
Webcam motion detection and tracking interfaces for immersive

embodied experiences

Joana Martins
joana.barreto.martins@tecnico.ulisboa.pt

Instituto Superior Técnico, Lisboa, Portugal

May 2016

Abstract

Video tracking is an important area of Computer Vision research. It has tremendous potential
regarding the improvement of human-computer interaction. Thus, it contributes to the most different
fields like security and surveillance, video communication and compression, augmented reality,
technological control, medical imaging, video editing, among others. In order to track an object in
video, it is usual to follow four steps: first detect the moving region, then apply object classification
techniques in that area of the frame to recognize what object has moved and, finally, proceed with
the prediction of the next movement by that object. In this thesis we present the methods that
we consider to be more relevant for each step of this quest. The work is undertaken in the context
of a collaborative dance-technology project Senses Places, which fosters mixed reality performances
that involve participants from all over the world. Meeting physically and/or virtually, in a common
environment, they engage kinaesthetically in new shared embodied mediated experiences towards
expanding awareness to cross geographical, cultural, disciplinary, artistic and human boundaries. We
contribute to the project with a mixed reality interface that recognizes the human movements in front
of a webcam in real time and translates them to an online virtual world where an avatar will respond,
according to the choreographic approach. In this dissertation we explain the process followed to achieve
the best interface, including the tracking techniques used, and the virtual world scripts and animations
developed.
Keywords: Video tracking, Mixed reality webcam interface, Senses Places, Computer vision

1. Introduction

Movement recognition and object tracking research
is an area of study in high demand. They grant
machines with the sense of vision, which increases
their similarities with humans and improve their in-
teractions. The progress of this technology arouses
great interest, since there are endless applications
[5].

This technology extends to multiple areas like
medicine, military, surveillance and entertainment,
but in this work we will be focused on the per-
forming arts applications. These software and sys-
tems have contributed to bring closer the physical
and virtual worlds, allowing the creation of virtual
dance partners, which generates new and transcend-
ing choreographies. As a consequence it provides
the emergence of new styles and forms of art, revo-
lutionizing concepts and aesthetics [16].

1.1. Objectives

The work developed had the fundamental goal of
creating an object recognition software to serve the
project Senses Places. Senses Places is a dance-

technology collaborative project that aims to gen-
erate a playful mixed reality performance environ-
ment for audience participation [17]. The interface
was designed to track the dancer’s movements and
connect them to the movements of an avatar in the
Multi-User Virtual Environment (MUVE), Second
Life (SL), providing a deeper connection between
the physical and virtual embodiments and realities.
In order to be able to develop this interface we stud-
ied different techniques of object tracking via video,
that are also presented in this dissertation, provid-
ing a global view of the main algorithms in use.

The methods presented are for a single common
webcam, not a stereo camera, nor any other type of
camera. These recognition and tracking methods
do not require the use of sensors or special back-
grounds. Besides these limitations, we are also sub-
jected to the following typical difficulties given by
the complexity of the problem like noise in the im-
ages, complex object motion and nonridged or the
articulated nature of objects.

With all these constraints in mind, it was clear
that there is no single solution that applies to all

1



problems and applications. We approached exist-
ing techniques, referring their advantages and dis-
advantages. This way we could make informed
choices, concerning our final goal that is the design
of a webcam interface to track dance movements.

2. Motion Detection and Tracking Algo-
rithms

Human tracking is a complex issue because of its
body shape, articulation, fast motion and clothing.
To further complicate the problem, the lighting and
background conditions and the noise may have a
great influence in several techniques [13]. To achieve
our final goal, these circumstances require a pre-
processing of the video before executing any other
steps.

After pre-processing, we need to detect and cate-
gorize the object, before being able to track it [12].
We have to apply object detection techniques to de-
tect objects of interest in the video sequence and to
cluster pixels corresponding to these objects. Then,
we have to find ways to represent them in order to
allow differentiation from all the others. Objects
can be classified as different things, e.g. vehicles,
body parts, birds, floating clouds, swaying trees,
among others. After that we are able to track our
objects more easily.

2.1. Pre-Processing

Once we get the frames from the video, it is re-
quired to use pre-processing techniques to facilitate
their analysis. The most common techniques in-
volve enhancement, restoration and processing of
the colour, compression and noise removal. Pre-
processing must be done with caution to avoid loss
of information.

2.2. Motion Detection

At the beginning of this process of object tracking,
we have to detect the objects in the video frames.
Most methods described in this section are motion
recognition algorithms, since they are typically the
primary source of information and the cheapest, in
terms of computational memory. In this section we
present the frame difference algorithm, the back-
ground subtraction algorithms and the optical flow.

2.2.1 Frame Difference Algorithm

This technique starts from the assumption that the
background is static and compares the pixels of the
frames captured in very small time intervals (∆t).
If the absolute difference comes to a value above a
pre-defined threshold (Γ), it means that the pixel
has changed and therefore there was movement.

This method can be described by the following

formula:

Ii =

{
1, if | ft − ft−1 |≥ Γ

0, if | ft − ft−1 |< Γ
, (1)

where Ii is the binary result of the absolute differ-
ence of a pixel between two consecutive frames (ft
and ft−1).

The differences of all the frame pixels give us a
collection of binary numbers that, ultimately, will
translate the movement [14]. This method allows
a good movement recognition, it is easy to imple-
ment and does not require a lot of memory space.
However, it considers the background static.

2.2.2 Background Subtraction Algorithms

A common approach to identify the moving objects
is background subtraction, where each pixel from
the video frame is compared against a reference im-
age of the background. When pixels in the current
frame differ significantly from the reference image,
it is considered that movement occurred. A very
plain approach to this method is to detect the fore-
ground objects as the difference between the current
frame and an image of the scene’ static background,
similar to the technique addressed before. This ap-
proach is very simplistic and it probably won’t give
very good results because it does not adapt the
background image to any change that may occur.

The median filter technique overcomes that
problem by adapting the background image by cal-
culating the average of the previous frames. The
preceding frames are saved and the background is
calculated as the median of the buffered frames.
Then, it will be processed as seen before, the back-
ground model is subtracted from the current frame
and thresholded to determine the binary image of
the foreground pixels. Unfortunately, it requires a
large amount of memory to store and process many
frames. For that reason, it was developed the ap-
proximate median method. In this scheme, if a
pixel in the current frame has a value higher than
the corresponding background pixel, that back-
ground pixel is incremented by 1, and if it is lower
that pixel from the background model is decre-
mented by 1. This estimate eventually converges
to a value where half the input pixel is greater than
the background and half is less (approximately the
median). The principal problem with this filter is
its slow recovery from changes in the background
[1].

One of the most used models of background sub-
traction is the pixel wise mixture of Gaussians
(MoG), proposed by Stauffer and Grimson, [15],
because it presents a good compromise between ro-
bustness versus computation time and memory re-
quirements. In this technique the background is not

2



considered a frame of values. Instead, the back-
ground model is parametric and the model param-
eters can be adaptively updated without keeping
a large buffer of frames. MoG keeps a probability
density function for each pixel, in a way that each
pixel is characterized by a mixture of n weighted
Gaussian distributions, with a certain mean and
standard deviation. A background pixel has a high
weight and a weak variance, since the background is
usually more present than the moving objects and it
is practically constant. There are normally three to
five Gaussian distributions for each pixel, depend-
ing on memory limitations. The parameters can be
initialized, resorting to median filtering and then
updated. After initializing the parameters, we pro-
ceed to the foreground detection by ordering the
n Gaussians of a pixel by a criterion ratio. The
background model is formed by the first Gaussian
distributions that exceed a specific threshold. The
remain components are considered to be the fore-
ground distributions. Every pixel is compared to
these distributions to determine if they belong to
the foreground or the background [15]. This com-
parison is done based on the Mahalanobis distance.
At every moment we need to update the compo-
nents of each pixel. This technique cannot deal with
sudden and drastic lighting changes.

2.2.3 Optical Flow

Optical flow is the pattern of apparent motion of
objects, surfaces and edges in a visual scene, gen-
erated by the relative motion between an observer
and the scene [12]. The optical flow method cal-
culates the optical flow field and groups different
types of movements, according to the optical flow
distribution characteristics of the image. This tech-
nique seizes all the movement information and de-
tects the moving object easily, however, it is de-
manding in terms of computation time and memory
requirements. In the definition of the optical flow
problem, we consider that in the frame obtained at
the instant t1 we get a certain point (x1, y1) that
corresponds to the point (x2, y2) in the frame of in-
stant t2. It is assumed that the distance between
both points (or pixels) is small. Considering a lin-
ear local deformation in a sequence of images, we
are able to translate the optical flow problem into
the following formula:

I
(
x(t), y(t), t

)
= I
(
x(t) + ∆x, y(t) + ∆y, t+ ∆t

)
.

(2)
By introducing in the formula the velocities for both
coordinates (u ≡ ∆x

∆t and v ≡ ∆y
∆t ) and substitut-

ing the discrete changes ∆x, ∆y and ∆t with their
infinitesimal counterparts dx, dy and dt, we get:

I
(
x(t)+udt, y(t)+vdt, t+dt

)
−I
(
x(t), y(t), t

)
= 0.

Considering I a differentiable function, we can ex-
pand the left-hand side of this formula with a Taylor
series and by denoting the partial derivatives of I
as Ix, Iy and It, and v = (u, v) for the flow vector,
we obtain the so called image brightness constancy
equation:

Ixu+ Iyv + It = 0

or

∇I · v +It = 0.

(3)

It conveys that the apparent brightness of mov-
ing objects remains constant. As we can notice,
this equation has two unknown variables (u and v),
which leads to an under constraint problem. Here
we describe the two most common techniques used
for optical flow computation: Horn and Schunck [7]
and Lucas and Kanade [10]. These two methods are
the most commonly used because they offer accu-
rate results for almost every type of movement.

The Horn and Schuck’s method combines
the optical flow constraint equation (3) with a
smoothness constraint. It states that the optical
flow field must vary smoothly and have few discon-
tinuities. One way to convey this new constraint is
by limiting the difference between the flow veloc-
ity (v) at a point and the average velocity over a
small neighbourhood containing that point, which
is equivalent to minimize the sum of the squares of
the derivatives in x and y. If the flow velocity is sig-
nificantly different compared to its neighbours, the
gradient along either x or y will be large. The sum
of this constraint with the optical flow constraint
presents the function to be minimized:

E2 =

∫∫
(∇I. v +It)

2+

w2

((∂u
∂x

)2

+
(∂u
∂y

)2

+
(∂v
∂x

)2

+
(∂v
∂y

)2
)
dxdy,

(4)
where w2 symbolizes a constant weighting factor.
Larger values of w lead to a smoother flow. To
minimize this function, it is proposed to use the
multi-dimensional Euler-Lagrange equations, giving
us the system:

(w2 + I2
x + I2

y )(u− u) = −Ix(Ixu+ Iyv + It)

(w2 + I2
x + I2

y )(v − v) = −Iy(Ixu+ Iyv + It),
(5)

where u is the average of the component u and v is
the average of the component v.To solve this sys-
tem of equations, Horn and Schunck proposed an
iterative solution [7]:

un+1 = un − Ix(Ixu
n + Iyv

n + It)

w2 + I2
x + I2

y

vn+1 = vn − Iy(Ixu
n + Iyv

n + It)

w2 + I2
x + I2

y

. (6)

3



This approach, often run for 100 iterations, makes
the propagation of the optical flow vectors happen
in a way that will eventually fill in regions of the
field that correspond to homogeneous regions in the
image [7].

Lucas and Kanade differential technique is one
of the most popular techniques for optical flow com-
putation. This method solves the aperture problem
by assuming that the velocity vector will be simi-
lar in a small neighbourhood surrounding the pixel
(V ). This is approached through a weighted least-
squares problem, where we have to minimize the
error function below:

Ev =
∑
p∈V

W 2(p)
(
∇I(p) · v +It(p)

)2

, (7)

with p being the neighbour pixel and W (p) the
weight associated to that pixel. The farther the
neighbour pixel is from the given pixel, the smaller
the associated weight should be. The weights work
in order to diminish the importance of distant
neighbours. The equation (7) simply sums the error
of applying the flow velocity vector v to the spatial
and temporal gradients of all the surrounding neigh-
bours using the optical flow constraint equation (3).
We should be able to find a v consistent with the
neighbouring spatial and temporal gradients. If it is
inconsistent with some neighbours, it would have a
larger error. Applying it to a small neighbourhood,
e.g. 5x5, we get more equations than unknowns. To
solve this problem we should use the least squares
method, getting[
u
v

]
=

[ ∑
i wiI

2
x(pi)

∑
i wiIx(pi)Iy(pi)∑

i wiIx(pi)Iy(pi)
∑

i wiI
2
y (pi)

]−1

[
−
∑

i wiIx(pi)It(pi)
−
∑

i wiIy(pi)It(pi)

]
.

(8)
This method makes a local calculation of the flow

vector. Unlike Horn and Schunck’s iterative tech-
nique, this does not rely on the entire image to
achieve a good estimate. This means that Lucas
and Kanade’s method is able to separate different
regions with different optical flows, while in the
other method vectors from different regions affect
each other. However, this technique does not fill in
homogeneous regions. Nevertheless, this method is
considered one of the best optical flow computation
techniques as it performs consistently and robustly
and it is of easy implementation [10].

2.3. Object Classification
The extracted moving region detected by the tech-
niques mentioned in the previous section may repre-
sent different objects. Hence, we have to use other
methods to recognize features that allow us to de-
termine which object is the one that we want to

track. This presents many challenges since the same
object may be seen from different viewpoints, the
illumination may vary and there may be occlusions.

2.3.1 Harris Detector

The Harris detector, proposed by Harris and
Stephens [6], is a corner detector. The term cor-
ner in this context is used to represent points in
the 2D image for which there are two dominant
and different edge directions in a local neighbour-
hood of the point. Looking at a local window and
shifting it through the region of interest (ROI) that
we are studying, the corner is detected by a large
change in the intensity of some pixels in that win-
dow. Corners are considered good interest points
because they can give us true matches, while in flat
zones and along the edges there are a lot of differ-
ent pixels that don’t correspond to the actual point
(false matches). In order to find these changes in
the intensity, this method suggests to calculate an
error based on the auto-correlation function:

E(u, v) =
∑
x,y

w(x, y)2(I(x+ u, y + v)− I(x, y))2,

(9)
where w(x, y) is the weight function and I(x+u, y+
v) represents the shifted intensity. Applying a Tay-
lor expansion to the shifted intensity we get:

E(u, v) ≈
∑
x,y

w(x, y)2(uIx + vIy)2

=
∑
x,y

w(x, y)2
( [
u v

] [Ix
Iy

])2

=
[
u v

]
Sa

[
u
v

]
,

(10)

where Sa =
∑

x,y w(x, y)2

[
IxIx IxIy
IxIy IyIy

]
. Sa de-

scribes the shape of the local auto-correlation func-
tion at the origin. The eigenvalues of the matrix
Sa (λ1 and λ2), are proportional to the princi-
pal curvatures of the local auto-correlation func-
tion and develop a rotationally invariant descrip-
tion of Sa. Therefore we have three possibili-
ties: if both curvatures are small, that is, λ1 and
λ2 are small, it means that E is almost constant
in all directions, the auto-correlation function is
flat, so, we are in a flat region; if λ1 >> λ2 or
λ1 << λ2, we found an edge, the auto-correlation
function is ridge shaped; if λ1 and λ2 are large
and with similar value, it means E increases in
all directions, we found a corner To measure the
corner response, Harris formulated the following
equation:R = Det(Sa) − c(Tr(Sa))2, where Det is
the determinant of the matrix, Tr is the trace, and
c is an empirical constant with usual value between

4



0.04 and 0.06. Notice that R only depends on the
eigenvalues of Sa. This equation gives positive val-
ues if we are in a corner region, negative in edges
and small in flat regions. Using thresholds, we are
able to find good interest points. Harris detector is
covariant to image translation and rotation and it
is partial invariant to affine intensity change (since
it only uses derivatives, it is invariant to intensity
shifts but not to intensity scaling). However it is
not covariant to image scaling [6].

2.3.2 Viola–Jones Detector

Paul Viola and Michael Jones presented a solution
in 2001 for object detection and classification that
stands apart from all the others because of its speed
in doing so. Their method was the first to achieve
real-time face detection [19]. This technique uses
Haar-like features. We apply to the image a se-
ries of rectangular masks, each feature results in
a single value calculated by subtracting the sum
of pixels under the white rectangle from the sum
of pixels under the black rectangle. The region
where the feature has a high value corresponds to
the one to which the mask was designed. Viola-
Jones algorithm usually uses a window of 24x24
pixels and performs different kinds of masks with
different sizes to the entire image, obtaining more
than 160000 features per window. To help com-
puting all the pixels sums, it was used the idea of
integral image. In an integral image the value of
a certain pixel is the sum of the pixels above and
to the left of that pixel. Although each feature is
calculated very efficiently, computing all the 160000
is very time consuming. Viola and Jones suggest a
way to find out which features are more relevant to
detect a given object, using Adaptive Boosting, or
AdaBoost. AdaBoost is a machine learning meta-
algorithm formulated by Yoav Freund and Robert
Schapire [4]. It works by assigning weights and
choosing the relevant features (called weak classi-
fiers):

C(x) = w1cl1(x) + w2cl2(x) + w3cl3(x) + ..., (11)

where C(x) is the final strong classifier (it informs if
we found the object or not), wj represents the nor-
malized weights and clj represents the weak clas-
sifiers related to the different features. The weak
classifiers take a binary value, according to a thresh-
old: they are one if they performed well and found
features in the images; zero if they did not. The
weights are related to the miss classified images.
We have to apply this strong classifier to each 24x24
window in our image. If the classifier is really exten-
sive it would take a lot of computation time. So, it
is proposed the implementation of a cascade of clas-
sifiers. First we apply a classifier that is related to a

group of ten main features. This way, we quickly ex-
clude sub-windows that, most certainly, our object
will not have. Then, more specific groups of clas-
sifiers will be used to exclude the remaining false
positives. This algorithm works really well for real
time object recognition with distinctive patterns,
such as a human face.

2.3.3 Scale-Invariant Feature Transform
(SIFT)

Scale-invariant feature transform is a very impor-
tant method for extracting distinctive invariant fea-
tures from images, developed by David Lowe in
2004 [9]. Besides finding many interest points with
quality, this technique also makes a correct match
against a large database of features from many im-
ages. This detector and descriptor is invariant to
image scale and rotation and it is robust to change
in 3D viewpoint, addition of noise and affine (ro-
tation, scale, shear) distortion. SIFT has also the
advantage of being able to perform close to real-
time.

SIFT finds local features by detecting blob (bi-
nary large object) regions in an image, where some
properties are constant. This recognition is made
by applying the Laplacian of Gaussian (LoG) filter
to the image, also called Mexican hat filter because
of its graphic appearance:

∇2L(x, y, σ) = ∇2
(
G(x, y, σ) ∗ I(x, y)

)
= ∇2

(
G(x, y, σ)

)
∗ I(x, y),

(12)

where G(x, y, σ) is a Gaussian filter. Different val-
ues for σ give different scales to the transformed
image. To find which scale is the best to apply
to a certain point of the image we have to exe-
cute different LoG filters to that point, with dif-
ferent values for σ, and observe which one gives
the higher response value. The filter that gen-
erates the maximum value in the response is the
one that we choose for that pixel. To compute
all these filters efficiently, it is proposed to apply
Gaussian pyramids to the image, because it can
be proved that there is a relation between LoG fil-
ters and the difference of Gaussian (DoG) filters
(D(x, y, σ) = (G(x, y, cσ) −G(x, y, σ)) ∗ I, where c
is a constant). To choose the right pixel to be an in-
terest point, we have to compare every pixel in a 3x3
neighbourhood region in the current and adjacent
pyramid levels (scales). As most sample points are
going to be eliminated in the first checks, the com-
putational cost of this comparison is low. However,
this does not necessary provide their exact location.
To find the precise location, Lowe suggests a de-
tailed fitting of the keypoints into the nearby data.
Based on a Taylor series expansion it is possible to

5



fit a quadratic function to the local sample points
and determine the interpolated location of the real
maximum. Nevertheless, some keypoints are not
good candidates to be interest points because they
have low contrast. To eliminate those, we apply
a threshold (usually 0.03) and only if the value of
D(x, y, σ) is larger than that pre-determined thresh-
old, we consider that to be a keypoint. The search
for good interest points is not over yet because we
have to eliminate those points which are poorly lo-
calized along edges, as DoG function gives a strong
response there. A poorly defined peak will have
very low curvature along the edge and a high across
the edge. To obtain its principal curvatures we
have to compute the Hessian matrix (H) of D. Us-
ing the same approach used by Harris, we can find
its eigenvalues (λ1 and λ2) from the calculation of
trace (Tr) and determinant (Det). To eliminate the
points with low curvature in one of the directions
we establish a maximum limit for the ratio (usually
r = 10) between the eigenvalues of H. We have now
selected good keypoints that guarantee the scale in-
variant aspect of our descriptor.

Besides finding interest points, SIFT also de-
scribes the region around them, which will help
tremendously with the classification of that object.
A SIFT descriptor starts by computing the gradi-
ent magnitude (m(x, y)) and orientation (θ(x, y))
around the keypoint, through pixel differences.
With those values we calculate weighted orienta-
tion histograms, for each small region of the neigh-
bourhood, and concatenate them achieving our fi-
nal descriptor vector. Empirically, Lowe found out
that the best results were when we computed 4x4
array of histograms with 8 orientation bins each.
Therefore, our descriptor vector will have 128 ele-
ments. To guarantee the invariance of our descrip-
tor to changes in illumination, we have to normalize
the vector to unit length. To overcome non-linear
illumination changes we should make a threshold to
reduce the influence of large gradient magnitudes,
and then we renormalise the vector to unit length
again. Experimentally it was found that the thresh-
old should have the value 0.2. To achieve the clas-
sification of the object, we need to match our local
features to the ones of the images that we have in
the database. This is done by calculating the mini-
mum Euclidean distance between our interest point
and the ones that are in the database, finding the
nearest neighbour. As the Harris detector (section
2.3.1), SIFT also provides a way to select interest
points in a image, with the advantage of being in-
variant to scale, but the really benefit of SIFT is
that it is a descriptor, giving us details about the
region around the keypoint [9].

2.3.4 Histograms of Oriented Gradients
(HOG)

As SIFT, the histogram of oriented gradients
(HOG) is a feature descriptor. It was first described
by Navneet Dalal and Bill Triggs in 2005 with the
intention to detect humans, but it has proved to
have many more applications [3]. This method also
starts by analysing the gradients of the image, but
it will not use the smoothed image. The HOG de-
scriptor computes the magnitude and the orienta-
tion gradients only from the x and y derivatives of
the image. If we have a colour image we should
choose the colour channel with the highest gradi-
ent magnitude for each pixel. As HOG was initially
designed for human identification, it goes over im-
ages with 64x128 dimension. It divides the image in
16x16 pixel blocks with 50% overlap, giving a total
of 105 blocks of 2x2 cells. To create the orientation
histogram of each cell from each block, we quan-
tize the gradient orientation into 9 bins (from 0◦ to
180◦). Then each pixel contributes to the histogram
according to a linear interpolation between neigh-
bouring bin centres. The vote can also be weighted
with a Gaussian distribution to down weight the
pixels near to the edges of the block. Then, we con-
catenate all the histograms, obtaining a 1D vector
with length 3780 (105 · 4 · 9). HOG is considered
a global feature descriptor but we can also use it
with a feature detector to obtain better results. Af-
ter obtaining the vector we can use the technique
mentioned at the end of section 2.3.3 to match im-
ages and classify our object [3].

2.4. Object Tracking

The aim of an object tracker is to generate the tra-
jectory of that object over time, by locating its po-
sition in every frame of the video [20]. After de-
tecting the object that we want to track through
the methods described in sections 2.2 and 2.3, we
need to apply algorithms to establish a correspon-
dence of the objects across frames. These tracking
algorithms should also be able to predict the object
trajectory, saving, this way, computational memory
and reducing the noise. In this thesis we will explain
how this is done through methods based on mean
shifts and through a Kalman Filter.

2.4.1 Mean Shift

The mean shift algorithms are an efficient approach
to tracking objects whose appearance is defined by
histograms. So, they should be used in parallel with
the SIFT or the HOG descriptors (sections 2.3.3
and 2.3.4). These methods estimate the motion of
the object by iteratively shifting a data point to
the average of the data points in its neighbourhood.

6



The mean shift vector is given by:

Mh(y0) =

(∑nx

i=1 wi(y0) xi∑nx

i=1 wi(y0)

)
− y0, (13)

where nx is the number of points in the neighbour-
hood, y0 is the initial location of our point, xi are
the data points vector, wi(y0) is the weight associ-
ated to the point i in relation to our initial point
y0 and h is the radius of the ROI, also called kernel
radius. One of the techniques based on the mean
shift help creating a confidence map in the new im-
age based on the colour histogram of the object in
the previous image, and use mean shift to find the
peak of a confidence map near the object’s old po-
sition. The confidence map is a probability density
function on the new image, assigning each pixel of
the new image a probability, which is the probabil-
ity of the pixel colour occurring in the object in the
previous image. These methods do not work well
with occlusion, nor when we want to track more
than one object [2].

2.4.2 Kalman Filter

The Kalman filter has many uses, including appli-
cations in control, navigation and also in computer
vision. It is really useful to help with tracking ob-
jects because this filter is able to estimate the state
of a dynamic system, taking into account Gaussian
noise disturbance [8]. This filter has two recursive
stages. At each iteration, it predicts the current
location of the object, based on previous observa-
tions and then, it corrects the models, considering
the measurement of the object’s actual location.
Although this is an extraordinary filter that pro-
duces very good results in an efficient time, it has
a big constraint that it can only be applied to lin-
ear Gaussian models. To overcome this problem it
was developed a non-linear version, the Extended
Kalman Filter. This filter produces faster results in
terms of iterations, but at a higher cost.

3. Interface Development within the Senses
Places Project

Senses Places (SP) is a dance-technology collabora-
tive project that aims to create playful mixed reality
performance environments for audience participa-
tion. This project was initiated by Isabel Valverde
and Todd Cochrane in 2010, respectively as artis-
tic and technical directors [18]. Through scheduled
events, welcoming anyone who wants to join, par-
ticipants from all over the world, with different cul-
tures and areas of expertise meet physically and/or
virtually, in the 3D Virtual World (3DVW), Second
Life (SL), and perform together.

3.1. Interface Design

The webcam interface within SP was first presented
in 2010. It is implemented on a web page in an
embedded Adobe R©Flash R© component. The goal
of this interface is to recognize the participant’s
movements through a webcam and to connect them
to the avatar’s movements in the 3DVW. The web
page displays a video of the webcam view that is
super imposed with a graphical abstraction in the
form of disks connected by lines, representing the
proposed position of the detected movement of a
head, hands and torso a skeleton. This interface
has some limitations, as it only considers the move-
ment of the upper body in a disfigured and very
restrained way, see figure 1.

Figure 1: SP’s first webcam interface. The blue
disks represent the hands and the head and the yel-
low represents the torso. The disk that symbolizes
the head has the freedom to move in both axis (x
and y), the other ones only move vertically (in the
y axis)

What we proposed to do within the SP project
was a better recognition of the human movements,
maintaining the easiness of the interface online use,
so that the user does not have to install any other
software. We decided to implement the new inter-
face using javascript and HTML5 since with the new
Canvas element, HTML5 can draw and manipulate
videos in the screen quicker. Nevertheless, tracking
different body parts online in real time is not an
easy thing to do. We started by detecting move-
ment and then we tried to come up with a way
to distinguish what body part performed the corre-
sponding movement.

After testing different algorithms, we concluded
that what works best is to apply the frame differ-
ence algorithm (section 2.2.1) to every frame. With
this new interface we wanted to track more body
parts, so we decided to use 7 nodes symbolizing the
position of the head, hands, chest, pelvis and feet.
To help distinguish the movements made by the dif-
ference body parts, we chose to delegate each node
to a region where they could move, restricting the

7



movement a little bit, see figure 2.

Figure 2: Regions that detect the different body
parts, considering seven nodes

Computationally we found out that it was more
efficient to perform the frame difference algorithm
by region. We started searching for movement in
the upper left side of each area, performing the sub-
traction pixel by pixel from the left to the right, top
to bottom. As soon as it would find a difference be-
tween pixels, the node moved to there. To avoid
false positives related to noise, we only allowed the
node to move to a place where the movement was
recognized in four consecutive pixels. In overlap-
ping areas the node that moved was the one closest
to that zone.

At this moment, we had an interface that rec-
ognized movement in different parts of the frame,
but it did not actually recognized the moving ob-
ject. We also concluded that most of the techniques
that we explored on the previous chapter for object
classification were not suitable for real time multi-
ple objects recognition, because of their expensive
computation time. The Viola-Jones detector (sec-
tion 2.3.2), requires the training of good classifiers,
which is particularly difficult in case the objects do
not possess distinctive features, as for example, the
chest, pelvis or feet. Our hands do have a very dis-
tinctive form, however, they are so articulated that
during our movement they can take many different
shapes, making it hard to recognize them through
patterns. The only body part that does not change
that much and has unique features, making it easier
to distinguish from all the other objects, is the head.
Thus, we decided to incorporate a face recogni-
tion based on Viola-Jones method to our movement
recognition interface. If it is not able to find a face,
it resumes with the frame difference technique for
that node. To improve the interface further more,
making it always assume a human-like skeleton rep-
resentation and avoiding confusion by the overlap of
nodes, we imposed some constraints regarding the
maximum and minimum distances between nodes.

These distances were found empirically.

3.2. 3DVW Interaction

The connection of the new interface to the 3DVW
was established almost in the same way as the first
webcam interface, implemented by Todd Cochrane
[18]. When a movement is detected, the coordinates
to where the node moved, along with the informa-
tion about which node it was, are sent to a PHP
script on a web server. The Heads Up Displays
(HUDs) that are given to the participants in the
virtual world, contain a script that pulls this infor-
mation and animations that will make the avatar
move, accordingly.

In the previous interface, the 3DVW receives in-
formation about what body part has moved, and
then it randomly selects between four animations,
previously determined to be connected to that node.
Now, we implemented two different kinds of 3DVW
scripts. One is based on the previous one, just de-
scribed. This script is only concerned about which
body part has moved, and after that recognition it
arbitrarily selects one of the four animations pre-
viously chosen to be related to that body part.
The second script, besides detecting what node has
moved, it also analyses where the nodes are located
and according to their location triggers a different
animation. To improve the choreographic goals of
the project, we created animations to the avatar
in the biovision hierarchy format (BVH), specifying
how the avatar will move when a certain animation
is activated (which body part will move, at what
speed, etc...). This way, we are also able to establish
a better correspondence between the location of the
nodes and the chosen animation that the avatar will
perform. The created animations for this second
script involve small movements of the body parts,
but it also allows their combinations. Thus, the de-
veloped animations created complement each other,
bringing a full body movement to the avatar. The
new data, more detailed and accurate, allow par-
ticipants a more fulfilling engagement and a way to
perceive the avatar as a dance partner, providing a
stronger sense of immersion.

4. Results and Interface Testing

In order to detect bugs in our program and test
how well it works, we first performed several tests,
both on the webcam interface and on the 3DVW
scripts. Then, we shared the interface with the SP
community to receive feedback about how it fits the
performance and the participatory experience.

4.1. Movement Tracker

When performing isolated movements of a body
part with low or high speed, the interface makes a
correct tracking, within the imposed regions shown
in figure 2. We may see the results when we cap-

8



ture images of the left arm performing a descent
movement with different speeds, in figure 3.

Figure 3: Captured frames of arm movements with
different speeds, ∆t = 3s, ∆t = 1s and ∆t = 0.25s,
respectively.

The feet nodes have more difficulties to stay con-
nected to the user’s feet. They tend to rise a little
too much, and may even reach the knees. Never-
theless, the interface tracks well the lower part of
the body, which was an important goal for the new
SP webcam interface. When performing movements
that comprise different body parts simultaneously,
it is harder to track with precision. The chest node
easily jumps to the elbows, and the pelvis some-
times jumps to the knees, but they will quickly go
back to track what they are supposed to, as can be
seen in figure 4.

Figure 4: Captured frames of a movement with in-
tervals ∆t = 2s.

It was important that the interface would be able
to track movements closer to the floor, so that the
participant could express more freely. In figure 5
we can see that we have succeeded on using the
interface to follow up an down movements.

Moreover, the face recognition algorithm works
really well, as can be seen in all the figures presented
in this section.

4.2. 3DVW Scripts and Animations
We are able to correctly connect the webcam inter-
face located in a web page to the virtual world, with
the password provided by the 3DVW script. The

Figure 5: Captured frames of the user getting lower,
∆t = 0.5s.

data informing what node has moved, and the co-
ordinates to where it moved is sent to the PHP web
page through the online webcam interface every two
seconds, and it is pulled by the virtual world in the
same time interval (these intervals can grow bigger,
when the internet connection is weak). Hence, we
have to take these delays into account when testing
the interface in connection with the virtual world.
In figures 6 and 7 we can see some examples of the
avatar’s reaction to human movements.

Figure 6: Reaction of the avatar to a movement out
of the verticality.

Figure 7: Reaction of the avatar to a low movement
with the arms bent.

The tests confirm that no animation inhibits oth-
ers, because when we created the HUDs we were

9



careful enough to update animations with the same
level of priority. Notice that this was a justified
concern, once with the former webcam interface
(see figure 1) the avatar often would get stuck in
some positions and animations, and the only way
to emend that was by taking the HUD off.

4.3. Users’ Response

After making our own critical analysis on the soft-
ware that has been developed, we decided that it
was time to be made public and shared with the
SP’s community and with whoever was interested.
To better understand their opinion and identify the
flaws that the users could find, we prepared a ques-
tionnaire for them to answer. We gathered infor-
mation from twenty one respondents (ten males
and eleven females), from ages between nineteen
to sixty two. The majority of them have back-
ground in engineering and some in arts. Despite
some of them having experienced a MUVE, more
than half of the respondents who answered to our
questionnaire were not SP collaborators and have
never participated in a mixed reality performance
and environment before. Although the internet con-
nection was not the best for a few participants, the
overall evaluation of the movements tracked by the
online interface was positive (4.09, where 5 corre-
sponded to ”very good”). Those people who had
the opportunity to experience the interface in com-
bination with the SL script rated the animations
and the HUDs provided by us with an average of
4.14 (where 5 corresponded to ”very appropriate”).
Overall the twenty one participants enjoyed the in-
terface and classified the experience in an average
of 4.52 (where 5 corresponded to ”very enjoyable”),
figure 8.

Figure 8: Rating of the overall experience. The
average of the 21 answers was 4.52, where 1 corre-
sponded to ”very unenjoyable” and 5 ”very enjoy-
able”.

At the end of the questionnaire, we asked for in-
dividual opinions and bug reports. The main crit-
icism made by several participants was that they
had to place themselves too faraway from the cam-
era, in order to get the nodes correspond properly to
the body parts as they were supposed to. Since our

interface was designed to operate as a dance inter-
face, it is understandable that we intended that the
participants experienced it in a large room, where
they may dance and move freely in space.

5. Conclusions

This dissertation addresses at large the topic of
object tracking through video capturing, which is
a very important topic within the research field
of computer vision. It has numerous applications
in the most different areas, namely in engineering,
medicine, security, entertainment and so on. Par-
ticularly, we focused on the application of this tech-
nology to the performing arts. The ultimate goal of
the present work was to create a webcam interface
for a dance-technology project, Senses Places, to
help establishing a deeper connection between the
virtual and physical worlds. We presented several
methods to recognize and track objects via video,
with the goal of choosing the right ones to develop
our own movement tracking interface.

The interface developed within the SP project is
based on the frame difference algorithm and the Vi-
ola and Jones method. We also created Second Life
scripts to help reinforce the choreographic approach
of the project, based on the unpredictability and ki-
naesthetic engagement. Our work is innovative in
a sense that it makes a satisfactory online real time
recognition of different objects moving without the
use of special cameras or settings. We want to re-
mark that an early description of the developed in-
terface was submitted as a short paper, presented
at the International Symposium of Electronic Arts
in Hong Kong (ISEA 2016), and it is now published
in the conference proceedings [11].

The work developed in this thesis had the spe-
cific main goal to serve a dance-technology project.
However, if we adapt the code, we can use it for
other applications. For instance, it can help create
accessible interfaces for technological control, mo-
tion sensors and simulators.

Acknowledgements

I would like to express my gratitude for all the sup-
port and encouragement to my advisor Ana Moura
Santos, to the artistic director of the Senses Places
project Isabel Valverde, to my friends and to my
parents and my brothers.

References

[1] S. Cheung and C. Kamath. Robust techniques
for background subtraction in urban traffic
video. Video Communications and Image Pro-
cessing, 2004.

[2] C. Comniciu and P. Meer. Kernel-based ob-
ject tracking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 25, 2003.

10



[3] N. Dalal and B. Triggs. Histograms of oriented
gradients for human detection. In The Pro-
ceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition,
2005.

[4] Y. Freund and R. Schapire. A decision-
theoretic generalization of on-line learning and
an application to boosting. Journal of Com-
puter and System Sciences, 55, 1997.

[5] D. M. Gavrila. The visual analysis of human
movement: A survey. Computer Vision and
Image Understanding, 73(1):82–98, Jan. 1999.

[6] C. Harris and M. Stephens. A combined corner
and edge detector. In Proceedings of the 4th
Alvey Vision Conference, pages 147–151, 1988.

[7] B. Horn and B. Schunck. Determining optical
flow. Artificial Intelligence, 1981.

[8] R. Kalman. A new approach to linear filtering
and prediction problems. Transactions of the
ASME–Journal of Basic Engineering, 82, 1960.

[9] D. Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of
Computer Vision, 60, 2002.

[10] B. D. Lucas and T. Kanade. An iterative im-
age registration technique with an application
to stereo vision. In Proceedings of Imaging Un-
derstanding Workshop, pages 121–130, 1981.

[11] J. Martins, T. Cochrane, I. Valverde, and
A. Moura-Santos. A webcam interface for
somatic-technological dance experiences. In
Proceedings of the ISEA 2016, 2016.

[12] H. Parekh, D. Thakore, and U. Jaliya. A sur-
vey on object detection and tracking methods.
International Journal of Innovative Research
in Computer and Communication Engineering,
2(2), 2014.

[13] C. Sminchisescu, A. Kanaujia, and
D. Metaxas. Conditional models for con-
textual human motion recognition. Computer
Vision and Image Understanding, 104(2–
3):210–220, 2006.

[14] A. Stalin and A. Wahi. BSFS: Background sub-
traction frame difference algorithm for moving
object detection and extraction. Journal of
Theoretical and Applied Information Technol-
ogy, 60(3):1559–1565, 2014.

[15] C. Stauffer and W. Grimson. Adaptive back-
ground mixture models for real-time tracking.
Technical report, The Artificial Intelligence
Laboratory, M.I.T, Cambridge, MA, 1998.

[16] I. Valverde. Interfaces Dança-Tecnologia:
Um Quadro Teórico Para a Performance no
Domı́nio Digital. Fundação Calouste Gul-
benkian, 2010.

[17] I. Valverde. Senses places: developing a so-
matic dance-technology approach. Unpub-
lished paper, 2015.

[18] I. Valverde and T. Cochrane. Innovative dance-
technology educational practices within senses
places. Procedia Technology, 13, 2014.

[19] P. Viola and M. Jones. Rapid object detection
using a boosted cascade of simple features. In
The Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition, 2001.

[20] A. Yilmaz, O. Javed, and M. Shah. Object
tracking: a survey. ACM Computing Surveys,
38(4), 2006.

11


