Growth – Investment Strategies based on Strong Growth Stocks

Fábio Rúben R. Sendim

Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Abstract – In this work was developed a stock selection model based on genetic algorithms and fundamental analysis using financial ratios obtained through an extensive analysis of financial reports of American companies. The effectiveness of the algorithm is evaluated in the major indices US: NASDAQ 100, S&P 500 and NASDAQ; with three different strategies in a test period comprising the years 2014 and 2015 and with training data between the years 2011 and 2013. The used strategies involved the use of growth ratios, profitability and debt. Genes that are used in the chromosomes of genetic algorithm corresponds to weights that are applied to a financial data matrix that was previously transformed by a process rank. This process transforms the actual data of each ratio in a ranking company, where the value obtained is the relative position of that company in the index. The obtained results in the tests showed that strategies based on genetic algorithms and financial analysis can generate greater returns than investments based only on the index, with values that can be around 56% and 36% for the NASDAQ 100 and S&P 500 respectively.

I. INTRODUCTION

For many years the capital markets, particularly the stock market, is of great interest in the financial environment, particularly by investors. As the main objective of an investor is to get the maximum profit with minimal risk as possible, always tried to improve the tools for selecting the best stocks. However, an analysis of all US stock indexes can easily become a extremely complex task because of the size of those markets. The main US stock market index, the National Association of Securities Dealers Automated Quotation System or simply NASDAQ, consists of more than 3000 companies. If investors want to analyze the financial data of all these companies over the last five years, they would have to analyze approximately 60000 financial reports reported to the S. Securities and Exchange Commission (SEC). Therefore, an intelligent decision support systems research began to be important and to be largely investigated.

The use of intelligent systems, including machine learning algorithms for stock market analysis, made possible the analysis of all this data in a timely manner for the decision-making in terms of investment. Methods such as neural networks (ANN), support vector machines (SVM) and genetic algorithms (GA) have been used and developed to respond to these problems.

II. RELATED WORK

A. Financial Market

Financial markets allows sellers and buyers negotiate financial products through legal contracts, which guarantee the buyer future income rights [1]. According the analysis pretended, the financial markets can be classified according the following distribution, affected by financial product maturity traded:

- Money Market: in this market are transacted short-term financial products, like treasure bills, commercial paper and certificates of deposit;
- Derivatives Market: the financial instruments in this market have an intrinsic value linked to other asset. Swaps, forwards, futures and options are examples of financial instruments transacted in this market;
- Capital Market: long-term financial instruments are transacted in this market. This market can be spitted in two: stock market and bond market.

In this work only the stock market is studied and analyzed. The financial instrument traded in this market is the stock. A stock symbolizes the smallest percentage of the capital of an enterprise that an investor may have in their possession. Thus, an investor to buy a set of stocks will become owner of a percentage of the company share capital in which it invested. The stock price is not fixed and depends on many different factors that influence the price evolution such as the current performance of the company, future expectations, the current economic environment, industry developments, and other more factors [2].

B. Fundamental Analysis

Fundamental analysis is the most used tool in evaluating company’s financial conditions over time. Furthermore, it’s possible to check about current performance and predict future gains, or losses, and provide to investors the risk level that a
particular company has. Fundamental analysis is based on information provided by Financial Statements: balance sheet, income statements, cash flows and changes in shareholders’ equity.

The use of financial ratios is possibly the most widely used method for a company financial analysis. The temporal analysis of ratios allows to investor monitoring the company in which it invested in the financial level and evaluating in a quantitative way if your investment may generate profits [3][4]. The main ratios used are the following:

- **Debt to Equity Ratio:**

 The debt to equity ratio measures the financial leverage of a related company and the source of external financing [5]:

 \[
 D/E = \frac{Liabilities}{Equity}
 \]

- **Gross Margin Ratio:**

 Gross margin ratio shows the profitability of revenues, or in other words, the percentage of revenues that a company retains after cost of goods sold deduction:

 \[
 GM = \frac{Revenues-Cost \ of \ goods \ sold}{Revenues}
 \]

- **Net Profit Margin Ratio:**

 The ratio of net profit margin gives the percentage of revenues that are really retained into profit:

 \[
 NPM = \frac{Net \ Profit}{Revenues}
 \]

- **Return on Equity – ROE:**

 The Return on Equity (ROE) shows the investors the percentage of return of investments made. It’s capability of a company in generate profits:

 \[
 ROE = \frac{Net \ Income}{Total \ Equity}
 \]

- **Price-Earnings Ratio - PER:**

 Price-Earnings Ratio (PER) is the coefficient between stock price and Earnings per Share (EPS) for a given company. This ratio could define if a stock value is appropriate or not, based on companies’ earnings:

 \[
 PER = \frac{Share \ Price}{Earnings \ per \ Share}
 \]

- **Earnings Yield:**

 The inverse of PER, earnings yield is other returns measure:

 \[
 Yield = \frac{Earnings \ per \ Share}{Share \ Price}
 \]

- **Growing Ratios:**

 In this work were used growing ratios, like EPS growth, Income, EBITDA and cash growth and debt, liabilities and current liabilities growth. All this ratios are obtained as following:

 \[
 Ratio_{Growth} = \frac{Ratio_{time-t} - Ratio_{time-t-1}}{Ratio_{time-t-1}}
 \]

C. **Stock Picking and Machine Learning Algorithms**

The stock picking is the process of systematically selecting stocks with potential return by an investor to build up their investment portfolios. However, this process is highly complex for many reasons, such as the high volume of data available for analysis of a stock market index like the NASDAQ, for example, and the difficulty of predicting future stock price. The use of computational methods to perform this task becomes so essential for the investor to analyze in time an entire stock market index and to choose good companies to invest. There are several algorithms for machine learning that has been applied in solving this optimization problem, since neural networks, support vector machines and genetic algorithms.

Artificial Neural Networks (ANN) have been studied and used in portfolios return prediction problems because they have a good adaptability to the non-linearity inherent in financial markets [6][7][8]. Another technique used in stock portfolios return prediction problems are the Support Vector Machines (SVM) [9][10]. This technique has gained relevance among the machine learning algorithms because of their very good results, sometimes better than using ANN algorithms. The main objective is to obtain an output function with a good generalizability given a set of training data [11][12].

Genetic algorithms (GA) is also used in stock selection problems and are the focus of the work presented in this paper. Several studies have shown that the use of GA could generate very good results [13][14][15].

D. **Genetic Algorithms**

Designed by John Holland, GA are one of the most currently used methods of evolutionary computation. This algorithm is a method of optimization and search, aiming to calculate the best approximate solution to a given problem. The name of this algorithm comes from its inspiration in biological and evolutionary processes and uses similar processes such as mutation, crossover and selection [16][17].
As shown in Figure 1, the algorithm is based on a set of operators that represent the evolutionary biological processes [17][18]. The phases of the algorithm are as follows:

1) Evaluation

In this phase the individuals of the population are submitted to an evaluation process, using a fitness function, where the value obtained defines the chances that each particular individual has to be selected. Measures of return and risk are usually used for this function:

- Return:
 \[R_{\text{Portfolio}_j} = \sum_{i=1}^{N} W_i \times \mu_i \]
 (8)

- Risk (Sharpe Ratio):
 \[S_{\text{Portfolio}_j} = \frac{R_{\text{Portfolio}_j} - R_{\text{free}}}{\sigma_{\text{Portfolio}_j}} \]
 (9)

where \(R_{\text{free}} \) is the return of a free risk asset, like German Treasure Bonds (with AAA classification) and \(\sigma_{\text{Portfolio}_j} \) the standard deviation of portfolio’s returns.

2) Selection

After evaluation it’s necessary to make a selection of the best individuals taking into account the results obtained in the evaluation process, which are used to define the new population and generate offspring. The main selection methods are the Roulette-Wheel, Truncation and Rank.

3) Crossover

The new individuals of the population will be generated by crossing pairs of chromosomes of the surviving population from the selection process, with exchange of genetic information.

4) Mutation

After the crossover process a percentage of chromosomes is selected to undergo changes in their randomly selected genes, modifying the genetic information.

III. PROGRAM’S ARCHITECTURE

The program presented in this paper is all developed in R language [19] using RStudio user interface [20]. The program structure is presented in Figure 2.

The main parts of the program are the following:

A. Extraction, Cleaning and Data Processing

The data source used in this work are SEC website [21] for all financial information, through the 10-Q and 10-K statements reports, and Yahoo Finance [22] for stock prices. The Figure 3 shows the extraction and cleaning model developed. The program downloads all statement reports from SEC, convert them in a R language readable format, extract all the information needed from the files. To accomplish that is necessary a word dictionary to find the right information in the report files, as shown in Figure 4. All this information read is grouped in a financial information matrix.

After that, the matrix obtained is subjected to a cleaning algorithm that consists in a several rules to apply to all data like remove special characters, dates verification, remove duplicate entries and calculate some information that could be missing.
After all the previous process is calculated all the ratios and indicators needed to GA inputs.

B. Data Transformation

Given the test date range and selected the desired ratios to use in GA is created a data subset from the ratio matrix created before.

Figure 5 - Ratios Rank Formulation – Best ratios generate high ranks

\[W_i \times \text{Gene}_i \]

\[\sum \text{cromosoma } j \ (W_i \times \text{Gene}_i) \]

Figure 6 - Final rank calculation – Higher value of rank, better the company rank
This new matrix is transformed into ranks values as represented in Figure 5. For each ratio, the rank function is applied to all companies of the index. Therefore, if a ratio value of a company was good, the rank value obtained will be high, increasing probabilities of selection in the GA process (Figure 6). Applying this transformation we intend to incorporate in their value its financial position on this ratio in global companies: a large sales increase in value may not mean a respective high value rank, as it also depends on the performance of other companies.

C. Genetic Algorithm Formulation

The chromosome used in the formulation of this work consists in a set of genes that represent weights (to apply in evaluation phase of algorithm), and an additional gene corresponding to the range of companies that can be selected for the portfolio. With the exception of the latter gene, the remaining match weights, \(W_i \), to be assigned to each of the ratios corresponding to each gene. Figure 7 shows the chromosome constitution.

\[
\begin{align*}
\text{Gene 1} & \quad W_1 \\
\text{Gene 2} & \quad W_2 \\
\text{Gene 3} & \quad W_3 \\
\vdots & \\
\text{Gene 1+i} & \quad W_i \\
N_{\text{stocks}} & \quad N_{\text{stocks max}}
\end{align*}
\]

Figure 7 – Gene representation

The weights of each genes (except for \(\text{Gene}_{i+1} \)) and the number of companies to be selected follows the following rules:

\[
0 \leq W_i \leq 1 \quad (10)
\]

where the value of each gene (except for \(\text{Gene}_{i+1} \)) must be between 0 and 1,

\[
0 \leq \sum W_i \leq 1 \quad (11)
\]

where the sum of weights must be between 0 and 1 and for \(\text{Gene}_{i+1} \):

\[
N_{\text{stocks min}} \leq N_{\text{stocks}} \leq N_{\text{stocks max}} \quad (12)
\]

where the number of stocks to be selected by algorithm must be between the limits previously defined by user.

IV. RESULTS

To evaluate the developed model were performed three different tests with the indexes NASDAQ 100, S&P 500 and NASDAQ. In general terms, during the tests are used training data between 2011 and 2013, and the test data set between 2014 and 2015. The program has to select between 5-20% of the companies of the index used and limit gains to 100% and the losses to 25% and financial sector companies are excluded. For the GA, the population consists of 100 chromosomes that are processed for 100 generations, a selection rate of 50% and mutation rate of 5%. The selection and crossover methods used were Truncation with the selection percentage of 50% and the one-point crossover, respectively. The return/risk coefficient in the evaluation function will depend on the market analysis and are indicated in Table 1.

Table 1 – Return/Risk Coefficient

<table>
<thead>
<tr>
<th></th>
<th>NASDAQ 100</th>
<th>S&P 500</th>
<th>NASDAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best GA Exec.</td>
<td>55.02%</td>
<td>24.09%</td>
<td>17.85%</td>
</tr>
<tr>
<td>Average GA Return</td>
<td>39.40%</td>
<td>19.55%</td>
<td>15.79%</td>
</tr>
<tr>
<td>Worst GA Exec.</td>
<td>10.71%</td>
<td>14.07%</td>
<td>14.25%</td>
</tr>
<tr>
<td>Index</td>
<td>28.90%</td>
<td>11.57%</td>
<td>20.86%</td>
</tr>
</tbody>
</table>

For the results of the previously defined tests were performed 10 executions of GA to each of the index. In Test 2 is performed only one execution because the weight values are forced to have the same value (0.5 each). In all the tests chosen companies by model will have the same representation in the portfolio.

A. Case Study I – Growth Ratios

In this test the genes used are ROE, EPS Growth, Income Growth, Total Debt Ratio, PER, Gross Margin, Profit Margin and the number of companies to select.

Table 2 shows the results obtained for this test. It can be seen that the average GA returns are greater than the index return for NASDAQ 100 and S&P500. For the best GA execution, the model generate 55% and 24% of returns, respectively. For NASDAQ, the results were slightly below than the market return, with 15.8% average return (-5% than market).

Table 2 – Test 1 – Return Results

<table>
<thead>
<tr>
<th></th>
<th>NASDAQ 100</th>
<th>S&P 500</th>
<th>NASDAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best GA Exec.</td>
<td>55.02%</td>
<td>24.09%</td>
<td>17.85%</td>
</tr>
<tr>
<td>Average GA Return</td>
<td>39.40%</td>
<td>19.55%</td>
<td>15.79%</td>
</tr>
<tr>
<td>Worst GA Exec.</td>
<td>10.71%</td>
<td>14.07%</td>
<td>14.25%</td>
</tr>
<tr>
<td>Index</td>
<td>28.90%</td>
<td>11.57%</td>
<td>20.86%</td>
</tr>
</tbody>
</table>

B. Case Study II – ROE and Earnings Yield

Using some guidelines used by Joel Greenblatt in this book ‘The Little Book That Beats the Market’ [23], in this test it’s used only genes ROE and Earnings Yields in chromosome structure and selected 20 companies to construct portfolio, with the restriction that the minimum market capitalization value is 100 million dollars.

As seen in Table 3, in this case study the return values were much lower than obtained in previously test, where only the execution in the S&P500 index matched approximately the market returns.

Table 3 - Test 2 – Return Results

<table>
<thead>
<tr>
<th></th>
<th>NASDAQ 100</th>
<th>S&P 500</th>
<th>NASDAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio</td>
<td>21.06%</td>
<td>11.66%</td>
<td>7.20%</td>
</tr>
<tr>
<td>Index</td>
<td>28.90%</td>
<td>11.57%</td>
<td>20.86%</td>
</tr>
</tbody>
</table>
C. Case Study III – Growth and Debt Ratios

In this test are used the genes of Test 1 with the inclusion of debt information and cash. The ratios were Debt Growth, Liabilities Growth, Current Liabilities Growth and value Cash Growth. One aim will be to analyze the impact of the inclusion of these genes on the results obtained in Test 1.

The results obtained for this test, presented in Table 4, were superior to those obtained in Case Study I for NASDAQ 100 and S&P500, and especially for the worst GA execution, where the return was more than twice previously obtained. As in Case Study I, the average return of the execution of the program is well above the return value of the index. However, the results for NASDAQ index remain weak, with the average return value only about 15% (~5% than market return). The inclusion of debt ratios improved returns from the developed model, especially for the worst GA execution.

![Table 4 - Test 3 - Return Results](image)

<table>
<thead>
<tr>
<th></th>
<th>NASDAQ 100</th>
<th>S&P 500</th>
<th>NASDAQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best GA Exec.</td>
<td>56.26%</td>
<td>36.65%</td>
<td>20.38%</td>
</tr>
<tr>
<td>Average GA Return</td>
<td>40.44%</td>
<td>32.71%</td>
<td>15.00%</td>
</tr>
<tr>
<td>Worst GA Exec.</td>
<td>23.42%</td>
<td>28.32%</td>
<td>11.43%</td>
</tr>
<tr>
<td>Index</td>
<td>28.90%</td>
<td>11.57%</td>
<td>20.86%</td>
</tr>
</tbody>
</table>

The time evolution of returns obtained in all case studies are represented in Figure 8.

V. CONCLUSIONS

In this work was presented the methodology developed for automatic stock picking and constitution of portfolios whose returns could be higher than those obtained if the investment was made in the index. This program developed was based on genetic algorithms with financial information. The program has the ability to get all the necessary information of the financial statements reported by US companies. The reports download, reading and processing is all provided by the program.

The chromosome used in a GA corresponding to weights that are applied to a matrix of financial data that was previously transformed by a process rank. This process transforms the actual data of each ratio in a ranking company, where the value obtained is the relative position of that company in the index used.

Although the results for the NASDAQ are slightly lower than expected, the obtained for the NASDAQ 100 and the S&P500 were very satisfactory and consistent (remained good results between Case Study I and III), which concluded that the best strategy to follow would be to add the debt growth ratios to the previous profitability and growth ratios. Therefore, it can be concluded that the use of GA based on fundamental analysis can be extremely useful to decision support in choosing good stocks that can generate good returns to investors.

![Figure 8 - Index Return vs Portfolio Return](image)
REFERENCES