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Abstract

To understand how the brain produces the diversity of behaviours observed in animals it is important
to have quantitative methods to measure neural activity, particularly at the population level. Recent
developments in integrated circuit design and microfabrication have made possible the production of
large and dense multi-electrode arrays with hundreds of electrodes. However, computational methods
to analyze the data recorded by these new generation probes did not keep up with the technological
evolution. In Neto et al. (2016), a ground-truth dataset from simultaneous in-vivo recordings of 128-
channel dense extracellular silicon probe and a juxtacellular probe was first presented. In this work,
these data were used to evaluate the performance and limitations of a recent method for spike detection
proposed in Rossant et al. called SpikeDetekt. After, is reported the application of methods for deep
learning to perform detection of extracellular action potentials from the same data. Different models
are tested and applied to the same data. In all datasets the performance achieved was equal or better
than that achieved with SpikeDetekt. Finally limitations of this new method are discussed and possible
directions for improvement are proposed.

1 Introduction

Neurons in the brain mostly communicate via the production of action potentials (APs). The AP is a fast,
transient, and stereotypical fluctuation in the membrane potential of the nervous cell, commonly referred to
as a spike. The AP propagates along the neuron following a consistent trajectory from the soma (the neuron’s
body) through the axon on to the synapse. Consequently, as ions flow in and out the cell’s membrane during
the propagation of the AP they cause a disturbance in the charge distribution of the extracellular medium,
producing the extracellular action potential (EAP). The EAP is also observed to propagate outwards in the
extracellular medium. [7]

While intracellular action potentials (IAP) are very stereotyped, the EAP waveforms show a much larger
variability. Not only morphological aspects of the neuron influence the characteristics of the EAP, but
as the AP is propagated intracellularly there is a continuous generation of EAPs down the axon and, in
some neurons, excitable dendritic structures. This leads to a complex propagation of the EAP through the
extracellular medium. [4] [11]

Despite this complexity, extracellular electrophysiological recordings are still the most widely used tech-
nique to study the dynamics of neural activity. During extracellular recordings, the voltage fluctuations
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that surround the electrodes are measured, with the goal of detecting EAPs generated relatively close to the
electrode site. In order to detect such EAPs, the signal is acquired as a time series and then, usually offline,
the data is processed and spike detection is performed, where the researcher tries to find the timepoints at
which an AP took place. The detected spike waveforms are then assigned to individual "putative" neurons,
through a process called spike sorting.

At first, using single sharp electrodes, researchers were able to detect and sort reliably the activity of one
or two neurons in the vicinity of each electrode. Using a tetrode configuration (four electrodes fairly close to
each other), it is now possible to isolate up to 20 neurons ([9], [5], [19], [13]) in the vicinity of each probe.
This increase is understandable. Due to the complexity of the propagation of the EAPs different neurons
have not only different firing times but also a different set of waveforms acquired by the various electrodes.
These spatiotemporal profiles (sometimes referred to as the "neuron’s footprint") depend not only on the
type of neuron but also on the position and orientation of the probe in relation to the morphology of the
firing neuron. By having a larger number of active sites in different positions of the extracellular medium,
consistent differences across recorded EAPs in each site can be used to further sort the detected spikes.

This led neuroscientists to seek out probes with more and more electrodes. Advances in microfabrication
made it possible to produce probes with hundreds of electrodes densely positioned across large distances
(∼ 500µm) (http://www.neuroseeker.eu/). Employing modern methods for integrated circuit design and
fabrication, probes with thousands or even millions of discrete sites are now being developed. [2], [17], [18]

While many different methods for spike detection and spike sorting for these new high-dimensional data
have been proposed, no method has proved robust enough to be widely adopted by the experimental com-
munity. Furthermore, since these new generation probes are larger, they are prone to sensing spatially
overlapping spikes as well as temporally overlapping spikes, which doesn’t happen very often with tetrodes.
When two EAPs occur at the same time but sensed in different parts of the probe, most algorithms will only
detect one event since they don’t consider different spatial regions on the probe. The right estimation of the
moment when the EAP is recorded is crucial for the success of the sorting phase.

In Rossant et al. [14], a method was developed that uses the information about the relative position of
electrodes in a multi-electrode array in order to take advantage of the “neuron footprints”. This method
comprises a spike detection algorithm (SpikeDetekt) and a spike sorting algorithm (KlustaKwik). SpikeDe-
tekt (SD) uses the adjacency graph between electrodes to define connected components where the signal’s
amplitude exceeds a "weak" threshold and a "strong" threshold on at least one electrode. These connected
components define a mask determining which electrodes are used to determine the spike firing time. To
study the performance of these algorithms it is necessary to have a ground-truth data, but at the time of the
writing of Rossant et al. such a dataset didn’t exist for dense extracellular probes and for that reason they
used a simulated dataset by superimposing data from recordings where one neuron was identified. With this
hybrid dataset, the authors report to have achieved errors rates as low as 5%.

In Neto et al., they performed in-vivo paired recordings with a juxtacellular pipette and new generation
dense silicon probes with both 32 and 128 electrodes. With this dataset it is possible to have precise
determination of when a single identified neuron was active. This neuron will be referred to as the Juxta
Neuron. With this dataset it is possible to evaluate the performance and limitations of spike detection and
spike sorting algorithms.

On the other hand, these paired recordings can also be seen as labelled datasets where each portion of
the extracellular recording is assigned a classification regarding whether or not it contains an EAP from the
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neuron recorded by the juxtacellular probe. This provides a suitable dataset for the use of machine learning
techniques, in particular, supervised learning.

Representation learning is a family of methods that allows machines to find new ways of representing
the raw data it was fed with. Deep Learning tries to accomplish this in a "layer by layer" manner. In a
deep neural network (DNN), each layer holds a new representation of the input data, by transforming the
output of the previous layer into a new representation, a more abstract way of perceiving the input data.
Composing many of these layer, it should be possible to compute very complex function. For the case of
classification task, higher layers of representation may amplify aspects of the input that are important for
the discrimination and suppress irrelevant features. [8]

Although shallow neural networks (neural networks with at most 3 layers) can be used to learn many
difficult tasks, Deep Neural Networks (DNN) were always theoretically more appealing since in each layer lies
a more abstract representation of the input layer, and therefore could be more “human-like” ([16]). However,
only in 2006 could DNNs be properly trained due to discoveries on initialization methods ([6], [1]) and the
use of GPU accelerated algorithms. ([12]) Since then, deep neural networks have been used on tasks such as
image and speech recognition and in some cases have achieved “superhuman” levels of accuracy.

2 SpikeDetekt and Neto et al. Dataset

In this work, the ground-truth dataset from Neto et al. was used to assess the performance and limitations
of SpikeDetekt. During the course of this project 5 recordings were used where the 128-channels probe was
utilized. These are summarized in Table 1.

Recording ID Short ID Distance (µm) P2P (µV ) Depth (µm) # Juxta spikes
2015_09_09_Pair7.0 997 136.2 ± 40 20.7 1032.8 1082
2015_09_04_Pair5.0 945 96.1 ± 40 30.8 1185.5 185
2015_09_03_Pair6.0 936 153.3 ± 40 24.1 1063.2 3329
2015_09_03_Pair9.0 939 11.5 ± 40 416.3 1152.8 5007
2015_08_21_Pair3.0 8213 132.8 ± 40 19.4 1286.0 8117

Table 1: Information about the recordings used. The values on the "Recording ID" are conform the dataset provided
by [10]. For convenience, a Short ID will be used throughout this document. In the fifth column are the values of the
depth in the cortex. In the last column are the number of spikes detected in the signal from the Juxtacellular pipette.

We observe some variability in this ensemble. The recording 939 has a very large P2P amplitude and lies
above the noise; it also recorded many spikes. The recording 945 has a very low count of spikes and relatively
low P2P amplitude. Despite its low P2P amplitude, the recording 8213 is the one with the most events.

For each recording, SpikeDetekt was run with the optimal parameters reported by Rossant et al.: the
weak threshold was θw = 2σnoise and the strong threshold was θs = 4.5σnoise, where σnoise is the estimated
standard deviation of the noise in the recording.

In Fig. 1 are the whole-probe cross-correlograms for each recordings. All cross-correlograms present a
somewhat coherent distribution. This means that, for every value τ in the considered interval, there exists
some temporal correlation between the juxta neuron and the activity of the rest of the neurons in the recorded
volume. This effect was reported in Ruiz-Mejias et al. [15]
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Figure 1: Cross-Correlograms for all the recordings. The size of the bins in the histograms is 1 ms and the value for
the lag is 50ms.

Only on the cross-correlogram corresponding to the recording 939 can we see a distinct peak when τ =
0ms, on top of the correlation with the background activity. This means that SpikeDetekt managed to find
juxta neuron. On the rest of the cross-correlograms in Fig 1, the peak around the central bin is never very
clear.
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To calculate the number of events corresponding to the juxta neuron, it is necessary to remove the counts
from the correlation with the background activity. To estimate this value, the average of the counts in the
bin neighboring bins (τ = −1ms and τ = 1ms) was computed and subtracted to the counts in the central
bin. The results are in table 2.

Recording Bin Counts Corrected Number Accuracy
ID τ = 0 τ = −1 τ = 1 Counts of JS
8213 5725 5642 5810 -1 7760 -0.01%
936 4377 4357 4465 -34 3329 -1.02%
939 9202 6701 7092 2305.5 4947 46.60%
945 144 137 120 15.5 185 8.38%
997 691 689 650 21.5 1082 1.99%

Table 2: Correction of the cross-correlograms central peak.

In all recordings but the 939, SpikeDetekt yields a detection accuracy close to zero. This is not surprising
considering the algorithm used by SpikeDetekt, since their peak-to-peak amplitude is less than the strong
threshold. These detection of the juxta neuron may have happened when the connected components of these
spikes was connected with the connected component of other spike which exceeded the strong threshold. This
would result in the detection one single spike where the computed spike time was closer to the corresponding
juxta spike time and therefore contributed to the central bin in the cross-correlograms.

Even in the recording 939 the detection rate is fairly low, considering it has a very large P2P amplitude.
In fact, the connect component corresponding to spikes from the juxta neuron were expected to be large and
therefore may have been merged together with other spikes present in probe. In this case, all these events will
only be detected as one, which leads to the relatively low count in the central bin of the cross-correlogram of
this recording.

To illustrate this, the masks of the events that occurred closest to the juxta spikes were extracted.
Examples of these mask are in Fig. 2.

Looking at the mask of the events at 100.1 ms it is clear that there are connected components from two
spikes other than the one from the juxta neuron that were merged together. This situation could possibly
be solved by increasing the weak threshold, however this would lead to an increase of false negatives.

3 Deep Learning Approach

In order to overcome the issues that SpikeDetekt presented, a different approach was tried. The paired
recordings from Neto et al. can also be seen as labeled datasets where each portion of the extracellular
recording is assigned a classification regarding whether or not it contains an EAP from the neuron recorded
by the juxtacellular probe. This provides a suitable dataset for the use of techniques supervised deep learning.

First it was necessary to prepare the data to be fed to the Deep Neural Network. Each dataset was
first filtered using the same filter as previously with SpikeDetekt: a forwards-backwards Butterworth filter
of order 3 with cutoff frequency set to 500Hz. Each dataset was then normalized dividing by its maximum
value, such that every sample has a value between -1 and 1.
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Figure 2: Examples of masks on the events whose assigned times (on top of each plot, in ms) is closest to the times
from the juxta neuron.

Each example was defined to be the array of time windows of 100 samples for each of the 127 channels
in the probe. Therefore, the input data has dimension 12700. However, due to constraints on the available
hardware, not all windows were used. Each window is shifted by 5 samples from the previous one, i.e., the
first example are the 127 time windows with t ∈ [0, 99] and the second example are the 127 time windows
when t ∈ [5, 104]. Furthermore, only samples in t ∈ [1000000, 2000000] were utilized. This yields, at this
stage, 199980 examples per dataset.

The windows whose central sample was closest to each Juxta Times were labeled as "1" (positive examples).
Otherwise they were labeled as "0" (negative examples). The label "1" should be interpreted as "contains a
spike from the juxta cell" and "0" as "doesn’t contain a juxta spike".

This input data was split in two set: the training set (TS), with which the DNN will train, and the
validation set (VS), where the resulting trained DNN is tested. The TS held 70% of the input data (139986
examples) and VS held the remaining 30% (59994 examples)

All the input datasets revealed a very large unbalance: in the best case, there were 292 positive examples
out of a total number of 199980 examples. In these situations, a likely scenario is the convergence of the DNN
to a "zero" solution where it outputs "0" regardless of the input, yielding an accuracy equal to the fraction of
examples labeled as "0".

To address this problem, it was necessary to perform upsampling: the positive examples were repeated
by the same factor in both the TS and the VS. The upsampling factor was determined so that the positive
examples represent around 30% of the total number of examples in both the TS and the VS.

It was necessary to define the basic architecture of the DNN. A three hidden layer DNN was chosen. The
dimension of the input layer was set to 12700 and the output layer should have only one neuron. The number
of artificial neurons in the three hidden layers was set to 200.

Following the results of [3] Rectified Linear Units (RELU) were chosen as the activation function, which
should result in faster learning and weaker dependence on the initial conditions. For the last layer a sigmoid
activation function was used, since the problem under consideration is a binary classification.

As for the loss function, cross entropy was chosen given its characteristic fast convergence.
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The training algorithm was chosen to be AdaGrad. Regarding the regularization method, the L1-norm
was utilized as well as dropout with probability parameter of 0.2. The batch size was set to 10000, to be as
large as the computer memory could handle.

Beside the above configurations, there are hyperparameters whose choice is not easy to define a priori
and therefore it was necessary to train to DNN with different values for these parameters to find which are
optimal. The recording 939 was used.

The best value for the hyperparameters were found to be:

• Learning Rate η = 0.01

• Weight Decay λ = 0.001

• LeCun Uniform for initialization method

The optimal hyperparameters and configurations were used in the training of the DNN with all the
datasets. The performance results are in Fig. 3.
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Figure 3: Study on Different Recordings. Loss function and accuracies in the training set and in the validation set.The
learning rate was η = 0.01, the weight decay was fixed at λ = 0.001, and the initialization method was LeCun Uniform.
On the legend on the top is the Cell ID and on the legend on the bottom are the P2P amplitude (in µV ).

The confusion matrix at the end of traning was calculated as were the values for the True Positive Rate
(TPR). The results are presented in Table 3.
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cell ID TP TN FP FN TPR SD acc.
8213 0.00% 70.76% 0.00% 29.24% 0.00% -0.01%
936 0.00% 68.35% 0.00% 31.65% 0.00% -1.02%
939 26.85% 70.53% 0.38% 2.24% 92.31% 46.60%
945 6.45% 67.66% 0.07% 25.81% 20.00% 8.38%
997 2.67% 75.80% 0.18% 21.35% 11.11% 1.99%

Table 3: Values of the True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN) at the
end of the training, along with the value of the True Positive Rate (TPR). The accuracies achieved with SpikeDetekt
are also presented.

With the recordings 8213 and 936, the DNN converged to the "zero" solution since the very first epoch
and was never able to be "trained out" of the local minimum it got held in.

The recordings 945 and 997 kept oscillating between two "states". In both cases the state with the lowest
accuracy corresponds to the "zero" solution, successfully classifying all the "0" labeled examples but failing
in the examples labeled as "1". In the other state, the network seems to positively classify 20.0% and 11.11%
of the "1" examples, respectively.

Trained with the recording from the cell 939, the DNN managed to correctly classify 92.31% of the EAPs
present.

Looking at Fig. 3 it can be seen that with the chosen training configuration all recordings trained the
DNN after only a few epochs: by the epoch 20 the accuracies in all cases reached their final value, or even
getting worse afterwards, and therefore applying a stop criteria should be considered.

Comparing with the results using SpikeDetekt, this method seems to give better results: when the network
didn’t converge to the "zero" solution, the detection rates more than doubled, reaching a 5-fold increase on
the recording 997. However, the detection rates on the recordings 945 and 997 correspond to the detection
of only one spike, since the validation set in these case only had 5 and 9 different positive examples.

It is also important to refer that the oscillations observed with the recording 945 and 997 suggest that
the training used work may not be very robust: it appears that the network "jumps" easily between two local
minima. Therefore it seems imperative to trained the network with more data. Another possible improvement
would be increasing the probability parameter on the dropout procedure.

The recording 939 trained the network into detecting 92.31%, which is a large value, with very few false
positives and false negatives. However, in this recording the P2P amplitude was 416.3 µV , with a noise
standard deviation of 10.51 µV , and should be easily detected with the conservative application of classic
methods such as a threshold-based detection.

In reality, the configurations and hyperparameters considered optimal were only studied with the recording
939 and may not be optimal for all datasets.

It should be noted that it is very likely that the windows labeled as "0" have many other spikes. This may
actually make the training process much more difficult: since the production of any EAP relies on similar
physical process, many spikes may be very similar to the spike from the juxta neuron, making the distinction,
and thus the training, more difficult. For this reason, using a bigger dataset should return significantly better
results, in particular, a bigger dataset with more different positive examples.
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In the recording 8213 there were 202 different positive examples in the training set, more or less the same
as in recording 939 which had 207. Nonetheless, the DNN was trained into the "zero" solution. At the same
time this recording was the lowest in amplitude, with a 19.4µV P2P amplitude, and the one with the highest
noise standard deviation of 12.95µV , therefore most of the example are probably "drowned" in the noise,
preventing the DNN to see the signal of interest. This suggests that there may be a threshold SNR below
which this method cannot be applied, perhaps regardless of how many spikes there are in the training set.

4 Conclusions

In this work an assessment of the viability of pursuit of better spike detection algorithms in the context of
deep learning was performed.

Neto et al. provided a much necessary ground-truth dataset consisting of simultaneous recordings from
one juxtacellular pipette and large, dense extracellular probe. With these data the performance of the state-
of-the-art algorithm SpikeDetekt was studied and some of limitations of this method and challenges these
new-generation probes raise that researchers still have to resolve were pointed out. To face these problems,
an implementation of feed-forward deep neural networks was tried to detect extracellular action potentials of
one particular neuron on the same data. Comparing the results with the ones from SpikeDetekt it seems to
lead us to the conclusion that this approach may be a better solution, since the deep learning approach was
able to yield better results on the datasets used. Although some of the results are promising, some aspects
should be reconsidered, in particular the training set.

This work should, however, be regarded as a "proof of concept". While SpikeDetekt tries to find all spikes
in a record, each Deep Neural Network was trained to detect the EAP of one specific neuron whose activity
was monitored with the juxta-cellular probe, and not the spikes from any neuron. Nonetheless, the success
achieved detecting the spikes from only one neuron justifies further effort to be put in developing algorithms
under a deep learning framework.
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