbation is applied to the cell. The resulting current is measured to determine

the impedance of the system. In galvanostatic mode, a sinusoidal current is applied to the cell instead.

The resulting potential is now measured, to determine the impedance of the system.

A galvanostat device, such as the GAMRY Reference 3000 displayed in Figure 5.14, can easily

control ampere currents to an accuracy of a few milliamperes.

Figure 5.14: GAMRY Reference 3000 galvanostat.

As the voltage signal in a galvanostatic EIS experiment is proportional to the applied current, a current

source based excitation system is proposed due to the low impedance value of the tested LiFePO4 cell

(internal impedance is specified as less than 1 mΩ at 1 kHz in the LiFePO4 datasheet). The maximum

output current from an Arduino Due DAC is 15 mA. Therefore, a current amplifier is required in order

to generate a greater voltage response from the cell. An enhanced Howland current source is chosen

since it can be constructed using a single operational amplifier and five resistors.

The Howland circuit is modelled as a linear voltage-controlled current source (VCCS). The model

is driven by an external and independent voltage source that drives the VCCS input, in this case, the

variable frequency voltage source at the output of the filter [33].
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The operation of the VCCS in Figure 5.15 is based on the fact that the output current, IL, is measured

as a voltage drop across R1 [34]. Considering an infinite open-loop voltage gain, Ad, of the operational

amplifier, the following equations can be written, by current analysis:

Uo − U−in
R2

− U−in
R3

= 0→ U−in =
R3

R2 +R3
Uo (5.23)

Ui − U+in

R2
− U+in − UZL

R3
= 0→ U+in =

UZL ·R2 + Ui ·R3

R2 +R3
(5.24)

Uo − UZL
R1

+
U+in − UZL

R3
− IL = 0 (5.25)
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+
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Figure 5.15: Enhanced Howland Current Source.

Assuming U+in = U−in, gives:

R3

R2 +R3
Uo =

UZL ·R2 + Ui ·R3

R2 +R3
→ Uo =

R2

R3
UZL + Ui (5.26)

Replacing equations (5.24) and (5.26) in equation (5.25), yields:

(R2

R3
UZL + Ui)− UZL

R1
+

UZL ·R2+Ui·R3

R2+R3
− UZL

R3
− IL = 0 → IL =

Ui
R1

+ (
R2 −R3

R1R3
− 1

R2 +R3
)UZL

(5.27)

According to (5.27), one can conclude that for a high value of both R2 and R3, while imposing

R2 = R3, the output current is very close to be independent from the load impedance. Therefore, the

equation (5.27) for the output current, simplifies to:

IL ≈
Ui
R1

(5.28)

An enhanced Howland current source was designed to generate a 2 Ap−p sinusoidal current. A 2 Vp−p
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voltage signal was applied to the circuit as input, with R2 = R3 = 10 kΩ and R1 = 1 Ω. Hence, in order

to apply to the terminals of the cell a 2 Ap−p sinusoidal current, a high-current operational amplifier is

required. An OPA548 from Texas Instruments was the choice considering that it allows the output current

limit to be adjusted from 0 A to 5 A.

Using PSpice A/D simulator from OrCAD Capture CIS CIS 16.6 (2012 version), a simulation was

performed to the Howland current source. The circuit model is shown in Figure 5.16. Figure 5.17 shows

both input voltage U i, and output current IL, respectively, according to equation (5.28).

Ui

IL

Figure 5.16: Enhanced Howland Current Source Schematic in PSpice A/D simulator.
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Figure 5.17: Input voltage, Ui, and output current, IL simulations using PSpice A/D simulator.

5.5 Data Acquisition

A second Arduino device was used to read the sinusoidal current imposed to the cell and its voltage

response. The Arduino Due integrated ADC input has a 12 bit resolution. So, the smallest change in the

analog signal that will result in a change in the digital output, called least significant bit (LSB) voltage,

will be:

NLSB =
UR
2N

=
3.3

212
= 0.81 mV , (5.29)

where UR is the Arduino reference voltage (the operating voltage of the board) and N is the number

of bits in the digital output given by the ADC resolution. In order to precisely acquire lower voltage

and current increments, particularly relevant in this project due to the low impedance of the cell, a higher

resolution is required. Hence, the approach of using external ADCs having a 16 bit resolution was taken.

With this solution, the value of each digital word in the digital output of the ADC will now be:

NLSB =
UR
2N

=
3.3

216
= 0.05 mV (5.30)

The current is measured by a LEM hall effect transducer current sensor (LTSR 6-NP). It measures

bi-directional currents up to 6 A RMS from DC to 200 kHz.

5.5.1 Sampling

Analog-to-digital converters (ADCs) translate analog quantities to digital language, used in information

processing, computing, data transmission and control systems [35]. Two AD7680 (by Analog Devices)

16-bit successive approximation analog to digital converters were employed, one for the voltage at the
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cell terminals, the other for the voltage output of the current transducer. The AD7680 operates from a

single 2.5 V to 5.5 V power supply and features throughput rates up to 100 kSPS.

Both voltage and current are sampled and, after the analog to digital conversion, the sequence

of digital words according to the AD7680 transfer characteristic in Figure 5.18 and associated to the

acquired signals are obtained as:

NLSBv (ks∆t) =
vcell(ks∆t)

VDD
· 2N (5.31)

NLSBi(ks∆t) =
vHScell(ks∆t)

VDD
· 2N (5.32)

where VDD is the supply voltage of each ADC, ks is the number of the sample and ∆t being the time

interval between acquired samples.

Figure 5.18: AD7680 Transfer Characteristic [36].

The sequence of digital words is later stored in the Arduino Due 96 KBytes SRAM. These words are

stored as float data-type, a 4 byte (32 bit) binary number, yielding a range of -3.40× 1038 to +3.40×
1038.

Due to memory limitation, one can only afford to store a finite number of digital words when sampling

the variable frequency signals. Given this limitation, it was chosen to store 320 samples for each of the

frequencies, taking into account that there are 22 different frequencies resulting in two stored matrix’s

of 22 by 320 digital words, each one occupying 4 bytes, taking 56 KBytes of the 96 KBytes. Hence, the

control of the sampling frequency is mandatory.

To attain the control of the sampling frequency, so that 320 samples are stored per frequency, the

Arduino that is responsible for acquiring both signals requires the value of the frequency of the sinusoidal

current being imposed to the cell during the acquisition interval. This is achieved by creating a commu-

nication channel via I2C protocol between the Arduino in charge of generating the variable-frequency

AC voltage signal and the Arduino responsible for the data acquisition, as illustrated by Figure 5.19.
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5.5.1.1 I2C Communication

Using the I2C communication protocol, each time the frequency variation sub-routine is summed in the

source Arduino (resulting in a change in the voltage frequency at the output of the source Arduino DAC),

the value of the new frequency is transmitted to the slave Arduino. The I2C protocol involves using two

lines to send and receive data: a serial clock pin (SCL) that the Arduino Master board pulses at a regular

interval, and a serial data pin (SDA) over which data is sent between the two devices. As the clock line

changes from low to high, a single bit of information is transferred from the I2C master board (voltage

source Arduino) to the I2C slave (acquisition Arduino) device over the SDA line. After 32 clock pulses

(eight bits, four bytes, for each frequency float) the transmission is concluded and the slave Arduino

stores the frequency value. Follow, the sampling frequency is calculated so that only 320 samples

during each acquisition time window (five complete cycles of the generated signal) are acquired.

Master - Arduino Due 
(Variable frequency 

voltage source)

Slave - Arduino Due (Cell 
impedance measurement 

system and SOC 
inference system)

Figure 5.19: Master and slave devices I2C connections.

5.5.1.2 Oversampling and averaging

The process of signal acquisition in this project requires a fine resolution due to the small fluctuations

in the sampled voltage and current signals. One way to increase the resolution of the ADC output is

by oversampling and averaging functions. When oversampling, the ADC samples both voltage signals

(voltage at the terminals of the cell and output of the hall current sensor) at a higher rate than the

system’s required sampling rate, accumulating enough samples in the specific sampling period, later

averaging them. This method is comparable to a low-pass filter, attenuating the signal fluctuation and

noise [37].

The m extra samples acquired during the sampling interval and obtained by oversampling the signal,

are added and the result is right shifted by n positions, where n represents the extra bit of resolution.

A right shift in a binary number is the same as dividing the binary number by 2. In this project, each
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sample is oversampled 80 times and later the accumulated value is divided by this value (80), giving the

ADC resolution an increment of 6 bits

Extra resolution = log2(80) = 6.321 bit (5.33)

So, instead of 16 bits as previously, both ADCs now have 22 bits of resolution.

5.5.1.3 Moving average digital filter

In order to further improve the random noise reduction achieved by the oversampling and averaging

process, described in the previous section, a moving average filter was implemented, this way reducing

random white noise while maintaining a sharp step response. The moving average filter works by aver-

aging a number of points from the sampled signal to produce each point in the output stored signal [38].

Each point in the output of the filter is given by:

y(i) =
1

M

M−1∑
j=0

x(i− j) (5.34)

where x(i − j) is the input signal, y(i) the output signal and M is the total number of points used in

the moving average. For instance, in a 4 points moving average filter, point 60 in the output signal is

obtained as follows:

y(60) =
x(60) + x(59) + x(58) + x(57)

4
(5.35)

Figures 5.20 (a) and (b) illustrate the attenuation effect of the moving average filter in a signal with

random noise. The amount of noise reduction in each point in the output of the filter is equal to the

square-root of the number of points in the average (M , in equation (5.34)) [38]. In this project, a 22 point

moving average filter was applied to both voltage and current acquired signals, reducing the random

noise by a factor of 4.7.

5.5.2 Discrete Fourier Transform

In this project, the Discrete Fourier transform (DFT) is the chosen method to estimate both voltage and

current phasors. After sampling, stored data at discrete time step is available for processing. Hence,

the Fourier-transform calculation has been performed in discrete environment and is named as Discrete

Fourier Transform or DFT [39]. The discrete Fourier transform of a general sequence x[n] of finite

duration is determined as follows [40]:

X(m) =

N−1∑
n=0

x(n)e−j2πnm/N (5.36)

In (5.36), the term x(n) is a discrete sequence of time-domain sampled values of the continuous variable

x(t); n is the time-domain index of the input samples; N is the number of samples of the input sequence
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Figure 5.20: Example of a moving average filter applied to a voltage pulse [38]. In (a) the signal is filled
with random noise and in (b) a moving average filter with 11 points is applied.

and the number of frequency points in the DFT output; m is the index of the DFT output in the frequency

domain, being equivalent to the number of complete cycles that occur over the N points of the signal.

A sinusoid x(t) with frequency mf0 with a Fourier series [39]:

x(t) = am cos(2πmf0t) + bm sin(2πmf0t) = (5.37)

=
√
a2m + b2m cos(2πmf0t+ φ) (5.38)

has a phasor representation as follows:

X(m) =
√
a2m + b2m ejφ, (5.39)

φ = arctan(− bm
am

) (5.40)

The phasor in its complex form becomes:

X(m) = am − jbm (5.41)

Likewise, when applying Euler’s formula to equation (5.36), the phasor representation of the mth

harmonic component is equivalent to:

X(m) =

N−1∑
n=0

x(n)[cos(2πnm/N)− j sin(2πnm/N)] (5.42)

Defining both cosine and sine sums as follows:

Xc(m) =

N−1∑
n=0

x(n) cos(2πnm/N), (5.43)

Xs(m) =

N−1∑
n=0

x(n) sin(2πnm/N), (5.44)
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results in a phasor, X(m), given by:

X(m) = Xc(m)− jXs(m) (5.45)

5.5.2.1 4-Cycles Based Discrete Fourier Transform (DFT) Algorithm

A 4-cycle DFT considers a window size of:

N = 4
fs

fn
(5.46)

Which is four times greater that considering only one cycle. This yields to an attenuation of high and

low frequency harmonics, significantly improving the output results of both voltage and current phasor

estimation, for each frequency. The reason behind a better resolution when acquiring more cycles is

that it decreases the effect of spectral leakage, a phenomena associated with the non-cyclical input of

the Fourier-transform.

To understand the significance of this problem, the following example, taken from [41] , is given: A

64-point DFT of a given sequence is indicated by the dots in Figure 5.21 (a). Figure 5.21 (a) also shows

the m = 4 sinewave analysis frequency, superimposed over the input sequence, to remind the reader

that the analytical frequencies always have integer number of cycles over the total interval of 64 points.

The sequence is a sinewave with exactly three cycles in the N = 64 samples. Figure 5.21 (b) shows the

first half of the DFT of the input sequence and indicates that the sequence has an zero average value

(X(0) = 0) as well as no signal components in other frequencies besides the m = 3 frequency. The

sum of the products of the input sequence and the m = 4 analysis frequency is zero, showing that the

correlation of the input sequence with the m = 4 analysis frequency is zero, just like all the other analysis

frequencies, not represented in Figure 5.21 (a).

Representing the spectral leakage problem, the dots in Figure 5.21 (c) show an input sequence

having 3.4 cycles over the N = 64 samples. Due to a non-integer number of cycles over the 64-sample

interval, input energy has leaked into all other DFT analysis frequencies, as shown in Figure 5.21 (d).

Now, the m = 4 analysis frequency, as an example, is different than zero because the sum of the products

of the input sequence and the m = 4 analysis frequency is no longer zero.

Processing more than one cycle is a good practice since it increases the number of complete cycles

in the sampled interval, reducing the effect of leakage but still does not fully solves the leakage problem.

In this project, with the purpose of reducing the spectral leakage effect in both voltage and current phasor

estimation, a technique known as windowing was applied.

Windowing works by selecting the DFT input data in order to reduce the non-integer number of

cycles over the N samples interval. This was achieved with a rectangular window, leading to a grater

attenuation of high and low frequency harmonics in the DFT output. To illustrate this idea, in the case

previously presented, the input sequence with 3.4 cycles was windowed in order to select 3.0 cycles, as

shown in Figure 5.22.
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Figure 5.21: 64 samples sequence DFT: (a) 3.0 cycles sequence and m = 4 analysis frequency; (b) DFT
output magnitude of the 3.0 cycles sequence; (c) 3.4 cycles sequence and m = 4 analysis frequency;
(d) DFT output magnitude of the 3.4 cycles sequence, adapted from [41].
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Figure 5.22: 64 samples sequence: application of the windowing process to the 3.4 cycles sequence,
and m = 4 analysis frequency.
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5.5.2.2 Impedance phasor calculation

Employing the DFT algorithm to both voltage and current samples, the impedance for each frequency k

is obtained:

Zk(m) = |Zk(m)|ejφZk (5.47)

where the impedance magnitude of the mth harmonic, |Zk(m)| and phase angle of the impedance,

φZk(m) are obtained as follows:

|Zk(m)| = |Uk(m)

Ik(m)
| = |Ukc(m)− jUks(m)

Ikc(m)− jIks(m)
| =

√
Ukc(m)2 + Uks(m)2√
Ikc(m)2 + Ikc(m)2

(5.48)

φZk(m) = φUk(m)− φIk(m) = arctan(−Uks(m)

Ukc(m)
)− arctan(−Iks(m)

Ikc(m)
) (5.49)

The final setup of the proposed EIS measurement method is displayed in Figure 5.23, presenting the

three main blocks composing the system, first enumerated in the beginning of this chapter, in Figure 5.1,

both Arduino Dues as well as the assembled PCB.
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Figure 5.23: Implemented system setup, presenting both source and acquisition Arduino Dues in addi-
tion to the designed PCB.
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5.6 Adaptive Neuro Fuzzy Inference Systems applied to SOC esti-

mation

The impedance spectra for each SOC is obtained through the previous EIS measurement system. This

way, an adaptive neuro-fuzzy inference system that uses two input variables, introduced in section 4.2,

has been implemented. The input variables are the real part of the measured complex impedance and

its imaginary part. The output of the ANFIS system will be the battery cell inferred SOC. The estimation

of the battery SOC will be achieved through a comparative analysis of its actual impedance spectra

with the impedance spectra database previously built from past EIS measurements for pre-defined SOC

values, as it was previously explained in section 3.2.

Both inputs, real and imaginary impedance parts, are mapped to their own membership functions

using the Fuzzy Logic Toolbox function existent in MATLAB. Instead of triangular membership functions,

as presented in the previous example in section 4.1, Gaussian ones will be used. The Gaussian function,

represented in Figure , expressed in equation 5.1, is specified with two parameters, m and σ, as follows

[42]:

f(x,m, σ) = e−
(x−m)2

σ2 (5.50)

where m denote the mean value, corresponding to the centre of the function, and σ, the standard

deviation, giving its width.

Figure 5.24: Gaussian curve membership function (m = 5 and σ = 2) [26].

To properly distinguish the different SOC EIS measurements, each one having N different points, N

representing the number of different frequencies in the frequency sweep, the model requires a certain

number of IF-THEN rules in order to differentiate the precessed data. The necessary number of rules

providing an accurate system is approximately half the total number of impedance data points stored

in the database. The database will be composed by M impedance spectras, one for each pre-defined

SOC. Each impedance spectra contains N points, one for each frequency, and each of these points is
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defined by its real value and imaginary value. Hence, the total number of rules comes:

Nrules =
MSOCs ·Nfrequencies ·Ninputs

2
(5.51)

After running the Fuzzy Logic Toolbox function, a FIS file is given as output, modelling the Sugeno

fuzzy inference model, described in section 4.2, containing the membership function parameters for

both real and imaginary impedance parts inputs and the first-order polynomial parameters, describing

the output singleton membership functions.

Following the modelling process, the fuzzy inference system is implemented in the acquisition Ar-

duino Due, setting the IF-THEN rules, where the subsets of each rule are described by their member-

ship functions, characterized by the tailored parameters computed by the neuro-adaptive technique and

displayed in the FIS file. The combination of input membership functions and singleton outputs for each

input variable results in different rules of the system:

Rule 1: If Re(Z) is µ(1)
Re(Z) and −Im(Z) is µ(1)

−Im(Z) , then ω(1) = m1Re(Z) + n1(−Im(Z)) + k1

Rule 2: If Re(Z) is µ(2)
Re(Z) and −Im(Z) is µ(2)

−Im(Z) , then ω(2) = m2Re(Z) + n2(−Im(Z)) + k2

Rule 3: If Re(Z) is µ(3)
Re(Z) and −Im(Z) is µ(3)

−Im(Z) , then ω(3) = m3Re(Z) + n3(−Im(Z)) + k3

...

Rule N: If Re(Z) is µ(N)
Re(Z) and −Im(Z) is µ(N)

−Im(Z) , then ω(N) = mNRe(Z) + nN (−Im(Z)) + kN

Figure 5.25 shows the reasoning mechanism for the Sugeno model, described in section 4.1.3.1,

applied to the SOC estimation.

This process is implemented in the acquisition Arduino, automatically inferring the SOC for each of

the N frequency points in the EIS current measured impedance spectra.

In layer 1, every node is an adaptive node with a node function equal to the membership function,

for which the parameters m(i) and σ(i), characterizing each gaussian membership function, have been

estimated by means of the Fuzzy Logic Toolbox function.

In layer 2, each node is fixed and represents the firing strength associated to each rule i:

f (i)(Re(Z),−Im(Z)) = µ
(i)
Re(Z)(Re(Z)) · µ(i)

−Im(Z)(−Im(Z)) (5.52)

In layer 3 each node is fixed. Now the incoming firing strength is normalized to the sum of all rules

firing strengths:

f (i)(Re(Z),−Im(Z)) =
f (i)(Re(Z),−Im(Z))∑N
k=1 f

(k)(Re(Z),−Im(Z))
(5.53)

where N represents the total number of rules, given by expression (5.51).

In layer 4 each node is adaptive. At this point, the firing rules are multiplied by their correspondent

singletons, for which the parameters mi, ni and ki , characterizing each output singleton, have been
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estimated through the Fuzzy Logic Toolbox function.

f (i)(Re(Z),−Im(Z)) · ω(i) = f (i)(Re(Z),−Im(Z)) · (miRe(Z) + ni(−Im(Z)) + ki) (5.54)

Layer 5 is composed by a single fixed node, computing the SOC value output as the sum of all

incoming signals, representing the centre of gravity or the weighted average of all rule outputs:

SOC =

N∑
k=1

(f (i)(Re(Z),−Im(Z)) · ω(i)) =

∑N
k=1(f (l)(Re(Z),−Im(Z)) · ω(i))∑N

k=1 f
(i)(Re(Z),−Im(Z))

(5.55)
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Figure 5.25: Structure of the five-layer adaptive neuro-fuzzy system for the Sugeno model implemented
in the acquisition Arduino Due.
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Chapter 6

Results

This chapter aims to verify the functioning of the implemented EIS measurement system together with

Fuzzy logic SOC inference method. It presents information and results about both processes with the

aid of a case study considering a 160 Ah capacity LiFePO4 cell having a 70% SOC.

6.1 Assumptions

In order to run the above mentioned and implemented techniques, the following listed premises were

defined so that some of the variables affecting the battery cell impedance were controlled:

• Temperature: During the experiments, the battery cell was maintained at a room temperature of

17 ºC with a temperature fluctuation of ± 1ºC.

• Relaxation Time: After each battery cell discharge, the resting time of the cell was established as

10 minutes.

• Charge/Discharge rates: The cell was charged at a rate of 7.4 Ah and discharged at a rate of 16

Ah.

• Operating Voltages: The impedance spectra of the cell was measured galvanostatically in a volt-

age range between 2.8 and 3.6 V, corresponding to 15% and 100% SOC, respectively.

• Impedance database: Generated during one full discharge cycle (100% - 15%). The battery cell

was later fully charged again and discharged to certain SOC’s to present the reader the proposed

case studies.

Figure 6.1 displays the experimental test scenario of the developed system.
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Figure 6.1: Experimental scenario.

6.2 Validation of the EIS measurement system implementation

The variable frequency voltage source provided by the Digital Direct Synthesis (DDS) technique in the

source Arduino Due was programmed with a 2000 digital word look-up table, as described in section 5.2,

supplying at the output of the Arduino DAC a voltage with a duration of six complete cycles, as follows:

UDAC(t) = UoAC sin(2πfit+ ϕ) + UoDC [V] (6.1)

where UoAC = UoDC = 1.6114 V ; ϕ = π
6 rad and a variable frequency value fi, a variable frequency

value, so that the frequency sweep is carried, for each of the listed values in table 6.2.

After the filtering stage, the voltage in equation (6.1), as explain in section 5.3, results in:

UoutFilter (t) = UoAC sin(2πfit+ ϕ) = 1.6114 sin(2πfit+
π

6
) [V] (6.2)

This voltage is then presented to the dimensioned Enhanced Howland Current Source, as in section

5.4, so that accordingly to equation (5.28), an excitation current is imposed to the battery cell:

IL(t) ≈ UoutFilter (t)

R1
=

1.6114 sin(2πfit+ π
6 )

1
= 1.6114 sin(2πfit+

π

6
) [A] (6.3)

Both voltage and current are sampled at a sampling frequency dependent on that transmitted from

the source Arduino, listed in table 6.2, to the acquisition one, via I2C communication, detailed in section

5.5.1.1.
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Frequency (Hz)

f1 0.0130 f12 0.3160
f2 0.0180 f13 0.4220
f3 0.0237 f14 0.5630
f4 0.0316 f15 0.7500
f5 0.0422 f16 1.0000
f6 0.0563 f17 1.3390
f7 0.0750 f18 1.7680
f8 0.1000 f19 2.3720
f9 0.1330 f20 3.1590
f10 0.1800 f21 4.1780
f11 0.2370 f22 5.6340

Table 6.1: Programmed frequencies in the variable frequency voltage source Arduino Due, for which the
EIS measurement system was realized.

The acquisition Arduino is programmed in order to store 320 samples for each one of the 22 frequen-

cies in table 6.2 so that approximately 280 samples are correctly acquired during 5 complete cycles,

while oversampling and digital filtering, as descibed in section 5.5.1.2.

In order to graphically represent the data acquisition process, a 160 Ah capacity LiFePO4 cell having

a 70% SOC value, following the conditions described in section 6.1, is used as a test subject. As an

example, the acquired voltage at the terminals of the cell and excitation current signals for a frequency

of 0.0422Hz are presented in Figure 6.2 (a) and 6.2 (b), respectively.

As it can be observed in Figures 6.2 (a) and (b), for a frequency of 0.0422 Hz, 280 samples during

five complete cycles are stored, this process being performed 22 times, the number of pre-defined

frequencies. The next step is applying a rectangular window to each of the stored arrays so that only the

samples referring to 4 cycles of signal are processed by the discrete Fourier transform algorithm, this

way minimizing spectral leakage, previously explained in 5.5.2.1. The result of the windowing process

to both voltage and current sequences can be observed in Figure 6.2 (c) and 6.2 (d).
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Figure 6.2: Acquired voltage at the terminals of the cell and excitation current signals for a frequency of
0.0422Hz: (a) Voltage sequence before windowing; (b) Current sequence before windowing; (c) Voltage
sequence after windowing; (d) Current sequence after windowing
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Now, the DFT algorithm to both windowed voltage and current samples, for each of the frequencies

in table 6.2, is applied, so that the phasors for each of the variables, accordingly to section 5.5.2, are

obtained. Afterwards, each digital word contained in the stored voltage and current arrays is converted

back to its units following the inverse expressions of (5.31) and (5.32):

vcell(ks∆t) =
VDD

NLSBv (ks∆t)) · 2N
=

5

NLSBv (ks∆t)) · 65535
=

0.0000762939

NLSBv (ks∆t))
[V/level] (6.4)

Icell(ks∆t) =CHS · vHScell(ks∆t) = CHS ·
VDD

NLSBi(ks∆t)) · 2N
= (6.5)

=9.546 · 0.0000762939

NLSBv (ks∆t))
=

0.0007283

NLSBi(ks∆t))
[A/level] (6.6)

where CHS is the hall effect transducer current sensor voltage-to-current conversion constant.

The impedance data assessed through the acquired voltage and current phasors, as described in

section 5.5.2.2, is represented graphically in a Bode plot expressing the impedance magnitude and

phase angle in relation to frequency in Figure 6.3 and 6.4, respectively. In Figure 6.5 the same measured

impedance data , related to a 70% SOC, is represented through a Nyquist plot, expressing the imaginary

impedance versus the real impedance of the system.
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Figure 6.3: Bode plots of the impedance magnitude data assessed through the acquired voltage and
current phasors for a 160 Ah battery cell with 70% SOC.
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Figure 6.4: Bode plots of the impedance phase data assessed through the acquired voltage and current
phasors for a 160 Ah battery cell with 70% SOC.
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Figure 6.5: Nyquist plot of the impedance data assessed through the acquired voltage and current
phasors for a 160 Ah battery cell with 70% SOC.
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6.2.1 Impedance Spectra Database

The previous case study was presented as an example of the implemented EIS measurement system.

The same process is executed to the following values of SOC during a discharge cycle so that a database

to the fuzzy inference system is constructed:

SOC(%) 100 90 80 70 60 50 40 30 20 15

Table 6.2: Pre-defined SOC’s for which the impedance spectra database has been composed.

The obtained impedance spectra database is graphically presented in Figure 6.6 and Figure 6.7.
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Figure 6.6: Nyquist plot of the impedance spectra database for the referred SOC’s in table 6.2.

Observing the acquired impedance spectra’s of the battery cell in Figure 6.6, one can say that only

20% to 30% of the referential space (-Img (Z) vs Re (Z)) is occupied by the stored data. A fuzzy system

that accurately distinguishes the different SOC EIS measurements, each with 22 points, requires a cer-

tain number of rules in order to differentiate, with enough precision, the precessed data. The necessary

number of rules providing an accurate system is approximately half the total number of impedance data

points stored in the database. The database is composed by 10 impedance spectras, one for each SOC.

Each impedance spectra contains 22 points, one for each frequency, and each of these points is defined

by its real value and imaginary value. Hence, the total number of rules comes:

Nrules =
NSOC′s ·Nfrequencies ·Ninputs

2
=

10 · 22 · 2
2

= 220 (6.7)

As it was stated in chapter 4, each subset of rules (i.e. both fuzzy inputs and output) can be rep-

resented by its own membership function, thus, there are 220 gaussian membership functions for each
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input (Re(Z) and -Img (Z)) and 220 output membership functions (singleton output membership func-

tions) modelling the database.
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Figure 6.7: Nyquist plot of the impedance spectra database as function of the referred SOC’s in table
6.2.

6.3 Validation of the Fuzzy Logic SOC inference system

The impedance spectra database is initially evaluated and the rule base is constructed. The fuzzy output

for this pre-acquired data is plotted in Figure 6.8. The black points correspond to the estimated output

of the fuzzy system, representing the inferred SOC’s, whereas the blue circles represent the real SOC’s

of the input data, imposed to the fuzzy system, defining the respective SOC of each point introduced as

training data.

After creating the database and consequent system rule base, in order to validate the fuzzy logic

SOC inference system, four measurements were performed. The battery was fully recharged again,

and later discharged so that the system could be tested to a SOC value of 90%, 70%, 74% and 64%.

The obtained results from the EIS measurement system are presented in Figure 6.9, together with the

pre-acquired database, where the impedance spectra points are marked as for 70%, for 90%, for

64% and for a 74% SOC value.

The fuzzy system inferred SOC outputs for each of the four input profiles (marked by red asterisks),

can be observed in Figures 6.10 (90%), 6.11 (70%), 6.12 (74%) and 6.13 (64%). The output average of

the 22 estimated points is represented by a red marker ( ) in each plot.
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Figure 6.8: Fuzzy system output for the pre-defined SOC’s. The defined output (blue dots) and the
inferred output (black cyrcles).

Re(Zbat[Ω]) ×10-3
1 1.5 2 2.5 3

-Im
(Z

ba
t[Ω

])

      0

  5e-05

 0.0001

0.00015

 0.0002

0.00025
SOC=100%
SOC=90%
SOC=80%
SOC=70%
SOC=60%
SOC=50%
SOC=40%
SOC=30%
SOC=20%
SOC=15%
SOCx1=70%

SOCx2=90%
SOCx3=64%

SOCx4=74%

Figure 6.9: Nyquist plot of the impedance spectra database and the acquired impedance spectra for
each of the presented case studies.
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Figure 6.10: Fuzzy system output(marked by red asterisks) for the battery cell with a 90% SOC value.
The output average of the inferred points is marked as ♦.
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Figure 6.11: Fuzzy system output(marked by red asterisks) for the battery cell with a 70% SOC value.
The output average of the inferred points is marked as ♦.
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Figure 6.12: Fuzzy system output(marked by red asterisks) for the battery cell with a 74% SOC value.
The output average of the inferred points is marked as ♦.
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Figure 6.13: Fuzzy system output(marked by red asterisks) for the battery cell with a 64% SOC value.
The output average of the inferred points is marked as ♦.

Table 6.3 displays the average and variance values of the four case studies output results. Analysing

the table, it is evident that concerning input values with a SOC value not included in the modelling of the

fuzzy system, in other words, for impedance spectras having a SOC value not included in the impedance

spectra database, the average value of the output points is a random value and the corresponding vari-

ances are high, portraying the spread out between the inferred output points, observed in the respective

plots, above presented. As for the input values with a SOC value residing in the database, the output

average is close to the expected value, presenting a lower variance, thus concluding that the system

is able to estimate the current SOC of the battery cell, if the measured impedance spectra has a SOC

value predefined in the constructed database.

Input Output average Output variance

Re(Z) and -Img (Z)
of the cell with

90% SOC
89.88 64.57

Re(Z) and -Img (Z)
of the cell with

70% SOC
66.82 79.88

Re(Z) and -Img (Z)
of the cell with

74% SOC
58.64 240.91

Re(Z) and -Img (Z)
of the cell with

64% SOC
61.53 606.56

Table 6.3: Output average and variance of the Fuzzy system for the proposed case studies.
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6.4 Discussion

Through the proposed case studies, one can conclude that the implemented system allows the inference

of predefined SOCs, previously introduced in the constructed database. For intermediate values of

predefined SOCs, the system presents an inaccuracy manifested through a high value of variance for the

inferred output points, due to a mismatch between the current input and those present in the database.

In order to have a more precise system, i.e., being able to correctly estimate the entire range of SOCs,

a higher number of predefined SOCs are required at the moment of modelling the system, this way

expanding the created database for the battery cell, used as test subject.

The database was created for the conditions presented in section 6.1, limiting the accurate SOC

estimation to a fixed operating temperature and charge/discharge cycle, not taking in consideration the

effects of these variables in the battery cell impedance. Although it was proven that the system is a

viable SOC estimation tool, in order to get a viable built device for commercial purpose, the previous

mentioned variables must be taken in account when the database is created. This means that the way

the system is modelled defines the quality of the estimation method and consequent suitability of the

system to different applications, depending on the application requirements. For example, for an electric

vehicle application, where the battery cells are submitted to an elevated number of charge/discharge

cycles and operating range temperature, the constructed database requires an wider set of information,

based on the variables above mentioned.

The implemented EIS measurement system allows the measurement of low impedance LiFePO4

battery cells, in a portable and compact way, this way creating a powerful tool to infer the SOC of

the cell though a Fuzzy Logic inference system, proposed in this thesis, or any other of the inference

methods mentioned in chapter 3, this way providing an alternative or improving the most common used

SOC measuring estimation methods, the voltage measurement procedure and the coulomb counting

technique. The major advantage of this method when compared to the most common ones, above

mentioned, is its accuracy, depending on the database information. While these methods do not take in

account the ageing and operating temperature of the cell, affecting its OCV-SOC curve and its capacity,

the implemented system, if updated in regular periods of time, greatly reduces the influence of these

variables, giving a more accurate value of batery cell SOC to the final user, or system, this way improving

the lifetime of the cell.
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Chapter 7

Conclusions

This chapter invokes the main conclusions that can be drawn from the performed work. In addition, it de-

lineates some thoughts towards future work with the purpose of further develop some issues addressed

throughout this thesis.

7.1 Achievements

This work aimed the development of a system capable of automatically measuring the SOC value of a

LiFePO4 battery cell. This is significantly important since LiFePO4 battery cells are starting to appear

as a better alternative in relation to other lithium ion batteries available on the energy storage systems

market.

The developed device is capable of measuring the impedance profile of a given LiFePO4 cell, per-

forming an EIS measurement. The impedance profile assessed is afterwards used to infer its SOC

value using an ANFIS based method. In order to implement this adaptive method, past impedance

spectras, related to specific SOCs, constructed a database so that a valid fuzzy inference model is ob-

tained. With this, a comparative analysis between the current cell’s impedance and previous observed

ones, using the considered fuzzy inference system (representing the non-linear behaviour of the internal

impedance), yields the object of this thesis, the SOC value.

The device was validated for a 160 Ah LiFePO4 cell, for the conditions listed in section 6.1, and the

obtained results provided substantial information to access its performance. It was verified that that

the way the inference system is modelled defines the accuracy of the SOC estimation method. The

fuzzy inference system, modelling the cell’s impedance as function of the SOC value, was obtained

considering ten pre-defined SOC values: 100%; 90%; 80%; 70%; 60%; 50%; 40%; 30%; 20%; 15%.

It was demonstrated that the developed device is capable of estimating future SOC values for inferred

values matching those present in the database. For intermediate values it was concluded that the

inferred results average was a random value and its corresponding variances were quite high due to

large variations between impedance spectras, as expected, justified by the non-linear behaviour of the

LiFePO4 cell’s impedance in relation to SOC. With this in mind, for this device to properly work for the
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entire range of SOC values, including the intermediate ones, it is necessary to increase the number

of acquired impedance spectras modelling the fuzzy inference system, i.e., increasing the number of

pre-defined SOC values composing the database.

The conditions listed in section 6.1 concern a fixed operating temperature, only one charge/discharge

cycle for the cell and a resting time of 10 minutes. Outside these conditions, the inferred SOC value is

uncertain, seeing that the effects of each one of these variables in the cell’s impedance were not taken

in account in the course of this work.

In conclusion, it was proven that the device is capable of automatically estimate the SOC value of a

LiFePO4 battery cell, for a case study under certain conditions. The results may be further improved in

the future, as described in the next section.

7.2 Future Work

Some further improvements may be attended in the future:

• The construction of an impedance spectra database considering a greater number of pre-defined

SOC values while taking in account some variables affecting the internal impedance of a LiFePO4

cell. The following variables may be considered: Operating temperature; Relaxation time after

interrupting the current flow; Number of charge/discharge cycles; Charging/Discharging current

rate.

• Introducing more input variables to the proposed ANFIS based method, such as the battery cell

OCV.

• The development of an interpolating methodology in order to infer the intermediate impedance

spectras already present in the database.

• The conjunction of the developed device with other SOC estimation methods, such as the indirect

ones, described in section 3.1.2.
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[4] A. Väyrynen and J. Salminen. Lithium ion battery production. The Journal of Chemical Thermody-

namics, 46:80–85, 2012.

[5] A.-I. Stan, M. Swierczynski, D.-I. Stroe, R. Teodorescu, and S. J. Andreasen. Lithium ion battery

chemistries from renewable energy storage to automotive and back-up power applications—an

overview. In Optimization of Electrical and Electronic Equipment (OPTIM), 2014 International Con-

ference on, pages 713–720. IEEE, 2014.

[6] B. University. BU-205: Types of Lithium-ion, 2016. URL http://http://batteryuniversity.com/

learn/article/types_of_lithium_ion.

[7] K. E. Aifantis, S. A. Hackney, and R. V. Kumar. High energy density lithium batteries: materials,

engineering, applications. John Wiley & Sons, 2010.

[8] G. Patry, A. Romagny, S. Martinet, and D. Froelich. Cost modeling of lithium-ion battery cells for

automotive applications. Energy Science & Engineering, 3(1):71–82, 2015.

[9] D. Linden. Handbook of batteries. McGraw-Hill, 1995.

[10] N. Watrin, B. Blunier, and A. Miraoui. Review of adaptive systems for lithium batteries state-

of-charge and state-of-health estimation. In Transportation Electrification Conference and Expo

(ITEC), 2012 IEEE, pages 1–6. IEEE, 2012.

[11] V. Prajapati, H. Hess, E. J. William, V. Gupta, M. Huff, M. Manic, F. Rufus, A. Thakker, J. Govar,

et al. A literature review of state of-charge estimation techniques applicable to lithium poly-carbon

65

http://www.sony.com.cn/products/ed/battery/download.pdf
http://http://batteryuniversity.com/learn/article/types_of_lithium_ion
http://http://batteryuniversity.com/learn/article/types_of_lithium_ion


monoflouride (li/cfx) battery. In Power Electronics (IICPE), 2010 India International Conference on,

pages 1–8. IEEE, 2011.

[12] M. Fathi. Integrated Systems: Innovations and Applications. Springer Science & Business Media,

2015.

[13] P. Notten, H. Bergveld, and W. Kruijt. Battery Management Systems: Design by modelling. Springer

Science & Business Media, 2002.

[14] N. Omar, M. A. Monem, Y. Firouz, J. Salminen, J. Smekens, O. Hegazy, H. Gaulous, G. Mulder,

P. Van den Bossche, T. Coosemans, et al. Lithium iron phosphate based battery–assessment of

the aging parameters and development of cycle life model. Applied Energy, 113:1575–1585, 2014.

[15] V. Pop. Battery management systems: Accurate state-of-charge indication for battery-powered

applications. Springer Science & Business Media, 2008.

[16] K. S. Ng, C.-S. Moo, Y.-P. Chen, and Y.-C. Hsieh. Enhanced coulomb counting method for estimat-

ing state-of-charge and state-of-health of lithium-ion batteries. Applied energy, 86(9):1506–1511,

2009.

[17] R. Feng, S. Zhao, and X. Lu. On-line estimation of dynamic state-of-charge for lead acid bat-

tery based on fuzzy logic. In Measurement, Information and Control (ICMIC), 2013 International

Conference on, volume 1, pages 447–451. IEEE, 2013.

[18] W. He, D. Huang, and D. Feng. The prediction of soc of lithium batteries and varied pulse charge. In

Mechatronics and Automation, 2009. ICMA 2009. International Conference on, pages 1578–1582.

IEEE, 2009.

[19] H. He, R. Xiong, X. Zhang, F. Sun, and J. Fan. State-of-charge estimation of the lithium-ion bat-

tery using an adaptive extended kalman filter based on an improved thevenin model. Vehicular

Technology, IEEE Transactions on, 60(4):1461–1469, 2011.

[20] A. J. Salkind, C. Fennie, P. Singh, T. Atwater, and D. E. Reisner. Determination of state-of-charge

and state-of-health of batteries by fuzzy logic methodology. Journal of Power Sources, 80(1):293–

300, 1999.

[21] A. Zenati, P. Desprez, and H. Razik. Estimation of the soc and the soh of li-ion batteries, by

combining impedance measurements with the fuzzy logic inference. In IECON 2010-36th Annual

Conference on IEEE Industrial Electronics Society, pages 1773–1778. IEEE, 2010.

[22] M. M. Ismail and M. Hassan. The state of charge estimation for rechargeable batteries based on

artificial neural network techniques. In Control, Decision and Information Technologies (CoDIT),

2013 International Conference on, pages 733–739. IEEE, 2013.

[23] W.-Y. Chang. State of charge estimation for lifepo4 battery using artificial neural network. Interna-

tional Review of Electrical Engineering-IREE, 7(5):5874–5880, 2012.

66



[24] W. Junping, G. Jingang, and D. Lei. An adaptive kalman filtering based state of charge combined

estimator for electric vehicle battery pack. Energy Conversion and Management, 50(12):3182–

3186, 2009.

[25] A. A.-h. Hussein and I. Batarseh. An overview of generic battery models. In Power and Energy

Society General Meeting, 2011 IEEE, pages 1–6. IEEE, 2011.

[26] M. F. C. dos Reis. State-of-charge (soc) prediction of lithium iron phosphate (lifepo4) batteries for

automotive application based on intelligent systems. Master’s thesis, Instituto Superior Técnico,
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Appendix A

Circuit Design

A.1 PCB Components

PCB components

Band-Pass Filter Howland Current Source Others

R1 = 47.4 kΩ R1 = 1 Ω LTSR 6-NP Current transducer

R2 = 240 kΩ 2× R2 = 10 kΩ 2× LM323T Voltage regulator

R3 = 35.7 kΩ 2× R3 = 10 kΩ C = 10 µF

R4 = 86.6 kΩ OPA548 Operational amplifier C = 1 µF

R5 = 1.74 MΩ SK129 Heatsink 2× AD7680 ADC Converters

R6 = 1.47 MΩ Rlim = 22 kΩ 6-leg toggle switch

R7 = 4.53M kΩ R9 = 1 MΩ LED Basic red

R8 = 619.4 kΩ

C1 = 100 pF

C2 = 220 pF

C3 = 100 pF

C4 = 820 pF

C5 = 10 µF

C6 = 10 µF

4× µA741 Operational amplifier

Table A.1: Components for the developed printed circuit board.
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A.2 Circuit PCB

Figure A.1: PCB Board.
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A.3 Circuit Schematic

Figure A.2: Circuit Schematic.

71



Appendix B

Routines
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B.1 Variable Frequency Voltage Source routine

Start

Samples per 
cycle = 2000

Generate 
Sinewave look-
up table [2000]

÷÷
Reference 

clock 
frequency

 ⇥⇥

Store pre-defined 
frequencies array for 

N=22 frequencies

nPhaseIncrement 
array for N=22 

frequencies

Switch On?
No

Set i = 0
Yes

i < N ?

Phase accumulator = 
Phase accumulator 

+
nPhaseIncrement[i]

Yes

Overflow?
(Phase Accumulator 

> Samples per 
cycle) ?

Complete 
sinwave cycle 

covered

Number of 
cycles < 6 ?

i = i + 1

No

Yes

Phase accumulator = 0 
Yes

Write in DAC: 
sinwave_table[Phase 

accumulator]

No

Finish
NoSend frequency value 

to Arduino Slave 
(Frequency[i])

Figure B.1: Variable frequency voltage source routine.
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B.2 Oversampling with Averaging and Moving Average Digital Fil-

ter routines

Start

Initialize Moving 
average arrays 

(readingsV[22] & 
readingsI[22])

Wait one period of 
signal to start 

acquisition
one cycle = 1/freq

New Frequency 
(freq) from Master 

Arduino has arrived 
via I2C?

No Yes

i=0

Initialize Voltage Matrix V[320][22] 
and Current Matrix I[320][22] 

320 samples (Window) in 5 periods 
of signal for each of the 22 

frequencies

i < Window ?K < 22 ?

Oversampling 
complete?

N_oversamples 
> 80 ?

No

readingsV[K] = 
readingsV[K] + 
OversamplingV

OversamplingV = 
(Oversampling 

accumulatorV)/80

+
Oversampling 
accumulatorV

read ADC 
of Voltage

Oversampling 
accumulatorV

+
Oversampling 
accumulatorI read ADC of 

current

Oversampling 
accumulatorI

N_oversamples = 
N_oversamples + 1 

Oversampling_accumulatorV=0

Oversampling_accumulatorI=0

Yes

Yes
OversamplingI = 
(Oversampling 

accumulatorI)/80

readingsI[K] = 
readingsI[K] + 
OversamplingI

I[i][F] =       readingsI[l] / 22⌃
22

l=0

K = K +1 

i = i +1

K=0

Wait Sampling period : 

delta_t=5/(Window*freq)

No

freq

N = N+1

N<Number of 
Frequencies 

(22) ?

Yes Finish 
Sampling 
process

Windowing

V[i][F] =       readingsV[l] / 
22⌃

22

l=0

No

Oversampling and Averaging

Moving Average Digital Filter

Figure B.2: Oversampling and averaging and Moving average digital filter routines.
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B.3 Windowing routine

Start

V[320][22] I[320][22]

Set i = 0

i = i +1

First minimum in 
V[320][i] & I[320][i] 

found?
It was in position m1

m2 = m1+1

Set m2 = 0

Second minimum (m2) 
found?

(I[m1][i]==I[m2][i] ?)

NoSamples between 
minimums: N = m2 - m1

Apply Window To:
V[m1 to 4N][i]
I[m1 to 4N][i]

Calculate Average in:
V[320][i] -> Vavg[i]
I[320][i] -> Iavg[i]

Set k = m1 k < 4N ?

V[k][i] = V[k][i] - Vavg[i]

I[320][i] = I[k][i] - Iavg[i]

NoYes
k=k+1

i < Number of 
frequencies 

(22) ?

Yes

Finish
(280 samples, from 
m1 to 4N, for each 
signal, with a zero 

average value)

Yes No

DFT 
Calculation

Figure B.3: Windowing routine.
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B.4 Discrete Fourier Transform (DFT) routine

Start

V[280][22] I[280][22]

Set i = 0

k < 280 ?

Set k = 0

V[i][0] = V[i][0] + V[k][i].cos(k.4.2⇡⇡/280)
V[i][1] = V[i][1] + V[k][i].sin(k.4.2⇡⇡/280)

I[i][0] = I[i][0] + I[k][i].cos(k.4.2⇡⇡/280)
I[i][1] = I[i][1] + I[k][i].sin(k.4.2⇡⇡/280)

k = k +1

Yes

V[i][0] = 2. V[i][0] / 280
V[i][1] = 2. V[i][1] / 280

I[i][0] = 2. I[i][0] / 280
I[i][1] = 2. I[i][1] / 280

Convert V[i][0] to Volts 
Convert V[i][1] to Volts

Convert I[i][0] to Ampere 
Convert I[i][1] to Ampere

No

Vabs[i]=sqrt(V[i][0].V[i][0] + V[i][1].V[i][1])
Vang[i]=arctg(-V[i][1] / V[i][0])

Iabs[i]=sqrt(I[i][0].I[i][0] + I[i][1].I[i][1])
Iang[i]=arctg(-I[i][1] / I[i][0])

Zabs[i] = Vabs[i] / Iabs[i][1]
Zang[i] = Vang[i] - Iang[i]

i = i +1

i < Number of 
frequencies (22)?

Yes

Finish

To Fuzzy 
System

No

Figure B.4: Discrete Fourier Transform (DFT) routine.
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LFP160AHA TALL cell specification 
 

Model name LFP160AHA TALL Alternative product mark TS-LFP160AHA, WB-LYP160AHA(A) 
Nominal voltage 3.2 V  Operating voltage under load is 3.0 V 
Capacity 160 AH +/- 5%  
Operating voltage max 4.0V - min 2.8V  At 80% DOD 
Deep discharge voltage 2.5 V The cells is damaged if voltage drops bellow this level 
Maximal charge voltage  4 V The cells is damaged if voltage exceeds this level 
Optimal discharge current < 80 A 0.5 C 
Maximal discharge current  < 480 A 3 C, continuous for max 15 minutes from full charge 
Max peak discharge current < 1600 A 10 C, maximal 5 seconds in 1 minute 
Optimal charge current < 80 A 0.5 C 
Maximal charge current  < 480 A < 3 C with battery temperature monitoring 
Maximal continuous operating 
temperature 

80 °C The battery temperature should not increase this level 
during charge and discharge 

Dimensions 182 X 278 X 71 Millimeters (tolerance +/- 2 mm) 
Weight 5.8 kg Kilograms (tolerance +/- 150g) 

 

 

 

 

Appendix C

Technical Datasheets

C.1 LiFePO4 cell



IN +

IN –

OUT

+

–

OFFSET N1

OFFSET N2

Product

Folder

Sample &
Buy

Technical

Documents

Tools &

Software

Support &
Community

uA741
SLOS094E –NOVEMBER 1970–REVISED JANUARY 2015

µA741 General-Purpose Operational Amplifiers
1 Features 3 Description

The µA741 device is a general-purpose operational
1• Short-Circuit Protection

amplifier featuring offset-voltage null capability.• Offset-Voltage Null Capability
The high common-mode input voltage range and the• Large Common-Mode and Differential Voltage
absence of latch-up make the amplifier ideal forRanges voltage-follower applications. The device is short-

• No Frequency Compensation Required circuit protected and the internal frequency
• No Latch-Up compensation ensures stability without external

components. A low value potentiometer may be
connected between the offset null inputs to null out2 Applications
the offset voltage as shown in Figure 11.

• DVD Recorders and Players
The µA741C device is characterized for operation• Pro Audio Mixers
from 0°C to 70°C. The µA741M device (obsolete) is
characterized for operation over the full military
temperature range of –55°C to 125°C.

Device Information(1)

PART NUMBER PACKAGE (PIN) BODY SIZE (NOM)
SOIC (8) 4.90 mm × 3.91 mm

µA741x PDIP (8) 9.81 mm × 6.35 mm
SO (8) 6.20 mm × 5.30 mm

(1) For all available packages, see the orderable addendum at
the end of the data sheet.

4 Simplified Schematic

1

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.

C.2 uA741 Operational Amplifier
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6 Pin Configurations and Functions

Pin Functions
PIN

NAME TYPE DESCRIPTIONJG, D, P, orJ U FKPW
IN+ 5 3 4 7 I Noninverting input
IN– 4 2 3 5 I Inverting input

1, 2, 8, 1,3,4,6,8,9,11,13,1NC 12, 13, 8 1, 9, 10 — Do not connect4,16,18,19,2014
OFFSET 3 1 2 2 I External input offset voltage adjustmentN1
OFFSET 9 5 6 12 I External input offset voltage adjustmentN2
OUT 10 6 7 15 O Output
VCC+ 11 7 8 17 — Positive supply
VCC– 6 4 5 10 — Negative supply

Copyright © 1970–2015, Texas Instruments Incorporated Submit Documentation Feedback 3
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7 Specifications

7.1 Absolute Maximum Ratings
over virtual junction temperature range (unless otherwise noted) (1)

µA741C µA741M
UNIT

MIN MAX MIN MAX

VCC Supply voltage (2) –18 18 –22 22 C

VID Differential input voltage (3) –15 15 –30 30 V

VI Input voltage, any input (2) (4) –15 15 –15 15 V

Voltage between offset null (either OFFSET N1 or OFFSET N2) and VCC– –15 15 –0.5 0.5 V

Duration of output short circuit (5) Unlimited

Continuous total power dissipation See Table 1

TA Operating free-air temperature range 0 70 –55 125 °C

Case temperature for 60 seconds FK package N/A N/A 260 °C

Lead temperature 1.6 mm (1/16 inch) from case for J, JG, or U package N/A N/A 300 °C60 seconds

Lead temperature 1.6 mm (1/16 inch) from case for D, P, or PS package 260 N/A N/A °C10 seconds

Tstg Storage temperature range –65 150 –65 150 °C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, unless otherwise noted, are with respect to the midpoint between VCC+ and VCC–.
(3) Differential voltages are at IN+ with respect to IN –.
(4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
(5) The output may be shorted to ground or either power supply. For the µA741M only, the unlimited duration of the short circuit applies at

(or below) 125°C case temperature or 75°C free-air temperature.

7.2 Recommended Operating Conditions
MIN MAX UNIT

VCC+ 5 15
Supply voltage V

VCC– –5 –15
µA741C 0 70

TA Operating free-air temperature °C
µA741M –55 125

Table 1. Dissipation Ratings Table
TA ≤ 25°C TA = 70°CDERATING DERATE TA = 85°C TA = 125°CPACKAGE POWER POWERFACTOR ABOVE TA POWER RATING POWER RATINGRATING RATING

D 500 mW 5.8 mW/°C 64°C 464 mW 377 mW N/A
FK 500 mW 11.0 mW/°C 105°C 500 mW 500 mW 275 mW
J 500 mW 11.0 mW/°C 105°C 500 mW 500 mW 275 mW

JG 500 mW 8.4 mW/°C 90°C 500 mW 500 mW 210 mW
P 500 mW N/A N/A 500 mW 500 mW N/A

PS 525 mW 4.2 mW/°C 25°C 336 mW N/A N/A
U 500 mW 5.4 mW/°C 57°C 432 mW 351 mW 135 mW

4 Submit Documentation Feedback Copyright © 1970–2015, Texas Instruments Incorporated
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7.3 Electrical Characteristics μA741C, μA741M
at specified virtual junction temperature, VCC± = ±15 V (unless otherwise noted)

μA741C μA741M
PARAMETER TEST CONDITIONS TA

(1) UNIT
MIN TYP MAX MIN TYP MAX

25°C 1 6 1 5
VIO Input offset voltage VO = 0 mV

Full range 7.5 ±15 6

ΔVIO(adj) Offset voltage adjust range VO = 0 25°C ±15 20 200 mV

25°C 20 200 500
IIO Input offset current VO = 0 nA

Full range 300 500

25°C 80 500 80 500
IIB Input bias current VO = 0 nA

Full range 800 1500

25°C ±12 ±13 ±12 ±13
VICR Common-mode input voltage range V

Full range ±12 ±12

RL = 10 kΩ 25°C ±12 ±14 ±12 ±14

RL ≥ 10 kΩ Full range ±12 ±12
VOM Maximum peak output voltage swing V

RL = 2 kΩ 25°C ±10 ±10 ±13

RL ≥ 2kΩ Full range ±10 ±10

RL ≥ 2kΩ 25°C 20 200 50 200Large-signal differential voltageAVD V/mVamplification VO = ±10 V Full range 15 25

ri Input resistance 25°C 0.3 2 0.3 2 MΩ

ro Output resistance VO = 0, See (2) 25°C 75 75 Ω

Ci Input capacitance 25°C 1.4 1.4 pF

25°C 70 90 70 90
CMRR Common-mode rejection ratio VIC = VICRmin dB

Full range 70 70

25°C 30 150 30 150
kSVS Supply voltage sensitivity (ΔVIO/ΔVCC) VCC = ±9 V to ±15 V µV/V

Full range 150 150

IOS Short-circuit output current 25°C ±25 ±40 ±25 ±40 mA

25°C 1.7 2.8 1.7 2.8
ICC Supply current VO = 0, No load mA

Full range 3.3 3.3

25°C 50 85 50 85
PD Total power dissipation VO = 0, No load mW

Full range 100 100

(1) All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full
range for the µA741C is 0°C to 70°C and the µA741M is –55°C to 125°C.

(2) This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

Copyright © 1970–2015, Texas Instruments Incorporated Submit Documentation Feedback 5
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7.4 Electrical Characteristics μA741Y
at specified virtual junction temperature, VCC± = ±15 V, TA = 25°C (unless otherwise noted) (1)

μA741Y
PARAMETER TEST CONDITIONS UNIT

MIN TYP MAX

VIO Input offset voltage VO = 0 1 5 mV

ΔVIO(adj) Offset voltage adjust range VO = 0 ±15 mV

IIO Input offset current VO = 0 20 200 nA

IIB Input bias current VO = 0 80 500 nA

VICR Common-mode input voltage range ±12 ±13 V

RL = 10 kΩ ±12 ±14
VOM Maximum peak output voltage swing V

RL = 2 kΩ ±10 ±13

AVD Large-signal differential voltage amplification RL ≥ 2kΩ 20 200 V/mV

ri Input resistance 0.3 2 MΩ

ro Output resistance VO = 0, See (1) 75 Ω

Ci Input capacitance 1.4 pF

CMRR Common-mode rejection ratio VIC = VICRmin 70 90 dB

kSVS Supply voltage sensitivity (ΔVIO/ΔVCC) VCC = ±9 V to ±15 V 30 150 µV/V

IOS Short-circuit output current ±25 ±40 mA

ICC Supply current VO = 0, No load 1.7 2.8 mA

PD Total power dissipation VO = 0, No load 50 85 mW

(1) This typical value applies only at frequencies above a few hundred hertz because of the effects of drift and thermal feedback.

7.5 Switching Characteristics μA741C, μA741M
over operating free-air temperature range, VCC± = ±15 V, TA = 25°C (unless otherwise noted)

µA741C µA741M
PARAMETER TEST CONDITIONS UNIT

MIN TYP MAX MIN TYP MAX
tr Rise time 0.3 0.3 µsVI = 20 mV, RL = 2 kΩ,

CL = 100 pF, See Figure 1Overshoot factor 5% 5% —
VI = 10 V, RL = 2 kΩ,SR Slew rate at unity gain 0.5 0.5 V/µsCL = 100 pF, See Figure 1

7.6 Switching Characteristics μA741Y
over operating free-air temperature range, VCC± = ±15 V, TA = 25°C (unless otherwise noted)

µA741Y
PARAMETER TEST CONDITIONS UNIT

MIN TYP MAX
tr Rise time 0.3 µsVI = 20 mV, RL = 2 kΩ,

CL = 100 pF, See Figure 1Overshoot factor 5% —
VI = 10 V, RL = 2 kΩ,SR Slew rate at unity gain 0.5 V/µsCL = 100 pF, See Figure 1

6 Submit Documentation Feedback Copyright © 1970–2015, Texas Instruments Incorporated
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Current Transducer LTSR 6-NP
For the electronic measurement of currents: DC, AC, pulsed, mixed, 
with galvanic isolation between the primary circuit (high power) and 
the secondary circuit (electronic circuit).

Electrical data

IPN	 Primary nominal current rms				    6	 At
IPM	 Primary current, measuring range			   0 .. ± 19.2 1)	 At
ÎP	 Overload capability 						      250	 At
VOUT	 Output voltage (Analog) @ IP				    2.5 ± (0.625·IP/IPN)	 V
	 		  IP = 0				   2.5 2)	 V
VREF	 Reference voltage (internal reference), RefOUT mode		 2.5 3)	 V
	 Reference voltage (external reference), RefIN mode		  1.9 .. 2.7 4)	 V
G	 Sensitivity						      104.16	 mV/A
N S	 Number of secondary turns (± 0.1 %)			   2000 
R L	 Load resistance						      ≥ 2	 kW
C L max	 Maximum capacitive loading 				    500	 pF
R IM	 Internal measuring resistance (± 0.5 %)			   208.33	 W
TCR IM	 Temperature coefficient of R IM				    < 50 	 ppm/K
VC	 Supply  voltage (± 5 %)					     5	 V
IC	 Current consumption @ VC = 5 V			  Typ	 28+IS

5)+(VOUTR/L) 	mA

Accuracy - Dynamic performance data

X	 Accuracy @ IPN , TA = 25°C					    ± 0.2	 %
	 Accuracy with R IM @ IPN , TA = 25°C			   ± 0.7	 %
eL	 Linearity error						      < 0.1	 %
							       Max
TCVOUT	 Temperature coefficient of VOUT /VREF @ IP = 0			 
	 			   - 40°C .. + 85°C		  150	 ppm/K
TCG	 Temperature coefficient of G	 - 40°C .. + 85°C	   	 50 6)	 ppm/K
VOM 	 Magnetic offset voltage @ IP = 0,	  
	 	 after an overload of 	 3 x IPN		  ± 7 	 mV
	 				    5 x IPN		  ± 8 	 mV
	 			     	 10 x IPN		  ± 10 	 mV
TCVREF	 Temperature coefficient of internal VREF	  
	 	 @ IP = 0	 - 10°C .. + 85°C  		  50	 ppm/K
 				    - 40°C .. - 10°C		  100	 ppm/K
tra	 Reaction time @ 10 % of IPN				    < 100	 ns
tr	 Response time to 90 % of IPN step			   < 400	 ns
di/dt	 di/dt accurately followed					     > 15	 A/µs
BW	 Frequency bandwidth	(0 .. - 0.5 dB)			   DC .. 100	 kHz
	 	 (- 0.5 .. 1 dB)			   DC .. 200     	 kHz
Notes:	 1)	Only in refOUT mode or with external REF less than 2.525 V and greater than  
		  2.475 V. For external REF out of these limits see leaflet. 2) VOUT is linked to VREF, by 
		  conception the difference between these two nodes for IP = 0 is maximum ± 25 mV,  
		  2.475 V < VOUT < 2.525 V.  3) In RefOUT mode at TA = 25°C, 2.475 V< VREF  
		  < 2.525 V. The minimal impedance loading the ref pin should be > 220 kW. Internal 
		  impedance = 600 W. For most applications you need to buffer this output to feed it  
		  into an ADC for example. 4) To overdrive the REF (1.9 V .. 2.7 V) max ± 1 mA is  
		  needed. 5) IS = IP/NS. 6) Only due to TCR IM. 

Features
●● Closed loop (compensated) 

multirange current transducer 
using the Hall effect

●● Unipolar voltage supply
●● Isolated plastic case recognized 

according to UL 94-V0
●● Compact design for PCB 

mounting
●● Incorporated measuring 

resistance
●● Extended measuring range
●● Access to the internal voltage 

reference
●● Possibility to feed the transducer 

reference from external supply.

Advantages
●● Excellent accuracy
●● Very good linearity
●● Very low temperature drift
●● Optimized response time
●● Wide frequency bandwidth
●● No insertion losses
●● High immunity to external 

interference
●● Current overload capability.

Applications
●● AC variable speed drives and 

servo motor drives
●● Static converters for DC motor 

drives
●● Battery supplied applications
●● Uninterruptible Power Supplies (UPS)
●● Switched Mode Power Supplies 

(SMPS)
●● Power supplies for welding  

applications.

Application Domain
●● Industrial.

16073

IPN	 =	 6 At

C.3 LEM LTSR 6-NP
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Current Transducer LTSR 6-NP

General data

TA	 Ambient operating temperature		  - 40 .. + 85	 °C
TS	 Ambient storage temperature		  - 40 .. + 100	 °C
	 Insulating material group			  III a
m	 Mass			   10		  g
	 Standards 1)			   EN 50178: 1997	
				    IEC 60950-1: 2001	

Isolation characteristic

Vd	 Rms voltage for AC isolation test, 50 Hz, 1 min	 3		  kV
Vw	 Impulse withstand voltage 1.2/50 µs	 > 8		  kV
	 			   Min
Ve	 Rms voltage for partial discharge extinction  10 pC	 > 1.5		  kV
	 			   Min
dCp	 Creepage distance 2)			   15.35		  mm
dCI	 Clearance distance 3)			   6.2		  mm
CTI	 Comparative Tracking Index (group IIIa)	 175

Applications examples
According to EN 50178 and CEI 61010-1 standards and following conditions:

●● Over voltage category OV 3
●● Pollution degree PD2
●● Non-uniform field

Notes:	1)	Specification according to IEC 1000-4-8 not adhered to in DC, error 
		  according to two axes 1.5% instead of 1% 
	 2)	On housing 
	 3)	On PCB with soldering pattern UTEC93-703.

Safety

This transducer must be used in electric/electronic equipment with respect to applicable 
standards and safety requirements in accordance with the manufacturer’s operating 
instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. 
primary busbar, power supply).  
Ignoring this warning can lead to injury and/or cause serious damage. 
This transducer is a built-in device, whose conducting parts must be inaccessible after 
installation. 
A protective housing or additional shield could be used. 
Main supply must be able to be disconnected.

EN 50178 EIC 61010-1

dCp, dCI, Rated insulation voltage Nominal voltage
Single insulation 600 V 600 V
Reinforced insulation 300 V 300 V

Vw
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Dimensions LTSR 6-NP (in mm.)

Operation principle

Mechanical characteristics

●● General tolerance	 ± 0.2 mm
●● Fastening & connection of primary	 6 pins 0.8 x 0.8 mm 

Recommended PCB hole	 1.3 mm
●● Fastening & connection of secondary	 4 pins 0.5 x 0.35 mm 

Recommended PCB hole	 0.8 mm
●● Additional primary through-hole	 ∅ 3.2 mm

 
Remarks

●● VOUT swings above the 2.5 V offset when IP flows from 
terminals 1, 2, 3 to terminals 4, 5, 6 (with the arrow)

●● For the EMC, the acceptance criteria are available on 
request

●● Temperature of the primary conductor should not exceed 
100°C.

Note:	 1)	Output voltage when LTSR 6-NP is used with internal 
		  reference.

Output Voltage - Primary Current 

- IPM - IPN  IPM  IPN  0

 VOUT 
[ V ]

[ At ]  IP

 4.5

 5

 2.5

3.125

 0.5

1.875

Number of
primary turns

Primary nominal
current rms

IPN  [ A ] 

Nominal 1)

output voltage
VOUT  [ V ] 

Primary
resistance
RP  [ mW ] 

Primary insertion
inductance
LP  [ µH ] 

Recommended
connections

1 ± 6 2.5 ± 0.625 0.18 0.013
6        5        4        OUT

          IN        1        2        3

2 ± 3 2.5 ± 0.625 0.81 0.05
               6        5        4        OUT

          IN        1        2        3

3 ± 2 2.5 ± 0.625 1.62 0.12
               6        5        4        OUT

          IN        1        2        3
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OPA548 High-Voltage, High-Current Operational Amplifier
1 Features 3 Description

The OPA548 device is a low-cost, high-voltage and
1• Wide Supply Range

high-current operational amplifier that's ideal for– Single Supply: 8 V to 60 V driving a wide variety of loads. A laser-trimmed
– Dual Supply: ±4 V to ±30 V monolithic integrated circuit provides excellent low-

level signal accuracy and high-output voltage and• High-Output Current:
current.– 3-A Continuous
The OPA548 device operates from either single or– 5-A Peak
dual supplies for design flexibility. In single-supply• Wide Output Voltage Swing operation, the input common-mode range extends

• Fully Protected: below ground.
– Thermal Shutdown The OPA548 device is internally protected against
– Adjustable Current Limit over-temperature conditions and current overloads. In

addition, the OPA548 device was designed to provide• Output Disable Control˜
an accurate, user-selected current limit. Unlike other• Thermal Shutdown Indicator designs, which use a power resistor in series with the

• High Slew Rate: 10 V output current path, the OPA548 device senses the
load indirectly. This allows the current limit to be• Low Quiescent Current
adjusted from 0 A to 5 A with a resistor and• Packages:
potentiometer or controlled digitally with a voltage-out

– 7-Lead TO-220, Zip and Straight Leads or current-out DAC.
– 7-Lead DDPAK Surface-Mount

Device Information(1)

2 Applications PART NUMBER PACKAGE BODY SIZE (NOM)
TO-220 (7) 10.17 mm × 8.38 mm• Valve, Actuator Drivers OPA548
TO-263 (7) 10.10 mm × 8.89 mm• SYNCHRO, SERVO Drivers

(1) For all available packages, see the orderable addendum at• Power Supplies
the end of the data sheet.

• Test Equipment
• Transducer Excitation
• Audio Amplifiers

Simplified Schematic

1

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.

C.4 OPA548 High-Voltage, High-Current Operational Amplifier
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5 Description (continued)
The Enable/Status (E/S) pin provides two functions. An input on the pin not only disables the output stage to
effectively disconnect the load, but also reduces the quiescent current to conserve power. The E/S pin output can
be monitored to determine if the OPA548 is in thermal shutdown.

The OPA548 device is available in an industry-standard 7-lead staggered and straight lead TO-220 package, and
a 7-lead DDPAK surface-mount plastic power package. The copper tab allows easy mounting to a heat sink or
circuit board for excellent thermal performance. The device is specified for operation over the extended industrial
temperature range, –40°C to 85°C. A SPICE macromodel is available for design analysis.

6 Pin Configuration and Functions

KVT and KC Packages Stagger-Formed
KVT and KC Packages Straight-Formed7-Pin TO-220

7-Pin TO-220Top View
Top View

KTW Package Surface-Mount
7-Pin TO-263

Top View

Copyright © 1997–2015, Texas Instruments Incorporated Submit Documentation Feedback 3
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Pin Functions
PIN

I/O DESCRIPTION
NAME NO.
VIN+ 1 I Noninverting input
VIN- 2 I Inverting input
ILIM 3 I Current limit set
V- 4 I Negative power supply
V+ 5 I Positive power supply
VO 6 O Output
E/S 7 I/O Enable/disable control input, thermal shutdown status output

4 Submit Documentation Feedback Copyright © 1997–2015, Texas Instruments Incorporated

Product Folder Links: OPA548
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7 Specifications

7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)

MIN MAX UNIT
Output current See Figure 40
Supply voltage, V+ to V– 60 V
Input voltage (V–) –0.5V (V+) + 0.5 V
Input shutdown voltage V+
Operating temperature –40 125 °C
Junction temperature 150 °C

Tstg Storage temperature –55 125 °C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings
VALUE UNIT

Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000
V(ESD) Electrostatic discharge V

Machine model ±200

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)

MIN NOM MAX UNIT
Supply Voltage (V+-V-) 8(+/-4) 60(±30) V
Specified temperature –40 125 °C

7.4 Thermal Information
OPA548

THERMAL METRIC (1) KVT and KC (TO-220) KTW (DDPAK) UNIT
7 PINS 7 PINS

RθJA Junction-to-ambient thermal resistance 30.2 30.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 37.4 37.4 °C/W
RθJB Junction-to-board thermal resistance 14.4 14.4 °C/W
ψJT Junction-to-top characterization parameter 5.1 5.1 °C/W
ψJB Junction-to-board characterization parameter 14.3 14.3 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.2 0.2 °C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.

Copyright © 1997–2015, Texas Instruments Incorporated Submit Documentation Feedback 5
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FEATURES 
Fast throughput rate: 100 kSPS 
Specified for VDD of 2.5 V to 5.5 V 
Low power 

3 mW typ at 100 kSPS with 2.5 V supply 
3.9 mW typ at 100 kSPS with 3 V supply 
16.7 mW typ at 100 kSPS with 5 V supply 

Wide input bandwidth 
86 dB SNR at 10 kHz input frequency 

Flexible power/serial clock speed management 
No pipeline delays 
High speed serial interface 

SPI®/QSPI™/μWire/DSP compatible 
Standby mode: 0.5 μA max 
6-Lead SOT-23 and 8-Lead MSOP packages 

APPLICATIONS 
Battery-powered systems: 

Personal digital assistants 
Medical instruments 
Mobile communications 

Instrumentation and control systems 
Remote data acquisition systems 
High speed modems 
Optical sensors 

FUNCTIONAL BLOCK DIAGRAM 
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Figure 1. 

 

Table 1. MSOP/SOT-23 16-Bit PulSAR ADC 
Type/kSPS 100 kSPS 250 kSPS 500 kSPS 
True Differential AD7684 AD7687 AD7688 
Pseudo Differential AD7683 AD7685 AD7686 
Unipolar AD7680   

 

GENERAL DESCRIPTION 

The AD7680 is a 16-bit, fast, low power, successive 
approximation ADC. The part operates from a single 2.5 V to 
5.5 V power supply and features throughput rates up to 100 kSPS. 
The part contains a low noise, wide bandwidth track-and-hold 
amplifier that can handle input frequencies in excess of 7 MHz.  

The conversion process and data acquisition are controlled 
using CS and the serial clock, allowing the devices to interface 
with microprocessors or DSPs. The input signal is sampled on 
the falling edge of CS and the conversion is also initiated at this 
point. There are no pipeline delays associated with the part. 

The AD7680 uses advanced design techniques to achieve very 
low power dissipation at fast throughput rates. The reference for 
the part is taken internally from VDD, which allows the widest 
dynamic input range to the ADC. Thus, the analog input range 
for this part is 0 V to VDD. The conversion rate is determined by 
the SCLK frequency.  

PRODUCT HIGHLIGHTS 

1. First 16-bit ADC in a SOT-23 package. 

2. High throughput with low power consumption. 

3. Flexible power/serial clock speed management. The 
conversion rate is determined by the serial clock, allowing 
the conversion time to be reduced through the serial clock 
speed increase. This allows the average power consumption 
to be reduced when a power-down mode is used while not 
converting. The part also features a shutdown mode to 
maximize power efficiency at lower throughput rates. 
Power consumption is 0.5 μA max when in shutdown. 

4. Reference derived from the power supply. 

5. No pipeline delays. 

This part features a standard successive approximation ADC 
with accurate control of the sampling instant via a CS input and 
once-off conversion control. 

 

C.5 AD7680 16-Bit ADC
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SPECIFICATIONS1 
Table 2. VDD = 4.5 V to 5.5 V, fSCLK = 2.5 MHz, fSAMPLE = 100 kSPS, unless otherwise noted; TA = TMIN to TMAX, unless otherwise noted 
Parameter A, B Versions1  Unit  Test Conditions/Comments  
DYNAMIC PERFORMANCE    fIN = 10 kHz sine wave 

Signal-to-Noise + Distortion (SINAD)2  83 dB min  
 85 dB typ  
Signal-to-Noise Ratio (SNR)2 84  dB min  
 86  dB typ  
Total Harmonic Distortion (THD)2 −97  dB typ  
Peak Harmonic or Spurious Noise (SFDR)2 −95  dB typ  
Intermodulation Distortion (IMD)2     

Second-Order Terms −94  dB typ  
Third-Order Terms  −100  dB typ   

Aperture Delay 20  ns max   
Aperture Jitter 30  ps typ  
Full Power Bandwidth  8  MHz typ  @ −3 dB  

 2.2  MHz typ  @ −0.1 dB  
DC ACCURACY    

No Missing Codes  15  Bits typ  
Integral Nonlinearity2 ±4  LSB typ  
Offset Error2 ±1.68  mV max  
Gain Error2 ±0.038  % FS max   

ANALOG INPUT     
Input Voltage Ranges 0 to VDD V  
DC Leakage Current  ±0.3 μA max  
Input Capacitance  30 pF typ  

LOGIC INPUTS    
Input High Voltage, VINH 2.8  V min  
Input Low Voltage, VINL 0.4  V max  
Input Current, IIN  ±0.3  μA max  Typically 10 nA, VIN = 0 V or VDD 
Input Capacitance, CIN

2, 3  10  pF max   
LOGIC OUTPUTS    

Output High Voltage, VOH  VDD − 0.2  V min ISOURCE = 200 μA 
Output Low Voltage, VOL 0.4  V max  ISINK = 200 μA  
Floating-State Leakage Current ±0.3  μA max  
Floating-State Output Capacitance2, 3 10  pF max   
Output Coding Straight (Natural) Binary  

CONVERSION RATE    
Conversion Time  8  μs max  20 SCLK cycles with SCLK at 2.5 MHz 
 9.6  μs max  24 SCLK cycles with SCLK at 2.5 MHz 
Track-and-Hold Acquisition Time  1.5  μs max   
 400  ns max  Sine wave input ≤ 10 kHz 
Throughput Rate  100 kSPS  See the Serial Interface section 

POWER REQUIREMENTS    
VDD 4.5/5.5  V min/V max  
IDD    Digital I/PS = 0 V or VDD 

Normal Mode (Static)  5.2 mA max  SCLK on or off. VDD = 5.5 V 
Normal Mode (Operational) 4.8  mA max  fSAMPLE = 100 kSPS. VDD = 5.5 V; 3.3 mA typ 
Full Power-Down Mode  0.5  μA max  SCLK on or off. VDD = 5.5 V 

Power Dissipation4   VDD = 5.5 V 
Normal Mode (Operational)  26.4 mW max  fSAMPLE = 100 kSPS  
Full Power-Down 2.75  μW max   

                                                                    
1Temperature range as follows: B Version: −40°C to +85°C. 
2 See the Terminology section. 
3 Sample tested during initial release to ensure compliance.  
4 See the Power vs. Throughput Rate section. 
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SPECIFICATIONS1 
Table 3. VDD = 2.5 V to 4.096 V, fSCLK = 2.5 MHz, fSAMPLE = 100 kSPS, unless otherwise noted; TA = TMIN to TMAX, unless otherwise noted. 
Parameter A Version1 B Version1  Unit  Test Conditions/Comments  
DYNAMIC PERFORMANCE     fIN = 10 kHz sine wave 

Signal-to-Noise + Distortion (SINAD)2 83  83  dB min VDD = 4.096 V 
 82 82 dB min VDD = 2.5 V to 3.6 V 
 86 86 dB typ  
Signal-to-Noise Ratio (SNR)2  84  84  dB min  VDD = 4.096 V 
 83 83 dB min VDD = 2.5 V to 3.6 V 
 86  86  dB typ  
Total Harmonic Distortion (THD) 2 −98  −98  dB typ  
Peak Harmonic or Spurious Noise (SFDR)2 −95  −99  dB typ  
Intermodulation Distortion (IMD)2      

Second-Order Terms −94  −94  dB typ  
Third-Order Terms  −100  −100  dB typ  

Aperture Delay  20  10  ns max  
Aperture Jitter  30  30  ps typ  
Full Power Bandwidth  7  7  MHz typ  @ −3 dB; VDD = 4.096 V 

 5 5 MHz typ  @ −3 dB; VDD = 2.5 V to 3.6 V 
 2  2  MHz typ  @ −0.1 dB; VDD = 4.096 V  
 1.6 1.6 MHz typ  @ −0.1 dB; VDD = 2.5 V to 3.6 V 
DC ACCURACY     

No Missing Codes  14  15  Bits min  
Integral Nonlinearity2  ±3.5  ±3.5  LSB max VDD = 4.096 V 
 ±3  ±3  LSB max VDD = 2.5 V to 3.6 V 
Offset Error2  ±1.25  ±1.25  mV max VDD = 4.096 V 
 ±1.098  ±1.098  mV max VDD = 2.5 V to 3.6 V 
Gain Error2 ±0.038  ±0.038  % FS max   

ANALOG INPUT      
Input Voltage Ranges 0 to VDD  0 to VDD  V  
DC Leakage Current  ±0.3  ±0.3  μA max  
Input Capacitance  30  30  pF typ   

LOGIC INPUTS     
Input High Voltage, VINH  2.4  2.4 V min  
Input Low Voltage, VINL  0.4  0.4  V max  
Input Current, IIN  ±0.3  ±0.3  μA max  Typically 10 nA, VIN = 0 V or VDD 
Input Capacitance, CIN

2, 3   10  10  pF max   
LOGIC OUTPUTS     

Output High Voltage, VOH  VDD − 0.2  VDD − 0.2  V min ISOURCE = 200 μA 
Output Low Voltage, VOL 0.4  0.4  V max  ISINK = 200 μA  
Floating-State Leakage Current ±0.3  ±0.3  μA max  
Floating-State Output Capacitance2, 3 10  10  pF max   
Output Coding Straight (Natural) Binary   

CONVERSION RATE     
Conversion Time  8  8  μs max  20 SCLK cycles with SCLK at 2.5 MHz  
 9.6  9.6  μs max  24 SCLK cycles with SCLK at 2.5 MHz 
Track-and-Hold Acquisition Time  1.5  1.5  μs max  Full-scale step input 
 400  400  ns max  Sine wave input ≤ 10 kHz 
Throughput Rate  100 100 kSPS  See the Serial Interface section 
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Parameter A Version1 B Version1  Unit  Test Conditions/Comments  
POWER REQUIREMENTS     

VDD 2.5/4.096 2.5/4.096  V min/max  
IDD     Digital I/Ps = 0 V or VDD 

Normal Mode (Static) 2.8  2.8  mA max  SCLK on or off; VDD = 4.096 V 
 2 2 mA max SCLK on or off; VDD = 3.6 V 
Normal Mode (Operational) 2.6  2.6  mA max  fSAMPLE = 100 kSPS; VDD = 4.096 V; 1.75 mA typ 
 1.9 1.9 mA max fSAMPLE = 100 kSPS; VDD = 3.6 V; 1.29 mA typ 
Full Power-Down Mode  0.3  0.3  μA max  SCLK on or off 

Power Dissipation4     
Normal Mode (Operational)  10.65  10.65  mW max  fSAMPLE = 100 kSPS; VDD = 4.096 V 
 6.84 6.84 mW max  fSAMPLE = 100 kSPS; VDD = 3.6 V 
 3 3 mW typ VDD = 2.5 V 
Full Power-Down  1.23  1.23  μW max  VDD = 4.096V 
 1.08  1.08  μW max  VDD = 3.6 V 

                                                                    
1 Temperature range as follows: A, B Versions: −40°C to +85°C.  
2 See the Terminology section.  
3 Sample tested during initial release to ensure compliance. 
4 See the Power vs. Throughput Rate section. 
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TIMING SPECIFICATIONS1 
Table 4. VDD = 2.5 V to 5.5 V; TA = TMIN to TMAX, unless otherwise noted. 
 Limit at TMIN, TMAX   
Parameter 3 V 5 V  Unit Description  
fSCLK

2 250  250  kHz min   
 2.5  2.5  MHz max   
tCONVERT  20 × tSCLK  20 × tSCLK  min   
tQUIET  100 100  ns min Minimum quiet time required between bus relinquish and start of next conversion  
t1  10  10  ns min Minimum CS pulse width  
t2  10  10  ns min CS to SCLK setup time  
t3

3 48  35  ns max Delay from CS until SDATA three-state disabled  
t4

3  120  80  ns max Data access time after SCLK falling edge  
t5  0.4 tSCLK  0.4 tSCLK  ns min SCLK low pulse width  
t6  0.4 tSCLK  0.4 tSCLK  ns min SCLK high pulse width  
t7  10  10  ns min SCLK to data valid hold time  
t8

4 45  35  ns max SCLK falling edge to SDATA high impedance  
tPOWER-UP

5 1  1  μs typ Power up time from full power-down 
                                                                    
1 Sample tested during initial release to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of VDD) and timed from a voltage level of 1.6 V.  
2 Mark/space ratio for the SCLK input is 40/60 to 60/40. 
3 Measured with the load circuit of Figure 2 and defined as the time required for the output to cross 0.8 V or 2.0 V. 
4 t8 is derived form the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 2. The measured number is then extrapolated 

back to remove the effects of charging or discharging the 50 pF capacitor. This means that the time, t8, quoted in the timing characteristics is the true bus relinquish 
time of the part and is independent of the bus loading.  

5 See Power vs. Throughput Rate section. 
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Figure 2. Load Circuit for Digital Output Timing Specification 
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ABSOLUTE MAXIMUM RATINGS 
Table 5. TA = 25°C, unless otherwise noted. 
Parameter Rating 
VDD to GND  −0.3 V to +7 V 
Analog Input Voltage to GND −0.3 V to VDD + 0.3 V 
Digital Input Voltage to GND −0.3 V to +7 V 
Digital Output Voltage to GND −0.3 V to VDD + 0.3 V 
Input Current to Any Pin Except Supplies1  ±10 mA 
Operating Temperature Range  

Commercial (B Version) −40°C to +85°C 
Storage Temperature Range −65°C to +150°C 

Junction Temperature 150°C 
SOT-23 Package, Power Dissipation 450 mW 

θJA Thermal Impedance 229.6°C/W 
θJC Thermal Impedance 91.99°C/W 

MSOP Package, Power Dissipation 450 mW 
θJA Thermal Impedance 205.9°C/W 
θJC Thermal Impedance 43.74°C/W 

Lead Temperature, Soldering  
Vapor Phase (60 secs) 215°C 
Infared (15 secs) 220°C 

ESD 2 kV 
1Transient currents of up to 100 mA do not cause SCR latch-up. 

Stresses above those listed under Absolute Maximum Ratings 
may cause permanent damage to the device. This is a stress 
rating only; functional operation of the device at these or any 
other conditions above those listed in the operational sections 
of this specification is not implied. Exposure to absolute 
maximum rating conditions for extended periods may affect 
device reliability. 

 

 

 

 

 

 

 

 

 

 

 

ESD CAUTION 
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the 
human body and test equipment and can discharge without detection. Although this product features 
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy 
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance 
degradation or loss of functionality.  
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PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS 
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Figure 4. MSOP Pin Configuration 

 

 

Table 6. Pin Function Descriptions 
Pin No. 
SOT-23 

Pin No. 
MSOP Mnemonic  Function  

1 1 VDD  Power Supply Input. The VDD range for the AD7680 is from 2.5 V to 5.5 V.  
2 2, 3 GND  Analog Ground. Ground reference point for all circuitry on the AD7680. All analog input signals should 

be referred to this GND voltage.  
3 4 VIN Analog Input. Single-ended analog input channel. The input range is 0 V to VDD.  
4 5 SCLK  Serial Clock. Logic input. SCLK provides the serial clock for accessing data from this part. This clock 

input is also used as the clock source for the AD7680's conversion process.  
5 7 SDATA  Data Out. Logic output. The conversion result from the AD7680 is provided on this output as a serial 

data stream. The bits are clocked out on the falling edge of the SCLK input. The data stream from the 
AD7680 consists of four leading zeros followed by 16 bits of conversion data that are provided MSB 
first. This will be followed by four trailing zeroes if CS is held low for a total of 24 SCLK cycles. See the 

 section.  Serial Interface
6 8 CS  Chip Select. Active low logic input. This input provides the dual function of initiating conversions on 

the AD7680 and framing the serial data transfer.  
N/A 6 NC  No Connect. This pin should be left unconnected.  
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