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Abstract—In this paper, a new SOC (State-Of-Charge) estima-
tion technique, based on the internal impedance of a LiFePO4

battery and fuzzy logic, is proposed.
The frequency response of a LiFePO4 battery cell, representing

its internal impedance, is acquired from an electrochemical
impedance spectroscopy (EIS). This acquired variable has a
non-linear relationship to SOC, thus, an adaptive methodology
approach is taken. The result of the EIS measurement renders
the input to a fuzzy logic system designed for the battery SOC
estimation, through a comparative analysis between the current
impedance measurement and previously observed ones, related
to certain values of SOC. To attain this comparative analysis, the
fuzzy inference model is previously constructed using an adaptive
neuro-fuzzy inference system (ANFIS) technique, based on past
EIS measurements, for pre-defined SOC values.

A device is developed, using the Arduino Due platform and an
assembled printed circuit board (PCB), so that both processes
mentioned above are implemented. The results proved that the
implemented system is capable of correctly inferring the battery
SOC, although being highly dependent on the amount of past
information being acquired, modelling the fuzzy inference system.

Index Terms–LiFePO4 battery, SOC estimation, EIS, Internal
impedance, ANFIS, Fuzzy Logic, Arduino Due.

I. INTRODUCTION

With the rise of autonomous applications in the past years
and its predicable growth in the forthcoming ones, comes the
ascent of energy storage systems demand. The progress in
energy efficiency and the decline of non-renewable sources
of energy dictates the advancement in battery monitoring sys-
tems. With this in mind, an accurate and reliable measurement
of a battery state-of-charge (SOC) is of the most priority to
its active management. The SOC value describes the available
stored energy in the battery in relation to its full capacity. This
indicator is not only relevant from the remaining capacity point
of view but also of extreme importance to the lifetime of the
monitorized battery seeing that these systems are sensitive to
deep discharges or overcharges related to high or too low SOC
values, states capable of irreversible damaging the battery.
A battery system, depending on the application, is usually
composed of more then one cell. With this, rises another
problem, related to the different usage times for each cell,
seeing that in these cases, SOC is measured for the entire set
of cells. This uneven usage leads to rapid ageing of some cells
resulting in its destruction, thereby decreasing the lifetime of
the entire pack. Therefore, battery SOC estimation methods
are of great importance.

This work aims the implementation of a reliable and auto-
matic SOC measurement system. The ultimate goal is to this
in a compact and low-cost way.

Lithium iron phosphate (LiFePO4 or LFP) battery cells
are emerging as a choice when a long cycle life and safety
supersedes energy density, such as in electric vehicles. This
work addresses the development of a system capable of
measuring the SOC value of LiFePO4 cells. In that context,
the proposed sytem will be able to measure the impedance
profile of a given cell, through the development of an EIS
measurement system, later inferring its SOC value using an
adaptive neuro-fuzzy methodology. The implemented system
will automatically estimate this variable based on previous
acquired cell impedance profile measurements.

The paper is divided in the following sections: 1) the
concept where the proposed method is explained; 2) the
detailed implementation of the SOC estimating system de 3)
the analysis of the developed system using a LiFePO4 cell as
test subject.

II. THE STATE OF CHARGE (SOC) ESTIMATING METHOD

The ratio of the amount of electrical energy stored in a cell
(Q(t)) to its maximum capacity (Qn) is usually referred to
as the state-of-charge (SOC) of the cell. It can be defined as
follows:

SOC(t) =
Q(t)

Qn
(1)

The SOC of the battery is a non-linear function depending
on various parameters. Some variables affecting the SOC are
temperature, charge-discharge rates, hysteresis, self-discharge,
and cell age [1]. Several approaches have been proposed for
the SOC estimation and some [2–5] allow a division into
three main estimator categories: the direct, the indirect or
book-keeping methods, and finally adaptive systems for SOC
estimation.

Direct measurement methods concern the measurement of
battery variables and later relating them to SOC. These include
the battery voltage (V), battery impedance (Z) and voltage
relaxation time (τ ) when a current step is applied. Direct
methods include the open circuit voltage method, the EMF
method and the impedance measurement method.

Indirect SOC measurement methods, or book-keeping meth-
ods, are based on coulometric systems, measuring and integrat-
ing the battery charging/discharging current.



The uncertainty of the battery and its management system
behaviour, due to the influence of previously mentioned pa-
rameters, is the main problem to an accurate SOC estimation.
For this reason, adaptive systems based on Fuzzy Logic, Artifi-
cial Neural Network (ANN) and Kalman Filter(KF) combined
with direct measurements, indirect measurements or both, offer
a better solution for on-line SOC estimation. The method
presented in this paper follows this approach, combining the
internal impedance of the cell, acquired from EIS, with fuzzy
logic, in order to estimate its SOC value.

A. Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) is an exper-
imental technique with the purpose of characterizing electro-
chemical systems as a function of frequency. This method
measures the impedance of a system over a defined range
of frequencies, hence the frequency response of the system.
The impedance data obtained by EIS is usually represented
graphically in a Nyquist plot or a Bode plot.

Impedance is measured in potentiostatic mode or galvanos-
tatic mode. In potentiostatic mode, an AC potential is imposed
to a cell and its response current is measured. In galvanostatic
mode, impedance is measured imposing an excitation current
to the cell, thereby measuring its response potential. In gal-
vanostatic mode, the excitation current, as a function of time,
using Eulers relationship, is stated as:

i(t) = I0 exp(jωt) (2)

where i(t) is the current at the time instant t, I0 is the
amplitude of the signal, and ω is the angular frequency.

The response signal, u(t), is shifted in phase (φ) and has
an amplitude U0:

u(t) = U0 exp(j(ωt+ φ)) (3)

Accordingly, the impedance is represented in the complex
plane as:

Z =
V0 exp(j(ωt+ φ)

I0 exp(jωt)
= Z0 exp(jφ) (4)

B. Fuzzy logic applied to a system with two inputs using
learning examples

Sometimes, it is not the best practice to establish the IF-
THEN rules of a fuzzy system using a human operator.
Frequently, one cannot discern what the membership functions
should look like simply from observing the data. In other
cases, the option of inferring the fuzzy output through a
comparative analysis between the current inputs and previous
ones, representing the behaviour of the system, is preferred. In
these cases, the output of a given system is accomplished using
a technique that provides a method for the fuzzy modelling
procedure to learn information about a previously acquired
data set, rather than choosing randomly the membership func-
tion parameters. Hence, for systems to which already exists
a collection of input/output data, neuro-adaptive techniques
incorporated with fuzzy logic are used in order to compute

the membership function parameters that best allow the asso-
ciated fuzzy inference system to track the current input/output
data. This is the idea behind ANFIS or adaptive neuro-fuzzy
inference systems, so that a membership function parameter
adjustment is attained [6].

In this paper, this learning technique associated to the neuro-
fuzzy inference system is applied to the input/output data, re-
sulting from the EIS implemented system presented in the next
chapter, through the Fuzzy Logic Toolbox function existent in
MATLAB. This function works by introducing as an argument
an input/output data set so that the toolbox function named
anfis constructs a fuzzy inference system (FIS) output file
in which the membership function and singleton parameters
associated with each rule are adjusted automatically. This way,
a model describing the impedance spectra database is created,
containing the mentioned parameters, so that an IF-THEN rule
based fuzzy inference system is later implemented.

III. IMPLEMENTATION OF THE EIS MEASUREMENT AND
SOC ESTIMATION SYSTEMS

In this chapter the implementation of the proposed EIS
measurement system is described. In addition, the adopted
solution applied to the LiFePO4 battery cell SOC estimation,
describing the use of ANFIS methodology previously intro-
duced, is delineated.

The proposed system combines signal generation, acquisi-
tion, processing and SOC estimation. It is composed by three
main blocks, displayed in Figure 1:

• An Arduino Due, providing a variable frequency voltage
source (DDS and DAC in Figure 1).

• A customized PCB (Printed Circuit Board):
– First filtering the input signal from the voltage source

Arduino (LP and HP filter in Figure 1).
– Afterwards, amplifying the signal using a linear

voltage-controlled current source (VCCS), producing
a sinusoidal excitation current applied to the cell
(Enhanced Howland current source in Figure 1).

– Finally, acquiring both voltage and current signals,
using a hall sensor and two external analog-to-digital
converters (Hall sensor and ADCs in Figure 1).

• Another Arduino Due microcontroller, responsible for the
signals processing and SOC estimation:

– Firstly, imposing the sampling frequency to the ex-
ternal ADCs located in the PCB.

– Simultaneously, storing the acquired samples result-
ing from the ADC conversion, while applying over-
sampling and moving average filtering techniques
(Oversampling and Averaging; Moving Average Fil-
ter in Figure 1).

– Proceeding this, applying the Discrete Fourier trans-
form to both voltage and current in order to obtain
the impedance spectra of the cell (DFT blocks in
Figure 1).

– Finally, inferring the SOC value, employing the
ANFIS methodology (ANFIS block in Figure 1).
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Fig. 1: Block diagram of the proposed EIS measurement and SOC estimation
systems.
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Fig. 2: Developed device composed by three main bocks: Arduino Due
(source), PCB and Arduino Due (responsible for the signal acquisition,
processing and SOC estimation).

A. Arduino Due

Both signal generation and signal acquisition were executed
using a commercial Arduino Due platform. The Arduino Due
is a microcontroller board embedding a 32-bit ARM core
microcontroller (Atmel SAM3X8E), being clocked at 84 MHz.
It embeds a dual channel 12-bit digital to analog converter
(DAC) output, 16 12-bit analog to digital converter (ADC)
inputs, 54 digital pins that can be used as an input or output.
Each pin is able to provide a current of 3 mA or 15 mA,
depending on the pin, or receive a current of 6 mA or 9 mA,
depending on the pin. The Due has 512 KB of flash memory,
where the Arduino sketch is stored, and 96 KB of SRAM,
where the sketch creates and manipulates variables while it
runs.

In this project, two Arduino Due were employed and a
firmware has been developed for each, one for the variable fre-
quency voltage source and another one for the cell impedance
measurement system in addition to the SOC inference system
based on the measured impedance data.

B. Variable frequency voltage source

In order to polarize the cell and acquire its impedance over a
wide range of frequencies, a variable frequency voltage source
is necessary.

An Arduino Due microcontroller board was used to im-
plement a Digital Direct Synthesis (DDS) technique. This
converts digital numbers stored in an array into analogue
signals through conversions executed by a Digital-to-Analogue
Converter (DAC). It processes data blocks read from a look-up
table in a Static Random-Access Memory (SRAM) to generate
a form of frequency-tunable and phase-tunable output signal
with reference to a fixed frequency precision clock source [7].

With the introduction of a phase accumulator function
into the digital signal chain, this architecture becomes a
numerically-controlled oscillator, now being able to alter the
frequency of the output sinwave, according to a pre-defined
specific range of frequencies.

C. Band-pass Filter

An active band-pass filter is required to exclusively select
frequencies inside the 0.01Hz-10kHz spectrum, as this range
fully describes the battery cell behaviour. A lower cut-off
frequency of 0.01Hz is essential, this way filtering the DC
offset included in the signal generated by the Arduino Due
DAC.

There are some filter specifications: it requires a Butterworth
response due to its nearly flat pass band with unity gain and
no ripple, this way obtaining a uniform frequency response
for all the wanted frequencies. The architecture that will be
used is the Sallen-Key owing to its ability to operate under
unity amplifier gain. The Sallen-Key topology has a low-pass
or high-pass roll off 20dB/dec for every pole. Thus, an eight
order Butterworth Band-pass filter will have an attenuation rate
of -80dB/dec and 80 dB/dec. Such solution is recommended
for this application, forming an eight-order Butterworth Band-
pass filter after cascading two stages of second-order low-pass
filters with two stages of second-order high-pass filters [8].

Table I lists the specifications for the desired Band-pass
filter.

Lower Cut-Off Frequency 10mHz

Higher Cut-Off Frequency 10kHz

Centre Frequency 10Hz

Band-pass Gain 1

TABLE I: Filter Specifications.

1) 4th Order Unity-Gain Sallen-Key Low-Pass Filter: For
a given C1, C2, C3 and C4, the resistor values for R1, R2,
R3, R4 are determined by:

R1,2 =
a1C2 ∓

√
a21C

2
2 − 4b1C1C2

4πfcC1C2
(5)

R3,4 =
a2C4 ∓

√
a22C

2
4 − 4b2C3C4

4πfcC3C4
(6)



Where a1, b1, a2 and b2 are the coefficients associated
with each second order polynomial, considering a fourth-order
Butterworth filter type.

C2 and C4 must satisfy the following condition, so that real
values for values for R1, R2, R3 and R4 are obtained:

C2 ≥ C1
4b1
a21

(7)

C4 ≥ C3
4b2
a22

(8)

Considering the higher cut-off frequency, fc of 10kHz, the
following values are obtained:

R values [Ω] C values [F ]

R1 47.4k C1 100p

R2 240k C2 220p

R3 35.7k C3 100p

R4 86.6k C4 820p

TABLE II: Values for the low-pass filter components.
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Fig. 3: 4th Order Unity-Gain Sallen-Key Low-Pass Filter.

2) 4th Order Unity-Gain Sallen-Key High-Pass Filter: For a
certain value of C5 and C6, R5, R6, R7 and R8 are calculated
for a low cut-off frequency, fc:

R5 =
1

πfcC5a1
, R6 =

a1
4πfcC5b1

(9)

R7 =
1

πfcC6a2
, R8 =

a2
4πfcC6b2

(10)

Again, for a fourth-order Butterworth filter type, a1, b1, a2
and b2 represent the coefficients associated with each second
order polynomial.

Considering the lower cut-off frequency of 10mHz, the
following values are obtained:

R values [Ω] C values [F ]

R5 1.74M C5 10µ

R6 1.47k C6 10µ

R7 4.53M

R8 619k

TABLE III: Values for the high-pass filter components.
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Fig. 4: 4th Order Unity-Gain Sallen-Key High-Pass Filter.

D. Enhanced Howland Current Source

A current source based excitation system is proposed due to
the low impedance value of the tested LiFePO4 cell (internal
impedance is specified as less than 1 mΩ at 1 kHz in the
LiFePO4 datasheet). The maximum output current from an
Arduino Due DAC is 15 mA. Therefore, a current amplifier is
required in order to generate a greater voltage response from
the cell. An enhanced Howland current source is chosen since
it can be constructed using a single operational amplifier and
five resistors.

The Howland circuit is modelled as a linear voltage-
controlled current source (VCCS). The model is driven by an
external and independent voltage source that drives the VCCS
input, in this case, the variable frequency voltage source at the
output of the filter [11].
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Fig. 5: Enhanced Howland Current Source.

Considering an infinite open-loop voltage gain, Ad, of the
operational amplifier, the following equation is written, by
current analysis:

IL =
Ui
R1

+ (
R2 −R3

R1R3
− 1

R2 +R3
)UZL (11)

According to (11), one can conclude that for a high value of
both R2 and R3, while imposing R2 = R3, the output current
is very close to be independent from the load impedance.
Therefore, the equation (11) for the output current, simplifies
to:

IL ≈
Ui
R1

(12)

An enhanced Howland current source was designed to
generate a 2 Ap−p sinusoidal current. A 2 Vp−p voltage signal
was applied to the circuit as input, with R2 = R3 = 10 kΩ
and R1 = 1 Ω. Hence, in order to apply to the terminals of
the cell a 2 Ap−p sinusoidal current, a high-current operational
amplifier is required. An OPA548 from Texas Instruments was



the choice considering that it allows the output current limit
to be adjusted from 0 A to 5 A.

E. Data Acquisition

A second Arduino is used to read the sinusoidal current
imposed to the cell and its voltage response.

In order to precisely acquire lower voltage and current
increments, particularly relevant in this project due to the low
impedance of the cell, a higher resolution than the 12 bit
integrated ADC input of the Arduino is required. Hence, the
approach of using two external AD7680 (by Analog Devices)
ADCs, having a 16 bit resolution, was taken. One for the
voltage at the cell terminals, the other for the voltage output
of the current transducer. The current is measured by a LEM
hall effect transducer current sensor (LTSR 6-NP). It measures
bi-directional currents up to 6 A RMS from DC to 200 kHz.

Both voltage and current are sampled and, after the analog to
digital conversion, the sequence of digital words is later stored
in the Arduino Due 96 KBytes SRAM. Due to the memory
limitation, one can only afford to store a finite number of
digital words when sampling the variable frequency signals.
Due to memory limitation, one can only afford to store a
finite number of digital words when sampling the variable
frequency signals. Given this limitation, it was chosen to
store 320 samples for each of the frequencies. To attain this,
the Arduino responsible for acquiring the signals requires the
value of the frequency of the sinusoidal current being imposed
to the cell during the acquisition interval. This is achieved by
creating a communication channel via I2C protocol between
the Arduino in charge of generating the variable-frequency
AC voltage signal and the Arduino responsible for the data
acquisition. Follow, the sampling frequency is calculated so
that only 320 samples during each acquisition time window
(five complete cycles of the generated signal) are acquired.

The process of signal acquisition in this project requires
a fine resolution due to the small fluctuations in the sampled
voltage and current signals. One way to increase the resolution
of the ADC output is by oversampling and averaging functions.
In this project, each sample is oversampled 80 times and later
the accumulated value is divided by this value, giving the ADC
resolution an increment of 6 bits, so, instead of 16 bits as
previously, both ADCs now have 22 bits of resolution.

In order to further improve the random noise reduction
achieved by the oversampling and averaging process, a moving
average filter is implemented, this way reducing random white
noise while maintaining a sharp step response. In this project,
a 22 point moving average filter is applied to both voltage
and current acquired signals, reducing the random noise by a
factor of 4.7.

The Discrete Fourier transform (DFT) is the chosen method
to estimate both voltage and current phasors. After sampling,
stored data at discrete time step is available for processing.
Hence, the Fourier-transform calculation has been performed
in discrete environment and is named as Discrete Fourier
Transform or DFT [9]. The discrete Fourier transform of

a general sequence x[n] of finite duration is determined as
follows [10]:

X(m) =

N−1∑
n=0

x(n)e−j2πnm/N (13)

where x(n) is a discrete sequence of time-domain sampled
values of the continuous variable x(t); n is the time-domain
index of the input samples; N is the number of samples of
the input sequence and the number of frequency points in the
DFT output; m is the index of the DFT output in the frequency
domain, equivalent to the number of complete cycles that occur
over the N points of the signal.

A sinusoid x(t) with frequency mf0 with a Fourier series:

x(t) = am cos(2πmf0t) + bm sin(2πmf0t) = (14)

=
√
a2m + b2m cos(2πmf0t+ φ) (15)

has a phasor representation as follows:

X(m) =
√
a2m + b2m ejφ, (16)

φ = arctan(− bm
am

) (17)

The phasor in its complex form becomes:

X(m) = am − jbm (18)

Likewise, when applying Euler’s formula to equation (13),
the phasor representation of the mth harmonic component is
equivalent to:

X(m) =

N−1∑
n=0

x(n)[cos(2πnm/N)− j sin(2πnm/N)] (19)

If we define the cosine and sine sums as follows:

Xc(m) =

N−1∑
n=0

x(n) cos(2πnm/N), (20)

Xs(m) =

N−1∑
n=0

x(n) sin(2πnm/N), (21)

then the phasor X(m) is given by:

X(m) = Xc(m)− jXs(m) (22)

A 4-cycle DFT considers a window size of:

N = 4
fs

fn
(23)

Which is four times greater that considering only one cycle.
This yields to an attenuation of high and low frequency
harmonics, significantly improving the output results of both
voltage and current phasor estimation, for each frequency. The
reason behind a better resolution when acquiring more cycles
is that it decreases the effect of spectral leakage, a phenomena
associated with the non-cyclical input of the Fourier-transform.

Processing more than one cycle is a good practice since
it increases the number of complete cycles in the sampled
interval, reducing the effect of leakage but still does not fully



solves the leakage problem. In this project, with the purpose
of reducing the spectral leakage effect in both voltage and
current phasor estimation, a technique known as windowing
was applied. Windowing works by selecting the DFT input
data in order to reduce the non-integer number of cycles over
the N samples interval. This was achieved with a rectangular
window, leading to a grater attenuation of high and low
frequency harmonics in the DFT output.

Employing the DFT algorithm to both voltage and current
samples, we obtain the impedance for each frequency k:

Zk(m) = |Zk(m)|ejφZk (24)

where the impedance magnitude of the mth harmonic, |Zk(m)|
and phase angle of the impedance, φZk(m) are obtained as
follows:

|Zk(m)| = |Uk(m)

Ik(m)
| =

√
Ukc(m)2 + Uks(m)2√
Ikc(m)2 + Ikc(m)2

(25)

φZk(m) = arctan(−Uks(m)

Ukc(m)
)− arctan(−Iks(m)

Ikc(m)
) (26)

F. Adaptive Neuro Fuzzy Inference Systems applied to SOC
estimation

The impedance spectra for each SOC is obtained through
the previous EIS measurement system. This way, an adaptive
neuro-fuzzy inference system that uses two input variables has
been implemented. The input variables are the real part of
the measured complex impedance and its imaginary part. The
output of the ANFIS system will be the battery cell inferred
SOC. The estimation of the battery SOC will be achieved
through a comparative analysis of its actual impedance spectra
with the impedance spectra database previously built from past
EIS measurements for pre-defined SOC values.

Both inputs, real and imaginary impedance parts, are
mapped to their own membership functions using the Fuzzy
Logic Toolbox function existent in MATLAB. Instead of
triangular membership functions, Gaussian ones will be used.
The Gaussian function, represented in Figure , expressed in
equation 5.1, is specified with two parameters, m and σ, as
follows:

f(x,m, σ) = e−
(x−m)2

σ2 (27)

where m denote the mean value, corresponding to the centre
of the function, and σ, the standard deviation, giving its width.

To properly distinguish the different SOC EIS measure-
ments, each one having N different points, N representing
the number of different frequencies in the frequency sweep,
the model requires a certain number of IF-THEN rules in order
to differentiate the precessed data. The necessary number of
rules providing an accurate system is approximately half the
total number of impedance data points stored in the database.
The database will be composed by M impedance spectras, one
for each pre-defined SOC. Each impedance spectra contains
N points, one for each frequency, and each of these points is

defined by its real value and imaginary value. Hence, the total
number of rules comes:

Nrules =
MSOCs ·Nfrequencies ·Ninputs

2
(28)

In this project, the so-called Sugeno, or Takagi-Sugeno-
Kang, method of fuzzy inference, mapped over a neural
network structure is applied. This methodology uses a linear or
constant level as the output membership function rather than
a distributed fuzzy set. This is known as a singleton output
membership function, ω.

After running the Fuzzy Logic Toolbox function, a FIS
file is given as output, modelling the Sugeno fuzzy inference
model, containing the membership function parameters for
both real and imaginary impedance parts inputs and the first-
order polynomial parameters, describing the output singleton
membership functions.

Following the modelling process, the fuzzy inference system
is implemented in the acquisition Arduino Due, setting the
IF-THEN rules, where the subsets of each rule are described
by their membership functions, characterized by the tailored
parameters computed by the neuro-adaptive technique and dis-
played in the FIS file. The combination of input membership
functions and singleton outputs for each input variable results
in different rules of the system:

Rule 1: If Re(Z) is µ(1)
Re(Z) and − Im(Z) is µ(1)

−Im(Z) ,

then ω(1) = m1Re(Z) + n1(−Im(Z)) + k1

Rule 2: If Re(Z) is µ(2)
Re(Z) and − Im(Z) is µ(2)

−Im(Z) ,

then ω(2) = m2Re(Z) + n2(−Im(Z)) + k2

Rule 3: If Re(Z) is µ(3)
Re(Z) and − Im(Z) is µ(3)

−Im(Z) ,

then ω(3) = m3Re(Z) + n3(−Im(Z)) + k3
...

Rule N: If Re(Z) is µ(N)
Re(Z) and − Im(Z) is µ(N)

−Im(Z) ,

then ω(N) = mNRe(Z) + nN (−Im(Z)) + kN

Figure 6 shows the reasoning mechanism for the Sugeno
model applied to the SOC estimation. This process is imple-
mented in the acquisition Arduino, automatically inferring the
SOC for each of the N frequency points in the EIS current
measured impedance spectra.

In layer 1, every node is an adaptive node with a node
function equal to the membership function, for which the
parameters m(i) and µ(i), characterizing each gaussian mem-
bership function, have been estimated by means of the Fuzzy
Logic Toolbox function.

Afterwards, the singleton output of each rule,
ω(i), is weighted by the firing strength of the rule,
f (i)(Re(Z),−Im(Z)) for both inputs, Re(Z) and −Im(Z).
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Fig. 6: Structure of the five-layer adaptive neuro-fuzzy system for the Sugeno
model implemented in the acquisition Arduino Due.

This is performed in layer 2, where each node is fixed,
representing the firing strength associated to each rule i:

f (i)(Re(Z),−Im(Z)) = µ
(i)
Re(Z)(Re(Z)) · µ(i)

−Im(Z)(−Im(Z))

(29)

where µ(i)
Re(Z)(Re(Z)) and µ(i)

−Im(Z)(−Im(Z)) are the values
of degrees of membership for the rule i relative to both inputs.

In layer 3 each node is fixed. Now the incoming firing
strength is normalized to the sum of all rules firing strengths:

f (i)(Re(Z),−Im(Z)) =
f (i)(Re(Z),−Im(Z))∑N
k=1 f

(k)(Re(Z),−Im(Z))
(30)

where N represents the total number of rules, given by
expression (28).

In layer 4 each node is adaptive. At this point, the firing
rules are multiplied by their correspondent singletons, for
which the parameters mi, ni and ki , characterizing each
output singleton, have been estimated through the Fuzzy Logic
Toolbox function.

f (i)(Re(Z),−Im(Z)) · ω(i) = f (i)(Re(Z),−Im(Z)) · (miRe(Z) + ni(−Im(Z)) + ki)

(31)

Layer 5 is composed by a single fixed node, computing
the SOC value output as the sum of all incoming signals,
representing the centre of gravity or the weighted average of
all rule outputs:

SOC =

N∑
k=1

(f (i)(Re(Z),−Im(Z)) · ω(i)) =

∑N
k=1(f (l)(Re(Z),−Im(Z)) · ω(i))∑N

k=1 f
(i)(Re(Z),−Im(Z))

(32)

IV. RESULTS

This chapter aims the validation of the implemented EIS
measurement system and Fuzzy logic SOC inference method.

It presents information and results about both processes with
the aid of a case study considering a 160 Ah capacity LiFePO4

cell having a 70% SOC.

V. ASSUMPTIONS

In order to run the above mentioned and implemented
techniques, the following listed premises were defined so that
some of the variables affecting the battery cell impedance were
controlled:

• Temperature: During the experiments, the battery cell
was maintained at a room temperature of 17 C with a
temperature fluctuation of ± 1C.

• Relaxation Time: After each battery cell discharge, the
resting time of the cell was established as 10 minutes.

• Charge/Discharge rates: The cell was charged at a rate of
7.4 Ah and discharged at a rate of 16 Ah.

• Operating Voltages: The impedance spectra of the cell
was measured galvanostatically in a voltage range be-
tween 2.8 and 3.6 V, corresponding to 15% and 100%
SOC, respectively.

• Impedance database: Generated during one full discharge
cycle (100% - 15%). The battery cell was later fully
charged again and discharged to certain SOC’s to present
the reader the proposed case studies.

DC Power Supply

Developed 
DeviceLiFePO4 battery cell 

Fig. 7: Experimental scenario.

A. Validation of the EIS measurement system implementation

The variable frequency voltage source provided by the Dig-
ital Direct Synthesis (DDS) technique in the source Arduino
Due was programmed with a 2000 digital word look-up table,
supplying at the output of the Arduino DAC a voltage with a
duration of six complete cycles, as follows:

UDAC(t) = UoAC sin(2πfit+ ϕ) + UoDC [V] (33)

where UoAC = UoDC = 1.6114 V ; ϕ = π
6 rad and a variable

frequency value fi, so that the frequency sweep is carried, for
each of the following values:

After the filtering stage, this voltage is then presented to
the dimensioned Enhanced Howland Current Source so that



Frequency (Hz)
f1 0.0130 f7 0.0750 f13 0.4220 f19 2.3720
f2 0.0180 f8 0.1000 f14 0.5630 f20 3.1590
f3 0.0237 f9 0.1330 f15 0.7500 f21 4.1780
f4 0.0316 f10 0.1800 f16 1.000 f22 5.6340
f5 0.0422 f11 0.2370 f17 1.3390
f6 0.0563 f12 0.3160 f18 1.7680

TABLE IV: Programmed frequencies in the variable frequency voltage source
Arduino Due, for which the EIS measurement system was realized.

accordingly to equation (12), an excitation current is imposed
to the battery cell:

IL(t) ≈ UoutFilter (t)

R1
=

1.6114 sin(2πfit+ π
6 )

1
= 1.6114 sin(2πfit+

π

6
) [A]

(34)

Both voltage and current are sampled at a sampling fre-
quency dependent on that transmitted from the source Arduino,
presented in table V, to the acquisition one, via I2C communi-
cation. The acquisition arduino is programmed in order to store
320 samples for each one of the 22 frequencies in table V so
that approximately 280 samples are correctly acquired during
5 complete cycles, while oversampling and digital filtering
the current samples. As an example, the acquired voltage at
the terminals of the cell and excitation current signals, after
oversampling and applying the digital filter, for a frequency of
0.0422Hz, are presented in Figure 8 (a) and 8 (b), respectively.
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Fig. 8: Acquired voltage at the terminals of the cell and excitation current sig-
nals for a frequency of 0.0422Hz: (a) Voltage sequence before windowing; (b)
Current sequence before windowing; (c) Voltage sequence after windowing;
(d) Current sequence after windowing

Now the DFT algorithm to both windowed voltage and
current samples for each of the frequencies in table V is
applied, thus obtaining the phasors for each of the variables.

Afterwards, each digital word contained in the stored voltage
and current arrays is converted back to its units.

The impedance data assessed through the acquired voltage
and current phasors is represented through a Nyquist plot,
expressing the imaginary impedance versus the real impedance
of the system in Figure 9.
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Fig. 9: Nyquist plot of the impedance data assessed through the acquired
voltage and current phasors for a 160 Ah battery cell with 70% SOC.

The same process is executed to the following values of
SOC during a discharge cycle so that a database to the fuzzy
inference system is constructed:

SOC(%) 100 90 80 70 60 50 40 30 20 15

TABLE V: Pre-defined SOC’s for which the impedance spectra database has
been composed.

The obtained impedance spectra database is graphically
presented in Figure 10 and Figure 11.
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Fig. 10: Nyquist plot of the impedance spectra database for the referred SOC’s
in table V.

A fuzzy system that accurately distinguishes the different
SOC EIS measurements, each with 22 points, requires a
certain number of rules in order to differentiate, with enough
precision, the precessed data.
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Fig. 11: Nyquist plot of the impedance spectra database as function of the
referred SOC’s in table V.

The necessary number of rules providing an accurate system
is approximately half the total number of impedance data
points stored in the database. The database is composed by
10 impedance spectras, one for each SOC. Each impedance
spectra contains 22 points, one for each frequency, and each
of these points is defined by its real value and imaginary value.
Hence, the total number of rules comes:

Nrules =
NSOC′s ·Nfrequencies ·Ninputs

2
=

10 · 22 · 2
2

= 220

(35)

Each subset of rules (i.e. both fuzzy inputs and output) can
be represented by its own membership function, thus, there
are 220 gaussian membership functions for each input (Re(Z)
and -Img (Z)) and 220 output membership functions (singleton
output membership functions) modelling the database.

B. Validation of the Fuzzy Logic SOC inference system

The impedance spectra database is initially evaluated and
the rule base is constructed.

After creating the database and consequent system rule
base, in order to validate the fuzzy logic SOC inference
system, four measurements were performed. The battery was
fully recharged again, and later discharged so that the system
could be tested to a SOC value of 90%, 70%, 74% and
64%. The obtained results from the EIS measurement system
are presented in Figure 12, together with the pre-acquired
database, where the impedance spectra points are marked as

for 70%, for 90%, for 64% and for a 74% SOC
value.

The fuzzy system inferred SOC outputs for each of the four
input profiles (marked by red asterisks), can be observed in
Figures 13 (90%), 14 (70%), 15 (74%) and 16 (64%). The
output average of the 22 estimated points is represented by a
red marker ( ) in each plot.
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Fig. 12: Nyquist plot of the impedance spectra database and the acquired
impedance spectra for each of the presented case studies.
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Fig. 13: Fuzzy system output(marked by red asterisks) for the battery cell
with a 90% SOC value. The output average of the inferred points is marked
as ♦.
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Fig. 14: Fuzzy system output(marked by red asterisks) for the battery cell
with a 70% SOC value. The output average of the inferred points is marked
as ♦.

Table VI displays the average and variance values of the four
case studies output results. Analysing the table, it is evident
that concerning input values with a SOC value not included
in the modelling of the fuzzy system, in other words, for
impedance spectras having a SOC value not included in the
impedance spectra database, the average value of the output
points is a random value and the corresponding variances are
high, portraying the spread out between the inferred output
points, observed in the respective plots.
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Fig. 15: Fuzzy system output(marked by red asterisks) for the battery cell
with a 74% SOC value. The output average of the inferred points is marked
as ♦.
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Fig. 16: Fuzzy system output(marked by red asterisks) for the battery cell
with a 64% SOC value. The output average of the inferred points is marked
as ♦.

As for the input values with a SOC value residing in the
database, the output average is close to the expected value,
presenting a lower variance, thus concluding that the system
is able to estimate the current SOC of the battery cell, if the
measured impedance spectra has a SOC value predefined in
the constructed database.

Input Output average Output variance

Re(Z) and -Img (Z) of
the cell with 90% SOC

89.88 64.57

Re(Z) and -Img (Z) of
the cell with 70% SOC

66.82 79.88

Re(Z) and -Img (Z) of
the cell with 74% SOC

58.64 240.91

Re(Z) and -Img (Z) of
the cell with 64% SOC

61.53 606.56

TABLE VI: Output average and variance of the Fuzzy system for the proposed
case studies.

VI. CONCLUSION

This work aimed the development of a system capable of
automatically measuring the SOC value of a LiFePO4 battery
cell.

The developed device is capable of measuring the
impedance profile of a given LiFePO4 cell, performing an EIS

measurement. The impedance profile assessed is afterwards
used to infer its SOC value using an ANFIS based method.
In order to implement this adaptive method, past impedance
spectras, related to specific SOCs, constructed a database so
that a valid fuzzy inference model is obtained. With this, a
comparative analysis between the current cell’s impedance and
previous observed ones, using the considered fuzzy inference
system (representing the non-linear behaviour of the internal
impedance), yields the object of this thesis, the SOC value.

The device was validated for a 160 Ah LiFePO4 cell, for
the conditions listed in section V, and the obtained results
provided substantial information to access its performance. It
was verified that that the way the inference system is modelled
defines the accuracy of the SOC estimation method. The fuzzy
inference system, modelling the cell’s impedance as function
of the SOC value, was obtained considering ten pre-defined
SOC values. It was demonstrated that the developed device
is capable of estimating future SOC values for inferred values
matching those present in the database. For intermediate values
it was concluded that the inferred results average was a random
value and its corresponding variances were quite high due
to large variations between impedance spectras, as expected,
justified by the non-linear behaviour of the LiFePO4 cell’s
impedance in relation to SOC. With this in mind, for this
device to properly work for the entire range of SOC values,
including the intermediate ones, it is necessary to increase the
number of acquired impedance spectras modelling the fuzzy
inference system, i.e., increasing the number of pre-defined
SOC values composing the database.

The conditions listed in section V concern a fixed operating
temperature, only one charge/discharge cycle for the cell and
a resting time of 10 minutes. Outside these conditions, the
inferred SOC value is uncertain, seeing that the effects of each
one of these variables in the cell’s impedance were not taken
into account in the course of this work.
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