
A deep learning assessment of spike detection
with multi-electrodes arrays

Pedro Corrêa Pereira Vasco de Lacerda

Thesis to obtain the Master of Science Degree in

Engineering Physics

Supervisor: Dr. Adam Raymond Kampff
Supervisor: Prof. Rui Manuel Agostinho Dilão

Examination Committee

Chairperson: Prof. Horácio João Matos Fernandes
Supervisor: Dr. Adam Raymond Kampff

Members of the Committee: Prof. Maria Teresa Ferreira Marques Pinheiro

April 2016

Acknowledgments

I would like to thank both my supervisors Dr. Adam R. Kampff and Prof. Rui Dilão for their guidance

through out this project, as well as, the Champalimaud Foundation,in particular the Intelligent Systems

laboratory for their unconditional help. I would like to thank my friends and family whose support was

essential for me to accomplished this work.

i

Abstract

To understand how the brain produces the diversity of behaviours observed in animals it is im-

portant to have quantitative methods to measure neural activity, particularly at the population level.

Recent developments in integrated circuit design and microfabrication have made possible the pro-

duction of large and dense multi-electrode arrays with hundreds of electrodes. However, computa-

tional methods to analyze the data recorded by these new generation probes did not keep up with the

technological evolution. In Neto et al. (2016), a ground-truth dataset from simultaneous in-vivo record-

ings of 128-channel dense extracellular silicon probe and a juxtacellular probe was first presented. In

this work, these data were used to evaluate the performance and limitations of a recent method for

spike detection proposed in Rossant et al. called SpikeDetekt. After, is reported the application of

methods for deep learning to perform detection of extracellular action potentials from the same data.

Different models are tested and applied to the same data. In all datasets the performance achieved

was equal or better than that achieved with SpikeDetekt. Finally limitations of this new method are

discussed and possible directions for improvement are proposed.

Keywords

Multi-electrode arrays, Extracellular Neurophysiology, Spike Detection, Deep Learning

iii

Resumo

Para compreender como o cérebro produz toda a diversidade do comportamento animal, é funda-

mental ter à nossa disposição métodos quantitativos e objectivos para medir a actividade neuronal,

em particular ao nı́vel de grandes populações de neurónios. Desenvolvimentos recentes no de-

sign de circuitos integrados e microfabrição permitiram a produção de sondas densas com múltiplos

eléctrodos e de grandes dimensões. No entanto, os métodos computacionais para analisar os dados

recolhidos com estas sondas de nova geração não acompanharam a evolução da tecnologia. Em

Neto et al. (2016), os autores apresentaram pela primeira vez dados de referência recolhidos in-vivo

simultaneamente de sondas de silı́cio com 128 canais e uma pipeta juxtacelular. Nesta trabalho,

estes dados for utilizados para avaliar o desempenho e limitações de um método para a detecção

de Potenciais de Acção Extracelulares recentemente proposto em Rossant et al. (2016) chamado

SpikeDetekt. De seguida, está relatada a aplicação de métodos de aprendizagem usando redes

neuronais artificiais profundas com o objectivo de fazer detecção de Potenciais de Acção Extracelu-

lares usando os mesmo dados. Foram testadas várias arquitecturas e configurações da rede com

os diferentes dados do conjunto. Em todos os casos, o desempenho utilizando esta técnica foi igual

ou melhor ao desempenho do SpikeDetekt. Concluo discutindo as limitações deste novo método e

propondo possı́veis direcções para melhoramentos.

Palavras Chave

Sondas de múltiplos eléctrodos, Neurofisiologia Extracelular, Detecção de potenciais de acção,

métodos de aprendizagem automática

v

Contents

1 Introduction 1

1.1 Introduction . 2

1.2 Motivation . 4

1.3 Document Outline . 5

2 SpikeDetekt and Neto et al. Dataset 7

2.1 Neto et al. 2016 . 8

2.1.1 Set-up design and protocol . 8

2.1.2 Dataset . 10

2.2 Methods . 12

2.2.1 Spike Detekt . 12

2.2.2 phy . 13

2.2.3 Cross-Correlograms . 14

2.3 Results . 14

3 Deep learning 21

3.1 Introduction . 22

3.2 Methods . 22

3.2.1 Supervised Learning . 22

3.2.1.A Linear Regression . 23

3.2.1.B Logistic Regression . 24

3.2.2 Artificial Neural Networks . 25

3.2.3 Deep Learning . 27

3.2.3.A Stochastic Gradient Descent . 27

3.2.3.B AdaGrad . 28

3.2.3.C Parameter Initialization . 28

3.2.3.D Loss Function . 29

3.2.3.E Regularization . 29

3.3 Results . 30

3.3.1 Hardware and Software setup . 30

3.3.2 Data Preparation . 31

3.3.3 Basic Model . 32

vii

3.3.4 Optimal Hyperparameters . 33

3.3.5 Application to Dataset from Neto et al. 36

3.4 Discussion . 38

4 Conclusions and Future Work 43

4.1 Conclusions . 44

4.2 Future Work . 44

Bibliography 47

Appendix A Cross-Correlograms per electrode A-1

viii

List of Figures

2.1 In vivo paired-recording setup: design and method. (a) Schematic of the dual-probe

recording station. The PS micromanipulator drives the juxtacellular pipette and the

IVM manipulator drives the extracellular polytrode. The setup includes a long work-

ing distance microscope assembled from optomechanical components mounted on a

three-axis motorized stage. The alignment image provides a high-resolution view from

above the stereotactic frame, upper left, however a side-view can also be obtained

for calibration purposes, upper right (scale bar 100µm). (b) Schematic of a coronal

view of the craniotomy and durotomies with both probes positioned at the calibration

point. The distance between durotomies, such that the probe tips meet at deep layers

in cortex, was around 2 mm. The black arrows represent the motion path for both elec-

trodes entering the brain (scale bar 1 mm). (c) Diagram of simultaneous extracellular

and juxtacellular paired-recording of the same neuron at a distance of 90µm between

the micropipette tip and the closest electrode on the extracellular polytrode (scale bar

100µm). 9

2.2 Paired extracellular and juxtacellular recordings from the same neuron (a) Represen-

tative juxtacellular recording from a cell in layer 5 of motor cortex, 68µm from the ex-

tracellular probe (2014 10 17 Pair1.0), with a firing rate of 0.9 Hz. (b) The juxtacellular

action potentials are overlaid, time-locked to the time of positive peak, with the average

spike waveform superimposed in green (n= 442 spikes). (c) Representative extracel-

lular recording that corresponds to the same time window as the recording in panel A.

Traces are ordered from upper to lower electrodes and channel numbers are indicated.

(d) Extracellular waveforms, aligned on the juxtacellular spike peak, for a single chan-

nel (channel 18). (e) the juxtacellular triggered average (JTA) obtained by including

an increasing number of juxtacellular events (n as indicated). (f) Spatial distribution of

the amplitude for each channel’s extracellular JTA waveform. The peak-to-peak ampli-

tude within a time window (+/- 1 ms) surrounding the juxtacellular event was measured

and the indicated color code was used to display and interpolate these amplitudes

throughout the probe shaft. (g) The JTAs are spatially arranged. The channel with

the highest peak-to-peak JTA (channel 18) is marked with a black (*) and the closest

channel (channel 9) is marked with a red (*). 11

ix

2.3 Presentation of the recording used in this project. Here are presented the spatial distri-

bution of the peak-to-peak amplitude of the Juxta-Triggered Averages, illustrated as a

interpolated heatmap. In addition, the extracellular JTA waveforms for all the extracel-

lular electrodes are spatially arranged . 12

2.4 Auto-Correlograms for all the recordings. The size of the bins in the histograms is 1 ms

and the value for the lag is 50ms. 15

2.5 Cross-Correlograms for all the recordings. The size of the bins in the histograms is 1

ms and the value for the lag is 50ms. 16

2.6 Examples of masks on the events whose assigned times (on top of each plot, in ms) is

closest to the times from the juxta neuron. 18

2.7 Average mask and its standard deviation of the events whose times were closest to the

times from the juxta neuron. 19

3.1 Graphical visualization of an illustrative example of an artificial neural network. This

ANN is composed by three layers with three neurons on the first two and one neuron

on the output layer. The connections between all the neurons are also represented,

in addition to the connection to the bias term represented by the extra nodes on the

bottom with the label ”+1”. 25

3.2 Study on Learning Rate. Loss function and accuracies in the training set and in the

validation set.The weight decay was fixed at λ = 0.001, and the initialization method

was LeCun Uniform. 34

3.3 Study on Learning Rate - zoomed. Loss function and accuracies in the training set

and in the validation set.The weight decay was fixed at λ = 0.001, and the initialization

method was LeCun Uniform. 35

3.4 Study on weight decay. Loss function and accuracies in the training set and in the

validation set. LeCun uniform was used and the Learning Rate was set to η = 0.01. . . 36

3.5 Study on weight decay - zoomed. Loss function and accuracies in the training set and in

the validation set. LeCun uniform was used and the Learning Rate was set to η = 0.01. 37

3.6 Study on Initialization Methods- zoomed. Loss function and accuracies in the training

set and in the validation set.The weight decay was fixed at λ = 0.01 and the Learning

Rate was set to η = 0.001. 38

3.7 Study on Different Initialization. Loss function and accuracies in the training set and in

the validation set.The weight decay was fixed at λ = 0.01 and the Learning Rate was

set to η = 0.001 and the initialization method was LeCun Uniform. 39

3.8 Study on Depth. Loss function and accuracies in the training set and in the validation

set.The learning rate was η = 0.001, the weight decay was fixed at λ = 0.01, and the

initialization method was LeCun Uniform. 40

x

3.9 Study on Different Recordings. Loss function and accuracies in the training set and

in the validation set.The learning rate was η = 0.01, the weight decay was fixed at

λ = 0.001, and the initialization method was LeCun Uniform. On the legend on the top

is the Cell ID and on the legend on the bottom are the P2P amplitude (in µV). 41

A.1 Cross-Correlograms between the juxta spikes and the phy-detected events on each

electrode. On the left is the bottom half of the probe and on the right top half of the

probe. The size of the bins in the histograms is 1 ms and the value for the lag is 50ms. A-2

xi

List of Tables

2.1 Information about the recordings used. The values on the ”Recording ID” are conform

the dataset provided by [25]. For convenience, a Short ID will be used throughout this

document. P2P stands for Peak-to-Peak Amplitude calculated as the maximum value

across electrodes of the difference between the maximum and minimum values of the

JTA. In the fifth column are the values of the depth in the cortex. In the last column are

the number of spikes detected in the signal from the Juxtacellular pipette. 10

2.2 Summary of the output from SpikeDetekt. In this table are the values of the estimated

standard deviations of the noise, and the calculated weak and strong thresholds for

each recording. These values were converted into µV . 16

2.3 Correction of the cross-correlograms central peak. 17

3.1 In this table are presented, for each recording, the number of examples labeled as ”1”

and its fraction in the Input Data, and separated in the Training Set and Validation Set.

The total number of examples in the Input Data, Training Set and Validation Set are

199980, 139986 and 59994, respectively . 32

3.2 In this table are presented the total number of examples and the number of examples

labeled as ”1” as well its fraction on the Training Set and Validation Set after upsampling

was performed. 32

3.3 Values of the True Positives (TP), True Negatives (TN), False Positives (FP) and False

Negatives (FN) at the end of the training, along with the value of the True Positive Rate

(TPR). The accuracies achieved with SpikeDetekt in Chapter 2 are also presented. . . 37

xiii

Abbreviations

AC Auto-Correlogram

ANN Artificial Neural Network

AP Action Potential

CC Cross-Correlogram

DNN Deep Neural Network

EAP Extracellular Action Potential

FN False Negatives

FP False Positives

GPU Graphics Processing Unit

IAP Intracellular Action Potential

MSE Mean Squared Error

PCA Principal Component Analysis

P2P Peak-to-Peak

RELU Rectified Linear Unit

SD SpikeDetekt

SGD Stochastic Gradient Descent

SNR Signal-to-Noise Ratio

TN True Negatives

TP True Positives

TPR True Positive Rate

TS Training Set

VS Validation Set

xv

1
Introduction

Contents
1.1 Introduction . 2
1.2 Motivation . 4
1.3 Document Outline . 5

1

1.1 Introduction

Between the neuron and the extracellular medium there is a voltage difference called the mem-

brane potential. When at rest, the membrane potential is negative, around -70mV. Changes in the

extracellular environment, for example synaptic activity coming from neurons upstream, can cause

the membrane potential to vary. In the membrane there are also voltage-gated ion channels whose

molecular structure reacts to the value of the membrane potential. When the membrane potential

exceeds a certain threshold the ion channels open, allowing ions (such as Na+ and K+) to flow in

and out of the neuron. This causes an abrupt change in the membrane potential called an action

potential (AP). The AP is a fast, transient, and stereotypical fluctuation in the membrane potential

of the nervous cell, commonly referred to as a spike. The AP propagates along the neuron follow-

ing a consistent trajectory from the soma (the neuron’s body) through the axon on to the synapse.

Consequently, as ions flow during the propagation of the AP they cause a disturbance in the charge

distribution of the extracellular medium, producing the extracellular action potential (EAP). The EAP

is also observed to propagate outwards in the extracellular medium. [18]

While intracellular action potentials (IAP) are very stereotyped, the EAP waveforms show a much

larger variability. Not only morphological aspects of the neuron influence the characteristics of the

EAP, but as the AP is propagated intracellularly there is a continuous generation of EAPs down the

axon and, in some neurons, excitable dendritic structures. This leads to a complex propagation of the

EAP through the extracellular medium. [9] [27]

Despite this complexity, extracellular electrophysiological recordings are still the most widely used

technique to study the dynamics of neural activity. During extracellular recordings, the voltage fluctua-

tions that surround the electrodes are measured, with the goal of detecting EAPs generated relatively

close to the electrode site. In order to detect such EAPs, the signal is acquired as a time series and

then, usually offline, the data is processed and spike detection is performed, where the researcher

tries to find the timepoints at which an AP took place. The detected spike waveforms are then as-

signed to individual neurons, through a process called spike sorting.

At first, using single sharp electrodes, researchers were able to detect and sort reliably the activity

of one or two neurons in the vicinity of each electrode. Using a tetrode configuration (four electrodes

fairly close to each other), it is now possible to isolate up to 20 neurons ([23], [10], [36], [29]) in the

vicinity of each probe. This increase is understandable. Due to the complexity of the propagation of

the EAPs different neurons have not only different firing times but also a different set of waveforms

acquired by the various electrodes. These spatiotemporal profiles (sometimes referred to as the

”neuron’s footprint”) depend not only on the type of neuron but also on the position and orientation

of the probe in relation to the morphology of the firing neuron. By having a larger number of active

sites in different positions of the extracellular medium, consistent differences across recorded EAPs

in each site can be used to further sort the detected spikes.

This led neuroscientists to seek out probes with more and more electrodes. Advances in micro-

fabrication made it possible to produce probes with hundreds of electrodes densely positioned across

2

large distances (∼ 500µm) (http://www.neuroseeker.eu/). Employing modern methods for integrated

circuit design and fabrication, probes with thousands or even millions of discrete sites are now being

developed. [5], [33], [34]

For tetrode data, it is possible to achieve sorting error rates of 5% or lower ([12]). However, the

algorithms that performed fairly well on data from tetrodes do not work on the these new-generation

probes. This happens due to the high dimensionality of the data: ”the curse of dimensionality” greatly

affects the performance of the automated part of the algorithm, and makes the manual inspection

much harder.

While many different methods for spike sorting have been proposed, no method has proved robust

enough to be widely adopted by the experimental community. Furthermore, since these new gener-

ation probes are larger, they are prone to sensing spatially overlapping spikes as well as temporally

overlapping spikes, which doesn’t happen very often with tetrodes. When EAPs from different neu-

rons are present on the same electrode they interfere with each other constructively and destructively.

This resulting waveform, if detected, will be marked as a single event and will make the sorting much

harder. When two EAPs occur at the same time but sensed in different parts of the probe, most

algorithms will only detect one event since they don’t consider different spatial regions on the probe.

The right estimation of the moment when the EAP is recorded is crucial for the success of the sorting

phase.

In Rossant et al. [30], a method was developed that uses the information about the relative posi-

tion of electrodes in a multi-electrode array in order to take advantage of the “neuron footprints”. This

method comprises a spike detection algorithm (SpikeDetekt) and a spike sorting algorithm (KlustaK-

wik). To study the performance of these algorithms it is necessary to have a ground-truth data, but

at the time of the writing of Rossant et al. such a dataset didn’t exist for dense extracellular probes

and for that reason they used a simulated dataset by superimposing data from recordings where one

neuron was identified. With this hybrid dataset, the authors report to have achieved errors rates as

low as 5%.

In Neto et al., they performed in-vivo paired recordings with a juxtacellular pipette and new gen-

eration dense silicon probes with both 32 and 128 electrodes. With this dataset it is possible to have

precise determination of when a single identified neuron was active. With this information it is possible

to compute triggered averages allowing for the study of the propagation of the EAP. This allows the re-

searcher the rare opportunity to directly compare the extracellular probe recordings with ground-truth

data from one of the neurons in the recorded volume. Also, with this dataset it is possible to evaluate

the performance and limitations of spike detection and spike sorting algorithms.

On the other hand, these paired recordings can also be seen as labelled datasets where each

portion of the extracellular recording is assigned a classification regarding whether or not it contains

an EAP from the neuron recorded by the juxtacellular probe. This provides a suitable dataset for the

use of machine learning techniques, in particular, supervised learning.

Machine Learning is a sub-field of computer science that studies and develops algorithms meant

to find new structure or rules to explain a given experiment or phenomenon. In machine learning, a

3

computer receives a set of examples of inputs and it tries to determine the dependence between them.

For example, given a large number of pairs of height and weight from many people, the computer tries

to determine hidden relations between one parameter and the other.

Moreover, the relations found by the computer should be generalizable to regions of the input

space where no example was provided. If this is accomplished it is said that the computer found a

predictor. In other words, scientists want to be able to predict the right output of the phenomenon

under study even in situations that weren’t considered in the set of examples. In cases where each

of the input examples is paired with the “correct answer” that a model should output, we have a

supervised learning problem.

When applying machine learning, a model or an heuristic must be chosen a priori. This assumption

conditions the success of the learning. One such model can be a linear dependence between inputs

and outputs. However, in many situations, this model is too simple to yield satisfactory results. In

particular in the case of classification task, the boundary in the input space that separates the classes

may not be a plane, and therefore the linear model is not a good classifier.

For this reason, Artificial Neural Networks (ANN) were invented. These are a family of models

inspired by the biological neural networks of the brain. In these models, many simple computational

units called artificial neurons are connected together in order to yield much more complex computa-

tions, allowing them to solve hard classification problems where the decision boundary is very com-

plex.

In this framework, a model is defined by determining how the artificial neurons are connected.

When determining the model in the ANN framework, it is necessary to choose its architecture: how

many artificial neurons, how many layers, how many neurons per layer and how they are connected

to each other. However, the training of ANN was very complicated until the advent of the backprop-

agation method for computation of gradients in 1970s. But even after this, deep neural networks

(ANNs with more than 3 layers) would suffer from the problem of the “vanishing gradients”, making

the training extremely slow ([16]).

Although shallow neural networks (ANNs with at most 3 layers) can be used to learn many difficult

tasks, Deep Neural Networks (DNN) were always theoretically more appealing since in each layer lies

a more abstract representation of the input layer, and therefore could be more “human-like” ([32]).

However, only in 2006 could DNNs be properly trained due to discoveries on initialization methods

([14], [2]) and the use of GPU accelerated algorithms. ([28]) Since then, deep neural networks

have been used on tasks such as image and speech recognition and in some cases have achieved

“superhuman” levels of accuracy.

1.2 Motivation

The brain is observed to be capable of a great variety of faculties from motor control of the body to

much more abstract tasks such as planning, decision making. To perform such operations, neurons

are arranged in a network fashion. However, while the functioning of individual brain cells is now

4

known in significant detail, the way they work collectively still remains to be understood.

To tackle this problem population-wide recordings are necessary. However, these usually are very

complex and difficult to extract information from, namely in the case of extracellular electrophysiolog-

ical recordings with modern multi-electrode arrays.

Careful exploration and characterization of the data output by these techniques is therefore paramount.

It should then be possible to assess the possibilities and limitations of these methods.

With this knowledge one can hope to answer the questions mentioned above and expand our

horizons. This will beget new questions and improvements on our technology for fundamental science

as well as for clinical diagnostic purposes.

1.3 Document Outline

In the present document is reported the attempt of applying methods from deep learning to the

task of spike detection. In Chapter 2, the dataset from Neto et al is presented in detail and how it was

acquired. The results of applying SpikeDetekt to the dataset are presented and its accuracy asserted.

In Chapter 3, some of methods of machine learning and deep learning are defined and explained and

then the results from the implementation of such algorithms to generate a spike detection method

for multi-electrode array recordings are presented and are compared to the results from SpikeDetekt.

Finally, in the conclusion chapter the significance of the results obtained are discussed and a proposal

for future steps to be taken is given.

5

6

2
SpikeDetekt and Neto et al. Dataset

Contents
2.1 Neto et al. 2016 . 8
2.2 Methods . 12
2.3 Results . 14

7

In this chapter, I assess performance and limitations of SpikeDetekt using the ground-truth data

provided by Neto et al. First the data is explained in detailed as are the methods utilized. The results

are presented and discussed.

2.1 Neto et al. 2016

In [25], 2016 they described in detail a procedure for precisely aligning two probes for in vivo

“paired-recordings” such that the spiking activity of a single neuron is monitored with both a dense

extracellular silicon polytrode and a juxtacellular micro-pipette. A “ground truth” dataset was acquired

from rat cortex with 32 and 128-channel silicon polytrodes and it is available online (http://www.kampff-

lab.org/validating-electrodes). A brief description of the dual-recording setup design and protocol are

presented below. In Section 2.1.2, the dataset is presented

2.1.1 Set-up design and protocol

In Fig. 2.1a is presented a schematic of the dual-probe recording station where two aligned,

multi-axis micromanipulators (Scientifica, UK) and a long working distance optical microscope are

required to reliably target neural cell bodies located within ∼ 100µm of the polytrode electrode sites

without optical guidance. A “PatchStar” (PS) and an “In-Vivo Manipulator” (IVM) are mounted on

opposite sides of a rodent stereotaxic frame with different approach angles, 61◦ and −48.61◦ from the

horizontal, respectively (Fig 2.1b).

Rats (400 to 700 g, both sexes) of the Long-Evans strain were anesthetized with a mixture of

Ketamine (60 mg/kg intraperitoneal, IP) and Medetomidine (0.5 mg/kg IP) and placed in the stereo-

taxic frame. Anesthetized rodents underwent a surgical procedure to remove the skin and the skull to

expose the targeted brain region. Two reference electrodes Ag-AgCl wires (Science Products GmbH,

E-255) were inserted at the posterior part of the skin incision on opposite sides of the skull.

Each paired-recording experiment began with the optical “zeroing” of both probes. Each probe

was positioned, sequentially, at the center of the microscope image (indicated by a crosshair) and the

motorized manipulator coordinates set to zero (Fig. 2.1a). As shown in Fig. 2.1b, this alignment is

performed directly above the desired rendez-vous point inside the brain, as close as possible above

dura, usually between 1 and 4 mm, but far enough to reduce background light reflected from the

brain surface into the microscope image. The distance reported is the Euclidean distance between

the tip of the pipette and the closest extracellular electrode. After both the extracellular probe and

juxtacellular pipette positions were sequentially “zeroed” to the center of the microscope image, the

extracellular probe was inserted first, at a constant velocity of 1µm.s−1, automatically controlled by

the manipulator software. When the extracellular probe was in place, the juxtacellular pipette, pulled

from 1.5 mm capillary borosilicate glass (Warner Instruments, USA) and filled with PBS 1x, was then

lowered through a second durotomy. The juxtacellular pipette with a long thin taper had typical tip

diameter of 1 − 4µm and resistance of 3 − 7MΩ. As the electrode was advanced towards a cell

membrane, we observed an increase in the pipette resistance. If spikes were observed a slight

8

A B

C

R

S

T

Z

X

M1
M2

Z

X

Top (alignment) Side (calibration)

Figure 2.1: In vivo paired-recording setup: design and method. (a) Schematic of the dual-probe recording
station. The PS micromanipulator drives the juxtacellular pipette and the IVM manipulator drives the extracellular
polytrode. The setup includes a long working distance microscope assembled from optomechanical components
mounted on a three-axis motorized stage. The alignment image provides a high-resolution view from above
the stereotactic frame, upper left, however a side-view can also be obtained for calibration purposes, upper right
(scale bar 100µm). (b) Schematic of a coronal view of the craniotomy and durotomies with both probes positioned
at the calibration point. The distance between durotomies, such that the probe tips meet at deep layers in cortex,
was around 2 mm. The black arrows represent the motion path for both electrodes entering the brain (scale
bar 1 mm). (c) Diagram of simultaneous extracellular and juxtacellular paired-recording of the same neuron at a
distance of 90µm between the micropipette tip and the closest electrode on the extracellular polytrode (scale bar
100µm).

suction was applied to obtain a stable attachment to the cell membrane. As the juxtacellular electrode

was advanced through the brain, several neurons were encountered at different locations along the

motion path and, consequently, at different distances from the extracellular polytrodes.

All experiments were performed with two different high-density silicon polytrodes. A commercially

available 32-channel probe (A1x32-Poly3-5mm-25s-177-CM32, NeuroNexus, USA), with 177µm2 area

electrodes (iridium) and an inter-site pitch of 22 − 25µm, was used in the first experiments. In

later experiments, they used a 128-channel probe produced in the collaborative NeuroSeeker project

(http://www.neuroseeker.eu/) and developed by IMEC using CMOS-compatible process technology.

These probe electrodes were 400µm2 (20× 20µm2) large arranged at a pitch of 22.5µm

Extracellular signals in a frequency band of 0.1-7500 Hz and juxtacellular signals in a frequency

band of 300-8000 Hz were sampled at 30 kHz with 16-bit resolution and were saved in a raw binary

format for subsequent offline analysis using a Bonsai interface. [22]

9

2.1.2 Dataset

The dataset consists of twenty-three paired recording with a distance of less than 200µm between

the targeted neuron and the closest extracellular electrode. These were acquired from twenty-three

cells, from the cortex of several anesthetized rats.

On Fig. 2.2a is an example of the signal acquired from using the juxtacellular pipette, which,

with an amplitude of around 4mV , reveals the typical high SNR signal this probe yields. On the

Fig.2.2b, many of the spikes were aligned and plotted together. We can see that this waveform keeps

it shape over the course of the recording. In this case, as is in most of the recording, it has a positive-

before-negative biphasic waveform, which is indicative that there was a good coupling between the

pipette and the neuron’s soma (Herfst et al, 2012). However, in two cases, used in this project,

the waveform has a negative-before-positive profile indicating incomplete contact between the cell

membrane and the pipette, lowering the signal-to-ratio (SNR) significantly but remaining detectable.

(2015 09 03 Pair9.0 and 2015 09 04 Pair5.0)

With such a high SNR, one can reliably use a simple threshold-based detector to calculate the

times (hereafter juxta times) at which the juxta neuron spiked. The earliest extracellular recordings

in the dataset were done using the 32-channel probe. Part of one of these recordings after the high-

pass filter is illustrated in Fig. 2.2c. Each of these traces are plotted next to its neighbors, according

the geometry of the probe. Most of the spikes are sensed by many electrodes revealing a coherent

region of influence. This signal usually doesn’t have a high SNR, as can be seen in Fig. 2.2d. To get

the waveform of the EAP on this probe we perform Juxta-Triggered Averages (JTAs), where windows

of 4 ms centered on the juxta spikes are averaged so that the noise decreases and the waveform

becomes clear. In Fig 2.2g are represented the JTAs of each electrode in its correct position in the

32-channel probe. It is possible to see that the EAP has a different waveform on different electrode

sites. They are also displaced in time: on electrodes farther way, the waveform is delayed with respect

to one on a electrode closer to the neuron. The JTA peak-to-peak (P2P) amplitude for each channel

interpolated within the electrode site geometry, sometimes called “the cell footprint” (Delgado Ruz and

Schultz, 2014), is shown in Fig. 2.2f.

During the course of this project 5 recordings where the 128-channels probe was used. These are

presented in Fig. 2.3 and summarized in Table 2.1.

Recording ID Short ID Distance (µm) P2P (µV) Depth (µm) # Juxta spikes
2015 09 09 Pair7.0 997 136.2 ± 40 20.7 1032.8 1082
2015 09 04 Pair5.0 945 96.1 ± 40 30.8 1185.5 185
2015 09 03 Pair6.0 936 153.3 ± 40 24.1 1063.2 3329
2015 09 03 Pair9.0 939 11.5 ± 40 416.3 1152.8 5007
2015 08 21 Pair3.0 8213 132.8 ± 40 19.4 1286.0 8117

Table 2.1: Information about the recordings used. The values on the ”Recording ID” are conform the dataset
provided by [25]. For convenience, a Short ID will be used throughout this document. P2P stands for Peak-to-
Peak Amplitude calculated as the maximum value across electrodes of the difference between the maximum and
minimum values of the JTA. In the fifth column are the values of the depth in the cortex. In the last column are
the number of spikes detected in the signal from the Juxtacellular pipette.

We have some variability in this ensemble. The recording 939 was recorded very closed to the

10

0
31
24
7
1
21
10
30
25
6
15
20
11
16
26
5
14
19
12
17
27
4
8
18
13
23
28
3
9
29
2
22

C
h

a
n

n
e

ls

100 μV

400 μV 200 ms

1 ms

n=50

n=10

n=100

n=200

n=400

50 μV

1 ms

100 μV

1 mV

200 ms

36 μV

24 μV

12 μV

4 μV

Peak-to-Peak Amplitude

2 ms

1 mV

36 μV

*

*

A B

C D

E

F G

Figure 2.2: Paired extracellular and juxtacellular recordings from the same neuron (a) Representative juxtacel-
lular recording from a cell in layer 5 of motor cortex, 68µm from the extracellular probe (2014 10 17 Pair1.0),
with a firing rate of 0.9 Hz. (b) The juxtacellular action potentials are overlaid, time-locked to the time of positive
peak, with the average spike waveform superimposed in green (n= 442 spikes). (c) Representative extracellular
recording that corresponds to the same time window as the recording in panel A. Traces are ordered from upper
to lower electrodes and channel numbers are indicated. (d) Extracellular waveforms, aligned on the juxtacellular
spike peak, for a single channel (channel 18). (e) the juxtacellular triggered average (JTA) obtained by including
an increasing number of juxtacellular events (n as indicated). (f) Spatial distribution of the amplitude for each
channel’s extracellular JTA waveform. The peak-to-peak amplitude within a time window (+/- 1 ms) surrounding
the juxtacellular event was measured and the indicated color code was used to display and interpolate these
amplitudes throughout the probe shaft. (g) The JTAs are spatially arranged. The channel with the highest peak-
to-peak JTA (channel 18) is marked with a black (*) and the closest channel (channel 9) is marked with a red
(*).

11

Figure 2.3: Presentation of the recording used in this project. Here are presented the spatial distribution of the
peak-to-peak amplitude of the Juxta-Triggered Averages, illustrated as a interpolated heatmap. In addition, the
extracellular JTA waveforms for all the extracellular electrodes are spatially arranged

neuron and therefore has a very large P2P amplitude and lies above the noise; it also recorded many

spikes. The recording 945 has a very low count of spikes and relatively low P2P amplitude. For this

reason its JTA is not very well defined. Despite its low P2P amplitude, the recording 8213 is the one

with the most events, making its JTA reasonably defined.

In Fig. 2.3, the spatiotemporal profile of each recording is noticeable and centered around the

closest electrode in the probe.

2.2 Methods

2.2.1 Spike Detekt

To my knowledge, SpikeDetekt (SD) [30] is the spike detection algorithm that yields the best re-

sults, in reasonable human and computational time.

12

To deal with the problem of overlapping spikes SpikeDetekt uses (user-provided) information about

geometry of the probe. This information consists of the electrodes positions and the adjacency graph

that defines ”neighbour” electrodes.

This method uses a Butterworth filter on the first stage. Then it uses a double-threshold detection:

the user defines a ”weak threshold” and ”strong threshold”. The parts of the signal whose amplitude

exceeds the weak threshold define a contiguous region in time as well as in space (according to the

adjacency graph) and at least one data point must exceed the strong threshold. This region is called

a connected component. To define this region SpikeDetekt uses the flood fill algorithm (commonly

used in computer vision). This approach avoids both spurious detection of noise events and prevents

the same spikes from being detected more than once.

After detection, spike times are calculated as the center of mass of the signal that lies above the

weak threshold for each channel. This results in several spike times therefore it is necessary to align

the waveforms, i.e., shift each window

With the aligned waveforms, SpikeDetekt performs Principal Component Analysis (PCA) as a Fea-

ture Extraction method and the three most significant components are kept. Along with this feature

vector a mask vector is calculated, so that to each detected event and each channel a number be-

tween zero and one is assigned: zero if the peak amplitude of the waveform sensed by that channel

doesn’t reach the weak threshold and one if the peak amplitude exceeds the strong threshold. Oth-

erwise this number is assigned according to a function of the peak amplitude, for example, a linear

function.

The mask vector ensures that temporally overlapping spikes with similar feature vector are distin-

guishable, and treated individually.

The output of SpikeDetekt is passed through to KlustaKwik where spikes are sorted with an unsu-

pervised learning algorithm called Masked Expectation-Maximization algorithm. This stage produces

a number of putative neurons (classes) with spikes assigned to them.

Finally, a human operator inspects the results and manually reclassifies them if necessary.

SpikeDetekt requires the user to define many parameters prior to running: most significantly the

weak and strong thresholds. Rossant et al. report that the optimal values for these parameters are

θw = 2σnoise and θs = 4.5σnoise where σnoise is the standard deviation of the noise for each channel

which is estimated as the standard deviation estimator sn−1 of a some time windows of the filtered

signal randomly chosen from the whole recording.

These values were obtained evaluating the detection performance against hybrid labeled data

(data composed by several labeled dataset acquired by the same 32-channel probe).

2.2.2 phy

As of the summer of 2015, Klusta-Team made phy available. phy is a python package for python

3.4 that allows researchers to use the API from SpikeDetekt in a modular way importing only what is

necessary. phy can also be run as a command-line operation.

In the context of this project, before running phy it was necessary to convert the binary data from

13

Neto et al. into a binary file with the struture and data type that phy expects to read. The binary file

must be a flat array of 16-bit integer with the following structure:

t1C1, t1C2, . . . , t1CN , . . . tTC1 . . . tTCN

The command ”phy detect filename.prm” was used to run the SpikeDetekt algorithm. The .prm file

stores all the user-defined parameters necessary for SpikeDetekt to work. The relevant output of this

command are a .kwik file (an HDF5 file with the spike times) and a .kwx file (an HDF5 file containing

the extracted PCA features and the masks for each detected spike).

2.2.3 Cross-Correlograms

To analyze neural activity in the brain, scientists often look into the temporal correlation of the

recorded signals. If the correlation of the signal f and signal g is defined as:

(f ∗ g) (τ) =

∫ +∞

−∞
f (t) g (τ + t) dt (2.1)

where τ is called the time delay.

If the signals are uncorrelated, their correlation will appear flat. If there exists some correlation (or

even causality) between the two signals their correlation will behave interestingly (not trivial), e.g., if

the second neuron always spikes 1 ms after the first one, there will be a peak when τ = −1.

When performing this kind of analysis, spike signals are usually represented as a sequence of

times when the neuron spiked or as a time series of 0’s and 1’s, if a sparse representation is preferred.

These are called spike trains.

This analysis is usually done by means of calculating cross-correlograms (CCs). These are the

graphical form of the cross-correlation between to signals, typically in the form of histograms.

Another useful calculation is the auto-correlogram (AC) which the cross-correlograms of a signal

with itself. This should have a very high count when which is uninformative and usually omitted. It is

used to verify if there are a significant number of events with delays smaller than the refractory period;

if so, the detection of spikes or the sorting was faulty.

In this document, spike trains were sequences of times at which events occurred. To calculate the

cross-correlograms, the two spike trains were compared by subtracting every element of one spike

train to every element of the second. Then, values of this difference that were larger than a certain

value (referred to as lag) were discarded. Finally the histogram of this sequence is plotted.

2.3 Results

To be sure about the quality of the juxtacellular recording, auto-correlograms were computed for

each recording (Fig. 2.4).

All the auto-correlograms display a usual distribution, clearly showing a gap in the interval from

-5ms to 5ms, assuring that the cell never spiked twice within a 5ms interval, which conforms with the

typical values of refractory period of 2− 3ms.

It is worth noting that on the auto-correlogram corresponding to the recording 939 a second peak

is resolved around τ = −9ms and τ = 9ms.

14

-40 -20 0 20 40

100

200

300

400

8213

-40 -20 0 20 40

50

100

150

936

0

939

0.5

1.0

1.5

2.0
945

997

0

200

0

500

-40 -20 0 20 40 -40 -20 0 20 40
0.0

-40 -20 0 20 40

10

20

30

40

0

50

60

70

1200

1600

800

400

delay (ms)delay (ms)

delay (ms) delay (ms)

delay (ms)

Figure 2.4: Auto-Correlograms for all the recordings. The size of the bins in the histograms is 1 ms and the value
for the lag is 50ms.

For each recording, SpikeDetekt was run with the following parameters: The data was filtered

with a forwards-backwards Butterworth filter of order 3 with cutoff frequency set to 500Hz. The noise

standard deviation, σnoise, was evaluated in 50 excerpts of 1 second each. The weak threshold was

θw = 2σnoise and the strong threshold was θs = 4.5σnoise.

The results are presented in table 2.2.

In Fig. 2.5 are the whole-probe cross-correlograms for the recordings, where for each detected

spike, all electrodes whose corresponding mask value was non-zero were used.

In Appendix A are the cross-correlograms per channel for the neuron 939, where the spike train

15

Recording ID # detected Spikes σnoise (µV) θW (µV) θS (µV)
8213 148762 12.95 25.91 58.30
936 323629 10.76 21.52 48.43
939 265476 10.51 21.02 47.29
945 126234 10.92 21.84 49.14
997 156932 11.47 22.93 51.60

Table 2.2: Summary of the output from SpikeDetekt. In this table are the values of the estimated standard
deviations of the noise, and the calculated weak and strong thresholds for each recording. These values were
converted into µV .

40 20 0 20 40
0

1000

2000

3000

4000

5000

6000

8213

delay (ms)

40 20 0 20 40
0

2000

4000

6000

8000

10000
939

delay (ms)
40 20 0 20 40

0

20

40

60

80

100

120

140

160

945

delay (ms)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

936

delay (ms)

-40

-40 -20 0 20 40

-20 0 20 40
delay (ms)

0

100

200

300

400

500

600

700
997

Figure 2.5: Cross-Correlograms for all the recordings. The size of the bins in the histograms is 1 ms and the
value for the lag is 50ms.

16

output by SpikeDetekt was split according to the electrode the spike was detected on using the masks.

It is noticeable that the peak only appears in some channels, which are the ones where the JTA has

a larger amplitude in Fig. 2.3.

In Fig 2.5, all cross-correlograms present a somewhat coherent distribution. This means that, for

every value τ in the considered interval, there exists some temporal correlation between the juxta

neuron and the activity of the rest of the neurons in the recorded volume. This is to be expected.

According to Ruiz-Mejias et al. [31], the use of ketamine as anesthesia in rats provokes the synchro-

nization in the population activity in many cortical areas, including the motor cortex. This gives rise

to ”up” and ”down” states, where most neurons in the population are firing or silent, respectively. In

addition, they report that the frequency of oscillation of these states is, on average, 0.97Hz, which is

close to the firing rates reported in Neto et al.

Only on the cross-correlogram corresponding to the recording 939 can we see a distinct peak

when τ = 0ms, on top of the correlation with the background activity. This means that SpikeDetekt

managed to find juxta neuron.

On the rest of the cross-correlograms in Fig 2.5, the peak around the central bin is never very

clear. In fact, in the case of the recordings 8213 and 936, the peak is even shifted to τ = 1ms. This

could justify a more careful examination setting the size of the bin used in the histograms to a smaller

value.

To calculate the number of events corresponding to the juxta neuron, it is necessary to remove

the counts from the correlation with the background activity. To estimate this value, the average of

the counts in the bin neighboring bins (τ = −1ms and τ = 1ms) was computed and subtracted to the

counts in the central bin. The results are in table 2.3.

Recording Bin Counts Corrected Number Accuracy
ID τ = 0 τ = −1 τ = 1 Counts of JS
8213 5725 5642 5810 -1 7760 -0.01%
936 4377 4357 4465 -34 3329 -1.02%
939 9202 6701 7092 2305.5 4947 46.60%
945 144 137 120 15.5 185 8.38%
997 691 689 650 21.5 1082 1.99%

Table 2.3: Correction of the cross-correlograms central peak.

In most cases, SpikeDetekt yields a detection accuracy close to zero. This is not surprising con-

sidering the algorithm followed in SpikeDetekt. The maximum P2P amplitude of JTAs of these cases

lies between 19.4µV and 30.8µV and the strong threshold is always larger than 48.43 µV . Since it is

required that at least one sample in a connected component be larger than the strong threshold these

spikes are never detected. Two possible explanations exist for this number of detected events. First,

the neuron may have spiked simultaneously to a large noise fluctuation causing it to be detected.

Secondly, the connected components of these spikes could have been connected with the connected

component of other spike which exceeded the strong threshold. This would result in the detection

one single spike where the computed spike time was closer to the corresponding juxta spike time and

17

therefore contributed to the central bin in the cross-correlograms.

Even in the recording 939 the detection rate is fairly low, considering it has a very large P2P am-

plitude. In fact, the connect component corresponding to spikes from the juxta neuron were expected

to be large and therefore may have been merged together with other spikes present in probe. In

this case, all these events will only be detected as one, which leads to the relatively low count in the

central bin of the cross-correlogram of this recording.

To illustrate this, the masks of the events that occurred closest to the juxta spikes were extracted.

Examples of these mask are in Fig. 2.6.

74.6 77.4 77.6 83.3 86.5 89.4 93.7 93.8 96.0 96.4

96.5 98.0 98.2 100.1 100.3 106.6 106.7 109.8 110.0 112.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2.6: Examples of masks on the events whose assigned times (on top of each plot, in ms) is closest to the
times from the juxta neuron.

The average of these masks is presented in Fig. 2.7. The maximum value for the standard

deviation of the average was 6.0× 10−3 which is very low and therefore it is fair to say that most of the

masks of the juxta spike are in this collection.

Looking at the mask of the events on times 86.5 ms and 100.1 ms it is clear that there are con-

nected components from two spikes other than the one from the juxta neuron that were merged to-

gether. This situation could possibly be solved by increasing the weak threshold, however this would

lead to an increase of false negatives.

18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.0

Average Mask

0.0000

0.0006

0.0012

0.0018

0.0024

0.0030

0.0036

0.0042

0.0048

0.0054

Standard Deviation
of the Average Mask

Figure 2.7: Average mask and its standard deviation of the events whose times were closest to the times from
the juxta neuron.

In this chapter, using the ground-truth data from Neto et al. it was possible to identify some of

the issues and limitations of the SpikeDetekt algorithm. On the next chapter a different approach is

presented and evaluated.

19

20

3
Deep learning

Contents
3.1 Introduction . 22
3.2 Methods . 22
3.3 Results . 30
3.4 Discussion . 38

21

In order to overcome the issues presented in the previous chapter, and to take advantage of the

fact that we actually have labeled ground-truth paired recordings from the dataset of Neto et al., a

different approach was tried. In this chapter is reported the attempt of employing recent techniques

of supervised deep learning to perform automatic spike detection.

3.1 Introduction

For millennia, humans (and other animals) have tried to understand the rules that govern the

phenomena surrounding them based on observations. This knowledge allowed them to expand the

reach of their predictions and develop inventions to improve their way of living, as well as the empirical

laws that support all the fields of fundamental science, and consequently applied science. In the last

five decades, with the advent of several kinds of sensors, fast electronics and large storage capacity,

quantitative observations have become more and more numerous at a great level of detail and it

appears that this way of learning is becoming more necessary in the present than ever before.

Datasets became very large in the number of elements as well as very high in their dimensionality

(the ”Deluge of Data”), in such a way that they are no longer amenable for a human operator to

analyze them directly. To be able to deal with this problem, researchers and engineers started using

computers in particular methods of Machine Learning. Machine Learning is a subfield of computer

science that studies and develops algorithms meant to find new structures or rules a given experiment

or phenomenon is based on. Arthur Samuel defined machine learning as a ”Field of study that gives

computers the ability to learn without being explicitly programmed”.

However, conventional machine learning techniques often require careful and domain-specific de-

sign in order to achieve good results. For example, it usually takes a considerable amount of expertise

and experience with a phenomenon of interest in order to determine an algorithm and/or model that

would be a good approximation of what was actually happening in the experiment under study.

In the field of statistical machine learning, a dataset consists of m points (examples), each one

with a set of n features defining a n-dimensional space (input space). Depending on the specific

kind of model we would like to extract from the data, there are a number of different approaches for

machine learning.

3.2 Methods

The most commonly used form of machine learning uses labeled datasets. This is called super-

vised learning.

3.2.1 Supervised Learning

In supervised learning, each input example has an extra feature that represents the “true” value,

the ”right answer” we would like to obtain from the machine for this instance. If the dataset has such

features, it is said to be labeled, otherwise, it is unlabeled.

22

Supervised learning algorithms are usually iterative methods. They are usually presented with a

large number of labeled examples beforehand, which they then use to modify the evaluation model in

order to output the best possible answer. These modifications follow a set of operations (the training

or learning algorithm), that depends on some measure of dissimilarity between the outputs of the

model in its current configuration (the model predictions) and the corresponding labels. This function

is usually called a loss function and is most often thought of as a distance. Examples of loss functions

are the Mean-Squared Error of Cross Entropy. At each iteration, the training algorithm will calculate

the necessary adjustments in order to make the loss function smaller. After a certain number of

iterations, the algorithm will, possibly, converge on a solution that is a good enough approximation of

the true function.

In machine learning, we must choose a model (or framework) to work with. In the case of linear

regression, the output of the algorithm is a linear function of the form y = mX + b, where m and b are

the adjustable parameters. This choice strongly conditions the power of the algorithm. If, for instance,

y depends on X quadratically, linear regression may not yield the best results; however, depending

on the situation it may provide a good enough approximation. Another choice the user must define a

priori is the training algorithm. A simple example of such an algorithms is gradient descent.

In supervised learning we are not only interested in producing a model for the data we do have but

more generally in predicting the outcome of the experiment in untested situations that we have yet to

observe.

More formally, the computer receives a number, m, of examples of input as a (n-dimensional)

feature vectors ~xi, i = 1, 2, . . . ,m and corresponding (p-dimensional) target (“true”) value ~yi, i =

1, 2, . . . ,m and tries to find the element in the family of functions (hypothesis class) hθ parameter-

ized by θ such that ~yi ≈ hθ (~xi) for each example.

3.2.1.A Linear Regression

In the context of linear regression, we restrict ourselves to a family of function such that:

h~θ,b(~x) =

m∑
j=1

θjxj + b = θ · ~x+ b (3.1)

where θ and b are the parameters to be learnt.

A common choice for the loss function is the Mean Squared Error (MSE), defined as:

J (θ, b) =
1

2

m∑
j=1

[
hθ,b

(
~x(j)

)
− y(j)

]2
=

1

2

m∑
j=1

(
θ · ~x(j) + b− y(j)

)2
(3.2)

Most training algorithms require the knowledge of the gradient of the loss function with respect to

the model’s parameters to determine the update rule. In this situation, the gradient would be:

∂J

∂θi
=

m∑
j=1

x
(j)
i (hθ,b(x

(j))− y(j)) (3.3)

∂J

∂b
=

m∑
j=1

(h~θ,b(x
(j))− y(j)) (3.4)

23

And the parameters would be updated as:

θn+1
i = θni − η [∇θJ(θn, bn)]i (3.5)

bn+1 = bn − η ∂J
∂b

(θn, bn) (3.6)

where η is the learning rate defined by the user.

3.2.1.B Logistic Regression

Machine learning is also often used to perform a classification task where we are trying to assign

a class (discrete value) to some input vector. For instance, we could apply linear regression and set

a threshold value to define the boundary between two class. However this method is very sensitive

to extreme values of the input. In the case of binary classification y(i) can only be either 1 or 0. In

this situation Logistic Regression is usually a better choice. With logistic regression we try to find the

predictor choosing a different hypothesis class:

hθ,b(x) = σ(θ · x+ b) =
1

1 + exp(−θ · x− b)
(3.7)

Note that this function (called the sigmoid function or logistic function) is a continuous for all values of

x. It is always positive, monotonically increasing from zero to one. This leads to the interpretation of

the output of the logistic regression as the probability of the class labeled as “1” happening given the

input vector x:

P (Y = 1 | X = x) =
1

1 + exp(−θ · x− b)
6 1 (3.8)

P (Y = 0 | X = x) = 1− P (Y = 1 | X = x) (3.9)

The cost function in this case is usually defined as:

J(θ, b) = −
m∑
j=1

(y(j) log(hθ,b(x
(j))) + (1− y(j)) log(1− hθ,b(x(j)))) (3.10)

Since in this setup y(j) can only be either 1 or 0, only one of the terms inside the summation is

non-zero.

The gradient of this loss function is:

∇θ,bJ(θ, b) =

m∑
j=1

x(j)(hθ,b(x
(j))− y(j)) (3.11)

In classification tasks it is common to have more than two classes that we are interested in. In this

case, we can generalize logistic regression to many-classes using Softmax Regression, where the

probabilistic interpretation is applied

In classification task, we are looking for the boundary between classes in the feature space. The

techniques mentioned above can only resolve problems in which the classes are linearly separa-

ble (where the boundary is an hyper-plane in the feature space). But this is not always the case.

Sometimes the region corresponding to a particular class may even be disjoint. In such case linear

classifiers are not powerful enough to solve the problem. (As an example consider the Exclusive OR

function where the inputs are two binary valued variables. There is no straight line in the input space

that separates the class “0” and the class “1”.)

24

3.2.2 Artificial Neural Networks

A much more powerful concept is that of Artificial Neural Networks (ANN). An artificial neuron

(hereafter neuron unless stated otherwise) is a computational unit that takes as input the vector x and

outputs

hw,b(x) = f (w · x+ b) = f

(
n∑
i=1

wixi + b

)
(3.12)

where f : R → R is called the activation function. The vector w and the value of b (called the bias or

intercept term), as before, can be tuned according to some algorithm to perform a designated task as

good as possible.

If the activation function is the sigmoid function we recover the logistic regression.

Another example of activation function is the hyperbolic tangent, which increases from -1 to 1.

Lately, researchers and engineers have started using the rectified linear function (RELU) particularly

in the context of deep neural network (which I’ll talker later in this document). This function is defined

as

RELU(z) = max(z, 0) =

{
z, if z ≥ 0

0, if z < 0
(3.13)

This activation function is significantly different from the ones referred before because it is not

bounded as z increases.

An Artificial Neural Network is put together by hooking together many of these simple neurons by

means of function composition where the output of one neuron is the input of another.

+1

hw,b

+1

Input
Layer

Hidden
Layer

x1

x2

x3

Layer L1 Layer L2
Layer L3

Output
Layer

Figure 3.1: Graphical visualization of an illustrative example of an artificial neural network. This ANN is com-
posed by three layers with three neurons on the first two and one neuron on the output layer. The connections
between all the neurons are also represented, in addition to the connection to the bias term represented by the
extra nodes on the bottom with the label ”+1”.

In the Fig. 3.1 is a graphical representation of a feed-forward ANN. On the left, we have the input

25

layer (layer L1) where the input vector (x1, x2, x3) is fed. In the middle there are three neurons. These

are called hidden neurons and they compose one hidden layer (L2). Finally, there is the output layer

with only one neuron. There are also two nodes on the bottom that represent the bias term.

In this example, there are connections between all neurons of one layer to the neurons in the next

layer. This ANN is said to be fully connected (or densely connected). For each connection there is an

associated parameter (weight) and a bias parameter for each neuron. The input of each neurons in

the hidden layer is a linear combination of the output of the neurons in the previous layer weighted by

the parameters of the corresponding connections and summed with the bias term. In this case, the

weights for the connections coming in to the first neuron in the layer L2 are w(2)
1,1, w

(2)
1,2, w

(2)
1,3, b

(1)
1 and its

input is:

z
(2)
1 =

3∑
i=1

w
(2)
1,i a

(1)
i + b

(1)
1 (3.14)

This input is then fed into the activation function which reveals the outputs of this neuron as

a
(2)
1 = f

(
z
(2)
1

)
(3.15)

We denoted the number of layer as nl and the number of neurons in the layer Ll as Sl. In the

example above nl = 3, S1 = S2 = 3 and S3 = 1

In general, when the network is densely connected, the input of the neuron i in the layer j is:

z
(j)
i =

Sl−1∑
k=1

w
(j)
i,ka

(j−1)
k + b

(j−1)
i (3.16)

And its output is:

a
(j)
i = f(z

(j)
i) (3.17)

It is also convenient to introduce a matrix notation such that:

z(j) = W(j)a(j−1) + b(j−1) (3.18)

where the vector z(j), a(j) and b(j) represent the input, output and bias parameter of all neurons in

Layer Lj , and W(j) represents the weights of the incoming connection to the neurons in layer Lj .

The output of the output layer is denoted hW,b (·) = a(L) (·)

Using Artificial Neural Networks, we now have a much more powerful and flexible framework to

create models that can be trained to compute much more complex functions than the ones computable

with traditional machine learning algorithms.

However, there’s still the need to define the training algorithm. In order to use the gradient descent

algorithm, it is necessary to compute the gradients of the loss function with respect to all the adjustable

parameter of ANN. These gradients are usually computed using the back-propagation algorithm. In

this method, the label is subtracted from the output value as an estimate of the gradient on the output

layer. This value is then propagated backwards layer by layer by applying the chain rule for derivatives,

which will depend on the chosen activation functions. With the gradients estimated, the parameters

are update in the way defined earlier in equation 3.6

26

The key aspect of learning with ANN is that, due to its generalization power, the form of the final

output function is not directly designed by a human: they are learned from the data.

But this framework leads to questions of how exactly to define the model. In other words, how

to define the architecture of the ANN, i.e., how many neurons should there be in the ANN and how

should they be connected? There are two basic type of ANNs: shallow networks and deep networks.

In shallow networks, there is at most one hidden layer, whereas a network is said to be deep if it has

two or more hidden layers. This distinction has become very important over the last three decades.

On the one hand, it has been shown that a shallow ANN with only one arbitrarily large hidden layer

could approximate a function to any level of precision ([17]). Nonetheless, this level of precision

would only increase with exponentially increasing number of neurons, becoming computationally very

demanding.

On the other hand, deep neural networks are conceptually more interesting because each layer

can be thought of as a representation of the input at a higher and higher level of abstraction, similar

to how the visual processing hierarchy in cortex is thought to operate to construct human visual

perception. However, using back-propagation and gradient descent with the usual sigmoid or tanh

function the training can very quickly run into the problem of “vanishing gradients”, when the activation

function saturates and the training will not proceed any further. Moreover, even in the cases where

training is possible, deep networks were originally found to perform worse than shallow networks. [26]

[19]

However, in the past decade there have been several theoretical and technological advances that

brought deep neural network back to life.

3.2.3 Deep Learning

Representation learning is a family of methods that allows machines to find new ways of represent-

ing the raw data it was fed with. Deep Learning tries to accomplish this in a ”layer by layer” manner.

In a deep neural network, each layer holds a new representation of the input data, by transforming

the output of the previous layer into a new representation, a more abstract way of perceiving the input

data. Composing many of these layer, it should be possible to compute very complex function. For

the case of classification task, higher layers of representation may amplify aspects of the input that

are important for the discrimination and suppress irrelevant features. [20]

In this section, the techniques used in this project will presented such as training (or optimization),

loss function, initialization methods and regularization

3.2.3.A Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) is a stochastic approximation of the gradient descent algo-

rithm described in the previous section. SGD only utilizes a subset (called a batch) of the provided

examples to compute the gradient. This ”noisy” approximation of the gradient is then used to update

the parameters of model. It should be noted that all the examples in the dataset are utilized: the

entire dataset is split in batches and for each batch there is one update in the parameters. One pass

27

through the entire dataset is called an epoch. This means that there will be more (but faster) iteration

than in the standard gradient descent. Surprisingly, this simpler method is known to yield good results

much faster than more sophisticated algorithms.

Stochastic learning is often much faster than classic learning particularly when using large re-

dundant datasets: if, for instance, the dataset is composed of the ten repetitions of a smaller set of

examples, then estimating the gradient using the whole dataset would have the same result as using

one tenth of the dataset. Of course in practice two examples are rarely the same. However many

examples may be acquisition of the same pattern and therefore will contain approximately the same

amount of information.

Networks learn the fastest from examples that are most distant from what the network predicted.

Therefore it would preferable to choose such examples in each iteration. Of course, there is no

simple way to know which are the ”good” examples to train the network with in each iteration. There

is a relatively simple way of applying this idea. Assuming successive examples do not differ much,

shuffling the dataset before splitting would make the batches ”richer” in terms of the information they

contain.

Another interesting characteristic of stochastic learning is that it is less prone to getting the network

stuck in local minima of the loss function. The noise introduced in the gradient estimation generates

updates on the parameters that allow easier ”jumps” of the parameters from one local minima to

another, possibly deeper than the previous. On the other hand, this noise also prevents the full

convergence to the minimum: the parameter will always have stochastic fluctuation. This can be

address by adaptively changing the size of the batch or the learning rate. [21]

3.2.3.B AdaGrad

One solution for the problem just mentioned is AdaGrad (Adaptive Gradient optimization), pro-

posed in 2011 by Duchi et al. [6]. In this algorithm, the learning rate is adapted in each iteration

according to the geometry of the parameter space in the vicinity of the current values of the parame-

ters. For each element in the parameter matrix, the user-defined learning rate η is weighted by factor

that makes it larger or smaller according to a (fast) approximation of the Hessian Matrix. In other

words, the update for each parameter is more coarse when far from a local minimum and finer when

close to a local minimum.

It should be noted that this algorithm was proposed for convex optimization problems. However,

even in non-convex situations AdaGrad usually performs better that standard SGD. [11]

3.2.3.C Parameter Initialization

The starting values of the weights can have a significant effect on the training process. For in-

stance, in an ANN with the hyperbolic tangent as activation function, if all parameters were initialized

with the same value all neurons would output the same value and get the same updates during train-

ing. This would render the network useless. For this reason it is necessary to break these symmetries

from the onset.

28

To get the most out a certain ANN, the initial parameters should be as uncorrelated as possible.

However, if the weights are initialized with very high values, a sigmoid or tanh activation function would

start saturated, gradients would vanish and the training wouldn’t be possible. To solve this problem,

the initial parameters are usually sampled from a uniform distribution U([−a, a]), where a is some

small value. There are several proposals for determining the value of a depending on the particular

model chosen by the user: He Uniform [13], Xavier Uniform [7] (also known as Glorot Uniform) or

LeCun Uniform [21].

For example, LeCun Uniform was defined with sigmoid activation functions in mind. With this

initialization method, starting values for the weights are drawn from a uniform distribution with zero

mean and standard deviation such that the input of each neuron has a standard deviation close to 1.

3.2.3.D Loss Function

As mentioned above, most optimization algorithms (as is the case of SGD) try to minimize a loss

function. There are many ways to define this function. One possible way is using the Mean Squared

Error as explained in 3.2.1.A. However in classification tasks the output of the classifier is usually

interpreted as the probability of a certain input belonging the a certain class. With this in mind, it

is possible to define a loss function as the distance between the desired probability distribution and

that of the output of the classifier in the current configuration. This can be done by means of the

cross-entropy. In the case of a binary classification, the (not normalized) cross-entropy is estimated

from the samples as:

H = −
∑
j

(
y(j) log hW,b

(
x(j)

)
+ (1− y(j)) log

(
1− hW,b

(
x(j)

)))
(3.19)

where y(j) can only take the values 0 or 1 and therefore only one of the terms will be non-zero.

When the classifier outputs the right answer the logarithm will tend to zero and so will the penalty

corresponding to that data point. [24]

3.2.3.E Regularization

The role of regularization is to penalize certain types of function to emerge during the training

process. In particular, we are interested in penalizing functions that are too complicated and too

non-linear that would overfit the training set.

This is usually done by adding an extra term, Ω (W), to the loss function that depends on the value

of the weights of the connections between neurons; the bias terms are not usually regularized.

A common choice is the L2 regularizer where the extra term is the L2 norm of W(k):

Ω (W) =
∑
k

∑
i

∑
j

(
W

(k)
ij

)2
=
∑
k

|W(k)|2 (3.20)

The gradient of this term with respect to the weights is:

∇W(k)Ω (W) = 2W(k) (3.21)

29

Another option is to use the L1 norm instead. The regularization term takes the form:

Ω (W) =
∑
k

∑
i

∑
j

|W (k)
ij | (3.22)

which leads to the gradient:

∇W(k)Ω (W) = sign
(
W(k)

)
(3.23)

when w(k)
ij 6= 0

Unlike the L2-regularization, this gradient does not vanish as the value of w(k)
ij approaches zero.

Therefore, in this case there is a stronger tendency to get parameters that are very small, allowing

for the interpretation of these connections as non-existent, decreasing the resulting complexity of the

network.

The relative importance of the regularization term is controlled by an hyperparameter λ called the

weight decay. When λ is set too high the training algorithm will ”prefer” minimizing the magnitude of

the parameters over making output closer to the labels. If λ is too low, the optimizer is likely to train

the network into overfitting the training set. [19]

Another way of dealing the problem of overfitting is using stochastic dropout training. The term

”dropout” refers to dropping out units (mostly hidden units) in a neural network. Dropping out means

temporarily removing certain neurons from the network, along with all its incoming and outgoing

connections. The choice of which units to drop is random. In the simplest case, each unit is retained

with a fixed probability p independent of other units, where p can be chosen the user. In other words,

in each epoch at training time, a fraction p of units from a certain layer is ”forgotten”. This results in

a smaller temporary network. Then the usual training (forward propagation and back propagation) is

performed in this subnetwork. The value of p can be different for each layer. With this procedure, a

unit cannot ”assume” that all units will be present in each epoch, so it cannot co-adapt to other units.

This way each neuron is forced to extract feature that are useful generally and not only when used in

combination with other units. At test time, the output of each unit is multiplied by the corresponding

value of p. [15] [35]

3.3 Results

3.3.1 Hardware and Software setup

To implement the neural networks Keras was used [4]. Keras is an artifitial neural network li-

brary written in python programming language. It is designed to be minimalistic, modular and straight

forward to use, but yet powerful and generic enough to build serious models. It is built on top of

either Theano or Tensorflow. In this work, the Theano backend was used. Theano is a Python li-

brary that lets you to define, optimize, and evaluate mathematical expressions, especially ones with

multi-dimensional arrays. Using Theano it is possible to attain speeds rivaling hand-crafted C im-

plementations for problems involving large amounts of data. It can also surpass C on a CPU by

many orders of magnitude by taking advantage of recent GPUs, using the latest version of CUDA

platform. [3] [1]

30

The work reported in the following sections were performed under the following hardware setup:

• Microsoft Windows 8.1 Pro (64-bit)

• Intel Core i7-3770 CPU

• 32.0GB of RAM

• GeForce GTX 660 video card

and the following software setup:

• python 3.4.4

• numpy 1.10.4

• keras 0.3.2

• theano 0.8.0dev0

• CUDA 7.5

Only one GPU was utilized when performing the computations in this chapter, however it is worth

noting that as of March 2016 Theano added support for multiple GPUs.

3.3.2 Data Preparation

The same datasets from the previous chapter were used. First it was necessary to prepare the

data to be fed to the Deep Neural Network (DNN).Each dataset was first filtered using the same filter

as SpikeDetekt: a forwards-backwards Butterworth filter of order 3 with cutoff frequency set to 500Hz.

Each dataset was then normalized dividing by its maximum value, such that every sample has a value

between -1 and 1.

Each example was defined to be the array of time windows of 100 samples for each of the 127

channels in the probe. Therefore, the input data has dimension 12700. However, due to constraints

on the available hardware, not all windows were used. Each window is shifted by 5 samples from the

previous one, i.e., the first example are the 127 time windows with t ∈ [0, 99] and the second example

are the 127 time windows when t ∈ [5, 104]. Furthermore, only samples in t ∈ [1000000, 2000000] were

utilized. This yields, at this stage, 199980 examples per dataset.

The windows whose central sample was closest to each Juxta Times were labeled as ”1” (positive

examples). This means that the central sample of these windows will be at most two samples away

from the true Juxta Time. Otherwise they were labeled as ”0” (negative examples). The label ”1”

should be interpreted as ”contains a spike from the juxta cell” and ”0” as ”doesn’t contain a juxta

spike”. It is possible that a spike from the juxta cell be partially contained in the window of another

spike from the juxta cell. However this situation is highly unlikely since for that to happen it would

mean that the two spike were separated by less that 50 samples, corresponding to 1.67 ms which is

less than the refractory period of cells under consideration.

31

This input data was split in two set: the training set (TS), with which the DNN will train, and the

validation set (VS), where the resulting trained DNN is tested. The TS held 70% of the input data

(139986 examples) and VS held the remaining 30% (59994 examples)

In table 3.1 are the results of this splitting.

Input Data Training Set Validation Set
cell ID No. of ”1” Fraction No. of ”1” Fraction No. of ”1” Fraction
8213 292 0.15% 202 0.14% 90 0.15%

936 127 0.06% 83 0.06% 44 0.07%
939 298 0.15% 207 0.15% 91 0.15%
945 14 0.01% 9 0.01% 5 0.01%
997 38 0.02% 29 0.02% 9 0.02%

Table 3.1: In this table are presented, for each recording, the number of examples labeled as ”1” and its fraction
in the Input Data, and separated in the Training Set and Validation Set. The total number of examples in the Input
Data, Training Set and Validation Set are 199980, 139986 and 59994, respectively

As can be seen in in Table 3.1, all recordings reveal a very large unbalance: there are always many

more examples belonging to the class ”0”. In these situations, a likely scenario is the convergence of

the DNN to a trivial solution where it outputs ”0” regardless of the input, yielding an accuracy equal to

the fraction of examples labeled as ”0”.

To address this problem, it was necessary to perform upsampling: the positive examples were

repeated by the same factor in both the TS and the VS. The upsampling factor was determined so

that the positive examples represent around 30% of the total number of examples in both the TS and

the VS.

The results of the operation are presented in table 3.2

Training Set Validation Set
cell ID No. of ex. No. of ”1” Fraction No. of ex. No. of ”1” Fraction
8213 195334 55550 28.4% 84654 24750 29.2%
936 192276 52373 27.2% 87714 27764 31.7%
939 195669 55890 28.6% 84473 24570 29.1%
945 191412 51435 26.9% 88564 28575 32.3%
997 201060 61103 30.4% 78948 18963 24.0%

Table 3.2: In this table are presented the total number of examples and the number of examples labeled as ”1”
as well its fraction on the Training Set and Validation Set after upsampling was performed.

This procedure artificially increases the size of datasets. However the resulting sizes are relatively

close to each other and therefore DNNs trained with all the TS can be compared fairly.

3.3.3 Basic Model

In this project, we planned to study how a feed-forward Deep Neural Network performs as a spike

detection for neural data. In the context of machine learning this is a binary classification problem.

It was necessary to define the basic architecture of the DNN. First and foremost, the dimension

of the input layer was set to 12700 and the output layer should have only one neuron. Usually the

number of adjustable parameters in a DNN should be of the same order of magnitude of the number

32

of examples to be used and therefore the following layer had to be much smaller. In fact, to follow this

rule, the second layer should have around 15 neurons. This would be 800-fold compression which

seemed excessive. Therefore, it was necessary to compromise. The second layer was defined with

200 neurons. Comparatively the size of the following layer had very little influence and for that reason

it was decided not to compress any further and set the dimension of layer 3 and 4 to have 200 neurons

as well.

Following the results of [8] Rectified Linear Units (RELU) were chosen as the activation function,

which should result in faster learning and weaker dependence on the initial conditions. For the last

layer a sigmoid activation function was used, since the problem under consideration is a binary clas-

sification.

As for the loss function, cross entropy was chosen given its characteristic fast convergence.

The training algorithm was chosen to be AdaGrad. Regarding the regularization method, the

L1-norm was utilized as well as dropout with probability parameter of 0.2.

This defines the basic model of DNN that was utilized: it was a fully-connected feed-forward DNN

with:

• nl = 5

• S1 = 12700, S2 = S3 = S4 = 200, S5 = 1

• ReLU as activation function for hidden units and Sigmoid for the output neuron

• Adagard as the training algorithm

• Cross-entropy for loss function

• L1-Regularizer along with dropout

3.3.4 Optimal Hyperparameters

When defining the model to be trained some choices must be made, and there aren’t exact ways

of making those choices. Some are relatively straight-forward as some of the ones in the previous

section. However, there are some parameter that are not as easy to set and therefore we’re forced to

study their influence on the performance of the DNN.

At this point, we still have to define:

• The size of the batch used by AdaGrad

• The ”standard” learning rate

• The weight decay

• The initialization method

First, the batch size was set to 10000, to be as large as the computer memory could handle.

Using the recording 939, the basic DNN was trained with different sets of parameters.

33

To study the learning rate, the weight decay, λ, was set to λ = 0.001 and the initialization method

was LeCun Uniform. The learning rate was set to η = 0.001, η = 0.01 and η = 0.1. The results are in

the Fig. 3.2 and 3.3

0.001
0.01
0.1

Learning
Rate

0

10

20

30

40

50

60

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250 0 50 100 150 200 250

Loss on TS Accuracy on TS

Loss on VS Accuracy on VS

Figure 3.2: Study on Learning Rate. Loss function and accuracies in the training set and in the validation set.The
weight decay was fixed at λ = 0.001, and the initialization method was LeCun Uniform.

To study the weight decay, the learning rate was fixed at η = 0.01 and LeCun Uniform was used.

The results are in Fig. 3.4 and Fig. 3.5

To study the initialization method, the learning rate was fixed at η = 0.01 and the weight decay

set to λ = 0.001. The Initialization methods considered were: LeCun Uniform, He Uniform, Glorot

Uniform and Uniform. The results are in Fig. 3.6.

To study how sensitive this model was to initial conditions, different seeds for the pseudorandom

generator were set. The learning rate was set to η = 0.01, the weight decay to λ = 0.001, and the

initialization method used was LeCun Uniform. The results are in Fig. 3.7

Since we used AdaGrad as the optimizer, it would be expected that the learning rate wouldn’t have

a big influence on the training process. Indeed the accuracy on the validation set doesn’t vary much

depending on the value of this parameter. The value of η = 0.01 was chosen.

It can clearly be seen that without regularization (λ = 0) the training overfits the data, since it

results in an accuracy of 1 in the training set and the accuracy on the VS gets worse with further

training. With λ = 0.0001 there is still strong overfitting of DNN on data from the TS. With λ = 0.01,

regularization term constraints the training so much that the DNN converges to the ”zero solution”,

34

0.001
0.01
0.1

Learning
Rate

Loss on TS Accuracy on TS

Loss on VS Accuracy on VS

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00

0.05

0.10

0.15

0.20

0.95

0.96

0.97

0.98

0.99

1.00

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

160 180 200 220 240 160 180 200 220 240

Figure 3.3: Study on Learning Rate - zoomed. Loss function and accuracies in the training set and in the
validation set.The weight decay was fixed at λ = 0.001, and the initialization method was LeCun Uniform.

where it outputs zero regardless the input. The best value of the weight decay was found to be

λ = 0.001.

The initialization methods didn’t seem to have a big impact on the training: all the considered

initialization methods yielded very similar behaviour as the training progressed. LeCun uniform was

fixed for further training.

The depth of the network was also tested, by comparing the performance of DNNs with two, three

and four hidden layers. To keep the number of adjustable parameter approximately the same these

networks had the following architecture: 12700-205-205-1, 12700-200-200-200-1 and 12700-195-

195-195-195-1, with 2646551, 2620801 and 2591551 parameters, respectively. The results are in

Fig. 3.8

Regarding the depth of the architecture, the DNN achieved very similar results on the validation

set. The shallower DNN couldn’t be trained as well as the deeped networks as can be seen on the

accuracy on the TS, even having around 50000 more parameters to fit. The 4-hidden-layers DNN

displays the tendency to overfit the training data. For these reasons, the DNN with 3 hidden layers

was adopted.

To recap, the hyperparameter considered optimal in the present situation were:

• Learning Rate η = 0.01

35

0.0001
0.001
0.01
0

Weight
Decay

Loss on TS Accuracy on TS

Loss on VS Accuracy on VS

0

1

2

3

4

5

6

7

0.0

0.5

1.0

1.5

2.0

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 100 150 200 250 50 100 150 200 2500 0

Figure 3.4: Study on weight decay. Loss function and accuracies in the training set and in the validation set.
LeCun uniform was used and the Learning Rate was set to η = 0.01.

• Weight Decay λ = 0.001

• LeCun Uniform for initialization method

• 3 hidden layer network

3.3.5 Application to Dataset from Neto et al.

The optimal hyperparameters and configurations discussed in the previous section were used in

the training of the DNN with all the datasets. The performance results are in Fig. 3.9.

The values for the True Positives (TP), True Negatives (TN), False Positives (FP) and False Nega-

tives (FN) at the end of traning were calculated as well as the values for the True Positive Rate (TPR),

calculated as :

TPR =
TP

TP + FN
(3.24)

The results are presented in Table 3.3.

With the recordings 8213 and 936, the DNN converged to the ”zero” solution since the very first

epoch and was never able to be ”trained out” of the local minimum it got held in. Indeed, in Table 3.3,

the number of false negatives equals the fraction of ”1” examples after upsampling (see Table 3.2).

36

0.0001
0.001
0.01
0

Weight
Decay

0

1

2

3

4

5

6

7

0.0

0.5

1.0

1.5

2.0

0.95

0.96

0.97

0.98

0.99

1.00

0.85

0.90

0.95

50 100 150 200 250 50 100 150 200 250

Loss on TS Accuracy on TS

Loss on VS Accuracy on VS

Figure 3.5: Study on weight decay - zoomed. Loss function and accuracies in the training set and in the validation
set. LeCun uniform was used and the Learning Rate was set to η = 0.01.

The recordings 945 and 997 kept oscillating between two ”states”. In both cases the state with

the lowest accuracy corresponds to the ”zero” solution, successfully classifying all the ”0” labeled

examples but failing in the examples labeled as ”1”. In the other state, the network seems to positively

classify 20.0% and 11.11% of the ”1” examples, respectively.

Trained with the recording from the cell 939, the DNN managed to correctly classify 92.31% of the

EAPs present.

cell ID TP TN FP FN TPR SD acc.
8213 0.00% 70.76% 0.00% 29.24% 0.00% -0.01%
936 0.00% 68.35% 0.00% 31.65% 0.00% -1.02%
939 26.85% 70.53% 0.38% 2.24% 92.31% 46.60%
945 6.45% 67.66% 0.07% 25.81% 20.00% 8.38%
997 2.67% 75.80% 0.18% 21.35% 11.11% 1.99%

Table 3.3: Values of the True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN)
at the end of the training, along with the value of the True Positive Rate (TPR). The accuracies achieved with
SpikeDetekt in Chapter 2 are also presented.

37

LeCun_Uniform
Glorot_uniform
He_Uniform
orthogonal

Loss on TS Accuracy on TS

Loss on VS Accuracy on VS

0.0

0.5

1.0

1.5

2.0

0.090

0.095

0.100

0.105

0.110

0.115

0.975

0.980

0.985

0.990

0.995

0.965

0.970

0.975

0.980

0.985

0.990

0 50 100 150 200 250 0 50 100 150 200 250

Figure 3.6: Study on Initialization Methods- zoomed. Loss function and accuracies in the training set and in the
validation set.The weight decay was fixed at λ = 0.01 and the Learning Rate was set to η = 0.001.

3.4 Discussion

Looking at Fig. 3.9 it can be seen that with the chosen training configuration all recordings trained

the DNN after only a few epochs: by the epoch 20 the accuracies in all cases reached their final value,

or even getting worse afterwards, and therefore applying a stop criteria should be considered.

Comparing with the results using SpikeDetekt presented in Chapter 2, this method seems to give

better results: when the network didn’t converge to the ”zero” solution, the detection rates more

than doubled, reaching a 5-fold increase on the recording 997. However, the detection rates on the

recordings 945 and 997 correspond to the detection of only one spike, since the validation set in these

case only had 5 and 9 different positive examples.

It is also important to refer that the oscillations observed with the recording 945 and 997 suggest

that the training used work may not be very robust: it appears that the network ”jumps” easily between

two local minima. Therefore it seems imperative to trained the network with more data. Another

possible improvement would be increasing the probability parameter on the dropout procedure.

The recording 939 trained the network into detecting 92.31%, which is a large value, with very

few false positives and false negatives. However, in this recording the P2P amplitude was 416.3 µV ,

with a noise standard deviation of 10.51 µV , and should be easily detected with the conservative

application of classic methods such as a threshold-based detection.

In reality, the configurations and hyperparameters considered optimal were only studied with the

38

200
300
400
500

Random
Seed

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.08

0.09

0.10

0.11

0.12

0.96

0.97

0.98

0.99

1.00

0.965

0.970

0.975

0.980

0.985

0.990

0 50 100 150 200 250 0 50 100 150 200 250

Loss on TS Accuracy on TS

Loss on VS Accuracy on VS

Figure 3.7: Study on Different Initialization. Loss function and accuracies in the training set and in the validation
set.The weight decay was fixed at λ = 0.01 and the Learning Rate was set to η = 0.001 and the initialization
method was LeCun Uniform.

recording 939 and may not be optimal for all datasets.

It should be noted that it is very likely that the windows labeled as ”0” have many other spikes. This

may actually make the training process much more difficult: since the production of any EAP relies on

similar physical process, many spikes may be very similar to the spike from the juxta neuron, making

the distinction, and thus the training, more difficult. For this reason, using a bigger dataset should

return significantly better results, in particular, a bigger dataset with more different positive examples.

The upsampling step may have forced the training to give a larger importance to each positive example

but it didn’t feed the network any new information about the event of interest. Possibly it could have

been better to, instead of upsampling, perform downsampling or both: reduce the number of negative

examples and increase the number of positive examples. In this way, more variability on the positive

examples would be taken into consideration, making the network learn the useful structure of the

EAPs better.

In the recording 8213 there were 202 different positive examples in the training set, more or less

the same as in recording 939 which had 207. Nonetheless, the DNN was trained into the ”zero”

solution. At the same time this recording was the lowest in amplitude, with a 19.4µV P2P amplitude,

and the one with the highest noise standard deviation of 12.95µV , therefore most of the example are

39

2
3
4

No. Hidden
Layers

0.0

0.5

1.0

1.5

2.0

2.5

0.08

0.09

0.10

0.11

0.12

0.13

0.970

0.975

0.980

0.985

0.990

0.995

0.960

0.965

0.970

0.975

0.980

0.985

0.990

Loss on TS Accuracy on TS

Loss on VS Accuracy on VS

0 50 100 150 200 250 0 50 100 150 200 250

Figure 3.8: Study on Depth. Loss function and accuracies in the training set and in the validation set.The
learning rate was η = 0.001, the weight decay was fixed at λ = 0.01, and the initialization method was LeCun
Uniform.

probably ”drowned” in the noise, preventing the DNN to see the signal of interest. This suggests that

there may be a threshold SNR below which this method cannot be applied, perhaps regardless of

how many spikes there are in the training set.

It is important to keep in mind the question we’re training the network to answer: whether or not,

in a certain time window, there was a spike from this particular cell, and not a spike from any cell.

Indeed, each network was trained with only one dataset individually. It would be interesting to train

a DNN with different datasets recorded with the same probe. In this situation the question would

be different: in this time window is a there a spike from this set of targeted cells? This would not

only increase the number of examples (in particular positive examples), but also make this procedure

more generalizable and applicable in more situations when enough different datasets have been used.

However, this would affect the training: it may make it easier if the datasets are similar, or it may make

it harder if there is a big difference in EAPs from the considered juxta neurons. It is never too much

noting that this new dataset would have to shuffled if the training algorithm doesn’t do it for us, for

instance if we train the network in chunks of data due to memory contraints. Otherwise, on the first

epochs of training the DNN would ”crystalize” on detecting that particular first EAP and may be harder

to train it away from that configuration to learn the new EAPs. Another way to achieve this would be

producing a hybrid dataset where many ground truth datasets are brought together, for examples as

40

8213
997
936
945
939

cell ID

19.4
20.7
24.1
30.8
416.3

P2P

Loss on TS Accuracy on TS

Loss on VS Accuracy on VS

0.0

0.5

1.0

1.5

2.0

2.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 0 50 100 150 200 250250

Figure 3.9: Study on Different Recordings. Loss function and accuracies in the training set and in the validation
set.The learning rate was η = 0.01, the weight decay was fixed at λ = 0.001, and the initialization method was
LeCun Uniform. On the legend on the top is the Cell ID and on the legend on the bottom are the P2P amplitude
(in µV).

an average or hand-crafted, to produce one simulated recording with larger variability on the positive

examples without increasing the size of the dataset, and therefore improving the unbalance in the

dataset.

As mentioned above, due to memory constraints, the time windows were time shifted from the

previous by 5 samples. Windows whose central sample were closest to each time juxta time where

labeled as positives. Therefore if sequential time windows were presented, the DNN would probably

yield 5 positive predictions per juxta spike.

41

42

4
Conclusions and Future Work

Contents
4.1 Conclusions . 44
4.2 Future Work . 44

43

4.1 Conclusions

In this document is reported the attempt to assess the viability of pursuit of better spike detection

algorithms in the context of deep learning.

Neto et al. provided a much necessary ground-truth dataset consisting of simultaneous recordings

from one juxtacellular pipette and large, dense extracellular probe. With these data the performance

of the state-of-the-art algorithm SpikeDetekt was studied and some of limitations of this method and

challenges these new-generation probes raise that researchers still have to resolve were pointed out.

To face these problems, an implementation of feed-forward deep neural networks was tried to detect

extracellular action potentials of one particular neuron on the same data. Comparing the results with

the ones from SpikeDetekt it seems to lead us to the conclusion that this approach may be a better

solution, since the deep learning approach was able to yield better results on datasets used. Although

some of the results are promising, some aspects should be reconsidered, in particular the training set.

This work should, however, be regarded as a ”proof of concept”. While SpikeDetekt tries to find

all spikes in a record, each Deep Neural Network was trained to detect the EAP of one specific

neuron whose activity was monitored with the juxta-cellular probe, and not the spikes from any neuron.

Nonetheless, the success achieved detecting the spikes from only one neuron justifies further effort

to be put in developing algorithms under a deep learning framework.

4.2 Future Work

Indeed, much remains to be done. In the particular context of this document, the architecture,

training method and hyperparameters should be further studied to achieve optimal values as universal

as possible for learning with any dataset.

First, the deep learning setup in this document should be applied with the entire datasets to truly

assess the reliability of the one-neuron detection. And next obvious step should be the use of several

datasets as discussed in Sec. 3.4. In any case it would be interesting to perform layer visualization

techniques to understand what each layer was trained to compute. With this knowledge the pro-

gression of these algorithm becomes less blind allowing researchers to zero in on the best possible

network.

Since each electrode is sensing the different ”versions” of the same phenomenon there probably is

redundancy in the data from the probe. Therefore it would be interesting to apply some dimensionality

reduction algorithm (such as PCA) prior to the training. This would reduce the size of the network, and

thus the number of parameters, without much loss of relevant information, allowing for better training.

In fact it is possible that this procedure makes the signal of interest stand out by discarding noise

components of the signal, in which case spikes with lower and lower amplitude could be detected.

The datasets this work based on were recorded using 128-channel planar probe spanning over

90µm in one direction and 717.5µm on the other. Neurons in its vicinity usually only impress a small

portion of the probe. Therefore a spike detection algorithm for such probe should be agnostic to where

the neuron’s footprint rests. In other words, it should be translation invariant. So, moving forward from

44

this work, it would be useful to try applying Convolutional Neural Networks, where the adjustable

parameters are actually many small sized kernels that are convolved with the output of the previous

layer. Regardless of where the neuron’s footprint appeared a well-trained kernel could be run through

the whole probe and would eventually result in a positive identification.

Another possible use for deep neural network would be to train a noise filter. The raw filtered signal

would be fed in the input layer and then supervised learning would train the DNN to provide the Juxta-

Triggered Averages (JTA). If successfully trained, the resulting output would be relatively noise-free

and a simple threshold-based detection algorithm could be applied. If many different recordings were

utilized, perhaps the resulting DNN could be universal enough to used in any recording. Analysing the

layers of this trained network, this could also help researchers understand what the biological noise

in the extracellular medium really is.

45

46

Bibliography

[1] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Arnaud

Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and speed improve-

ments. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[2] Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle, et al. Greedy layer-wise training

of deep networks. Advances in neural information processing systems, 19:153, 2007.

[3] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume

Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU

math expression compiler. In Proceedings of the Python for Scientific Computing Conference

(SciPy), June 2010. Oral Presentation.

[4] François Chollet. Keras. https://github.com/fchollet/keras, 2015.

[5] Balázs Dombovári, Richárd Fiáth, Bálint Péter Kerekes, Emı́lia Tóth, Lucia Wittner, Domonkos

Horváth, Karsten Seidl, Stanislav Herwik, Tom Torfs, Oliver Paul, et al. In vivo validation of the

electronic depth control probes. Biomedical Engineering/Biomedizinische Technik, 59(4):283–

289, 2014.

[6] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159, 2011.

[7] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural

networks. In International conference on artificial intelligence and statistics, pages 249–256,

2010.

[8] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In

International Conference on Artificial Intelligence and Statistics, pages 315–323, 2011.

[9] Carl Gold. Biophysics of extracellular action potentials. PhD thesis, California Institute of Tech-

nology, 2007.

[10] Charles M Gray, Pedro E Maldonado, Mathew Wilson, and Bruce McNaughton. Tetrodes

markedly improve the reliability and yield of multiple single-unit isolation from multi-unit record-

ings in cat striate cortex. Journal of neuroscience methods, 63(1):43–54, 1995.

[11] Maya R Gupta, Samy Bengio, and Jason Weston. Training highly multiclass classifiers. The

Journal of Machine Learning Research, 15(1):1461–1492, 2014.

47

https://github.com/fchollet/keras

[12] Kenneth D Harris, Darrell A Henze, Jozsef Csicsvari, Hajime Hirase, and György Buzsáki. Ac-

curacy of tetrode spike separation as determined by simultaneous intracellular and extracellular

measurements. Journal of neurophysiology, 84(1):401–414, 2000.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 1026–1034, 2015.

[14] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep belief

nets. Neural computation, 18(7):1527–1554, 2006.

[15] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Improving neural networks by preventing co-adaptation of feature detectors. CoRR,

abs/1207.0580, 2012.

[16] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies, 2001.

[17] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are

universal approximators. Neural networks, 2(5):359–366, 1989.

[18] Eric Richard Kandel, James Harris Schwartz, Thomas M. Jessell, and Sarah Mack, editors.

Principles of neural science. McGraw-Hill Medical, New York, Chicago, San Francisco, 2013.

[19] Hugo Larochelle. Neural networks class - université de sherbrooke.

https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH.

[20] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,

2015.

[21] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In

Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[22] Gonçalo Lopes, Niccolò Bonacchi, João Frazão, Joana P. Neto, Bassam V. Atallah, Sofia Soares,

Luı́s Moreira, Sara Matias, Pavel M. Itskov, Patrı́cia A. Correia, Roberto E. Medina, Lorenza

Calcaterra, Elena Dreosti, Joseph J. Paton, and Adam R. Kampff. Bonsai: An event-based

framework for processing and controlling data streams. Frontiers in Neuroinformatics, 9(7), 2015.

[23] Bruce L McNaughton, John O’Keefe, and Carol A Barnes. The stereotrode: a new technique

for simultaneous isolation of several single units in the central nervous system from multiple unit

records. Journal of neuroscience methods, 8(4):391–397, 1983.

[24] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[25] Joana P. Neto, Gonçalo Lopes, João Frazão, Joana Nogueira, Pedro Lacerda, Pedro Baião, Arno

Aarts, Alexandru Andrei, Silke Musa, Elvira Fortunato, Pedro Barquinha, and Adam Kampff.

48

Validating silicon polytrodes with paired juxtacellular recordings: method and dataset. bioRxiv,

2016.

[26] Michael A. Nielsen, editor. Neural Networks and Deep Learning. Determination Press, 2015.

[27] Klas H Pettersen and Gaute T Einevoll. Amplitude variability and extracellular low-pass filtering

of neuronal spikes. Biophysical journal, 94(3):784–802, 2008.

[28] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep unsupervised learning us-

ing graphics processors. In Proceedings of the 26th annual international conference on machine

learning, pages 873–880. ACM, 2009.

[29] ML Recce and J O’keefe. The tetrode: a new technique for multi-unit extracellular recording.

15:1250, 1989.

[30] Cyrille Rossant, Shabnam N. Kadir, Dan F. M. Goodman, John Schulman, Maximilian L. D.

Hunter, Aman B. Saleem, Andres Grosmark, Mariano Belluscio, George H. Denfield, Alexan-

der S. Ecker, Andreas S. Tolias, Samuel Solomon, Gyorgy Buzsaki, Matteo Carandini, and Ken-

neth D. Harris. Spike sorting for large, dense electrode arrays. Nat Neurosci, 19(4):634–641,

Apr 2016. Technical Report.

[31] Marcel Ruiz-Mejias, Laura Ciria-Suarez, Maurizio Mattia, and Maria V Sanchez-Vives. Slow and

fast rhythms generated in the cerebral cortex of the anesthetized mouse. Journal of neurophysi-

ology, 106(6):2910–2921, 2011.

[32] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by

back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[33] Patrick Ruther and Oliver Paul. New approaches for cmos-based devices for large-scale neural

recording. Current opinion in neurobiology, 32:31–37, 2015.

[34] Justin L Shobe, Leslie D Claar, Sepideh Parhami, Konstantin I Bakhurin, and Sotiris C Mas-

manidis. Brain activity mapping at multiple scales with silicon microprobes containing 1,024

electrodes. Journal of neurophysiology, 114(3):2043–2052, 2015.

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15:1929–1958, 2014.

[36] Matthew A Wilson and Bruce L McNaughton. Dynamics of the hippocampal ensemble code for

space. Science, 261(5124):1055–1058, 1993.

49

50

A
Cross-Correlograms per electrode

A-1

0

1 2

34

56

78

910

1112

1314

15

16

1819

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

4041

4243

4445

4647 4849

5051

5253

5455

56

57 58 59 60

61 62 63

6465

66 67 68 69

70 71 72 73

74

7576

7778

79

80

81

82

83

84

85

8687

8889

9091

9293

9495

9697

9899

100101

102103

104

105

106

107

108

109

110 111112 113

114

115

116117

118119

120121

122123

124125

126127

Figure A.1: Cross-Correlograms between the juxta spikes and the phy-detected events on each electrode. On the left is the bottom half of the probe and on the right top half of
the probe. The size of the bins in the histograms is 1 ms and the value for the lag is 50ms.

A
-2

	Title
	Acknowledgments
	Abstract
	Resumo
	Index
	Contents
	List of Figures
	List of Tables
	List of Acronyms

	1 Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Document Outline

	2 SpikeDetekt and Neto et al. Dataset
	2.1 Neto et al. 2016
	2.1.1 Set-up design and protocol
	2.1.2 Dataset

	2.2 Methods
	2.2.1 Spike Detekt
	2.2.2 phy
	2.2.3 Cross-Correlograms

	2.3 Results

	3 Deep learning
	3.1 Introduction
	3.2 Methods
	3.2.1 Supervised Learning
	3.2.1.A Linear Regression
	3.2.1.B Logistic Regression

	3.2.2 Artificial Neural Networks
	3.2.3 Deep Learning
	3.2.3.A Stochastic Gradient Descent
	3.2.3.B AdaGrad
	3.2.3.C Parameter Initialization
	3.2.3.D Loss Function
	3.2.3.E Regularization

	3.3 Results
	3.3.1 Hardware and Software setup
	3.3.2 Data Preparation
	3.3.3 Basic Model
	3.3.4 Optimal Hyperparameters
	3.3.5 Application to Dataset from Neto et al.

	3.4 Discussion

	4 Conclusions and Future Work
	4.1 Conclusions
	4.2 Future Work

	Bibliography
	Appendix A Cross-Correlograms per electrode

